
JavaME Common API Design Document

December 2007

Changes History

Date Author Changes

2006.10 Ivano Brogonzoli Initial Draft

2006.11.13 Stefano Fornari Minor changes due to a first review

2006.11.14 Ivano Brogonzoli Added method description for
com.funambol.uti and com.
funambol.storage classes

Added new classes documentation and
method specifications

2007.05.30 Ivano Brogonzoli Added new classes documentation and
diagrams. New Class Documentation
organization into the three main packages.

2007.06.20 Andrea Gazzaniga Reviewed version

2007.08.21 Marco Garatti Added SyncListener description and
updated the ThreadPool description.

2007.12.07 Edoardo Schepis Added SocketAppender details

Added paragraph for Server Alerted Sync
and OTA Config Provisioning

2007.12.08 Edoardo Schepis Review of: SAN and OTAConfig
paragraphs

Added CTPService paragraph

2007.12.14 Marco Garatti Added some details on the CTPService
implementation

2008.09.22 Marco Garatti Added UpdaterManager description

2008.10.13 Ivano Brogonzoli Updated Persistent storage management
description

2008.10.15 Ivano Brogonzoli Updated CTP service with classes
description

2008.11.12 Ivano Brogonzoli Connection Framework description

Copyright (c) 2006 Funambol - Page 2

Table of Contents
1.Overview..6

1.1. Scope...6

1.2. Document Conventions..6

1.2.1. Sequence Diagrams..6

1.2.2. Class Diagrams..6

1.3. The Funambol J2ME Common API...7

1.3.1. com.funambol.storage package...7

1.3.2. com.funambol.util package...7

1.3.3. com.funambol.tools package..7

1.3.4. com.funambol.push package...7

1.3.5. com.funambol.updater package...8

2.Functional description...9

2.1. Funambol J2ME Storage..9

2.1.1. com.funambol.storage.Serializable...10

2.1.2. com.funambol.storage.ComplexSerializer..10

2.1.3. com.funambol.storage.ObjectStore...10

2.1.4. com.funambol.storage.ObjectEnumeration...11

2.1.5. com.funambol.storage.Serialized..11

2.1.6. com.funambol.storage.ObjectFilter..11

2.1.7. com.funambol.storage.ObjectComparator..11

2.1.8. com.funambol.storage.ObjectStoreListener..11

2.1.9. com.funambol.storage.NamedObjectStore...11

2.1.9.1. com.funambol.storage.NamedObjectStore.ObjectMap................................11

2.1.10. com.funambol.storage.DataAccessException..12

2.1.11. com.funambol.storage.AbstractRecordStore..12

2.1.12. com.funambol.storage.RmsRecordStoreWrapper...12

2.1.13. com.funambol.storage.BlackberryRecordStore..12

2.1.14. com.funambol.storage.BlackberryRecordEnumeration.....................................12

2.1.15. com.funambol.storage.ObjectWrapperHandler..13

2.2. Funambol J2ME Util...14

2.2.1. The logging framework...14

2.2.1.1. com.funambol.util.Log..14

2.2.1.2. com.funambol.util.Appender...15

2.2.1.3. com.funambol.util.ConsoleAppender...15

2.2.1.4. com.funambol.util.RMSAppender...15

2.2.1.5. com.funambol.util.SocketAppender..15

2.2.1.6. com.funambol.util.LogViewer..16

2.2.2. The implementation of streaming readers..16

Copyright (c) 2006 Funambol - Page 3

2.2.2.1. com.funambol.util.StreamReader...16

2.2.2.2. com.funambol.util.StreamReaderFactory..16

2.2.2.3. com.funambol.util.SimpleStreamReader...16

2.2.2.4. com.funambol.util.GzipStreamReader...16

2.2.3. The Observer Pattern..17

2.2.3.1. com.funambol.util.Observable..17

2.2.3.2. com.funambol.util.Observer..17

2.2.4. The thread monitoring and management system...17

2.2.4.1. com.funambol.util.Queue..17

2.2.4.2. com.funambol.util.ThreadPoolMonitor...17

2.2.4.3. com.funambol.util.ThreadPool..18

2.2.5. String utilities...18

2.2.5.1. com.funambol.util.StringUtil..18

2.2.5.2. com.funambol.util.Base64...18

2.2.5.3. com.funambol.util.ChunkedString..18

2.2.5.4. com.funambol.util.DateUtil..19

2.2.5.5. com.funambol.util.MailDateFormatter..19

2.2.5.6. com.funambol.util.QuotedPrintable..19

2.2.5.7. com.funambol.util.XmlUtil..19

2.2.5.8. com.funambol.util.XmlException..19

2.2.5.9. com.funambol.util.Entities...19

2.2.6. com.funambol.util.CodedException...19

2.2.7. The Connection framework..20

2.2.7.1. com.funambol.util.ConnectionManager...20

2.2.7.2. com.funambol.util.ConnectionListener...21

2.2.7.3. com.funambol.util.BasicConnectionListener..21

2.2.7.4. com.funambol.util.BlackberryConfiguration...21

2.2.7.5. Com.funambol.util.BlackberryUtils..21

2.2.7.7. com.funambol.util.WapGateway...21

2.2.7.8. com.funambol.util.ConnectionConfig..22

2.3. Tools package...22

2.3.1. com.funambol.tools.LogViewerMIDlet...22

2.4. Push package..22

2.5. Updater package...22

3.Server Alerted Sync – com.funambol.push package...25

3.1. OTAService: SMS based push..25

3.2. CTPService: TCP/IP based push...26

3.2.1. com.funambol.push.CTPListener...27

3.2.2. com.funambol.push.CTPService..27

3.3. SAN Message Parsing..27

4.Over The Air (OTA) Configuration Provisioning...29

Copyright (c) 2006 Funambol - Page 4

5.Appendices..31

5.1. Appendix A – References..31

Copyright (c) 2006 Funambol - Page 5

1. Overview

1.1. Scope
This document describes the Funambol JavaME Common API library, which purpose is giving
support and providing basic functionalities to all the other components developed for the J2ME
platform. These functionalities are: a persistent data storage framework, a logging framework, a
framework to read different streams of byte, a thread monitoring system and a set of classes useful
for data encoding and string manipulation. This library may grow in future, as new functions will be
seen as common to different J2ME components.

1.2. Document Conventions
All diagrams in this document follow the conventions described in the paragraphs 1.2.1 and 1.2.2.

1.2.1. Sequence Diagrams

• Each entity is represented as a box;

• A box can represent a class, an instance, an interface or even a conceptual entity; the real
meaning depends by the context;

• Solid arrows represents methods or functions calls;

• Dashed arrows represent some sort of communication between two entities; it is intended
that the communication mechanism is left unspecified or is not important or it is at a
different abstraction layer.

