
J2ME Mail API Design Document

October 2006

Changes History

Date Author Changes

09.2006 Giuseppe Monticelli Document created

20.10.2006 Giuseppe Monticelli Document reviewed

25.10.2006 Andrea Gazzaniga Document reviewed

14.11.2006 Stefano Fornari Minor changes due to document review

24.11.2006 Giuseppe Monticelli More explications + changed UML class d.

12.09.2007 Marco Garatti Description of changes applied to the
Message implementation. (Mainly
lazy/caching behavior)

28.11.2007 Ivano Brogonzoli Description of usage for class Message,
Folder and RMSStore updated

09.10.2008 Alessio Bianco Added composedMessageLength field in
the Message

21.05.2009 Carlo Codega Review of the “Message storage and
retrieval” section, to support the Multiple
Email Account feature.

Copyright (c) 2009 Funambol - Page 2

Table of Contents
1.Introduction..4

1.1. Overview..4

1.2. The Funambol Mail API..4

1.3. Mail API Architecture..4

1.3.1. Part..5

1.3.1.1. Examples...7

1.3.2. Message...10

1.3.3. BodyPart...11

1.3.4. Multipart..12

1.4. Message Storage and Retrieval...12

1.4.1. Folder..13

1.4.2. AccountFolder..13

1.4.3. The Interface 'Store' and its implementation 'RMSStore'...13

1.4.4. The RmsRecordItem Interface..14

1.5. Message Parsing and Formatting..14

1.5.1. MIMEParser and MIMEFormatter...14

2.Appendices..16

2.1. Appendix A – Open Issues...16

2.2. Appendix B – References...16

Copyright (c) 2009 Funambol - Page 3

1. Introduction

1.1. Overview
In order to allow easy email clients development in Java for J2ME compliant micro devices, a new
Java Mail API aimed at describing email objects as per RFC 2822 and the MIME specifications
family (RFC 2045, 2046, 2047, 2048, 2049) is introduced. This API offers the possibility to save and
retrieve email messages into and from the device's persistent store, disposing them in any folder
hierarchy.

1.2. The Funambol Mail API
The approach is similar to (but not the same of) the design of the existing Sun JavaMail API
[JAVAMAIL], in which a layered architecture allows clients to use the same Java API to send,
receive and store email messages using different data-types from different message stores and
using different message transport protocols.

1.3. Mail API Architecture
The class diagram of Figure 1.1 illustrates the architecture of the Funambol Mail API, where all
classes belong to the com.funambol.mail package. The notation is UML 1.4 compliant (see [UML
1.4]; for a quick reference of the used UML symbols see [UML 2.0], in particular the chapter 7,
Classes, and the related tables 7.2 and 7.3). To modify the picture, edit the .zargo file distributed
with this document (using the free tool [ArgoUML]) and export the modified diagram as a graphical
object:

Copyright (c) 2009 Funambol - Page 4

Figure 1.1: Funambol Mail API Class Diagram

The core of the architecture is the Part abstract class, which models what in the specifications
([RFC 2045], § 2.4) is defined as an entity, i.e. the combination of headers and a content body. A
Part can be an email Message or, in case of multi-part email, a BodyPart. A Message containing at
least a BodyPart needs a container to the all parts. This container is a Multipart. Note that a
Multipart is not an entity. Every BodyPart can contain recursively a Multipart that can contain in turn
other BodyParts (for an example of this case, see 1.3.1.1).

1.3.1. Part

This is the common base class for a single-part message and for each body part within a multi-part
message (grouped together with other body parts in a Multipart container). A Part is built of a set of
attributes (also called 'headers') followed by a content (also called 'body'). Note that a 'single-part'
message (e.g. a message without attachments) does not contain a body part (a BodyPart object in
the Java implementation), therefore retrieving the content of such a 'single-part' message is
equivalent to retrieving the body as pure text. Examples of common header attributes, as defined
in the [RFC 2822] specification (§ 2.2), are "To:", "From:", "Date:" etc. The header field "Content-
Type" is defined among others attributes dealing with encoding and content transfer issues in the
first MIME ("Multipurpose Internet Mail Extension") specification (see [RFC 2045], § 5).

