
Developing Sync Applications using the
Funambol C++ API

Last modified: July 22, 2010

Table of Contents
1.Overview..3

1.1. Who should read this document..3

1.2. Goals of the tutorial..3

2.Getting started...4

2.1. Installing the Funambol server..4

2.2. Obtaining the Funambol C++ API source code..4

2.3. Build requirements..4

2.3.1. Windows requirements..4

2.3.2. Posix requirements..4

3.Introduction to sync application development..5

3.1. The sync scenario...5

4.The fsync application..6

4.1. fsync overview...6

4.2. Creating the project..7

4.3. Writing the fsync source...8

4.4. Building fsync ...9

4.5. Testing fsync ..9

5.Basic Types...11

5.1. Enumeration..11

5.2. ArrayList...11

5.3. StringBuffer..11

5.4. StringMap...11

6.References...12

Appendix A..13

Copyright © 2009 Funambol - Page 2

1. Overview

This tutorial is a practical guide for programmers who want to use the Funambol C++ API to create
sync applications. It will guide you through the steps necessary to write a sync client, using a
concrete example as guideline.

1.1. Who should read this document
This document is an introduction to application development using the Funambol C++ API. The
target audience of this tutorial is developers approaching client development based on the
Funambol framework. The only prerequisites requested are familiarity with C++ programming and
the basics of the synchronization protocol SyncML [3].

Note that this guide is intended to be a starting point, it does not cover protocol details or
implementation details of the Funambol API.

1.2. Goals of the tutorial
The main purpose of this document is to describe how to create a C++ sync application using the
Funambol C++ API.

The explanation will be accompanied with an example of a real implementation, the fsync program,
a simple sync application which is able to synchronize files in a local directory with the Funambol
(or other SyncML compliant) server. Figure 1 illustrates an overview of what we are going to do.

The fsync application retrieves local files and exchanges modifications with the server (e.g. it
sends File1 which does not exist on the server, and receives File3 which does not exist on the
client's file system).

The first step will be to develop a minimal fsync application which contains the essential
instructions needed by any sync application. We will see how a generic sync application works and
the main components involved in the sync process. In particular it shows how the complexity of the
SyncML protocol is hidden to the developer, who can focus on how to deal with the underlying data
store (the file system in the case of fsync) and on how to interact with the user.

Copyright © 2009 Funambol - Page 3

Figure 1: fsync overview

File 1

File 1

File 3

File 3File 2

Client Server

File 1 File 3File 2

fsync
(Funambol/SyncML)

Server

File 1 File 3File 2

Client ServerSyncML

2. Getting started

Before going through the tutorial, it is necessary to set up the development environment.

2.1. Installing the Funambol server
First of all, you will have to install a local Funambol server to be used while testing the application
examples. You can download it from https://www.forge.funambol.org/download / (choose the
correct version depending on your platform). Please follow the installation guide which you can find
here: https://www.forge.funambol.org/download/documentation.html.

2.2. Obtaining the Funambol C++ API source code
In order to develop a sync application, you will need the source code of the Funambol C++ API.
You can download the source package from the project's webpage [2].

Once you have downloaded the source code, check for the build requirements depending on your
target platform as explained in the following sections.

2.3. Build requirements
The Funambol C++ API is available on many mobile and desktop platforms; the tutorial covers two
of the most common: Windows and Posix. The result of the build is a static library to which you
shall link in order to create your sync application.

2.3.1. Windows requirements
The Windows port contains the projects for Visual Studio 2005 (also the Express Edition is
supported); the project to build the library is Funambol/sdk/cpp/build/win32/win32.vcproj.

2.3.2. Posix requirements
The Posix port requires the standard GNU toolchain (autotools, make, gcc). It has been tested on
various Linux distributions and Mac OS X. The makefiles are under the directory:
Funambol/sdk/cpp/build/autotools.

Copyright © 2009 Funambol - Page 4

https://www.forge.funambol.org/download/
https://www.forge.funambol.org/download/documentation.html
https://www.forge.funambol.org/download/

3. Introduction to sync application development

This section introduces sync application development using the Funambol C++ API. After a
description of the components involved and the main roles, you will start to develop your first sync
application.

3.1. The sync scenario
Figure 2 illustrates the typical scenario of a sync application:

The sync application, normally invoked by the user, lies on the client side and is therefore
commonly referred to as “client”.

It interacts with two main components:

●the DS (Data Synchronization) Service, that is the entity to which the client connects in order to
exchange sync data. It can be a locally installed or remote server.

