
Funambol Client API C++ Design Document

Last modified: April 13, 2010

2

Revision History

Name Date Reason for Change
Teo 06/03/09 Added FolderData and MailAccount
Toccy 10/16/09 Added LargeObject Handling (section 3.4)
Toccy 10/29/09 Updated File/MediaSyncSource chapter

3

Table of Contents
1. Overview...5
1.1. Document Conventions...5
1.2. Funambol Client API Architecture..6
1.3. Synchronization Overview...7
1.4. Device Manager and DMTree...9
2. Basic Types and Algorithms...10
2.1. Basic Containers..10
2.2. Strings..11
2.3. OS abstraction..11
3. Data Synchronization Layer..16
3.1. Synchronization Process...16
3.2. Item handling..22
3.3. Multiple Messages In One Package...26
3.4. Large Object handling...27
3.5. Data Synchronization Layer Design..30
3.6. SyncManager and SyncSource Configuration...38
3.7. CacheSyncSource..46
3.8. ConfigSyncSource...47
3.9. FileSyncSource...48
3.10. MediaSyncSource..49
3.11. Synchronization Report...52
3.12. Item Content Transformation...54
3.13. Configuration DMTree...56
3.14. Client Capabilities Handling..58
3.15. Server Capabilities Handling..59
3.16. Synchronization Events Notification..61
3.17. Filtering..70
3.18. Converter and Parser for Contact and Calendar objects...71
3.19. MailAccount and FolderData handling..73
4. Device Manager Layer..76
4.1. Terminology..76
4.2. Architecture...78
4.3. Class Diagram..79
5. Push Manager..81
5.1. Push manager architecture...81
5.2. Note on the implementation..84
6. Appendix A: compatibility reference..85
6.1. Migrating from Funambol V6x to V7.0...85
6.2. Migrating from Funambol V7.0 to V7.1..85

4

1. Overview

The Funambol SyncML Client API is a C++ programming interface that application
developers use in order to take advantage of the powerful data synchronization and device
management features provided by the Funambol platform.

This document presents the design principles and patterns behind the Funambol Client API.
The intended audience of this document is the Funambol development team and anyone
interested in knowing the ins and outs of the Funambol Client API.

1.1. Document Conventions
The diagrams used in this document are inspired to the UML sequence and class diagrams,
but with some simplification. The conventions used by the diagrams are described in the
following sections.

Sequence Diagrams
• Each entity is represented as a box;
• a box can represent a class, an instance, an interface or even a conceptual entity;

the real meaning depends by the context;
• solid arrows represents method or function calls;
• dashed arrows represent some sort of communication between two entities; it is

intended that the communication mechanism is left unspecified or is not important or
it is at a different abstraction layer.

Class Diagrams
• Each class is represented as a box;
• data members and methods are separated by an horizontal line;
• plain titles represent classes, italicized titles represent interface (abstract classes);
• a + next to a method or data member name means “public”
• a - next to a method or data member name means “private”
• a * next to a method or data member name means “protected”;
• a > next to a data member name means it is a property with get/set accessors;
• inheritance is represented by an arrow pointing to the base class;
• italicized methods names represent abstract method.

5

1.2. Funambol Client API Architecture

The Funambol Client API has different modules:

● “Sync” which implements the OMA DS protocol stack and data synchronization
● “Device manager” which is responsible for device and application configuration

management. It is foreseen as the implementation OMA-DM protocol.
● “Push” which implements push protocols and is capable of notifying the upper layers

on push notification events
● “Update” which implements a protocol for checking the availability of new software

versions
● “Sync Client” is a convenient module that can be used to easily implement standard

synchronization clients.
● “DMTree” represents a tree of configuration information organized as key/value

stored in nodes where the node name is the key. The DMTree can be used by a DM
server for remote configuration management.

● “Basic Types and Algorithms” is mainly an abstraction layer used to make the library
portable. This module also includes utility functions that are used across the library.

A final application is developed on top of the Funambol Client API and can access the
services provided by all modules (and not only the top level ones). The Device Manager can
also be used to transparently manage the device remotely by a OMA DM server.

The device manager abstracts the access to a configuration repository, represented in the
picture with the DM Tree block. How the configuration repository is implemented on a
particular device is platform specific and the API shall provide a concrete implementation of
DeviceManager for any supported platform. However, the DeviceManager exposes such
configuration parameters as a tree-like structure, where nodes represent containers for other

6

Figure 1: Funambol Client API architecture

Application

DM Tree

Sync Client

Basic Types and Algorithms

Device
Manager

Push
Manager

Update
Manager

Sync
Manager

nodes and leafs, and leafs represent the actual configuration parameters. This tree is called
“Management Tree” and follows the description found in [2].
The final goal of this module is to provide the remote management functionality using the
OMA DM protocol, even if this is currently not implemented yet in the library.

The SyncManager, the PushManager and the UpdateManager need several configuration
parameters to perform their job, which are passed using interface classes called
SyncManagerConfig, PushConfig and UpdateConfig. These parameters can be stored using
the DM, which will also allow the remote configuration once implemented, or using a client-
specific method. See par. 3.6 for more details.

The final application will also likely need to access a local data repository. This is done
through a so called Sync Source; this is an application module used by the Sync Manager to
interact with the application data. The way the Sync Source accesses the local data
repository is application or device specific and hidden to the synchronization engine by the
Sync Source interface.

1.3. Synchronization Overview
A client application interacts mainly with two entities of the Funambol Client API: the
SyncClient and the SyncSource. The SyncClient is the component that handles all the
communication and protocol stuffs. It hides the complexity of the synchronization process
providing a simple interface to the client application. A SyncSource represents the collection
of items stored in the local repository. It contains the client logic to discover the items to send
to the server and to store the ones obtained from the server. The client feeds a SyncSource
with the items changed on the client side, whilst the SyncManager feeds it with the items
received by the server.

The synchronization process is logically a sequence of three phases (see [4]):

1. Initialization
2. Modifications exchange
3. Ending

In the initialization phase the client sends its credentials and which database to synchronize
(along with the desired synchronization type) to the server. The server responds with the
authentication status and the synchronization type to perform.

After the initialization phase, first the client sends all client-side modifications and receives
the status of the execution of the commands on the server; then, the server sends server-
side modifications. The client applies the changes and sends the proper status to the server.
In the case the server issued a new item to the client, the latter will create a new local id for it
and therefore needs to communicate such new key to the server (see LUID-GUID mapping in
[4]).

The ending phase is actually just sending the last status and/or mapping to the server and
saving the anchors needed to perform a fast sync the next time.

7

The Synchronization Process

The entities in the sequence diagram of Figure 2 have the following meaning:

• Client: a final client application using the Funambol SDK;
• SyncClient: the SDK client kernel that the developer extends in order to interact with

the client data sources;
• SyncManager: the SDK synchronization engine;
• SyncSource: the client abstraction of a client data source;
• Server: the SyncML server

As shown in the figure, the client application just kicks off the synchronization process giving
an array of syncsources to synchronize. SyncClient takes control of the synchronization

8

Figure 2: The synchronization process

Client SyncClient ServerSyncManager

setConfig(config)

Initialization

beginSync(syncType)

Modification exchange

endSync()

commitSync()

Ending

sync(source[])

SyncSource

prepareSync(source[])

Get client modifications

Apply server changes

process, coordinating the SyncManager and handling its return values. The macro
synchronization initialization, modification exchange and mapping involve the interaction with
the server and include the required SyncML messages exchange. They will be described
later in dedicated sections.

1.4. Device Manager and DMTree
Goal of the device management module is to allow an easy management of the device by a
remote operator. This means that a remote agent can navigate, view and change device and
applications configuration and that those changes are picked up by the application, possibly
requiring minimal or no user action.

In order to provide device management functionality, the Funambol client framework
provides a single, shared configuration tree, called Device Management Tree or DMTree.
This registry is easily accessible by client applications and hides the details of the physical
storage where configuration settings are stored (it could be an SQL database, a device
datastore, an XML file or even the device memory for run-time configuration values). For a
detailed explanation of the role and structure of the DMTree see [2].

The device management module is abstracted in the Funambol client API by the
DeviceManager interface. This is an abstract interface that must be implemented for each
supported device. The current design of the Funambol client API provides the following
implementations:

• Win32 – registry
• WindowsMobile – registry
• Posix (including MacOS) and Symbian– plain files tree

The DM subsystem is fully described in chapter 3.

9

2. Basic Types and Algorithms

This chapter describes the layer used by the API to guarantee portability across different
platforms. Beside this main goal, this layer also provides common functions and algorithm
used in different parts of the APIs.

The module provides the following abstractions:

● basic containers (such as ArrayList and KeyValueStore)
● strings
● OS concepts (such as time, thread, socket, network connection)
● cryptography algorithms (such as base64, des, md5)
● logger

The following sections provide a brief description of each component.

2.1. Basic Containers
This component defines basic type to store/retrieve items in ordered way. Its purpose is to
provide a common set of objects that can be used on any platform. STL could be an
alternative to this component, but the library followed a different design. In particular the
library works on platforms (such as Symbian) where STL is not officially supported.
Therefore it was decided to implement a Funambol containers library.
At the moment this library does not use templates and parts of its implementation are
common to all platforms. A couple of possible changes are foreseen:

● introduce the use of templates
● make it a light weight implementation. On platform where STL is available, this

component can simply wrap STL objects and be really simple (thus there would be
less common components and more platform specific ones).

In terms of functionalities the library provide the following abstractions:

● ArrayList: is a list that can be accessed in random way. Since the library is not
template based, a type can be stored in an ArrayList if it implements ArrayElement
interface.

● KeyValueStore: is a container for pairs of key/value. This interface is intended to be
sub-classed and implemented in different ways. For example there can be an
implementation which is based on files and ArrayList (PropertyFile) or
implementations based on SQLite and so on.

● KeyValuePair: a simple pair of key and value StrinigBuffer.
● StringMap: is a simple associative array to store pair of StringBuffer, one used as

key and unique in the container, the other as value.

10

2.2. Strings
Strings are implemented by a single class “StringBuffer” (TODO: this is true as long as we get
rid of WCHAR). StringBuffer allows the manipulation of an internal buffer which is
manipulated by the class itself. The buffer is not externally modifiable, but it is made
available as a constant buffer. Various operations are supported to modify the string,
compare and so on. The implementation of this class is common and it is not intended to rely
on system specific strings.

2.3. OS abstraction
The library must be portable to a wide variety of platforms, including standard desktop
environments (such as Windows and *nix) and more exotic embedded systems (such as
Symbian or the iPhone).
Because of this it is important to abstract some important OS concepts, in a way that they
can be mapped on any system.

Platform Adapter
To have a portable way to access platform specific resources and pathnames, in the release
7.1 of the API has been introduced the concept of the PlatformAdapter, which must be
initialized prior to any use of the library, with the application context, which is a unique
string identifying the application. This string is used to compose the config path used by
DMTClientConfig and other classes. For example, if you call:

PlatformAdapter::init("aVendor/theApp");

you will have the config stored under: ~/.config/aVendor/theApp on posix, or under
Software/aVendor/theApp key in the Windows registry, and so on.

The same path is used for the different temporary files created during the sync, stored in the
same subtree of the config for posix, or under Application Data/aVendor/theApp on
Windows.

Now, for clients is important that this values is set once and never changed during the
application lifetime, otherwise the results of having the config path changing is not
predictable.

For this reason, the init() method is protected against a double call, and just logs an error if
called twice.
However it is possible to force multiple initializations by setting the force flag to true. For
instance it's used by the unit test framework, which needs to create multiple contexts in the
same application. This option is disabled by default.

Time abstraction
Time is abstracted the same way *nix systems do. There must be a “time” function which
returns the current time in Unix format (milliseconds elapsed since Jan 1st 1970).

Http Connections
Http connections are handled by a TranportAgent class, which is capable of performing http
requests on secure/insecure channels.
This class is abstract and has the following interface:

11

Method Description

TransportAgent() Default constructor

TransportAgent(URL& url, Proxy&
proxy, unsigned int responseTimeout
= DEFAULT_MAX_TIMEOUT)

Creates a new TransportAgent who should connect
to the given url, through the given proxy and with
the given network timeout.

virtual ~TransportAgent() Destructor.

void setURL(URL& newURL) Sets the URL to which messages will be sent.

URL& getURL() Returns the URL to which messages will be sent.

void setTimeout(unsigned int t) Sets network timeout.

unsigned int getTimeout() Returns network timeout.

virtual char* sendMessage(const char*
msg)

Sends the given message to the URL set in the
constructor or via setURL().

TransportAgent is an abstract class whose role is to send a SyncML message over the
wire(less) and to retrieve the server response. A concrete implementation reimplements the
sendMessage() method with the system calls provided by the underlying system to send
HTTP requests.

Thread abstraction
This class is not intended as a general replacement for threads everywhere. Is is meant to
provide the set of functionalities that are needed by the library. Clients should still use the
platform specific threads whenever they do not need to be portable.
A Thread is abstracted by FThread, a class whose most important methods are listed in the
following table.

Method Description

static void sleep(long msec); Suspend the current thread for the given
amount of time (milliseconds)

void start(Priority priority = InheritPriority); Starts this thread with the given priority.
Threads entry point is the run method.

bool wait(unsigned long timeout); Wait for this thread to finish its execution or
the timeout expires.
If the thread terminates its execution before
the timeout expires then true is returned,
false otherwise.

void wait(); Wait for this thread to finish its execution.
This method is used to
synchronize threads execution (similar to
pthread_join)

bool finished() const; Returns true iff the thread execution is
terminated

bool running() const; Returns true iff the thread is still running

void softTerminate(); Ask this thread to terminate its execution. But
the thread is not
forced to terminate. The thread must
cooperate to terminate.

12

Method Description

virtual void run() = 0; [protected] Thread entry method. Invoked automatically
on thread start.

FThread allows the creation and manipulation of threads. One controversial feature that is
not offered by FThread is the ability to terminate a thread. On some platforms this feature is
either unavailable or deprecated. Because of this, FThread has a method for soft termination
that does not guarantee the thread is actually terminated. It is just a suggestion for the
thread to terminate. Each thread must then implement its own mechanism for cooperative
termination. This is similar the the Java approach to the problem.
FThread is an abstract interface, on each platform we will have an implementation that maps
abstract threads on platform threads. This implies that we have as many FThread
implementation as supported platforms. The class is abstract because the user is forced to
define its own run method.

Socket abstraction
This class is not intended as a general replacement for sockets everywhere. Is is meant to
provide the set of functionalities that are needed by the library. Clients should still use the
platform specific sockets whenever they do not need to be portable.
The design philosophy behind Fsocket and FServerSocket is to keep it as simple as
possible, providing only the functionalities which are necessary to the library.

FSocket provides methods for creating client sockets, while FServerSocket provides a
method to create server sockets. These methods act like a sockets factory. The abstraction
of socket is very simple. It provides a pipe where data can be written and read. All read/write
operations are synchronous and block the caller.
The following table lists the main methods of FserverSocket.

Method Description

static
FServerSocket* createServerSocket(int32_t
port);

Creates a server socket on the local host.
The port can be specified.
Return NULL if the server socket cannot be
created.

FSocket* accept(); Accept incoming connection. The call blocks
the execution and returns a new Fsocket
once the connection is established.

void close(); Close and release all resources associated
to this server socket.

The other class used to manipulate TCP communication is FSocket which represents a
simple socket. Its main methods are listed in the following table.

Method Description

static
FSocket* createSocket(const StringBuffer&
peer, int32_t port);

Opens a socket connecting to the peer host
on the given port.
Returns a valid object if the connection can
be establishd. Returns
NULL if the socket cannot be created for any
reason.

StringBuffer& address() const; Returns the local address associates to this

13

Method Description

socket in the form “address:port” where
address can be either the numerical IP or the
symbolic name

StringBuffer& peerAddress() const; Returns the local address associates to this
socket in the form “address:port” where
address can be either the numerical IP or the
symbolic name

int32_t readBuffer(int8_t* buffer, int32_t
maxLen);

Reads all available bytes from the socket, up
to the maximum specified
by the second parameter. This call is
synchronous and it blocks the
caller until something is available or the max
length is reached.
Returns the actual number of bytes read (-1
if the socket cannot be read or in case of any
network error).

int32_t writeBuffer(const int8_t* buffer const,
int32_t len);

Writes the given buffer to the stream and
flush it. The buffer length is specified by the
second parameter.
The method returns the number of written
bytes. On success this value
is the same as len. On errors it can be less
than len and it specifies the number of bytes
written before a network error was
encountered.

void close(); Close this socket. After this operation the
object can be released as any IO operation
is invalid.

Cryptography
This component provides functions to encode/decode data. In particular it supports the
following formats:

● base64 (encoding/decoding)
● des (encoding/decoding)
● md5 (encoding)

Logging
Logging is performed by a single class with the interface specified by the table below.