Copyright (c) 2009 Funambol - Page 5

Figure 1.2: Differences between a 'single-part' and a multi-part Message

The abstract class Part provides access methods to the attributes that are required in order to
define and format the data content carried by an email message (as per [RFC 2822]). Note that
only the class representing an email message (Message) provides fields corresponding to the
usual email headers such as "From:", "To:", "Subject:", "CC:" etc. Multipart instead, is not an
extension of Part and doesn't directly contain headers; this is because a Multipart object is always
treated as the content of the body of a Message or BodyPart object. Headers are represented as
name-value pairs, where both the name and value are Strings. A BodyPart can contain recursively
other body parts included in a nested Multipart object.

While dealing with the Content-Type header attribute, the MIME typing system is used (see [RFC
2046], in particular section 3) that defines seven standard media types for describing complex
email messages. Five types are discrete (text, image, audio, video, application), two are composite
(multipart, message). To these top-level media types a series of subtypes are to be added,
indicated in the header attributes as values bounded to the top-level types through a slash ([top-
level type]/[subtype]. So, for example, very usual combinations of top-level media types and
subtypes are text/plain, text/html, image/jpeg for the discrete types, and multipart/alternative,
multipart/mixed, message/rfc822 for the composite types.

The content is returned only as an Object through the method getContent(). This means that the
returned object is of course dependent on the content itself. In particular, a multi-part Part's content
(i.e. the content of a multi-part Message) is always a Multipart object, whereas the content of a
'single-part' Message with content type equal to "text/plain" is always a text String.

Copyright (c) 2009 Funambol - Page 6

To: <monty@funambol.com>
Subject: Today's meeting
Content-Type: text/plain;
...

Hello, World!

Message

To: <monty@funambol.com>
Subject: Today's meeting
Content-Type:
 multipart/mixed;...

Message

Body

Header attributes Header attributes

Body

Multipart

BodyPart
Hello, World!

BodyPart

Hello...

BodyPart
[attachment]

1.3.1.1. Examples

Here is an example of a forwarded email message: the original was a multipart/mixed message
(because it was constituted by a text in the plain version and in the HTML version plus a binary
attachment) and had the following structure:

Message-ID: <c96b5e8f0611240541o3380cbb4m457eed3918e88d02@mail.gmail.com>

Date: Fri, 24 Nov 2006 14:41:34 +0100

From: "Michael Schumacher" <micha.schumi@googlemail.com>

To: "Roberto Baggio" <baggio@funambol.com>

Subject: Rich formatting with binary attachment

MIME-Version: 1.0

Content-Type: multipart/mixed;

boundary="----=_Part_95258_25174283.1164375694237"

------=_Part_95258_25174283.1164375694237

Content-Type: multipart/alternative;

boundary="----=_Part_95259_16350681.1164375694237"

------=_Part_95259_16350681.1164375694237

Content-Type: text/plain; charset=ISO-8859-1; format=flowed

Content-Transfer-Encoding: 7bit

Content-Disposition: inline

Rich formatted text! :-)

--

Michael Schumacher

Trient-Allee 26

A - 26845 Quittenburg

------=_Part_95259_16350681.1164375694237

Content-Type: text/html; charset=ISO-8859-1

Content-Transfer-Encoding: 7bit

Content-Disposition: inline

Rich formatted text!
:-)

--
Michael Schumacher
Trient-Allee 26
A - 26845 Quittenburg

------=_Part_95259_16350681.1164375694237--

------=_Part_95258_25174283.1164375694237

Content-Type: application/octet-stream; name="demo.license"

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename="demo.license"

