
Windows Mobile Plug-in Design Document

May, 2007

Table of Contents
1.Change Control.. 3
2.Introduction.. 4
2.1. Audience.. 4
2.2. Architecture overview.. 4
3.Sync runners.. 6
3.1. Pocket PC and Smartphone User Interface... 6
3.2. Email client.. 10
3.3. Scheduler... 10
3.4. Wap Push ... 11
3.5. TCP/IP... 13
4.Sync logic... 14
4.1. Client dll... 14
4.1.1. Main.. 14
4.1.1.1. PIM data source... 15
4.1.1.2. File data source... 19
4.1.1.3. Mail data source... 22
4.1.1.4. Initialize.. 27
4.1.2. Events... 27
4.1.3. Notification.. 29
4.1.4. Settings... 29
4.2. Startsync.exe... 34
4.3. Notification listener (ntlstnr)... 36
4.4. Syncmltransport dll.. 39
4.5. Handleservice.. 40
4.6. Syncmail.. 41
5.Installation.. 42
5.1. Funsetup dll... 42
5.1.1. Installation process... 42
5.1.2. Upgrade process... 43
5.1.3. Uninstall process... 43
5.2. build.xml.. 43
6.Appendices... 45
6.1. Appendix A - References... 45
6.2. Appendix B – Calendar Exception Handling.. 45

Copyright (c) 2007 Funambol - Page 2

1. Change Control

Date Version Author and Title Change

09.05.2007 0.1 Marco Magistrali Initial draft

23.05.2007 0.2 Marco Magistrali Added other parts

08.06.2007 0.3 Marco Magistrali Modified configuration part (ClientSettings)

Copyright (c) 2007 Funambol - Page 3

2. Introduction

This document designs how the Funambol Windows Mobile plug-in generally works and what it
synchronizes through the syncML protocol: PIM data (contact, calendar, task), briefcase, notes and
mail. It explains how the plug-in is built and what are its behaviors.

2.1. Audience

The following list shows the purposes this document can be used for:

– Information for all teams or groups of Funambol
– Overview for people interested in the project
– Overview for new and old developers to make them able to change software

2.2. Architecture overview

This paragraph shows graphically the interactions amongst the Windows Mobile components that can
start a synchronization with the server [Figure 1]. The “Sync runners” layer is a group of actors that
can start a sync in different ways: manually, using the buttons provided by the user interface, or
automatically because of a scheduled sync or a server request message. The “Sync logic” layer
contains all the functions needed to start the sync session, to exchange the data with the server and
to modify the device databases according to the synchronization commands.
The full functionality of the “Sync runners” and the “Sync logic” layers will be described in the next
sections.

The Pocket PC or Smartphone User Interface allow the user to start to configure all the needed
parameters, as user name/password, server URL, which PIM database to synchronize and so on.
After these initializing procedure, the UI permits to sync all the selected database in a single shot or
one at time.
There are several way to synchronize the device: the default used is the two-way sync, in which all
the modified elements (new, updated and deleted) are exchanged to and from the server. The other
synchronization types supported are:

– one-way from client: only the modifications from the client are exchanged in the sync process
– one-way from server: only the modifications from the server are exchanged in the sync process
– refresh from client: a clean copy of all the client items are stored on the server
– refresh from server: all the items on the client are deleted and a clean copy of all server items is

stored

The latter two sync type are called recover sync, because they can fully recover all the data both on
client or server side.

Copyright (c) 2007 Funambol - Page 4

Through the setting parameters, the user can set also the scheduling time, so that a sync is started
automatically at defined intervals, and the server notification mechanisms in which the SyncML
server, using TCP/IP or wap push message (SMS), asks the client to start a sync.

For each method, scheduled sync or the server alerted sync, there is a dedicate client that starts the
synchronization at need. In this case, no User Interface is shown and the sync works in background.

Additionally, the Funambol plug-in is hooked to the default email client with a a custom email account
and a specific transport layer, similar to a POP3 or IMAP4 transport, that integrates the SyncML sync
process.

Copyright (c) 2007 Funambol - Page 5

Figure 1: Funambol Windows Mobile plug-in general architecture

Funambol API c++

Sync logic

Sync runners

 Pocket PC / Smartphone
 User Interface

startsync

notlstnr syncml
transport

Email
Client

Scheduler TCP/IP

Funambol API c++

DM DS

Wap push

Settings
client dll

Events
Notification

PIM
File

Mail

Initialize

MainMain

3. Sync runners

In this section it will be analyzed the component that are responsible to start a synchronization
process. There is the plug-in interface and the windows mobile mail interface that have a graphic way
to start a sync. The user can press a button to force the sync to start. The scheduler and the
notification via TCP/IP or SMS wap push are silent way to initialize the sync.

3.1. Pocket PC and Smartphone User Interface

The plug-in interface graphically is the same for both the pocket pc and smartphone version. The only
difference is the smartphone version doesn't support the synchronization of Note data source. After
the user installed the plug-in and runs, the UI looks like follow:

Basically the two menu buttons need:

– SyncAll: starts the sync of all enabled sources. In the case of Figure 2, all the sources are
enabled. If one not enabled, the correspondent line is grayed.

– Menu: enables several forms to set the account parameters, the sources to sync, the notification
listener, the log lever, the mail parameters and all other settings.

To learn more about how the plug-in works from user perspective see the Plug-in User guide [1].

Copyright (c) 2007 Funambol - Page 6

Figure 2: Funambol Windows Mobile Plug-in for Pocket PC User Interface

The User Interface is developed with the support of MFC library (Microsoft Foundation Classes);
windows and GUI objects extend basic MFC objects. The UI module mainly contains:

1. classes to implement forms and windows, for graphical interaction
2. methods to start/stop/end the sync process
3. methods linked to the message map, to execute actions capturing messages sent by dll

library.

The general architecture of the User Interface is structured as follow:

The uiDlg module is the class associated to the main form that is responsible to show to the user the
list of the sources that can sync. When the user opens the plug-in, this form loads the configuration
settings and choose which sources are to be enabled and which not. The configuration (ClientSettings
module) is a singleton class that is created during the initialization process.
Every other forms uses the same instance of the configuration to populate their own fields: the “Save”
menu button in these forms sets the modified value in the configuration instance and at the same
time writes the value in the persistent registry tree. The configuration class is the same provided by
the main dll library (see 4.1.5) and the UI handles its own instance.
Basically the source code associated to the graphical form is grouped in the classes showed in
“Configuration Modules” in the Figure 3. Only some classes are represented in the figure. The
differences between some specific code for pocket pc and for smartphone are handled using some
macro that distinguishes on which device the application is targeting for.
An example is due to the behavior the pocket pc can sync note source too. So in the uiDlg form there
is a piece of code:

Copyright (c) 2007 Funambol - Page 7

Figure 3: Funambol Windows Mobile plug-in general architecture

 MFC CDialog class

 ON_MESSAGE
 (ID_MYMSG_CONNECTING,
 ON_MESSAGE
 (ID_MYMSG_ENDING,
 (all other messages...)
 getConfigurationInstance()

uiDlg

Configuration Modules
Communication Params
Contact Params
Calendar Params
Mail Params
Log Level Params
(all other forms...)

Pocket PC Forms
Mail Settings version 240x320
Mail Settings version 240x240
Mail Settings version 320x240

Smartphone Forms
Mail Settings version All

startsync

ClientSettings

sync functions

client dll

Fired events

ClientSettings
(UI global instance)

#if defined(WIN32_PLATFORM_PSPC)

 // if the platform target is pocket pc: handling note source

#endif

Alternatively it is also possible to find

#if defined(WIN32_PLATFORM_WFSP)

 // if the platform target is smartphone: don't resize screen

#endif

The resources used for the different platforms, like icons or images, are shared in the same resource
repository; however the forms containing the buttons, the labels, the text box and so on are duplicated
for both platforms. More, for the pocket pc can exist more than one version for a same panel due to
different screen size of the devices. The Figure 3 shows the Mail Settings that needs three different
forms. If there are to much buttons, labels and checkbox is needed to repaint their position according
to the device screen size. Currently, the supported dimensions are:

portrait: w240 x h320
square: w240 x h240
landscape: w320 x h240

For the smartphone device it was not necessary to add multiple form and the supported size are:

landscape: w320 x h240
small: w176 x h220
QVGA: w240 x h320

When the sync process is running, the main dll library fires some events about the current status of
the sync process. These events (see 4.1.2) are sent as Windows Messages

SendMessage(wnd, ID_MYMSG_TOTAL_ITEMS,(WPARAM)-1, totalSize);

and they are captured by methods defined in the message map of uiDlg module. They basically are
used to get the data to refresh the User Interface and give a feedback to the user.
The list of the mapping messages are listed below:

Name Description
ID_MYMSG_CONNECTING (WM_APP+1) OnMsgConnecting: the sync is started, the menu is

refreshed, the icon animations start.
WPARAM = NULL
LPARAM = NULL

ID_MYMSG_ENDING (WM_APP+2) OnMsgEndingSync: the sync is finished. The menu is
refreshed, the icon animation stop
WPARAM = NULL
LPARAM = NULL

ID_MYMSG_STARTSYNC_ENDED (WM_APP+3) OnStartsyncEnded: called by the startsync.exe program
when the sync process ends, sending the last error
code. The UI refresh the last sync timestamps.
WPARAM = NULL
LPARAM = error code of the sync process. 0 is success

ID_MYMSG_STARTING_SYNC (WM_APP+4) OnStartingSync: called by the main dll, at the beginning
of the sync, to signal the id of the first source to sync to
understand where to show the first message
(“Connecting...”) to the user in the UI.
WPARAM = 1
LPARAM = the id of the first source to sync

ID_MYMSG_ENDING_SOURCE (WM_APP+5) OnMsgEndingSource: called by the event of the main
dll to signal the current syncing source is terminated.
WPARAM = NULL
LPARAM = NULL

ID_MYMSG_STARTING_SOURCE (WM_APP+6) OnStartingSource: called by the event of the main dll to

Copyright (c) 2007 Funambol - Page 8

signal the current syncing source is starting.
WPARAM = NULL
LPARAM = id of the source to sync (retrieved by its
source name)

ID_MYMSG_ITEM_SYNCED_FROM_SERVER
(WM_APP+7)

OnMsgItemSyncedFromServer: called by the event of
the main dll to signal an item is sent by the server. This
item can be new, updated or deleted. For the mail
source, this event is fired by the MailSyncSource.
WPARAM = id of the source. 0 if the source is mail
LPARAM = NULL

ID_MYMSG_TOTAL_ITEMS (WM_APP+8) OnMsgTotalItems: It sets the total items that are
exchanged in the current sync, both from client and
server. It is the second value of 3/15 items.
It is fired by the listener for total items from server. It is
fired by the sync sources for the total items from client.
WPARAM = id of the source. If -1 the items are from
client
LPARAM = number of total items

ID_MYMSG_ITEM_SYNCED_FROM_CLIENT
WM_APP+9)

OnMsgItemSyncedFromClient: called by the event of
the main dll to signal an item is sent by the client. This
item can be new, updated or deleted.
WPARAM = id of the source. If -0 if the source is mail
LPARAM = NULL

ID_MYMSG_SOURCE_STATE (WM_APP+10) OnMsgSourceState: called from the main dll at the end
of the sync to notify if a source has was finished
properly or not
WPARAM = id of the source.
LPARAM = (SYNCSOURCE_STATE_OK = 1 |
SYNCSOURCE_STATE_NOT_SYNCED = 2)

At the end of the sync process, the configuration is refreshed to reload the parameters that are
modified by the sync, like the last time the sync ended. Also the main UI is refreshed to reflect these
changes.
An example of complete synchronization diagrams can be as follow:

Copyright (c) 2007 Funambol - Page 9

Figure 4: Sequence diagram of a complete synchronization

UI client dll

SyncAll

 (startsync.exe process)
StartSync()

Refresh UI

Refresh UI

Refresh UI

SyncClient::sync()synchronize()
SyncManager::
 beginSync()

SyncManager::
endSync()

fire Event

Listeners: SendMessage()
fire Event

Listeners: SendMessage()

...