1.2.2. Class Diagrams

In general for each class only the main methods are described, but all diagrams follow these rules:

• Each class is represented as a box;

• Data members and methods are separated by an horizontal line;

• Plain titles represent classes, italicized titles represent interface (abstract classes);

• + next to a method or data member name means “public”;

• - next to a method or data member name means “private”;

• * next to a method or data member name means “protected”;

• > next to a data member name means it is a property with get/set accessors;

• Inheritance is represented by an arrow pointing to the base class;

• Italicized methods names represent abstract method.

• Connecting lines without arrow termination (connections) represent relation between
classes or interfaces and the optional number written over a connection – near a box -
represents the “How many” relation between the two entities.

Copyright (c) 2006 Funambol - Page 6

1.3. The Funambol J2ME Common API
The J2ME Common APIs are structured into the five packages:

● Storage

● Util

● Tools

● Updater

● Push

Each package is briefly described in the following paragraphs.

1.3.1. com.funambol.storage package

The J2ME Storage package provide some classes to make the usage of the JavaME RMS easier.

The RMS has a very simple interface: you can only store a byte array in a record indexed by
number. The classes in this package allows to store an instance of an object that implements the
Serializable interface, thus providing a common way to store complex object in a record, and to
access a record by name instead of the positional index, without high performace overhead.

The key classes to make this are:

● Serializable interface: gives a common interface for objects that are able to write their
content to a stream, and to read it back

● ObjectStore: store and retrieve Serializable objects to/from the RMS, accessing them with
the record index.

● NamedObjectStore: uses an index to access Objects in the RMS by name instead of by
record number.

1.3.2. com.funambol.util package

The com.funambol.util package provides a bunch of utility classes for different purposes. This is
the outline of them:

● Logging framework: represents a useful instrument to take trace of the operations
executed by a program running in memory and to store them into device's persistent
storage.

● StreamReader framework: a set of classes useful to read data from different stream of
bytes;

● Thread Monitoring System: allows to track the number of threads started by an application,
and to queue them if the limit of parallel threads is reached. On JavaME the number of
threads guaranteed by the specification is only 5.

● Observable/Observer/Stoppable: a set of interfaces to implement a common java pattern in
a Model/View/Controller architecture.

● String Utility set: a collection of utility classes useful to accomplish common operations of
logging, manipulating and encoding strings (StringTools, Base64, QuotedPrintable). A
class ChunkedString, that allows to work on substrings without really allocating new
memory, is also provided.

● Connection framework: a Singleton pattern implementation to manage all of the
connections provided by the J2ME CLDC Connector.

1.3.3. com.funambol.tools package

This package only refers to one class that is a utility used according to the Logging framework in
order to display log entries to the user.

Copyright (c) 2006 Funambol - Page 7

1.3.4. com.funambol.push package

This package contains the client push framework. Push is aimed at notifying clients of new events
from a server. This package provides push mechanisms that can be coupled with Funambol push
server. A client can instantiate a push manager and be notified for incoming events.

1.3.5. com.funambol.updater package

This package contains a component that can be used to check for new version of the application.
The component can be coupled to a Funambol update server.

Copyright (c) 2006 Funambol - Page 8

2. Functional description

2.1. Funambol J2ME Storage
The package com.funambol.common.storage is responsible of storing and retrieving user's data.
The most important key concept is Serialization that make possible to store entire object data types
on the device using the interface com.funambol.storage.Serializable. In particular the
com.funambol.storage package is intended to be a wrapper framework between the concept of
device's RecordStore in J2ME CLDC and the classes of ObjectStore: in this way particular attention
has to be given to the interfaces shown in picture 2.1; ObjectStoreListener, ObjectComparator,
ObjectFilter and ObjectEnumeration are entities that make possible to treat an object into an
ObjectStore of the Funambol common API as a record in the RecordStore of the CLDC
specification or a Persistable object (described into the RIM API for Blackberry). For more details
about the behavior of the following classes refer directly to the Javadoc of both the mentioned
specification.

An important point is that in order to extend the support of this package to Blackberry devices there
is a big storage limitation using the CLDC RecordStore class: Blackberry devices cannot have
RecordStore bigger than 64 Kb. All this said and due to the fact that RIM show a particular
interface (net.rim.java.util.Persistable) to be used in order to persist data (bigger than 64 Kb) into
the device memory, it has been necessary to generalize the concept of RecordStore into the
com.funambol.storage.AbstractRecordStore class and then implement the devices' specific data
managers that are com.funambol.storage.RmsRecordStoreWrapper and
com.funambol.storage.BlackberryRecordStore. They defines the basic methods to store and
retrieve data, both on a J2ME CLDC native or Blackberry powered devices.

Copyright (c) 2006 Funambol - Page 9

2.1.1. com.funambol.storage.Serializable

Serialization is the process to write an object into a byte stream; the object's information can be
read back by a symmetric process called deserialization and the result is an object with the same
content. In other words Serialization make possible to take a snapshot of an object into a certain
state and read it back in form of stream of byte. Objects serialization is not implemented by the
default Java CLDC libraries and this functionality is needed each time an application needs to store
data on a persistent storage, or to send them over a byte stream. Funambol J2ME Common API's
Serialization is based on a simple approach: an interface called Serializable must be implemented
by all classes that wants to be serialized. This interface exposes two methods:

● serialize(DataOutputStream out): convert object into a byte stream, suitable to be stored in
the device storage (i.e. RMS storage and flash memory cards), to be transferred over a
socket connection (i.e. HTTP and Bluetooth), and so on;

● deserialize(DataInputStream in): read back the data from the input stream and build a copy
of the original object (in the original state).

2.1.2. com.funambol.storage.ComplexSerializer

As J2ME CLDC specification doesn't include an object serializer framework, this class is useful to
convert various type of objects into byte streams: in this way they will be stored and retrieved
to/from the recordstore. Particular supported types are Vector and Hashtable and arrays of object.
Finally this class provides methods to convert serialized objects into the original ones.

2.1.3. com.funambol.storage.ObjectStore

We said once an object implementing Serializable interface is serialized, its related stream of byte
can be stored into device storage: ObjectStore is the class that manages this process. Each
instance of ObjectStore can be bound to one RMS RecordStore using the open() and create()
methods: the first can be used only on existent RecordStores, while the second creates the
RecordStore if it doesn't exist or just open it if it has been previously created. Subsequent calls to
open() has no overhead if done on the same RecordStore, while a call with a different RecordStore

Copyright (c) 2006 Funambol - Page 10

Figure 2.1: Funambol J2ME Storage class diagram

<<Interface>>
Serializable

ObjectStore

NamedObjectStore

ComplexSerializer

<<Interface>>
ObjectFilter

<<Interface>>
ObjectComparator

<<Interface>>
ObjectListener

Serialized

ObjectEnumeration

<<Interface>>
RecordFilter

<<Interface>>
RecordComparator

<<Interface>>
RecordListener

ObjectMap

<<realization>>
<<generalization>>

<<Interface>>
Enumeration

0..n

0..n

0..1

0..1

0..1

1

1 1

1

<<association>>

RmsRecordStoreWrapper

BlackberryRecordStore

AbstractRecordStore
1

name closes the current one and open the other. Finally, when an access to a not existent
recordstore is made, a RecordStoreNotFound exception is thrown. Since J2ME does not support
object finalization, the ObjectStore itself cannot close the RecordStore in the finalize() method, and
the user has to call the close() method explicitly. The two methods store() and retrieve() are
essentially responsible to call the serialize() and deserialize() method of the given object to set/get
the related byte array, suitable to be stored. It may be noticed that there are 2 store methods:

● int store(Serializable object); it creates a new record on the opened RecordStore which
index is automatically assigned by the device's RMS.