X-Attachment-Id: f_euwn7o4e

TmFtZT1HaXVzZXBwZSBNb250aWNlbGxpCkVtYWlsPWdpdXNlcHBlLm1vbnRpY2VsbGlAZ29vZ2xl

bWFpbC5jb20KRGVtb1VudGlsPTIwMDYtMTItMjMKS2V5PTJnUC08OWV2Ri1mekRaTC1uMmFNMS1t

M1J6UC15bUkzPi00aTw3dS1HOFhTdC1PVnp5RAoK

Copyright (c) 2009 Funambol - Page 7

------=_Part_95258_25174283.1164375694237--

In the following the names of the Java classes are used to describe the corresponding parts of the
email message. In the header attribute 'Content-Type' of the Message is indicated the MIME type
of its content: multipart/mixed. Therefore the content of the Message is a Multipart consisting of two
BodyParts (the parts between the blue boundaries "------=_Part_95258_25174283.1164375694237"
and "------=_Part_95258_25174283.1164375694237--" (notice the two dashes indicating that that
boundary is the last of the Multipart object). The first BodyPart contains in turn, as stated in its
header attribute 'Content-Type' (multipart/alternative), a Multipart. This Multipart consists of two
BodyParts: the first of MIME type text/plain, the second of type text/html. They are contained
between the green boundaries "------=_Part_95259_16350681.1164375694237" and "------
=_Part_95259_16350681.1164375694237--" (again, notice the two dashes indicating the last
boundary). Returning to the first two BodyParts (the blue ones), the second is the attachment, in
particular of MIME type application/octet-stream (it is a binary file, hence it was encoded with the
Base64 algorithm as indicated in the corresponding header attribute of this BodyPart).

Once forwarded (with a different mail client and together with the original attachment), the original
message above assumes the following form:

Message-ID: <45671B1F.8040705@funambol.com>

Date: Fri, 24 Nov 2006 17:17:35 +0100

From: Roberto Baggio <baggio@funambol.com>

MIME-Version: 1.0

To: Michael Schumacher <micha.schumi@googlemail.com>

Subject: [Fwd: Rich formatting with binary attachment]

Content-Type: multipart/mixed;

 boundary="------------020302060009070003040203"

This is a multi-part message in MIME format.

--------------020302060009070003040203

Content-Type: multipart/alternative;

 boundary="------------000604000005090504060808"

--------------000604000005090504060808

Content-Type: text/plain; charset=ISO-8859-1

Content-Transfer-Encoding: 7bit

-------- Original Message --------

Subject: Rich formatting with binary attachment

Date: Fri, 24 Nov 2006 14:41:34 +0100

From: Michael Schumacher <micha.schumi@googlemail.com>

To: Roberto Baggio <baggio@funambol.com>

Rich formatted text! :-)

--

Michael Schumacher

Trient-Allee 26

Copyright (c) 2009 Funambol - Page 8

A - 26845 Quittenburg

--

Roberto Baggio

 funambol :: mobile open source :: http://www.funambol.com

--------------000604000005090504060808

Content-Type: text/html; charset=ISO-8859-1

Content-Transfer-Encoding: 7bit

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

</head>

<body bgcolor="#ffffff" text="#000000">

-------- Original Message --------

<table class="moz-email-headers-table" border="0" cellpadding="0"

 cellspacing="0">

 <tbody>

 <tr>

 <th align="right" nowrap="nowrap" valign="baseline">Subject: </th>

 <td>Rich formatting with binary attachment</td>

 </tr>

 <tr>

 <th align="right" nowrap="nowrap" valign="baseline">Date: </th>

 <td>Fri, 24 Nov 2006 14:41:34 +0100</td>

 </tr>

 <tr>

 <th align="right" nowrap="nowrap" valign="baseline">From: </th>

 <td>Michael Schumacher <a class="moz-txt-link-rfc2396E"
href="mailto:micha.schumi@googlemail.com"><micha.schumi@googlemail.com></td>

 </tr>

 <tr>

 <th align="right" nowrap="nowrap" valign="baseline">To: </th>

 <td>Roberto Baggio <a class="moz-txt-link-rfc2396E"
href="mailto:baggio@funambol.com"><baggio@funambol.com></td>

 </tr>

 </tbody>

</table>

<pre>Rich formatted text! :-)

Copyright (c) 2009 Funambol - Page 9

--

Michael Schumacher

Trient-Allee 26

A - 26845 Quittenburg

</pre>

<pre class="moz-signature" cols="72">--

Roberto Baggio

 funambol :: mobile open source :: <a class="moz-txt-link-freetext"
href="http://www.funambol.com">http://www.funambol.com</pre>

</body>

</html>

--------------000604000005090504060808--

--------------020302060009070003040203

Content-Type: application/octet-stream;

 name="demo.license"

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

 filename="demo.license"

TmFtZT1HaXVzZXBwZSBNb250aWNlbGxpCkVtYWlsPWdpdXNlcHBlLm1vbnRpY2VsbGlAZ29v

Z2xlbWFpbC5jb20KRGVtb1VudGlsPTIwMDYtMTItMjMKS2V5PTJnUC08OWV2Ri1mekRaTC1u

MmFNMS1tM1J6UC15bUkzPi00aTw3dS1HOFhTdC1PVnp5RAoK

--------------020302060009070003040203--

Notice that the structure of the message hasn't changed, and that the embedded, forwarded
message was sent again as a "multipart" and not as a "message". Normally, the use of the MIME
type message/rfc822 is very uncommon.