Method Description

Log(BOOL reset = FALSE) Creates a new Log instance. If reset is TRUE, the
existing content is discarded, otherwise new
messages are appended.

~Log() Destructor.

void error(const wchar_t* msg) Appends the given error message.

void info(const wchar_t* msg) Appends the given info message.

14

Method Description

void debug(const wchar_t* msg) Appends the given debug message.

void trace(const wchar_t* msg) Traces the given message. Tracing is different from
logging since tracing messages usually go to a
dedicated device provided by the device application
toolkit or development environment.

void reset() Reset the current log.

void setLevel(LogLevel level) Sets the current logging level to the given level.

LogLevel getLogLevel() Returns the current logging level.

BOOL isLoggable(LogLevel level) Checks if the given logging level is currently visible in
the log.

LogLevel is an enumeration define as follows:

typedef enum {
 LOG_LEVEL_NONE = 0,
 LOG_LEVEL_INFO = 1,
 LOG_LEVEL_DEBUG = 2
} LogLevel;

Logging levels are in a hierarchical relationship: only the messages logged at a lower or
equal level than the current logging level really will go into the log. For example, if the
logging level is set to none, no messages but errors will go in the log; if the logging level is
DEBUG, all messages will go in the log because debug and info messages are at a level <=
DEBUG. Finally, if the logging level is INFO, only info messages will go into the log.

The Log is accessed by a globally scoped instance exported to all modules. Plus, a wchar_t
logmsg[] is provided to make it easier the creation of messages.

The Log class is platform specif since different devices may use different logging facility. For
example a Win32 based API can use just a file as logging media, while a Palm device will
use a palm database.

15

3. Data Synchronization Layer

This chapter describe the design of the Funambol Client API Data Synchronization Layer.
The Data Synchronization process implemented in the Funambol API follows the OMA DS
1.2 specification (see [4] and related documents).

3.1. Synchronization Process
The synchronization process has been briefly introduced in the synchronization overview. In
the following sections, the synchronization process is described and designed in more
details.

Initialization
As per the SyncML specification, the initialization phase can be performed in two ways:

1. As a separate package
2. Together with the modifications exchange package

The Funambol Client API implements “separate initialization” only, which is the option that
optimizes at best network usage in the most common cases. In fact, with a synchronization
without a separate initialization, there is the risk to start a potentially long synchronization,
while the server would refuse the sync (for example because it does not authorize the client).
Performing separate initialization avoids this issue with a minimal impact on network traffic.

During initialization three important tasks are performed:

1. client authentication
2. server authentication
3. database alerting

Client Authentication

This section covers how the client sends its authentication credentials to the server and how
the authentication process goes.

The SyncML specifications mandate that client implementations must support at least basic
and MD5 Digest authentication. The Funambol Client API implements both.
Client authentication is delivered in the Cred element of the SyncML message header. Plus,
even if the client sends in the first message its credentials in one of the supported types, the
server can refuse it and challenge the client for a different kind of credentials. For example, if
the client starts sending Basic credentials and the server requires MD5 authentication, the
server responds with a 401 status to the client credentials and provides a Chal element with
the requested authentication.

For additional information on Basic and MD5 authentication see section 2.5 of [4].

16

Basic authentication is identified by the URI syncml:auth-basic; it is pretty simple and it is
very similar to what happens in WEB applications.
In this case, credential data represent are encoded as follows:

B64(username':'password)

Where B64() is a function that encodes the given string in Base 64. username and password
represent the account's authentication information.

The MD5 Digest scheme is identified by the URI syncml:auth-md5. Let MD5(data) denote the
result of applying the MD5 hash algorithm to “data”, the result is a 128-bit binary quantity.
Let A be the concatenation of an authentication identifier as the originator’s userid, followed
by the COLON (i.e., “:”) separator character, followed by some secret known by the originator
and recipient such as the originator's password for the corresponding userid, for instance:

A=”Bruce1:OhBehave”

Let AD be defined as:

AD = MD5(A)

Let B64(data) denote the result of the base64 encoding algorithm applied to “data”. This
authentication scheme is the MD5 digest form of the concatenation of B64(AD), followed by
the COLON (i.e. “:”) separator character, followed by the recipient specified nonce string.
The maximum duration that the nonce string can be used by the originator is the current
SyncML session. Note that issuing a nonce does not constitute use – a nonce may be issued
for use in the next session. More frequent changes to the nonce string can be specified with
the NextNonce element type within the Meta element type of the Chal element type. The
MD5 credential, a 128-bit binary digest value, MUST be Base64 character encoded when
transferred as clear-text XML. For WBXML representation, the additional Base64 character
encoding is not necessary (but still allowed).

Computation of the MD-5 Digest

The digest is computed as follows:

Let H = the MD5 Hashing function.
Let Digest = the output of the MD5 Hashing function.
Let B64 = the base64 encoding function.
Digest = H(B64(H(username':'password))':'nonce)

This computation allows the authenticator to authenticate without having knowledge of the
password. The password is neither sent as part of the credentials, nor is it required to be
known explicitly by the authenticator, since the authenticator need only store a pre-computed
hash of the username:password string.

Password and Nonce Usage

The nonce value is recommended to be at least 128 bits (16 random octets) in length.

The nonce value is issued in a challenge from either the device or the server. In the case of
the credentials being sent prior to a challenge being issued, then the last nonce used shall
be reused. The authenticator must be aware that the issuer of the credentials may be using
a stale nonce (that is to say, a nonce that is invalid due to some previous communications
failure or a loss of data). Because of this, if authentication fails, one more challenge, along
with the supply of a new nonce, must be made.

A new nonce is generated for each new session.

17

After being successfully used, a nonce obtained from the server must be stored persistently
for a future use. Not that this must be done only if used successfully (to prevent nonce
hacking).

Nonce Generation

It is important that nonces are generated randomically, so that it is difficult to try to hack a
next nonce from a stolen nonce.
We will generate the nonce with the following algorithm:

void generateNonce(char nonce[16]) {
 srand (time(NULL)); // random number generation initialization

 for (unsigned int i = 0; i < 16; ++i) {
 nonce[i] = ((rand()%100) * (rand()%100))%100;

 if (nonce[i] < 32) {
 nonce[i] += 96;
 }
 }

 //
 // Note that the nonce won't be 0 terminated
 //
}

Server Authentication

This section covers how the client can optionally authenticate the server. Server
authentication is mainly requested in the case of OMA DM more than OMA DS. However,
since the C++ API is the base for both DM and DS, server authentication must be
implemented too.

The mechanism behind server authentication is not far from what explained early. The only
difference is that instead of authenticating a user id, the client authenticates a server id.

For basic authentication, the client expects that the server sends a Cred element with proper
credential data. If the Cred element is missing, the client challenges the server for the
requested authentication mechanism.

The given credentials must be in the form:

Basic B64(serverid':'password)

MD5 Digest H(B64(H(serverid':'password))':'nonce)

In order for the client to be able to check that the given credentials are correct, it needs to
retrieve the expected server id and server password (and maybe nonce) from a permanent
store. It is decided to use still the client DMTree as persistent store of such information, and
in particular, we will use the SyncML DM management object OMA DM specification ([3]).

Authentication Algorithm

Client and server authentication are performed concurrently during initialization. The
algorithm to do so is shown in Figure 3.

18

19

Figure 3: Authentication algorithm flowchart

start ClientAuthRetries = 1
ServerAuthRetries = 1

 Cred = getCredential()

Send cred to server

Resp = server response

IsServerAuth
required?

IsClient
Authenticated

?

Performe server
authemtication

IsServer
Authenticated?

config.server authType == MD5
or

serverAuthRetries == 1

Resp =
server

response

ServerAuth
Retries ++

ReqAuthType
<>

credAuthType
?

ReqAuthType =
requested Auth

config.authType =
reqAuthType

config.serverNonce = nonce

ClientAuthRetries ++

CredAuthType == MD5
and

clientAuthRetries == 1
ClientAuth = OK

IsServerAuth
==
OK?

Authorized

End

Not Authorized

Y

Y

N

N

Y

Y

N

N

Y

N

Y

Y

N

N

Database Alerting

The second task performed during initialization is database alerting. Database alerting is the
means the client requests to synchronize a particular database; plus, it specifies which type
of synchronization should be performed. The SyncML specifications define the following
synchronization types:

Sync Type Description Alert Code

Two-way

A normal sync type in which the client and the
server exchange information about modified data in
these devices. The client sends the modifications
first.

200

Slow

A form of two-way sync in which all items are
compared with each other on a field-by-field basis.
In practise, this means that the client sends all its
data from a database to the server and the server
does the sync analysis (field-by-field) for this data
and the data in the server.

201

One-way from client only
A sync type in which the client sends its
modifications to the server but the server does not
send its modifications back to the client.

202

Refresh from client only

A sync type in which the client sends all its data
from a database to the server (i.e., exports). The
server is expected to replace all data in the target
database with the data sent by the client.

203

One-way from server
only

A sync type in which the client gets all modifications
from the server but the client does not send its
modifications to the server.

204

Refresh from server only

A sync type in which the server sends all its data
from a database to the client. The client is expected
to replace all data in the target database with the
data sent by the server.

205

Server alerted
A sync type in which the server to alerts the client to
perform sync. That is, the server informs the client
to starts a specific type of sync with the server.

207

Smart one-way from
client only

Funambol extension.
Like “One-way from client only”, with optimizations
to avoid sending the same (big) item two times.
It's used for Media items from mobile Clients to
Server (see section 3.10) .

250

Smart one-way from
server only

Funambol extension.
Like “One-way from server only”, with optimizations
to avoid sending the same (big) item two times.

251

Incremental smart one-
way from client only

Funambol extension.
Like “One-way from client only”, with optimizations
to avoid sending the same (big) item two times. No
deletes are sent.

252

Incremental smart one-
way from server only

Funambol extension.
Like “One-way from server only”, with optimizations
to avoid sending the same (big) item two times. No
deletes are sent. It's used for Media items from
Server to desktop clients.

253

20

From the specifications perspective only Slow and Two-way sync types are mandatory.
However, the Funambol C++ API supports issuing all the defined synchronization types.

The expected behavior for each synchronization type is faced more deeply in chapter

Clients specifies that a local database shall be synchronized with a remote database with the
SyncML Alert command. It is used like in the following example:

<Alert>
 <CmdID>1</CmdID>
 <Data>200</Data> <!-- 200 = TWO_WAY_ALERT -->
 <Item>
 <Target><LocURI>./rmtcontacts</LocURI></Target>
 <Source><LocURI>./lclcontacts</LocURI></Source>
 <Meta>
 <Anchor xmlns='syncml:metinf'>
 <Last>234</Last>
 <Next>276</Next>
 </Anchor>
 </Meta>
 </Item>
</Alert>

Target specifies the remote database; Source is the URI of the local database. The Anchor
element is used to determine if the local and server database start from a well known state
or if a slow sync must be performed instead. Refer to the SyncML specifications for details.

Note that the server can respond with a different Alert type for a given database. The client
must always performs the synchronization type as given by the server.

Note that it is responsibility of the SyncManager to select the local databases to synchronize
and thus to alert the server accordingly. This is done using the configuration information
retrieved by the DMTree as explained in section 2.6.

Modifications Exchange
The modification phase is when client modifications are detected on the client and sent to
the server who replies with the server side updates. These updates are applied to the local
database. Accordingly to the SyncML specs, updates are exchanged with commands like
Add, Replace, Delete, Copy, Move, etc.
However only Add, Replace and Delete are mandatory to SyncML implementations; the
others are optional (see the specs for details).

Since the initialization phase is done separately, the modification exchange phase is carried
on only if initialization completed successfully.

The real synchronization process is driven by the SyncManager. It uses the SyncSource
interface in order to interact with a specific data source. The development of the SyncSource
is delegated to the application developer.

The role of a SyncSource is manifold:

• provide information about the SyncSource to synchronize (preferred synchronization
type, name, local and target URIs, mime type of the data...)

• keep the synchronization state from the datasource point of view
• retrieve all items in the datasource regardless their state
• retrieve the modified items only from the datasource
• apply server side changes
• commit changes

21

The interaction between the SyncManager and the SyncSource is the core of the
synchronization process. Note that since the number of items in the local data source may
be relevant, the SyncSource works like a cursor: it provides getFirstItem()/
getNextItem()/getFirstModifiedItem()/getNextModifiedItem() to retrieve the first and next
items in the data store. Plus, in this way the SyncManager has the opportunity to choose to
add the item in the current message or in the next one.

In order to keep the client implementation simple, the decision on when to break the
message is made with an heuristic rule: the SyncManager is configured with a “Max Data
Size” parameter determining the maximum amount of data (without any overhead due to the
protocol) are allowed to be sent in a single message. The developer must make sure that
this amount is undersized of the possible overhead added by the protocol.

When the server receives a modification from the client, it applies the change in the server
database and returns the status. The SyncManager communicates the status of the
performed command by calling setItemStatus() so that the SyncSource can take appropriate
actions (for example, in the case of a success code, it can reset the item dirty flag or
permanently delete a soft deleted item).

On the opposite direction, when modifications are received from the server, the
SyncManager decodes each command and call add/update/deleteItem(). These calls apply
the change and return a status code (the same value that will be sent in the SyncML
message).
Note that addItem() returns also the new local ID generated by the datastore; this is stored
by the SyncManager in a persistent storage along with the GUID received by the server so
that the mapping will be communicated back to the server in a Map command (see next
paragraph for details.

Finalization
After the modifications exchange phase, the client sends the last Status and Map commands
(if any are requested depending on the commands received), the server commits the final
status and stores the next anchor received in the initialization phase, sending back a final
status message; the client must then store its anchor too.

3.2. Item handling
This chapter describes in deeper details how the items exchange is handled by the engine
and what a client should do to implement a reliable exchange of the data in any situation. In
particular, the focus is on the interrupted synchronization and on how they can be recovered.

Change detection and sending of client modifications

The first task of the client is to extract the changes from the local datastore. This can be
done in different ways:

1. keeping a snapshot of the datastore at the end of the last sync, and comparing it with
the current status at the beginning of the new sync.

2. listening for events generated on some systems when an item is
added/modified/deleted.

The first method is less efficient but is more reliable (no risk to loose a change because an
event is lost), and it's the only options for systems with no notification system (for instance, in
a generic file sync client).
When a notification system is available (on Outlook for example), using the listeners can
speedup a lot the sync, specially the fast sync with few items to exchange.

22

At the end of this phase, the client SyncSource implementation has three lists of added,
updated and deleted items from the last sync available, and will use them to respond to the
getNextXXXItem() requests from the SyncManager.

For each item sent to the server, the server responds with a status, where 200/299 and 418
codes means success (for instance, 201 is ITEM_ADDED, see [4]).

The OMA DS specs say that, in case of an interrupted sync, the client must send the
modification command (Add, Update or Delete) until it has received a status code for the
item. So, when the SyncSource implementation is notified of the status received with the
method setItemStatus, it must update its change log to not send the same command again.
Note that even in case of error usually some action should be taken; for example, if the
server returns a 500 status, meaning that it is not able to handle a particular item, the client
should not try to resend the same item again.

23

ServerSyncManagerSyncSource

Status

setItemStatus

Add(item1,item2)

item1

getFirstNewItem()

 Update cache

item2

getNextNewItem()

null

getNextNewItem()

Receiving server modifications

After the client has finished to send changes (from a client perspective, this will happen after
the three item queues are empty and the SyncSource methods had returned NULL to the
SyncManager requests), the server can start sending its changes.
The diagram shows the Add command because it's the one where the client has more
responsibilities in making the process works fine.
The added items are sent by the server with the GUID, which is the only know id at that
point.
The SyncManager will call the SyncSource addItem() method; this method must:

● add the item to the local datastore
● if the add is successful and the id used by the client is different from the GUID, the

local id (LUID) must be returned to the SyncManager by changing the id in the
SyncItem reference passed as parameter. In this way, the engine can get the new id
and create the Map command to send back to the server. If the client uses the same
id of the server, the Map command is not requested

● return a status code to the SyncManager to be sent to the server.
Common success codes are:

● 200: generic success
● 201: item added
● 211: item already deleted
● 418: item already present (in case the client can do twin detection)

Common error codes are:

● 415: unsupported media type
● 500: generic error

Caching of Map Operations

To correctly support the recover of an interrupted sync, caused by a network error or a
manual stop, the SyncManager must store the mapping information in a persistent storage
just before sending it. If the server responds with the status on the mapping, the
SyncManager should reset the storage; otherwise it should send again the mapping at the
next sync. Note that sending twice the same mapping info (in the case the connection drops
after the server received it) is not an error. Follows the flow of the mappings cache.