● int store(int index, Serializable object); this is useful to access a record of which index is
known; i.e. to replace an updated ObjectMap – see 2.1.3.1 – the parameter index will be 1
and the object to be serialized will be the recordstore ObjectMap (which is located at the
first record of each recordstore).

2.1.4. com.funambol.storage.ObjectEnumeration

This class implements Enumeration interface (from CLDC native specification) and represents a
numbered list of a subset of the object contained into the ObjectStore; it's behavior is similar to the
Enumeration, but it has a private fields that contains the number of objects (like the size for
vectors) to be enumerated.

2.1.5. com.funambol.storage.Serialized

This entity is used when an ObjectEnumeration is required to be created from an ObjectStore. All
the serializable object of that enumeration are associated to their related Record index on the
RecordStore: that index becomes the object index of the serialized entity; this trick makes faster
the process of search of an object into an ObjectStore.

2.1.6. com.funambol.storage.ObjectFilter

This interface extends CLDC RecordFilter interface and is useful to filter subset of objects
contained into the referenced ObjectStore. In other words this is a wrapper to filter objects
contained into an ObjectStore.

2.1.7. com.funambol.storage.ObjectComparator

This interface extends CLDC RecordComparator interface and it is ideal to create sorted
ObjectEnumeration objects contained into the referenced ObjectStore. The sorting operation is
made by comparing Object states and giving them a certain sort order determined by the sorting
criteria.

2.1.8. com.funambol.storage.ObjectStoreListener

Extends the RecordListener interface: this interface take care about changes related to a particular
ObjectStore() like add, remove and update operation on its objects. This object's behavior is similar
to the one of “trigger” object in old DBMS.

2.1.9. com.funambol.storage.NamedObjectStore

This class is responsible to store and retrieve objects in the persistent storage accessing them by
object name. The idea is to use give the developer the capability to access the record in the RMS
using a symbolic name instead of the record index.

Since the search of a string in the records would have performance issues as the number of
records grows, the implementation of this mechanism is achieved using the private class
ObjectMap, which is basically an hastable of names stored in the first record of the RecordStore.

This mechanism speedup the access time, making the update slower because two writes are
needed: one for the record and one for the index. Anyway, this overhead doesn't grow significantly
when the number of records increases.

Copyright (c) 2006 Funambol - Page 11

2.1.9.1. com.funambol.storage.NamedObjectStore.ObjectMap

This is a private class used by NamedObjectStore to implement the name index. The class uses an
hashtable to maintain the link between a String name and an index in the RecordStore.

2.1.10. com.funambol.storage.DataAccessException

This class represents an Exception that can be thrown if something fails during reading/writing
access to the recordstore. It can be useful to be thrown in case of an access to a non existent
ObjectStore.

2.1.11. com.funambol.storage.AbstractRecordStore

This is the storage wrapper class designed in order to manage different storage systems on
different devices. Now it just wrap the concept of pure J2ME CLDC device and Blackberry devices.
Now the implementation has been realized using the Sun Java WTK preprocessor in order to
distinguish the building platform and use the correct storage manager, in fact, as per now, it has
only the 2 implementations that are com.funambol.storage.RmsRecordstoreWrapper and
com.funambol.storage.BlackBerryRecordStore.

2.1.12. com.funambol.storage.RmsRecordStoreWrapper

The implementation of AbstractRecordStore class that make possible the persistent data
management on CLDC native devices.

2.1.13. com.funambol.storage.BlackberryRecordStore

The implementation of AbstractRecordStore class that make possible the persistent data
management on Blackberry devices. This class uses the inner PersistentStoreManager and the
ObjectWrapperHandler interface to manage Persistable objects storing and retrieving them on the
device memory.

Copyright (c) 2006 Funambol - Page 12

<<realization>>
<<generalization>>

<<association>>

BlackberryRecordStore

AbstractRecordStore ObjectStore
1

PersistentStoreManager

1

ObjectStoreObjectStore

<<Interface>>
ObjectWrapperHandler

<<RIM Native Interface>>
Persistable

1

1..n

2.1.14. com.funambol.storage.BlackberryRecordEnumeration

Used by BlackberryRecordStore class to wrap the CLDC RecordEnumeration native class around
Blackberry devices.

2.1.15. com.funambol.storage.ObjectWrapperHandler

Interface that must be implemented in order to give the information on how to manage Persistable
object on the blackberry environment. Older implementation of the Persistable object Management
made use of class called “ObjectWrapper” that was inner to the BlackberryRecordStore class:
unfortunately it generated conflicts (Multiply class defined error) when more than one application
using the same funambol storage API was installed on the same device. The actual
implementation avoid the conflict problem for Blackberry devices but requires an high level
implementation. Here's a simple example of how the class must be implemented for a correct
storage usage on a Blackberry application:

public class DummyObjectWrapper implements Persistable {

 private Object object;

 public DummyObjectWrapper(Object o) {

 this.object = o;

 }

 public Object getObject() {

 return object;

 }

 public void setObject(Object object) {

 this.object = object;

 }

}

class DummyObjectWrapperHanlder implements ObjectWrapperHanlder {

 public Persistable createObjectWrapper() {

 return new DummyObjectWrapper();

 }

 public Object getObject(Persistable p) {

 DummyObjectWrapper ow = (DummyObjectWrapper) p;

 return ow.getObject();

 }

}

A call to the BlackberryRecordStore.init() method must be finally made in the high level client in
order to close the circle:

Copyright (c) 2006 Funambol - Page 13

public static void main(String[] args) {

 ...

 BlackberryRecordstore.init(new DummyObjectWrapperHandler());

 ...

}

2.2. Funambol J2ME Util
This is an utility package that provides the following basic but useful functionalities:

1. a light but flexible logging system;

2. an efficient I/O Stream reader framework under the Factory Design Pattern;

3. a set of classes to monitor threads running on the JVM when a MIDlet is running;

4. A couple of classes that realizes the Observer-Observable paradigm.

5. a set of tools for strings manipulation and encoding/decoding algorithm that can be useful
for basic encryption.

For each group of classes class diagrams will be provided in the following paragraphs. For more
details about the behavior of the following classes refer directly to the Javadoc.

2.2.1. The logging framework

This framework provides to the creation managing and deletion of Logging mechanism in every
application. It is useful to create and manipulate logs by the related appenders, object instantiated
in order to implement various logging strategies. This framework related class diagram is shown in
figure 2.2.