1.3.2. Message

This is a concrete class modeling a MIME message. It extends the Part abstract class.

In addition to what provided to Part, a Message has the properties listed in the table below.

Property Description

flags A combination of status flags associated with this Messager,
e.g. 'read', 'forwarded', 'draft' etc. This is an object of the class
MessageFlags

parent A Folder can contain many Messages, and each Message has
a reference to its parent Folder

sent The 'sent' date of this Message (a Date object)

received The 'received' date of this Message (a Date object)

content The content of this Message as an Object: it can be a Multipart
or a String. When it is a String, it is stored in the native
encoding of the application, regardless of how it has been
transferred. During parsing operation then the String is decoded
according to the 'Content-Transfer-Encoding' field

laziness A bitmask specifying the message behavior for lazy loading

Copyright (c) 2009 Funambol - Page 10

Property Description

(see below for more details)

msgid The unique ID of this message (got from email headers)

key The client unique ID for this message. The client is responsible
for setting this information. The information is not used in the
API, therefore the client is free to define it to any value or even
leave it undefined.

recordId This information may be used to speed up the store/retrieve of
the message in a Store that is positional. For example in the
RMSStore this is set to the RMS record id. It is up to the
unique store that holds the message to set this information if it
makes sense.

composedMessageLength The length of the composed message. Is set to distinguish the
replied/forwarded message from the new message.

In order to let Message objects to be serialized and stored in the device's persistent store, this
class implements the Serializable interface from the package com.funambol.storage (see
[FUNAMBOLCOMMON]).

Message can be configured to be more or less memory hungry. This is done by setting the laziness
levels. Each message can handle its content and headers in a lazy way. This means that this
information is loaded from the store containing the message (if any) whenever needed and flushed
immediately afterward. A message with lazy content and headers has a small memory footprint but
tends to be slow, especially if accesses to the store holding the message are slow. To mitigate this
problem it is possible to configure messages to cache some individual values that are in the
headers. For example it is possible to cache the subject, the list of “to” recipients, the “from” and so
on. Memory consumption worsen when caching is enabled, but caching only some header items is
still significantly better than keeping all the headers in memory.

Message has a global default behavior about what information is kept lazy and what is cached.
This global behavior is applied to all the messages, but it is possible to configure individual
message to force a different behavior.

The valid values for laziness are: NO_LAZY, LAZY_CONTENT and LAZY_HEADERS (they can be
combined).

The valid values for caching are: CACHE_SUBJECT, CACHE_FROM, CACHE_TO, CACHE_CC,
CACHE_BCC, CACHE_REPLYTO. These values can be combined together as well.

1.3.3. BodyPart

A BodyPart object is designed to be inserted into a Multipart container which, in turns, is contained
in a multi-part Message having MIME media type equal to "multipart". The class BodyPart, like
Message, extends the abstract class Part.

As illustrated in Figure 1.3, a BodyPart of type “text/plain” contains a headers section and a text
body; a BodyPart of type “multipart” contains a header section and another Multipart.

Copyright (c) 2009 Funambol - Page 11

Figure 1.3: A BodyPart with attributes and its content body when content type is text or multipart

1.3.4. Multipart

This class is a container that contains objects of type BodyPart. Note that this is not an extension of
the abstract class Part, since it is not a part in itself.

A Multipart has the properties defined in the table below.

Property Description

container The Message or BodyPart eventually containing this Multipart

parts A Vector representing the list of the BodyParts contained in this
Multipart

1.4. Message Storage and Retrieval
A Message isn't just an entity being carried as a stream of bytes over a connection. Furthermore, a
Message is something that once received by a user agent has to be physically stored into a proper
mail folder belonging to the related Mail Account, in order to grant to the user at any time within a
session the possibility to read and forward it, or to respond to it.

The Funambol Mail API provides a hierarchical system that can be used to store and retrieve
Message items. Messages can be organized in folders as you can do with a typical file system,
through the Store, Folder and AccountFolder objects:

Copyright (c) 2009 Funambol - Page 12

Content-Type: text/plain;
...

Hello, World!

BodyPart

Body

Header attributes
Content-Type:
 multipart/alternative

BodyPart

Body

Header attributes

Multipart

BodyPart
Hello, World!

