
J2ME SyncML API Design Document

December 2008

Changes History

Date Author Changes

2006.11.06 Andrea Gazzaniga Initial Draft

2006.11.06 Giuseppe Monticelli Server Alerted Notification

2006.11.09 Ivano Brogonzoli OTA Configuration

2006.11.10 Andrea Gazzaniga Version 1.0 (first review completed)

2006.11.15 Giuseppe Monticelli SAN Java examples, UML class diagrams

2006.11.16 Andrea Gazzaniga Editorial changes

2006.11.17 Stefano Fornari Editorial and content review

2006.12.04 Andrea Gazzaniga Version 1.1 (after public review)

2007.12.07 Edoardo Schepis SAN and OTAConfig paragraphs moved to
common package documentation

Added Large Object documentation

2008.09.16 Ivano Brogonzoli Added The MappingManager part. It
explains how lost mappings informaions
are recovered by the API and how it solves
the problem of duplicated items.

2008.12.12 Marco Garatti Reviewed large object section

2008.12.12 Marco Garatti Added TrackableSyncSource and
ChangesTracker sections

06/03/09 Marco Garatti Added server capabilities description

Copyright (c) 2006 Funambol - Page 2

Table of Contents
1.Overview..4

1.1. Document Conventions...4

1.1.1. Sequence Diagrams..4

1.1.2. Class Diagrams..4

1.2. Functional overview...4

2.Data Synchronization Layer...6

2.1. The Synchronization Process...6

2.1.1. Initialization..7

2.1.2. Modifications Exchange..9

2.1.3. LUID-GUID Mapping..10

2.2. Data Synchronization Layer Architecture..11

2.2.1. SyncManager...12

2.2.2. The SyncSource Interface..14

2.2.3. BaseSyncSource...14

2.2.4. TrackableSyncSource...15

2.2.5. ChangesTracker..15

2.2.6. CacheTracker..16

2.2.7. SyncConfig...16

2.2.8. DeviceConfig..17

2.2.9. SourceConfig...18

2.3. Synchronization Events Notification...18

2.4. Device Info Handling...19

2.4.1. Client capabilities handling...19

2.4.2. Server capabilities handling...20

2.5. SyncML Parser...20

2.6. SyncML Formatter...20

2.7. Filtering...20

2.8. Large Objects Handling...21

2.8.1. Receiving large objects...22

2.8.2. Sending large objects...23

2.8.3. Encoding and legacy support...23

3.References..25

Copyright (c) 2006 Funambol - Page 3

1. Overview

The Funambol SyncML API allows application developers to embed SyncML capabilities in a J2ME
application, thus giving it the access to a powerful data synchronization framework to keep the
application data in sync with other devices.

This document explains, from a developer point of view, the architecture of the Funambol SyncML
API for Java 2 Micro Edition.

1.1. Document Conventions
The diagrams used in this document are inspired to the UML sequence and class diagrams, but
with some simplification. The conventions used by the diagrams are described in the following
sections.

1.1.1. Sequence Diagrams

• Each entity is represented as a box;

• a box can represent a class, an instance, an interface or even a conceptual entity; the real
meaning depends by the context;

• solid arrows represents method or function calls;

• dashed arrows represent some sort of communication between two entities; it is intended
that the communication mechanism is left unspecified or is not important or it is at a
different abstraction layer.

1.1.2. Class Diagrams

• Each class is represented as a box;

• data members and methods are separated by a horizontal line;

• plain titles represent classes, italicized titles represent interfaces (abstract classes);

• a + next to a method or data member name means “public”

• a - next to a method or data member name means “private”

• a # next to a method or data member name means “protected”;

• a > next to a data member name means it is a property with get/set accessors;

• inheritance is represented by an arrow pointing to the base class;

• italicized methods names represent abstract methods.

Copyright (c) 2006 Funambol - Page 4

1.2. Functional overview
The Funambol SyncML API for J2ME is currently focused on data synchronization only. The device
management protocol (OMA-DM), available on other platforms, is not implemented in this version
of the API.

A client application interacts mainly with two entities of the Funambol Client API: the SyncManager
and the SyncSource. The SyncManager is the component that handles all the communication and
protocol stuff. It hides the complexity of the synchronization process providing a simple interface to
the client application. A SyncSource represents the collection of items stored in the local
repository. It contains the client logic to discover the items to send to the server and to store the
ones obtained from the server. The client feeds a SyncSource with the items changed on the client
side, whilst the SyncManager feeds it with the items received by the server.

Copyright (c) 2006 Funambol - Page 5

Figure 1.1 - SyncClient API architecture

Sync Manager

Client ApplicationSync Source

SyncML API

2. Data Synchronization Layer

This chapter describes the design of the Funambol J2ME SyncML API Data Synchronization Layer.

The Data Synchronization process implemented in the Funambol API follows the OMA DS 1.2
specification (see [OMA-DS] and related documents).

2.1. The Synchronization Process
In this section, a brief introduction to the synchronization process is provided to better understand
the use of the SyncML API. For a more detailed description see the OMA DS specification ([OMA-
DS]).

The synchronization process is logically a sequence of three phases:

1. Initialization

2. Modifications exchange

3. IDs Mapping

In the initialization phase the client sends its credentials and which database to synchronize (along
with the desired synchronization type) to the server. The server responds with the authentication
status and the synchronization type to perform. The client must then perform the synchronization
as requested by the server.

After the initialization phase, first the client sends all client-side modifications and receives the
status of the execution of the commands on the server; then, the server sends server-side
modifications. The client applies the changes and sends the proper status back to the server.

