
Funambol version 7.1
Developer's Guide

Last revised: March 6, 2009

Table of Contents
1.Introduction ...7

1.1. Document structure ...7

1.2. Audience..7

1.3. Funambol licensing..7

1.4. Comments and feedback...7

2.Getting started on connector development...8

2.1. Introduction..8

2.2. Getting started..8

2.3. Overview..9

2.4. Create the connector project..9

2.4.1. MyMergeableSyncSource type..11

2.4.2. MySynclet..11

2.4.3. MySyncSourceAdminPanel...11

2.5. Creating and installing the connector package...12

2.6. Creating a SyncSource...15

2.7. Testing the connector...17

2.8. Debugging..19

3.Funambol development..20

3.1. Data synchronization..20

3.1.1. ID handling..20

3.1.2. Change detection..21

3.1.3. Modification exchange...21

3.1.4. Conflict detection...21

3.1.5. Conflict resolution..22

3.1.6. Full and fast synchronization...22

4.Funambol architecture...23

4.1. System architecture..23

4.1.1. Roles and responsibilities..23

4.2. The synchronization engine..27

4.3. Execution flow of a request..27

5.The synchronization process..29

5.1. Preparation...30

5.2. Modifications detection...31

5.3. Synchronization..32

5.4. Finalization...33

6.Extending Funambol..34

6.1. Building a Funambol module..34

Copyright © 2009 Funambol - Page 2

6.2. Modules, connectors, listeners and SyncSource types...35

6.2.1. Registering modules, connectors and SyncSource types..36

7.Developing a SyncSource..38

7.1. The SyncSource interface and related classes..38

7.1.1. SyncContext..39

7.1.2. SyncItem...40

7.1.3. Twin items...40

7.1.4. The Administration Tool configuration panel...41

8.Extending the Funambol Administration Tool...42

8.1. Architecture overview...42

8.2. ManagementObject and subclasses..43

8.2.1. com.funambol.admin.mo.SyncSourceManagementObject..44

8.2.2. com.funambol.admin.mo.ConnectorManagementObject..44

8.3. ManagementObjectPanel and subclasses...45

8.3.1. SourceManagementPanel...46

8.3.2. ConnectorManagementPanel..46

9.Configuring Funambol components...47

9.1. System properties..47

9.2. Server JavaBeans..47

9.2.1. The configuration path...49

9.2.2. Lazy initialization..49

9.3. How to configure a standard component..49

9.4. How to create a custom configurable object...49

9.5. How to get a configured instance...51

9.5.1. Tips and tricks...52

10.Customizing message processing..53

10.1. Overview..53

10.2. Preprocessing an incoming message...53

10.2.1. Creating an input synclet...54

10.2.2. Configuring an input synclet..56

10.3. Postprocessing an outgoing message..56

10.3.1. Creating an output synclet...56

10.3.2. Configuring an output synclet..57

10.3.3. The MessageProcessingContext...57

10.3.4. How to stop message processing..57

11.SyncSource API...58

11.1. SyncSource class...58

11.1.1. Methods list...59

11.2. Mergeable SyncSource methods...61

Copyright © 2009 Funambol - Page 3

11.2.1. Methods list...61

11.3. Filterable SyncSource methods..61

11.3.1. Methods list...61

12.Officer API..63

12.1. Officer class...63

12.1.1. Methods list...63

12.1.2. Usage example...64

13.Web Services API..65

13.1. Introduction..65

13.1.1. Funambol Data Synchronization Service Web Services..65

14.Localizing Funambol clients...70

14.1. General considerations..70

14.1.1. Strings length..70

14.1.2. Coherence among clients..70

14.2. Windows Mobile Sync Client..70

14.2.1. Languages currently available...71

14.2.2. How to add a new language..71

14.3. Outlook Sync Client..72

14.3.1. Languages currently available...72

14.3.2. How to add a new language..73

14.4. Java ME Email Client...73

14.4.1. Languages currently available...73

14.4.2. How to add a new language..73

14.4.3. How to translate the help text..73

14.5. BlackBerry Sync Client...74

14.5.1. Languages currently available...74

14.5.2. How to add a new language..74

14.6. iPod Sync Client...74

14.6.1. Strings localization...74

14.7. iPhone/iPod Touch Sync Client..74

14.7.1. Languages currently available...74

14.7.2. How to add a new language..75

14.8. Symbian Sync Client..75

14.8.1. Strings localization...75

15.Funambol Software Development Kit...77

15.1. Obtaining and building the source code...77

15.2. Developing with a custom environment..77

15.3. Developing with Maven..78

15.3.1. Maven configuration..78

Copyright © 2009 Funambol - Page 4

15.3.2. Creating a new module..79

15.3.3. Building the module...79

15.4. The Funambol Connector Testing Framework...79

15.4.1. Usage..80

15.4.2. Certifying a connector..82

15.4.3. Limitations...83

15.4.4. Error codes..83

16.The Funambol Device Simulator tool...86

16.1. Prerequisites..86

16.2. Directory structure..86

16.3. Adding new tests..87

16.3.1. Setting up the environment..87

16.3.2. Testing the device...87

16.4. Adding items to sync..87

16.4.1. Adding contacts to the address book..87

16.4.2. Adding events to the calendar...88

16.4.3. Adding tasks..88

16.4.4. Adding notes...89

16.4.5. Getting messages...89

16.4.6. Phase 1: extracting SyncML messages...89

16.4.7. Syncing items back to the device and getting the logs..90

16.4.8. Phase 2: extracting the SyncML messages...92

16.4.9. Editing SyncML messages..92

16.4.10. Building tests...94

16.4.11. Conversion tool...99

16.4.12. Configuring the Funambol Device Simulator...99

16.4.13. Running the Funambol Device Simulator..99

16.5. Test case documentation...100

16.5.1. Compiling the ReadMe.txt file..100

16.6. Funambol Device Simulator test case directory structure...101

17.Appendix A - Sync4j Interchange Formats...103

17.1. SIF-C..103

17.2. SIF-E..109

17.2.1. Constants..113

17.2.2. Recurrent event examples...114

17.3. SIF-T..114

17.4. SIF-N..117

17.4.1. Constants..118

18.Appendix B – List of acronyms...119

Copyright © 2009 Funambol - Page 5

19.Resources..120

Copyright © 2009 Funambol - Page 6

1. Introduction

This document is intended for developers who aim to develop synchronization services based on the
Funambol platform.

This development guide gives a deep insight of the server internals and design, providing guidance to
anyone aiming to take advantage of the full range of possibilities that the platform provides.

1.1. Document structure
Chapter 2 is a quick start guide to developing Funambol connectors. Chapters 3-9 present an overview
of the Funambol architecture and internal workings. Chapters 11-13 describe in detail the SyncSource,
Officer and Web Services APIs. Chapter 14 explains how to localize Funambol Clients. Chapter 15 is a
short introduction to the Funambol SDK and chapter 16 presents the Funambol Device Simulator tool.

1.2. Audience
This document is addressed to anybody wanting to extend the Funambol platform or simply looking for
detailed information on the Funambol architecture.

1.3. Funambol licensing
All Funambol software and software developed using Funambol APIs or SDKs are licensed under
AGPL V3 (Affero General Public License) unless separate arrangements have been made with
Funambol to reach an explicit commercial agreement.

For more information on AGPL V3, see [10].

1.4. Comments and feedback
The Funambol team wants to hear from you! Please access our community portal at
https://www.forge.funambol.org/participate and submit your questions, comments, feedbacks or
testimonials.

Copyright © 2009 Funambol - Page 7

https://www.forge.funambol.org/participate/

2. Getting started on connector development

2.1. Introduction
This chapter describes how to create a connector that extends the functionality of the Funambol Data
Synchronization (DS) Server.

As better described in chapter 6, a Funambol extension is delivered in the form of a module, which
consists of a packaged set of files, including classes, configuration files, server beans and initialization
SQL scripts. All these contents are deployed into the Funambol Data Synchronization Service to
provide access to a specific back-end (e.g. a database, a REST based service, a web services API,
etc.). In general, a module can be viewed as a container for anything related to server extensions.
When a module provide access to a specific backend, it is called connector.

The following terms and concepts will be used in this document:

Module: a container for anything related to one or more server extensions which are used by the
engine to integrate with external systems.

Connector: a particular type of module, with the purpose of connecting to an external data source; in
other words, a connector is an extension of the server intended to support the synchronization of a
particular data source.

SyncSource: a key component of a connector that defines the way a set of data is made accessible to
the Funambol Data Synchronization Service for synchronization. A SyncSource type represents the
template from which an instance of a SyncSource can be created. For example, the
FileSystemSyncSource type defines how data stored in the file system can be accessed by the
Funambol Data Synchronization Service; however, it does not represent a specific directory to be used
for synchronization, and in order to synchronize a specific directory an instance of
FileSystemSyncSource must be created and configured with the desired directory.

Synclet: a pre or post processing unit that can process a message before it gets into the
synchronization engine or just after it is going out from it.

This chapter will guide you through the development, packaging, installation and testing of a module.
The module contains a simple SyncSource and Synclet which produce some logging. Once you are
familiar with this tutorial you can see real-world examples like the OpenXchange connector [8] or the
Exchange connector [9]. Plus, many people have developed many modules and connectors that are
available to the public. See [5] for more information.

2.2. Getting started
The following connector development quick-start section assumes a working knowledge of Java,
Maven and SQL.

For more detailed information about Funambol development see the next sections of this developer's
guide.

In order to follow this guide you need:

● Funambol Data Synchronization Service installed and running

● Funambol Software Development Kit 7.0.x [7]

● Java 2 SDK version 1.5.x or above

● Apache Maven [4]

Optionally, you may want to download a Maven plug-in for your preferred IDE (see
http://mevenide.codehaus.org).

Download the software and install it in a directory of your choice; we will assume the following prefix:

Copyright © 2009 Funambol - Page 8

http://mevenide.codehaus.org/

$FUNAMBOL_HOME: the directory where the bundle has been installed (e.g.: /opt/Funambol)

$FUNAMBOL_SDK_HOME: the directory where the Funambol SDK has been installed (e.g.:
/opt/Funambol/tools/sdk

$JAVA_HOME: the directory where Java is installed (e.g.: /opt/jdk1.5.0_10)

$MAVEN_HOME: the directory where Apache Maven is installed (e.g.: /opt/apache-maven-2.0.8)

$USER_HOME: the home directory of the operating system user you are on (e.g.: /home/ste, c:\Users\
ste).

Note: Basic knowledge of Apache Maven, its terminology and principles are assumed, as the following
sections use terms from the Apache Maven world without explaining them in details.

After installing Maven, you need to configure it so that it points to the Funambol public Maven
repository (m2.funambol.org/repositories). To do so, copy the file
$FUNAMBOL_SDK_HOME/docs/settings.xml under $USER_HOME/.m2.

2.3. Overview
We will develop the sample module following these steps:

1. Create the connector project

2. Install the module

3. Create a SyncSource instance

4. Test the module with a SyncML client

2.4. Create the connector project
The easiest way to create a connector project is by running the following Maven command:

mvn archetype:generate -DarchetypeGroupId=funambol
-DarchetypeArtifactId=funambol-module-archetype -DarchetypeVersion=7.1.0
-DgroupId=acme -DartifactId=acmeconnector
-DarchetypeRepository=http://m2.funambol.org/repositories/artifacts
-Dversion=1.0.0

You will be prompted for an answer; type “Y”.

This command will download and create a skeleton application ready to be built which contains:

1. a normal SyncSource

2. a mergeable SyncSource

3. an input/output synclet

4. all configuration and SQL files

All of the above will be generated in a Maven project located in directory named acmeconnector. The
content of the directory is illustrated in Figure 1.

Note: In order to create a Funambol 7.0.2 project, you just need to use -DarchetypeVersion=7.0.2 on
the command line. For a Funambol 6.5 project, use -DarchetypeVersion=6.5.2.

Copyright © 2009 Funambol - Page 9

The following table explains the function of each file:

File Description

LICENSE.txt AGPL license file

pom.xml Maven project file for the connector

src/main/config/com/funambol/server/engine/pipeline/input/
000.000.mysynclet.xml

Sample input synclet configuration

src/main/config/com/funambol/server/engine/pipeline/output
/000.000.mysynclet.xml

Sample output synclet configuration

src/main/external/readme.txt Readme for the content of this directory

src/main/install/install.xml Module installation file

src/main/java/acme/MyMergeableSyncSource.java Sample mergeable SyncSource

src/main/java/acme/MySynclet.java Sample synclet

src/main/java/acme/MySyncSource.java Sample SyncSource

src/main/java/acme/MySyncSourceAdminPanel.java Sample administration panel for both MySyncSource and
MyMergeableSyncSource

src/main/sql/*/create_schema.sql SQL scrip to create the database tables required by the module

src/main/sql/*/drop_schema.sql SQL scrip to drop the database tables required by the module

src/main/sql/*/init_schema.sql SQL scrip to initialize the database tables required by the
module

Take a moment to explore and open each file.

Note: the skeleton project creates both a normal SyncSource and a mergeable SyncSource; in this
section we will only consider the latter.