24

The SyncManager is able to instantiate its own MappingsManager, one for source, that
contains methods to write the mappings in the storage, read from it and reset. The
MappingsManager has a constructor parameter that is the name of the source it has to
handle: the source name is used as an identifier for the KeyValueStore that handles the
storage.
The KeyValueStore is created through a static method getMappingStore that asks the
MappingStoreBuilder to create a new instance of the proper KeyValueStore.

The default implementation of the MappingStoreBuilder returns a PropertyFile that is able to
store in the filesystem.

25

Add (item1, item2, ...)

ServerSyncManagerSyncSource

LUID

addItem(item2)

LUID

Status

 Store Mapping

 Store Mapping

 Delete Mapping

Status, Map

addItem(item1)

 Update cache

 Update cache

 Store Item

 Store Item

If the client wants to provide its own KeyValueStore implementation, it may create a new
derived class from MappingStoreBuilder and set it in the MappingsManager through the
setBuilder method.
Since the MappingsManager is created by the SyncManager, the SyncManager itself is
responsible to delete the object. On the other hand the MappingsManager has its own
KeyValueStore object inside that can be the default one or created by the
MappingStoreBuilder passed by the client: in both cases the MappingsManager is
responsible to delete the instance and the client doesn't care about it.
By the way, the client is responsible for the lifecycle of the MappingStoreBuilder that sets in
the MappingsManager.

3.3. Multiple Messages In One Package
The Funambol Client API C++ supports multiple messages per package, which means the
client can send its modified items in more messages and get the server items in the same
way. This process is commonly called “multi-message” and it is used to meet the limited
resources requirements of mobile devices.

The SyncML protocol specifies how multi-message shall be performed by the synchronizing
entities; the process can be summarized as follows:

1. Client sends the first n items in the first message of PKG #3, without the <Final/>
element;

2. Server applies the changes and replies with a message containing only status
commands; the server is not allowed to send its own changes until client finished to
send client side changes (which means unless the client ends the package with the
<Final/> element);

3. Client sends the next message with the next items; if the message contains the last
items, the package is terminated with the <Final/> tag;

4. Server applies the client changes and returns a message with only status; if the
client sent its last massage, Server goes to the next step; otherwise, the process
goes back to step 2;

5. Client replies to Server with simply a status command (optionally a 222 Alert code);
6. Server starts sending server side updates; if the message is not the last one, the

<Final/> element is not added to the message; otherwise, <Final/> indicates the end
of the package;

7. Client applies the received changes and replies with status command only; when the
message obtained by Server contains the <Final/> element, the process ends.

26

Figure 4: The classes involved in caching map operation

- KeyValueStore* store;
- static MappingStoreBuilder* builder;
+ MappingsManager(const char* name)
+ ~MappingsManager()
+ addMapping(const char* LUID,

 const char* GUID) : bool
+ getMappings() : Enumeration&
+ resetMappings(): bool
+ static void setBuilder(MappingStoreBuilder*)
+ static KeyValueStore* getMappingStore
 (const char* name)

MappingsManager
+ MappingStoreStore()
+ virtual KeyValueStore*
 createNewInstance(const char* name)

MappingStoreBuilder

3.4. Large Object handling
The Funambol Client API C++ supports the large object defined by the OMA DS standard,
which means that it's possible to exchange objects that are bigger than the message size by
splitting them into chunks. Each chunk is send to the peer agent with a tag <MoreData/>
indicating that the object it's not finished yet.
The receiving agent (either on the server side or on the client side) it's responsible for
reassembling the object.

Client to Server
[since v.8.2.2]
The sync engine is able to split large objects into small chunks to be sent to the Server, this
is done with the help of InputStream and ItemReader classes.

The SyncManager asks the first/next syncItem to the SyncSource and passes it to the
ItemReader object along with the maxMessageSize information, which is the maximum
amount of bytes to be sent in a single SyncML message.
The ItemReader is responsible to read chunks of data from the SyncItem (see
InputStream::read(void* buf, int size) method), calculating the right read number of bytes to
be read with respect of the SyncItem's encoding type.
For instance, if the encoding desired is base64 the chunk size is calculated as follows:
 size = int(chunk size / 4) * 3
the result size must be divisible by 3, in order to obtain a valid base64 string when joining
back the chunks on Server side.

The ItemReader is also responsible to transform the chunk data with the right encoding /
encryption, then a Chunk object is created and returned back to the SyncManager. The
Chunk contains the data ready to be sent and a boolean 'isLastChunk' which is set to true by

27

Figure 5: ItemReader and InputStream classes

void* data [for backw comp]
int dataSize

SyncItem

StringBuffer path
bool isFileData

FileSyncItem

ArrayList attachments

MailSyncItem

virtual int read(void* buf, size) = 0
virtual void reset() = 0
virtual int eof() = 0
virtual int getPosition() = 0
virtual int close()

InputStream

ArrayList& attachments

MailInputStream

StringBuffer path
int position
int eofbit
StringBuffer prologue, epilogue

FileDataInputStream

void* data
int position
int eofbit

BufferInputStream

StringBuffer path

FileInputStream

list<InputStream> sections
int currentSection
bool isLastSection()

MultipleInputStream

ItemReader(syncItem, msgSize)
getNextChunk()

SyncManagerSyncManager

SyncItem* item
int maxMessageSize

ItemReader

StringBuffer data
bool isLastChunk
bool isFirstChunk

Chunk

the ItemReader if the chunk returned is the last one. The data transformation is executed
with the help of EncodingHelper class, which has the ability to convert the data chuncks
given the type of encoding required and the user's credentials.
The sync engine will just need to ask for the next chunk to the ItemReader until the last one
is returned, then the next SyncItem will be processed.

The InputStream class is responsible to split and return the data of the correct size as
requested by the ItemReader, until the end of data. It's an abstract class, it defines the
interface methods to access the stream (read, reset, close). Specific implementations of
InputStream can read data directly from a stream in order to avoid loading a large object in
memory.
In the default implementation, the SyncItem uses a BufferInputStream, which reads directly
from the 'void* data' buffer. This way, the BufferInputStream reads chunks from that buffer
loaded in memory, which is set as usual calling SyncItem.setData().

The BufferInputStream is created passing the SyncItem's 'data' buffer to read from in the
constructor, so it's properly recreated new if the SyncItem::setData() method is called.

28

Figure 6: Large Object support for outgoing items

InputStreamSYNC
SERVER

L.O.

reads a chunk

First chunk

SyncItem*

Sync Engine ItemReader

chunk

read()getNextChunk(maxChunkSize)

transform
(b64 / MD5)

getNextItem

chunk.isLastChunk? (no)

reads a chunk

Second chunk chunk

read()getNextChunk(maxChunkSize)

transform
(b64 / MD5)

chunk.isLastChunk? (yes)

Last chunk chunk

getNextItem

In the FileSyncSource, the FileSyncItem is used. FileSyncItem uses a FileInputStream to
directly read file's content from the filesystem, given its path. In case a file data object is
required, the FileDataInputStream is used instead of FileInputStream: the data returned from
the read() method is not just the raw file content, but it's an XML data object following the
OMA File Object specs.

So the formatting operation of the file data object is done inside the InputStream::read()
method, with different implementations for each type of data.
For more structured data, this operation can be complex: the abstract class
MultipleInputStream defines a useful inteface for data that can be rapresented as a
sequence of different input streams. So each stream is defined as a section, and there's an
array of sections that are accessed in order. This way, the read() operation is nothing more
than calling read() on each section defined, and the eof bit is set when the last section is
ended.
For instance the FileDataInputStream extends the MultipleInputStream, defining 3 sections:
1.an xml prologue (a BufferInputStream on a fixed string)
2.the file content (a FileInputStream)
3.an xml epilogue (a BufferInputStream on a fixed string)

For emails object type, MailSyncItem and MailInputStream are defined.
MailInputStream::read() method will format the email data content, including email
attachment that are read directly from the streams where they are stored, and will return the
data chunked as usual. MailInputStream is also extending MultipleInputStream, as email data
is a generic sequence of text data (BufferInputStream) and attachments (FileInputStream).
The list of attachments is passed in the constructor (it's a list of file paths where the
attachments can be retrieved).

29

Figure 7: FileInputStream example

SyncManagerSyncManager

FileSyncItemFileSyncItem

FileInputStreamFileInputStream

FileDataInputStreamFileDataInputStream

isFileData?

getNextChunk()

File

read()

read()

read file

... <xml> ...

read file

... <xml> ...

ItemReaderItemReader

getInputStream()

Y

N

Server to Client
The engine is able to do the reassembling work and give the complete object to the
SyncSource. Since this may not be possible on limited devices due to the RAM limitations,
it's possible for the client to tell the engine to leave the reassembling work to the
SyncSource.
In this case, the SyncItem is marked with a MoreData flag and sent to the client, which is
responsible for the reassembling. The advantage is that this can be done on the file system
directly, for instance, with a less RAM usage. (to be implemented)

3.5. Data Synchronization Layer Design
This section defines the design of the data synchronization layer accordingly to the sections
so far presented. More on specific features of the API will be detailed in dedicated chapters.
As depicted in Figure 1, we already identified some fundamental components of the API:
SyncClient, SyncManager, TransportAgent, SyncSource. Roles and responsibilities of these
components are summarized in the table below.

30

SyncSource

SyncItem

SYNC
SERVER

First chunk
getItem

L.O.

add chunk

Second chunk
getItem

addItem
add chunk

Last chunk
getItem

SyncItem

SyncItem

addItem

add chunk

finalize

addItem

Sync Engine

Component Implementing class Roles and responsibilities

SyncClient spds/common/SyncClient This component is the main interface to the
application using the API. It represents the
client SyncMLAgent as defined in the SyncML
specification. The role of the SyncClient class
is to provide an high level interface to a client
application so that the developer can enable
its own application to use SyncML simply
calling a method of this class (see Figure 2).
This is also where the synchronization
process is implemented, from initialization to
finalization, including multi message and so
on.

This class can be derived to overload some
methods to perform custom operations (e.g.
prepareSync, beginSync, endSync)

SyncManager spds/common/SyncManager This is responsible for the implementation of
each single phase of the synchronization. It
is also responsible of driving the process of
building the proper SyncML messages to
send to the server through the
TransportAgent and to interpret the server
response and take the consequent actions.

TransportAgen
t

http/common/TransportAge
nt

This low-level component is responsible of
transporting the SyncML messages to and
from the server. It accesses the system
network API to perform the needed HTTP
calls.

SyncSource spds/common/SyncSource This component represents a client
database. It is used by the SyncManager
when it needs to read on store data from and
to the local database. SyncSource is purely
an interface, which client developers must
implement in order to access the most
disparate data sources.

SyncClient
The class diagram of SyncClient is illustrated in Figure 8.

31

SyncClient is the interface class between the client and the engine. It can be overridden to
implement the virtual protected methods to perform client specific action at certain points of
the sync. See the methods description below.

As a design choice, we want that a SyncClient could potentially be configured from many
sources (the DM subsystem is the preferred one, but other systems may be all right),
therefore to properly configure the SyncClient instance the reference to the configuration
object (an instance of SyncManagerConfig – for details, see the dedicated section about the
configuration objects in later in this document) is passed when calling one of the two
methods sync().

At the end of the sync, it is possible to retrieve from the SyncClient a report of the sync
(number of items exchanged, error code and error message), using the getSyncReport()
method. Please refer to the SyncReport paragraph for more datails.

At the end of the sync, the sync results are also stored in the configuration, so the last sync
error codes can be available even after the SyncClient is destroyed. It is duty of the Clients to
eventually persist in memory the configuration after the sync ended, in order to access the
last error codes even after a client restart.
The sync result codes are copied from the SyncReport into the config parameters:
–SyncManagerConfig::lastGlobalError
–SyncSourceConfig::lastSourceError
The source's sync results are set only for the sources effectively synchronizated.

32

Figure 8: SyncClient class diagram

+ SyncClient()
+ ~SyncClient();
+ sync(c: SyncManagerConfig&,
 sources: SyncSource**)
+ sync(c: SyncManagerConfig&,
 sourceNames: char** = NULL)
+ getSyncReport()

* prepareSync(config: SyncManagerConfig&)
* createSyncSource(name: char[],

 pos: int,
 config: SyncManagerConfig&,
 source: SyncSource**)

* beginSync(source: SyncSource**)
* endSync(source: SyncSource**)
* setSyncResults(c: SyncManagerConfig&)

SyncClient

SyncReport

SyncManager
The class diagram of the most important classes related to the SyncManager is shown in
Figure 9.

SyncManager represents the core of the data synchronization API. As the prepareSync(),
sync() and endSync() methods suggest, it handles all the phases of the synchronization
process.

Along with SyncManager, two other important classes/interfaces are defined: SyncSource is
an interface that represent a local data store; SyncItem represent a single item to
synchronize.

prepareSync(source: *SyncSource[]) : int

This method takes an array of SyncSource to synchronize and handles the SyncML
initialization phase, which means authenticating to the server and alerting it with the
database that the client wants to synchronize and with which synchronization mode.

The passed in SyncSource array will be kept for reference in the subsequent calls. This
means that the caller must make sure they stay allocated for the entire lifetime of the
SyncManager instance.

As previously seen, the authentication process may take some communication between
client and server and may require session information to be kept at least until the
counterpart is authenticated (i.e. Nonce). This information includes:

33

Figure 9: SyncManager class diagram

+ SyncManager(config: SyncManagerConfig&
 report: SyncReport&)
+ ~SyncManager()

+ prepareSync(source: *SyncSource[]) : int
+ sync(): int
+ endSync(): int

SyncManager

+ SyncSource(WCHAR* sourceName,
 SyncSourceConfig *sc)
+ ~SyncSource()

+ getFirstItem(): Item*
+ getNextItem(): Item*
+ getFirstNewItem(): Item*
+ getNextNewItem(): Item*
+ getFirstUpdatedItem(): Item*
+ getNextUpdatedItem(): Item*
+ getFirstDeletedItem(): Item*
+ getNextDeletedItem(): Item*
+ setItemStatus(key: WCHAR*,
 status: int)
+ addItem(item: Item&): int
+ updateItem(item: Item&): int
+ deleteItem(item: Item&): int
+ removeAllItems()

> config: SyncSourceConfig&
> report: SyncSourceReport*
> filter

> loReassemble: bool

SyncSource

> key: WCHAR*
> modificationTime: long
> dataSize: long
> dataType: WCHAR*
> state: SyncState
> targetParent: WCHAR*
> sourceParent: WCHAR*

> moreData: bool

SyncItem

• the default authentication type (the one the client will first try to use)
• the requested authentication type (the one requested by the server)
• username
• password
• server id
• server password
• nonce

Plus, there are different algorithm to create the actual authentication data to send in the
message. All this work is encapsulated in the class CredentialHandler, whose role is to
perform any credential calculation related task (see Figure 10 for the class diagram).

SyncManager instantiates a CredentialHandler at the beginning of the initialization process
and keeps using it until the end; it feels the authentication properties (auth types, username
and server id, passwords and nonces) from the configuration object or from the messages
returned by the server and then calls getCredentialData() to retrieve the data block to insert
in the SyncML message. Such block is the base64 encoding of the credentials data. Note
that such wchar_t string is dynamically allocated with new C++ operator and must be deleted
by the caller.

SyncManager also provides client capabilities. This information combine device specific
information with data source related information, therefore properties from many
configuration objects will be used to build the DevInf command to send to the server. DevInf
properties are retrieved from the configuration (SyncManagerConfig object) passed to
SyncManager by reference (see SyncManager and SyncSource configuration).
If it is the first time SyncManager connects to a server, client capabilities are sent in a Put
command (see the client capabilities handling session).
In the same way, if during initialization the server requests client capabilities sending,
SyncManager will send them in a Results command.

In the initialization phase it is not foreseen to be necessary to split the package in multiple
messages, therefore no multi-message mechanism is implemented at this stage.

sync()

When sync() is invoked the SyncManager performs the following tasks:

34

Figure 10: CredentialHandler class diagram

+ CredentialHanlder()
+ ~CredentialHanlder()

+ setDefaultAuthType(type: AuthType)
+ setCurrentAuthType(tyoe: AuthType)
+ setUsername(u: wchar_t[])
+ setPassword(p: wchar_t[])
+ setServerId(id: wchar_t[])
+ setServerPassword(p: wchar_t[])
+ setClientNonce(n: wchar_t[])
+ setServerNone(n: wchar_t[])

+ getCredentialData(): wchar_t[]

CredentialHandler

• for each sync source in the array passed in in prepareSync():
• detecting client modifications;
• sending client modifications (in multiple messages if required);
• processing return messages committing successfully completed commands

(based on the status code returned by the server);
• for each sync source in the array passed in in prepareSync():

• receiving server modifications;
• processing and applying server modifications, returning proper status

codes;
• sending modification status codes back to the server.