...

...

SendMessage()
“OnStartsyncEnded”

save() configuration

API

end

3.2. Email client

The email client is the usual program provided with the Windows Mobile to handle the user email
accounts. The Funambol plug-in inserts a custom dll library to hook a new account type named
“Funambol” (see 4.4). Through the plug-in installer a new mail account, also named “Funambol”, is
created and used to synchronize the email data source with the server. This way to sync the email
follows the user experience that already uses the device to read and write emails.

The plug-in interacts with the email client through the custom library. So by clicking Send/Receive
menu item the library is invoked and a new sync start, only for the email data source. It calls the

startsync.exe once mail

see the 4.2 paragraph about the startsync process.

3.3. Scheduler

The Funambol plug-in can be configured to perform a sync in background at a specified time, that
can be set through the User interface configuration panel. The permitted scheduled intervals are

● Manual Sync
● After every 5 minutes
● After every 10 minutes
● After every 15 minutes
● After every 30 minutes
● After every hour
● After 2 hours
● After 4 hours
● After a day

Copyright (c) 2007 Funambol - Page 10

Figure 5: Windows Mobile embedded mail interface

To set a time after which the sync process starts, the plug-in uses a windows function ([2]) whose
arguments are the name of the application to call and the time it will be called.

CeRunAppAtTime(TACHAR* appName, SYSTEMTIME &nextTime)

The appName is the “startsync.exe” program name (see 4.2) and the nextTime is the current time
shifted of the minutes set by the user. At the nextTime the windows OS calls the appName with a
particular argument APP_RUN_AT_TIME. Due to this call, the startsync.exe program does two main
action: first of all it call the CeRunAppAtTime to set the next scheduled time and then it starts the
sync process.
If the user wants to stop the schedule process, he sets “Manual Sync” from the list of choices: this
means the nextTime is set to 0 so the schedule process won't be scheduled anymore.

3.4. Wap Push

The wap-push sync initializer is a method to start a sync process through a particular binary SMS
message. It is possible to configure the plug-in to be able to wait and understand this particular SMS,
and when it comes, the plug-in parses the message and it starts the sync process according with the
information in the message.

The structure of the notification message, that is the same used also in the TCP/IP notification (see
3.5), is named package #0 and has the follow structure:

Copyright (c) 2007 Funambol - Page 11

Figure 6: Format of the package #0 header

Figure 7: Format of the package #0 body

The following ABNF [RFC2234] defines the syntax for the package. The order and the size of the
fields MUST be as specified in the following syntax of the Notification Package.

<digest> ::= 128*BIT ; ‘MD5 Digest value’
<notification> ::= <notification-hdr><notification-body>
<notification-hdr> ::= <version><ui-mode><initiator><future-use>
 <sessionid><server-identifer-length><server-identifier>
<version> ::= 10*BIT ; ‘Protocol Version’
<ui-mode> ::= <not-specified> / <background> / ; ‘Background/Informative
 <informative> / <user-interaction> ; User Interaction
 ; session’
<not-specified> ::= “00” ; ‘2*bit value “0”’
<background> ::= “01” ; ‘2*bit value “1”’
<informative> ::= “10” ; ‘2*bit value “2”
<user-interaction> ::= “11” ; ‘2*bit value “3”’
<initiator> ::= <user> / <server> ; ‘Server/User initiated’
<user> ::= “0” ; ‘1*bit value “0”’
<server> ::= “1” ; ‘1*bit value “1”’
<future-use> ::= 27*BIT ; ‘Reserved for future
 ; use’
<sessionid> ::= 16*BIT ; ‘Session identifier’
<server-identifier-length> ::= 8*BIT ; ‘Server Identifier
 ; length’
<server-identifier> ::= <server-identifier-length >*CHAR ; ‘Server Identifier’
<notification-body> ::= <num-syncs><future-use>*<sync>
 <vendor-specific> ; ‘Body Data’
<num-syncs> ::= 4*BIT ; ‘Number of syncs’
<future-use> ::= 4*BIT ; ‘Reserved for future
 ; use’
<sync> ::= <sync-type><future-use><content-type>
 <server-URI-length><server-URI> ; ‘Sync Information’
<sync-type> ::= 4*BIT ; ‘Synchronization type’
<future-use> ::= 4*BIT ; ‘Reserved for future
 ; use’
<content-type> ::= 24*BIT ; ‘Content type’
<server-URI-length> ::= 8*BIT ; ‘Server URI Length’
 ; ‘Server URI
<server-URI> ::= n*BIT
<vendor-specific> ::= n*BIT ; ‘Optional vendor-
 ; specific information’

See the specifications [3] and [4] for the meaning of each field. See also [5] for other information
about Server Alerted Sync implemented on Funambol server side.

To enable, or disable, the plug-in in order to listen for these particular SMS, it is necessary to register
the application in a device Push Router's Registration Table. The methods used are the follows

Name Description
HRESULT
PushRouter_RegisterClient(LPCTSTR
szContentType, LPCTSTR szAppId, LPCTSTR
szPath, LPCTSTR szParams);

This method registers a client in the Push Router's
Registration Table. All clients that require any
interaction with the Push Router must register
using this method.
szContentType: Content-type of messages routed
to the client (we use empty “”)
szAppId: Application ID of the client (we use "x-
wap-application:push.syncml")
szPath: Path to the client's executable file (we use
 startsync.exe)
szParams: Command-line parameters to be
passed to the client upon launch (we use
"wap_push")

PushRouter_UnRegisterClient(LPCTSTR
szContentType, LPCTSTR szAppId)

This method deletes a client entry from the
Registration table in the Push Router. If the client
no longer wants to receive push messages from
push router, the client should use this method to
unregister itself. This API needs to be called once
per Application ID/Content-Type combination.
szContentType: Content-type of messages routed
to the client
szAppId: Application ID of the client

Copyright (c) 2007 Funambol - Page 12

The methods are called invoking the startsync.exe program with proper command line:

startsync.exe register ; it register the application

startsync.exe deregister ; it unregister the application

When the SMS comes on the device and it is caught, it invokes the application registered, szPath,
with the szParams command line.

startsync.exe wap-push

At this point the message is parsed and if all is correct the sync can start.

3.5. TCP/IP

This way to starts a sync is strictly related to the Notification Listener module (see 4.3). After the
notlstnr dll library is configuerd and registered, the device is ready to wait for a server TCP/IP
message. When this message comes on the device, due to a server modification of contacts or
calendar, or a new email, the library parses the message and lauch the startsync program with the
proper command line.
For more details about the Notification Listener see the 4.3. For more details about the message see
the wap-push paragraph (3.4). See also [5] for other information about Server Alerted Sync
implemented on Funambol server side.

Copyright (c) 2007 Funambol - Page 13

4. Sync logic

This section shows the architecture of the classes and functions that are the core of the Windows
Mobile Plug-in.

4.1. Client dll

The client dll is the library that contains functions to implement the synchronization logic of every data
source (Main block), to set the configuration parameters on the device (Settings block), to send the
sync event to the User Interface (Events block) and to notify the device address change to the server
(Notification block). This section explains the content of every block of Figure 1.

4.1.1. Main

The synchronization process is the procedure that aims to have a client and a server “in sync” with
the same data. This is reached by exchanging the modified data (new, update and deletes) to the
server and vice versa. The data the windows mobile plug-in handles can be of different types but can
be grouped in 3 main categories:

– PIM data: these data (items) are contacts, calendars and tasks. These are part of Microsoft
Pocket Outlook Object Model that provides functions to access the objects properties. For more
information about POOM see [6].

– File data: these items (data) are files and the content is synced to the server. The Pocket PC
supports also Notes that are basically files in which is possible to insert multimedia elements too.
At the moment only the textual part of them can be synced.

– Mail data: the items (data) are mails. The plug-in syncs only mail that are in Inbox and Outbox of
the custom Funambol account.

The core of the synchronization process is driven by the Funambol C++ API: they are in charge to
configure the sync engine, to establish the connection to the server, to create and to parse the syncml
stream and lead the sync flow (for more information about Funambol C++ API see [7]). They expose
a series of interfaces, to be implemented by the client, that need to get the data to populate the
message to exchange with the server. The API provide method and classes to handle the
configuration too. This latter will be discussed deeply in 4.2.2.

After the sync process is started and the authentication procedure is completed, the sync manager on
the client side (the API SyncManager class) and the server decide which type of sync has to be
performed. According to the sync type they agree, the client sync manager must fill the syncml
message and send data. To populate the message it gets the data (items) asking to an interface
named SyncSource. This provides methods that must be implemented by the client that allow to
complete the message. At the same way, the client sync manager calls other SyncSource methods
according to the server response command messages to modify the data on the client side.
Every particular data is shared between the client implementation and the C++ API in a particular
object, provided by the C++ API, called SyncItem.

Copyright (c) 2007 Funambol - Page 14

To handle the 3 categories of client data source, there are 3 implementation of the SyncSource
interface: WindowsSyncSource for PIM data source, FileObjectSyncSource for File data source and
MailSyncSource for mail data source.
The initialize part in Figure 1 contains also nested modules useful to communicate with the User
Interface or to notify the new ip address of the device to the server. These will be analyzed later (see
4.1.2 and 4.1.3).