●the local datastore, that is the container/provider of the data that needs to be synchronized; a
sync application that aims to sync local files (e.g. the fsync application) must be able to access the
local file system that is handled by the user.

Note that the DS Service stores sync data on a local datastore, e.g. the file system or an SQL
database.

The goal of the sync process is to keep the datastore on both sides in sync.

In this tutorial we will focus on how a sync application installed on the client side can obtain data
from the local datastore and sync it with the server using the Funambol API.

Copyright © 2009 Funambol - Page 5

Figure 2: sync scenario

Server side

DS Service

datastore

Client side

Sync application

datastore

networkUse
r

4. The fsync application

After setting up the build environment (see section 2, Getting started) you can start developing
your first sync application. This section analyzes the steps needed to create a simple sync
application that synchronizes local files with a Funambol server.

4.1. fsync overview
Figure 3 illustrates the main architecture of the fsync application.

There are two main components used by the fsync application, in order to start the sync process
and access to the local file system:

●the SyncClient, that is the entry point for the synchronization engine, which is implemented by the
Funambol API. It is responsible for all the communication and protocol details of the
synchronization. The SyncClient is already implemented so you just have to instantiate it.

●the FileSyncSource, which represents the glue between the SyncClient and the local datastore
allowing the SyncClient to access to the file system.

The FileSyncSource inherits from the SyncSource interface which is used by the SyncClient to
interact with a generic datastore; you should create a SyncSource for each datastore type (e.g.
files, contacts, calendar, emails, etc.). In this case, the FileSyncSource is already implemented by
the Funambol API.

Being fsync a client application, it needs to know the address of the server and the authentication
credentials to be used. A generic synchronization application will also very likely have additional
configuration parameters required to properly configure the data access layer; for this reason, the
Funambol API provides a way to manage configuration parameters and pass them to the
SyncClient.

The standard configuration details managed by the API are:

●access configuration, which includes the user credentials (username and password) and the
server URL. It is used by the SyncClient when connecting to the server.

●device configuration, which is sent to the server in order to identify the client.

Copyright © 2009 Funambol - Page 6

Figure 3: fsync architecture

...

Server

Client

fsync application

networkSyncClient

FileSyncSource

DMTClientConfig

File System

Sync folder...

In addition to the information listed above, fsync requires further configuration parameters
regarding the file system:

●the MIME type of the files (for the sake of keeping the tutorial simple, we are assuming all files
are of the same MIME type, maybe a generic socket-binary)

●the remote URI, that is the datastore identifier on the server side

●the name of the directory to synchronize

The Funambol API allows to easily manage the client configuration and create a default one if
needed, using the class DMTClientConfig (see [1]). The name of the directory to sync is an fsync
specific parameter that is managed directly by the FileSyncSource class.

Being fsync a command line application, we will specify the access configuration and the directory
name through command line parameters. You can invoke fsync using the following command:

$ fsync -d <directory to sync> -s <server url> -u <username> -p <password>

The flags that can be used to customize the sync configuration are:

●-d, used to specify the name of the directory to synchronize

●-s, used to specify the address of the server

●-u, used to specify the username;

●-p, used to specify the password.

Now you are ready to create the fsync application.

4.2. Creating the project
First of all, you will need to create a new project, depending on your platform.

On Windows:

1.create a new Visual Studio project: select an empty project

2.import the Funambol SDK to the current solution:

Funambol/sdk/cpp/build/win32/win32.vcproj

3.add the Funambol SDK as project dependency

4.select the release build configuration using the configuration manager

5.add the following include directories to the fsync project:

/path/to/Funambol/sdk/cpp/src/include/windows

/path/to/Funambol/sdk/cpp/src/include/common

6.copy the same preprocessor definitions found in the win32 project

7.add the following library dependencies:

win32.lib (the Funambol SDK library);

wininet.lib

8.specify the following additional library folder:

/path/to/Funambol/sdk/cpp/build/win32/output/win32-rel

9.add to the project a new source file named fsync.cpp

On Posix:

1.build the Funambol library by running the following commands from the
Funambol/sdk/cpp/build/autotools folder:

Copyright © 2009 Funambol - Page 7

$ export LIBTOOLIZE=glibtoolize [only on Mac OSX]

$./autogen.sh

$./configure --disable-shared --prefix=<install-path>/cpp-sdk

[see –help for the parameters list]

$ make all

$ make install

2.create a source file named fsync.cpp

4.3. Writing the fsync source
Implementing the fsync application is very simple. First of all, you will have to include the Funambol
API headers and specify that you are using the Funambol namespace:

#include "client/SyncClient.h"

#include "client/FileSyncSource.h"

#include "client/DMTClientConfig.h"

#include "client/OptionParser.h"

#include "spds/DefaultConfigFactory.h"

USE_FUNAMBOL_NAMESPACE

Next, define the main function:

int main(int argc, char** argv) {

 ...