BodyPart
<p>Hello,
World!</p>

•Store provides the interface to directly handling from the hierarchical store (e.g. get the list of
folders, add/remove folders, get/add/remove messages, etc.). (See 1.4.3)

•Folder is a collection of items like Messages, Folders or both. (See 1.4.1)

•AccountFolder is a particular Folder which represents a Mail Account. (See 1.4.2)

1.4.1. Folder

This class represents a mailbox folder in the device storage and models a node in the message
storage hierarchy used to organize messages. Folders can contain Message objects, other Folder
objects, or both.

Folder is the object used by other consumer-objects to access Messages stored in the device's
permanent store or to actively save these into this store, and to handle a folder item itself. If you
want to create or delete other Folders you should use the Store object directly.

A Folder is characterized by the following attributes:

•fullname: the complete path to the folder (e.g. /ParentFolder/Subfolder);

•role: the role of the Folder (e.g. 'Inbox', 'Outbox', etc.);

•created: the creation date of the Folder;

•store: the reference to the underlying RMS store.

Further attributes are: the reference to the parent Folder and one to the children. They can be set
dynamically.

The opportunity to define listeners to the folders is under discussion.

1.4.2. AccountFolder

This class represents a Mail Account, which is particular Folder characterized by two additional
attributes:

•visibleName: the visible name of the account;

•emailAddress: the email address of the account.

The role of this particular folder is fixed to “account”, in order to differentiate it from normal folders.

Usually this kind of folder should contain only folders representing the Mail Account folders, like
Inbox and Outbox. By the way it's prepared to contain Message items also.

1.4.3. The Interface 'Store' and its implementation 'RMSStore'

The interface Store models the messages database and the access protocol used to manage the
message store. Using the Store object you can add, update and remove Message and Folder items
(including AccountFolder).

Two implementations are possible within the Funambol Mail API, each to address a different
access to the persistent memory of a J2ME compliant device. A JSR-75 compliant implementation
(writing in the file system hierarchy of the device: see [CONNFRAMEWORK]) wouldn't be currently
possible on every device. The class RMSStore addresses the standard J2ME management of the
device's store provided by the J2ME Record Management System (RMS).

The RMSStore uses an ObjectStore instance to interact directly with the underlying data store (see
Funambol Common API module). Each Folder refers to a specific RecordStore, which can contain
different record (called child in the RMSStore implementation) types, differentiated by a prefix
character (see 1.4.4): Messages and/or other Folders. A Folder record (contained in a Folder
RecordStore) includes the reference to the related RecordStore, that is the path of the subfolder. It
means that all the Folders contained in the device's store has a RecordStore associated with, and
its parent Folder contains the reference to it. The only Folder which doesn't belong to any other, is
the root Folder (“/”).

The following picture aims to describe better the RMSStore system:

Copyright (c) 2009 Funambol - Page 13

Each box represents a RecordStore/Folder, identified by the path. The records (the white boxes)
are identified by the prefix character.

1.4.4. The RmsRecordItem Interface

Objects that need to be stored need to be serialized in order to be added as bytes arrays to the
device's RMS (implemented by the class javax.microedition.rms.RecordStore of the J2ME's MIDP
profile). Such objects (Folder, AccountFolder, Message) implement the RmsRecordItem interface
of the Funambol Common API.

A RmsRecordItem extends the Serializable interface and must also be able to handle the record id.

In order to differentiate the content type of the RMS records, the Serializable objects must append
an identifier prefix at the beginning of the record byte stream (e.g. through the serialize() method).
Such prefixes are defined as a 2 bytes char, for different objects used in the Funambol Mail API:

•'M' for Message items;

•'F' for Folder items;

•'A' for AccountFolder items.

This prefix is used by the Store implementation to understand the content type, and should not be
read by the RmsRecordItem deserialize() method.

Other than in the Java 2 Standard Edition (J2SE) the serialization of objects isn't supported by
J2ME. This functionality is also provided by the Funambol API mostly with the class
com.funambol.storage.ComplexSerializer belonging to the same package as Serializable. The
description of this package is in [FUNAMBOLCOMMON].

Due to the reduced storage capabilities of J2ME compliant devices, an intelligent rotation policy of
stored messages has to be implemented, in order to permit to new incoming messages to be
stored in place of older messages or, by converse, to prevent older messages to be overwritten by
new incoming messages. How to configure this policy has to be demanded to the user.