In the case the server issued a new item to the client, the latter creates a new local id for it and
therefore needs to communicate such new key to the server (see LUID-GUID mapping in [OMA-
DS]). This is usually done in the mapping phase (or at least, the Funambol client API will send the
mapping just after the modifications exchange phase).

The synchronization flow is illustrated by the sequence diagram of Figure 2.1, where the entities
that participates to the sync have the following meaning:

• Client Application: a final client application using the Funambol SyncML API;

• SyncManager: the SyncML API synchronization engine;

• SyncSource: the interface for a client data source;

• SyncListener: the interface for monitoring a synchronization process;

• Sync Server: the SyncML server

As shown in the figure, the client application just kicks off the synchronization process giving a sync
source to synchronize. The SyncManager takes control of the synchronization process. The
macros initialization, modifications exchange and client mapping involve the interaction with the
server and include the required SyncML messages exchange.

Copyright (c) 2006 Funambol - Page 6

To simplify the figure, some back arrows are not shown as they do not carry information (for
example the ones from the listener back to the SyncManager).

2.1.1. Initialization

As per the SyncML specification, the initialization phase can be performed in two ways:

1. As a separate package

2. Together with the modifications exchange package

The Funambol Client API implements “separate initialization” only, which is the option that
optimizes at best network usage in the most common cases. In fact, with a synchronization without
a separate initialization, there is the risk to start a potentially long synchronization, while the server
would refuse the sync (for example because it does not authorize the client). Performing separate
initialization avoids this issue with a minimal impact on network traffic.

The specification defines three important tasks performed in the initialization phase:

Copyright (c) 2006 Funambol - Page 7

Figure 2.1 - Synchronization process flow

Sync
Manager

Sync
Source

sync(source)

get[All/New/Deleted/Updated]item

SyncItem

Sync
Server

SyncML modifications

SyncML initialization

[add/update/delete]Item

Client
Application

SyncML mapping

beginSync

endSync

Sync
Listener

startConnecting

endConnecting

startSyncing

startSending

itemAddSent

endSending

startReceiving

itemReceived

endReceiving

startMapping

endMapping

endSession

1. client authentication

2. server authentication

3. database alerting

The server authentication is not implemented in the current version of the J2ME SyncML API, so it
will not be further described.

Client Authentication

This section covers how the client sends its authentication credentials to the server and how the
authentication process goes.

The SyncML specifications mandate that client implementations must support at least basic and
MD5 Digest authentication.

Client authentication is delivered in the Cred element of the SyncML message header. Plus, even if
the client sends in the first message its credentials in one of the supported types, the server can
refuse it and challenge the client for a different kind of credentials. For example, if the client starts
sending Basic credentials and the server requires MD5 authentication, the server responds with a
401 status to the client credentials and provides a Chal element with the requested authentication.

The Funambol J2ME SyncML API implements only the basic one at the moment. If the server
requires an MD5 authentication, the client recognize the request and report an an invalid
authentication method exception.

For additional information on Basic and MD5 authentication see section 2.5 of [OMA-DS].

Basic authentication is identified by the URI syncml:auth-basic; it is pretty simple and it is very
similar to what happens in Web applications.

In this case, credential data are encoded as follows:

B64(username':'password)

Where B64() is a function that encodes the given string in Base 64. username and password
represent the account's authentication information.

Database Alerting

The second task performed during initialization is database alerting. Database alerting is the
means the client requests to synchronize a particular database; plus, it specifies which type of
synchronization should be performed. The SyncML specifications define the following
synchronization types:

Sync Type Description Alert Code

Two-way
A normal sync type in which the client and the server exchange
information about modified data in these devices. The client sends the
modifications first.

200

Slow

A form of two-way sync in which all items are compared with each other
on a field-by-field basis. In practice, this means that the client sends all its
data from a database to the server and the server does the sync analysis
(field-by-field) for this data and the data in the server.

201

One-way from client only A sync type in which the client sends its modifications to the server but
the server does not send its modifications back to the client.

202

Refresh from client only
A sync type in which the client sends all its data from a database to the
server (i.e., exports). The server is expected to replace all data in the
target database with the data sent by the client.

203

One-way from server only A sync type in which the client gets all modifications from the server but
the client does not send its modifications to the server.

204

Refresh from server only
A sync type in which the server sends all its data from a database to the
client. The client is expected to replace all data in the target database
with the data sent by the server.

205

Copyright (c) 2006 Funambol - Page 8

From the specifications perspective only Slow and Two-way sync types are mandatory. However,
the Funambol SyncML API supports issuing all the defined synchronization types.

Note that the server can respond with a different Alert type for a given database. The client must
always perform the synchronization type as given by the server.

2.1.2. Modifications Exchange

The modification phase is when client modifications are detected on the client and sent to the
server who replies with the server side updates. These updates are applied to the local database.
Accordingly to the SyncML specs, updates are exchanged with commands like Add, Replace,
Delete, Copy, Move, etc.

However only Add, Replace and Delete are mandatory to SyncML implementations; the others are
optional (see the specs for details).

Since the initialization phase is done separately, the modification exchange phase is carried on
only if initialization completed successfully.

The real synchronization process is driven by the SyncManager. It uses the SyncSource interface
in order to interact with a specific data source. The development of the SyncSource is delegated to
the application developer. The role of a SyncSource is to

• provide information about the SyncSource to synchronize (preferred synchronization type,
name, local and target URIs, MIME type of the data...)