The API supports the Large Objects defined by the OMA standard, and takes care of the
object segmentation and reassembling when sending/receiving data by default.

Detecting Sending and Committing Client Modifications

Note that the way changes are detected is left to the SyncSource implementor. It may be
based on flag modification, change log handling, versioning... this is hidden to the
SyncManager who just asks for modifications calling get[First/Next]
[New/Updated/Deleted]Item() on a SyncSource instance.

getFirstItem() and getNextItem() are used in the case of a slow sync and retrieve the entire
data source content.

get[First/Next][New/Updated/Deleted]Item() are used in the case of fast sync and retrieve the
items in the data store that are in the corresponding state.

From the SyncManager perspective, a SyncSource is like a database cursor: the cursor is
initialized when getFirstXXX() is called and each getNextXXX() call returns an item or NULL if
the cursor reached the end of the result set.

Client modifications so retrieved are embedded in the SyncML message and sent to the
server. Note that not necessarily all modifications go in one single message. SyncManager
determines if an item must go in the current message or in the next message based on the
number of items in the current message and their size (see the multi message section earlier
in this document).

When the SyncManager receives a status for a modification command previously sent, it
calls the method setItemStatus() of the corresponding SyncSource. This gives the
SyncSource the opportunity to commit the change, for example resetting the item
modification flag.

Applying Client Modifications

After the client has done with its modifications the server starts sending its own. These are
interpreted by the SyncManager who eventually calls the SyncSource's
add/update/deleteItem() methods. They return a status code as defined by the SyncML
specifications.

Note that the item parameter passed to addItem() on return may have a a changed key. This
represents the local id (LUID) that will be returned to the server in a Map command.

The SyncSource Interface

SyncSource is an abstract class that implementors must extend in order to access specific
data sources. It contains a SyncSourceConfig reference to the correspondent object owned
by SyncManagerConfig (passed by constructor). It also contains a SyncSourceReport

35

pointer, which is owned by SyncReport and passed using setReport() method. So the 'report'
member is a pointer to an external object, it MUST NOT be deleted by SyncSource.
The methods defined by this interface are listed in the following table.

Method Description

SyncSource(const WCHAR*
sourceName, const
SyncSourceConfig *sc)

Constructor: creates a SyncSource from the specified
sourceName, set the internal configuration reference from
the passed SyncSourceConfig.

SyncSourceConfig&
getConfig()

Returns the internal reference of SyncSourceConfig.

SyncSourceReport*
getReport()

Returns the internal pointer to the SyncSourceReport.

void setReport
 (SyncSourceReport* sr)

Sets the internal pointer to the passed SyncSourceReport.
The pointer is copied (no space allocated), so SyncSource
does NOT own the SyncSourceReport.

Item* getFirstItem() Returns the first item regardless its modification state, or
NULL if there are no more items. If the SyncSource keeps
an underlying cursor (i.e. a database cursor), the call shall
reset it if already in use.

The returned item is allocated with the C++ operator new
and it is managed inside API (caller MUST NOT free it)

Item* getNextItem() Returns the next item regardless its modification state, or
NULL if the source contains no items.

The returned item is allocated with the C++ operator new
and it is managed inside API (caller MUST NOT free it)

Item* getFirstNewItem() Returns the first item flagged as new or NULL if there are
no new items. If the SyncSource keeps an underlying
cursor (i.e. A database cursor), the call shall reset it if
already open and in use.

The returned item is allocated with the C++ operator new
and it is managed inside API (caller MUST NOT free it)

Item* getNextNewItem() Return the next new item or NULL if there are no more new
items.

The returned item is allocated with the C++ operator new
and it is managed inside API (caller MUST NOT free it)

Item* getFirstUpdatedItem() Returns the first item flagged as updated or NULL if there
are no updated items. If the SyncSource keeps an
underlying cursor (i.e. a database cursor), the call shall
reset it if already in use.

The returned item is allocated with the C++ operator new
and it is managed inside API (caller MUST NOT free it)

Item* getNextUpdatedItem() Return the next updated item or NULL if there are no more
updated items.

The returned item is allocated with the C++ operator new
and it is managed inside API (caller MUST NOT free it)

Item* getFirstDeletedtem() Returns the first item flagged as deleted or NULL if there
are no deleted items. If the SyncSource keeps an

36

Method Description

underlying cursor (i.e. A database cursor), the call shall
reset it if already in use.

The returned item is allocated with the C++ operator new
and it is managed inside API (caller MUST NOT free it)

Item& getNextDeletedItem() Return the next deleted item or NULL if there are no more
new items.

The returned item is allocated with the C++ operator new
and it is managed inside API (caller MUST NOT free it)

void setItemStatus(wcar_t*
key, int status)

Called when a Status for a modification command
previously sent is returned by the server. This gives the
opportunity to the SyncSource to know if the modification
has succeeded and to reset the related modification flag.

int addItem(Item& item) Adds a new item to the underlying data source. The call
returns the status code that SyncManager shall return the
server in the Status command.

If the SyncSource generates a new local id for the added
item, it must set the new key in the Item object so that the
SyncManager will be able to send it back to server in a Map
command.

This method shall not modify the status flag of the item (the
item shall not be flagged as new).

int updateItem(Item& item) Updates an item into the underlying data source. The call
returns the status code that SyncManager shall return the
server in the Status command.

This method shall not modify the status flag of the item (the
item shall not be flagged as modified).

int deleteItem(Item& item) Deletes an item from the underlying data source. The call
returns the status code that SyncManager shall return the
server in the Status command.

This method shall not modify the status flag of the item (the
item shall not be flagged as deleted and it should be
permanently deleted).

int removeAllItems() Called by the SyncManager when the sync mode is refresh-
from-server to remove all the items by the client storage.

The SyncSource can stop the sync by returning an error
code to the SyncManager (for instance, a client may ask
the user before doing this operation).

bool getReassembly() Return true is the Large Object Reassembly is done by the
engine, false if it's done by the client.

setReassembly(bool) Set if the reassembly is done by the engine (true), or by the
client (false).

This property must be set to true by clients that wants to do
the reassembly by theirselves. The default is to leave it to
the engine.

Clause* getFilterClause() Returns the filter clause that should be used in preparation
for the synchronization of this sync source.

37

Method Description

void setFilterClause(Clause&
clause)

Sets the filter clause that should be used in preparation for
the synchronization of this sync source.

Synchronization Events Notification

Many of the actions performed at the SyncManager level are notified to the registered
listeners. This is described in a dedicated section and the details are delegated at the
development level.

endSync()

Role of this method is to conclude the synchronization session. This includes sending a final
Status command or the last Map command, if during the synchronization process any item
was created on the client and new local ids where generated.
If there are any errors in this phase, as a network error in sending/receiving the latest
message or the lastest server message is wrong or it contains syncml errors (i.e. header
status 500), the anchor are not updated and the client is prevented to store them wrongly.

Also, in this phase the SyncSource endSync method is called, and the SyncSource
implementation has the chance to perform ending/cleanup operations too.

3.6. SyncManager and SyncSource Configuration
The SyncManager object requires a considerable amount of configuration information; plus,
such information may vary as the API improves or may require flexibility due to particular
client needs. For these reasons, it makes sense to design an overall configuration
architecture, with the responsibility of implementing the details of such flexibility and
complexity giving an easy to access configuration framework to the other modules of the API
and to client developers.

The configuration is handled by the client, which passes a reference of SyncManagerConfig
to the SyncClient constructor.
Note: the config object passed to SyncClient must be already filled with all desired
properties, so it's a client duty to read or create the SyncSourceConfig before the sync
process, and eventually save it at the end. This is done as a design choice to leave the client
all the freedom to manage the configuration, based on its necessity.
If a DMTClientConfig implementation is used, standard methods to read and save all config
properties are provided (see Figure 11).
The class DefaultConfigFactory gives the opportunity to generate default config objects with
all standard properties; a client should use a inherited class and override these methods in
order to have a factory for specific config objects.

The class diagram of such configuration framework is illustrated in Figure 11.
The classes of the configuration framework are described in the following sections.

38

39

Figure 11: Configuration framework class diagram

SyncSourceConfigs* ServerConfigAccessConfig

DefaultConfigFactory

SyncManagerConfig

DMTClientConfig

ClientConfig

DeviceConfig

DataStores*

SyncManagerConfig
SyncManagerConfig groups the configuration information needed by the SyncManager.
This implementation is just a transient repository; persisting configuration settings is
delegated to subclasses. The framework provides also a subclass able to read and store
configuration information from/to the DM tree.

A client developer can choose to use the DM subsystem to handle the config persistency, or
to derive from the SyncManagerConfig interface providing another way to persist the data
on the device storage.

SyncManagerConfig methods are described in the following table.

Method Description

SyncSourceConfig*
getSyncSourceConfigs()

Returns a NULL terminated array of SyncSourceConfig
objects, where each object contains the configuration
of a SyncSource. It is used to enumerate all the
SyncSources handle by the clients.

SyncSourceConfig*
getSyncSourceConfig(const char*
name)

Returns a pointer to the internal SyncSourceConfig
with the configuration of the SyncSource with the given
name. If such SyncSource does not exist, remains
untouched and the method returns NULL.

SyncSourceConfig*
getSyncSourceConfig(unsigned int
i)

Returns a pointer to the internal SyncSourceConfig
with the configuration of the SyncSource in position 'i'
of the SyncSourceConfig array. If SyncSourceConfig[i]
does not exist, the method returns NULL.

unsigned int
getSyncSourceConfigsCount()

Returns the number of SyncSourceConfig.

AccessConfig& getAccessConfig() Returns the access settings configuration currently
selected to be used by the SyncManager.

DeviceConfig getClientConfig() Returns the client settings.

DeviceConfig getServerConfig() Returns the server settings.

BOOL setSyncSourceConfig
(SyncSourceConfig& sc)

Set the internal SyncSourceConfig with the given
name from sc.getName(). SyncSource settings are
copied from sc object. If such SyncSource does not
exist it is created new and appended in the
SyncSourceConfig array.

setAccessConfig(AccessConfig&
ac)

Set the internal AccessConfig. Access settings are
copied from ac object.

setClientConfig(DeviceConfig& dc) Set the internal DeviceConfig for client. Client settings
are copied from dc object.

setServerConfig(DeviceConfig& dc) Set the internal DeviceConfig for server. Server
settings are copied from dc object.

SyncManagerConfig parameters are listed in the following table:

Property Description

abortSyncProcess Should be set by the client to abort the sync process
smoothly

40

Property Description

The SyncManager check this flag periodically (see
isToAbort method)

lastGlobalError This is the global error code of the last synchronization
done (global, not related to a specific source: for sources
errors see SyncSourceConfig::lastSourceError).
It is read/stored in the configuration, so it is accessible at
any time, even after the sync ended.
If using the SyncClient object to trigger the sync, its value
is the SyncReport's lastErrorCode, set at the end of each
sync session. Code 0 means "no error occurred".

DMTClientConfig
This is a concrete implementation of a SyncManagerConfig object. It reads/stores
configuration information using the DM tree.

DMTClientConfig public methods are described in the following table.

Method Description

DMTClientConfig(char* root) Creates a new DMConfig object that will use the
given root as the DMTree root from which the
configuration will be accessed.

~DMConfig() Destructor.

SyncSourceConfig*
getSyncSourceConfig(char* name,
BOOL refresh =FALSE)

This method is overloaded to implement the
refresh of the config from DM when the second
parameter is TRUE.

SyncSourceConfig*
getSyncSourceConfig(unsigned int i,
BOOL refresh =FALSE)

This method is overloaded to implement the
refresh of the config from DM when the second
parameter is TRUE.

ManagementNode* getSyncMLNode() Provides access to the "syncml" configuration
node, can be used to read/write custom
configuration options. Config must have been
opened before. Returns the node pointer owned
by config and valid while the config is open.

ManagementNode*
getSyncSourceNode(int index)

Get the specified SyncSource configuration, with
the index specified. Returns the node pointer
owned by config and valid while the config is
open.

BOOL read() Fills the object with the settings read from the
DMTree. It returns TRUE in case of success,
FALSE otherwise.

BOOL save() Stores the object values to the DMTree. Returns
TRUE in case of success, FALSE otherwise.

BOOL open() Opens the configuration backend associated with
the root context. Calling on an open config does
nothing. Return TRUE for success.

void close() Closes the configuration backend. Frees all
resources associated with and invalidates all

41

Method Description

ManagementNode pointers returned by this
config.

In addition to these ones, DMTClientConfig has also the methods to read and write the
components classes from and to the DMTree. These methods are defined protected and are
called by read() and write() only, and are independent from the underlying implementation of
the DM (they uses only the methods getPropertyValue and setPropertyValue defined by the
interface).

AccessConfig
The methods of AccessConfig are fundamentally getters and setters of the properties listed
in the class diagram of Figure 11. By general rule, setters methods copy the passed value to
the internal one, while getter methods return the internal pointer to the desired property.
The less obvious properties are described below.

Property Description

useProxy Boolean. Should the sync engine use a HTTP proxy?

beginTimestamp The beginSync timestamp.

endTimestamp The endSync timestamp.

firstTimeSyncMode The SyncMode that the sync engine should use the first
time a source is synced.

syncURL The syncURL value. If the URL does not start with http://
(or HTTP://) or https:// (or HTTPS://), http:// is prepended
to the given string.

serverNonce The server nonce value: from client to server.

clientNonce The client nonce value: from server to client.

isServerAuthRequired Boolean. Does the server require authentication?

maxMsgSize The maximum message size (Byte) accepted for XML
messages received from server (server to client).

maxModPerMsg The maximum number of modifications sent in each XML
message from client to server.

readBufferSize Specifies the value for the size of the buffer used to store
the incoming stream from server. It is expressed in byte.
If set = 0, a default value = 4096 is used.

encryption Boolean. Do we use ciphering?

userAgent The user agent string, will be attached to http messages
to identify the client on server side. It should be a short
description with the client name plus its version.

responseTimeout The number of seconds of waiting response timeout.
If set = 0, a default value = 300 is used.

dirty The dirty flag, used to select which properties have been
modified. Not used by now (T.B.D).

Notes:

42

'userAgent' value should always be specified. If the property is left empty, the user agent will
be derived from 'devID' plus 'swv' fields from DeviceConfig. If also devID is empty, a default
user agent value will be used: “Funambol SyncML Client”.

DeviceConfig
SyncManagerConfig contains two instances of DeviceConfig:

1. ClientConfig: used to store Client related configuration settings
2. ServerConfig: used to store Server configuration settings (obtained via devInfo)

ClientConfig
The methods of ClientConfig are fundamentally getters and setters of the properties listed in
the class diagram of Figure 11. By general rule, setters methods copy the passed value to
the internal one, while getter methods return the internal pointer to the desired property.
Most of ClientConfig properties are used to generate the <DevInf> element for client
capabilities (see Client Capabilities Handling chapter). ClientConfig properties are described
below.

Property Description

verDTD Specifies the major and minor version identifier of the
Device Information DTD used in the representation of
the Device Information. The value MUST be “1.1”.
This property is mandatory.

man Specifies the name of the manufacturer of the device.
This property is optional.

mod Specifies the model name or model number of the
device. This property is optional.

oem Specifies the OEM (Original Equipment Manufacturer) of
the device. This property is optional.

fwv Specifies the firmware version of the device.
This property is optional.

swv Specifies the software version of the device.
This property is optional.

hwv Specifies the hardware version of the device.
This property is optional.

devID Specifies the identifier of the source synchronization
device. The content information MUST specify a
theoretically, globally unique identifier. This property is
mandatory.

devType Specifies the type of the source synchronization device.
Type values for this element type can be e.g. “pager”,
“handheld”, “pda”, “phone”, “smartphone”, “server”,
“workstation”. Other values can also be specified. This
property is mandatory.

dsV Specifies the implemented DS version. This property is
optional.

utc Boolean. Specifies that the device supports UTC based
time. If utc = TRUE, the server SHOULD send time in

43

Property Description

UTC format, else MUST send in local time. Client MAY
send time in local or UTC format. Default value = TRUE.

loSupport Boolean. Specifies that the device supports handling of
large objects. Default value = FALSE.

nocSupport Boolean. Specifies that the device supports number of
changes. Default value = FALSE.

logLevel Specifies the logging level on the device.
It can be one of 0 – 1 – 2 (none, info, debug).
Default value = 1 (info).

maxObjSize Specifies the maximum object size allowed by the
device.
Default value = 0 (no maxObjSize set).

devInfHash This is a hash value generated from all properties that
are used for the <DevInf> element, plus the syncURL
property from AccessConfig. Initial value = “0”.

sendDevInfo Boolean. Specifies if the <DevInf> element should be
sent by the client. Default value = TRUE

forceServerDevInfo Boolean. The Client can force to ask the Server
capabilities during sync, setting this parameter to true.
Default=FALSE

Notes:
If there is no firmware/software/hardware version of the device available (fwv, swv, hwv),
then their content information can also be a date, for example, 19980114 or
19990714T133000Z. Only hours, minutes and second MUST be specified in the time
component.
“devInfHash” property is used to verify if any DevInf element (or syncURL) has changed
since last sync; in that case the devInf is sent to the server.