1.5. Message Parsing and Formatting

1.5.1. MIMEParser and MIMEFormatter

The format of an email message is defined by a group of RFCs: [RFC 2822], [RFC 2045], [RFC
2046]).

Copyright (c) 2009 Funambol - Page 14

Figure 1.4: RMSStore

A A A/

F F/Account1 F F/Account2

F M/Account1/Folder1 M M/Account2/Folder1 M

MIMEParser is responsible for parsing a string containing a message in the format specified by
RFC 2822 with MIME extensions into a Message object. The parser supports the following
algorithms for decoding encoded contents:

– Quoted printable

– Base64

The headers handled by the current implementation of MIMEParser are described in the table
below:

Header Description

Subject: The subject of the email message

From: The sender of this email message

To: The addressee of this email message

Date: The sent date of the message

Message-ID: The unique ID of the message

User-Agent: The mail client used to send the message

MIME-Version The version of the MIME specification (currently "1.0")

Content-Type: The MIME media type/subtype of the content + original
character set

Content-Transfer-Encoding: The algorithm used to encode the original character set

MIMEFormatter, instead, converts a Message object into a text MIME based message (again, this
is a string containing the message as a text, ready to be passed to the application's transmission
layer). Because of the low resources available on mobile devices, not all the headers contained in
the incoming message are stored, so the process to parse and then to format again a message is
not necessary symmetric. The header attributes supported at present by the MIMEFormatter are
resumed in the following table:

Header Description

Subject: The subject of the email message

From: The sender of this email message

To: The addressee of this email message

Date: The sent date of the message

Message-ID: The unique ID of the message

User-Agent: The mail client used to send the message

MIME-Version The version of the MIME specification (currently "1.0")

Content-Type: The MIME media type/subtype of the content + original
character set

Content-Transfer-Encoding: The algorithm used to encode the original character set

Copyright (c) 2009 Funambol - Page 15

2. Appendices

2.1. Appendix A – Open Issues
The following table contains questions and answers on still open issues.

Q

A

2.2. Appendix B – References
[JAVAMAIL] Sun Microsystems, JavaMail API Design Specification v. 1.4, December 2005

[RFC 2045] Network Working Group, Multipurpose Internet Mail Extensions (MIME). Part One:
Format of Internet Message Bodies (http://www.ietf.org/rfc/rfc2045.txt)

[RFC 2046] Network Working Group, Multipurpose Internet Mail Extensions (MIME). Part Two:
Media Types (http://www.ietf.org/rfc/rfc2046.txt)

[RFC 2822] Network Working Group, Internet Message Format (http://www.ietf.org/rfc/rfc2822.txt)

[FUNAMBOLCOMMON] Funambol, Funambol J2ME Common API Design Document, October 2006

[UML 2.0] Object Management Group, Unified Modeling Language: Superstructure. Version 2.0,
August 2005 (http://www.omg.org/cgi-bin/doc?formal/05-07-04)

[ArgoUML] ArgoUML. Download and documentation under http://argouml.tigris.org/

[UML 1.4] OMG Unified Modeling Language Specification. Version 1.4, September 2001
(http://www.omg.org/cgi-bin/doc?formal/01-09-67)

[CONNFRAMEWORK] Sun J2ME Generic Connection Framework (JSR75 - File Connection API):
http://www.j2medev.com/api/fileconnection/javax/microedition/io/file/package-summary.html

Copyright (c) 2009 Funambol - Page 16

http://www.ietf.org/rfc/rfc2045.txt
http://www.j2medev.com/api/fileconnection/javax/microedition/io/file/package-summary.html
http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://argouml.tigris.org/
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.ietf.org/rfc/rfc2822.txt
http://www.ietf.org/rfc/rfc2046.txt

	1.Introduction
	1.1. Overview
	1.2. The Funambol Mail API
	1.3. Mail API Architecture
	1.3.1. Part
	1.3.1.1. Examples

	1.3.2. Message
	1.3.3. BodyPart
	1.3.4. Multipart

	1.4. Message Storage and Retrieval
	1.4.1. Folder
	1.4.2. AccountFolder
	1.4.3. The Interface 'Store' and its implementation 'RMSStore'
	1.4.4. The RmsRecordItem Interface

	1.5. Message Parsing and Formatting
	1.5.1. MIMEParser and MIMEFormatter

	2.Appendices
	2.1. Appendix A – Open Issues
	2.2. Appendix B – References