4.1.1.1. PIM data source

The WindowsSyncSource is the one to synchronize POOM items. It implements the methods to
retrieve items from POOM database and to insert, modify or delete items according to Sync Manager
directive. The ContactSyncSource, CalendarSyncSource and TaskSyncSource are specialization
for the particular PIM database and represent Contact, Calendar and Task. These implementation
must set a SourceType to figure out which is the POOM database to work on. The Pocket Outlook
SourceType must be one of the follows:

 OL_CONTACTS = 10
 OL_CALENDAR = 9
 OL_TASK = 13

Copyright (c) 2007 Funambol - Page 15

Figure 8: WindowsSyncSources and derived sync sources class diagram

+ ContactSyncSource(const wchar_t* name,
 SyncSourceConfig* sc,
 SourceType t)

 : WindowsSyncSource(name,sc)
+ ~ ContactSyncSource()
+ setSourceType(SourceType t) : void
+ clone(): ArrayElement*

ContactSyncSource

+ WindowsSyncSource(
 const wchar_t* name,
 SyncSourceConfig* sc)
 : SyncSource(name,sc)
+ ~WindowsSyncSource()

+ virtual setSourceType(SourceType t):void
+ setType(SourceType t): void
+ getType(): SyncType
+ setPath(const wchar_t* path): void
+ getPath(): wchar_t*

+ getFirstItem(): Item*
+ getNextItem(): Item*
+ getFirstItemKey(): Item*
+ getNextItemKey(): Item*

+ getFirstNewItem(): Item*
+ getNextNewItem(): Item*
+ getFirstUpdatedItem(): Item*
+ getNextUpdatedItem(): Item*
+ getFirstDeletedItem(): Item*
+ getNextDeletedItem(): Item*
+ setItemStatus(key: wchar_t[],
 status: int)
+ addItem(item: Item&): int
+ updateItem(item: Item&): int
+ deleteItem(item: Item&): int

+ beginSync(): int
+ endSync(): int

static int call, cnew, ckey,
 cupdated, cdeleted
Container* c;

WindowsSyncSource

CalendarSyncSource

TaskSyncSource

+ CalendarSyncSource(const wchar_t* name,
 SyncSourceConfig* sc,
 SourceType t)

 : WindowsSyncSource(name,sc)
+ ~ CalendarSyncSource()
+ setSourceType(SourceType t) : void
+ clone(): ArrayElement*

+ TaskSyncSource(const wchar_t* name,
 SyncSourceConfig* sc,
 SourceType t)

 : WindowsSyncSource(name,sc)
+ ~ TaskSyncSource()
+ setSourceType(SourceType t) : void
+ clone(): ArrayElement*

To get all the informations about every modified items, the SyncSources methods use several
functions collected in different modules.
The most important functions in the modules are described below.

– POOMClient2Server: collection of functions to handle the contact, calendar and task items that
have to be exchanged from client to server.

Name Description
void setAllItemsPOOM(Container* c, int dataType,
wchar_t* path)

Check all the items of the dataType source to set
in the Container::allItems array. There are only the
name of the items.

void setModifiedItemsPOOM(Container* c, int
dataType, wchar_t* path)

Check the items new, modified and deleted of the
dataType source to set in the
Container::newItems, Container::updatedItems
and Container::deletedItems arrays. In the arrays
there are the complete Items (name and content)

int deleteAllItems(int dataType)
It deletes all the items of the dataTyoe source.
Used for the “replace local data” sync mode.

void fillSyncItem(SyncItem* syncItem, int
dataType)

It fills the SyncItem object (SyncItem::data using
the key of the SyncItem.

– POOMServer2Client: collection of functions to handle the contact, calendar and task items that
have to be exchanged from server to client:

Copyright (c) 2007 Funambol - Page 16

Figure 9: POOM Sync Sources class iteration

Contact Sync Source

Windows Sync Source

POOMClient2Server

Calendar Sync Source Task Sync Source

POOMServer2Client

ContactBuilder AppointmentBuilder TaskBuilder

OutlookApp

RecurrenceException

UtilRecurrence

POOM
FileManagement

Name Description
long manageNewItems(SyncItem* item, int
dataType, long *oid, wchar_t* path)

It handles a new item of dataType and store it in
the database. The *oid is the key of the just
created element.

long manageUpdatedItems(SyncItem* item, int
dataType, wchar_t* path)

It updates the item of dataType with the data in the
SyncItem

long manageDeletedItems(SyncItem* syncItem,
int dataType)

It deletes the item of dataType

– POOMFileManagement: collection of functions to handle the interaction with the file system.
They are used to read and write the cache of every data source before and after a sync process.
Considering for instance the Contact data source. The cache is a file generated when a sync is
completed and contains the ID of all the contacts on the device and its corresponding crc
computation. The cache is used at the next sync to compare and understand which are the new,
modified and deleted contacts since the last sync.

Name Description
void readFromFile(long* previousCountItem,
vector<long> &previousOid, vector<long>
&previousHash, int dataType, wchar_t* path)

It reads the cache file of dataType source and fills
the vector with the previous OID and the
corresponding crc value

void writeToFile(vector<long> ¤tOid,
vector<long> ¤tHash, int dataType,
wchar_t* path) {

It writes the cache file of dataType source with the
current OID and its corresponding crc value.

– ContactBuilder: collection of functions to handle a single contact item. It provides methods to
format a IContact Pocket Outlook object in SIF-C or vCard structure and methods to parse a SIF-
C or vCard structure to set a IContact Pocket Outlook object. The SIF format is a representation
of the contact item using the Syncj4 Interchange Format, an XML propertyName/propertyValue
structure, mostly used between Funambol client and server. To understand more about SIF see
[8].

Name Description
void populateContactStringItem(wstring
&contactStringItem, IContact *pContact)

It gets every property name and value from the
IContact object and build the SIF XML structure

void completeContact(IContact *pContact, wchar_t
* ptrData)

It parses the SIF XML structure and fills every
property of the IContact object

VObject* ContactToVObject(IContact *pContact) It gets every property name and value from the
IContact object and build the VObject structure

void VObjectToContact(IContact *pContact,
VObject *vo)

It parses the VObject structure and fills every
property of the IContact object

– AppointmentBuilder: collection of functions to handle a single calendar item. It provides
methods to format an IAppointment Pocket Outlook object in SIF-E or iCalendar structure and
methods to parse a SIF-E or iCalendar structure to set an IAppointment Pocket Outlook object.

Name Description
void populateAppointmentStringItem(std::wstring
&appointmentStringItem, IAppointment
*pAppointment, BOOL isCRC)

It gets every property name and value from the
IAppointment object and build the SIF XML
structure. IsCrc value is used to discriminate if the
structure is used to compute the crc or not.

void completeAppointment(IAppointment
*pAppointment, wchar_t *ptrData, IPOutlookApp*
polApp, wchar_t* path)

It parses the SIF XML structure and fills every
property of the IAppointment object

VObject* AppointmentToVObject(IAppointment
*pAppointment)

It gets every property name and value from the
IAppointment object and build the VObject
structure

void VObjectToAppointment(IAppointment
*pAppointment, VObject *vo)

It parses the VObject structure and fills every
property of the IAppointment object

– TaskBuilder: collection of functions to handle a single task item. It provides methods to format
an ITask Pocket Outlook object in SIF-T or iCalendar (currently not supported) structure and
methods to parse a SIF-T (or iCalendar) structure to set an ITask Pocket Outlook object.

Copyright (c) 2007 Funambol - Page 17

Name Description
void populateTaskStringItem (std::wstring
&taskStringItem, ITask *pTask, BOOL isCRC)

It gets every property name and value from the
ITask object and build the SIF XML structure.
IsCrc value is used to discriminate if the structure
is used to compute the crc or not.

void completeTask (ITask *pTask, wchar_t *
ptrData)

It parses the SIF XML structure and fills every
property of the ITask object

VObject* TaskToVObject(ITask *pTask) It gets every property name and value from the
ITask object and build the VObject structure

void VObjectToTask(ITask *pTask, VObject *vo) It parses the VObject structure and fills every
property of the ITask object

– UtilsRecurrence: collection of functions to handle the Calendar and Task Recurrences. It is used
also for the Calendar Exceptions too.

Name Description
wstring getRecurrenceTags(IRecurrencePattern*
pRecurrence, VARIANT_BOOL isRecurring,
int x, int y, OlDefaultFolders olFolder, DATE
startdate, BOOL isAllDay)

Return the SIF structure of the recurrence
appointment. Used for calendar and tasks

wstring createExceptions(IRecurrencePattern*
pRecurrence, DATE startdate, BOOL isAllday)

Create the exceptions SIF structure if exists. Used
on calendar only.

wstring createException(IException* pException,
DATE startdate, BOOL isAllday)

Create the single exception SIF tag. Used on
calendar only.

void parseRecurrenceTags(IRecurrencePattern
pRecurrence, const wchar_t ptrData, DATE
recurrenceStart, int x, int y)

Parse the Recurrence SIF structured that comes
from the server

void parseExceptionTags(IRecurrencePattern*
pRecurrence, IAppointment* pAppointment,
const wchar_t* ptrData, IPOutlookApp* polApp,
const wchar_t* path);

Parse the Exception SIF structured that comes
from the server

– RecurrenceException: It's a class container that stores all the fields needed to handle a
Calendar Recurrence Exception. A Calendar Exception is a particular object generated by the
POOM Manager when the user modifies or deletes an existing occurrence of a recurrent event.
Handling the exceptions on the Windows Mobile devices has to be consistent with the exceptions
handled by other clients so they are managed in a particular way. More at Appendix B.

Name Description
RecurrenceException() Constructor
~RecurrenceException() Destructor
set/getOriginalDate(DATE date) set/get the Original Date the appointment occurs
set/getStart(DATE date) set/get the start date for the exception event
set/getEnd(DATE date) set/get the end date for the exception event
set/getSubject(wstring s) set/get the subject for the exception event
set/getLocation(wstring s) set/get the location for the exception event
set/getBody(wstring s) set/get the body for the exception event
set/getAllDayEvent(BOOL s) set/get the all day event for the exception event
set/getIsDeleted(BOOL s) set/get the delete property for the exception event
set/getBusyStatus(long s) set/get the busy status for the exception event
isOriginalEqualsStart() Check if the start date is equal of original

– OutlookApp: singleton class used to obtain and handle the connection with the Pocket Outlook
application. It connects with the POOM data store manager and keep the handle to be shared
with all the methods that need to ask the PIM items.

Name Description
static OutlookApp* getInstance() Create the object instance
static void dispose() Delete the object instance
IPOutlookApp* getPolApp() Get the IPOutlookApp* POOM object. It is the

application manager to interact with the PIM data

Copyright (c) 2007 Funambol - Page 18

store

4.1.1.2. File data source

The FileObjectSyncSource is the one to synchronize items that are basically files. It implements the
methods to get file items and to create, modify or delete items according to server commands. The
BriefcaseSyncSource and NoteSyncSource must set a SourceType to figure out which is the files
to work on. The file SourceType could be one of the follows:

OL_BRIEFCASE = 600
OL_NOTES = 601

To get all the information about every modified items, the SyncSources methods use several
functions collected in different modules.

Copyright (c) 2007 Funambol - Page 19

Figure 10: FileObjectSyncSources and derived sync sources class diagram

+ ContactSyncSource(const wchar_t* name,
 SourceType t) : POOMSyncSource(name)
+ ~ ContactSyncSource()

+ setSourceType(SourceType t) : void
+ clone(): ArrayElement*

BriefcaseSyncSource

+ FileObjectSyncSource(
 const wchar_t* name,

 SyncSourceConfig* sc)
 : SyncSource(name, sc)
+ ~FileObjectSyncSource()

+ virtual setSourceType(SourceType t): void
+ setType(SourceType t): void
+ getType(): SyncType
+ setPath(const wchar_t* path): void
+ getPath(): wchar_t*
+ setDir(const wchar_t* dir): void
+ getDir(): wchar_t*

+ getFirstItem(): Item*
+ getNextItem(): Item*
+ getFirstItemKey(): Item*
+ getNextItemKey(): Item*

+ getFirstNewItem(): Item*
+ getNextNewItem(): Item*
+ getFirstUpdatedItem(): Item*
+ getNextUpdatedItem(): Item*
+ getFirstDeletedItem(): Item*
+ getNextDeletedItem(): Item*
+ setItemStatus(key: wchar_t[],
 status: int)
+ addItem(item: Item&): int
+ updateItem(item: Item&): int
+ deleteItem(item: Item&): int

+ beginSync(): int
+ endSync(): int
+ void assign(FileObjectSyncSource& s)

Container* c;
static int call, cnew, ckey,
 cupdated, cdeleted

FileObjectSyncSource

NoteSyncSource
+ CalendarSyncSource(const wchar_t* name,
 SourceType t) : POOMSyncSource(name)
+ ~ CalendarSyncSource()

+ setSourceType(SourceType t) : void
+ clone(): ArrayElement*

The most important functions in the modules are described below.

