
J2ME PIM API Design Document

December 2008

Changes History

Date Author Changes

2008.12.12 Marco Garatti Initial Draft

2009.03.19 Carlo Codega Added iCalendar parser/formatter

2009.11.19 Carlo Codega Redefined vCalendar parser/formatter
section

Copyright (c) 2006 Funambol - Page 2

Table of Contents
1.Overview..4

1.1. Document Conventions...4

1.1.1. Sequence Diagrams..4

1.1.2. Class Diagrams..4

1.2. Overview..5

2.PIM module architecture...6

3.Classes description...8

3.1. Sync sources implementation...8

3.2. Parsers and formatters..9

3.2.1. vCard parser..9

3.2.2. vCalendar parser...9

3.2.3. vCalendar formatter..10

4.References...12

Copyright (c) 2006 Funambol - Page 3

1. Overview

The Funambol PIM API allows application developers to synchronize PIM data using standard
methods to access PIM data. This API contains classes and methods that implement sync sources
to synchronize PIM data using JSR75. The API relies on Funambol SyncML API to handle the
SyncML synchronization and on JSR75 to access PIM data on devices. The API also depends on
the Funambol common API for basic functionalities.

This document explains, from a developer point of view, the architecture of the Funambol PIM API
for Java 2 Micro Edition.

1.1. Document Conventions
The diagrams used in this document are inspired to the UML sequence and class diagrams, but
with some simplification. The conventions used by the diagrams are described in the following
sections.

1.1.1. Sequence Diagrams

• Each entity is represented as a box;

• a box can represent a class, an instance, an interface or even a conceptual entity; the real
meaning depends by the context;

• solid arrows represents method or function calls;

• dashed arrows represent some sort of communication between two entities; it is intended
that the communication mechanism is left unspecified or is not important or it is at a
different abstraction layer.

1.1.2. Class Diagrams

• Each class is represented as a box;

• data members and methods are separated by a horizontal line;

• plain titles represent classes, italicized titles represent interfaces (abstract classes);

• a + next to a method or data member name means “public”

• a - next to a method or data member name means “private”

• a # next to a method or data member name means “protected”;

• a > next to a data member name means it is a property with get/set accessors;

• inheritance is represented by an arrow pointing to the base class (empty arrow)

• class usage is represented by an arrow pointing to the used class (filled arrow)

• italicized methods names represent abstract methods.

Copyright (c) 2006 Funambol - Page 4

1.2. Overview
The Funambol PIM API for J2ME is basically a set of sync sources that allow the synchronization of
PIM data. These sync sources are designed to be largely modular and customizable, but at the
same time the are a ready to use component that clients can use directly.

A client can use the available sync sources and start to synchronize PIM data right away. Or it can
customize the behavior in many different ways. For example:

● using a custom changes tracking mechanis

● using custom formats to exchange data

● extending basic formats to support custom fields

This API relies on other APIs and the reader should be familiar with these other APIs to fully
understand this document.

Funambol Common API is described in [12], Funambol SyncML API in [] and JSR75 in [].

Copyright (c) 2006 Funambol - Page 5

2. PIM module architecture

As anticipated in the overview this module contains the implementation of customizable sync
source. Figure ?? shows the class diagram where a ContactSyncSource is fully described, while
others are only partially described (EventSyncSource) or not described at all (TaskSyncSource and
NoteSyncSource). The classes that are not described or only partially described are implemented
using the same pattern used for contacts. For the sake of simplicity they were left out.

The module provides its main functionalities through the following classes:

● ContactSyncSource, EventSyncSource, TaskSyncSource, NoteSyncSource are the PIM
sync sources

● VcardSyntaxParser, ContactParserListener and VcardFormatter are vCard parser and
formatter

● Parsers and formatters for all other types (TBD)

The following chapter describes into more details these classes and their role.

Copyright (c) 2006 Funambol - Page 6

Copyright (c) 2006 Funambol - Page 7

PIMSyncSource

TrackableSyncSource ChangesTracker

SyncML API

ContactSyncSource EventSyncSource

VCardSyntaxParser VCardFormatter

VCardSyntaxParserListener

ContactParserListener

3. Classes description

This chapter provides a high level description of the main classes provided by the PIM module.