Copyright © 2009 Funambol - Page 10

Figure 1: Module source directory structure

2.4.1. MyMergeableSyncSource type
The SyncSource type is the primary component of the connector. The source code created by the
artifact is very simple and it only writes some logging info so that we can trace its execution. However
in a real case this is where the code necessary to integrate an external data source will go.

MyMergeableSyncSource inherits most of its behavior from MySyncSource; open it into an editor or in
your IDE and go through it. MySyncSource defines three properties that we are going to be able to set
through the Administration Tool. These are: myString, myInt and myMap. Getter and setter methods
are provided. Note also that the class implements all methods of the SyncSource interface writing a
log entry. Each method has also a description of what it does and what the developer should add.

2.4.2. MySynclet
In addition to the SyncSource types described earlier, the archetype project contains also a sample
input and output synclet: MySynclet. Open it into an editor or in your IDE and go through it.

Note: If you don't need to write a synclet, you can skip this section.

The first thing to note is that it implements both an input and an output synclet, which means that the
synclet will be called for both incoming and outgoing messages. The synclet is very simple and once
more it just logs the message in the funambol.myconnector logger.

2.4.3. MySyncSourceAdminPanel
We want to be able to create a new MySyncSource and configure it from the Funambol Administration
Tool. This is possible thanks to the class MySyncSourceAdminPanel. Open it into an editor or in your
IDE and go through it.

MySyncSourceAdminPanel inherits from SourceManagementPanel, which is a class of the Admin
framework. SourceManagementPanel is a JPanel, therefore it has all methods of a swing panel. The
init() method creates all widgets that we want to display in the Administration Tool and adds them to
the panel. These widgets are:

● source name

● data types supported (e.g. text/vcard)

● data type versions supported (e.g. 2.1)

● source URI

● myString

● myInt

● myMap entry

In addition, it adds to the panel a JButton to add a newly created SyncSource or to save the values of
an existing SyncSource. An important aspect to note is that here is where the panel interacts with the
Administration Tool to persist the changes to the server. The code that performs this task is the
following:

confirmButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 try {
 validateValues();
 getValues();
 if (getState() == STATE_INSERT) {
 SyncSourceAdminPanel.this.actionPerformed(
 newActionEvent(MySyncSourceAdminPanel.this,
 ACTION_EVENT_INSERT,
 event.getActionCommand()));
 } else {

Copyright © 2009 Funambol - Page 11

 MySyncSourceAdminPanel.this.actionPerformed(
 new ActionEvent(MySyncSourceAdminPanel.this,
 CTION_EVENT_UPDATE,
 event.getActionCommand()));
 }
 } catch (Exception e) {
 notifyError(new AdminException(e.getMessage()));
 }
 }
});

The key is that, when needed, the method actionPerformed() of the base class is called with a proper
event.

The other important method is updateForm() where the value of the SyncSource instance are
displayed in the proper fields. Again this method is called by the Administration Tool when an existing
instance must be displayed.

2.5. Creating and installing the connector package
To insert the created project into a Funambol module, just go into acmeconnector and type:

mvn package

A typical output will be as follows:

[INFO] Scanning for projects...
[INFO] --
[INFO] Building acme acmeconnector Module
[INFO] task-segment: [package]
[INFO] --
[INFO] artifact org.apache.maven.plugins:maven-resources-plugin: checking for updates
from artifacts
[INFO] artifact org.apache.maven.plugins:maven-resources-plugin: checking for updates
from snapshots
[INFO] artifact org.apache.maven.plugins:maven-compiler-plugin: checking for updates
from artifacts
[INFO] artifact org.apache.maven.plugins:maven-compiler-plugin: checking for updates
from snapshots
[INFO] artifact org.apache.maven.plugins:maven-surefire-plugin: checking for updates
from artifacts
[INFO] artifact org.apache.maven.plugins:maven-surefire-plugin: checking for updates
from snapshots
[INFO] artifact org.apache.maven.plugins:maven-jar-plugin: checking for updates from
artifacts
[INFO] artifact org.apache.maven.plugins:maven-jar-plugin: checking for updates from
snapshots
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Compiling 4 source files to /Users/ste/Projects/acmeconnector/target/classes
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] No sources to compile
[INFO] [surefire:test]

Copyright © 2009 Funambol - Page 12

[INFO] No tests to run.
[INFO] [jar:jar]
[INFO] Building jar: /Users/ste/Projects/acmeconnector/target/acmeconnector-1.0-
SNAPSHOT.jar
[INFO] [funambol:s4j]
[INFO] Exploding Funambol packaging...
[INFO] Assembling Funambol packaging acmeconnector in
/Users/ste/Projects/acmeconnector/target/acmeconnector-1.0-SNAPSHOT
[INFO] Including license file /Users/ste/Projects/acmeconnector/LICENSE.txt
[INFO]
[INFO] Including artifacts:
[INFO] -------------------
[INFO] x funambol:server-framework:jar:7.0.3-SNAPSHOT:compile
[INFO] x funambol:core-framework:jar:6.5.4:compile
[INFO] x funambol:ext:jar:6.5.2:compile
[INFO] o org.jibx:jibx-run:jar:1.1.2fun:compile
[INFO] o xpp3:xpp3:jar:1.1.2a-fun:compile
[INFO] o commons-lang:commons-lang:jar:2.3:compile
[INFO] o funambol:admin-framework:jar:6.5.2:compile
[INFO]
[INFO] Excluded artifacts:
[INFO] ------------------
[INFO]
[INFO] Including jar files...
[INFO] basedir: /Users/ste/Projects/acmeconnector
[INFO] srcDir: /Users/ste/Projects/acmeconnector/src/main
[INFO] sqlDirectory: /Users/ste/Projects/acmeconnector/target/acmeconnector-1.0-
SNAPSHOT/sql
[INFO] wsddDirectory: /Users/ste/Projects/acmeconnector/target/acmeconnector-1.0-
SNAPSHOT/wsdd
[INFO] No config files...
[INFO] No exclude files...
[INFO] Including install files...
[INFO] Including sql files...
[INFO] No wsdd files...
[INFO]
[INFO] Generating Funambol packaging
/Users/ste/Projects/acmeconnector/target/acmeconnector-1.0-SNAPSHOT.s4j
[INFO] Building jar: /Users/ste/Projects/acmeconnector/target/acmeconnector-1.0-
SNAPSHOT.s4j
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 12 seconds
[INFO] Finished at: Sat May 17 15:42:08 CEST 2008
[INFO] Final Memory: 9M/16M
[INFO] --

Note: The final message “Generating Funambol packaging /Users/ste/Projects/acmeconnector/target/
acmeconnector-1.0-SNAPSHOT.s4j” tells where the package is created. In order to install it into the
server, copy acmeconnector-1.0-SNAPSHOT.s4j into $FUNAMBOL_HOME/ds-server/modules and
follow the steps below.

Copyright © 2009 Funambol - Page 13

1. Make sure Funambol is up and running

2. Using a text editor, open the $FUNAMBOL_HOME/ds-server/install.properties file.

3. Find the line that begins modules-to-install= in the Module definitions section. This line
specifies, in a comma-separated list, the modules to install during installation.

4. Add acmeconnector-1.0-SNAPSHOT to the comma-separated list (note that you do not have
to specify the .s4j filename extension).

5. Save and close install.properties.

6. On Windows, open a command prompt window and run the server installation script by typing
the following at the prompt:

cd $FUNAMBOL_HOME/ds-server
bin\install-modules

7. On Unix/Linux, use the command:

cd $FUNAMBOL_HOME/ds-server
bin/install-modules

Press 'y' when asked to install the database for acmeconnector and 'n' for all others.
[echo] Funambol Data Synchronization Server will be installed on the Tomcat 5.5.x
application server
[echo] Undeploying funambol...
[echo] Pre installation for modules foundation-7.0.1,acmeconnector-1.0-SNAPSHOT
[echo] foundation-7.0.1 pre-installation...
[echo] foundation-7.0.1 pre-installation successfully completed
[echo] acmeconnector-1.0-SNAPSHOT pre-installation...
[echo] acmeconnector-1.0-SNAPSHOT pre-installation successfully completed
[echo] Copying configuration files
[echo] Post installation for modules foundation-7.0.1,acmeconnector-1.0-SNAPSHOT
[echo] has.install: true
[echo] Starting custom installation...
[echo] Foundation Installation
[echo] Foundation installation successfully completed
[echo] foundation-7.0.1 installation...
[echo] Database installation for module foundation-7.0.1 on hypersonic (/opt/Funambol/
ds-server)

[iterate] The Funambol Data Synchronization Server installation program can now create
[iterate] the database required by the module foundation-7.0.1 (if any is needed).
[iterate] You can skip this step if you have already a valid database created
[iterate] or the module does not require a database.
[iterate] If you choose 'y' your existing data will be deleted.
[iterate] Do you want to recreate the database?
[iterate] (y,n)
n

and
[echo] foundation-7.0.1 installation successfully completed
[echo] has.install: true
[echo] Starting custom installation...
[echo] acmeconnector installation

Copyright © 2009 Funambol - Page 14

[echo] acmeconnector installation successfully completed
[echo] acmeconnector-1.0-SNAPSHOT installation...
[echo] Database installation for module acmeconnector-1.0-SNAPSHOT on hypersonic
(/opt/Funambol/ds-server)
[iterate] The Funambol Data Synchronization Server installation program can now create
[iterate] the database required by the module acmeconnector-1.0-SNAPSHOT (if any is
needed).
[iterate] You can skip this step if you have already a valid database created
[iterate] or the module does not require a database.
[iterate] If you choose 'y' your existing data will be deleted.
[iterate] Do you want to recreate the database?
[iterate] (y,n)
y
[echo] acmeconnector-1.0-SNAPSHOT installation successfully completed
[war] Warning: selected war files include a WEB-INF/web.xml which will be ignored
(please use webxml attribute to war task)
[echo] Remove output dir

BUILD SUCCESSFUL
Total time: 12 seconds

Now the connector is installed.

2.6. Creating a SyncSource
Now that the connector is installed, you can see it in the Administration Tool. To access it, start the
Funambol Administration Tool by selecting Start | All Programs | Funambol | Administration Tool. The
Funambol Administration Tool window appears (see Figure 2).

First of all, you will need to log into the server: on the Main Menu bar, select File | Login. The Login
window displays. Verify that the fields are populated as follows, or specify the following values:

Hostname/IP: <localhost> (should be your machine name)
Port: 8080
User name: admin
Password: sa

Copyright © 2009 Funambol - Page 15

Figure 2: Funambol Administration Tool

Click Login; the Output Window in the lower right pane should display "connected." In the left panel,
expand the localhost tree as follows: localhost | Modules | acme | acmeconnector, then select
MyMergeableSyncSource. The Edit My SyncSource screen appears in the upper right pane, as shown
in Figure 3.

This window is used to specify configuration values. Insert the following values and press Add:

Source URI: acme
Name: Acme
Supported type: text/plain
Supported version: 1.0
MyString: acme connector!
MyInt: 10
MyMap entry: <acme, connector>

2.7. Testing the connector
To test the Acme connector we will use a simple command line SyncML client which is distributed in
the Funambol SDK under $FUNAMBOL_SDK_HOME/plug-ins/cl. Perform the following:

1. Edit the file config/spds/sources/briefcase.properties and set the following values:

name=acme
sourceClass=com.funambol.syncclient.spds.source.FileSystemSyncSource
sourceDirectory=db/briefcase
type=text/plain
sync=two-way
encode=true
sourceURI=acme

2. Run the command $FUNAMBOL_SDK_HOME\plug-ins\cl\binrun.cmd (or
$FUNAMBOL_SDK_HOME/plug-ins/cl/run.sh if using Linux)

You will see an output similar to the following:

Funambol Command Line Tool ver. 7.0.1

Copyright © 2009 Funambol - Page 16

Figure 3: Edit File System SyncSource screen

2008-04-17 16:28:10:969 - # SyncClient API J2SE Log
16:28:10:970 [INFO] - Initializing
16:28:10:973 [INFO] - Sending initialization commands
16:28:11:716 [INFO] - The server alert code for acme is 201
6:28:11:718 [INFO] - Synchronizing acme
16:28:11:745 [INFO] - exchange modifications started
16:28:11:746 [INFO] - Preparing slow sync for acme
16:28:11:747 [INFO] - Detected 0 items
16:28:11:748 [INFO] - Sending modifications
16:28:11:837 [INFO] - Returned 0 new items, 0 updated items, 0 deleted items for acme
16:28:11:838 [INFO] - Mapping started
16:28:11:841 [INFO] - Sending mapping
16:28:11:853 [INFO] - Sending mapping
16:28:11:874 [INFO] - Mapping done
16:28:11:874 [INFO] - Synchronization done

In the server log you will be able to see your connector at work. Filtering out the lines that are not of
interest for our connector, the log entries will be similar to the following text:

[2008-05-17 16:31:56,656] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [] Initializing
acme.MyMergeableSyncSource
[2008-05-17 16:31:56,657] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [] myString: acme connector!
[2008-05-17 16:31:56,657] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [] myInt: 10
[2008-05-17 16:31:56,657] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [] myMap: {acme=connector}
[2008-05-17 16:31:56,703] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [acme] Starting
synchronization: com.funambol.framework.engine.source.SyncContext@e85079
[2008-05-17 16:31:56,703] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [acme] getNewSyncItemKeys()
[2008-05-17 16:31:56,703] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [acme]
getUpdatedSyncItemKeys()
[2008-05-17 16:31:56,703] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [acme]
getDeletedSyncItemKeys()
[2008-05-17 16:31:56,703] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [acme] Committing
synchronization
[2008-05-17 16:31:56,782] [funambol.myconnector] [INFO]
[399F31F06404433DE69A05F71D562ACD] [sc-api-j2se] [guest] [acme] Ending synchronization

Note: in the first entries the values inserted earlier in the administration panel are displayed, meaning
that the SyncSources were properly configured.