– FILEClient2Server: collection of functions to handle the file items to be sent to the server. It
provides methods to get all modified file items and format in a structure, provided by the C++ API
([7]), named FileData. On the Windows Mobile Pocket PC, also Notes are represented as files.
Therefore, for Pocket PC version only, it is possible to handled notes as well. Actually, only the
textual part of the notes are properly treated. The notes are exchanged in a XML SIF-N structure
and the following methods are able to handle them properly.

Name Description
void setAllItemsFILE(Container* c, int dataType,
const wchar_t* path, const wchar_t* dir)

Set all the items to sync of dataType source, that
are in the dir directory, in the Containter object.

void setModifiedItemsFILE(Container* c, int
dataType, const wchar_t* path, const wchar_t* dir)

Set all the modified items to sync of dataType
source, that are in the dir directory, in the
Containter object.

void setAllItemsFILEKey(Container* c, int
dataType, const wchar_t* path, const wchar_t*
dir);

Set all the keys (the name of the files) in the
Container object. This function is used by the
getFirstItemKey method to delete all the device
item before a replace from server sync.

– FILEServer2Client: collection of functions to handle the file items sent by the server. It provides
methods to manage both FileData format or no structured data. “No structured data” means the
server sends the content of the file directly in the syncML message without packaging in the
appropriate FileData structure. The function keeps this behavior to maintain compatibility with old
servers. For the Windows Mobile Pocket PC version, in which Notes are exchanged in a XML
SIF-N structure, the following methods are able to handle this format properly.

Name Description
wchar_t* FILEmanageNewItems(SyncItem* item,
int dataType, const wchar_t* path, const wchar_t*
dir)

Store the item of dataType source, that is in the
dir directory, and return the file name

long FILEmanageUpdatedItems(SyncItem* item, Update the item of dataType source, that are in

Copyright (c) 2007 Funambol - Page 20

Figure 11: File Sync Source class iteration

Note Sync Source

File Object Sync Source

FILEClient2Server

Briefcase Sync Source

FILEServer2Client

FILEFileManagement

int dataType, const wchar_t* path, const wchar_t*
dir)

the dir directory. It returns always 0.

long FILEmanageDeletedItems(SyncItem* item,
int dataType, const wchar_t* path, const wchar_t*
dir)

Delete the item of dataType source, that are in the
dir directory. It returns always 0.

– FileFileManagement: collection of functions to read/write in the file system. It provides several
useful methods to read or write the content of the files to be packaged by the previous
FILEClient2Server and FILEServer2Client modules. It also have the functions to read and write
the cache file. Follows some samples:

Name Description
int readFilenameFromFile(int dataType, const
wchar_t* path, wchar_t*** ptrArrayFilename)

Read the file name from the cache of dataType
and fills the ptrArrayFilename.

void writeCurrentFileItems(int dataType, const
wchar_t* path, const wchar_t* dir);

Write the cache of dataType whit the filename that
are in the dir directory.

void readByteFromFile(wchar_t* fName, byte *ptr,
int* numBytes);

Read a file returning the ptr to the byte read and
the number of byte read

void writeByteToFile (wchar_t* fName, byte *ptr,
int numBytes);

Read numByte byte of ptr in the fName file

void encodeKey(wchar_t* key); Encode in b64 the key (filename) passed. It needs
to avoid particular char in the filename

void decodeKey(wchar_t* key); Decode from b64 the key (filename)

4.1.1.3. Mail data source

The MailSyncSource is the one to synchronize items that are emails. It implements all the common
methods to get email items and to create, modify or delete items according to server commands.
The MailSyncSource uses some classes provided by the C++ API that represent a mail object. These
classes have methods to parse a syncML mail representation and to format a mail object into
syncML. The C++ API classes (EmailData, MailMessage and FolderData) are stored into a
MailClientData class that is used to share the mail information across the methods that read and write
in the device mail data store.

Copyright (c) 2007 Funambol - Page 21

Follows an explanation of some important functions and members of the mail sync source.

Name Description
MailClient2Server* mailClient2Server Pointer to the object responsible to retrieve the

mail information from the mail datastore. See later
for more about it

MailServer2Client* mailServer2Client Pointer to the object responsible to store the mail
server information to the mail data store. See later
for more about it

SyncItem* buildSyncItem(MailClientData* m,
ArrayList& extras)

Static function that formats a retrieved mail object
from the device data store into a syncML item.

Copyright (c) 2007 Funambol - Page 22

Figure 12: MailSyncSource class diagram

+ MailSyncSource(const wchar_t* name, SyncSourceConfig* sc);
+ MailSyncSource(MailSyncSource &s);
+ ~MailSyncSource();

+ setPath(const wchar_t* p): void
+ getPath(): const wchar_t*
+ setFolderToSync(const wchar_t* t): void
+ getFolderToSync(): const wchar_t*
+ isInFolderToSync(const wchar_t* toCheck): bool

+ setIsMailInOutbox(bool value): void
+ getIsMailInOutbox(): bool
+ setIsMailInInbox(bool value): void
+ getIsMailInInbox(): bool
+ setFailedSendMailInOutbox(bool value): void
+ getFailedSendMailInOutbox(): bool
+ setMaxMailMessageSize(int value): void
+ getMaxMailMessageSize(): int
+ setIsSyncInclusive(bool value): void
+ getIsSyncInclusive(): bool

+ getFirstItem(): Item*
+ getNextItem(): Item*
+ getFirstItemKey(): Item*
+ getNextItemKey(): Item*

+ getFirstNewItem(): Item*
+ getNextNewItem(): Item*
+ getFirstUpdatedItem(): Item*
+ getNextUpdatedItem(): Item*
+ getFirstDeletedItem(): Item*
+ getNextDeletedItem(): Item*
+ setItemStatus(key: wchar_t[],
 status: int)
+ addItem(item: Item&): int
+ updateItem(item: Item&): int
+ deleteItem(item: Item&): int

+ beginSync(): int
+ endSync(): int
+ void assign(FileObjectSyncSource& s)

- MailClient2Server *mailClient2Server
- MailServer2Client *mailServer2Client;

- SyncItem *buildSyncItem(MailClientData* m, ArrayList& extras)
- bool setMailData(SyncItem &item, const wchar_t *parent,

MailClientData &m, bool isUpdate)
- bool setFolderData(SyncItem &item, FolderData &folder)

MailSyncSource

bool setMailData(SyncItem &item, const wchar_t*
parent, MailClientData &m, bool isUpdate)

Static function that parses a syncML mail item and
fill a MailClientData object to be used in the mail
data store.

static bool setFolderData(SyncItem &item,
FolderData &folder)

Static function that parses a syncML mail
FolderData object.

set/getFolderToSync Set/Get the mail folder to sync. They could be
I=Inbox, O=Outbox. Other main folders (S=Sent,
T=Trash, D=Draft) are no more synced

set/getIsMailInOutbox Set/Get if at the end of the sync there is a mail in
Outbox folder. Used in previous version when
needed a double sync to send the email. (TBR)

set/getIsMailInInbox Set/Get if there is a new mail in inbox. Used the
understand if play the sound.)TBR because the
default sound will be used).

Set/getFailedSendMailInOutbox Set/Get if there was a problem in sending the
email (on client side or server side)

set/getIsSyncInclusive Set/Get if the current sync is performed with an
inclusive filter.

set/getMaxMailMessageSize Set/Get the max message size supported by the
application. It is get from the configuration.

To get all the information about every modified items, the SyncSource methods use several functions
collected in different classes.

– MailClient2Server: class containing functions to retrieve the item to send to the server. It
provides methods to get all the mails or only the new, modified and deleted mails according to
the sync to perform. It has methods to log in the Mail API database and to read all the properties
of a mail object. The most important functions are:

Name Description
IMAPISession* logOn() Log in the MAPI database
void logOff(IMAPISession* pSession); Log off the MAPI database

Copyright (c) 2007 Funambol - Page 23

Figure 13: Mail Sync Source class iteration

Mail Sync Source

MailClient2Server MailServer2Client

MailClientData

MailInfo

MailItem

account

MailUtils

MailClientData* completeObject(IMessage* pmsg,
wchar_t folder, BOOL isUpdate, BOOL keyOnly =
FALSE);

Create a MailClientData object containing a
MailMessage object that is filled with all the mail
properties (Sender, subject, To, attachments,
body...). It fills only the mail flag (read flag) if the
client is sending a mail update.

HRESULT setSync (int mode, const wchar_t*
path, ArrayList& extra);

Based on the mode (slow, two-way, one-way...),
the method calls GetAllMessages or
GetModificatedMessages functions that prepare all
the items to be exchanged

HRESULT GetAllMessages(ENTRYLIST&
entryList, LPMAPIFOLDER m_pInBoxFolder,
const wchar_t* path, wchar_t folderIdentification)

Fill a full list (entryList) with all the mail items that
are specified in the m_pInBoxFolder.

HRESULT GetModificatedMessages
(ENTRYLIST& newMessages, ENTRYLIST&
updatedMessages, ArrayList** deletedMessages,
LPMAPIFOLDER m_pInBoxFolder, const wchar_t*
path, wchar_t folderIdentification, ArrayList&
extra);

Fill lists of new, update and deleted mail items of a
specified mail folder. ArrayList& extra (TBR)

MailInfo* readPreviousMail(const wchar_t* path,
wchar_t folderId, ArrayList& extra);

Return a MailInfo object of a specified mail folder
from the previous cache. It needs to check for the
new, updated, modified items from the last sync
(TBR extra)

void writeCurrentMails(const wchar_t* path,
ArrayList& extra);

Write the current mail id item cache for every
folder

HRESULT
moveMessageFromOutboxToSentItemsFolder(con
st wchar_t* key);

After a message is sent successfully be the server
the mail in Outbox folder is moved to the Sent one

– MailServer2Client: class containing functions to store the mail item into the device data base. It
provides methods to add a new mail, to modify or delete an existing one. The most important
functions are:

Name Description
wchar_t* addMessage(MailClientData* m); Wrapper function used by the MailSyncSource to

add a new mail item.
HRESULT updateMessage(MailClientData* m); Wrapper function used by the MailSyncSource to

modify an update mail item.
HRESULT deleteMessage(MailClientData* m); Wrapper function used by the MailSyncSource to

delete a mail item.
HRESULT SetMessageProps(IMAPISession*
pSession, LPMESSAGE pmsg, MailClientData* m,
BOOL onlyFlags = false);

Function that reads all the mail fields from the
MailClientData (Subject, To, body, attachments...)
and stores it in the device mail datastore. If
onlyFlags is true only the flag (i.e. Read flag) are
updated.