• keep the synchronization state from the data source point of view

• retrieve all items in the data source regardless their state

• retrieve the modified items only from the data source

• apply server side changes

• commit changes

The interaction between the SyncManager and the SyncSource is the core of the synchronization
process. Since the number of items in the local data source may be relevant, and thinking of the
limited resources of a J2ME device, the SyncSource works like a cursor: it provides
getItem()/getNewItem()/getUpdatedItem()/getDeletedItem() to retrieve the first and next items in
the data store. The SyncSource implementation must reset the cursor after a call to the
beginSync() method, and return the next item of the requested type at each call.

In this way the SyncManager has the opportunity to choose to add the item in the current message
or in the next one, to implement the multi-message mechanism, described later.

When the server receives a modification from the client, it applies the change in the server
database and returns the status code for the operation. The SyncManager communicates to the
SyncSource the status of the performed command by calling setItemStatus() so that the
SyncSource can take appropriate actions (for example, in the case of a success code, it can reset
the item dirty flag or permanently delete a soft deleted item).

On the opposite direction, when modifications are received from the server, the SyncManager
decodes each command and call add/update/deleteItem() on the SyncSource implementation.
These calls apply the change and return a status code (the same value that will be sent in the
SyncML message).

Note that addItem() returns also the new local ID generated by the data store (LUID); this is stored
in the SyncSource along with the GUID received by the server so that the mapping will be
communicated back to the server in a Map command (see the next phase).

Multiple messages in one package

OMA-DS specification defines a way to split the modification package over multiple messages,
which means the client can send its modified items in more messages and get the server items in
the same way. This process is commonly called “multi-messaging” and it is used to meet the
limited resources requirements of mobile devices. The Funambol J2ME SyncML API supports
multi-messaging, as summarized below:

1. Client sends the first n items in the first message of PKG #3, without the <Final/> element;

Copyright (c) 2006 Funambol - Page 9

2. Server applies the changes and replies with a message containing only status commands;
the server is not allowed to send its own changes until client finished to send client side
changes (which means unless the client ends the package with the <Final/> element);

3. Client sends the next message with the next items; if the message contains the last items,
the package is terminated with the <Final/> tag;

4. Server applies the client changes and returns a message with only status; if the client sent
its last massage, Server goes to the next step; otherwise, the process goes back to step 2;

5. Client replies to Server simply with a status command (optionally with a 222 Alert code);

6. Server starts sending server side updates; if the message is not the last one, the <Final/>
element is not added to the message; otherwise, <Final/> indicates the end of the package;

7. Client applies the received changes and replies with status command only; when the
message obtained by Server contains the <Final/> element, the process ends.

2.1.3. LUID-GUID Mapping

After the server has done with its modifications, along with the latest status command, the client is
requested to send also the LUID-GUID mapping, if there is any. As already mentioned, such
mapping is stored temporarily in the SyncSource implementation's instance, therefore the
SyncManager can easily extract them and embed them into the message. However, it may happen
that the communication falls in the middle of sending the message or before receiving the
response from the server. For this reason, mappings must be permanently stored before sending
them and can be removed only after having received a successful status for the sent Map
command.

If, when a new synchronization starts, the persistent mapping is still present, it must be sent again.
The Class that manages this task is called MappingManager and it is instantiated by the sync
manager, that invokes it during the sync process as per the diagram below:

The MappingManager class refers to a particular Serializable object called the ItemMap, that
contains the name of the source mappings to be persisted and the hashtable with the mappings
informations.

Copyright (c) 2006 Funambol - Page 10

SyncManager MappingManagerSyncSource

getMappings(String)::Hashtable

BeginSync()

saveMappings(String, Hashtable)

processResponse(String, Hashtable)

.....

resetMappings(String)

EndSync()

Initialization

Modifications
And Mapping

Last Mapping

Before the sync begins the SyncManager cheks if there are mappings to be sent for the given
source. Due to the fact that the sync implements the multimessage tecnique every time a mapping
information must be sent, the SyncManager saves the mappings before sending the message:
when a network problem occurs the persisted mappings will be sent on the next sync process only
if the next sync type is two way or one way from server (in case of slow syncs or refresh syncs no
mapping message recovery is needed). The call to the reset method is done when the sync ended
succesfully.

The ItemMap class is owned by the MappingManager and its diagram is shown below:

The ItemMap class implements the Serializable interface. The two methods serialize(..) and
deserialize(...) are implicitly used by the store when the source mappings are persisted into the
RMS. Due to performanse issues the mappings table is persisted every time a mapping list is filled
after the response by the server is processed. This is a bit different from the C++ API
implementation that saves every mappings anytime a new item is added on the client. Doing the
same on the RMS wuold create loss of performance into the sync process, so it has been decided
to implement the mapping caching once per message.

2.2. Data Synchronization Layer Architecture
This section defines the design of the data synchronization layer. The fundamental components
are: SyncManager, SyncSource and SyncItem. Roles and responsibilities of these components are
summarized in the table below.

Component Implementing class / Interface Roles and responsibilities

SyncManager com.funambol.syncml.spds.SyncManager This is responsible for the implementation of each single
phase of the synchronization. It is also responsible of driving
the process of building the proper SyncML messages to send
to the server through the TransportAgent and to interpret the
server response and take the consequent actions.

SyncSource com.funambol.syncml.spds.SyncSource An implementation of this interface represents a client
database. It is used by the SyncManager when it needs to
read or store data from and to the local database.
SyncSource is purely an interface, which client developers
must implement in order to access the most disparate data
sources.This componentn

SyncItem com.funambol.syncml.spds.SyncItem This class is a container for the items exchanged between
the SyncManager and the SyncSource. It is designed to let
the SyncManager handle any data in the same way.