Similarly, we can see the effect of MySynclet. Each SyncML message has been logged; for example
the first input message is something like the following text:

[2008-05-17 16:59:28,576] [funambol.myconnector] [INFO]
[FF4B335BA02F0581DAFF016319EDD263] [] [] []
--[2008-
05-17 16:59:28,576] [funambol.myconnector] [INFO] [FF4B335BA02F0581DAFF016319EDD263]
[] [] [] Input message[2008-05-17 16:59:28,576] [funambol.myconnector] [INFO]
[FF4B335BA02F0581DAFF016319EDD263] [] [] []
[2008-05-17 16:59:28,585] [funambol.myconnector] [INFO]
[FF4B335BA02F0581DAFF016319EDD263] [] [] [] <?xml version="1.0" encoding="UTF-8"?
><SyncML><SyncHdr><VerDTD>1.1</VerDTD><VerProto>SyncML/1.1</VerProto><SessionID>123456
78</SessionID><MsgID>1</MsgID><Target><LocURI>http://localhost:8080/funambol/ds</LocUR

Copyright © 2009 Funambol - Page 17

I></Target><Source><LocURI>sc-api-j2se</LocURI></Source><Cred><Meta><Type>syncml:auth-
basic</Type></Meta><Data>Z3Vlc3Q6Z3Vlc3Q=</Data></Cred><Meta><MaxMsgSize>250000</MaxMs
gSize><MaxObjSize>4000000</MaxObjSize></Meta></SyncHdr><SyncBody><Alert><CmdID>1</CmdI
D><Data>200</Data><Item><Target><LocURI>acme</LocURI></Target><Source><LocURI>acme</Lo
cURI></Source><Meta><Anchor><Last>1211034716596</Last><Next>1211036368401</Next></Anch
or></Meta></Item></Alert><Final/></SyncBody></SyncML>[2008-05-17 16:59:28,585]
[funambol.myconnector] [INFO] [FF4B335BA02F0581DAFF016319EDD263] [] [] []
--

And the last output message is something like the following:

[2008-05-17 16:59:28,876] [funambol.myconnector] [INFO]
[FF4B335BA02F0581DAFF016319EDD263] [sc-api-j2se] [guest] []
--[2008-
05-17 16:59:28,877] [funambol.myconnector] [INFO] [FF4B335BA02F0581DAFF016319EDD263]
[sc-api-j2se] [guest] [] Output message[2008-05-17 16:59:28,877]
[funambol.myconnector] [INFO] [FF4B335BA02F0581DAFF016319EDD263] [sc-api-j2se] [guest]
[] [2008-05-17 16:59:28,877]
[funambol.myconnector] [INFO] [FF4B335BA02F0581DAFF016319EDD263] [sc-api-j2se] [guest]
[] <?xml version="1.0" encoding="UTF-8"?
><SyncML><SyncHdr><VerDTD>1.1</VerDTD><VerProto>SyncML/1.1</VerProto><SessionID>123456
78</SessionID><MsgID>5</MsgID><Target><LocURI>sc-api-
j2se</LocURI></Target><Source><LocURI>http://localhost:8080/funambol/ds</LocURI></Sour
ce><RespURI>http://localhost:8080/funambol/ds;jsessionid=FF4B335BA02F0581DAFF016319EDD
263</RespURI></SyncHdr><SyncBody><Status><CmdID>1</CmdID><MsgRef>5</MsgRef><CmdRef>0</
CmdRef><Cmd>SyncHdr</Cmd><TargetRef>http://localhost:8080/funambol/ds</TargetRef><Sour
ceRef>sc-api-
j2se</SourceRef><Data>200</Data></Status><Final/></SyncBody></SyncML>[2008-05-17
16:59:28,877] [funambol.myconnector] [INFO] [FF4B335BA02F0581DAFF016319EDD263] [sc-
api-j2se] [guest] []
--

If you have reached this point, you have probably successfully developed a Funambol connector:
congratulations! You can now go in more details in the acmeconnector project or start your own.

2.8. Debugging
In order to debug the connector, follow these steps:

1. Start Tomcat using the debug options for the JVM. If you are using the Funambol package,
simply edit the file $FUNAMBOL_HOME/ds-server/bin/start.sh uncommenting the
JPDA_OPTS line, which you can easily find if you search for “debug”. This will start Tomcat
enabling it for remote debugging.

2. Connect to the running JVM. If you use Eclipse, you can create a debug profile to attach to
Tomcat; note that the debug port given in the JPDA_OPTS line is 8787, not eclipse's default
port, i.e. 8000, so either change the JDPA_OPTS or the Eclipse port.

3. You can now start a sync session and stop on breakpoints.

Copyright © 2009 Funambol - Page 18

3. Funambol development

The following sections present several concepts related to how Funambol can be used to develop
mobile applications. Before digging into the details of Funambol development, it is useful to describe
some basic concepts of data synchronization since this is the basis for many Funambol applications
and services.

3.1. Data synchronization
All mobile devices – handheld computers, mobile phones, pagers, laptops – need to synchronize their
data with the server where the information is stored. This ability to access and update information on
the fly is key to the pervasive nature of mobile computing. Yet, today, almost every device uses a
different technology for performing data synchronization.

Data synchronization is helpful in respect to many areas:

● Propagating updates between a growing number of applications

● Overcoming the limitations of mobile devices and wireless connections

● Maximizing user experience minimizing data access latency

● Keeping scalability of the infrastructure in an environment where the number of devices
(clients) and connections tends to increase considerably

● Understanding the requirements of mobile applications, providing a user experience that helps
and is not an obstacle for mobile tasks

Data synchronization is the process of making two
sets of data look identical (Figure 4). This involves
many concepts, the most important are:

● ID handling

● Change detection

● Modification exchange

● Conflict detection

● Conflict resolution

● Slow and fast synchronization

3.1.1. ID handling
At a first look, ID handling seems a pretty
straightforward process and of no interest. Instead,
ID handling is an important aspect of the
synchronization process and it is not trivial. Each
piece of data is usually uniquely identifiable by a
subset of its content fields; for example, in the case
of a contact entry, the concatenation of first name
and last name uniquely selects an entry in your directory. In other cases, the ID is represented by a
particular field specifically introduced for that purpose. This may be the case, for example, of a Sales
Force Automation mobile application, where an order is identified by an order number or reference.
The way an item ID is generated is not determinable a priori and it is application and device specific.

In an enterprise system, however, data is stored in a centralized database, shared by all users; each
single item is known by the system with a unique global ID. In some cases, two sets of data (i.e. the
order on the client and the order on the server) represent the same information (the “order” made by
the customer) but they differ. What could be done to reconcile client and server IDs in order to make
the information consistent? Many approaches can be chosen:

Copyright © 2009 Funambol - Page 19

Figure 4: Data synchronization process

● Clients and server agree on a ID scheme (a convention on how to generate IDs must be
defined and used);

● Each client generates globally unique IDs (GUIDs) and the server accepts client-generated
IDs;

● The server generates globally unique IDs (GUIDs) and each client accepts those IDs;

● Client and server generate their own IDs and a mapping is kept between the two. Client side
IDs are called Local Unique IDentifiers (LUID) and server side IDs are called Global Unique
IDentifiers (GUID). The mapping between local and global identifiers is referred as LUID-GUID
mapping.

3.1.2. Change detection
Change detection is the process of identifying the data that was modified after a particular point in time
(i.e. the last synchronization). This is usually achieved making use of additional information such as
timestamps and state information. For example, a possible database enabled for an efficient change
detection is the one shown in Table 1.

ID First name Last name Telephone State Last_update

12 John Doe +1 650 5050403 N 2008-04-02 13:22

13 Mike Smith +1 469 4322045 D 2008-04-01 17:32

14 Vincent Brown +1 329 2662203 U 2008-03-21 17:29

Table 1 - A database enabled for efficient change detection

However, sometimes legacy databases do not provide the information needed to accomplish an
efficient change detection. Therefore, the matter becomes more complicated and alternative methods
must be adopted (based on content comparison, for instance).

3.1.3. Modification exchange
A key component of a data synchronization infrastructure is the way modifications are exchanged
between client and server. This involves the definition of a synchronization protocol that client and
server have to use to initiate and carry on a synchronization session. In addition to the exchange
modification method, a synchronization protocol must also define a set of supported modification
commands. The minimal set of modification commands is represented by the following:

● Add

● Replace

● Delete

3.1.4. Conflict detection
Let's suppose two users synchronize their local contacts database with a central server in the morning,
before going to the office. After syncing, they have exactly the same contacts on their PDAs. Let's now
suppose that they change the telephone number of the same “John Doe” entry, but for some reason
with a different number (maybe, one of the two made a mistake). What will happen when the next
morning they will synchronize again? Which one of the two new versions of the John Doe record
should be taken and stored into the server? This condition is called “conflict” and the server has the
duty of identifying and resolving it.

The simplest way to do detect a conflict is by the means of a synchronization matrix (see Table 2).

Copyright © 2009 Funambol - Page 20

Database A →

↓ Database B

New Deleted Updated Synchronized/Un
changed

Not Existing

New C C C C B

Deleted C X C D X

Updated C C C B B

Synchronized/U
nchanged

C D A = B

Not Existing A X A A X

Table 2 - The synchronization matrix

Because both users synchronize with the central database, we can consider what happens between
the server database and one of the client databases at a time: let's call Database A the client database
and Database B the server database. The symbols in the synchronization matrix have the following
meaning:

● X : nothing to do

● A : item A replaces item B

● B : item B replaces item A

● C : conflict

● D : delete the item from the source(s) containing it

3.1.5. Conflict resolution
Once a conflict arises and it is detected, a proper action must be taken. Different policies can be
applied:

● User decides: the user is notified of the conflict condition and decides what to do; this strategy,
like the following “Client wins” is a bit problematic in a server centric synchronization solution:
each user may have the same right to modify an item and one user could not be able to decide
whether his/her modification should win over the other ones

● Client wins: the server silently replaces conflicting items with the ones sent by the client

● Server wins: the client has to replace conflicting items with the ones from the server

● Timestamp based: the last modified (in time) item wins

● Last/first in wins: the last/first arrived item wins

● Do not resolve

3.1.6. Full and fast synchronization
There are many modes to carry on the synchronization process. The main distinction is between fast
and full synchronization. Fast synchronization involves only the items changed since the last
synchronization between two devices. Of course, this is an optimized process that relies on the fact
that, some time in the past, the devices where fully synchronized; this way, the state at the beginning of
the sync operation is well known and sound. When this requisite is not met (because, for instance, the
mobile device has been reset and lost the timestamp of the last synchronization), a full synchronization
must be performed. In this case, the client sends its entire database to the server, which compares it
with its local database and returns the modifications that must be applied to be up to date again.

Both fast and slow synchronization modes can be performed in one of the following manners:

● Client to server: the server updates its database with client modifications, but sends no server-
side modifications.

● Server to client: the client updates its database with server modifications, but sends no client-
side modifications.

● Two-way: client and server exchange their modifications and both databases are updated
accordingly.

Copyright © 2009 Funambol - Page 21

4. Funambol architecture

4.1. System architecture
The system architecture of a Funambol version 7.1 deployment includes the logical components
illustrated in Figure 5. Note that, even though each logical component is represented as a single box in
the figure, all of them can be deployed in a redundant configuration to increase availability and share
load.

4.1.1. Roles and responsibilities
This section describes the roles and the main responsibilities of the components illustrated in Figure 5.

Device
A device can be any physical device or client software application that can communicate with
the Funambol Server via SyncML for PIM synchronization or TCP/IP for push email. Examples
of such devices are:

● mobile phones with a native SyncML client

● mobile phones with a Java ME platform fulfilling basic requirements, running the Funambol
Java ME Email Client

● Windows Mobile phones, running the Funambol Windows Mobile Sync Client

● desktop devices running the Funambol Outlook Sync Client and/or the Funambol iPod Sync
Client

● desktop devices running the Community Sync Client

● devices running other Funambol Sync Clients (e.g. iPhone, BlackBerry, etc...)

Devices are the main interface through which users access Funambol. Responsibilities of the
device/client software include:

● providing the user UI

● initiating the communication with the server

● hosting the local data (PIM/Email, ...)

● collecting/detecting the change log

The communication between the device and the Funambol Server is based on the TCP/IP protocol.