“sendDevInfo” parameter has been added to enable clients to avoid sending device
capabilities. If a client doesn't want to send its capabilities should explicitly set the
“sendDevInfo” value to false in the configuration with the method “setSendDevInfo()”.

If using DMTClientConfig implementation to read/save configuration, the parameter
“forceServerDevInfo" is not persisted in memory because it should just be set to true
everytime the Client needs to force it (otherwise the Server caps would always be
requested).
Clients can set it by calling the method setForceServerDevInfo(true).

ServerConfig
Server configuration parameters are set during the synchronization when the Server sends
its capabilities, and are available to the Clients under the ServerConfig object (see 3.15).
Most of the properties are the same of ClientConfig, just referred to the Server instead of the
Client. The following table describes additional properties used by ServerConfig:

Property Description

smartSlowSync Specifies if the Server supports the Smart Slow sync (for
emails sync). Values are: 0 = true, 1 = false, 2 = cannot
determinate. Default value = 2.

lastSyncURL Specifies the Server URL corresponding to the Server

44

Property Description

capabilities currently stored (the URL of the last
successful sync). If the Server URL changes, the
capabilities are no more valid.

dataStores ArrayList of DataStore objects. It's a list of datastores
supported by the Server, as sent within the Server
capabilites.

SyncSourceConfig
The methods of SyncSourceConfig are fundamentally getters and setters of the source
configuration properties, with the exception of the CTCap handling methods, that will be
better explained in the par. 3.14).
The following table describes the less obvious properties:

Property Description

encoding Specifies how the content of an item should be encoded.
The form of this parameter is a semi-column separated
list of formats that must be applied in sequence from the
leftmost to the rightmost. For example, if format is
“des;b64”, when the item will be output in the message,
the content must be first transformed with the “des”
encoder and than with the b64 encoder.

encryption Specifies if the content of an outgoing item should be
ecrypted. If this property is not empty and valid, the
'encodings' value is ignored for outgoing items. Actually
the only valid value is “des”. Default value is an empty
string (no encoding).

syncModes Specifies all supported sync modes for the given source.
The form is a comma separated list of modes.
Sync modes can be one of “slow”, “two-way”, “one-way-
server”, “one-way-client”, “refresh-from-server”, “refresh-
from-client”, “addrchange”, “smart-one-way-client”,
“smart-one-way-server”, “incremental-smart-one-way-
client”, “ncremental-smart-one-way-client”

sync This is the current sync mode used by the client. The
parameter MUST be one of the sync modes specified in
property “syncModes”.

supportedTypes A string rapresenting the source types (with versions)
supported by the SyncSource.
The string must be formatted as a sequence of
'type:version' separated by commas ','.
For example: “text/x-vcard:2.1,text/vcard:3.0”.
The version can be left empty, for example: “text/x-s4j-
sifc:”
Supported types will be sent used for the DevInf (see
Client Capabilities chapter).

type The source type used by client. This is one of types
specified in “supportedTypes” property.

version The version of the source type used by client.

45

Property Description

last Long value that specifies the last timestamp for this
source.

fieldLevel True if the SyncSource is able to apply field-level
replaces (see 3.14 for more details).

ctCaps ArrayList of CTCap objects, each one representing the
content capability information for one type supported by
the source.

lastSourceError The last error code, for this source (0 means "last sync
successfull"). If using the SyncClient object to trigger the
sync, the last sync result code of the corresponding
source is set at the end of the sync.
This way the information will be available even after the
sync ended.

For the CTCap handling, it is also available the following utility method to add a content type
capability information:

Method Description

int addCtCap(properties, type, version,
fieldLevel)

this method creates and adds to the ctCaps list
a CTCap object using the given information.
Only the properties parameter is mandatory,
the others are take by default from the config
(see above).

DefaultConfigFactory
The methods of DefaultConfigFactory are factories for config objects. They are provided to
help the client developer in the creation of the initial configuration.
For the SyncSourceConfig, the right default values for a standard Funambol server
installation is provided based on the name for the basic source (contact, calendar, task,
note).

Method Description

AccessConfig* getAccessConfig() Returns a default generated AccessConfig.
Returns an AccessConfig pointer allocated
new, so it must be freed by the caller.

DeviceConfig* getDeviceConfig() Returns a default generated DeviceConfig.
Returns a DeviceConfig pointer allocated new,
so it must be freed by the caller.

SyncSourceConfig*
getSyncSourceConfig(const char* name)

Returns a default generated
SyncSourceConfig, based on the name.
Returns a SyncSourceConfig pointer allocated
new, so it must be freed by the caller.

3.7. CacheSyncSource

46

This abstract class implements the SyncSource interface, adding a method to detect the
changes in the local store since the last sync based on cache files to make easier the
implementation of new sync sources.
It requires an instance of a class implementing the KeyValueStore interface to store the sync
cache, made by pairs of LUID (the local id of the item) and a fingerprint (default method is
CRC of the content, but can be a timestamp or any other way to detect a change on the
item). By default, CacheSyncSource is able to obtain a PropertyFile (which implements
KeyValueStore as a file), but if a more efficient way to store it is available for the platform,
the developer can create anoher store and pass it in the CacheSyncSource constructor (see
also the SQLKeyValueStore abstract class).

The methods to implement are:
● getAllItemList: returns a list of StringBuffer with all the keys of the items in the data

store
● insertItem: adds a new item into the data store
● modifyItem: modifies an item in the data store
● removeItem: removes an item from the data store
● removeAllItems: removes all the items from the data store
● getItemContent: get the content of an item given the key
● getItemSignature: [OPTIONAL] get a fingerprint of the item, which is any string which

allows to detect changes in the item. As a default implementation, the CRC is used.

3.8. ConfigSyncSource
The ConfigSyncSource is a special SyncSource that gives the possibility to synchronize a
certain number of parameters stored in the DMTree with the server.
To achieve this, the developer of the client has to create an ArrayList of properties to sync
and set into the ConfigSyncSource by the setConfigProperties() method.
The methods of the SyncSource read and write the items into the DMTree that depends on
the platform implementation: i.e. it is on windows registry for windows, on file for posix...
The server and client must know which properties will be exchanged to handle correctly the
items.
An example of property that the client can exchange is
./Email/Address
with value
name@address.com

In the DMTree will exist a node Email that starts from the root of dmtree. Inside the node
there is a property Address with value name@address.com

The ArrayList of properties will contains only the key ./Email/Address and the sync
source will retrieve the value in the dmt.

The sync source implements the methods to retrieves new and updates parameters. It
handles the parameters from server that can be added and modified. The deletion of the
properties is not admitted and can be achieved erasing the value of the property.

Method Description

ConfigSyncSource(const
WCHAR* sourceName, const
StringBuffer& applicationUri,
AbstractSyncSourceConfig*
sc, KeyValueStore* cache =
NULL);

Constructor: creates a SyncSource from the specified
sourceName, set the internal configuration reference from
the passed AbstractSyncSourceConfig.
The applicationUri refers to the root of the DMTree.

If KeyValueStore is null it uses the default one created by
the CacheSyncSource

47

Method Description

void
setConfigProperties(ArrayList
properties)

This method allows the developers to set into the
SyncSource an ArrayList with all the properties to sync with
the server.

The Arraylist contains StringBuffer keys.

3.9. FileSyncSource
This class extends the CacheSyncSource abstract class, implementing a plain file datastore.
The FileSyncSource is intended to easily synchronize generic files contained inside a given
directory on the Client (class member 'dir'). The directory location (full path) must be passed
in the constructor.

By default, only the files under 'dir' folder are synchronized (no subfolders). To synchronize
files under subfolders, the Client must set the 'recursive' boolean to true, calling the method
'setRecursive'.

For outgoing items, FileSyncSource uses the FileSyncItem class instead of standard
SyncItem. This way the large objects are automatically managed by the sync engine, loading
the file's content chunck by chunk directly from the file stream (see chapter 3.4 for details).

Depending on the MIME type defined for the source (see SyncSourceConfig::getType()), this
class can work in two ways:

1. if the type is "application/vnd.omads-file+xml", the files are wrapped into the OMA
File Object representation, to preserve the file name and attributes.
The item's content will be retrieved using the FileDataInputStream.
The attributes currently supported are:
- name: the file's name
- body: the file's content, automatically encoded in base64
- size: the file size, in bytes
- modified: the last modification time, in UTC
The source encoding can be left in plain text (“bin”), as the file's content is already
encoded in base64.
Note: file's creation time is not supported as it is not available on Symbian platform.

2. otherwise, the file is sent as it is to the server (raw file data)
The item's content will be retrieved using the FileInputStream. The source encoding
must be set to base64 (“b64”), because the file's content is retrieved as it is.

For incoming items, the format of the file is detected by the content.
Here is an example of the OMA File Data Object, as it will be sent using FileSyncSource:

<File>
<name>background.jpg</name>
<modified>20091029T163000Z</modified>
<body enc="base64">/9j/4RDuRXhpZgAASUkqAAgA[...]gYUlABSZigBM0UAf/2Q==</body>
<size>26302</size>
</File>

The protected method 'filterOutgoingItem' can be reimplemented by a derived class to
eventually filter outgoing items (from Client to Server). Default implementation is empty (no
filtering, all files are sent).

48

3.10. MediaSyncSource

This class extends the FileSyncSource class, to define a special behavior for generic “media
files” like pictures or video files, to be synchronized between a mobile Client and a Server.
Such files can be really huge, and so the main purpose of this SyncSource is to avoid
sending the same file twice, as much as possible. In order to do that, some solutions have
been applied to move around constraints set by classic SyncSource implementations.

The goal of the MediaSyncSource is to share the solutions detailed below, so that mobile
Clients (like WindowsMobile or Symbian) can take advantage of this class.
A Client just needs to:
– set the 'dir' folder to sync, and optionally the 'recursive' flag
– fill a MediaSyncSourceParams class with the username, ServerURL and swv

parameters, and pass it to the MediaSyncSource constructor
– optionally set the parameters filterBySize and filterByDate, to filter outgoing items
– optionally extend the MediaSyncSource, to define more specific filters (implementing

filterOutgoingItem and dynamicFilterItem methods)

49

Figure 12: SyncSource classes

SyncSource

KeyValueStore* cache

CacheSyncSource

StringBuffer dir
bool recursive

FileSyncSource

KeyValueStore* LUIDMap
KeyValueStore* configParams

MediaSyncSource
StringBuffer username
StringBuffer url
StringBuffer swv
int nextLUID
unsigned int filterBySize
unsigned long filterByDate

MediaSyncSourceParams

ConfigSyncSource

PictureSyncSource VideoSyncSource
Client

Sync direction: “smart-one-way-from-client” (code 250)

The MediaSyncSource is designed to be used only on mobile clients: no media files are
expected from Server to Client.
In case the Server sends files back to the Client, they will be simply rejected (return status
code 405 = command-not-allowed) and not inserted.
The Server will not check anchors with this syncmode, so slow-syncs are never executed.

Memory optimization for Large Objects
Extending the FileSyncSource class, MediaSyncSource taks advantage of the Large Object
support for outgoing items. Media files are tipically big, so the sync engine will load the file's
content chunck by chunk directly from the files stream, instead of loading the whole content
in memory (see chapter 3.4 for details).

Cache file inside the folder under sync

The MediaSyncSource cache file is stored inside the folder under sync, as a file
“funambol_cache.dat”.
The cache is associated with that folder, so if the user goes back to a folder already
synchronized some time ago he will be already in sync (with classic implementation, the files
found would be sent again to the Server as new items).
This is done to make sure a media file is not sent twice, even if the folder to sync changes
(i.e. switching between Phone's memory and Memory Card on a mobile device).

Special items inside the cache

If the Server URL or the username change, the Server will request a slow-sync and in this
case the Client MUST send all the items: in this situation the cache file is no more valid and
should be cleared. But the cache file is now stored inside the folder to sync and the user
could have changed the folder to sync, so we can't just clear it.
The solution is to keep track of the 'username' and 'Server URL' parameters inside the
cache, as special items that are used just to check the cache validity before the sync starts
(see private method checkCacheValidity()). In case they are different, the cache is cleared.
Additionally, the software version parameter is stored as well (swv), to handle backward
compatibility actions (for future use).
These 3 parameters must be passed by the Client, and this is done filling the
MediaSycSourceParams class. It will be passed to the class constructor.

Note: these parameters are not removed from the cache during the sync, because if the sync
crashes we want to find them in the cache next time. So we just need to keep them in the
cache during the sync, and exclude them from thew sync logic (see fillItemModifications()
reimplemented).

Outgoing files filtering

Outgoing files can be filtered, in order to avoid sending too much data during a single sync
session. Filtering is of two types:

Static filtering
This filtering does not change over time, so it is done at the beginning while scanning the
folders involved in sync. This kind of filtering includes:
1.filter by type: files that are not media files are filtered out (PicturesSyncSource will send
only files with this extensions: .jpg, .jpeg, .gif, .png)
2.filter out the Funambol cache files (they are now stored inside the folder to sync)
See method MediaSycSource::filterOutgoingItems().

Dynamic filtering

50

This filtering may be enabled/disabled by the user, or may change over time. It is executed
after the media cache creation, to avoid sending new/delete items in case the filter is
enabled/disabled (we MUST not send a media file more than once!).
This kind of filtering includes:
1.filter by size: files with size bigger than params::filterBySize are filtered out
2.filter by date: files with a modification time earlier than params::filterBySize are filtered out
Clients can just set the two params filterByDate and filterBySize when calling the constructor
of MediaSycSource, to specify custom filtering (default values is 0 = filter disabled).
See method MediaSycSource::dynamicFilterItem().

Some considerations on the implementation:
- during a slow sync the filtering is done on allItems list
- during normal sync (smart one way from client), the filtering must be executed on the new
items list, as well as the updated and deleted items list
- files filtered will always be in the newItems list (the cache does not have them) and will be
excluded in every sync. So the filters are executed every time, as they are dynamic and may
change.
- a file previously included in sync may be modified so that it will be now filtered out. So the
list of updatedItems must be checked as well.
- a file previously included in sync may be deleted by the user, and a filter may be changed
so that file should be filtered out now. So the list of deletedItems must be checked as well.
- in the case of deleted items, the file is no longer available so most of the filters cannot be
executed: however the filterByDate is still valid, as the file's last modification time is available
from the MediaSycSource's cache (it's the local file's signature, see below).

Local files signature

Implements CacheSyncSource::getItemSignature() method: the signature is the file last
modification time (CRC computing can be too expensive for big files such as media files).

Unique item's key (LUID)

The item's key used by FileSyncSource is the name of the file. Switching the folder to sync, it
may be that the same key is associated to different files with the same name.
To distinguish between pictures with the same name and path, a mapping between LUID and
full path of each file synchronized is used: the LUID is a unique item's key sent to the Server:
it's an incremental number, different for every file (so first file sent will have the key = “1”,
then “2” and so on).

The mapping is stored in a PropertyFile "funambol_luid.dat", containing [file name;LUID]
pairs for each item in cache. It's accessed while sending items to the Server, to get the LUID
value from the file name (implements 'fillSyncItem'), and when receiving status codes back
from the Server, to retrieve the file name from the LUID (implements 'setItemStatus'). For
incoming items, the 'getKeyAndSignature' method is reimplemented to retrieve the file name
from the LUID sent by the Server.
To avoid this mapping PropertyFile to grow indefinitely, it's refreshed every time the cache is
saved (see 'refreshLUIDMap' method): all entries that have no correspondence in the cache
are removed.

The LUID map is stored inside the folder to sync, so that we keep the mappings for the
current directory even if the folder was changed. Everytime a new LUID is generated, the
parameter 'nextLUID' is updated, so we are sure we never use a LUID already taken. The
'nextLUID' value must be stored in a indipendent place from the folder to sync, so it's saved
under the platform config dir inside a PropertyFile.

51

Handle file renames (TODO)

If a media file is just renamed, on the next sync the Client would send a new item and a
delete item. This is not efficient, to avoid this we need to check new and deleted items before
every sync, to find 2 items with the same signature (so it's the same file renamed).

Manage “quota exceeded on Server” error
In case the storage limit is reached on the Server, an error status code 420 (means “device
full”) is sent to the Client. MediaSyncSource is able to react in case of this status code, and
stops sending new items to the Server (see fillSyncItem() method).
An internal error is raised in this situation, so the sync process will continue till the end but
no more items are exchanged with the Server. Then, the error code 420 is returned to the
Client by the endSync() method, so Clients can execute specific actions to handle this
situation (like displaying an error message, or stop the push/schedule services for this
source).