Copyright (c) 2006 Funambol - Page 11

+ ItemMap(sourceName:String)
+ ItemMap(sourceName:String, mappings:Hashtable)

> sourceName: String
> mappings: Hashtable
> serialize(dout:DataOutputStream)
> deserialize(din:DataInpuStream)

ItemMap

Serializable

Component Implementing class / Interface Roles and responsibilities

SyncListener com.funambol.util.SyncListener This class is a generic listener to monitor a synchronization
session.

Figure 2.2 represents the class diagram for the data synchronization layer (only the main classes
with the relevant details are shown, for a complete description of the classes please refer to the
Javadoc).

2.2.1. SyncManager

SyncManager represents the core of the data synchronization API, and is the contact point
between the application and the synchronization engine.

The SyncManager needs some configuration parameters to work, and these parameters are
passed during the creation of a new instance of the class using the SyncConfig class. It is client's
responsibility to fill or retrieve the config before creating the SyncManager, but the SyncConfig
already implements the Serializable interface (see [COMMON]) to make it easier for the client to

Copyright (c) 2006 Funambol - Page 12

Figure 2.2: SyncManager class diagram

+ getNextItem(): SyncItem
+ getNextNewItem(): SyncItem
+ getNextUpdatedItem(): SyncItem
+ getNextDeletedItem(): SyncItem
+ setItemStatus(key:String, status: int)

+ addItem(item: SyncItem): int
+ updateItem(item: SyncItem): int
+ deleteItem(item: SyncItem): int

+ beginSync()
+ endSync()

+ getName()
+ getSourceURI()
+ getType()
+ getEncoding()
+ getSyncMode()

SyncSource

+ SyncItem(key: String)

> key: String
> type: String
> state: char
> content: byte[]

SyncItem

DeviceConfig

SourceConfig

SyncConfig

+ SyncManager(config: SyncConfig)

+ sync(source: SyncSource): void

SyncManager
- config: SyncConfig

BaseSyncSource

+BaseSyncSource(sc:
 SourceConfig)

store and retrieve it to and from the device persistent storage. See below for a description of the
SyncConfig class.

A simplified example of SyncManager creation can be:

SyncConfig conf = new SyncConfig();
// set something in the conf...
conf.serverUrl = “http://www.somewhere.com/funambol.ds”
SyncManager sm = new SyncManager(conf);

Trigger synchronization

To actually start a synchronization, the client application must call the sync() method, passing the
SyncSource to synchronize as a parameter (see the SyncSource section for more details on how to
create a SyncSource):

 sm.sync(source)

When sync() is invoked the SyncManager start the sync process as described in section 2.1.

This version of the API does not implement large object handling yet (which means the ability to
split a big item amongst multiple messages). This feature will be implemented in a future version of
the API.

Detecting, Sending and Committing Client Modifications

Note that the way changes are detected is left to the SyncSource implementor. It may be based on
flag modification, change log handling, versioning... this is hidden to the SyncManager who just
asks for modifications calling getNext***Item() on a SyncSource implementation's instance.

getNextItem() is used in the case of a slow sync and retrieve the entire data source content.

getNext[New/Updated/Deleted]Item() are used in the case of fast sync and retrieve the items in the
data store that are in the corresponding state.

From the SyncManager perspective, a SyncSource is like a database cursor: the cursor is
initialized when beginSync() is called and each getNextItem() call returns an item or null if the
cursor reached the end of the result set.

The so retrieved client modifications are embedded in the SyncML message and sent to the server.
Note that not necessarily all modifications go in one single message. SyncManager determines if
an item must go in the current message or in the next message based on the number of items in
the current message and their size (see the multi message section earlier in this document).

When the SyncManager receives a status for a modification command previously sent, it calls the
method setItemStatus() of the corresponding SyncSource. This gives the SyncSource the
opportunity to commit the change, for example resetting the item modification flag.

Applying Server Modifications

After the client has done with its modifications the server starts sending its own. These are
interpreted by the SyncManager which calls the SyncSource's add/update/deleteItem() methods.
They return a status code as defined by the SyncML specifications.

Note that the item parameter passed to addItem() on return may have a changed key. This
represents the local id (LUID) that will be returned to the server in a Map command. See the table
in the SyncSource Interface paragraph for details on the addItem() method.

Device capabilities handling

SyncManager also provides device capabilities. This information combines device specific
information with data source related information, therefore properties from many configuration
objects will be used to build the DevInf command to send to the server. DevInf properties are
retrieved from the configuration (SyncConfig object) passed to the SyncManager constructor (see
SyncManager and SyncSource configuration).

Copyright (c) 2006 Funambol - Page 13

http://www.somewhere.com/funambol.ds

If it is the first time SyncManager connects to a server, client capabilities are sent in a Put
command (see the client capabilities handling session).

In the same way, if during initialization the server requests client capabilities sending,
SyncManager will send them in a Results command.

2.2.2. The SyncSource Interface

SyncSource is an interface that implementors must implement in order to access specific data
sources. The following table gives a list of the main methods with a brief description. Please refer
to the Javadoc for a complete description of the interface.

Method Description

void beginSync(int syncmode) Called by the SyncManager after the initialization phase, when the sync mode sent
by the server is known. The syncmode is normally used by the SyncSource
implementation to prepare the lists of items.

void endSync() Called by the SyncManager before committing the source. The SyncSource
implementation can stop the commit phase throwing an exception here.