Copyright © 2009 Funambol - Page 22

Figure 5: Funambol system architecture

Web load balancer
SyncML is an application protocol transported over HTTP. This means that SyncML requests can be
considered common HTTP traffic. A web load balancer (see Figure 5) can therefore be used to
balance the incoming load amongst different nodes of a Data Synchronization Service cluster. In this
respect the nodes in the cluster all perform the same function and can be used interchangeably for
each SyncML request.

The main responsibilities of the HTTP load balancer include:

● providing the front-end of the Funambol system

● distributing the SyncML requests amongst the nodes of the Data Synchronization Service
cluster

● detecting failures on the nodes of the cluster, redirecting traffic to the active nodes if one of the
nodes fails

Note: the HTTP load balancer is not provided as part of the default installation or deployment. Many
different solutions, both hardware and software, can be adopted and any organization may have
different best practices already in place. A common solution is to use Apache + mod_jk.

IP load balancer
Unlike SyncML, the protocol used by connection-oriented push is not transported over HTTP but it is a
pure TCP/IP communication. Since the number of connections that connection-oriented push must
support is generally very high, an IP load balancer (see Figure 5) is usually needed. This component
works similarly to the web load balancer, but at the Transport level (Layer-4 load balancing).

The main responsibilities of the IP load balancer include:

● providing the front-end of the Funambol system for connection-oriented push requests

● distributing connection-oriented push requests amongst the nodes of the Push Connection
Service cluster

● detecting failures on the nodes of the cluster, redirecting traffic to the active nodes if one of the
nodes fails

Note: the IP load balancer is not provided as part of the default installation or deployment. Many
different solutions, both hardware and software, can be adopted and any organization may have
different best practices already in place. A common solution is to use Linux Virtual Server.

Funambol Server
The Funambol Server is the core of the Funambol push-email service and of PIM synchronization. As
illustrated in Figure 5, it comprises several components, detailed in the following sections.

Data Synchronization Service
The role of the Data Synchronization (DS) Service is to provide the synchronization services and to
communicate directly to the devices using SyncML. The main responsibilities of the Data
Synchronization Service are:

● hosting the synchronization engine

● accepting and serving synchronization requests

● handling low level device information

● synclet technology

● providing an interface towards the back-ends

● providing a remote administration interface

● providing connection-less push

Note: the Data Synchronization Service is the only service that Funambol Server cannot run without.

Copyright © 2009 Funambol - Page 23

Email connector
The email connector plays a key role in the Funambol architecture, since it allows the server to
communicate with different email servers (note that each user can be attached to a different email
server). The email connector consists of two main components: the connector itself and the Inbox
Listener Service.

The email connector is deployed together with the synchronization engine. It has the following
responsibilities:

● searching the user email cache for which messages should be downloaded on the client

● filtering out unwanted messages or content (e.g., retrieve headers only)

● processing emails

● filtering emails

● sending outgoing messages

PIM connector
This connector is the counterpart of the email connector for PIM synchronization. The PIM connector
consists of two main components: the connector itself and the PIM Listener Service.

The PIM connector is deployed together with the synchronization engine. It has the following
responsibilities:

● searching the user email cache to determine the messages to be downloaded onto the client

● using various techniques to enable the user to filter out unwanted emails (e.g. Retrieve and
sync headers only)

● processing emails

● sending outgoing emails

Portal
The Funambol Portal implements the main interface through which users and administrators interact
with the Funambol platform over the Internet. The portal component consists of:

● a web-based consumer portal, through which users can sign up for the service, access their
data and profile, manage their contacts and calendar, setup their mobile device and email
account

● a web-based customer service representative (CSR) interface, which allows an operator to
access users information and perform maintenance of user accounts

Push Connection Service
The Push Connection Service is a separate process from the Data Synchronization Service and Portal
process and is responsible for the implementation of the connection-oriented push technology.

The main responsibilities of the Push Connection Service are:

● accepting and keeping open connection-oriented push connections from devices

● delivering push notifications to the attached devices

PIM Listener Service
The PIM Listener Service is a separate process from the Data Synchronization Service and Portal
process; it has the following responsibilities:

● polling the user PIM database regularly to check for updates

● triggering an action to the Data Synchronization Service if the user has PIM changes

Copyright © 2009 Funambol - Page 24

Inbox Listener Service
The Inbox Listener Service is a separate process from the Data Synchronization Service and Portal
process; it has the following responsibilities:

● creating and maintaining the user inbox cache

● polling the user inbox regularly to check for new emails

● updating the user inbox cache

● triggering an action to the Data Synchronization Service if the user has new email

Note: the user inbox cache does not contain any sensitive information, but only information about
when a message has been received. This is necessary in order to filter out the less recent emails
during email download.

SMS Service
This is the service used to send SMS messages to user devices. The Funambol platform uses an
external SMS gateway for this, which translates the HTTP-based messages sent by the server into
SMS messages, and injects them into the network servicing the target user.

SMS messages are used to:

● send users the download link for Funambol clients

● perform OTA configuration of SyncML settings directly on the user device

● start a synchronization in case TCP-based push is not possible (SMS push)

Note: Funambol, by default, supports SubitoSMS. Other SMS service providers are easily
configurable.

SMTP server
This is the server used by Funambol Carrier Edition to send emails to external recipients.

Note: this server is used for service related emails (e.g. invitation or activation emails) and to send
user emails for users who are not using a public email service.

Database
This is the database server. Funambol supports the following database systems:

● PostgreSQL

● MySQL (requires Funambol version 7.0 or later)

● Hypersonic (only on Funambol Community Edition)

Email provider
This component is not really part of the Funambol software; it represents the users' email servers.
Currently, the supported mail protocols are:

● IMAP

● POP

● Google IMAP

● AOL IMAP

4.2. The synchronization engine
The following sections provide more details on a particular component, the Data Synchronization
Service, and describe the architecture of the synchronization engine, which is a key component that
can be extended to implement specific needs.

Copyright © 2009 Funambol - Page 25

The synchronization engine is the component that implements the synchronization logic; this means:

● identify the sources and the destinations of the data sets to be synchronized

● identify the data that needs to be updated/added/deleted

● determine how updates must be applied

● detect conflicts

● resolve conflicts

In other words, the synchronization engine is the core of any data synchronization server. The basic
framework interfaces and classes are grouped in the package sync4j.framework.engine.

4.3. Execution flow of a request
The execution flow of an OMA DS request is illustrated in Figure 6.

A synchronization session starts with the client device sending a first SyncML message to the server.
The request then follows the flow described below:

1. When a new request comes from the client, the HTTP handler takes care of it. After some
processing, for example the transformation of the binary message into a more manageable
form or the association of the incoming message to an existing synchronization session, the
HTTP handler passes the request to the synchronization server.

2. The message first goes through the input message processing pipeline (see later) according
to the application needs.

3. The manipulated message comes out of the input pipeline and goes into the server engine for
the synchronization processing.

4. When needed, the server engine calls the services of the external (and custom) SyncSources
in order to access the real data stores.

5. After processing the incoming message, the server engine builds the response message,
which goes through the output message processing pipeline for post-processing.

6. The response message is then returned to the HTTP handler, which packs the SyncML
message into the HTTP response and sends it back to the device.

Copyright © 2009 Funambol - Page 26

Figure 6: Execution flow of an OMA DS request

Device ManagerDevice ManagerSyncSource
Funambol Server

Input Pipeline

Output Pipeline

Web
Layer

Server
Engine

1

HTTP
Handler

2

5

4

3

7

6

5. The synchronization process

The synchronization process is logically accomplished in three steps:

1. Preparation

2. Synchronization

3. Finalization

The Funambol engine goes through these steps coordinating their execution, but delegates most of the
synchronization logic to an auxiliary class, implementation of the SyncStrategy interface.

There are many types of synchronization; the ones specified by the SyncML protocol are:

Sync Type Description

Two-way sync (fast) A normal sync type in which the client and the server exchange information about
modified data in these devices. The client sends the modifications first.

Slow sync A form of two-way sync in which all items are compared with each other on a field-
by-field basis. In practice, this means that the client sends all its data from a
database to the server and the server does the sync analysis (field-by-field) for this
data and the data in the server.

One-way sync from client only A sync type in which the client sends its modifications to the server but the server
does not send its modifications back to the client.

Refresh sync from client only A sync type in which the client sends all its data from a database to the server (i.e.,
exports). The server is expected to replace all data in the target database with the
data sent by the client.

One-way sync from server only A sync type in which the client gets all modifications from the server but the client
does not send its modifications to the server.

Refresh sync from server only A sync type in which the server sends all its data from a database to the client. The
client is expected to replace all data in the target database with the data sent by the
server.

Server Alerted Sync1 A sync type in which the server to alerts the client to perform sync. That is, the
server informs the client to starts a specific type of sync with the server.

Table 3 - Sync modes defined by SyncML

The first two are the most important, since the others are derivation of slow and fast sync modes.
In a slow synchronization, the client sends all its items to server, which compare them with the server
database and then it sends back the modification that the client has to apply in order to be in sync
again. In the case of slow sync, the sources to be synchronized must be fully compared in order to
reconstruct the right image of the data on both synchronization endpoints. The way the sets of items
are compared is implementation specific and can vary from comparing just the item keys or the entire
content of an item.

In a two-way fast synchronization, a data source is queried only for new, deleted or updated items
since a given point in time (and for a given user). In this case, the status (deleted/updated/new) and
the modification timestamp of the items can be checked in order to decide when a deeper comparison
is necessary.

The following sections describe in more detail each phase of the synchronization process and other
key aspects of the synchronization engine architecture.

1 The SyncML specification does not tell anything about how server alerted sync should be achieved,
therefore each product can implement it in a different and not interoperable way. As per nowadays,
only few devices are known to support this feature.

Copyright © 2009 Funambol - Page 27

5.1. Preparation
The preparation phase is the process of analyzing the differences between two or more sources of
data (called SyncSources) with the goal of obtaining a list of sync operations that applied to the
sources involved in the synchronization, will make the databases look identical (Figure 7).

5.2. Modifications detection
Modifications detection is based on the sets of items represented in Figure 8, applying the
modifications matrix of Table 4. You can think of A as the client data source and B as the server data
source.

● A – Items belonging to source A (as known via LUID-GUID mapping)

● B – Items belonging to source B

● Am – Modified items belonging to source A

● Bm – Modified items belonging to source B

● AmBm – Items modified both in source A and B (intersection between Am and Bm)

● (A-Am)Bm – Items unmodified in A, but modified in B

● Am(B-Bm) – items unmodified in B, but modified in A

Note that A is the server view of the A source: it contains the items mapped in the server as they are
defined in the LUID-GUID mapping. If, for example, the client sends a new item that has never been
mapped, this item will be in Am, but not in A. In order to be sure that the new item is not equal to some
existing item in B, it must be looked up in B. If an item in B represents the same item as in Am, A is
virtually augment of such item, so that at the end, Am will be a sub-set of A.

Another important aspect to point out is that the entire data sets A and B can be considerably big.
Therefore, when possible, it is important to deal with the smallest possible sets of items instead of
doing a full item-per-item comparison.

Copyright © 2009 Funambol - Page 28

Figure 7: Preparation phase

Sync preparation

A

B

C

- Add item1 to SourceA
- Delete item2 from
SourceA, SourceB
- Add item10 to SourceC
- Update item5 in
SourceB, SourceC

Figure 8: Synchronization items sets

BA

Am

Bm

(A-Am)Bm
AmBm

Am(B-Bm)

The preparation phase is slightly different depending on the type of the synchronization. In the case of
a slow synchronization, all items in the sources must be compared looking for differences that will be
translated into synchronization operations. This type of process does not depend on previous
synchronizations and, in fact, it is used to fully recreate a database as if no synchronizations have ever
taken place. This is achieved resetting the LUID-GUID mapping before starting the modification
detection process.

On the contrary, when a fast synchronization is performed, it is assumed that the involved sources rely
on a previous data synchronization, so that only the changes since the time of the last synchronization
need to be considered.

The algorithm used in the preparation phase is as follows:

Given the sources to be compared, suppose A and B, the goal of the algorithm is to produce an array
of operations, in which each element represents a particular synchronization action, i.e. create the item
X in the source A, delete the item Y from the source B, etc. Sometimes, it is not possible to decide the
action to perform, thus a conflict operation is generated. A conflict might be solved by something
external the synchronization process, for instance by a user action. In order to create the operation set,
each item in the source A is compared with each item in the source B (to be intended as the selected
items depending on the synchronization type).

To determine which operation should be generate the synchronization matrix defined in Table 4 is
used.

Database A →

↓ Database B

New Deleted Updated Synchronized/Un
changed

Not Existing

New C C C C B

Deleted C X C D X

Updated C C C B B

Synchronized/
Unchanged

C D A = B

Not Existing A X A A X

Table 4 - Synchronization matrix

Where:

● A : item A replaces item B

● B : item B replaces item A

● C : conflict

● D : delete the target item

● X : do nothing

When a client item should be updated or inserted on the server, but the server does not have a
mapping for it, a deeper comparison must be performed. In fact, the new/updated item could have the
same content of an existing item on the server; this could even turn into a conflict. For example,
suppose that a client tries to insert a new appointment with ID “xyz” at 20041029T1400Z in the meeting
room “OceanSide”. Even if there is no matching item on the server, if “OceanSide” is already busy at
the same time, this could be considered a conflict.

