
Sync4j Java API J2ME
Developers Guide

Sync4j
http://www.sync4j.org

Funambol
http://www.funambol.com

http://www.funambol.com/

Revision History
Name Date Reason for Change Ver./Rev.

Daniele Pagani 04 May 2004 Original draft 1.0
Fabio Maggi 06 Agoust 2004 Add device charset,

SyncServer configuration file 1.1

Table of Contents
1. Overview... 4
1.1. Sync4j Java API J2ME Architecture... 4
2. Data Synchronization API... 5
2.1. The SyncManagerFactory.. 5
2.2. The SyncManager.. 5
2.3. The SyncSource.. 5
2.4. The Sync Process.. 6
2.5. Configuring the Sync Manager... 7
3. Running the SyncClientDemo Application... 8

1. Overview

The Sync4 SyncClient API is the means application developers can embed and interact with the
Sync4 platform in order to take advantage of its powerful data synchronization features.

This document explains, from a developer point of view, the architecture and the use of the
Sync4j SyncClient API 2.7 for J2ME.

1.1. Sync4j Java API J2ME Architecture
The Sync4j Java API J2ME is built up of two main modules: data synchronization and device
management; they are layered as shown in Figure 1, where the device management layer is
responsible for device and application configuration management and the data synchronization
layer is responsible for everything regarding the SyncML protocol and the data synchronization
process.

The host application can access the services provided by both modules: the Sync Manager
when a synchronization has to be performed and the Device Manager when the configuration
must be read, manipulated or written. In addition, the Device Manager is intended to store host
application configuration information, enabling the application to be transparently managed
remotely with the SyncML Device Management features that will be implemented in a next
release of the API.

A Sync Source is a host application module that groups callback functions called by Sync
Manager to interact with the application data sources. The way the Sync Source access the
external data source is application specific and transparent to the synchronization engine.

Figure 1 - Sync4j Java API architecture

Device Manager

Sync Manager

Host ApplicationSync Source

2. Data Synchronization API

The synchronzation API is grouped under the package sync4j.syncclient.
The most important classes for a quick start are the Sync Manager Factory , implemented in
sync4j.syncclient.spds.SyncManagerFactory and the Sync Manager, defined by
sync4j.syncclient.spds.SyncManager. The latter is the driver of any synchronization operation.
They are described in the following sections.

2.1. The SyncManagerFactory
sync4j.syncclient.spds.SyncManagerFactory is a factory for SyncManager objects. It istantiates
and configures a new SyncManager with the information provided in the given properties.

The SyncManagerFactory is used to get a new instance of a SyncManager as in the example
below:

SyncManagerFactory syncMngr = SyncManagerFactory.getSyncManager("MyDataStore",
properties)

getSyncManager() is a factory method that creates a new SyncManager bound to the given
DataSource.

Error conditions are signalled throwing sync4j.syncclient.spds.SyncException for synchronization
problems.

See the javadoc documentation for the published API.

2.2. The SyncManager
The SyncManager is the object used by client applications to start a new synchronization
process.

When the sync() method is called

syncMngr.sync();

the synchronization manager starts a new SyncML session to the server synchronizing the data
source specified during sync manager construction.

2.3. The SyncSource
The concept of SyncSource is inherited by the Sync4j Java API for J2SE. It is an abstraction on
a data source layer. In Sync4j Java API for J2ME, however, the real implementation of this
object is hidden to the developer and embedded into the SyncManager. This has been done for
the following reasons:

• provide a light API with small memory footprint;
• give to developers a simple environment hiding the complexity of the data synchronization

and SyncML communication.

2.4. The Sync Process
From the host application developer perspective, the interaction with the synchronization engine
is limited to firing the synchronization process calling sync(). However, under the covers, a lot of
work happens. The main tasks performed during a sync execution are:

• synchronization initialization
• client modifications detection
• SyncML synchronization with the server
• server modifications execution

In order to make it possible, the synchronization engine interacts with the host application in two
of the above tasks: client modifications detection and server modifications execution where the
methods of the synchronizing sync source are called.

An important aspect of the synchronization process is the concept of fast and slow
synchronization.
Fast synchronization can be performed when client and server rely on their respective state,
because, for example, they have synchronized recently. In this case only the differences (the
modifications) since the last synchronization are exchanged.
When for any reason, client and server are not confident about their respective state, fast
synchronization cannot be done and slow synchronization is performed. In this case, the client
sends its database content to the server, who compares the received information with its local
database and then sends back the operations the client has to apply in order to be again up to
date and in sync.

The synchronization process tasks are briefly described in the following.

Synchronization initialization
In this phase the synchronization engine prepares a new synchronization session,
communicating to the server which sources it wants to synchronize and for which user. The
server evaluates the request and responds a status message in which it allows or denies the
request.

The Sync Manager synchronized the sources registered in the way described in the Sync
Sources section.

Client modifications detection
Here there are two possibilities: in the case of fast sync, the Sync Manager asks the registered
Sync Sources which items have changed since the last synchronization; in the case of slow
sync, the Sync Manager asks for all items in the data store. As said, in this phase, the Sync
Manager calls back the SyncSource's methods getXXXSyncItem(), which return the modified (or
all) items.

SyncML synchronization with the server
This is the process of exchanging database modifications through the SyncML protocol. This
task is hidden to the host application developer.

Server modification execution
This is the phase where server side modifications must be applied to the locale data store.
Again, the Sync Manager delegates the SyncSources to execute the changes.

The synchronization process flow looks like Figure 2.

2.5. Configuring the Sync Manager
Sync Manager requires few configuration parameters such as the url of the SyncML server,
which Sync Sources must be synchronized and so on, and the name of the DataStore where the
SyncManager has to performe storing and retrieving data process.

Sync Manager makes use of the following configuration parameters:

Property Description

dataStoreName The name of the DataStore to sync
login username:password
serverUrl The URL of the SyncServer
charset Device charset. Optional property, if not present set

default device charset.
Encode Base64 encoding [true / false] [default: false]

Note that tipically login and serverUrl are sets on the jad file of the application. For more details
see the example below.

Figure 2 - Synchronization process flow

Sync
Manager

Sync
Source

sync()

get[All/New/Deleted/Updated]SyncIitem()

SyncItem[]

Sync
Server

SyncML modifications

SyncML initialization

[remove/set]SyncItem()

Host
Application

SyncML mapping

beginSync()

commitSync()

3. Running the SyncClientDemo Application

In this section, we are going to run the SyncClientDemo application provided with the Sync4j API
J2ME. Our test application is a J2ME application, composed of the following files:

• SyncClientDemo.jad
• SyncClientDemo.jar

You can find all those files in the examples directory of the Sync4j Java API installation directory.

In sync4j.syncclient.midlet.SyncClientDemoMIDlet.java default sourceURI is briefcase, therefore
SyncClientDemo synchronize to briefcase SyncSource and the content on SyncServer DS
../db/briefcase folder.installo

You have simply to open with a text editor the SyncClientDemo.jad file and verify that the the
following parameters are correctly sets:

– login: guest:guest
– serverUrl: http://localhost:8080/sync4j/sync (or the URL where you have installed the

sync4j server)

Then, run the application from your device or emulator (e.g.: J2ME Wireless Toolkit).

http://localhost:8080/sync4j/sync

	1. Overview
	1.1. Sync4j Java API J2ME Architecture

	2. Data Synchronization API
	2.1. The SyncManagerFactory
	2.2. The SyncManager
	2.3. The SyncSource
	2.4. The Sync Process
	2.5. Configuring the Sync Manager

	3. Running the SyncClientDemo Application