SyncItem getNextItem() Returns the next item regardless its modification state, or NULL if the source
contains no items.

SyncItem getNextNewItem() Returns the next new item or NULL if there are no more new items.

SyncItem getNextUpdatedItem() Returns the next updated item or NULL if there are no more updated items.

SyncItem getNextDeletedItem() Returns the next deleted item or NULL if there are no more deleted items.

void setItemStatus(String key,
int status)

Called when a Status for a modification command previously sent is returned by the
server. This gives the opportunity to the SyncSource to know if the modification has
succeeded and to reset the related modification flag.

int addItem(SyncItem item) Adds a new item to the underlying data source. The call returns the status code that
SyncManager shall return to the server in the Status command.

If the SyncSource implementation generates a new local ID for the added item, it
must set the new key in the Item object, so that the SyncManager will be able to
send it back to server in a Map command.

int updateItem(SyncItem item) Updates an item into the underlying data source. The call returns the status code
that SyncManager shall return to the server in the Status command.

int deleteItem(SyncItem item) Deletes an item from the underlying data source. The call returns the status code
that SyncManager shall return to the server in the Status command.

void dataReceived(String date,
int size)

Called from the engine when new data arrives from the server. The date is in the
format of the HTTP header, if available, or null otherwise. The size is the total size
of the message reveiced, invluding the protocol overhead.

SyncFilter getFilter() Returns an implementation of the SyncFilter interface, with the filter to be used for
this SyncSource. See section 2.5. for more details.

void setFilter(SyncFilter filter) Sets the filter that should be used in preparation for the synchronization of this
SyncSource. See section 2.5 for more details.

2.2.3. BaseSyncSource

BaseSyncSource is an abstract class implementing the SyncSource interface. It contains a
SourceConfig (see 2.2.6) instance with the source configuration data, and implements the most
common methods. An implementor can extend this class implementing only the getXXXItem() and
the add/update/deleteItem() methods.

The constructor of BaseSyncSource, and generally of all the SyncSource implementations,
requires a SourceConfig parameter (a SyncSource implementation can also use a class derived
from SourceConfig). Given a TestSyncSource that extends BaseSyncSource, and a
NamedObjectStore instance used to retrieve the config (see [COMMON]), an example of use can
be:

Copyright (c) 2006 Funambol - Page 14

SourceConfig sc = new SourceConfig();

namedObjectStore.retrieve("source.test", sc);

TestSyncSource tss = new TestSyncSource(sc);

// Perform a sync: the process can change the SourceConfig (the anchors,
// for instance)
sm.sync(tss);

// Save the modified config
namedObjectStore.store("source.test", sc);

2.2.4. TrackableSyncSource

A trackable sync source is an extension of BaseSyncSource that adds the concept of a tracker of
changes made since the last synchronization. This concept is abstracted by an interface named
ChangesTracker described in the next section.

When a TrackableSyncSource is created it needs a tracker used when the set of modified items is
computed. This source at this point is capable of computing the list of changed items (for fast
syncs). The only requirement for deriving classes is to implement a method to get the keys of all
items in the store. This method is typically used in two scenarios:

● during initAllItems (invoked by the SyncManager for slow syncs)

● to track changes in a fast sync when the tracker is based on fingerprints (for example the
CacheTracker, descibed in next section).

This sync source does not implement methods such as addItem, updateItem, deleteItem and
getItemContent which are left to derived classes, but it simplifies the writing of new classes as it
provides the methods to fetch items from the sync source.

2.2.5. ChangesTracker

This is an interface describing a tracker of changes in a source. The interface is very general and
allows very different implementations. In particular there are two basic different ways of
implementing a tracker:

● based on fingerprints or items properties

● based on modification listeners

The first type is built around the idea that a snapshot of the data store is taken at the last sync and
it is compared with the current status. This allows the detection of new, updated and removed
items. This approach is always possible, even though it is not very efficient as it requires a
complete scan of the data store.

The second type of tracker is built around the idea that the underlying platform notifies an
application when a change is made to the data store. Many applications offer this possibility that
leads to high efficient data sources.

The two different types of tracker works in a very different way and finding a common interface to
describe both implementations required to be very generic. The reason is mostly related to when
changes are discovered. A fingerprint based implementation needs to compare the old and the
current status to compute modifications. Once this done, any other change to the data store is not
caputred until the next synchronization. A tracker based on listeners can behave differently as it
can detect changes made after the sync started.

The interface has two sets of methods:

● methods to retrieve list of changes. Changes are returned as enumerations containing
item's keys

● methods to inform the tracker about what is happening in the sync

It is interesting to observe the behavior of the tracker related to time. Figure 16 shows a temporal
diagram. Let “b” be the time when the sync source informs the tracker that it is going to ask for
changes soon. At this time the source must guarantee that all changed happened before b and
after the previous synchronization will be detected with the next calls to the method that retrieve list

Copyright (c) 2006 Funambol - Page 15

of changes. Calling the “begin” has the function to set a point in time and this guarantees the
enunciated property.

Now let “c1” be the time when a new item is added to the store and “g” the time when the sync
source asks for the new items. The interface guarantees that all items added before b are detected
in g, but the item added in “c1” can be part of this set or not. No behavior is enforced. A fingerprint
tracker is likely to ignore it, while a listener based one will probably include it. Both behaviors are
acceptable,

When getNewItems is invoked, the method returns the set of changed items and this set is frozen
at time “g”. Changes made afterward (e.g. in c2) are not part of the changeset. This is true for any
tracker and an expected behavior of the tracker.