In order to detect such situations, the synchronization engine will ask for items similar to the one that is
trying to add/update. Those similar items are called twins. Note that we used by choice similar and not
equal. This is because how much an item should look like an existing item in order to be considered a
twin may be implementation specific. Each source should be able to find twin items accordingly to its
own logic.

5.3. Synchronization
The synchronization step is the phase where the operations prepared in the previous step are
executed. Executing an operation means applying the required modification to the involved
SyncSources. This is done by the synchronization engine.

Copyright © 2009 Funambol - Page 29

5.4. Finalization
The third and last step is intended for cleaning up purposes. In addition, usually in this phase the client
sends the LUID-GUID mapping resulted in the synchronization just performed.

Copyright © 2009 Funambol - Page 30

6. Extending Funambol

The Funambol platform can be extended in many areas in order to integrate Funambol into existing
systems and environments. Figure 9 illustrates the most common integration user cases, and the
Funambol modules involved:

● Officer: integrating with an external authentication and authorization service;

● SyncSource: integrating with an external data source

● Synclet: adding pre or post processing to a SyncML message

● Admin WS: integrating with an external management tool

Funambol extension are distributed and deployed as Funambol modules. This section describes the
structure of a Funambol module, while the following sections detail each of the scenarios above.

A Funambol module represents the means by which developers can extend the Funambol Server. A
module is a packaged set of files containing classes, installation scripts, configuration files, initialization
SQL scripts, components and so on, used by the installation procedure to embed an extensions into
the server core.

For more information on how to install Funambol modules see [3].

6.1. Building a Funambol module
A Funambol module is a zip package named following the convention:

<module-name>-<major-version>.<minor-version>.s4j

Where <module-name> is the name of the module without spaces and with small caps only and
<major/minor-version> are the major and minor version numbers. A new version of a module with
minor version number change must be backward-compatible, while changes in the major version
number imply that a migration may be required.

The package must have the structure illustrated in Figure 10.

Copyright © 2009 Funambol - Page 31

Figure 9: Integration components

Funambol
Server

Data source

Authentication
service

Administration
tool

SyncSource

Officer

WS admin
interfaceSynclets

lib/

modulename.jar

dependent1.jar

dependent2.jar

...

config/

config.properties

MySyncSource.xml

SomeOtherBean.xml

...

exclude/

manifest.mf

install/

install.xml

sql/

oracle/

create_schema.ddl

drop_schema.ddl

init_schema.sql

postgresql/

...

Figure 10: Module package structure

In the following, entries ending with a '/' represent directories and filenames in italic are given just as
examples (in a real package they will be replaced with real filenames).

The module classes are packaged in a main jar file called <modulename>.jar.

Configuration files are stored under the package directory config, creating subdirectories as needed.

Note: even if it is not mandatory, usually SyncSource instance configuration files are stored under a
subtree in the form <module-id>/<connector-id>/<sourcetype-id>, which is the convention used by the
Administration Tool when creating a new SyncSource instance.

The directory install contains install.xml, an Ant script called when the module is installed; this is the
hook where a module developer can insert module specific installation tasks. Installation specific files
can be organized in subdirectories under install. If the module requires a custom database schema,
the scripts to create, drop and initialize the database are stored under the sql/<database> directory,
where <database> is the name of the DBMS as listed in the install.properties file. Finally, the exclude
directory is used to store files that will be temporarily used by the installation procedure, but that will not
be (automatically) copied. These can be used by the module installation script for any purpose.

6.2. Modules, connectors, listeners and SyncSource types
As already mentioned, a module is a container for anything related to one or more server extensions
which are used by the engine to communicate and integrate with external systems. These extensions
are usually specific to the backend that must be integrated. A specific case of such extension is when
the main purpose is to connect to an external data source, in which case the module is called
connector. In other words, a connector is an extension of the server, intended to support the
synchronization of a particular data source.

In order to access the data source, the connector must provide a so called “SyncSource type”. A
SyncSource type represents the template from which an instance of a SyncSource can be created. For
example, the FileSystemSyncSource type made available by the Funambol is the means used by the
server to synchronize data stored in the file system. However, it does not represent a particular
directory to synchronize; to synchronize a specific directory (for instance /data/contacts) a real
SyncSource instance must be created and configured with the desired directory. You can think of a
SyncSource type as a class and of a SyncSource as an instance.

Copyright © 2009 Funambol - Page 32

An additional (but optional) component that a connector can provide is called listener. This component
is in charge to detect changes in the backend so that the server can trigger a device to synchronize the
changes.

Note: Funambol provides out-of-the-box a module called Foundation that contains basic
functionalities, libraries and classes that all custom modules require. This module must not be
removed by any Funambol installation.

6.2.1. Registering modules, connectors and SyncSource types
Modules, connectors and SyncSource types are registered filling the following database tables:

● fnbl_module for module information

● fnbl_connector for connector information

● fnbl_sync_source_type for SyncSource type information

● fnbl_connector_source_type for connector-SyncSource type associations

● fnbl_module_connector for module-connector association

Note: The last two tables are used to create the hierarchy module-connector-SyncSource type that you
can see in the Administration Tool.

As an example, let's consider the foundation module registration. When Funambol is installed, the
foundation module is installed too. It brings a connector called FunambolFoundationConnector, which,
in turn, contains the SyncSource types PIM Contact SyncSource, PIM Calendar SyncSource,
FileSystem SyncSource and SIF SyncSource (Figure 11).

This hierarchy is obtained with the following SQL commands:

1. Module registration:

insert into fnbl_module (id, name, description)
values('foundation','foundation','Foundation');

2. SyncConnector registration:

insert into fnbl_connector(id, name, description)
values('foundation','FunambolFoundationConnector','Funambol Foundation Connector');

3. The Foundation Connector belongs to the foundation module:

insert into fnbl_module_connector(module, connector)
values('foundation','foundation');

4. The SyncSource Type registration:

insert into fnbl_sync_source_type(id, description, class, admin_class)

Copyright © 2009 Funambol - Page 33

Figure 11: Foundation Connector Module in the Administration Tool

values('contact-foundation','PIM Contact
SyncSource','com.funambol.foundation.engine.source.PIMContactSyncSource','com.funambol
.foundation.admin.PIMContactSyncSourceConfigPanel');
insert into fnbl_sync_source_type(id, description, class, admin_class)
values('calendar-foundation','PIM Calendar
SyncSource','com.funambol.foundation.engine.source.PIMCalendarSyncSource','com.funambo
l.foundation.admin.PIMCalendarSyncSourceConfigPanel');
insert into fnbl_sync_source_type(id, description, class, admin_class)
values('fs-foundation','FileSystem
SyncSource','com.funambol.foundation.engine.source.FileSystemSyncSource','com.funambol
.foundation.admin.FileSystemSyncSourceConfigPanel');
insert into fnbl_sync_source_type(id, description, class, admin_class)
values('sif-fs-foundation','SIF
SyncSource','com.funambol.foundation.engine.source.SIFSyncSource','com.funambol.founda
tion.admin.SIFSyncSourceConfigPanel');

5. Finally, the SyncSource type belongs to the Foundation Connector:

insert into fnbl_connector_source_type(connector, sourcetype)
values('foundation','contact-foundation');

insert into fnbl_connector_source_type(connector, sourcetype)
values('foundation','calendar-foundation');

insert into fnbl_connector_source_type(connector, sourcetype)
values('foundation','fs-foundation');

insert into fnbl_connector_source_type(connector, sourcetype)
values('foundation','sif-fs-foundation');

Note: two classes are specified for each SyncSource type registration: the class (for instance
com.funambol.foundation.engine.source.FileSystemSyncSource), which actually implements the
SyncSource interface and the admin_class, which instead is used to create a new SyncSource
instance and to configure it in the Administration tool.

In the following section, we will see how these two classes are developed.

Note: in this guide, SyncSource and SyncSource Type are often treated as synonyms, even if they are
in the template-instance relationship seen before.

Copyright © 2009 Funambol - Page 34

7. Developing a SyncSource

A SyncSource is the means a set of data is made available to the synchronization engine. Therefore, in
order to synchronize any type of data (files, database tables, calendar events and so on), there must
be a proper SyncSource able to extract and store the data from and to the real data store.

Goal of the Funambol platform is to provide a collection of SyncSources for the most common uses
(i.e. files), but new SyncSources can be independently developed and plugged in the synchronization
engine so that the server will be able to process synchronization requests targeted to virtually any data
source.

7.1. The SyncSource interface and related classes
The core of the SyncSource architecture is the interface sync4j.framework.engine.source.SyncSource.
This interface does not make any assumption on the type of data being synchronized, so that its
concrete implementations are completely free to access their own underlying storage.

A SyncSource is identified by a sourceURI and usually a name; the former is the URI that a SyncML
client must specify as target in order to synchronize this particular SyncSource; the latter is a human-
friendly name used for displaying purposes only. Note that they must be both unique within a Funambol
installation.

A SyncSource is also associated to a type, in the form of a MIME type that represents the type of data
handled by the source.

The most important methods defined by the SyncSource interface are: (see chapter 11 for details)

Method Description

beginSync() This is the first SyncSource method the sync engine calls and it is used to specify who
is going to synchronize and which type of synchronization is requested.

endSync() This is the latest SyncSource method the sync engine calls and it may be used to
perform finalization tasks.

getUpdatedSyncItems Called to retrieve the updated SyncItems for the given principal since the given point in
time. For a definition of what a Principal is, please see Section 7.1.1 below.

getUpdatedSyncItemKeys Called to retrieve the SyncItemKey of the updated items for the given principal since
the given point in time.

getNewSyncItems Called to retrieve the new SyncItems for the given principal since the given point in
time.

getNewSyncItemKeys Called to retrieve the SyncItemKey of the new items for the given principal since the
given point in time.

getDeletedSyncItems Called to retrieve the deleted SyncItems for the given principal since the given point in
time.

getDeletedSyncItemKeys Called to retrieve the SyncItemKey of the deleted items for the given principal since
the given point in time.

getAllSyncItems Called to retrieve all the SyncItems for the given principal since the given point in time.

setSyncItem Called to insert or update the given item.

setSyncItems Called to insert or update the given items.

removeSyncItem/s Called to remove the given item(s).

getSyncItemFromTwin Called to find items that represent the same information as the given item. It is used in
conflict detection and during slow sync to associate a client item with a server item
which is similar enough.

Table 5 - SyncSource: most important methods

Funambol provides others two subtypes of the SyncSource interface: MergeableSyncSource and
FilterableSyncSource.

com.funambol.framework.engine.source.MergeableSyncSource: this interface should be used when
you want that conflicting data are merged when possible. The merge is performed when a conflict is

Copyright © 2009 Funambol - Page 35

detected in order to avoid loss of information. For example, let's assume that the same contact has
been defined on both the client adding a mobile phone, and the server, adding an email address. At
the next sync a conflict will be detected. If the contact is generated by a MergeableSyncSource, the
sync engine asks the SyncSource to merge the conflicting items. In the example, the result of the
merge will be a contact with both the new mobile number and email address. This contact will be
stored on the server and sent back to the client.

Method Description

mergeSyncItem(serverKey: SyncItemKey, clientItem:
SyncItem): boolean

Called when a conflict must be resolved merging the items.

Server side, the merge result must be persistent in the underlying
datastore.

If the item on the client must be updated, this method must
return true and put the new content in the given clientItem.

com.funambol.framework.engine.source.FilterableSyncSource: this interface should be used when the
SyncSource supports SyncML 1.2 filtering.

Method Description

getSyncItemStateFromId(itemKey: SyncItemKey): char Called to retrieve the state of an item. This method is required
because the server cannot know directly the state of an item not
inside the filter criteria.

isSyncitemInFilterClause(item: SyncItem): boolean Called to know if an item satisfies the filter.

isSyncitemInFilterClause(itemKey: SyncItemKey): boolean Called to know if the item specified with the given key satisfies
the filter.

7.1.1. SyncContext
The begin() method of SyncSource is called when a new sync is started. It requires just a SyncContext
as input parameter. A SyncContext contains the following information:

● principal (of type com.funambol.framework.security.Principal)

● syncMode (of type int)

● filter (of type com.funambol.framework.filter.Filter)

● since (of type java.sql.Timestamp)

● to (of type java.sql.Timestamp)

A principal is composed of a Sync4jUser and a Sync4jDevice because the same user may use
different devices (or the same device could be used by different users).

syncMode represents the synchronization type performed. Can be one of:

syncMode synchronization type

200 TWO-WAY

201 SLOW

202 ONE_WAY_FROM_CLIENT

203 REFRESH_FROM_CLIENT

204 ONE_WAY_FROM_SERVER

205 REFRESH_FROM_SERVER

filter represents the filter required by the client. If a filter is specified and the SyncSource is a
FilterableSyncSource, the expected behavior of the SyncSource is:

● the methods getAllSyncItemKey(), getNewSyncItemKeys(), getDeletedSyncItemKeys() and
getUpdatedSyncItemKeys() return only the items inside the filter

● the methods getSyncItemKeysFromTwin, getSyncItemStateFromId ignore the filter.

Copyright © 2009 Funambol - Page 36

Since is the last successfully completed synchronization session start time.

to represents the current synchronization start time.