Copyright (c) 2006 Funambol - Page 14

Figure 2.2: Logging class diagram

initLog (Appender Object)
setLogLevel(int newlevel)

getLogLevel()
error(String msg)
info(String msg)

debug(String msg)
trace(String msg)

RMSAppender ConsoleAppender

initLogfile()
openLogFile()
closeLogFile()
deleteLogFile()

writeLogMessage()

Appender LogLogViewer

getLogEntries(int mode)

RMS Log
Storage

1 ... N

SocketAppender

2.2.1.1. com.funambol.util.Log

This class is responsible for creating logs and deciding the logging levels.

Methods error(), info(), debug() and trace() can be used directly, just like, println(); three appenders
(ConsoleAppender, RMSAppender, FileAppender) are created in order to write log entries on
different logging media (the standard output, a RMS and a file respectively).

The default Appender is ConsoleAppender: Log.error() do exactly a System.out.println(). The
default log level is INFO, so if you want to see all the messages you just have to change this value
in an application that uses the static methods of 'Log' calling the method setLevel(), e.g.
setLevel(Log.DEBUG). The different log levels should be used as follows:

● error(): an error occurred in the process and we want to always write this message

● info(): an average user should understand the progress of the application (in particular no
development skills should be required); i.e. for a sync, he should see something like:

Start sync

Syncing contacts

Sending contact: ID

Receiving contact: ID

......

End sync

● debug(): any information useful for debug; this information is addressed to developers;

● trace(): info to trace the flow of the program (Entering function()/Exiting function()).

2.2.1.2. com.funambol.util.Appender

A simple interface with logging constants and methods: it must be implemented by all Appender-
type classes (2.2.3, 2.2.4, 2.2.5).

● void initLogFile(); initialize a new log file for the appropriate appender;

● void openLogFile(): open an existing log file;

● void closeLogFile(): close an existing log file;

● void deleteLogFile(): delete an existing log file;

● void writeLogMessage(String level, String msg): writes a message to on open log file with
the specified level (0: error, 1:info, 2:debug, 3:trace);

2.2.1.3. com.funambol.util.ConsoleAppender

This Appender prints log messages to the standard output. It is the default Log mechanism and it is
initialized by default if no other appender is specified. It's suitable to use this appender instead of
System.out.println(msg) command. This class only implements writeLogMessage method.

2.2.1.4. com.funambol.util.RMSAppender

Write log file into using device's RMS. The log file generated is a recordstore that has one record
per log message. In case of RecordStoreFullException the log file is auto-resized invoking the
private method resizeLogStore(RecordStore dbStore, msgSize): dbStore is the RecordStore
associated to the current log file, while msgSize is the size (in bytes) of the log message to be
written before exception occurred. In case of RecordStoreFullException the RMS frees 10*msgSize
bytes on the dbStore.

Copyright (c) 2006 Funambol - Page 15

2.2.1.5. com.funambol.util.SocketAppender

This appender creates a socket connection to a server-side LogServer and writes the log using this
socket. The SocketAppender is created passing the server to contact for logging and it can be
passed to the initLog method of Log class to configure the logging via socket.

2.2.1.6. com.funambol.util.LogViewer

This will be useful to create a view of the the last Log from the RMS.

● public String[] getLogEntries(int mode): receives the parameter mode that iondicates wich
type of log must be retrieved; actually the only mode is RMS_LOG defined with the final 0
value. This class already include JSR75 management capability.

2.2.2. The implementation of streaming readers

2.2.2.1. com.funambol.util.StreamReader

This interface simplifies the exchange of data stream between two objects. It represents the
solution to the problem of reading different data stream from different data sources returning in the
same time the same object type: all object that need to read a data stream must implement this
interface. The only method shown by this interface is the following:

● byte[] readStream(InputStream is, int buffersize) throws IOException,
StreamReaderException: it receives the InputStream object to be read and an integer that
represents the buffer size to be read; return the byte array corresponding to the result of
the reading operation. A valid example of the StreamReader usage is given into
com.funambol.syncml.HttpTransportAgent when the data stream coming from server must
be read.

Figure 2.3: Funambol J2ME StreamReader Framework Class diagram

2.2.2.2. com.funambol.util.StreamReaderFactory

This class shows just a static method:

● public static StreamReader getStreamReader(String type): receives the string parameter
that is related to the type of stream to be read and returns the correct reader object for that
data stream.

Copyright (c) 2006 Funambol - Page 16

getStreamReader(String type)

GzipStreamReaderSimpleStreamReader

readStream()

StreamReader StreamReaderFactory

IS-A

Creates

1

2.2.2.3. com.funambol.util.SimpleStreamReader

This class implements StreamReader interface in order to read input stream based on UTF text
data encoding. It receives a text input stream and translates it into the corresponding byte array.

2.2.2.4. com.funambol.util.GzipStreamReader

This class implements StreamReader interface in order to read stream based on Gzip encoding
standards.

2.2.3. The Observer Pattern

The observer pattern (sometimes known as publish/subscribe) is useful to observe the state of an
object in a given period of time. One or more object are registered to observe (even to listen to) the
behavior of another object in the same time. Funambol J2ME Common API offer two classes to
implement this pattern, Observable and Observer. The interaction of the two interfaces is shown in
figure 2.3.

Figure 2.4: Funambol J2ME Common API Observer Design Pattern Class diagram

2.2.3.1. com.funambol.util.Observable

Every instance implementing this interface become observable objects: this means that
somewhere in the code another class – maybe an Observer - can call them in order to receive
information about the status of their related process.

● public boolean addObserver(Observer o): add an observer to this instance. This means
that an observer can communicate with an observable through this interface and more
observers can be registered to an observable object;

● public boolean removeObserver(Observer o): remove an observer from the list of observer
related to this object.

2.2.3.2. com.funambol.util.Observer

As the name suggests this entity in complementary to Observable interface: it just has an update()
method that refers to an Observable instance in order to understand its related status.

2.2.4. The thread monitoring and management system

This set of classes implements the thread life-cycle monitoring using

2.2.4.1. com.funambol.util.Queue

This entity is based on the java.util.Stack class and is a container for threads that work like a
queue. It accepts Runnable object to be pushed at the end of the queue. All methods are
synchronized.

Copyright (c) 2006 Funambol - Page 17

Observable Observer

addObserver(Observer o)
removeObserver(Observer o)

update()

1...N

● public synchronized void add(Object runnable): allow to put threads in the queue;

● public synchronized void remove(): allow to remove threads from the queue; lock if the task
is not terminated;

● public synchronized Object removeNoWait(): removes the item immediately from the
queue without locking if its task is not terminated.

As of today this class is not used by the API and is left mainly for backward compatibility.

2.2.4.2. com.funambol.util.ThreadPoolMonitor

This class allows a program to implement a mechanism to catch runtime exceptions that are not
caught and rise up to the run method of a thread. If the thread is created by a ThreadPool (see
below) and a runtime exception is thrown and not captured, then a ThreadPoolMonitor is used to
handle such an exception. A ThreadPoolMonitor can be provided to the constructor of ThreadPool
for the purpose of handling runtime exceptions. There is a default implementation that simply logs
the exception, but clients can derive from the base class and implement more sophisticated
exceptions handling mechanisms.