The next interesting point in time is “s” when the source receives the status of an item sent to the
server. If the item was exchanged correctly, then the tracker can remove it from its lists. There is
just one exception to this rule, that must be taken into account. Suppose an item was detected as
updated in the current changeset and then it is updated again. When a successful status is
reported the item shall not be removed from the list of changes to be reported at the next sync.
The interface allows this case to be handled for both fingerprint and listener trackers.

Time “e” is when the sync ends and “b” begins again. The changeset in b will contain the item
added in c2 and possibly (depending on the implementation) the item added in c1.

2.2.6. CacheTracker

This is a default implementation of ChangesTracker. This implementation is based on fingerprint
computed with MD5. The CacheTracker stores a fingerprint for each item in the store. When the
begin is invoked it computes the fingerprint for all the items currently in the store and detects all
the changes. The methods that returns the list of changes will simply return what was computed by
the begin method.

The behavior of the setItemStatus (invoked to notify the status of a change is interesting). If a
command was successfully applied on the server, then the source status is updated. Suppose an
“add” command was sent to the server and the item was correctly added to the server. In this case
the setItemStatus will add this item into the cache so that it won't reported as a new item at the
next sync.

The implementation uses MD5 to compute fingerprints. If a client prefers a different fingerprint
computation it can derive the class and redefine the method that computes the fingerprint for an
item.

The cache is stored in a StringsKeyValueStore which is an abstract class defined in the common
APIs. This class allows a string map to be persisted and reloaded. JME does not have the concept
of Serializable and therefore custom implementations are necessary.

Copyright (c) 2006 Funambol - Page 16

Figure 2.3: Changes tracker behavior in time

timeb g s be

c1 c2

2.2.7. SyncConfig

SyncConfig is a container class that groups the configuration information needed by the
SyncManager.

The properties of SyncConfig are described below, for a complete description of the fields, please
refer to the Javadoc.

Property Description

syncURL The syncURL value. If the URL does not start with http:// (or HTTP://)
or https:// (or HTTPS://), http:// is prepended to the given string.

username The username to use for client authentication

password The password to use for client authentication

userAgent The user agent string, will be sent in the HTTP header to identify the
client on server side. It should be a short description with the client
name plus its version.

deviceConfig The device settings, used to build the DevInf tag.

devInfHash This is a hash value generated from all properties that are used for
the <DevInf> element, plus the syncURL property from SyncConfig.
Initial value = “0”. TODO: check this on J2ME

Notes:

'userAgent' value should be specified by the client. If the property is left empty, the user agent will
have the form: “Profile/<MID profile> Configuration/[CLDC 1.x]”.

'devInfHash' property is used to verify if any DevInf element (or syncURL) has changed since last sync; in that
case the devInf is sent to the server (see next paragraph and Client Capabilities Handling chapter).

2.2.8. DeviceConfig

The DeviceConfig class is a container for properties related to the device and to the client
application. Most of DeviceConfig properties are used to generate the <DevInf> element for client
capabilities (see Client Capabilities Handling chapter). DeviceConfig properties are described
below.

Property Description

verDTD Specifies the major and minor version identifier of the Device
Information DTD used in the representation of the Device
Information. The value MUST be “1.2”.
This property is mandatory.

man Specifies the name of the manufacturer of the device. This property is
optional.

mod Specifies the model name or model number of the device. This
property is optional.

oem Specifies the OEM (Original Equipment Manufacturer) of the device.
This property is optional.

fwv Specifies the firmware version of the device.
This property is optional.

swv Specifies the software version of the device.
This property is optional.

hwv Specifies the hardware version of the device.
This property is optional.

devID Specifies the identifier of the source synchronization device. The

Copyright (c) 2006 Funambol - Page 17

Property Description

content information MUST specify a theoretically, globally unique
identifier. This property is mandatory.

devType Specifies the type of the source synchronization device. Type values
for this element type can be e.g. “pager”, “handheld”, “pda”, “phone”,
“smartphone”, “server”, “workstation”. Other values can also be
specified. This property is mandatory.

dsV Specifies the implemented DS version. This property is optional.

utc Boolean. Specifies that the device supports UTC based time. If utc =
TRUE, the server SHOULD send time in UTC format, else MUST
send in local time. Client MAY send time in local or UTC format.
Default value is TRUE.

loSupport Boolean. Specifies that the device supports handling of large objects.
Default value is FALSE.

nocSupport Boolean. Specifies that the device supports number of changes.
Default value is FALSE.

maxMsgSize The maximum message size (byte) accepted for XML messages
received from server. The same size is used for messages sent to
the server.

maxObjSize Specifies the maximum object size allowed by the device.
Default value is 0 (no maxObjSize set).

Notes:
If there is no firmware/software/hardware version of the device available (fwv, swv, hwv), then their content information can also be
a date, for example, 19980114 or 19990714T133000Z. Only hours, minutes and second MUST be specified in the time
component.

2.2.9. SourceConfig

The class SourceConfig is a container for the configuration parameter of a SyncSource. It is used
by BaseSyncSource. The most important SourceConfig properties are described in the table
below.