7.1.2. SyncItem
Items returned by a SyncSource are encapsulated in funambol.framework.engine.SyncItem objects.
SyncItem defines the following methods:

Method Description

getKey Returns the item key.

getParentKey Returns the item's parent key (hierarchic sync)

getState Returns the item state.

setState Sets the item state.

getContent Returns the item content

setContent Sets the item content

getFormat Returns the item format

setFormat Sets the item format

getType Returns the item type

setType Sets the item type

getTimestamp Returns the timestamp of the last change of the item state and it is used in the
synchronization process, in order to determine the operation to be performed on the
sources.

setTimestamp Sets the item timestamp

getSyncSource Returns the SyncSource the item belongs to.

Table 6 - SyncItem methods

Note: when a SyncSource creates a SyncItem, it must always provide a value for the content and for
the timestamp.

7.1.3. Twin items
An item X is a twin of an item Y when from the SyncSource point of view, X and Y represent the same
information.

For example, two event items, both at the same time and in the same place may be considered the
same appointment, even if the associated note is different. Or two contacts may be considered the
same person if they have the same first, middle and last name.

Because the SyncSource is the only entity with knowledge about how data are stored and represented
in the data source, the SyncSource is the only component that can select the twins of a given item. The
synchronization engine does it calling getSyncItemsFromTwin().

Twin items are necessary in two circumstances:

● during full sync

● during conflict detection

During full sync, the client sends all its items and the server has to discover which operation the client
should apply in order to make its data set look identical to the one stored on the server. Because the
two devices are supposed to be out of sync, the server cannot relay on LUID-GUID mappings. In this
case, for each item given by the client, the server must search for twin items in the backend data
source. If a twin is not found, the new item is added. If a twin is found, the server will consider to have
such client item and won't send back a command for it. If the SyncSource being synchronized is
mergeable SyncSource, the synchronization engine will ask the SyncSource instance to merge the
client and server items and will send back the merged item to the client.

The same process is valid during conflict detection. When during fast sync a client sends a new item,
the server should first check if this item is conflicting with something else. Therefore, the server calls

Copyright © 2009 Funambol - Page 37

the SyncSource's getSyncItemsFromTwin(). If this method returns something, a conflict is detected
and handled accordingly. If no twin is found the item can be added.

The SyncSource developer should apply the more appropriated comparison logic according to the type
of data the SyncSource menages. Optionally, the SyncSource can disable this type of conflict with no
impact on the calling module, by implementing this method as a stub and always returning a failure to
find a twin item.

One final note about twin computation is that it should be kept as simple as possible, since it involves
database searches that may have a big impact on performance.

7.1.4. The Administration Tool configuration panel
The Administration Tool makes it possible to perform many administration tasks, including the
configuration of the Funambol Data Synchronization Service, loggers and SyncSources (for more
information, please see [3]).

After logging into the Administration Tool and connecting to the server, users will see something similar
to the window in Figure 12. Selecting an existing SyncSource, a configuration panel is displayed on the
right side of the window.

The Administration Tool is designed to be extended by developers so that a new custom SyncSource
type can be configured into the tool through a custom management panel. The Administration Tool
extension mechanism is described in the following chapter.

Copyright © 2009 Funambol - Page 38

Figure 12: SyncAdmin showing connectors, modules and SyncSources

8. Extending the Funambol Administration Tool

The Funambol Administration Tool can be extended so that any kind of object can be configured
through the UI. The extension mechanism is based on the concept that a module developer should be
able to provide custom panels that an administrator can access in order to configure a specific server
bean. Currently, a developer can provide management panels for the following objects:

● SyncSource types

● Connectors

Note: the classes implementing such management panels will be installed on the server as part of the
module installation.

8.1. Architecture overview
The Administration Tool extension mechanism is based on the concept of management object. A
management object is potentially anything that can be configured; however, in this guide the focus is
on providing a way for a module developer to provide custom configuration panels for connectors and
SyncSource types.

A management object is represented by the com.funambol.syncadmin.mo.ManagementObject class,
which wraps a generic Object instance together with a management path (i.e. the path of the server
bean instance in the configuration path). “Configuring a management object” means mainly setting its
properties based on the input from a user. To allow this, the abstract class
com.funambol.syncadmin.ui.ManagementObjectPanel abstracts a JPanel whose role is to configure a
given management object.

Two specialized subclasses of ManagementObjectPanel are available to developers to configure
SyncSource types and connectors. These are SourceManegementPanel and
ConnectorManagementPanel. These two classes are still meant not to be directly instantiated and are
therefore abstract.

A module developer can provide a configuration panel to a SyncSource type or a connector just
extending SourceManagementPanel or ConnectorManagementPanel with a class showing a suitable
data entry form for the object. When the module is loaded by the admin, those panel classes are
downloaded from the server and instantiated into the Administration Tool when the user selects a
SyncSource type or a connector.

The user can perform the following high-level actions on a custom panel:

● Adding a new object

● Updating an object

● Deleting an object

Such actions are notified to the interested classes in the same way swing events are commonly
notified. Figure 13 illustrates the sequence diagram of the calls between different components of the
Administration Tool or server when a user performs different operations on the connector / SyncSource
type nodes.

Copyright © 2009 Funambol - Page 39

8.2. ManagementObject and subclasses
The key concept around extending the Funambol Administration Tool with custom configuration panels
is the management object. A management object can be any object we want to be able to manipulate
through of the Administration Tool. In particular, any server beans can be considered a management
object.

A management object is an association between a Java object instance and a management path; the
management path represents the name of such instance in the context of a tree-like configuration
repository.

In the Admin framework a management object is represented by the class
com.funambol.admin.mo.ManagementObject. This has the interface of the table below.

Method Description

Constructors

ManagementObject (Object object, String
path)

Creates a new management object from the instance and the instance
pathname

Public methods

Object getObject() Returns the object instance

Copyright © 2009 Funambol - Page 40

Figure 13: Admin-ManagementObjectPanel collaboration diagram

SyncAdmin
ManagementObject

Panel
(concrete implementation)

Server

expand module node

getModule(...)

module content (connectors, sync source
types, admin panel classes, ...)

click on a sync source
or connector newInstance()

show panel

edit configuration

press save/add/delete

addActionListener(this)

action performed

add/update/delete management object

Method Description

void setObject(Object o) Sets the object instance

String getPath() Returns the management object pathname

void setPath(String path) Sets the management object pathname

Two specializations of ManagementObject are provided as described in the following:
SyncSourceManagementObject and ConnectorManagementObject. These are better described in the
following sections.

8.2.1. com.funambol.admin.mo.SyncSourceManagementObject
This management object represents a SyncSource instance. It associates the instance to the module /
connector / SyncSourceType IDs.

The interface of this class is shown in the table below.

Method Description

Constructors

SyncSourceManagementObject(
 SyncSource source,
 String moduleId,
 String connectorId,
 String sourceTypeId
)

Creates a new SyncSource management object from the instance and its
module/connector/type IDs

Public methods

String getModuleId() Returns the module ID

void setModuleId(String ID) Sets the module ID

String getConnectorId() Returns the connector ID

void setConnectorId(String ID) Sets the connector ID

String getSourceTypeId() Returns the source type ID

void setSourceTypeId(String ID) Sets the source type ID

String getTransformationsRequired Returns the engine transformations required (for instance 'b64')

setTransformationsRequired(String
transformations)

Sets the required transformations

8.2.2. com.funambol.admin.mo.ConnectorManagementObject
This management object represents a connector configuration object. It associates the instance to the
module / connector IDs. Plus, the management path is created as:

moduleId + '/' + connectorId + '/' + connectorName + ".xml"

The interface of this class is shown in the table below.

Method Description

Constructors

ConnectorManagementObject(
 Object obj,
 String moduleId,
 String connectorId,
 String connectorName
)

Creates a new connector management object from the instance and its
module/connector/type IDs. obj represents the configuration object, retrieved
from the server as a server bean with the pathname generated as above.

Public methods

String getModuleId() Returns the module ID

void setModuleId(String ID) Sets the module ID

String getConnectorId() Returns the connector ID

Copyright © 2009 Funambol - Page 41

Method Description

void setConnectorId(String ID) Sets the connector ID

8.3. ManagementObjectPanel and subclasses
ManagementObjectPanel is an abstract class that provides no user interaction widgets. It must be
extended by concrete implementations in order to do something useful.

To notify actions to the framework, ManagementObjectPanel is a java.awt.event.Action subject
(referring to the Observer pattern). This means that any class interested in knowing about (observing)
what is happening in a management panel shall implement the java.awt.ActionListener interface and
register itself to the panel, calling addActionListener(). In the Admin framework such interested classes
are represented by the controllers (SyncSourcesController, ConnectorController, and so on).

The ActionEvent generated and notified by actionPerformed() to all listeners shall have the following
characteristics:

● the panel instance as source

● one of the following event IDs:

1. ACTION_EVENT_INSERT

2. ACTION_EVENT_UPDATE

3. ACTION_EVENT_DELETE

● an arbitrary value as command string

For example, a custom management panel to configure a connector may have a “save” button,
through which the user can persist changes. When the button is pressed, the panel should notify the
action to the listeners. This can be done with a code similar to the following:

public class ConfigPanel
extends ManagementObjectPanel {
...
public ConfigPanel() {
 ... widgets creation and initialization ...
 saveButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 try {
 ... values validation ...
 ... management object update
 ConfigPanel.this.actionPerformed(
 new ActionEvent(ConfigPanel.this, ACTION_EVENT_UPDATE,
event.getActionCommand())
);
 } catch (Exception e) {
 notifyError(new AdminException(e.getMessage()));
 }
 }
 });
}
...
}

ManagementObjectPanel has the following interface.

Copyright © 2009 Funambol - Page 42

Method Description

Abstract methods

void updateForm() Tells the panel that it has to update the UI with the values in the management
object.

Public methods

void
setManagementObject(ManagementObject)

Sets the object under editing by this management panel

ManagementObject getManagementObject() Returns the edited object

void addActionListener(ActionListener) Registers the given action listener

void removeActionListener(ActionListener) Unregisters the given action listener

void notifyError(AdminException) Called when an error related to the panel should be displayed

Protected methods

void actionPerformed(ActionEvent) Notifies an action event to all listeners.

Two subclasses of a ManagementObjectPanel are provided by the Funambol administration
framework. They are described in the following sections.

8.3.1. SourceManagementPanel
This class specializes a ManagementObjectPanel to a particular type of management objects:
SyncSources. This base class is designed to be extended by concrete implementations to configure
new and existing SyncSources. The additions to the base class are:

● it handles management objects of type com.funambol.framework.engine.source.SyncSource

● it defines two states for the management panel: insert and update

The former is achieved providing a getSyncSource() methods that returns the SyncSource instance
under editing. The latter is used to differentiate the case where the user is creating a new SyncSource
(therefore the SyncSource instance under editing does not exist yet on the server) from the case where
the user is editing an existing SyncSource. The administration framework will take care of changing the
status from INSERT to UPDATE.

SourceManagementPanel has the following interface.

Method Description

Public methods

void setState(int) Sets the panel state.

int getState() Returns the panel state

SyncSource getSyncSource() Returns the SyncSource instance under editing

8.3.2. ConnectorManagementPanel
This class represents the base class for the management panel of a connector. It does not adds much
the its base class, but it just provides a shortcut to easily gather the server bean instance used to
configure the connector.

ConnectorManagementPanel has the following interface.

Method Description

Public methods

Object getConfiguration() This is a shortcut to getManagementObject().getObject().

Copyright © 2009 Funambol - Page 43

9. Configuring Funambol components

One of the Funambol design goal is to provide a framework that can be used to implement any kind of
synchronization service, extending existing modules or plugging in new modules. All this require a lot of
configuration information and possibly an easy way to add configuration for new extensions.
Configuration files should be easy to understand, access and change.

Funambol uses mainly two configuration techniques:

● System properties

● Server JavaBeans

In the following sections these two types of configuration are described in details.

9.1. System properties
The only system property directory used by the Funambol Data Synchronization Service is
funambol.home which must point to the directory where Funambol is installed (commonly referenced
as $FUNAMBOL_HOME).

This property is specified at JVM invocation time using the -D option. On many systems, it is sufficient
to set the JAVA_OPTS environment variable in order to get it included into the JVM launching
command.

9.2. Server JavaBeans
Many Funambol components are configured as server JavaBeans. Server JavaBeans are JavaBeans
used server-side. The idea is to store a bean configuration as the serialized form of the bean itself.
This way, a bean can be instantiated, configured and serialized to persist its configuration. Later, the
bean can be deserialized in memory as a properly configured instance.

Funambol makes use of the standard Java facility to serialize objects into XML (and to deserialize
them from XML). This is achieved by using the classes java.beans.XMLEncoder and
java.beans.XMLDecoder. Since configuration files created with such encoder/decoder are easy to use,
read and write, they can be created and modified manually with a simple text editor, without the need
of a dedicated GUI. An additional advantage of this approach is that server JavaBeans are not
requested to implement java.io.Serializable because XMLEncoder does not require it.