Main method:

● public void handleThrowable(Class clazz, Runnable runnable, Throwable throwable):

when invoked receives the calling class, the related thread and the throwable as
parameters: prints Log entries and the throwable related stack trace according to them;

2.2.4.3. com.funambol.util.ThreadPool

This class handles a pool of threads that can be monitored for runtime exceptions. The pool has
also the concept of maximum size (in terms of concurrent alive threads) but this restriction is not
enforced by ThreadPool.

ThreadPool allows clients to start a new thread in this pool. The client shall provide a Runnable
object which is encapsulated into a thread created by the pool. This thread execution is guarded
for possible runtime exceptions. If a runtime exception is thrown and not handled by the client
runnable object, then the pool will handle it by the ThreadPoolMonitor which can be specified at
ThreadPool construction time. If such a monitor is not provided, then a default ThreadPoolMonitor
is used. The default implementation logs the exceptions.

A ThreadPool is always created with a maximum number of concurrent threads. At the moment the
class does not really enforce any restriction on the number of alive threads. If the client fires more
threads than the maximum number then an error is logged, but the pool will attempt to start a new
thread anyway. If the JVM cannot cope with this request, then an exception will be thrown. From an
implementation point of view it would be rather simple to wait for a thread to finish before starting
the new one (thus enforcing the maximum number of alive threads in the pool). But from a
semantic point of view it is unclear if this would be a good choice. The client could end up in a
deadlock or the program may not function properly in these cases. In our J2ME mail client we set a
maximum number of thread rather low (5) and we check that we never exceed this value. If we do,
then we rather change the client code so that we do not reach the limit.

 Main methods are:

● public Thread startThread(): starts a thread in the queue;

● public int getRunnableCount(): returns the number of running thread in the queue;

2.2.5. String utilities

This is not a framework but just a set of classes to encode/decode and manipulate Strings.

2.2.5.1. com.funambol.util.StringUtil

Many methods useful to manipulate strings. The use of this class is better explained in Javadoc.

Copyright (c) 2006 Funambol - Page 18

2.2.5.2. com.funambol.util.Base64

It provides methods to encode/decode strings by Base 64 encoding.

2.2.5.3. com.funambol.util.ChunkedString

Given a String object this class receives its reference or a reference to a part of it. This class is
useful when parsing big strings that include substrings to be parsed: in this case the substring()
final method of String class would double the amount of memory to be occupied making a couple
of the given string. This class allows to reference a given string and not to copy it, avoiding
duplicate creation and waste of memory. Many methods have been implemented symmetrically to
StringUtil. Pay great attention to the constructors.

2.2.5.4. com.funambol.util.DateUtil

A collection of methods useful to manipulate and convert Dates in different encoding types.

2.2.5.5. com.funambol.util.MailDateFormatter

A collection of methods to to convert date information contained in <code>Date</code> objects into
RFC2822 and UTC ('Zulu') strings, and to build Date objects starting from string representations of
dates in RFC2822 and UTC format.

2.2.5.6. com.funambol.util.QuotedPrintable

A class containing static methods to perform decoding from “quoted printable” content transfer
encoding and to encode into.

2.2.5.7. com.funambol.util.XmlUtil

A set of methods useful to parse XML String types.

2.2.5.8. com.funambol.util.XmlException

This class extends the java.lang.Exception class. It is thrown when an XML exception occurs. Two
constructors are provided. The first generates a generic XML Exception, while the second allow to
insert a specific exception message

2.2.5.9. com.funambol.util.Entities

This Class provides some methods to escape/unescape characters according to XML
specifications. All new Entities are mapped on two Hashtable: one is used to show store the entity
name and value in memory, while the second is useful to retrieve the Entity name, given the Entity
value.

● String escape(String str): Escape special characters in a given string;

● String unescape(String str): Unescape special characters in a given string.

2.2.6. com.funambol.util.CodedException

In JavaME, a lot of Exceptions classes causes an overhead often not acceptable on more
contrained devices. To overcome this, but also allowing a good exception handling design, the
CodedException class has been introduced.

The idea is to have one Exception class with a numeric code along with the String message. The
catcher can then process the code to take the proper action.

The CodedException defines some basic codes, but developers can derive from it and add other
application specific codes, paying attention to not overlap the definitions.

Copyright (c) 2006 Funambol - Page 19

This class extends RuntimeException exception, to allow it to be catched from another thread (see
also ThreadPoolMonitor).

● public CodedException(int code, String msg): the constructor receives the code of the
exception and the message;

● public int getCode(): returns the code of this exception;

Copyright (c) 2006 Funambol - Page 20

2.2.7. The Connection framework

This framework is a facilitator for all of the possible connections requests. Opening a connection
means not only to open a socket or an http channel to the network, but the concept is wider: it
means open one of the connection provided by J2ME CLDC javax.microedition.io.Connector
class. As per now this framework is only able to manage the following kind of connections:

● javax.microedition.io.MessageConnection;

● javax.microedition.io.SocketConnection;

● javax.microedition.io.HttpConnection;

● javax.microedition.io.HttpsConnection;

The implementation is centered on the ConnectionManager class that a Singleton pattern
realization. When a service or a Transport agent requires one of the connection listed above
this class can manage the open action with the call to Connector.open(String url) method.
Also a listener interface (com.funambol.util.ConnectionListener) for the connection manager
is provided in order to understand the connection status and the class
com.funambol.util.BasicConnectionListener represents its simplest implementation. Here
follows the class diagram for the standard Connection framework implementation.

(Picture)

This kind of manager is very useful on devices that require a little step of configuration in
order the connection to be opened. Devices like that are the Blackberry family. In such these
devices the connection requires some optional parameters on the url in order to make the
device able to request for the returned connection. In the Blackberry implementation the
following classes were added in order to provide the connection configuration:

● com.funambol.util.BlackberryConfiguration;

● com.funambol.util.ConnectionConfig;

● com.funambol.util.WapGateway;

● com funambol.util.BlackberryUtils;

2.2.7.1. com.funambol.util.ConnectionManager

The core class implemented into the device dependent directory. We have one for J2ME standard
clients and it results in just a wrapper for the Connector.open(...) method call. For the blackberry
device family it uses an array of suitable and valid BlackberryConfigurations in order to return a
duitable url configuration (only for http, https and socket requests, while SMS Message connection
requests are managed without additional parameters). The configuration priority is the following:

● Wifi if available (it is mandatory to have a blackberry OS >= 4.2.1 for this requirement);

● User TCP defined APN (The apn that the user can configure manually on his own device);

● WapGateway table (the client's predicted configuration to use the GPRS bearer)

● ServiceBook WAP configuration (The content of the Blackberry WAP/WAP2 Transport
ServiceRecord entry).

This class has a ConnectionListener object associated. If it is not set externally defined it is
assigned to an instance of the BasicConnectionListener.