Note that lastErrorCode is immediatly set when the wrong status is received, in order to stop
sending the current item even if it's a large object one (and so it's automatically read from
the proper input stream). The sync is not aborted but it continues till the end, so the
MediaSyncSource's cache files can be updated regularly.

3.11. Synchronization Report
A SyncReport is used to summarize all results of a single synchronization. During the
synchronization process, all results about different operations are stored in a SyncReport
object, so the client will be able to get these informations at the end. Accessing this object a
client can easily know for example the outcome of each source synchronized, retrieve the
number of items modified on both sides, and the status code of each one. The class diagram
of SyncReport architecture is illustrated in Figure 13.

The SyncClient owns an instance of SyncReport, so each synchronization process managed
by a SyncClient is associated to a unique SyncReport. It is passed by reference to the
SyncManager, so it can be filled during the sync session. On client side, after calling the
SyncClient.sync() method to start a synchronization, the correspondent report can be
retrieved calling SyncClient.getSyncReport() method.

Note: the SyncReport is available only during the sync process, it will be destroyed at the
end of the sync if the SyncClient is deleted (since it's owned by the SyncClient itself). At the
end of the SyncClient::sync() method, the sync results (the global lastErrorCode and also the
last error codes of each source synced) are copied to the SyncManagerConfig, so it will be
persisted in the configuration. So it will be available even after the sync process ended.

Figure 13: SyncReport class diagram

52

SyncReport
This class contains informations about the global sync process, and an array of
SyncSourceReport objects: each one rapresent the report of each SyncSource
synchronized.
SyncReport public methods are described in the following table.

Method Description

SyncReport() Constructor, creates a new empty SyncReport
object.

SyncReport(SyncManagerConfig& sc) Constructor, creates a new SyncReport object
and call setSyncSourceReports().

~SyncReport() Destructor.

setSyncSourceReports
(SyncManagerConfig& config)

Creates the array of syncSourceReport based on
configuration passed.

SyncSourceReport*
getSyncSourceReport (const char*
name)

Returns a pointer to the internal
SyncSourceReport object, selected by its name.

SyncSourceReport*
getSyncSourceReport (const int index)

Returns a pointer to the internal
SyncSourceReport object, selected by its index
in the array.

unsigned int
getSyncSourceReportCount()

Returns the number of SyncSourceReport
objects.

53

+ ItemReport()
+ ItemReport(ir: ItemReport&)
+ ItemReport(luid: const WCHAR*,
 statusCode: const int)
+ ~ItemReport()

> id: WCHAR*
> status: int

ItemReport

+ SyncReport()
+ SyncReport(sr: SyncReport&)
+ SyncReport(sc: SyncManagerConfig&)
+ ~SyncReport()

> lastErrorCode: int
> lastErrorMsg: char*

+ setSyncSourceReports(config:
 SyncManagerConfig&)
+ getSyncSourceReport(name: const char*):
 SyncSourceReport*
+ getSyncSourceReport(index: unsigned int):
 SyncSourceReport*
+ getSyncSourceReportCount():
 const unsigned int

SyncReport
+ SyncSourceReport(name: const char* = NULL)
+ SyncSourceReport(ssr: SyncSourceReport&)
+ ~SyncSourceReport()

> sourceName: char*
> lastErrorCode: int
> lastErrorMsg: char*

> state: SourceState
+ checkState(): bool

+ getItemReportCount(target: const char*,
 command: const char*): int
+ getItemReportSuccesfulCount(target: const char*,
 command: const char*): int
+ getItemReportFailedCount(target: const char*,
 command: const char*): int

+ getItemReport(target: const char*,
 command: const char*,
 index: unsigned int): ItemReport*
+ addItem(target: const char* ,
 command: const char*,
 const WCHAR*: ID,
 status: const int)

+ getList(target: const char*,
 command: const char*): ArrayList*

SyncSourceReport

SyncSourceReport
SyncSourceReport class rapresent the report of each SyncSource synchronized. It also
contains six lists of ItemReport (list for new, modified, deleted items on server and on client),
and methods to get the number of items of each list. The member “state” is used to know if
the SyncSource is currently active (used in synchronization), inactive (ignored) or if some
errors occurred (so will be skipped in sync).
SyncSourceReport public methods are described in the following table.

Method Description

SyncSourceReport(const char* name =
NULL)

Constructor, creates a new SyncSourceReport
object. Set sourceName if name is passed.

~SyncSourceReport() Destructor.

bool checkState() Returns true if source is active
(current state = SOURCE_ACTIVE)

int getItemReportCount
(const char* target, const char*
command)

Return the number of ItemReport for a specific
list (based on target and command).

int getItemReportSuccessfulCount
(const char* target, const char*
command)

Return the number of ItemReport with status
code successful for a specific list (based on
target and command).

int getItemReportFailedCount
(const char* target, const char*
command)

Return the number of ItemReport with status
code NOT successful for a specific list (based on
target and command).

addItem (const char* target, const char*
command, const WCHAR* ID, const int
status)

Add a single ItemReport to the correct list (based
on target and command). The ItemReport is
created from ID (luid) and status.
This method is called by API each time an item
status is obtained (both client and server status
that come from a modification operation).

ItemReport* getItemReport(const char*
target, const char* command, unsigned
int index)

Returns the internal pointer to the ItemReport
from its index.

ArrayList* getList(const char* target,
const char* command)

Used to get access on the right list, based on
target and command (see notes below for correct
values).

Notes:
“target” values are: CLIENT - SERVER
“command” values are: COMMAND_ADD - COMMAND_REPLACE – COMMAND_DELETE
"state" member can be one of: SOURCE_ACTIVE - SOURCE_INACTIVE - SOURCE_ERROR

ItemReport
ItemReport class rapresents the result information on a single item synchronized, such as
the luid of the item and its status code (200/201/500...).

54

3.12. Item Content Transformation
In order for the DS Agent to be able to transform the data obtained from a SyncSource in
some other format, the concept of DataTransformer is introduced. A DataTransformer is
associated to a syncsource. The class diagram of the DataTransformer architecture is
illustrated in Figure 14.

A DataTransformer is identified by a name and it may act as an encoder or decoder. The
following names are defined (case sensitive!):

• b64 : base64 encoder/decoder
• des : DES cipher/decipher

In addition to the classes shown in the figure, a factory class is provided to create encoders
and decoders given the transformer name. Such factory has the following interface:

Method Description

DataTransformer*
 getEncoder(wchar_t* name)

Creates and returns the DataTransformer able
to encode data to the format given by name;
such instance is allocated with the new operator
and must be deleted by the caller with the
delete operator.

DataTransformer*
 getDecoder(wchar_t* name)

Creates and returns the DataTransformer able
to decode data from the format given by name;
such instance is allocated with the new operator
and must be deleted by the caller with the
delete operator.

Scope of this architecture is that at the syncsource level, the encoding/decoding of the
content of each single item is hidden. The engine will take care of such conversions. The
syncsource will only be influenced (or will only influence) the content type.

The transformation is implemented in the transform() method, which takes the input data plus
a pointer to an optional parameter that the transformer may need to perform the processing.
Note that a transformer may or may not be required to allocate the memory needed for the
transformed data. See the implementation notes for instruction on how this is done and,

55

Figure 14: Data transformation class diagram

>name

+ transform(char* input, TransformationInfo& info): char*

DataTransformer

B64Encoder

B64Decoder

DESEncoder

DESDecoder

therefore, how the allocated memory should be freed. In case of any error a NULL pointer
will be returned.

TransformationInfo is a structure with the following fields:

Field IN/OUT Description

long size IN/OUT Size in bytes of the data to transform in input;
the size in bytes of the transformed data in
output.

wchar_t* username IN Pointer to a string containing the username of
the user performing the current
synchronization.

wchar_t* password IN Pointer to a string containing the password of
the user performing the current
synchronization.

wchar_t* sourceName IN Pointer to a string containing the name of the
source being encoded/decoded.

BOOL newReturnedData OUT TRUE if the transformer has allocated new
memory for the returned data. If so, the
transformer is required to use the new
operator so that the caller can release the
allocated memory with the delete operator.

The following error codes are defined:

ERR_DT_UNKNOWN: the requested data transformer is unknown
ERR_DT_FAILURE: the transformer was not able to perform the transformation; see the
transformer implementation description for additional information

Basic algorithms for encoding and decoding are provided by the basic component of the
library (see section 2).

3.13. Configuration DMTree
This section describes how the configuration information of the data synchronization layer
are stored in the DM tree. DM and DM tree concepts are described later in section 3.
The DM Tree structure that keeps the configuration information needed by the framework
classes is represented below.

./spds/sources
 + source
 + name
 - <source name>
 + uri
 - <source uri>
 + syncModes
 - <sync modes>
 + type
 - <content type>
 + version
 - <content type version>
 + sync
 - <sync type: “none”, “slow”, “two-way”...>
 + encodings
 - <b64, plain/text>
 + last
 - <integer: last time stamp>
 + supportedTypes

56

 - <all supported source types: “type1:ver1,type2:ver2,...”>
+ fieldLevel

– - <bool: true if source suports field level replace>

 + mailSource
 + name
 - <source name>
 + uri
 - <source uri>
 + syncModes
 - <sync modes>
 + type
 - <type>
 + sync
 - <sync type: “none”, “slow”, “two-way”...>
 + encodings
 - <b64, plain/text>
 + last
 - <integer>
 + downloadAge
 - <integer>
 + bodySize
 - <integer>
 + attachSize
 - <integer>
 + mailMaxMsgSize
 - <integer>
 + Inbox
 - <integer>
 + Outbox
 - <integer>
 + Sent
 - <integer>
 + Trash
 - <integer>
 + Draft
 - <integer>

./spds/syncml

 + Conn
 + syncURL
 - <syncurl>
 + proxyHost
 - <proxy host>
 + proxyPort
 - <proxy port>
 + proxyUsername
 - <proxy username>
 + proxyPassword
 - <proxy password>
 + useProxy
 - <1 | 0>
 + checkConn
 - <if connection needs to be checked: 1 | 0>
 + responseTimeout
 - <integer value>
 + readBufferSize
 - <integer value>
 + userAgent
 - <user agent>

 + Auth
 + username
 - <username>
 + password
 - <password>
 + serverID
 - <serverID>
 + serverPWD

57

 - <serverPWD>
 + clientNonce
 - <serverNonce>
 + serverNonce
 - <serverNonce>
 + isServerAuthRequired
 - <1 | 0>
 + clientAuthType
 - <authentication type>
 + serverAuthType
 - <authentication type>

 + DevInfo
 + devID
 - <device id>
 + man
 - <manufacturer>
 + mod
 - <model>
 + dsV
 - <implemented DS version>

 + DevDetail
 + devType
 - <device type>
 + oem
 - <original device manufacturer of the device>
 + fwv
 - <firmware version of the device>
 + swv
 - <software version of the device>
 + hwv
 - <hardware version of the device>
 + loSupport
 - <Large Object support: 1 | 0>

 + Ext
 + begin
 - <last synchronization begin timestamp>
 + end
 - <last synchronization end timestamp>
 + firstTimeSyncMode
 - <first time sync mode>
 + maxMsgSize
 - <max message size>
 + maxModPerMsg
 - <max # of items in a message from client>
 + devInfHash
 - <the hash for devinf>
 + logLevel

 - <log level>
 + encryption

 - <1 | 0>
 + maxObjSize
 - <max size of an object>
 + utc
 - <if client handle UTC timestamps: 1 | 0>
 + nocSupport

 - <Number of changes support: 1 | 0>
+ verDTD
 - <DTD version in use>

Notes:
1. If proxy host is an empty string, it is intended as “do not use proxy”.
2. <preferred authentication type> is one of: “syncml:auth-md5”, “syncml:auth-basic”.
3. <log level> is one of: 0 – 1 – 2 (none, info, debug).
4. <Integer value> means 0 get the default value, otherwise the value set

58

3.14. Client Capabilities Handling
The SyncML specifications states:

The sync client MUST send its device information to the server when the first synchronization is
done with a server or when the static device information has been updated in the client. The
client MUST also be able to transmit its device information if it is asked by the server. The client
SHOULD also support the receiving of the server device information.

Therefore, we have two scenario:

1. The client connects to a new server;
2. The server issues a Get command requesting for client capabilities.

In both cases the client shall send its capabilities. Plus, if the client has already sent its
capabilities to a server in a previous synchronization, the DevInf is not sent anymore.

For case 1, the SyncManager determines if it has to include client capabilities looking at the
value of the devInfHash: if its value is changed it means that some DevInf parameter is
changed, or the syncUrl property has been modified.
Note: the syncUrl parameter has been added to the generation of devInfHash, to ensure the
client sends device informations when connecting to a different server.
However a client application can decide to reset devInfHash when any other relevant
configuration settings is changed.

In case 2, the SyncManager determines if it has to send the client capabilities inspecting the
messages received by the server during initialization. If any contains a Get command, in the
reply the SyncManager will send a Results command containing the DevInf build from the
various configuration objects.
The device informations contains details about the device: (manifacturer, firmware version,
etc.), about the DS capabilities (support of LargeObjects, NumberOfChanges, etc.) and
about the DataStore (aka, the SyncSource).
The DataStore is a complex item, containing for each source informations about::

● the source name and remote uri
● the supported mime types and version, with the preferred one (for rx and tx)

e.g.: text/x-vcard, 2.1
● if the DataStore supports field level update:

● if true, the server is allowed to send only the modified properties of an
item, and the client is able to change them keeping the rest of the item
untouched

● if false, the server must send all the item to the client.
● the list of supported properties.

The informations are taken from the configuration data (see par. 3.6), except the DataStore
properties, which are not known by the API and must be set by the client.
The client has to provide an ArrayList of CTCap object for each type of data supported by
that SyncSource. Each CTCap object contains the informations above (please see the library
documentation for more info).
Besides the get/set methods for the ctCap property, which is the full ArrayList of contant-type
capabilities set for the source, the SyncSourceConfig provides the utility method addCtCap()
which allows to easily add them.

The minimal operation a client must perform to add the mandatory informations for a source
supporting only one content type is to call addCtCap() passing the list of properties
supported.
The other parameters are optionals, and defaults to the values stored in the config itself
(type, version and fieldLevel, see above).

59

If the source supports more types, the subsequent calls must specify also the values
different from the preferred ones.

3.15. Server Capabilities Handling
Server device informations (Server capabilites) SHOULD be sent by the Server to the Client.
These capabilites are very important, they're the primary way to know which Server are we
synchronizing to.

The Client can ask for Server capabilites via a “Get” SyncML command, and the Server
SHOULD always reply with a “Results” command containing a “DevInf” tag with all its
capabilites.
Alternatively, the Server could send its capabilites via a “Put” command (for example if some
have changed and need to be notified to the Client (since Funambol Server v.8.2).

The Server capabilities handling is managed autonomously by Funambol SDK C++ APIs,
during synchronization: the parameters are stored inside the configuration (ServerConfig
object, see 3.6) and so they're available to Clients.
The Server device info are requested if at least one of the following situation happens:

1. Mandatory Server information is missing
Actually only the Server version (swv) is considered a required parameter, so the
Server caps are requested if the Server version is empty.

2. The Server address has changed
To check if the Server address has changed, the last Server URL is stored in the
ServerConfig object. If it's changed, the Server caps currently stored are also cleared
because they're no more valid.

3. The Client forced it, using the config param “ forceServerDevInfo ”
Clients can force to ask for Server capabilites, by calling the method
setForceServerDevInfo(true). This way, the capabilites are always requested to the
Server, even if not necessary.

Note: if using DMTClientConfig implementation to read/save configuration, the
“forceServerDevInfo” parameter is not persisted in memory because it should just be set to
true everytime the Client needs to force it (otherwise the Server caps would always be
requested, and this is not the general behavior).

Server Capabilites are stored in the Client's configuration DMTree as shown in figure 15:

60

Server dataStores rapresents the available Server syncSources and their preferences.
Everytime the Server dataStores are received we cleanup the existing DataStores config tree
and completely replace it with the new data, in order to reflect the current Server dataStores.
Funambol Server sends the dataStores for all the supported syncsources (and not just for
the sources under sync) since v.8.2.
The dataStores parameters rx-Pref-type and rx-Pref-version are particularly important, since
they rapresent the Server's preferred format for received data fof that syncsource: Clients
may want to use those informations to select the right data format for each syncsource.

3.16. Synchronization Events Notification
As illustrated in Figure 1 the architecture of an application based on the Funambol API is
layered; in order to let the application level know about what happens in the layers below, an
event based notification mechanism is implemented. This is based on events and listeners.

Synchronization Events
The events described in the table below are defined.