Property Description

version A version number to handle software upgrades

encoding Specifies how the content of an item should be encoded. The form of this
parameter is a semi-colon separated list of formats that must be applied in
sequence from the leftmost to the rightmost. For example, if format is “des;b64”,
when the item will be output in the message, the content must be first
transformed with the “des” encoder and than with the Base64 encoder.

syncMode This is the current sync mode used by the client. The parameter MUST be one
of the sync modes specified in property “syncModes”.

type The mime type of the items sent by this source.

remoteUri The remote URI of this source on the SyncML server.

lastAnchor Long value that specifies the last timestamp for this source.

nextAnchor Long value that specifies the last timestamp for this source.

ctCap Specifies the content type capabilities for this SyncSource. This information
describes which properties and which values the client can store. Not
implemented yet.

Copyright (c) 2006 Funambol - Page 18

2.3. Synchronization Events Notification
The synchronization process can be monitored by installing a proper listener that can be
associated to a SyncSource. The model for monitoring the synchronization is different in J2ME
(compared to J2SE [API-J2SE] and C++ API [API-CPP]).

A general SyncListener interface can be implemented or a utility BasicSyncListener can be
extended to implement custom listener.

From a synchronization listener point of view, a synchronization is a sequence of events that
happen in a certain order.

There are three different phases (as described in the SyncML synchronization process).

1. Connection set up

2. Modification exchange

3. Mapping

 The phases are encapsulated into a sync session which starts with a startSession and is
terminated by an endSession. Each phase is mandatory and the order cannot change.

The Modification exchange phase is the most interesting from the point of view of the SyncListener,
because it can be further split into more sub events. The modifications are exchanged with a
sequence of send/receive sesssions. Each time modifications are about to be sent to the server a
startSending event is generated. Then we can have an arbitrary sequence of itemAddSent,
itemReplaceSent and itemDeleteSent. At the end of the sending step a endSending event is
generated. Similarly for the receiving phase.

The sequence of events can be described by the following grammar:

S -> startSession C U M endSession

C -> startConnecting endConnecting

U -> startSyncing (S R)+ endSyncing

M -> startMapping endMapping

S -> startSending (itemAddSent | itemUpdateSent | itemDeleteSent) endSending

R -> startReceiving (itemReceived | itemUpdated | itemDeleted | dataReceived)*
 endReceiving

Unlike in other APIs, an event is not described by an EventInfo. This is just a pragmatic choice as
today such an object would not contain useful information but it would require extra memory and
CPU cycles. In the future we may need and introduce such an object to describe events.

The SyncManager notifies both the SyncSource and the SyncListener for some events (such as the
server provides new items), but in some case it only notifies the SyncListener (for example on the
session start and end). The two objects have a different vision of the synchronization process. The
listener is notified about everything that happens (with adequate information that describe the
events), while the SyncSource is only notified on events that require an action on its side.

Providing a SyncListener is a possibility, but not a requirement. If a simple client is not interested at
observing the synchronization, it can avoid registering any listener.

The class diagram of shows the classes used for event notification.

2.4. Device Info Handling
Device info is meta information exchanged between SyncML capable devices. Device Info is
intended to be used to exchange device specific information. Exchange of device specific

Copyright (c) 2006 Funambol - Page 19

information such as available memory and item identifiers, supported local databases is a
prerequisite to successful data synchronization.

In this document we make a distinction between client and server device information, event though
at the SyncML level there is no distinction. The following sections describe information sent by
clients to the server and vicecersa.

2.4.1. Client capabilities handling

The SyncML specification ([OMA-DS], § 6.7) state:

"The sync client MUST send its device information to the server when the first synchronization is done
with a server or when the static device information has been updated in the client. The client MUST
also be able to transmit its device information if it is asked by the server. The client SHOULD also
support the receiving of the server device information".

Therefore, we have two scenarios:

1. The client connects to a new server;

2. The server issues a Get command requesting for client capabilities.

In both cases the client shall send its capabilities. Plus, if the client has already sent its capabilities
to a server in a previous synchronization, the DevInf element is not sent anymore.

For case 1, the SyncManager determines if it has to include client capabilities calculating the value
of the devInfHash: if its value is changed it means that some DevInf parameter is changed, or the
syncUrl property has been modified.

Note: the syncUrl parameter has been added to the generation of devInfHash, to ensure the client
sends device informations when connecting to a different server.

However, a client application can decide to reset devInfHash when any other relevant configuration
settings is changed.

In case 2, the SyncManager determines if it has to send the client capabilities inspecting the
messages received by the server during initialization. If any contains a Get command, in the reply
the SyncManager will send a Results command containing the DevInf build from the various
configuration objects.

2.4.2. Server capabilities handling

The SyncManager can be instructed to ask for server capabilities. A special parameter to the sync
method allows this. Once the server sends back the results of the get command (used to ask for
server capabilities) the APIs are responsible to parse the information and make it available to the
client. The parsing is performed by the SyncMLParser and the information is returned to the client
via the SyncListener.startSyncing method.

Server capabilities can also be sent by the server without an explicit request from the client. In this
case they are embedded in a Put command which is handled by the APIs in a way very similar to
what described above.

2.5. SyncML Parser
The SyncML Parser is responsible for parsing incoming SyncML messages and for building a
corresponding data representation. The SyncML API models SyncML by using classes that
represent SyncML entities (for example there is one class for Command, for Meta and so on. The
Parser takes a textual representation of SyncML and converts it into an objects representation.

The SyncML parser is build on top of an XmlPull parser and it is written as a “Recursive descent
parser”. The parser itself is written by hand because the implementation aims at being optimized
for constrained devices.

The parser is currently limited to plain XML, but the idea is that it could handle WBXML in the
future, simply switching the XmlPull Parser.

The current implementation of the parser is limited to some portion of SyncML and it does not
cover the entire specification.