}

The first thing to do is to parse the command line parameters. To do this, you can use the
OptionParser class provided by the Funambol API:

OptionParser parser("fsync");

StringMap opts;

ArrayList args;

parser.addOption('s', "server", "set the server url", true);

parser.addOption('u', "user", "set the user name", true);

parser.addOption('p', "password", "set the user password", true);

parser.addOption('d', "dir", "set the local folder to sync", true);

parser.parse(argc, const_cast<const char **>(argv), opts, args);

The parse() method fills the opts object with all the command line options previously configured
using the addOption() method.

Once you have read the sync options, you are ready to create the configuration object:

DMTClientConfig config("Funambol/fsync");

Then, you can fill all the configuration parameters. Device configuration and file system
configuration parameters must only be set the first time the application runs:

if(!config.read()) {

 config.getDeviceConfig().setDevID("fsync-client");

 SyncSourceConfig* ssc = DefaultConfigFactory::getSyncSourceConfig("briefcase");

 ssc->setType("application/*");

 ssc->setURI("briefcase");

 config.setSyncSourceConfig(*ssc);

Copyright © 2009 Funambol - Page 8

 delete ssc; ssc = 0;

}

The read() method of the DMTClientConfig object returns “false” if the client configuration is not
already set. This happens only at the first fsync run because after the first sync, the configuration
object is persisted on the file system to keep session and global status information.

Note that the FileSyncSource MIME type is set to “application/*”; this means that the raw file content
is sent to the server as is.

The access configuration is set through the command line options:

config.getAccessConfig().setSyncURL(opts["server"]);

config.getAccessConfig().setUsername(opts["user"]);

config.getAccessConfig().setPassword(opts["password"]);

Now that you have the configuration parameters, you can create the FileSyncSource object and
add it to the SyncSource array:

FileSyncSource fsource(TEXT("briefcase"), config.getSyncSourceConfig("briefcase"));

fsource.setDir(!opts["dir"].null()? opts["dir"]: "briefcase");

SyncSource* ssArray[] = { &fsource, NULL } ;

Note that the directory to sync is configured from the command line options, directly using the
FileSyncSource object.

Finally you can start the sync process:

SyncClient client;

client.sync(config, ssArray);

The final step is needed to permanently save the current synchronization state, which contains
information used by the next sync sessions:

config.save();

The fsync application is now implemented. To see the complete source code, please refer to
Appendix A.

4.4. Building fsync
On Windows, select the release build configuration using the configuration manager and build the
solution.

On Posix, run the following command:

$ g++ -O2 -I<install-path>/cpp-sdk/include/funambol/common -I<install-path>/cpp-
sdk/include/funambol/posix -L<install-path>/cpp-sdk/lib -lfunambol -lcurl fsync.cpp -o
fsync

You should now have obtained the fsync executable.

4.5. Testing fsync
In order to test fsync, first make sure that the Funambol server is running (see 2.1). Then, follow
these steps:

1.from the fsync executable folder, create the directory you wish to synchronize (e.g. briefcase)

2.create some empty files in this directory: file1.txt, file2.txt, etc. (see Figure 4)

Copyright © 2009 Funambol - Page 9

3.run fsync:

$./fsync -d briefcase -s http://localhost:8080/funambol/ds -u guest -p guest

4.go to the server database path: /path/to/Funambol/ds-server/db/briefcase. Here you will find the
same list of files of the briefcase directory, but with different names (see Figure 4);

5.add a new file to the briefcase directory

6.run fsync again; a new file will be added to the server db

7.modify the files in the briefcase directory

8.run fsync

9.verify that the files in the server database have the same content as those stored in the client

You can run further tests to see how the sync process works; for example, delete some files from
the server/client side, run fsync, etc.

Copyright © 2009 Funambol - Page 10

Figure 4: Client/Server file systems

Client file system (local) Server file system

file1.txt

...

...

file2.txt

...

briefcase

...

...

/ /

Funambol/ds-server/db/briefcase

1

2

...

 (file1.txt)

 (file2.txt)

5. Basic Types

The Funambol SDK is portable over a wide range of platforms. In order to maximize the number of
platforms it can support, it does not make use of features of the C++ language such as Exceptions,
Templates and the STL.