Event Event Type Description

SyncEvent SYNC_BEGIN Fired to notify that the
synchronization process started. It
shall bring the following info:

• datetime: a Date object
representing the date and time
of the beginning of the sync

SyncEvent SYNC_END Fired to notify that the
synchronization process ended. It
shall bring the following info:

61

Figure 15: DMTree of Server capabilities

Server

root node

DevDetail

DevInfo

Ext

DataStores

devType
fwv
hwv
loSupport
oem
swv

devID
dsV
man
mod

lastSyncURL
multipleEmailAccount
nocSupport
smartSlowSync
utc
verDTD

sourceRef
displayName
maxGUIDSize
syncModes
rx-Pref-Type
rx-Pref-Version
tx-Pref-Type
tx-Pref-Version

card

picture

...

Event Event Type Description

• datetime: a Date object
representing the date and time
of the end of the sync

SyncEvent SYNC_ERROR Fired to notify that the engine
encountered a not blocking error
(the engine does not throw an
exception for it).

It shall bring the following info:

• datetime: a Date object
representing date and time
when error occurring

• message: the error message

SyncEvent SEND_INITIALIZATION Fired to notify that the initialization
package was correctly set and
processed. It brings the following
info:

• datetime: a Date object
representing the date and time
of the end of the initialization
processing

SyncEvent SEND_MODIFICATION Fired to notify that the modifications
package was correctly set and
processed. It brings the following
info:

• datetime: a Date object
representing the date and time
of the end of the modifications
processing

SyncEvent SEND_FINALIZATION Fired to notify that the final
package was correctly set and
processed. It brings the following
info:

• datetime: a Date object
representing the date and time
of the end of the finalization
processing

SyncTransportEvent SEND_DATA_BEGIN Fired to notify that the engine
started to send data to the server.
This event shall notify the following
events:

• going to start sending data

It shall bring the following info:

• data length: the total amount of
data to send

SyncTransportEvent SEND_DATA_END Fired to notify that the engine has
sent all data to the server.

62

Event Event Type Description

It shall bring the following info:

• data length: the total amount of
data sent

SyncTransportEvent RECEIVE_DATA_BEGIN Fired to notify that the engine
started to receive data from the
server. This event shall notify the
following events:

• going to start reading data

It shall bring the following info:

• data length: the total amount of
data to receive when it is first
fired;

SyncTransportEvent DATA_RECEIVED Fired to notify that the engine is
receiving data from the server. This
event shall notify the following
events:

• received a certain amount of
data

It shall bring the following info:

• data length: the bytes received

SyncTransportEvent RECEIVE_DATA_END Fired to notify that the engine has
received all data from the server.

It shall bring the following info:

• data length: the total amount of
data received

SyncSourceEvent SYNC_SOURCE_BEGIN Fired to notify the beginning of the
synchronization of a particular
syncsource.

It shall bring the following info:

• source URI: the source being
synchronized

• sourcename: the source name

• mode: type of the performed
sync

• date: a Date object representing
the date and time of the
beginning of the synchronization

SyncSourceEvent SYNC_SOURCE_END Fired to notify the end of the
synchronization of a particular
syncsource.

It shall bring the following info:

• source URI: the source being
synchronized

63

Event Event Type Description

• sourcename: the source name

• mode: type of the performed
sync

• date: a Date object representing
the date and time of the end of
the synchronization

SyncSourceEvent SYNC_SOURCE_SYNCMODE_
REQUESTED

Fired to notify a SyncMode change,
requested by server for a particular
syncsource.

It shall bring the following info:

• source URI: the source being
synchronized

• sourcename: the source name

• mode: type of sync requested

• date: a Date object representing
the date and time of the end of
the synchronization

SyncSourceEvent SYNC_SOURCE_TOTAL_
CLIENT_ITEMS

Fired to notify the total number of
items that client will transfer for a
particular syncsource (number of
changes).

It shall bring the following info:

• source URI: the source being
synchronized

• sourcename: the source name

• mode: type of the performed
sync

• data: the number of items.

• date: a Date object representing
the date and time of the end of
the synchronization

SyncSourceEvent SYNC_SOURCE_TOTAL_
SERVER_ITEMS

Fired to notify the total number of
items that server will transfer for a
particular syncsource (number of
changes).

It shall bring the following info:

• source URI: the source being
synchronized

• sourcename: the source name

• mode: type of the performed
sync

• data: the number of items.

• date: a Date object representing

64

Event Event Type Description

the date and time of the end of
the synchronization

SyncItemEvent ITEM_ADDED_BY_SERVER Fired to notify that an item addition
has been received. It shall bring the
following info:

• source URI: the source the item
belongs to

• item key: the item key (GUID
from the server)

SyncItemEvent ITEM_DELETED_BY_SERVER Fired to notify that an item deletion
has been received. It shall bring the
following info:

• source URI: the source the item
belongs to

• item key: the item key (GUID
from the server)

SyncItemEvent ITEM_UPDATED_BY_SERVER Fired to notify that an item update
has been received. It shall bring the
following info:

• source URI: the source the item
belongs to

• item key: the item key (GUID
from the server)

SyncItemEvent ITEM_ADDED_BY_CLIENT Fired to notify that an item addition
has been sent. It shall bring the
following info:

• source URI: the source the item
belongs to

• item key: the item key (LUID)

SyncItemEvent ITEM_DELETED_BY_CLIENT Fired to notify that an item deletion
has been sent. It shall bring the
following info:

• source URI: the source the item
belongs to

• item key: the item key (LUID)

SyncItemEvent ITEM_UPDATED_BY_CLIENT Fired to notify that an item update
has been sent. It shall bring the
following info:

• source URI: the source the item
belongs to

• item key: the item key (LUID)

SyncStatusEvent CLIENT_STATUS Fired to notify a status to send. It
shall bring the following info:

• command: the command the

65

Event Event Type Description

status relates to

• status code: the status code

• item key: the key of the item this
status relates to if it is in
response of a modification
command.

• SourceUri: the source uri

SyncStatusEvent SERVER_STATUS Fired to notify a received status
command. It shall bring the
following info:

• command: the command the
status relates to

• status code: the status code

• item key: the key of the item this
status relates to if it is in
response of a modification
command.

• SourceUri: the source uri

Those events are represented by the classes of Figure 16.

Event

Is the abstract base class for any other event subtype. It is defined by an event code and the
timestamp of when the event is generated. The timestamp is in the numeric form of a
datetime.

66

Figure 16: Events class diagram

SyncEvent
message: char*

getMessage(): char*

type: int
date: unsigned long

getType(): int
getDate(): unsigned
 int

Event

ItemKey: WCHAR*
sourceURI: char*

getSourceURI(): char*
getItemKey(): WCHAR*

SyncItemEvent

sourceURI: char*
name: char*
syncMode: int
data: int

getSourceURI(): char*
getSourceName(): char*
getSyncMode(): int
getData(): int

SyncSourceEvent

dataSize: unsigned long

getDataSize():
 unsigned long

TransportEvent

statusCode: int
command: char*

getStatusCode(): int
getCommand(): char*

SyncStatusEvent

SyncEvent

This event is used to notify the listeners for the principal states of the synchronization
process.

The following event types are defined:

Event Type Value Description

SYNC_BEGIN 0x0001 Fired when the synchronization process start. It's
created and fired by the SyncManager when a client
the sync() method is invoked.

SYNC_END 0x0002 Fired when the synchronization process ends. This
type of event is created by the SyncManager and is
fired when the synchronization process ends.

SYNC_ERROR 0x0003 Fired by the SyncManager when an error occurs.

SEND_INITIALIZATION 0x0004 Fired before sending the initialization message. It is
created and fired by the SyncManager before calling
syncInitialization()

SEND_MODIFICATION 0x0005 Fired before sending the modification message. It's
created and fired by the SyncManager before calling
syncModifications()

SEND_FINALIZATION 0x0006 Fired before sending the finalization message. It's
created and fired by the SyncManager before calling
syncMapping()

These events bring the following information:
• message: only if the event is a SYNC_ERROR, null otherwise

TrasportEvent

This event is used to notify the listener of the sending or receiving of data to/from the server.

The following event types are defined:

Event Type Code Description

SEND_DATA_BEGIN 0x0011 This type is fired before sending a message to the
server; it brings the length of the message.

SEND_DATA_END 0x0012 This type is fired when the client has sent all data to
the server. It brings the length of the message.

RECEIVE_DATA_BEGIN 0x0013 This type is fired when the client receives the content
length of the response message from the server. It
brings the content length of the message.

DATA_RECEIVED 0x0014 This type is fired for each block of data received from
the server. It brings the length of the data read.

RECEIVE_DATA_END 0x0015 This type is fired when the client has received all data
from the server. It brings the length of the message.

SyncSourceEvent

This event is used to notify the listener of the beginning and the end of the synchronization
for a particular SyncSource.

67

The following event types are defined:

Event Type Code Description

SYNC_SOURCE_BEGIN 0x0021 This type is fired 2 times for each syncsource: before
sending client modifications and before receiving
server modifications for the syncsource.

SYNC_SOURCE_END 0x0022 This type is fired 2 times for each syncsource: after
sending all client modifications and after receiving all
server modifications for the syncsource.

SYNC_SOURCE_SYNC
MODE_REQUESTED

0x0023 This type is fired when a syncMode Alert is received
by server.

SYNC_SOURCE_TOTAL
_CLIENT_ITEMS

0x0024 This type is fired by SyncSource before sending
items, when the total number of items is detected. It
brings the number of items (data).

SYNC_SOURCE_TOTAL
_SERVER_ITEMS

0x0025 This type is fired when NOC (number of changes) tag
is received from server. It brings the number of items
(data).

These events bring the following additional information:
• sourceUri: uri of the syncSource
• syncMode: type of the performed sync

SyncItemEvent

This event is used to notify the listener when a item is added/updated/deleted by a command
received from the server or when an item has to be added/updated/deleted on the server.

The following event types are defined:

Event Type Code Description

ITEM_ADDED_BY_SERVER 0x0031 This type is fired when a new item is added on
the client.

ITEM_DELETED_BY_SERVER 0x0032 This type is fired when an item is deleted on the
client.

ITEM_UPDATED_BY_SERVER 0x0033 This type is fired when an item is updated on
the client.

ITEM_ADDED_BY_CLIENT 0x0034 This type is fired for each new item detected on
the client(as soon as it is detected).

ITEM_DELETED_BY_CLIENT 0x0035 This type is fired for each item deleted on the
client (as soon as it is detected).

ITEM_UPDATED_BY_CLIENT 0x0036 This type is fired for each item updated on the
client (as soon as it is detected).

These events bring the following additional information:
• source URI: the source the item belongs to
• item key: the item key

SyncStatusEvent

Fired to notify a sending or a received status command.

68

The following event types are defined:

Event Type Code Description

CLIENT_STATUS 0x0041 This type is fired for all status command that the client
sends to the server

SERVER_STATUS 0x0042 This type is fired for all status command received from
the server.

These events brings the following additional information information:
• command: the command the status relates to
• status code: the status code

Listeners
For each event described in the above sections a corresponding listener is defined. The
class diagram of such objects is shown in Figure 17. All the listeners derive from a base
Listener, from which they inherit a name property, that is used in the registration mechanism
described in the next section. The name is optional and the default is the empty string, to
keep the compatibility with pre 7.1 library version.

Note that the event instances are passed by reference. This reference must be considered
valid only for the scope of the call. Outside such scope no assumption can be made,
therefore if some of the event information is needed elsewhere, it must be copied.

The listener classes are to be considered abstract classes, but they also provide a standard
empty implementation for each method. In this way developers can simply overwrite only the
methods they are interested to.

69

Figure 17: Listeners class diagram

TransportListener

SyncSourceListener

SyncItemListener

SyncStatusListener

SyncListener

> name: String

Listener

Listener registration

Starting from version 7.1 of the Funambol SDK, it is possible to register multiple listeners
instances for each class, using different names.

In order to allow the application developer to register/unregister a listener, the singleton
class ManageListeners is available, with methods to set, unset or get the listeners.
The multiple listener mechanisms is based on the listener name: setting a new listener with a
different name, adds a listener to the chain (all the registered listener are called for each
event fired, see next paragraph).
To set a listener, call the proper set method with a newly allocated Llistener. The pointer will
be owned by the ManageListener and released when another listener with the same name is
set, or when the unset method is called. For example:

set a new listener:
ManageListener::getInstance().setSyncListener(

new CustomSyncLlistener(“myname”));

re-set the same listener:
ManageListener::getInstance().setSyncListener(

new OtherSyncLlistener(“myname”));

unset the same listener:
ManageListener::getInstance().unsetSyncListener(“myname”);

Firing events
To fire an event from inside the API, the following global scoped functions are provided.

Method Description

fireSyncEvent(msg: const char*) Fires a SyncEvent

fireTransportEvent(size: unsigned long) Fires a TransportEvent

fireSyncSourceEvent(sourceURI: const char*,
 sourcename: const char*,
 mode: SyncMode, data: int, type: int)

Fires a SyncSourceEvent

fireSyncItemEvent(sourceURI: const char*,
 itemKey: const WCHAR*)

Fires a SyncItemEvent

fireSyncStatusEvent(command: const char*, statusCode: int,
 uri: const char*, itemKey: const WCHAR*)

Fires a SyncStatusEvent

They create an Event object and pass it to all the registered listeners in the chain.
Note that, in a multi-threaded application, the listeners callbacks are called in the thread
where the sync is running. For this reason, the listener should return quickly the control to
the sync engine and just fire an action for the UI thread, otherwise the whole sync is slown
down by the UI update.

3.17. Filtering
Filtering is a new feature introduced in the SyncML DS 1.2 specifications that allow a SyncML
client to synchronize a database restricting the set of data returned by the server to the items
that fall into a given filter. See [4] for details.
The C++ SDK contains objects and methods to allow a client to specify a SyncML filter, for
servers supporting SyncML 1.2 filtering: a client can build a filter using the classes described
below, and the the engine will format the SyncML filter in the initialization phase.

70

A filter is represented by a Clause object which can have the forms of the classes
represented in the class diagram of Figure 18.

Clause is the base class of all clause objects. It also specifies the type of the clause
subclasses can represent.

A FieldClause represents a constraint on a property, where the latter is of type Property as
defined in the syncml/core classes.

A WhereClause is a used to represents a record filter, which is in turn a query string
following the CGI syntax (see the specs). WhereClause supports the following operators:
EQ, NE, GT, LT, GE, LE, CONTAIN and NCONTAIN.

LogicalClause combines one or more Clause object in a logical relationship. The following
logical operators are supported: NOT, AND, OR.

AllClause represents a “non filter” and is used when no particular selection must be done.

SourceFilter represents a filter to be applied to a SyncSource, such as a logical AND
combination of record-level and field level predicates. In particular, the first operator is a
LogicalClause containing the record filter, whilst the second operator is a FieldClause or a
containing the record level filters. Both expressions can be an AllClause if the particular
piece of the filter is missing (i.e. record-only or field-only filter).
As dictated by the specifications, a filter can be inclusive or exclusive, influencing how client
and server handle the items outside the filter. This is specified by the property inclusive.

In addition to the Clause classes, a ClauseFormatter class is developed to convert a Clause
hierarchy into a syncml/core/Filter object.

3.18. Converter and Parser for Contact and Calendar objects

In order to provide facilities to the developer the Funambol Client API C++ contains classes
to represent Contact and Calendar object and function to convert it to SIF-C or SIF-E format
(Funambol Interchange Format) and cCcard or iCcalendar.

71

Figure 18: Clauses class diagram

> type: ClauseType

Clause

> operator:
 LogicalClauseOperator
> operands:
 ArrayList<Clause>

LogicalClause

> property: wchar_t*
> value: wchar_t*
> operator:
 WhereClauseOperator
> caseSensitive: boolean

WhereClause

> properties:
 ArrayList<Property>

FieldClause AllClause

> clause: LogicalClause
> inclusive: boolean

SourceFilter

On the other hand there are function to parse the SIF format or the vCard and iCal format
and create the correspondent Contact or Calendar object.
These utilities, used into SyncSource, aim to have a simple way to manage the object and to
convert their structure in xml or vCard before set into the item object. The structure want to
be as flexible as possible to be extended with other useful object as task, note...

The converter Diagram is as follow

Converter is the superclass of ContactConverter and CalendarConverter. The getConverter
function retrieves the specific converter class (i.e. ContactConverter) and applies the proper
“convert” method. The parameter SIF or VCARD are constants to choose the action to
perform. The same is for Calendar object.
Object is the superclass of Contact and Calendar object. They represents the objects that
can be filled and used by the SyncSource

72

SyncManager Sync Source Object
(Contact and Calendar)

Converter

Item = getNextItem()

contact = newInstance()

Converter = getConverter()

ContactString = convert(contact, SIF)

PopulateObject(contact)

fillItem(contactString, key...)