Copyright (c) 2006 Funambol - Page 21

2.2.7.2. com.funambol.util.ConnectionListener

This interface is defined to be the connection notifier object. Its method are clearly useful to know
the connection status as they are:

● ConnectionOpened

● ConnectionClosed

● ConnectionConfigurationChanged

● RequestWritten

● ResponseReceived

● isConnectionConfigurationAllowed

See the javadoc to understand the above method usage.

2.2.7.3. com.funambol.util.BasicConnectionListener

It is an implementation of the com.funambol.util.ConnectionListener interface and it is used as
default by the ConnectionManager class when no other Listener is set. The more interesting
method is the one used to confirm that a connection configuration is allowed to be used: this
means that another implementor could manage the case to request the user if she really wants to
use the configuration suggested by the system. The basic implementation returns always true and
allows the configuration usage.

2.2.7.4. com.funambol.util.BlackberryConfiguration

This class is owned by the Blackberry implementation only and it aims to return suitable
configurations for http, https and socket connections type. It is a container for a configuration that is
a set of:

● Url parameters;

● Permission;

● Description;

2.2.7.5. Com.funambol.util.BlackberryUtils

This is a utility class that wraps out some of the net.rim.api from RIM Blackberry. It mainly provide
useful methods to request run-time system property such as The GPRS coverage and wifi network
availability. It also provides useful methods to access the ServiceBook and retrieve ServiceRecords
poperty in order to interact with the com.funambol.util.ConnectiongConfig and give suitable
configurations.

2.2.7.6.

2.2.7.7. com.funambol.util.WapGateway

A container class that wrap billed APN from free ones.This is useful, because depending by the flat
plan registered on the SIM, it could possible to have more than one suitable configuration for the
APN where to send the request. This configuration actually knows that in some countries same
APN provided by the service book are billed by the carrier, others are not, so it just wrap the
service book entry not to use the billed APN. I.e.: in Italy Tim offers both the WAP and GPRS traffic
flat plan, but the service book report only the wap entry in some cases, as “wap.tim.it”. That entry is
changed into “ibox.tim.it” that is the predefined in order to use GPRS traffic on the most of devices.

2.2.7.8. com.funambol.util.ConnectionConfig

This is the class that provides the BlackberryConfiguration objects array to the ConnectionManager
class. As per now 4 configurations are provided and they are:

Copyright (c) 2006 Funambol - Page 22

● Wifi configuration: as per the blackberry implementation optional parameter have to be
added to the url in order to use the wifi interface (the string:
“;deviceside=true;interface=wifi”);

● TCP user defined configuration: the device will use the parameters provided by the user in
the TCP settings field of the device.

● Custom client APN Gateway: As per now it refers just to the class WapGateway and it is
defined for Italian and United states carriers.

● Service book WAP/WAP2 Transport APN entry: This configuration is exactly the one
contained into the device's service book and it is defined as the WAP/WAP2 transport APN.

2.3. Tools package
This package has specifically been designed to accommodate MIDlet tools: actually only one class
belongs to this package and it's a utility to view the log entries of the device.

2.3.1. com.funambol.tools.LogViewerMIDlet

This class must be included as a standalone MIDlet into the jad file specification of a Midlet Suite. If
a the log mechanism described in paragraph has produced some entries into the device's storage,
run this MIDlet after the execution of the principal MIDlet to see the Log entries displayed on the
screen. This class is coupled with com.funambol.util.LogViewer class described in par. 2.2.5.

2.4. Push package
The push package is described in chapter 3.

2.5. Updater package
The Funambol update protocol is described in [FUN-UPD]. This package implements the client side
part. The following diagram shows how classes are organized.

Copyright (c) 2006 Funambol - Page 23

The Updater is the class in charge of interacting with the update server. This class has knowledge
is instantiated with the name of the component and the current version. It then uses an
UpdaterConfig to store its configuration and persist it across different sessions. Since the
Funambol update service is http based, the Updater uses HttpTransportAgent to connect to the
server and obtain the necessary information. When a new version is discovered, the Updater
invokes client code via the UpdaterListener interface. A client must implement and register this
interface to get notifications.

Figure ?? is a typical use-case. In this case the Updater is asked to check for new versions. The
first operation performed is checking whether enough time has passed since the last check (there
is an interval checking property in the configuration). In such a case the Updater retrieves extra
information from the configuration, in particular the update server url. It then uses the
HttpTransportAgent to query for updates. The response is processed and parsed and if the version
available on the server is newer than the current one, the client is notified via the listener. It is up to
the client to decide when the user shall be notified. It is important to note that the client must
communicate back to the Updater the time at which the user got notified. This is necessary
because there is a minimum interval between successive user notification. This property can be set
in the UpdaterConfiguration.

Copyright (c) 2006 Funambol - Page 24

Illustration 1: Updater component organization

Updater

check()
setLastReminder()
setSkip()
isUpgradeAvailable()

UpdaterConfig (interface)

isMandatory()
isOptional()
getType()

....

BasicUpdaterConfig

load()
save()
....

UpdaterListener (interface)

mandatoryUpdate(version)
optionalUpdate(version)

Copyright (c) 2006 Funambol - Page 25

Updater Updater
Config

Updater
Listener

Http
TA

Server

lastCheckTime

5:00

getUrl

my.funambol.com

sendMessage

request

respone

Update info

process mandatoryUpdate

3. Server Alerted Sync – com.funambol.push package

Most devices can receive unsolicited requests to start a new synchronization from the server,
sometimes referred to as "notifications". This can be done in many different ways, but on mobile
phones the most common is using SMS binary messages. Another possibility available under some
circumstances is by the means of UDP or TCP packets.

The notification message (also called Package 0 or PKG#0) provides the means for a server to
notify a client to start a SyncML session with the server. This mechanism is called Server Alerted
Sync.

3.1. OTAService: SMS based push
In order to be able to be alerted by the server the client application must be able to listen to
incoming notifications not only when it is active and running, but also when it isn't active. In J2ME,
this is allowed by the Push Registry, offered by the device's Application Manager implemented as
per Sun's MIDP 2.0 profile.

In order to achieve this goal, the PKG#0 must not be intercepted by the normal phone’s messaging
application, but intercepted and parsed by the J2ME application itself. This is achieved sending the
notification to a particular port number for which the J2ME application is registered to listen to.
When a client application is implemented by a MIDlet, this information needs in both cases to be
set in the Java Application Descriptor file (JAD) like in the following example where the MIDlet wait
for an SMS on port 50001.

MIDlet-1: WAPPushTester,,com.funambol.mailclient.push.WAPPushTester
MIDlet-Jar-Size: 2892
MIDlet-Jar-URL: WAPPushTester.jar
MIDlet-Name: WAPPushTester
Midlet Suite MIDlet-Permissions: javax.microedition.io.PushRegistry,
javax.wireless.messaging.sms.receive
MIDlet-Push-1: sms://:50001,com.funambol.mailclient.push.WAPPushTester,*
MIDlet-Vendor: Funambol, Inc
MIDlet-Version: 1.0.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-2.0
SMS-Port: 50001

The registration has to be static through adequate entries in the JAD file, because the application
needs to be started even if it is not running by an incoming notification from the server.