– MailClientData: class containing the C++ API EmailData object, that is a representation of the
syncML email object. The EmailData has methods to format itself to a syncML and to parse a
syncML structure. Through this class is possible to access every field of the email message. The
MailClientData is used by the MailSyncSource, the MailClient2Server and the MailServer2Client
to easily handle the mail message. The most important members are the following (note they
have their own set/get methods):

Name Description
EmailData* emailData The C++ API object that represents a mail

message. It provides methods to read/write all the
mail message properties (Subject, To,
attachments...) and the mail flags (read,
forwarded..)

wchar_t* entryId The id of the mail in the format I/AAABBCC00954.
It is the folder in which the mail will be stored or
from it is retrieved / the b64 conversion of the
binary id of the mail message

Copyright (c) 2007 Funambol - Page 24

wchar_t* folder The folder of the mail (I=Inbox, O=Outbox,
S=Sent, T=Trash, D=Draft)

int maxMailMessageSize The max mail message supported by the client.
int currentMessageSizeFilter The current filter mail size
bool isSyncInclusive It is true if the current sync process is with an

inclusive filter.

– MailInfo: class used to represent the structure of the cache of the last sync. The cache is a file
for every folder to sync (currently only Inbox. Outbox doesn't need any cache file because it is
always empty after a sync. If not empty, every mail in this folder must be sent again).
The cache mail file has a structure like

 <mails>
 <num>1</num>
 <last>39126.782743</last>
 <lastTime>20070213T174709Z</lastTime>
 <item>
 <id>I/AABBCC0004345ED</id>
 <read>true</read>
 </item>
 </mails>

Name Description
DATE last; The last time the sync was succesfully completed
int num The number of item structure the file contains
ArrayList* mailItems List of all the MailItem object representing a single

email object

– MailItem: class used to represent the id and the read flag state of the mail at the previous sync.

Name Description
char* id;

The id of the mail that there was at the end of the
last sync

bool read; Flag to say if the mail was already read of not

– MailUtils: collection of utility functions used by the mail classes

Name Description
char* convertBinaryToChar(SBinary sbEntry,
wchar_t folder)

Convert the binary internal mail ID into a char
string. It uses the b64 conversion and an element
to understand the folder in which the mail is. The
result is something like I/AABBCC00034543

void getFolderToSync(MailSyncSourceConfig &sc,
OUT wchar_t* tt);

Get the folder to sync from the plug-in
configuration

char* createMessageID(const wchar_t* entryID) Create the MessageID header in the outgoing mail
if it doesn't have any.

– account: collection of functions related to the Funambol custom email account.

Name Description
HRESULT modifyAccount(const wchar_t* name,
const wchar_t* replyAddress)

Used to modify the Funambol account setting the
visible name and the mail address

HRESULT getAccountInfo(wchar_t* name,
wchar_t* replyaddress)

Get the name and the reply address from the
Funambol mail account

BOOL doesFunambolAccountExist() Check if the Funambol mail account exists. Used
by the UI methods to decide if to show the mail
settings.

Copyright (c) 2007 Funambol - Page 25

4.1.1.4. Initialize

This section describes the functions needed to create the sync engine and begin the sync process.
These methods are grouped in two principal modules: the CustomSyncClient and the maincpp.
The C++ API provides a SyncClient interface and its implementation that has to be instantiate to run
a synchronization. This SyncClient can be extended to add specific custom functionalities: in the
plug-in the customized CustomSyncClient needs to add some extra check.
More, the initialize module contains the entry point function that instantiate the CustomSyncClient and
kickoff the synchronization process. As for the Figure 1, all of the sync runners starts the sync calling
the “startsync” program (see 4.2) and this last one calls the synchronize() function, in the initialize
block, passing the proper parameters. In the synchronize() function, all the needed stuffs are
prepared, the SyncSource objects, their configurations, the listener objects and then the
CustomSyncClient.sync() method runs finally the sync. At the end the results are analyzed and sent
to the UI. The most important methods in the modules are described below.

– CustomSyncClient: class derived from the SyncClient C++ API base class. It is responsible to
instantiare the sync engine and drive the sync process. It uses the base default methods except
for the following. It is used to notify the user that the server has requested a sync for all the data
of the selected source.

Name Description
int continueAfterPrepareSync() The implementation asks the user to be sure to

continue because the server has requested a sync
that exchange all items and can request a lot of
time

– maincpp: module containing the entry point function that prepare all the needed things to kicks
off all the sync process. It contains other useful functions to check the sync result too.

Name Description
DWORD WINAPI synchronize (const wchar_t*
path, const wchar_t** sources, const wchar_t**
ids, const char* mode)

The main function used to start the sync process.
path is the install path of the application. sources
is a NULL terminated array of strings containing
the source name to synchronize; ids is a NULL
terminated array of strings containing the id of the
mail that must be synced with a INCLUSIVE filter.
mode is the sync mode used for the sync if
imposed by the client

DWORD checkStartSync() Used by the UI modules to check if there is a sync
currently in progress

int startProgram(const wchar_t *app, const
wchar_t *cmdline)

Used to start an app.exe program with cmdline
arguments

static wstring getMailUnsent(MailSyncSource&
mailSource)

Analyzes the server message if a mail cannot be
sent and show a user friendly message to the user.

4.1.2. Events

In the client dll there is a group of classes that implement the SyncEvent interfaces described in C++
API Design Document ([7]). The SyncEvent interfaces are fired by the C++ API in some strategical
point of the sync flow and can help the client to have feedback about the sync process.

Basically the event plug-in classes are used to notify the User Interface regarding the action the
synchronization process is performing. Through the notification event it is possible to understand
which data source is syncing, in which phase the sync is (the authentication phase or the receiving
data from the server), or how many items the client or server is sending in order to give to the user
the feeling about the sync process. Only the most important sync events are implemented.

– SyncListenerClient: notification methods about the main sync process

Copyright (c) 2007 Funambol - Page 26

Name Description
void syncBegin(SyncEvent &event)

Used to notify the UI the sync is started

void syncEnd(SyncEvent &event) Used to notify the UI the sync is ended

– SyncSourceListenerClient: notification methods about the specific data source. The method
syncSourceTotalClientItems is not impemented because the total client items to sync are notify to
the UI after the procedure in which the client has discovered its modification items. For example
the client contacts to be exchanged are noified to the UI in the WindowsSyncSource class
(getFirstItem, getFirstNewItem)

Name Description
virtual void syncSourceBegin(SyncSourceEvent
&event)

Used to notify the UI a specific data source starts
its sync

virtual void syncSourceEnd(SyncSourceEvent
&event)

Used to notify the UI a specific data source ends
its sync

virtual void syncSourceSyncModeRequested
(SyncSourceEvent& event)

Used to notify the UI the current data source must
perform a server requested sync mode (usually
slow-sync if the server doesn't agree which one
the client was starting)

void syncSourceTotalClientItems
(SyncSourceEvent& event)

Not implemented.

void syncSourceTotalServerItems
(SyncSourceEvent& event)

Used to notify the UI how many items the server
wants synchronize

– SyncItemListenerClient: notification methods about the every exchanged item of a data source.
The methods itemxxxByClient sends a notification to the UI that an item was added, modified or
deleted. Currently the UI has a counter, to show to the user, that indicates the client is sending an
item without discriminate if it is new, updated or deleted. The itemxxxByServer notify the UI at
the same way but regarding the server items. A different handling is for the mail item. In this case
the MailSyncSource is responsible to notify the UI if a mail is properly inserted, updated or
deleted. Otherwise, if an error occurs or the item is a FolderData data type and not a EmailData
type, the counter is not incremented.

Name Description
void itemAddedByClient(SyncItemEvent &event)

Notify if a new item is sent to the server

void itemAddedByServer(SyncItemEvent &event) Notify if a new item is sent by the server
void itemDeletedByClient(SyncItemEvent &event) Notify if a deleted item is sent to the server
void itemDeletedByServer(SyncItemEvent &event) Notify if a deleted item is sent by the server
void itemUpdatedByClient(SyncItemEvent &event) Notify if an updated item is sent to the server
void itemDeletedByServer(SyncItemEvent &event) Notify if an updated item is sent by the server

– HwndFunctions: collection of static function used to manage the handles of the User Interface
windows to address the notification messages.

Name Description
static HWND getWindowHandle()

Return the handle of the “Funambol plug-in” main
window to address the messages

static void closePreviousMsgBox() Close all previous message box if other are
coming

Copyright (c) 2007 Funambol - Page 27

4.1.3. Notification

This group of classes in the main library that is responsible to give the elements to say to the server
that the ip of the device has changed. These classes are related to the notlstnr library (see 4.3).
When the device ip changes, the notlstnr understands this modification and starts a particular sync
process in which it communicates to the server this change.
This group of classes provide the sync source, the AddressChangeSyncSource, and other useful
methods to register and de-register the notlstnr library.

– AddressChangeSyncSource: the simple sync source used to create only an item containing the
new ip address of the device. Only the method getFirstItem() is implemented.

– addresschange: contains the function invoked by the notlstnr library that start the sync to notify
the new address to the server. It prepare all the things needed to the sync like instantiate the
AddressChangeSyncSource, create its configuration and fire the sync. It returns the appropriate
error code if the notification fails.

Name Description
AN_ResponseCode notifyAddressChange(const
wchar_t *context)

Method that prepare all the needed to start the
sync process.

– s4n_service: module containing function to register and de-register the notlstnr library as a
service.

Name Description
int registerService()

Register the notlstnr library at the appropriate
Operating System process

int deregisterService() Remove the notlstnr library from the OS process

– checknet: module containing useful functions check if the network is active and the ip address of
the device

Name Description
bool IsNetPresent() Check if a network is available
void getIPAddress(wchar_t* address) Return the ip address

4.1.4. Settings

The client settings are a representation of the configuration the plug-in needs to work. Basically, they
are an extension of the default provided by the C++ API. The basic configuration needs to the API to
create a well formed syncml message: these information are username, password, URL, source
names or their sync mode. Other extra parameters, specific for the plug-in, are needed to store some
user preferences, like schedule time, notification subscription, log level or which folder use to sync
files.

On Windows Mobile the repository in which memorize the settings is the common windows registry.
During the installation procedure all the registries are filled with the default values and some of them,
like server url, username and password, must be changed before make the first synchronization.
A scratch of the configuration structure of the data source to sync is as follow:

Copyright (c) 2007 Funambol - Page 28

The node sources contains all the keys related to every data source configuration. Every key
(contact, calendar...) contains properties that are necessary to describe the current data source and
its state as if it is selected to be synced (sync) , the last sync time (last), the format of its items
(format) and so on .

The node syncml contains the keys related to the general syncML protocol that needs to the sync
process. Here there are information about the server URL to sync against, the username and
password, the device id and so on. To learn more about the configuration parameters see [7].