Parser is the superclass of ContactParser and CalendarParser. The getParser function
retrieves the specific parser class (i.e. ContactParser) and applies the proper “parse”
method. The parameter SIF or VCARD are constants to choose the action to perform. The
same is for Calendar object.

Item Content Encoding/Decoding
Items can be embedded into the SyncML message in a format different from plain text. In
this case, the SyncML specs imposes that the <Item> element specifies a <Format> element
which tells how the content has been encoded. The SyncML specs limits (even if not
explicitly) to just one value as format. However, we may have the need to specify that a
particular item content was transformed with many stages and different algorithms. In order
to be able to apply the appropriate processing, the counterpart must be aware of which
algorithms were applied and in which order.
To support that, the content of the format element is interpreted in the Funambol API as a
semi-column separated list of formats, applied in sequence from the leftmost (the first
encoding applied) to the rightmost (the last encoding applied).

For example, when receiving an item, if the specified format is “des;b64”, the API expects the
content being b64; therefore, to obtain the clear content, the received data must be 64
decoded first and than deciphered with DES.
On the other side, when the API creates the SyncML message, if the item's SyncSourec is
configured with format “des;b64”, the API will apply DES ciphering first and than it will base64
encode the encrypted data. The server will apply the decoder in the reversed order.

3.19. MailAccount and FolderData handling

FolderData and MailAccount are two classes implemented to handle an hierarchical
synchronization process used for the Multiple Email Account.

73

SyncManager Sync Source Object
(Contact and Calendar)

Parser

status = setItem(Item, COMMAND, mapping)

Parser = getParser()

contact = parser.parse(contactString, SIF)

FillMapping() // if there is one

Execute operation to do on contact

fillStatus()

FolderData implements every value specified into the syncml specifications and a Parent
value that helps the process to store the correspondent parent sent by the server into the
SyncItem value.
MailAccount extend FolderData to have specific accessors to values sent by the server into
the Ext tags into the Folder tag.

Value Description

VisibleName The name of the user shown into the email.

EmailAddress The email address

Protocol The protocol value. Usually is SyncML used by the clients.

Username The username

Password The Password

InServer In case of non syncml accounts this value is the Incoming Server

OutServer In case of non syncml accounts this value is the Outcoming Server

InPort In case of non syncml accounts this value is the Incoming Server Port

OutPort In case of non syncml accounts this value is the Outcoming Server
Port

InSSL This value enables the SSL encryption for the Incoming Server

OutSSL This value enables the SSL encryption for the Outcoming Server

Signature The user signature

DomainName The (optional) domain name of the account

It is also another value called Deleted used by the client to mark that account to be deleted.
The client will then iterate on all the mailaccounts to find the one to be removed by the list.

The handling of the mail accounts is implemented into the MailAccountManager class.
It's used to add/modify/delete email accounts and folders.
All settings for each email account are stored in the config, passed into the constructor, in
order to be able to check for any local change in the account settings.
Clients should extend this class and implement virtual methods to create/update/delete
accounts and folders in the specific platform.

Method Description

createAccount(MailAccount& account) Creates a new email
account

updateAccount(const MailAccount& account) Updates an email account.

deleteAccount(const WCHAR* accountID) Deletes an email account.

createFolder(FolderData& folder) Creates a new folder under
the parent account.

updateFolder(const FolderData& folder) Updates an email folder
under the parent account.

deleteFolder(const WCHAR* folderID) Deletes an email folder
under the parent account.

GetAccountNumber() Returns the number of

74

Method Description

existing email accounts.

accountExists(const StringBuffer& accountID) Checks the config, returns
true if the account exists.

75

4. Device Manager Layer

Goal of the device management layer is to allow an easy management of a remote device,
usually by remote administration or help-desk staff. This means that a remote or local agent
can navigate, view and change device and applications configuration attributes and that
those changes are seamlessly applied, possibly with minimal or no user actions.

In order to provide device management functionality, the Funambol API provides a data
model for system and applications configuration parameters based on tree view of them.
This data model is mainly borrowed by the OMA DM specifications, even if it may differ in
many ways.
Such tree-based repository is called DM Tree. The DM Tree must be easily accessible by
client applications and must hide the details of how and where configuration information is
physically stored.

4.1. Terminology
This section defines terminology used throughout the document and is based on SyncML
Device Management Tree and Description [1].

ACL
Access Control List. A list of identifiers and access rights associated with each
identifier.

Description Framework
A specification for how to describe the management syntax and semantics for a
particular device type.

Dynamic node
A node is dynamic if the DDF property Scope is set to Dynamic, or if the Scope
property
is unspecified.

Interior node
A node that may have child nodes, but cannot store any value. The Format property of
an interior node is node.

Leaf node
A node that can store a value, but cannot have child nodes. The Format property of a
leaf node is not node.

Management object
A management object is a subtree of the management tree which is intended to be a
(possibly singleton) collection of nodes which are related in some way. For example,

76

the ./DevInfo nodes form a management object. A simple management object may
consist of one single node.

Management client
A software component in a managed device that correctly interprets SyncML DM
commands, executes appropriate actions in the device and sends back relevant
responses to the issuing management server.

Management server
A network based entity that issues SyncML DM commands to devices and correctly
interprets responses sent from the devices.

Management tree
The mechanism by which the management client interacts with the device, e.g. by
storing and retrieving values from it and by manipulating the properties of it, for
example the access control lists.

Node
A node is a single element in a management tree. There can be two kinds of nodes in
a management tree: interior nodes and leaf nodes. The Format property of a node
provides information about whether a node is a leaf or an interior node.

Permanent node
A node is permanent if the DDF property Scope is set to Permanent. If a node is not
permanent, it is dynamic. A permanent node can never be deleted.

Server identifier
The SyncML DM internal name for a management server. A management server is
associated with an existing server identifier in a device through SyncML DM
authentication.

77

4.2. Architecture
The Device Management architecture is shown in Figure 19.

Device Manager: this component is responsible for the abstraction of the management
operation that can be performed on a device. It will be the place where a device
management protocol such as OMA DM will be implemented.

Device Mamagement Tree: this component represents device configuration parameters in a
tree data structure where each node is represented by a Management Node. An application
that wants to store its configuration in a place where the device manager will be able to
expose it to a remote server (when a remote device management protocol such as OMA DM
will be implemented), should use this component.

Management Node: a management node represents a container of configuration properties
and, optionally, of other nodes. Configuration properties are represented with the form of
key-value pairs.

78

Figure 19: Device Manager layer architecture

Device ManagerDM Tree Manager

Management Node

Management Node

Management Node

Management Node

DM repository

4.3. Class Diagram
The components described in the section above, are implemented with the classes
illustrated in Figure 20.

The class DMTree is a generic implementation of the Device Management Tree, and provide
a method to retrieve a ManagementNode. Note that the ManagementNode returned is
created with the standard C++ new operator and must be deleted by the caller with the
standard C++ delete operator.
The methods of the class are virtual, so that if a device-specific implementation is requested,
it can be implemented overriding the base class implementation. For this reason, a DMTree
instance must be always retrieved using the device-specific DMTreeFactory, that can return
a specific subclass if needed.

ManagementNode is the key class that represents a node of the management tree. A node
contains properties and maybe other nodes. This is an abstract class, and a device-specific
implementation, named DeviceManagementNode, must be provided for each platform. The
ManagementNode interface is described below.

Method Description

ManagementNode(wchar_t* context,
wchar_t* name)

Creates a ManagementNode from its context
path and its name. context represents the
parent node, name the node name.

~ManagementNode() Virtual destructor.

wchar_t getPropertyValue(const wchar_t*
property)

Returns the value of the given property.

void setPropertyValue(const wchar_t* Sets a property value.

79

Figure 20: ManagementNode class diagram

* ArrayList children

+ void addChild(ManagementNode& node)
+ ManagementNode* getChild(int i)
+ int getChildrenCount()
+ getFullName()
* setFullName(const wchar_t *fullname)

+ int getChildrenMaxCount()
+ wchar_t **getChildrenNames()
+ wchar_t *getPropertyValue(const wchar_t *name)
+ void setPropertyValue(const wchar_t *name, const wchar_t *v)

ManagementNode

DeviceManagementNode
+ int getChildrenMaxCount()
+ wchar_t **getChildrenNames()
+ wchar_t *getPropertyValue(const wchar_t *name)
+ void setPropertyValue(const wchar_t *name, const wchar_t *v)

Method Description

property, const wchar_t* value)

AddChild(ManagementNode & child) Add a new child to the node

ManagementNode *getChild(int index) Returns this node's child at the specified
index

int getChildrenCount() Returns how many children belong to this
node (already added with addChild).

int getChildrenMaxCount() Returns how many children are present on
the underlying storage system for this node

ManagementNode* clone() Creates a new ManagementNode with the
exact content of this object.

The new instance MUST be created with the
C++ new operator.

void getFullName(wchar_t* buf, int size) Returns the full node name

The class DeviceManagementNode must implement the pure virtual methods (see class
diagram), to give access to property values and children nodes stored on the underlying
storage system.

80

5. Push Manager

The push manager is responsible for connecting to a Funambol Push server and handle notifications of
push events. The push manager is an agent running in the background which connects to a server and
waits for notifications. On notifications it is capable of propagating the notification to upper layers.
Funambol supports three different push mechanisms:

● SMS
● STP (Server TCP Push)
● CTP (Client TCP Push)

[5] covers these aspects in more detail. In this document we present the architecture of the push
manager within the C++ API.

5.1. Push manager architecture
The push manager is intended to offer TCP push via STP and/or CTP. SMS push is not handled by the
library as its implementation is largely system specific.
The functionalities the library shall deliver are:

● handles the STP protocol when a STP connection is initiated by the server and handle STP
messages

● handles the CTP protocol when STP is not available
● handles local store modification to implement the client push mechanism

Server push mechanisms (CTP and STP) are handled by a manager that switches between STP and
CTP when needed. This manager implements a policy and it tries to use STP when this is possible or
CTP otherwise. Two separate components implement STP and CTP.

STP is a fairly simple protocol, but it requires some OS support. The protocol requires that the device
opens a server socket and listens for incoming notifications. The device must also inform the server
about its public IP. It must therefore be possible to discover any IP change that may occur.

CTP is a protocol in which the device opens a connection to the CTP server and waits for notification.
More details on STP and CTP can be found in [5].
The architecture of the push manager is represented in figure 2.

A client may decide to use the PushManager and get the advantage of using a high level component
which implements policies to choose the best available push mechanism. But it may also decide to use
directly the low level services. The all export convenient interfaces to be used.
All these components are intended to be instantiated only once, therefore they are singleton.

The PushManager by default makes an attempt of starting the STP service. If it succeeds then it waits for
STP notifications. If it fails it tries to start the CTP service and then waits for notifications. In the future this
policy may be made more sophisticated and the client will have the possibility of forcing a specific
strategy (such as, use only STP or only CTP).
The following tables list the main methods of the classes in the Push Component.

Method Description

static PushManager* getInstance(); Get the sole instance of PushManager

void start(); Start push service. Configuration is fetched from
the DM (push node). The call is non blocking and
the service is started in a separated thread.

void stop(); Terminates the push service.

void registerPushListener(PushListener& listener); Set the given listener to send notifications on
pushed events. The given listener must be kept
alive for all the Push Manager lifetime. Push
Manager keeps a pointer to this listener.

void setPushPolicy(enum Policy); Sets the policy. Initially only three values are
supported:

Figure 21: Device Manager layer architecture

Push Manager

STP service CTP service

API

PushListener

PushListener
Interface

Client

CTP ConfigSTP Config

Method Description

● STPFirst (prefer STP over CTP)
● STPOnly
● CTPOnly

enum ServiceType getServiceType() Returns the currently used push method
(CTPServiceType or STPServiceType)

bool getConnected() Returns true if connected to a push server. In other
words this method returns true iff we are ready to
be pushed.

The following list describes the CTPService main methods. It is interesting to observe that CTPService
has it own registerPushListener. When used through the PushManager, the PushManager register itself
as listener and then forward any notification received (if worth to be propagated). Figure 15 is not really
accurate in this regard, as for easiness, it does not show this information flow.
Another interesting aspect is that the CTPService exposes its main thread when started. This is
necessary so that client can wait on it if necessary.

Method Description

static CTPService* getInstance(); Get the sole instance of CTPService

FThread* startCTP(); Start CTP service. Configuration is fetched from
the DM (push/ctp node). The thread running the
service is returned (see below for FThread
description)

int32_t stopCTP(); Terminates the CTP service.

void registerPushListener(PushListener& listener); Set the given listener to send notifications on
pushed events. The given listener must be kept
alive for all the CTPService lifetime. CTPService
keeps a pointer to this listener.

The STP service has an interface very similar to the CTPService one.
PushListener is a very simple interface with the following main methods:

Method Description

virtual void onNotificationReceived(const ArrayList&
 serverURIList);

This method is called when a push notification is
received for one or more sources.

virtual void onCTPError(const int errorCode, const
int
 additionalInfo = 0);

Method called when a push error occurs.
errorCode is a specific push error code (as defined
by CTPErrors, STPErrors or PushErrors)
additionalInfo [optional] further information about
the error

All the configurations (CTPConfig, STPConfig and PushConfig) are stored into the DM, under the push
node. If the client changes any parameter it should stop and restart the push service for the changes to
take effect.

5.2. Note on the implementation
As of Funambol V7 only a subset of the library is actually implemented. In particular the CTP service is
implemented, but there is no STP and no high level manager. Clients can start and stop CTPService
directly.
The CTPService needs some cleanup to comply to the design specification. In particular it exposes more
public methods than it should.

6. Appendix A: compatibility reference.

This chapter describes the changes required for a client when upgrading to a new version of the API. The
interface of the API aims to be as stable as possible, but adding new features or cleaning up old stuffs
may result in changes in the client interface.

6.1. Migrating from Funambol V6x to V7.0.

SyncSource interface:
● new method removeAllItems():
● deprecated methods:

● getFirstItemKeys()
● getNextItemKeys()

● SyncSource does not inherit anymore from ArrayElement. This means that the clone() method is
not mandatory anymore, unless you want your SyncSource to be inserted in an ArrayList. In the
latter case, you have to make it inherit both from SyncSource and from ArrayList.

● [optional] setItemStatus is now available also in the version with the command [Add, Update or
Delete]. This can be used by the SyncSource implementation to act differently depending on the
command the status is referring to.

Posix port:
● the name of the library is changed to libfunambol.a
● the path of the include file is changed to funambol

6.2. Migrating from Funambol V7.0 to V7.1.

PlatformAdapter:
● call PlatformAdapter::init(context) is required before using the library
● the call DMTClientConfig(context) is replaced by DMTClientconfig() ; the former is still available

for backward compatibility, but it's deprecated.

SyncSource interface:
● removed methods:

● getFirstItemKeys()
● getNextItemKeys()

KeyValueStore interface:
● method save() renamed to close()

Interface ErrorHandler removed:
● it's been introduced in v3.0 but never been used by the sync engine. Now removed.

References
[1] SyncML Device Management Protocol, version 1.1.2, Open Mobile Alliance
[2] SyncML Device Management Tree and Description, version 1.1.2, Open Mobile Alliance
[3] SyncML Device Management Standardized Objects, version 1.1.2, Open Mobile Alliance
[4] SyncML Data Synchronization Protocol, version 1.2, Open Mobile Alliance
[5] Funambol Client API C++ Design Document

	1. Overview
	1.1. Document Conventions
	1.2. Funambol Client API Architecture
	1.3. Synchronization Overview
	1.4. Device Manager and DMTree

	2. Basic Types and Algorithms
	2.1. Basic Containers
	2.2. Strings
	2.3. OS abstraction

	3. Data Synchronization Layer
	3.1. Synchronization Process
	3.2. Item handling
	3.3. Multiple Messages In One Package
	3.4. Large Object handling
	3.5. Data Synchronization Layer Design
	3.6. SyncManager and SyncSource Configuration
	3.7. CacheSyncSource
	3.8. ConfigSyncSource
	3.9. FileSyncSource
	3.10. MediaSyncSource
	3.11. Synchronization Report
	3.12. Item Content Transformation
	3.13. Configuration DMTree
	3.14. Client Capabilities Handling
	3.15. Server Capabilities Handling
	3.16. Synchronization Events Notification
	3.17. Filtering
	3.18. Converter and Parser for Contact and Calendar objects
	3.19. MailAccount and FolderData handling

	4. Device Manager Layer
	4.1. Terminology
	4.2. Architecture
	4.3. Class Diagram

	5. Push Manager
	5.1. Push manager architecture
	5.2. Note on the implementation

	6. Appendix A: compatibility reference.
	6.1. Migrating from Funambol V6x to V7.0.
	6.2. Migrating from Funambol V7.0 to V7.1.