3.1. Sync sources implementation
Four classes implement sync sources for PIM synchronization. All these classes inherit from a
PIMSyncSource which has generic methods shared among the subclasses. The PIMSyncSource is
an abstract implementation of TrackableSyncSource (see ?syncml ref?). As such it can be
configured with an arbitrary ChangesTracker to keep track of the changes since the last
synchronization. This sync source provides the following main methods:

● addItem, updateItem and deleteItem invoked on item's commands from the server

● getAllItemsKeys used by finger print based tracker to compute the set of changes or for
slow synchronizations. Tracker non fingerprints based (e.g. based on listener) may avoid
invoking this method for fast sync, increasing the source efficiency

● getItemContent used to fetch an item content

All these methods work in terms of PIMItem and are therefore generic as they can be used with any
JSR75 type of data.

The source is abstract because it needs functionalities specific to particular data type. The following
methods are what concrete implementations must provide:

● create and delete a single item. The operation must be performed on a concrete PIMList
and needs to be implemented in each sync source

● fill and format an item. These methods convert a PIM datum from and to a serializable
representation. For example contacts by default are exchanged as vCard

● get supported fields and ID field. These are helper methods used to perform various
operations

Each concrete implementation has to provide these methods.

It is important to note that the default implementation in the module use standard format to
exchange data. In particular:

● Contacts are exchanged as vCard (2.1)

● Events are exchanged as vCalendar 2.0 (iCalendar)

● Tasks (TBD)

● Notes (TBD)

If a client needs to change this behavior, it can simply inherit from the appropriate SyncSource and
redefine the methods that create and format items.

The tracking mechanism is a parameter for each source. There is no default behavior, but a client
may use the CacheTracker to get a working implementation in no time. Trackers are described in [?
funambol syncml?].

Copyright (c) 2006 Funambol - Page 8

3.2. Parsers and formatters
This is the second main functionality provided by this module. The ability to convert an item in text
and viceversa where “text” stands for a standard format such as vCard or vCalendar.

Formatters are simple classes that take a PIMItem (of a given concrete type) and format it on an
OutputStream. Each formatter can format items dumping all fields (including empty ones) or only
the ones with some data. This is useful to handle updated items versus new items.

Parsers are a little more complicated. First of all because parsing is more complex than formatting,
but also because to make the structure flexible different classes were introduced.
First of all a concept of syntax parser was introduced. Such a parser scans an input data stream
and performs a syntactical analysis. Semantics actions are completely decoupled and implemented
in listeners. When the parser recognizes a part of information (e.g. the name of a contact) it invokes
the listener with all the necessary information. The listener can use this information to fill a PIMItem.

3.2.1. vCard parser

One example is the parsing mechanism for vCards. The VcardSyntaxParser is a generic parser
shared between the pim-framework and client api. The parser is specified in JavaCC and it parses
vCard 2.1. It uses a VcardSyntaxParserListener generic interface to notify the recognition of vcard
fields. The PIM module has an implementation of this interface for vCard (ContactParserListener)
that builds a JSR75 Contact. This implementation is very flexible as it could allow the following
things:

● A SIF-C parser could use the same listener to fill a JSR75 contact

● A different implementation of the listener allows the creation of a different type of data. On
platforms where JSR75 is not available, or it is preferable to use a different data model, it is
possible to rewrite the listener while using the parser.

3.2.2. vCalendar parser

The PIM module supports parsing of two calendar formats: vCalendar 1.0 and vCalendar 2.0 (as
known as iCalendar).

The vCalendar 1.0 related classes are in the package com.funambol.common.pim.xvcalendar

The vCalendar 2.0 related classes are in the package com.funambol.common.pim.icalendar

 Common classes are collected in the package com.funambol.common.pim.vcalendar

Common properties shared by these formats are handled by the BasicVCalendarParserListener.
XVCalendarParserListener and ICalendarParserListener extend it in order to include properties of a
specific format (iCalendar and vCalendar 1.0 respectively). These properties are defined in the
XVCalendar and ICalendar classes (both extend the BasicVCalendar class).

The vCalendar parsers shared the same parse mechanism explained in 3.2.1. The parser listeners
populate a JSR75 PIMItem (Event or ToDo) with all the fields retrieved by the
XV/ICalendarSyntaxParser (provided by the pim-parsers module).