As stated above, a client application can listen to incoming SMS messages. This is achieved by
implementing the interface javax.wireless.messaging.MessageListener of the Wireless
Messaging API (JSR-120).

The OTAService class implement the SMS push management system and is in charge of handling
incoming SMS. It implements the MessageListener interface and the related
notifyIncomingMessage method.

The methods provided by the OTAService class are:

• notifyIncomingMessage:called by the platform when an incoming message arrives over
the connection (MessageConnection, also defined in the JSR-120) where the application

Copyright (c) 2006 Funambol - Page 26

has registered a listener object (the application registers a PushNotificationListener, by
invoking setMessageListener on the connection object).

• startService and stopService: called by the client to start/stop the service, therefore to
open and close the connections to the SMS incoming messages.

Notice that the port number to which the SMS has to be sent by the server has to be used when
getting the connection object (it is part of the string parameter passed to the open() method of the
class Connector).

For example:

 //initializing the network connection

 smsPort = getAppProperty("SMS-Port");// in the JAD file

 String smsConnection = "sms://:" + smsPort;

 if (smsconn == null) {

 try {

 smsconn = (MessageConnection)Connector.open(smsConnection);

 smsconn.setMessageListener(this);

 } catch (IOException ioe) {

 //manage the exception

 }

 }

The operations that are to be executed when the application receives an SMS notification are then
set in the method notifyIncomingMessage.

For example (notice that all operations to be done, grouped in the run() method of the application,
are managed as a separate thread):

 public void notifyIncomingMessage(MessageConnection conn) {

 if (thread == null) {

 thread = new Thread(this);

 thread.start();

 } else {

 thread.run();

 }

 }

3.2. CTPService: TCP/IP based push
The alternative for pushing notifications to JavaME handsets is to use the TCP/IP protocol.

A persistently opened TCP channel connects the client to the server, allowing the server to push
notifications every time an update is available.

The Client TCP Push (CTP) protocol requires that the connection is initiated by the client opening a
socket to the CTPServer. The client is also in charge of maintaining open and “alive” the
connection using periodical heartbeats. The CTPServer registers the client for any further
notification and keeps the connection open until the client closes it. Usually clients close the
channel only when the application is closed by the user or in cases of network connection loss. In
these cases the server switches to SMS push method for future notifications.

Copyright (c) 2006 Funambol - Page 27

The CTPService implemented in the JavaME common API, allows the server to notify the client
only when the client is up and running. In fact when the client is closed the CTP channel is closed
and the client is not reachable.

For the details regarding CTP protocol and working mechanism please refer to [DSPD]

CTPService implements the following features:

• authentication to the CTPserver: it is implemented using MD5 authentication mode and
MD5 class

• management of lifecycle of the CTP connection and the related heartbeats through the
HeartBeatGenerator inner class

• management of connection errors: using the ConnectionTimer inner class, the
CTPService is able to monitor read/write network operations. In some cases network
operations do not generate any exception even if the connection is broken. CTPService
uses ConnectionTimer to monitor the time taken by network operations to complete. If
these operations take longer than a programmable timeout, then the operations are
terminated by closing the corresponding channel.

• management of the CTP messages: the CTPMessage inner class wraps the CTP
messages exchanged with the server on CTP channel. When the server sends a message
to notify the presence of new emails, the CTP service invokes the method handleMessage
of the registered PushListener. This method is in charge of starting a new synchronization
to pull in new messages.

The following diagram describes the lifecycle of CTP protocol implemented in the CTPService.

3.2.1. com.funambol.push.CTPListener

An interface that provides methods to notify the changes in the CTP status. It is useful to keep
trace of the CTP state changes.

3.2.2. com.funambol.push.CTPService

A class that shows all of the methods to start, stop and manage the CTPService behavior. It uses
the CTPListener in order to notify its state's changes.

Copyright (c) 2006 Funambol - Page 28

Disconnected Connecting Connected

Listening Authenticated Authenticating

open socket

ok

fail

socket opened

send MD5
authfail

Figure 1: Lifecycle of CTP protocol implemented in CTPService class

shutdown or
network
error

too many
failures

3.3. SAN Message Parsing
Any service registered for incoming SAN messages delegates the SAN message parsing to the
SANMessageParser class, but different preprocessing is applied to the payload before it is
actually parsed.

• OTAService gets the notification's binary payload in the form of an array of bytes
contained in the SMS message. The OTA Service is also able to get SAN messages
through a SMS text message and therefore it needs a specific logic to get the SMS type
(text or binary) and accordingly parse the SAN Message.
Notice that the first 3 bytes + the number of bytes indicated in the 3rd byte of the binary
SMS message (actually always 3, also 3+3 = 6 bytes altogether) from the server are to be
skipped before they are parsed, because they are part of the WAP Push header used to
deliver the SMS.
The sixth byte of this part of header carries the type of the message received, if SAN or
OTA (Over The Air Configuration Provisioning, see below).

• CTPService, when receives a SAN Message, doesn't need to skip the first bytes because
there's no WAP Push overhead (no SMS) and therefore it can directly pass the payload to
the SANMessageParser class. In this case the payload is implemented with a CTPMessage
object.

The format of the SAN Message content is defined by the Open Mobile Alliance (see [SAN]).
Because this information is split over well determined sequences of bits that don't match the one-
byte boundaries of the returned array's elements, the parser has to retrieve this information in a
per-bit basis.

The class SANMessageParser provides a binary parser with the method parseMessage. At the
end of the process, a SANMessage object is populated with the values needed by the client to
start the synchronization, accessible through these keys: Digest, Version, UiMode, Initiator,
SessionId, ServerId, NumberOfSync, syncInfo. For a detailed description of the syntax of the
Notification Package see [SAN], §7. A helper class, SyncInfo, is also currently used.

Copyright (c) 2006 Funambol - Page 29

4. Over The Air (OTA) Configuration Provisioning

The configuration of a client by the user on a mobile phone can be difficult, because of the limited
keyboard and screen size. For this reason, many services for mobile devices provide a way to send
the configuration data to the device, called Over The Air Configuration. This is done using one or
more SMS sent by the server to the device, with data stored in a WBXML message.

To maximize the efficiency of transport of the config information needed by a client, the Funambol
server is able to send these data also in a custom format described below.

The Funambol Common API provides a method to parse this format and to populate the objects
SyncConfig and SourceConfig.

The simple protocol used is based on different sections, indicated by an initial byte, each of those
are composed by a fixed number of strings, in a defined order.

Each string is composed by a lead byte containing the string length, and a sequence of bytes
containing the characters. This means that each string cannot be greater than 127 characters, but,
since the OTA config messages are tipically transferred ove SMS, this limit should not be a
problem, but it must be taken into account by the server side UI to prevent the user to set
parameters greater than this limit.