To ease the development of the library and clients, some basic types have been defined. This
section describes the most commonly used types.

5.1. Enumeration
The Enumeration interface provides a simple, one-way iterator over a collection of items hiding how
the collection is implemented.

The Funambol SDK provides a simple implementation of Enumeration which uses ArrayList as
container.

5.2. ArrayList
ArrayList is a linked list container with the possibility to access an element by index and to traverse
it using methods front(), next() like the STL vector.

Only objects that implement the ArrayElement interface can be added to an ArrayList.

5.3. StringBuffer
StringBuffer is a char string implementation similar to STL string, with the usual assignment,
comparison and character access operators, but with some peculiarities:

● it can store empty strings or NULL strings, like a char pointer in C, and provides methods
to test both conditions

● it has a convert() method to easily convert from wchar_t string using a defined encoding
(default UTF8)

● it provides a replaceAll() method to easily substitute all occurrences of a substring

5.4. StringMap
StringMap is a simple associative array with a StringBuffer key and a StringBuffer value.

Copyright © 2009 Funambol - Page 11

6. References

[1] The latest version of the Funambol C++ API design document, from the SVN repository:

https://client-sdk.forge.funambol.org/source/browse/client-sdk/trunk/cpp-sdk/design/

[2] Funambol C++ API source code snapshots:

https://client-sdk.forge.funambol.org/servlets/ProjectDocumentList?
folderID=118&expandFolder=118&folderID=118

[3] Open Mobile Alliance SyncML specifications:

http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.html

Copyright © 2009 Funambol - Page 12

http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.html
https://client-sdk.forge.funambol.org/servlets/ProjectDocumentList?folderID=118&expandFolder=118&folderID=118
https://client-sdk.forge.funambol.org/servlets/ProjectDocumentList?folderID=118&expandFolder=118&folderID=118
https://core.forge.funambol.org/source/browse/core/trunk/funambol/client-api/native/design/

Appendix A

Below is the complete source file of fsync.cpp:

#include "client/SyncClient.h"

#include "client/FileSyncSource.h"

#include "client/DMTClientConfig.h"

#include "client/OptionParser.h"

#include "spds/DefaultConfigFactory.h"

USE_NAMESPACE

int main(int argc, char** argv) {

 //Parse the commandline options

 OptionParser parser("fsync");

 StringMap opts;

 ArrayList args;

 parser.addOption('s', "server", "set the server url", true);

 parser.addOption('u', "user", "set the user name", true);

 parser.addOption('p', "password", "set the user password", true);

 parser.addOption('d', "dir", "set the local folder to sync", true);

 parser.parse(argc, const_cast<const char **>(argv), opts, args);

 // Create the config

 DMTClientConfig config("Funambol/fsync");

 // Read the configuration

 if(!config.read()) {

 config.getDeviceConfig().setDevID("fsync-client");

 SyncSourceConfig* ssc = DefaultConfigFactory::getSyncSourceConfig("briefcase");

 ssc->setType("application/*");

 ssc->setURI("briefcase");

 config.setSyncSourceConfig(*ssc);

 delete ssc; ssc = 0;

 }

 config.getAccessConfig().setSyncURL(opts["server"]);

 config.getAccessConfig().setUsername(opts["user"]);

 config.getAccessConfig().setPassword(opts["password"]);

 // Create the FileSyncSource

 FileSyncSource fsource(TEXT("briefcase"), config.getSyncSourceConfig("briefcase"));

 // Specify the folder which needs to be synced

 fsource.setDir(!opts["dir"].null()? opts["dir"]: "briefcase");

 // Initialize the SyncSource array to sync

 SyncSource* ssArray[] = { &fsource, NULL } ;

 // Create the SyncClient

Copyright © 2009 Funambol - Page 13

 SyncClient client;

 // SYNC!

 client.sync(config, ssArray);

 config.save();

}

Copyright © 2009 Funambol - Page 14

	1.Overview
	1.1. Who should read this document
	1.2. Goals of the tutorial

	2.Getting started
	2.1. Installing the Funambol server
	2.2. Obtaining the Funambol C++ API source code
	2.3. Build requirements
	2.3.1. Windows requirements
	2.3.2. Posix requirements

	3.Introduction to sync application development
	3.1. The sync scenario

	4.The fsync application
	4.1. fsync overview
	4.2. Creating the project
	4.3. Writing the fsync source
	4.4. Building fsync
	4.5. Testing fsync

	5.Basic Types
	5.1. Enumeration
	5.2. ArrayList
	5.3. StringBuffer
	5.4. StringMap

	6.References
	Appendix A