This is an example of a server JavaBean:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.1_01" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.server.store.PersistentStoreManager">
 <void property="jndiDataSourceName">
 <string>java:/jdbc/sync4j</string>
 </void>
 <void property="stores">
 <array class="java.lang.String" length="2">
 <void index="0">
 <string>sync4j.server.store.SyncPersistentStore</string>
 </void>
 <void index="1">
 <string>sync4j.server.store.EnginePersistentStore</string>
 </void>
 </array>

Copyright © 2009 Funambol - Page 44

 </void>
 </object>
</java>

In order to help server JavaBeans handling, Funambol uses the factory class
com.funambol.framework.tools.beans.BeanFactory, which in turn makes use of a customized class
loader; the class loader handles configuration files in a so called config path, in the same way a
common class loader handles classes in the classpath.

The XML syntax uses the following conventions:

Each element represents a method call.

● The "object" tag denotes an expression whose value is to be used as the argument to the
enclosing element.

● The "void" tag denotes a statement which will be executed, but whose result will not be used
as an argument to the enclosing method.

● Elements which contain elements use those elements as arguments, unless they have the tag:
"void".

● The name of the method is denoted by the "method" attribute.

● XML's standard "id" and "idref" attributes are used to make references to previous expressions
- so as to deal with circularities in the object graph.

● The "class" attribute is used to specify the target of a static method or constructor explicitly; its
value being the fully qualified name of the class.

● Elements with the "void" tag are executed using the outer context as the target if no target is
defined by a "class" attribute.

● Java's String class is treated specially and is written <string>Hello, world</string> where the
characters of the string are converted to bytes using the UTF-8 character encoding.

Although all object graphs may be written using just these three tags, the following definitions are
included so that common data structures can be expressed more concisely:

● The default method name is "new".

● A reference to a Java class is written in the form <class>javax.swing.JButton</class>.

● Instances of the wrapper classes for Java's primitive types are written using the name of the
primitive type as the tag. For example, an instance of the Integer class could be written:
<int>123</int>. Java's reflection is internally used for the conversion between Java's primitive
types and their associated "wrapper classes".

● In an element representing a nullary method whose name starts with "get", the "method"
attribute is replaced with a "property" attribute whose value is given by removing the "get"
prefix and decapitalizing the result.

● In an element representing a monadic method whose name starts with "set", the "method"
attribute is replaced with a "property" attribute whose value is given by removing the "set"
prefix and decapitalizing the result.

● In an element representing a method named "get" taking one integer argument, the "method"
attribute is replaced with an "index" attribute whose value the value of the first argument.

● In an element representing a method named "set" taking two arguments, the first of which is
an integer, the "method" attribute is replaced with an "index" attribute whose value the value of
the first argument.

● A reference to an array is written using the "array" tag. The "class" and "length" attributes
specify the sub-type of the array and its length respectively.

Copyright © 2009 Funambol - Page 45

9.2.1. The configuration path
Server JavaBeans are looked for in the configuration path, which is analogous to the class path for
classes lookup. This is implemented reading the serialization files from a custom class loader,
com.funambol.framework.config.ConfigClassLoader. This class loader (which is instead our server
beans loader), is configured to read objects from the configuration path. The config path is built
appending “/config” to the funambol.home system property value. For example, if funambol.home is set
to “/opt/Funambol/ds-server”, the config path would be “/opt/Funambol/ds-server/config”.

9.2.2. Lazy initialization
When a server bean is deserialized from its XML form, the classloader that loads the serialization file
calls the empty constructor first and then it sets the bean property values using the setXXX() methods
provided by the class. However, some classes may need additional operations to be performed in
order to properly initialize (after setXXX() methods are called). To support this lazy initialization
approach, these classes can implement com.funambol.framework.tools.beans.LayInitBean, which
defines a separate init() method. When Funambol loads a LazyInitBean, after bean instantiation (or
deserialization) and configuration (calling the setter methods), it calls the bean's init() method, giving
the bean the opportunity to complete its initialization.

9.3. How to configure a standard component
Making a change to a configuration bean is as easy as editing a text file. Let's take as example the
configuration file for the DBOfficer component. The configuration bean full path is
com/funambol/server/security/DBOfficer.xml (please note that this path is relative to the config path)
and its content is below:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.0" class="java.beans.XMLDecoder">
 <object class="sync4j.server.security.DBOfficer">
 <void property="clientAuth">
 <string>syncml:auth-basic</string>
 </void>
 <void property="serverAuth">
 <string>none</string>
 </void>
 </object>
</java>

The object element specifies which Java class will be instantiated and the property element sets the
corresponding instance property. Therefore, to change the preferred client authentication type, it is
sufficient to edit the file, change the clientAuth property and save. The next time this bean will be used,
the new configuration value will be picked up.

9.4. How to create a custom configurable object
With this technique, any Java object can be configured, from a simple Java class to a very complex
Java object tree. For example, this configures a String object:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2" class="java.beans.XMLDecoder">
 <string>This is a String!</string>
</java>

A more interesting example is given, for instance, by the class
com.funambol.framework.config.LoggingConfiguration. The class looks like the following:

public class LoggingConfiguration {

Copyright © 2009 Funambol - Page 46

 // -- Private data
 private ArrayList loggers;
 // -- Constructors
 /** Creates a new instance of LoggingConfiguration */
 public LoggingConfiguration() {
 }
 /**
 * Getter for property loggers.
 *
 * @return Value of property loggers.
 */
 public ArrayList getLoggers() {
 return loggers;
 }
 /**
 * Setter for property loggers.
 *
 * @param loggers New value of property loggers.
 */
 public void setLoggers(ArrayList loggers) {
 this.loggers = loggers;
 }
}

A possible configuration file for such a class could be:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2_04" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.config.LoggingConfiguration">
 <void property="loggers">
 <object class="java.util.ArrayList">
 <!--
 funambol
 -->
 <void method="add">
 <object class="com.funambol.framework.config.LoggerConfiguration">
 <void property="append">
 <boolean>true</boolean>
 </void>
 <void property="count">
 <int>1</int>
 </void>
 <void property="fileOutput">
 <boolean>true</boolean>
 </void>
 <void property="level">
 <string>INFO</string>
 </void>
 <void property="limit">
 <int>100</int>

Copyright © 2009 Funambol - Page 47

 </void>
 <void property="name">
 <string>funambol</string>
 </void>
 <void property="pattern">
 <string>logs/ds-server.log</string>
 </void>
 </object>
 </void>
 <!--
 funambol.engine
 -->
 <void method="add">
 <object class="com.funambol.framework.config.LoggerConfiguration">
 <void property="append">
 <boolean>true</boolean>
 </void>
 <void property="count">
 <int>1</int>
 </void>
 <void property="inherit">
 <boolean>true</boolean>
 </void>
 <void property="level">
 <string>INFO</string>
 </void>
 <void property="limit">
 <int>100</int>
 </void>
 <void property="name">
 <string>funambol.engine</string>
 </void>
 <void property="pattern">
 <string>logs/ds-server.engine.log</string>
 </void>
 </object>
 </void>
 </object>
 </void>
 </object>
</java>

Note: see later how to automatically create such a file.

9.5. How to get a configured instance
Configuration beans are accessed through the singleton com.funambol.framework.config.Configuration
object. For example, to instantiate a configured LoggingConfiguration instance, use the code below.

Configuration c = Configuration.getConfiguration();

Copyright © 2009 Funambol - Page 48

LoggingConfiguration logging =
c.getBeanInstanceByName("sync4j/server/logging/logging.xml");

9.5.1. Tips and tricks
It is not necessary to write a configuration file by hand from scratch. To write a bean instance for the
first time use the com.funambol.framework.tools.beans.BeanFactory's saveBeanInstance() method to
save a configured instance into a file. For example:

Jbutton b = new Jbutton(“press me”);
BeanFactory.saveBeanInstance(b, new File("button.xml");

The result is the following:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2_04" class="java.beans.XMLDecoder">
 <object class="javax.swing.JButton">
 <string>press me</string>
 </object>
</java>

Copyright © 2009 Funambol - Page 49

10. Customizing message processing

This section explains how to extend Funambol customizing the processing of incoming and outgoing
messages.

10.1. Overview
The OMA DS protocol is an XML-based client-server protocol. This means that each OMA DS
message is an XML document and a response message always follows a request message.

In the Funambol implementation, an OMA DS message reaching the server goes through some
transformations. These may be:

● XML level transformations, processing the message in its native XML representation, and

● message transformations, acting on a Java representation of the message

Figure 14 helps explaining this process.

In order to save bandwidth and processing power, OMA DS messages can be also WBXML encoded.
Regardless of how the message is encoded, its content is first delivered to a SyncAdapter component
by the transport layer. The SyncAdapter first transforms the message into XML if it was WBXML
encoded and then the XML message is reduced to a “canonical” form in order to get rid of device
specific singularities. XML canonization is the standard XML level transformation executed by the
system.

Even when in the canonical XML form, the message is still hard to manipulate, since XML needs to be
parsed. Plus, each component that needs to access any of the OMA DM message elements would
have to parse the XML again, with a big impact on performance. For these reasons, the canonic XML
message is transformed into an object tree that represents exactly the message.

After an incoming message has been transformed into an object tree, it passes through the input
message processing pipeline before it gets to the synchronization engine. This gives the opportunity of
further processing the message when it is in a more manageable representation. In a similar way, a
response message going out from the engine, passes through the output message processing pipeline
before getting transformed to its XML (and then WBXML) representation.

The input and the output pipelines are completely customizable, so that custom message pre and post
processing can be easily added to the system.

Input and output message processing components are also called synclets.

10.2. Preprocessing an incoming message
To preprocess an incoming message we have to create an input processor component (input synclet)
and to configure the pipeline manager accordingly. This is described below..

Copyright © 2009 Funambol - Page 50

Figure 14: Message processing architecture

Synchronization
Engine

Input Pipeline

Output Pipeline

Pipeline Manager

Java

XML -
WBXML

Java

transport layer

XML Canonizer

SyncAdapter

JiBX

10.2.1. Creating an input synclet
An input synclet is a class that implements the
com.funambol.framework.engine.pipeline.InputMessageProcessor interface. This interface defines just
one method: preProcessMessage(MessageProcessingContext context, SyncML msg). context is a
parameter that is shared amongst all the synclets (both input and output) involved in the message
processing. msg is the object tree representing the SyncML message. The object tree is composed of
instances of classes in the com.funambol.framework.core packages and represents a hierarchical view
of the message.

For example, the synchronization message below will be translated in the object hierarchy of Figure 15.

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>12345678</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://localhost</LocURI>
</Target><Source><LocURI>syncml-phone</LocURI></Source>
<Cred>
 <Meta><Type>syncml:auth-basic</Type></Meta>
 <Data>Z3Vlc3Q6Z3Vlc3Q=</Data>
</Cred>
</SyncHdr>
<SyncBody>
<Alert>
<CmdID>1</CmdID>
<Data>200</Data>
<Item>
<Target><LocURI>test</LocURI></Target>
<Source><LocURI>test</LocURI></Source>
<Meta>
<Anchor>
<Last>234</Last>
<Next>276</Next>
</Anchor>
</Meta>

Copyright © 2009 Funambol - Page 51

Figure 15 - com.funambol.framework.core object tree example

SyncML

SyncHdr

SyncBody
Alert

Replace

● verDTD
● verProto
● sessionID
● msgID
● target
● source

● commands[]

● cmdID
● data

● cmdID
● items

Cred
● type
● data

</Item>
</Alert>
<Final/>
</SyncBody>
</SyncML>

An example of an input synclet is the following.

package com.foo.synclet;
import com.funambol.framework.logging.*;
import com.funambol.framework.core.*;
import com.funambol.framework.engine.pipeline.*;
import com.funambol.framework.tools.SyncMLUtil;
public class LoggingSynclet
implements InputMessageProcessor {
// -- Private data
private static final FunambolLogger log = FunambolLoggerFactory.getLogger("engine");
// -- Public methods
 /**
 * Logs the input message and context
 *
 * @param processingContext the message processing context
 * @param message the message to be processed
 *
 * @throws Sync4jException
 */
 public void preProcessMessage(MessageProcessingContext processingContext,
 SyncML message)
 throws Sync4jException {
 if (log.isLoggable(Level.INFO)) {
 log.info(“---");
 log.info("Input message processing context");
 log.info("");
 log.info(processingContext.toString());
 log.info("---");
 log.info("Input message");
 log.info("");
 log.info(Util.toXML(message));
 log.info("---");
 //
 // Sets the device ID to foo
 //
 message.getSyncHdr().getSource().setLocURI(“foo”);
 }
 }
}

This example synclet just logs to the funambol.engine logger the input message; also, it modifies the
message setting the device ID to “foo”.

One very important thing to keep in mind when developing a synclet (input or output) it is that in the
current Data Synchronization Service implementation just one instance is used to serve all the

Copyright © 2009 Funambol - Page 52

requests and so no instance/class variables must be used to store its status. Indeed the
MessageProcessingContext must be used.

10.2.2. Configuring an input synclet
The input synclet so created is configured and deployed in the Data Synchronization Service adding a
server side JavaBeans like the following in the ds-
server/config/com/funambol/server/engine/pipeline/input directory.