The section and fields are described by the following table:

Section ID (Type) Section Description SECTION PARAMETERS

1 SyncML URL + User + Password

2 Mail Remote URI + Visible Name + Mail Address

3 Contact Remote URI + Format*

4 Calendar Remote URI + Format*

5 Task Remote URI + Format*

6 Note Remote URI + (Local URI)

7 Briefcase Remote URI + (Local URI)

*Format = S or V for SIF or Vcard format

The message will have the following structure:

Section 1 Section i Section N

Type Length Value Length Value ... Type N Length Value

First Section
type

First Field
Length

First Field
Value

Second
Field Length

Second
Field Value

... Nth Section
Type

Nth Field
Length

Nth Field
Value

Copyright (c) 2006 Funambol - Page 30

Finally, here's an example of configuration message:

1 28 http://www.funambol.net/sync 5 guest 5 guest 2 5 imail 7 John Doe 13 jdoe@mail.com

Interpretation in the client:

1: SyncML Section (Type);

28: URL field length;

http://www,funambol.net/sync: URL value;

5:User field Length;

guest: User value

5:Password field length

guest: Password value

2: Mail

5: Remote URI length

imail: Remote URI value

7: Visible name length

John Doe: Visible name value

13: Mail address length

jdoe@mail.com: Mail Address value

The OTA Configuration management has been implemented with the classes OTAConfigMessage
and OTAConfigMessageParser.

In order to handle both SAN and OTAConfig messages with one service (OTAService), a client can
registers a listener for incoming SMS on a specific port and uses a byte from the SMS header to
get the information of which message has arrived.

Copyright (c) 2006 Funambol - Page 31

5. Appendices

5.1. Appendix A – References
[JavaME-JSR] List of Standard JavaME JSRs: http://java.sun.com/javame/reference/apis.jsp#api;

[OMA-DS] SyncML Data Synchronization Protocol, version 1.2, Open Mobile Alliance

[API-J2SE] Funambol Java API J2SE Developer Guide, version 1.0, Funambol Inc.

[DSPD] Funambol DS Server Push Design, version, Funambol Inc.

[SAN] Open Mobile Alliance, SyncML Server Alerted Notification
(http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?
pck=Common&file=v1_2-20050509-C/OMA-TS-SyncML_SAN-V1_2-20050509-C.pdf)

[FUN-UPD]

Copyright (c) 2006 Funambol - Page 32

http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?pck=Common&file=v1_2-20050509-C/OMA-TS-SyncML_SAN-V1_2-20050509-C.pdf
http://www.openmobilealliance.org/release_program/docs/CopyrightClick.asp?pck=Common&file=v1_2-20050509-C/OMA-TS-SyncML_SAN-V1_2-20050509-C.pdf
http://java.sun.com/javame/reference/apis.jsp#api

	1.Overview
	1.1. Scope
	1.2. Document Conventions
	1.2.1. Sequence Diagrams
	1.2.2. Class Diagrams

	1.3. The Funambol J2ME Common API
	1.3.1. com.funambol.storage package
	1.3.2. com.funambol.util package
	1.3.3. com.funambol.tools package
	1.3.4. com.funambol.push package
	1.3.5. com.funambol.updater package

	2.Functional description
	2.1. Funambol J2ME Storage
	2.1.1. com.funambol.storage.Serializable
	2.1.2. com.funambol.storage.ComplexSerializer
	2.1.3. com.funambol.storage.ObjectStore
	2.1.4. com.funambol.storage.ObjectEnumeration
	2.1.5. com.funambol.storage.Serialized
	2.1.6. com.funambol.storage.ObjectFilter
	2.1.7. com.funambol.storage.ObjectComparator
	2.1.8. com.funambol.storage.ObjectStoreListener
	2.1.9. com.funambol.storage.NamedObjectStore
	2.1.9.1. com.funambol.storage.NamedObjectStore.ObjectMap

	2.1.10. com.funambol.storage.DataAccessException
	2.1.11. com.funambol.storage.AbstractRecordStore
	2.1.12. com.funambol.storage.RmsRecordStoreWrapper
	2.1.13. com.funambol.storage.BlackberryRecordStore
	2.1.14. com.funambol.storage.BlackberryRecordEnumeration
	2.1.15. com.funambol.storage.ObjectWrapperHandler

	2.2. Funambol J2ME Util
	2.2.1. The logging framework
	2.2.1.1. com.funambol.util.Log
	2.2.1.2. com.funambol.util.Appender
	2.2.1.3. com.funambol.util.ConsoleAppender
	2.2.1.4. com.funambol.util.RMSAppender
	2.2.1.5. com.funambol.util.SocketAppender
	2.2.1.6. com.funambol.util.LogViewer

	2.2.2. The implementation of streaming readers
	2.2.2.1. com.funambol.util.StreamReader
	2.2.2.2. com.funambol.util.StreamReaderFactory
	2.2.2.3. com.funambol.util.SimpleStreamReader
	2.2.2.4. com.funambol.util.GzipStreamReader

	2.2.3. The Observer Pattern
	2.2.3.1. com.funambol.util.Observable
	2.2.3.2. com.funambol.util.Observer

	2.2.4. The thread monitoring and management system
	2.2.4.1. com.funambol.util.Queue
	2.2.4.2. com.funambol.util.ThreadPoolMonitor
	2.2.4.3. com.funambol.util.ThreadPool

	2.2.5. String utilities
	2.2.5.1. com.funambol.util.StringUtil
	2.2.5.2. com.funambol.util.Base64
	2.2.5.3. com.funambol.util.ChunkedString
	2.2.5.4. com.funambol.util.DateUtil
	2.2.5.5. com.funambol.util.MailDateFormatter
	2.2.5.6. com.funambol.util.QuotedPrintable
	2.2.5.7. com.funambol.util.XmlUtil
	2.2.5.8. com.funambol.util.XmlException
	2.2.5.9. com.funambol.util.Entities

	2.2.6. com.funambol.util.CodedException
	2.2.7. The Connection framework
	2.2.7.1. com.funambol.util.ConnectionManager
	2.2.7.2. com.funambol.util.ConnectionListener
	2.2.7.3. com.funambol.util.BasicConnectionListener
	2.2.7.4. com.funambol.util.BlackberryConfiguration
	2.2.7.5. Com.funambol.util.BlackberryUtils
	2.2.7.7. com.funambol.util.WapGateway
	2.2.7.8. com.funambol.util.ConnectionConfig

	2.3. Tools package
	2.3.1. com.funambol.tools.LogViewerMIDlet

	2.4. Push package
	2.5. Updater package

	3.Server Alerted Sync – com.funambol.push package
	3.1. OTAService: SMS based push
	3.2. CTPService: TCP/IP based push
	3.2.1. com.funambol.push.CTPListener
	3.2.2. com.funambol.push.CTPService

	3.3. SAN Message Parsing

	4.Over The Air (OTA) Configuration Provisioning
	5.Appendices
	5.1. Appendix A – References