Copyright (c) 2006 Funambol - Page 20

2.6. SyncML Formatter
The SyncML formatter generates a textual representation of SyncML starting from the model in the
APIs. The formatter is not built using any external library, but it is written from scratch. This is
because the formatter is coupled to the API model of the SyncML. The current implementation
generates plain XML, but in the future it shall support WBXML as well.

2.7. Filtering
Filtering is a new feature, introduced in the SyncML DS 1.2 specification, that allows a SyncML
client to synchronize a database restricting the set of data returned by the server to the items that
fall into a given filter. See [OMA-DS], paragraph 5.13, for details.

For the J2ME platform, a simplified interface to add filtering capabilities is defined, so that a client
can send a filter to the server, if needed, without overhead for a client that does not need it.

The sync engine uses the SyncFilter interface, that provide a method to format an XML string
representing the SyncML filter. The SyncSource interface provide a method getFilter() to obtain
the filter defined for that SyncSource, if defined.

If a client need to filter data for a certain SyncSource, it has to implement the getFilter() method of
the SyncSource, returning the needed filer. The class BaseSyncSource already implement the
interface: a client extending the class has to set the desired filter calling setFilter() before starting
the sync.

The SyncFilter interface

Method Description

toSyncML() Return a string containing the SyncML filter to apply for the
session.

2.8. Large Objects Handling
The SyncML specification ([OMA-DS], § 6.7) states:

"While synchronizing, object reception can be limited by two factors: the maximum message size the
target device can receive (declared in <MaxMsgSize> tag), and the maximum object size the target
device can receive (declared in <MaxObjSize> tag).

This feature provides a means to synchronize an object whose size exceeds that which can be
transmitted within one message (e.g. the maximum message size – declared in <MaxMsgSize>
element – that the target device can receive). This is achieved by splitting the object into chunks that
will each fit within one message and by sending them contiguously. The first chunk of data is sent with
the overall size of the object and a <MoreData/> signaling that more chunks will be sent. Every
subsequent chunk is sent with a <MoreData/> tag, except from the last one: the final chunk is sent
with no <MoreData/> tag. The target device, having received the final chunk, has to re-construct the
object and consequently acts as it had received it in one piece (e.g. apply the requested command).
The appropriate status MUST then be sent to the originator. A command on a chunked object MUST
implicitly be treated as atomic, i.e. the recipient can only commit the object once all chunks have been
successfully received and reassembled."

The API provides all the necessary mechanism to support large objects sending and receiving. All
the management of large objects is transparent to each sync source.

As stated above, large objects are split in chunks during a synchronization, both when sent and
received. Special actions need to be taken in the two cases.

•When an item is about to be sent, the sync source is required to set its size. If the item does not fit
in a single SyncML message, then it needs to be split. The manager reads a chunk at a time,
encode it if necessary, and then sends it.

Copyright (c) 2006 Funambol - Page 21

•When an item is received the manager assembles all the chunks, decode them if required and
write them into the output stream prepared by the source.

There are some key aspects of this process:

•When an item is received, the manager invokes the source method to create a new item. The
source is responsible for creating the proper item. For example a sync source for files can create
the item in the synchronization directory and prepare the output stream.

•As chunks are received, they are decoded by the manager and written into the output stream of
the item

•When the item is complete, the output stream is closed and the source is notified that a new item
is added.

•When an item is sent, the manager decides if it requires to be split. In this case the manager
reads a given number of bytes from the item input stream. If necessary the data is encoded and
then sent to the server.

•Once all the chunks are sent to the server, the manager notifies the source that a complete item
was sent

The SyncListener associated to this synchronization is notified about individual chunks been
sent/received.

Copyright (c) 2006 Funambol - Page 22

3. Compatibility history

3.1. Incompatibilities between version 8.0 and 8.5

•The endSession method of the SyncListener no longer takes an int for the status, but a
SyncReport which contains the status and a lot more information.

Copyright (c) 2006 Funambol - Page 23

4. References

[OMA-DS] SyncML Data Synchronization Protocol, version 1.2, Open Mobile Alliance

[COMMON] Funambol J2ME Common API Design Document, version 1.0, Funambol Inc.

[API-J2SE] Funambol Java API J2SE Developer Guide, version 1.0, Funambol Inc.

[API-CPP] Funambol 3.0 Client API C++ Design Document, version 1.0, Funambol Inc.

Copyright (c) 2006 Funambol - Page 24

	1.Overview
	1.1. Document Conventions
	1.1.1. Sequence Diagrams
	1.1.2. Class Diagrams

	1.2. Functional overview

	2.Data Synchronization Layer
	2.1. The Synchronization Process
	2.1.1. Initialization
	2.1.2. Modifications Exchange
	2.1.3. LUID-GUID Mapping

	2.2. Data Synchronization Layer Architecture
	2.2.1. SyncManager
	2.2.2. The SyncSource Interface
	2.2.3. BaseSyncSource
	2.2.4. TrackableSyncSource
	2.2.5. ChangesTracker
	2.2.6. CacheTracker
	2.2.7. SyncConfig
	2.2.8. DeviceConfig
	2.2.9. SourceConfig

	2.3. Synchronization Events Notification
	2.4. Device Info Handling
	2.4.1. Client capabilities handling
	2.4.2. Server capabilities handling

	2.5. SyncML Parser
	2.6. SyncML Formatter
	2.7. Filtering
	2.8. Large Objects Handling

	3.Compatibility history
	3.1. Incompatibilities between version 8.0 and 8.5

	4.References