Copyright (c) 2007 Funambol - Page 29

Figure 14: Settings detail for source Contact

Figure 15: Settings detail of syncml common parameters

As said before, the plug-in uses these basic configuration parameters but needs to add extra
properties to handle behaviors for specific purposes as the scheduler process, the TCP/IP or SMS
push action, the use of the data encryption method or the way to format the item data. These values
can be related to a single data source, as for the way to format the single item data, and it is stored in
the sources/datasource branch; more particular clients properties, as push action, are stored at the
SyncclientPIM level. A complete list of the specific plug-in extra parameters are in the follow table.
Note that mail source has its own configuration class provided by the C++ API:

Sources custom properties:

Name Description
All sources node

Schedule It is the number of minutes the corrispondent
source has to start the sync

UseSIF 1 if the data source are exchanged in SIF format
or 0 if it is not used. The format depends from
every specifiec source

Briefcase and Note (only pocket pc version)
Dir The directory in which there are the files or note to

sync

SyncclientPIM custom properties:

Name Description
Sms Indicates if the device has to be notified by sms (1

true, 0 false)
Push Indicates if the device has to be notified by TCP/IP

(1 true, 0 false)
PluginVersion The install procedure writes the current installed

version
Path The path the plug-in is instsalled
CradleNotif Indicates if the sync must start when the device is

cradled (1 true, 0 false)
IsPortal Indicates if the version installed is opensource or

portal(1 portal, 0 opensource)
PushPort The port on which the device is listening for the

server notification message (4745)
SvrNotified Indicates if the server was properly notified by the

client

To handle the settings parameters, the client dll library uses ClientSettings class, that represents the
configuration structure. It is a singleton class and it is instantiated at the beginning of the sync process
by startsync program. Also the UI creates its own instance to load and save settings (see 3.1).

The ClientSettings is used by the maincpp module (see 4.1.4) to read all configuration needed to start
the process and by the User Interface, to show to the user the current parameters and permit their
changes. There is also another module, SettingFunctions, contains utility methods to access the
registry and retrieve only specific values, without loading the entire structure.

Copyright (c) 2007 Funambol - Page 30

The ClientSettings is a class that derives from DMTClientConfig of the API. The DMTClientConfig
contains a default configuration that loads the default parameters that are common for the general
syncml settings and for every sources. It contains an array of SyncSourceConfig that represent the
configuration for all the data sources.
The WindowsSyncSourceConfig is a plug-in settings class that works like a proxy for the common
properties of the SyncSourceConfig and handle other custom properties for every source. The
schema of the WindowsSyncSourceConfig is like follows:

Name Description
SyncSourceConfig* s; Internal pointer to the SyncSourceConfig of the

DMTClientConfig. Through this pointer, the class
can get the common properties from the basic
class.

string useSif Custom property for the source
string dir Custom property for the source
string schedule Custom property for the source
WindowsSyncSourceConfig::WindowsSyncSource
Config()

Constructor that initialize NULL the
SyncSourceConfig pointer

WindowsSyncSourceConfig::WindowsSyncSource
Config(SyncSourceConfig* sc)

Constructor that initialize the internal
SyncSourceConfig to the passed one

void setCommonConfig(SyncSourceConfig* sc); Set the internal SyncSourceConfig* variable to the
DMT SyncSourceConfig* variable

SyncSourceConfig* getCommonConfig(); Set the SyncSourceConfig* variable
get/setName() Get/Set value from SyncSourceConfig
get/setURI() Get/Set value from SyncSourceConfig
get/setSyncModes() Get/Set value from SyncSourceConfig
get/setType() Get/Set value from SyncSourceConfig
get/setSync() Get/Set value from SyncSourceConfig
get/setEncoding() Get/Set value from SyncSourceConfig
get/setVersion() Get/Set value from SyncSourceConfig
get/setSupportedTypes() Get/Set value from SyncSourceConfig
get/setLast() Get/Set value from SyncSourceConfig
get/setEncryption() Get/Set value from SyncSourceConfig

Copyright (c) 2007 Funambol - Page 31

Figure 16: Plug-in settings classes details

client dllSettings

ClientSettings

WindowsSyncSourceConfig[] MailSyncSourceConfig

FunambolAPI C++

DMTClientConfig
SyncSourceConfig[]

MailSyncSourceConfig

SettingFunctions

get/setUseSif() Get/Set value from the class
get/setSyncDir() Get/Set value from the class
get/setSchedule() Get/Set value from the class

The mail data source is a bit more complex than the other sources because it contains several other
properties. The API C++ provides already the configuration for that data source and it is useful for the
plug-in to use this one.

Therefore the ClientSettings class contains an array of WindowsSyncSourceConfigs that contain a
reference to the SyncSourceConfig of the DMTClientConfig adding the custom properties of the plug-
in. It also contains a MailSyncSourceConfig that is used for the mail data source. Then there are also
methods of the class that are used to get other custom properties of the plug-in (SyncclientPIM
custom properties).

– ClientSettings: class derived from the DMTClientConfig C++ API base class. ClientSettings
reads the setting parameters that are common for all data sources and for the syncml protocol
through the base class methods (see [7] for more info). It extends the basic properties with the
custom needed to store particular behavior settings. The most important methods and members
are:

Name Description
ClientSettings(const char* application_uri) Private constructor that build the configuration

object starting from the application_uri context.
The ClientSettings can only be used through a
static instance of the class. In the plug-in the
context is Funambol/SyncclientPIM

~ClientSettings() Destructor
ClientSettings* ClientSettings::getInstance() Return the instance of the ClientSettings. It

creates a new one if it is the first time. It populate
with all the parameters in the registry.

MailSyncSourceConfig* mailssconfig; Pointer to the object repreenting the mail data
source configuration.

WindowsSyncSourceConfig* winSourceConfigs Pointer to an array of WindowsSyncSourceConfig
containing the default properties plus the customs.

BOOL readConfig(); Read the config parameters of the SyncclientPIM
level

BOOL saveConfig(); Save all the custom properties in SyncclientPIM
level and also some particular properties in all the
tree. They are: username, password, url,
device_id, enableCompression, log level, devinf
hash.

BOOL save(); Save all the settings parameters
BOOL read(); Read all the settings parameters
const char* getConfigSourcesParameter(const
char* sourceName, const char* parameter);

Get a value of a parameter of a specific sync
source

BOOL setConfigSourcesParameter(const char*
sourceName, const char* parameter, const char*
value)

Get a value of a parameter of a specific sync
source

BOOL saveSyncSourceConfig(const char* name); Save the configuration of the source plus the
custom source parameters

void setDirty(int flag); Set a dirty flag to specify which parameters are
modified

BOOL saveDirty(); Save config parameters based on the dirty flag.
__declspec(dllexport) ClientSettings*
getRegConfig();

Return the pointer at the static instance of the
class

get/setIp(); Get/Set custom property in SyncclientPIM level
get/setPush(); Get/Set custom property in SyncclientPIM level
get/setPushPort() Get/Set custom property in SyncclientPIM level
get/setSms() Get/Set custom property in SyncclientPIM level
get/setPolling() Get/Set custom property in SyncclientPIM level
get/setSvrNotified() Get/Set custom property in SyncclientPIM level

Copyright (c) 2007 Funambol - Page 32

get/setPath() Get/Set custom property in SyncclientPIM level
get/setCradleNotification() Get/Set custom property in SyncclientPIM level
get/setIsPortal() Get/Set custom property in SyncclientPIM level

– SettingsFunction: collection of functions used to read and write single parameter in the

configuration tree. It contains also functions to retrieve the IMEI (for the smartphone) and for the
deviceID (pocket pc).

Name Description
wstring getIMEI() Return the IMEI of the smartphone
wstring GetSerialNumberFromKernelIoControl() Return the device id of the pocket pc
DWORD getClientConfigurationInternal (wchar_t*
sourceName, wchar_t* propertyName, wchar_t*
propertyValue, BOOL isFrom)

Read a single value of a property name of the
particular sourceName. IsFrom must be null.

DWORD WINAPI setClientConfiguration(wchar_t*
sourceName, wchar_t* propertyName, wchar_t*
propertyValue, wchar_t* errorMsg)

Set a single value of a property name of the
particular sourceName. ErrorMsg must be null.

4.2. Startsync.exe

It is the main program that is started by all the agent that can start a sync. Every sync initializer fires
the startsync.exe program using the startcmd method provided by the C++ API. The initializer put its
own different command line argument to discriminate which action must be performed.
This program, through these opportune parameters, is used also to add and remove services (SMS
push) or schedule a sync. When the sytartsync is called, it creates a global semaphore, named mutex
([9]), in the following way:

CreateMutex(NULL, TRUE, TEXT("FunSyncInProgress"));

This avoids that multiple syncs can overlap themselves guaranteeing no data corruption.

Copyright (c) 2007 Funambol - Page 33

The first action of the WinMain function is to parse the command line to perform the right action. If
the action is to start a sync, the function creates the Funambol notification icon on the tray (a man
walking on the rope) and writes its own process id in a proper registry key. This will be useful to stop
the sync process if the user wants to do it for every reason. Other actions permitted are to register /
de-register the client to listen for the SMS push or to register / de-register the client to listen for the
Over The Air configuration. The latter is to be completed.

The startsync program is usually called as follow:

startsync.exe <parameter <sourcename1,sourcename2> >

 The possible command line are described below

Parameter Description
poll Activate the scheduler for the automatic sync. The

time for every sync is written in a proper registry
once <sourcename1,sourcename2...> If only “once” is specified as command line the

sync will start for every data source the user have
selected in the configuration panel. Otherwise only
the specified sources will be synced

addresschange <sourcename1, sourcename2...> Communicate to the server that the ip of the
device is changed. Usually the command line is
“addresschange mail” (TBR does mail really
need?. Only addresschange should be enough)

/notify Used when the “sync when cradled” option is
checked. This parameter permits to start the sync
when the device is cradled on the pc

APP_RUN_AT_TIME Used by the system function CeRunAppAtTime
when the schedule option is activated.

Copyright (c) 2007 Funambol - Page 34

Figure 17: Startsync module and some of its caller

client dll

PIM
File

Mailmainmain

initialize

synchronize(...)

starsync
WINAPI WinMain(...)

User Interface Mail interface Schedule

startsync.exe pollstartsync.exe once mailstartsync.exe once
startsync.exe <config
params>

TCP/IP
SMS

startsync.exe <params>

inclusive mail,/id1,/id2,/id3 Used by the syncmltransport functions (see 4.4) to
complete the downloading of a partial email.
Enable the mail INCLUSIVE filter

register Register the startsync application itself as a
listener for the SMS wap push server messages

deregister Deregister the startsync application itself to listen
for the SMS wap push server messages

wap_push Used by the operating system when a SMS wap
push message comes on the device. The startsync
parses the sms and the starts the sync.

registerOTA Register the startsync application itself as a
listener for the OTA wap push server messages.
No yet completed

deregisterOTA Deregister the startsync application itself to listen
for the OTA wap push server messages. Not yet
completed

OTA_config Used by the operating system when a SMS OTA
wap push message comes on the device. It
configures the main settings automatically. Not yet
completed

refresh-from-server Used by the UI functions when a recover from
server is invoked

refresh-from-client Used by the UI functions when a recover from
client is invoked

available Not used
removeNotif Remove the notification icon

4.3. Notification listener (ntlstnr)

The Windows Mobile plug-in is able to start a sync process after a notification about some server
items modifications, PIM or mail. If the user chooses this option, the plug-in says that it is reachable,
informing the server about its ip address and the port on which it is listening to the incoming server
messages. In order to do these actions the plug-in has a dll library responsible to communicate the
current ip address (and its changes) to the server, and to wait for incoming requests.

The component that waits for TCP/IP requests is called Notification Listener, and it's a simple internet
daemon waiting on a TCP port. The default port number, registered at the IANA ([10]) for the
Funambol Mobile Push service, is 4745.
On Windows Mobile, is it possible to implement an internet daemon without having a process or
thread running using the service.exe ([11]), that behaves somewhat like the inetd service on Unix
machines: waits for requests on different ports and, if a request arrives, calls the service registered
for that port.