Copyright (c) 2006 Funambol - Page 9

Figure 1: vCalendar parser classes

BasicVCalendar

ICalendar

XVCalendar

BasicVCalendarParserListener

XVCalendarParserListener

ICalendarParserListener

These parser listeners should be extended in order to handle additional fields which are not directly
included in the basic JSR75 implementation.

The following methods should be implemented while extending the XVCalendarParserListener:

Method Description

setTZ(String value); Set the TZ offset string.

setDaylight(Vector daylight); Set the TimeZone daylight saving.

setAllDay(boolean allday); Set whether this is an all day event (supported by the
BlackBerryEvent implementation)

setTaskAlarm(int value); Set the task alarm interval in seconds (supported by the
BlackBerryToDo implementation)

addAttendee(String value); Add a new attendee (supported by the BlackBerryEvent
implementation)

Note: since a PIMItem includes only one alarm per item, the XVCalendarParserListener supports
only the audio alarm type (AALARM property).

The followings are the methods which should be implemented for the ICalendarParserListener:

Method Description

setTZID(String value); Set the TZID parameter.

setTZOffset(long offset); Set the offset between the items TimeZone and UTC, in
milliseconds.

setAllDay(boolean allday); Set whether this is an all day event (supported by the
BlackBerryEvent implementation)

setTaskAlarm(int value); Set the task alarm interval in seconds (supported by the
BlackBerryToDo implementation)

addAttendee(String value); Add a new attendee (supported by the BlackBerryEvent
implementation)

Note: the VALARM TRIGGER value must be set in DATE-TIME format, it will throws a
ParseException otherwise.

3.2.3. vCalendar formatter

The vCalendar formatter follows the same mechanism described for the vCalendar parser section
in order to support different vCalendar formats: the XVCalendarFormatter is used to format PIMItem
in vCalendar 1.0, ICalendarFormatter to format in iCalendar.

In order to support the additional fields mentioned in the previous section, you should overload the
related methods.

Copyright (c) 2006 Funambol - Page 10

Figure 2: vCalendar formatter classes

BasicVCalendar

ICalendar

XVCalendar

BasicVCalendarFormatter

XVCalendarFormatter

ICalendarFormatter

The following methods should be implemented while extending the XVCalendarFormatter:

Method Description

getTZ(PIMItem pimItem); Get the TZ offset string.

getDaylight(PIMItem pimItem); Get the TimeZone daylight saving.

getTaskAlarmInterval(PIMItem pimItem); Get the alarm interval in seconds of the specified ToDo PIMItem

isAllDay(PIMItem pimItem); Check whether this is an allday event

formatAttendees(PIMItem pimItem, OutputStream os); Format the Event attendees directly to the OutputStream

The followings are the methods which should be implemented for the ICalendarFormatter:

Method Description

getTZID(PIMItem pimItem); Get the TZID parameter.

getTZOffset(PIMItem pimItem); Get the TimeZone offset in milliseconds

getTaskAlarmInterval(PIMItem pimItem); Get the alarm interval in seconds of the specified ToDo PIMItem

isAllDay(PIMItem pimItem); Check whether this is an allday event

formatAttendees(PIMItem pimItem, OutputStream os); Format the Event attendees directly to the OutputStream

Copyright (c) 2006 Funambol - Page 11

4. References

[OMA-DS] SyncML Data Synchronization Protocol, version 1.2, Open Mobile Alliance

[COMMON] Funambol J2ME Common API Design Document, version 1.0, Funambol Inc.

[API-J2SE] Funambol Java API J2SE Developer Guide, version 1.0, Funambol Inc.

[API-CPP] Funambol 3.0 Client API C++ Design Document, version 1.0, Funambol Inc.

Copyright (c) 2006 Funambol - Page 12

	1.Overview
	1.1. Document Conventions
	1.1.1. Sequence Diagrams
	1.1.2. Class Diagrams

	1.2. Overview

	2.PIM module architecture
	3.Classes description
	3.1. Sync sources implementation
	3.2. Parsers and formatters
	3.2.1. vCard parser
	3.2.2. vCalendar parser
	3.2.3. vCalendar formatter

	4.References