The interface between service.exe and the user services is based on DLL registration: for the
Funambol plugin, this interface is implemented by the notlstnr.dll module.
The DLL to be registered on service.exe must have implemented a number of functions that will be
called by the OS when certain events occur (connection open/closed by the client, client reads, client
writes, initialization, I/O event from the network).
Each service registered is also identified by a three-char prefix, which can be used to identify the
connection as a peripheral (like PRN:). For the Funambol plugin, the prefix is S4N (Sync4J
Notification). All the initerface method are prefixed by the service prefix.
Because the client-side interface is not used by the notlstnr, not all the interfaces are implemented:

Copyright (c) 2007 Funambol - Page 35

Name Description
DllMail Dll entry point
S4N_Open Not implemented
S4N_Close Not implemented
S4N_Init Start the thread listener
S4N_Deinit Stop the thread listener
S4N_IOControl Method that notify the listener with OS events. The one

the plug-in handles are
IOCTL_SERVICE_NOTIFY_ADDR_CHANGE
IOCTL_SERVICE_REFRESH
IOCTL_SERVICE_STARTED
IOCTL_SERVICE_CONNECTION

S4N_Read Not implemented
S4N_Seek Not implemented
S4N_Write Not implemented

To notify the ip address change the focus is on the IOCTL_SERVICE_NOTIFY_ADDR_CHANGE (called
by service.exe each time the IP address changes for some reason), the IOCTL_SERVICE_REFRESH
(the service S4N has been restarted) and the OCTL_SERVICE_STARTED (called by service.exe at the
end of the startup procedure) event. When one of them is fired by the OS, the plug-in calls a
procedure to start a particular sync process that aims to notify the server about the new ip where the
device is reachable and the port on which there is a service listening.
These methods are executed in the service.exe thread, so they must process quickly the request and
return the control. If a longer process is needed, it must be done in a separate thread.

Copyright (c) 2007 Funambol - Page 36

When the library is registered and it has communicated its ip address and the port where it is
listening, the plug-in is ready to wait for the incoming messages. If the server detects a change to be
notified, like a new email is received or there is a modification on some PIM items, the server asks
the client to start a synchronization sending a particular message via TCP/IP to the ip and port that
the client previously sent. At this event, the IOCTL_SERVICE_CONNECTION, the library reacts parsing
the message and starting the sync.

The dll library is composed by several classes and the most important ones are described below.

– notlstnr: the main class that implements the methods of the service.exe interface. See before
about the interface method description. Follows the handler functions of the events

Name Description
DWORD addressChangeHandler(void) Start a particular sync saying to the server the new

client IP address and the listening port. It avoid to
communicate local unreachable ip (192.168.55.101
and 169.254.2.1).

static DWORD acceptConnection(SOCKET sock) Accept the server alert, calls the right methods to
parse the message and if the request is fine to
start the sync process

– s4jproxy: singleton class containing the methods to parse the message and to start the

synchronization process

Name Description
RetCode S4JProxy::parsePkg0(const char *msg,
int msglen)

Parse the server message (the package 0 in
syncML language)

int S4JProxy::sync(bool debug) Call the right function to start the sync process

– worker: class that is invoked by the notification library when a server request comes. It create the
thread that is responsible to parse the message and to start the sync. In order to do this, it uses
the s4jproxy instance class.

Copyright (c) 2007 Funambol - Page 37

Figure 18: Notification listener interactions

client dll

PIM
File

Mailmainmain

initialize
synchronize(...)

starsync
WINAPI WinMain(...)

Notification

service.exe

SERVER
notlstnr

NEW_IP_CHANGED:4745

Item
modificationip:4745

Name Description
DWORD startWorker(SOCKET s) Start the whole procedure when an incoming

message arrives (start the NotifWorker thread)
DWORD stopWorker() Dispose everythings when the service.exe is

deregister and removed
const char *processPacket(const char *pkt, int
pktlen)

Process the package message through the
s4jproxy class

extern "C" DWORD WINAPI NotifWorker(LPVOID
lpv)

The main thread for the notification server
message

4.4. Syncmltransport dll

The SyncMLTransport is a dll library specific for the mail data source. It is a custom implementation
of a mail transport layer as the POP3 or IMAP4 component. It permits the creation of the custom
Funambol mail account and it gives the opportunity to invoke the startsync.exe process through the
usual mail interface. The dll library implements several methods that are needed to construct an
Inbox transport through which implement the custom protocol. The transport layer is built starting
from an example shipped with the Windows Mobile 5.0 SDK ([12]).

The synchronize() method of the SyncMLTransport is the most important and it is invoked when the
user presses the usual send/receive button. The action is detected and it is possible to start the usual
synchronization process calling the startsync.exe program with “once mail” command line.

Through the plug-in it is possible to choose some mail filter as the age of the mail, the max size and if
to download the attachments too. In this way, the synchronization is easier and faster. After the user

Copyright (c) 2007 Funambol - Page 38

Figure 19: SyncML Transport dll library

client dll

Mail

mainmain

initialize
synchronize(...)

starsync
WINAPI WinMain(...)

SyncMLTransport

AdviseSink

Syncmltransport dll library

complete
partial
email

startsync.exe
inclusive
mail,
I/AAAAAG8TAAECAAAAAQAAA==”

startsync.exe once mail

have downloaded the partial mail, he can decide to get the full email. To aim this action, in the body
of the mail there is a link saying “click here to get the rest of the mail”. The click action is intercepted
by another listener that is able to start to download the full email. This listener, the AdviseSink,
creates a proper command line for the startsync.exe program specifying an inclusive filter with only
the id of the mail to be completed.

– AdviseSink: class listener used to download the remaining part of the partial downloaded email

Name Description
STDMETHODIMP_(ULONG) OnNotify (ULONG
cNotify, LPNOTIFICATION lpNotifications)

Method called when the "click to download the rest
of the message" is pressed. It runs the startsync
program with command line "inclusive
mail,I/AAAAAG8TAAECAAAAAQAAA==”

In order to install the transport dll library, the plug-in installation procedure writes particular registries
to say to the device mail application manager that there is a new transport available for the mail
account. These registry are the follows:

Name Description
HKEY_LOCAL_MACHINE\Software\Microsoft\Inbo
x\Svc\Funambol\name

The name of the new transport type layer:
Funambol

HKEY_LOCAL_MACHINE\Software\Microsoft\Inbo
x\Svc\Funambol\port

The port: 0. It is unused

HKEY_LOCAL_MACHINE\Software\Microsoft\Inbo
x\Svc\Funambol\DLL

The implementation of the layer:
syncmltransport.dll

4.5. Handleservice

This module is a program that is invoked by several methods to start or stop some services or to
create or delete the Funambol email account during the install or uninstall process. The functions are
called starting the handleservice program with an appropriate command line:

handleservice.exe <parameter>

The possible parameters are listed below.

Name Description
register It calls the registerService methods (see 4.1.3) to

register the notlstnr library
deregister It calls the deregisterService methods (see 4.1.3) to

deregister the notlstnr library
createAccount It creates the Funambol email account. It is called

by the installation procedure
deleteAccount It delete the Funambol email account. It is called

by the uninstall procedure
registerByLink The “register” action creates a file.lnk and put in

the /Windows/Startup directory that contains
programs that are executed on system startup. So
if the device is restarted, automatically the file.lnk
calls handleservice.exe registerByLink and can
restart the notification listener.

APP_RUN_AT_TIME The “register” action sets a scheduled process
(every 10 minutes) that checks the device
connection and tries to resume if it is missing.

registerCradle Set a listener on the “on cradle” event. When it is
got the sync starts. NOTE. Available for Windows
Mobile 5.0 only

deregisterCradle Remove the listener on the “on cradle” event.
Available for Windows Mobile 5.0 only

Copyright (c) 2007 Funambol - Page 39

4.6. Syncmail

Component that needs only to start the sync of the mail. It is used by the TCP/IP notification to permit
the device can play default notification mail sound when a new email comes on the device. Currently
it is used only on the pocket pc plug-in version but also the smartphone needs this behavior.
The need to create a separate program to handle this little issue is due to a different compilation
options between the native “cemapi” library and the plug-in one. So through this program it is possible
to separate the different modules. For more information see [13] and [14].

This component only contains the main function that start with the command line

syncmail.exe once mail

This runs the MailSyncMessages mail API that emulate the Send/Receive press button and allow to
play the sound when needed.

Copyright (c) 2007 Funambol - Page 40

5. Installation

This section tries to describe the procedure to build and install the Windows Mobile plug-in. It shows
the main modules needed for this purpose

5.1. Funsetup dll

It is the dll library hooked at the install/upgrade/uninstall procedure and is loaded first of all. The
Windows Mobile offers the possibility to have a library that can execute some actions before the
installation procedure starts. Therefore it is possible make some custom check o preliminary
operations. The same library is executed also before the uninstall procedure starts. At the same way
it is possible to do things, like to close the running UI, before starting the uninstall procedure. To learn
more about dll see [15] and [16].
To have a similar library is needed to create a dll module and implement several particular methods.
Then, in the cab installation package, it is necessary to load the library specifying its name
(funsetup.dll).

The methods to implement are:

Name Description
Install_Init Used to specify which actions are to do before

extracting the files of the plug-in
Install_Exit Used to specify which actions are to do after the

extraction of the files of the plug-in
Uninstall_Init Used to specify which actions are to do before

removing the plug-in
Uninstall_Exit Used to specify which actions are to do after the

removal of the plug-in

5.1.1. Installation process

In the installation process, the methods of the library are implemented in the following way:

Name Description
Install_Init Creates all the registries default settings

Create the registries used to register the
syncmltransport library (see 4.4)

Install_Exit Creates the Funambol email account
Creates the "briefcase" folder, the default one
used to sync files.

Copyright (c) 2007 Funambol - Page 41

5.1.2. Upgrade process

The upgrade process permits the keep the settings from a previous installation of the plug-in both 3.0
and 6.0.x versions. Windows Mobile 5.0 permits to figure out if a previous version of a program is
installed, even if it has the same name. This is used for upgrading from 6.0.x version but not from
3.0, due to a different convention name. Moreover, in the 3.0 the structure of the settings tree was
different and an extra effort to map old settings to new ones has to be done in the setup library.
There was also a 3.1.x version only for the smartphone device that already has the settings structure
as the 6.0.

Name Description
Install_Init If previous version is already 6.0:

- backup of the registries settings
- backup of cache files of the sync

If previous version is 3.0:
- backup of the registries settings with mapping
from 3.0 structure to new one
- remove all file of the 3.0 plug-in (old visual basic
program, old images...)
- remove the 3.0 entries from the list of uninstall
programs

Install_Exit Restore the settings from backup
Restore the cache files from backup
Restore the notification settings if previous set

5.1.3. Uninstall process

The uninstall process remove completely the plug-in from the device, taking care to remove all the
settings, the files related to the plug-in and the Funambol custom email account. The methods of the
dll are the Uninstall_ prefixed and the actions performed are as follow:

Name Description
Uninstall_Init Delete the Funambol email account

Close opened process and notification listener
Uninstall_Exit Delete all registry settings

Delete all unused files (logs, cache...)

5.2. build.xml

It is the ant ([17]) script file used to build all the source code files and to package the executables in a
.cab file, to download and install directly on the device, or in a .exe file, to install from a laptop.
The plug-in installer has two different directory for pocket pc and smartphone version. All the
instructions inside have only slightly differences but it is necessary at the moment keep them
separated. Currently the plug-in is released for windows mobile 5.0 but there are also modules to
create the version for 2003 OS, both for pocket pc and smartphone.
The main difference between the two builds is the smartphone one needs to be signed with a trusted
certificate to be successfully installed on the device. In order to have the signed version it is
necessary to follow a particular procedure with Verisign certification authority that won't be described
here.

Copyright (c) 2007 Funambol - Page 42

The modules used to build the pocket pc version are:

– release.properties: contains informations about the build version. It is necessary to increment the
release.major, release.minor and build.number parameters to have the corresponding release.

– pocketpc.properties: contains the variable used by the ant build.xml script to build the plug-in
– funambol-pocketpc-nsi-script.nsi: script file used by nsis installer program [18] to create the

executable to allow to install the plug-in from a laptop
– setup-ppc-wm5.inf: contains all the directive to create the .cab file installer.
– build.xml: ant script that leads all the actions permitted
– ppcwm5.xml: and script that leads all the actions permitted for pocket pc WM 5. It is included in

the build.xml

For information about how to build the plug-in and what is required to have installed see [19].
To create the pocket release it is enough to go in the install/pocketpc/build directory of the plug-in
source structure, and type ant (you must have ant installed).

The several possibility for the windows mobile 5.0 release are

Name Description
forge-src Create a zip file containing all the sources files

needed to build the plug-in, C++ API included
clean-release-wm5 Clean all the directories of the previous built

modules in order to start to build from a clean
scenario

compile-no-checkout-release-wm5 Compile all the source code
forge-no-checkout-release-wm5 Move the compiled modules (dll library and

executable) in a opportune folder. It also complete
the creation of the .inf file necessary to create the
cab file

create-lib-wm5 Group all in the cab file
create-installer-wm5 Create the executable responsible to install the

plug-in via laptop (ActiveSync connection)
ppcwm5-release Create the pocket pc plug-in from scratch. Actually

it calls all the previous task (compile, forge, create
lib, create installer)

ppcwm5-release-portal Create the pocket pc plug-in portal version from
scratch. It contains some limitation compared to
usual version

Basically the actions to follow to build the smartphone are the same. The only difference is that it is
not possible to create the release because of the code signing issue.

Copyright (c) 2007 Funambol - Page 43

6. Appendices

6.1. Appendix A - References

[1] WM User Guide–http://download.forge.objectweb.org/sync4j/WinMobile_Plugin_UG.pdf
[2] CeRunAppAtTime - http://msdn2.microsoft.com/en-us/library/ms913957.aspx
[3] SyncML Data Synchronization Protocol, version 1.2, Open Mobile Alliance -
http://www.openmobilealliance.org/release_program/ds_v112.html
[4] SyncML Server Alerted Notification, version 1.2, Open Mobile Alliance -
http://www.openmobilealliance.org/release_program/ds_v112.html
[5] Server Alerted Synchronization Design Document
[6] POOM object model - http://msdn .gmicrosoft.com/library/default.asp?url=/library/en-
us/wceappservices5/html/wce50oripocketoutlookobjectmodelpoomapi.asp
[7] Funambol C++ Design Document - http://cvs.forge.objectweb.org/cgi-
bin/viewcvs.cgi/sync4j/3x/client-
api/native/design/Funambol%203.0%20Client%20API%20C%2B%2B%20Design%20Document.odt
[8] Funambol ds server Developers Guide - http://cvs.forge.objectweb.org/cgi-
bin/viewcvs.cgi/sync4j/3x/docs/ds-server/manual/funambol_ds_server_developer_guide.pdf
[9] Mutex - http://msdn2.microsoft.com/en-us/library/ms682411.aspx
[10] IANA - http://www.iana.org/assignments/port-numbers
[11] Service.exe - http://msdn2.microsoft.com/en-us/library/aa446909.aspx
[12] TransportDemo - http://msdn2.microsoft.com/en-us/library/ms880664.aspx
[13] MailSyncMessages - http://msdn2.microsoft.com/en-us/library/ms894668.aspx
[14] MailSyncMessages build problem - http://windowsmobilepro.blogspot.com/2006/04/windows-
mobile-50-new-mapi-functions.html
[15] Setup.dll - http://www.pocketpcdn.com/articles/setupdll.html
[16] Setup2.dll - http://msdn2.microsoft.com/en-us/library/ms838599.aspx
[17] Ant - http://ant.apache.org/
[18] nsis - http://nsis.sourceforge.net/Main_Page
[19] wiki - http://wiki.objectweb.org/sync4j/Wiki.jsp?page=HowtobuildWMPlugin

6.2. Appendix B – Calendar Exception Handling

This section analyzes how the calendar exceptions are handled by the Windows Mobile plug-in. An
appointment event can be set to be recursive and in the event editor it is possible to set different type
of recurrences. So, for example, it is possible to set the appointment recurs every day, or every
Monday and Friday for 15 times or every first Sunday of March and July. In some cases, the user
could need to modify an occurrence of the recurring events maybe changing the subject or the start
date or still delete that occurrence.
The Pocket Outlook Object Model, at the user's modification action, reacts creating an Exception
object related to the principal appointment. It is possible to get that Exception object using the

Copyright (c) 2007 Funambol - Page 44

http://download.forge.objectweb.org/sync4j/WinMobile_Plugin_UG.pdf
http://wiki.objectweb.org/sync4j/Wiki.jsp?page=HowtobuildWMPlugin
http://nsis.sourceforge.net/Main_Page
http://ant.apache.org/
http://msdn2.microsoft.com/en-us/library/ms838599.aspx
http://www.pocketpcdn.com/articles/setupdll.html
http://msdn2.microsoft.com/en-us/library/ms894668.aspx
http://msdn2.microsoft.com/en-us/library/ms894668.aspx
http://msdn2.microsoft.com/en-us/library/ms894668.aspx
http://msdn2.microsoft.com/en-us/library/ms880664.aspx
http://msdn2.microsoft.com/en-us/library/aa446909.aspx
http://www.iana.org/assignments/port-numbers
http://msdn2.microsoft.com/en-us/library/ms682411.aspx
http://cvs.forge.objectweb.org/cgi-bin/viewcvs.cgi/sync4j/3x/docs/ds-server/manual/funambol_ds_server_developer_guide.pdf
http://cvs.forge.objectweb.org/cgi-bin/viewcvs.cgi/sync4j/3x/docs/ds-server/manual/funambol_ds_server_developer_guide.pdf
http://cvs.forge.objectweb.org/cgi-bin/viewcvs.cgi/sync4j/3x/client-api/native/design/Funambol 3.0 Client API C%2B%2B Design Document.odt
http://cvs.forge.objectweb.org/cgi-bin/viewcvs.cgi/sync4j/3x/client-api/native/design/Funambol 3.0 Client API C%2B%2B Design Document.odt
http://cvs.forge.objectweb.org/cgi-bin/viewcvs.cgi/sync4j/3x/client-api/native/design/Funambol 3.0 Client API C%2B%2B Design Document.odt
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wceappservices5/html/wce50oripocketoutlookobjectmodelpoomapi.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wceappservices5/html/wce50oripocketoutlookobjectmodelpoomapi.asp
http://msdn/
http://www.openmobilealliance.org/release_program/ds_v112.html
http://www.openmobilealliance.org/release_program/ds_v112.html
http://msdn2.microsoft.com/en-us/library/ms913957.aspx

methods provided by the POOM API. Briefly the logical way to get the Exception object starting from
the original appointment is:

IAppointment->IRecurrencePattern->IExceptions->IException

The IException object contains properties to understand the modification of the current occurrence
and its properties are:

Name Description
IException::get_AppointmentItem Gets the Appointment item that corresponds to this

exception
IException::get_OriginalDate Gets the date that this exception originally

occurred
IException::get_Deleted Returns TRUE if the exception was caused by a

deleted instance

The Windows Mobile plug-in handles the Exceptions according with other Funambol plug-ins, like
Outlook, and phone embedded clients. In order to achieve these goals, this way of work is quite
different from the current handling of Windows Mobile built-in exceptions handling.

Sync flow of a calendar item with exceptions

Suppose there is a recurring appointment with subject “New try” and location “Paris” on the device
that contains 2 exceptions: the first one is a deletion; the second has the location modified in “Rome”.

When the sync starts, the first action on the calendars data source is “to normalize” all the
appointment exceptions. Therefore all the events are analyzed and the exceptions are treated in the
follow way:

– if the exception is due to an occurrence deletion no action is performed.
– if the exception is due to a field modification of the occurrence, the plug-in creates a new

calendar item with the fields of the exception, that is not-related to the based event.

According with the example scenario, the first exception is untouched and the second is modified so
on the device there will be an appointment with Subject “New Try” that contains two exceptions that
are deletion of two occurrences. There is also a new appointment with subject “New Try” with location
“Rome”.

Then the sync proceeded and the item will be exchanged to the server. The appointment exceptions
are represented in the SIF format as follow:

<appointment>
 <startdate>...</startdate>

 <Exceptions>
 <ExcludeDate>2007-05-07</ExcludeDate> ;date format YYYY-MM-DD
 <ExcludeDate>2007-05-09</ExcludeDate>
 <IncludeDate/>
 </Exceptions>
</appointment>

The <ExcludeDate> is the tag in which there are the date of the occurrence that are deleted.
The <IncludeDate> is the tag in which there are the date of the occurrence that are added. For the
Windows Mobile, the POOM architecture doesn't allow to add and exception to an existing
appointment. This tag will be always empty.

Then the sync proceeded and the server sends its own modification. At the same way another
appointment with recurrence exceptions can come on the device. Suppose the SIF is as follow

<appointment>
 <startdate>...</startdate>

 <Exceptions>

Copyright (c) 2007 Funambol - Page 45

 <ExcludeDate>2007-06-04</ExcludeDate>
 <IncludeDate>2007-05-10</IncludeDate>
 </Exceptions>
</appointment>

The plug in processes the Exception tags as follows:

– ExcludeDate: the plug-in deletes the occurrence at that date.
– IncludeDate: the plug-in treats these as new appointments that are not-related to the principal

one.

Copyright (c) 2007 Funambol - Page 46

	1.Change Control
	2.Introduction
	2.1. Audience
	2.2. Architecture overview

	3.Sync runners
	3.1. Pocket PC and Smartphone User Interface
	3.2. Email client
	3.3. Scheduler
	3.4. Wap Push
	3.5. TCP/IP

	4.Sync logic
	4.1. Client dll
	4.1.1. Main
	4.1.1.1. PIM data source
	4.1.1.2. File data source
	4.1.1.3. Mail data source
	4.1.1.4. Initialize

	4.1.2. Events
	4.1.3. Notification
	4.1.4. Settings

	4.2. Startsync.exe
	4.3. Notification listener (ntlstnr)
	4.4. Syncmltransport dll
	4.5. Handleservice
	4.6. Syncmail

	5.Installation
	5.1. Funsetup dll
	5.1.1. Installation process
	5.1.2. Upgrade process
	5.1.3. Uninstall process

	5.2. build.xml

	6.Appendices
	6.1. Appendix A - References
	6.2. Appendix B – Calendar Exception Handling