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.5.0" class="java.beans.XMLDecoder">
 <object class="com.foo.synclet.LoggingSynclet" />
 </object>
</java>

Note: any XML file in the ds-server/config/com/funambol/server/engine/pipeline/input directory is used
to create an input synclet, so this directory should be under strict control by the system administrator.
The synclet loading and execution is done in alphabetic order, so if more than one synclet is used, a
naming convention is an important part of processing control.

10.3. Postprocessing an outgoing message
To postprocess an outgoing message we have to create an output processor component (output
synclet) and to configure it accordingly. This is described below.

10.3.1. Creating an output synclet
An output synclet is a class that implements the
com.funambol.framework.engine.pipeline.OutputMessageProcessor interface. This interface defines
just one method: postProcessMessage(MessageProcessingContext context, SyncML msg).

The concepts behind the output message processing are the same as per input processing.

An example of an output synclet is the class shown below. This synclet injects a Get command into the
outgoing message to request client capabilities:

package com.foo.synclet;
public class AddGetSynclet
implements OutputMessageProcessor {
 // --- Constants
 // -- OutputMessageProcessor
 public void postProcessMessage(MessageProcessingContext processingContext,
 SyncML message)
 throws Sync4jException {
 AbstractCommand[] commands = message.getBody().getCommands();
 AbstractCommand[] newCommands = new AbstractCommand[commands.length+1];
 Meta meta = new Meta();
 meta.setType(“application/vnd.syncml-devinf+xml”);
 Item item = new Item(
 new Target(“/devinf11”),
 null,
 null,
 null,
 false
);
 Get get = new Get(

Copyright © 2009 Funambol - Page 53

 new CmdID(newCommands.length),
 false,
 null,
 null,
 meta,
 new Item[] { item }
);
 System.arraycopy(commands, 0, newCommands, 0, commands.length);
 newCommands[commands.length] = get;
 }
}

10.3.2. Configuring an output synclet
As for the input synclet, the output synclet so created is configured and deployed in the Data
Synchronization Service adding a server side JavaBeans like the following in the ds-server/config/com/
funambol/server/engine/pipeline/output directory.

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.5.0" class="java.beans.XMLDecoder">
 <object class="com.foo.synclet.AddGetSynclet" />
 </object>
</java>

Note: any XML file in the ds-server/config/com/funambol/server/engine/pipeline/output directory is
used to create an input synclet, so this directory should be under strict control by the system
administrator. The synclet loading and execution is done in alphabetic order, so if more than one
synclet is used, a naming convention is an important part of processing control.

10.3.3. The MessageProcessingContext
Funambol uses the MessageProcessingContext mentioned above to store the following properties:

Property name Type Scope Description

funambol.session.id java.lang.String Session Session ID of the current session

funambol.session.messageType java.lang.String Session 'WBXML' or 'XML' accordingly to the type of
the messages in the current session

funambol.request.parameters java.util.Map Request Parameters passed on the query string of
the URL used at the transport level

funambol.request.headers java.util.Map Request Headers passed in the request at the
transport level.

10.3.4. How to stop message processing
If needed, an input or output pipeline component can ask the manager to stop further processing of the
message. The synclet does this by throwing a
com.funambol.framework.pipeline.StopProcessingException exception.

Copyright © 2009 Funambol - Page 54

11. SyncSource API

The SyncSource identifies the remote database that will be synchronized with the client database; it
wraps a set of items to be synchronized. Any type of data (files, database tables, calendar events and
so on) can be synchronized, but there must be a proper SyncSource for each type, capable of
extracting and storing the data for a real data store.

The goal of Funambol is to provide a collection of SyncSources for the most common uses (for
instance, files), although SyncSources can be independently developed and plugged in the
synchronization engine, allowing synchronization requests targeted to virtually any database or type of
data.

11.1. SyncSource class
The SyncSource class provides an implementation of the main methods; then, the derived classes
MergeableSyncSource and the FilterableSyncSource implement additional specific methods.

Figure 16 shows the class diagram of a DummySyncSource that implements MergeableSyncSource.

Figure 17 shows the class diagram of a DummySyncSource that implements FilterableSyncSource.

Copyright © 2009 Funambol - Page 55

Figure 16: DummySyncSource implements MergeableSyncSource.

DummySyncSource

AbstractSyncSource

extends

MergeableSyncSource

implements

Figure 17: DummySyncSource implements FilterableSyncSource

DummySyncSource

AbstractSyncSource

extends

FilterableSyncSource

implements

11.1.1. Methods list
Note: All of these methods throw an exception: SyncSourceException.

Method Return Description

beginSync(SyncContext context) void Init method of the synchronization process

endSync() void final method of the synchronization process

getAllSyncItemKeys() SyncItemKey[] Get all the IDs of the items in the back end

getSyncItemFromId(SyncItemKey syncItemKey) SyncItem Get the item associated to the given key from the Back
end system

getNewSyncItemKeys(Timestamp since,
Timestamp to)

SyncItemKey[] Get the IDs of the new items from the given since
timestamp to the given to timestamp

getUpdatedSyncItemKeys(Timestamp since,
Timestamp to)

SyncItemKey[] Get the IDs of the updated items from the given since
timestamp to the given to timestamp

getDeletedSyncItemKeys(Timestamp since,
Timestamp to)

SyncItemKey[] Get the IDs of the deleted items from the given since
timestamp to the given to timestamp

getSyncItemKeysFromTwin(SyncItem syncItem) SyncItemKey[] Get the IDs of the items that match with the given item

addSyncItem(SyncItem syncItem) SyncItem Called by the synchronization engine to add the given
item to the back end. syncItem contains the item to
add. The SyncSource developer can use SyncSource
methods to extract the real item content and perform
the appropriate actions on the back end.

updateSyncItem(SyncItem syncItem) SyncItem Called by the synchronization engine to update the
given item to the back end. syncItem contains the item
to add. The SyncSource developer can use
SyncSource methods to extract the real item content
and perform the appropriate actions on the back end.

removeSyncItem(SyncItemKey syncItemKey,
Timestamp ts, boolean softDelete)

void Called by the synchronization engine to delete the
given item from the back end. syncItem contains the
key of the item to delete.

setOperationStatus(String operation, int
statusCode, SyncItemKey[] keys)

void This call notifies the status code of the given operation
performed on the items with the given keys.

SyncItem is a class in the package: import com.funambol.framework.engine.SyncItem. The methods
available in this interface are reported in the following table:

Copyright © 2009 Funambol - Page 56

Method Description

getKey Returns the item key.

getParentKey Returns the item's parent key (hierarchic sync).

getState Returns the item state. (see below)

setState Sets the item state. (see below)

getContent Returns the item's content.

setContent Sets the item's content.

getFormat Returns the item's encoding. (“b64” for SIF, nothing in most other cases)

setFormat Sets the item's encoding. (“b64” for SIF, nothing in most other cases)

getType Returns the item's MIME type.

setType Sets the item's MIME type.

getTimestamp Returns the timestamp of the last change of the item state and it is used in the
synchronization process, in order to determine the operation to be performed on the
sources.

setTimestamp Sets the item timestamp.

getSyncSource Returns the SyncSource the item belongs to.

The key and parentKey properties are com.funambol.framework.engine.SyncItemKey objects
identifying the item or the parent item. The parent item is used in the case of hierarchical
synchronization where a parent/child structure is synchronized (e.g. email synchronization). In many
cases a SyncItemKey just encapsulates a string.

The state (getState, setState) property represents the state of the item and can be one of the following
values:

Value Description

SyncItemState.NEW The item is new.

SyncItemState.UPDATED The item has been updated.

SyncItemState.DELETED The item has been deleted.

SyncItemState.SYNCHRONIZED The items has been already synchronized.

SyncItemState.UNKNOWN The item is in a unknown state.

SyncItemState.NOT_EXISTING The item is not existing yet.

SyncItemState.CONFLICT The item is in a conflict state.

SyncItemState.PARTIAL The item contains only a portion of the content.

Note that only NEW, UPDATED and DELETED items are available for use by a SyncSource. The other
states are only used and processed by the synchronization engine. The associated Timestamp
property is the timestamp of the last change.

Content is the item content returned encapsulated into a object. The MIME type of the content is
represented by the property type (getType, setType). The following table lists some examples of MIME
types supported by some of our SyncSources:

Copyright © 2009 Funambol - Page 57

MIME type Content

text/x-vcalendar A calendar (event or task) item in the vCalendar 1.0 format.

text/calendar A calendar (event or task) item in the iCalendar (i.e. vCalendar 2.0) format.

text/x-s4j-sife An event in the SIF-E format.

text/x-s4j-sift A task in the SIF-T format.

text/x-vcard A contact in the vCard format.

text/x-s4j-sifc A contact in the SIF-C format.

text/plain A plain-text note.

text/x-s4j-sifn A note in the SIF-N format.

application/vnd.omads-email+xml An electronic mail message in the format defined by the Open Mobile Alliance.

application/vnd.omads-folder+xml An electronic mailbox folder in the format defined by the Open Mobile Alliance.

… ...

As a developer you do not usually need to develop your own implementation of SyncItem; Funambol
provide a default implementation that should be sufficient in most cases. This is
com.funambol.framework.engine.SyncItemImpl. See the source code of one of the Funambol
connector for examples of how to use this class.

11.2. Mergeable SyncSource methods
The MergeableSyncSource class is an extension of a SyncSource that allows to merge the content of
two items when a conflict is detected in order to avoid a loss of whatever information. For instance,
while synchronizing the contacts, the server could find out that the same contact was updated on the
server and on the client. An example could be that a new email address has been added in the client,
while a telephone number was added in the server image of the record. In this case, the server can
merge the server contact information and the client contact information, keeping both the new email
address and phone number.

11.2.1. Methods list
Note: all the methods throw a exception: SyncSourceException

Method Return Description

mergeSyncItems(SyncItemKey syncItemKey, SyncItem
syncItem)

boolean Called by the synchronization engine to merge
the server item identified by syncItemKey with
the content obtained from the client and stored
in syncItem. This methods must return true if
the content has been changed so that the item
resulting from the merge will be sent back to
the client.

11.3. Filterable SyncSource methods
The FilterableSyncSource class is an extension of a SyncSource that allows the handling of filters
during the sync process. Two type of filters can be used by a device:

● Record filter: permits to specify the records to sync (for example, only today's emails)

● Field filter: permits to specify criteria on the fields to synchronize (for example, skip the
contact's photo)

11.3.1. Methods list
Note: all the methods throw a exception: SyncSourceException

Method Return Description

isSyncItemInFilterClause(SyncItem syncItem) boolean Detect if the given item matches the filter clause. Called
to know if an item satisfies the filter

Copyright © 2009 Funambol - Page 58

isSyncItemInFilterClause(SyncItemKey
syncItemKey)

boolean Detect if the item linked to the ID matches the filter
clause. Called to know if the item specified with the given
key satisfies the filter

getSyncItemStateFromId(SyncItemKey
syncItemKey)

char Get the “status” of the given item. Called to retrieve the
status of an item. This method is required because the
server isn't able to know the status of an item not inside
the filter criteria.

Copyright © 2009 Funambol - Page 59

12. Officer API

The Funambol security architecture is designed to be pluggable and is based on a very simple
concept: authentication and authorization are centralized in a single dedicate component called officer.

An officer is a Java class that implements a specific interface. Concrete implementations provide
adapters for external security services. For instance, a common external security service could be a
database storing user profile information; a DBOfficer can be plugged into Funambol in order to
perform authentication and authorization through the user information stored into the database.

12.1. Officer class

Figure 18 shows the class diagram of a DummyOfficer.

12.1.1. Methods list
Method Return Description

authenticateUser(Cred credential) Sync4jUser This method verifies the user on the back-end system,
logging her in.

authorize(Principal principal, String resource) Officer.AuthStatus If required, this method authorizes the user for a
specific purpose.

unauthenticateUser(Sync4jUser user) void If required, this method makes the user log out from
the back-end system.

Cred is a class in the package: com.funambol.framework.core.

A credential is created on the basis of a com.funambol.framework.core.Authentication object,
containing all the information needed to authenticate the user on a back-end system. Four types of
authentication are supported:

● none

● syncml:auth-basic

● syncml:auth-md5

● syncml:auth-MAC

Principal is a class in the package: java.security.Principal.

The possible statuses of authorization are:

Copyright © 2009 Funambol - Page 60

Figure 18: DummyOfficer diagram class

DummyOfficer

AbstractOfficer

extends

Officer

implements

● RESOURCE_NOT_AVAILABLE

● INVALID_RESOURCE

● NOT_AUTHORIZED

● AUTHORIZED

● PAYMENT_REQUIRED

12.1.2. Usage example
The following code (from the Connector Testing Framework) provides a simple example of the
authentication process:

// Context set-up
Authentication authentication =
new Authentication("syncml:auth-" + authenticationType, userName, password);
Cred credentials = new Cred(authentication);
Sync4jUser user = officer.authenticateUser(credentials);
Sync4jDevice device = new Sync4jDevice(deviceID);
Sync4jPrincipal principal = new Sync4jPrincipal(user, device);
SyncContext context = new SyncContext(principal, 200, null, "localhost", 2);

Copyright © 2009 Funambol - Page 61

13. Web Services API

In order to solve the problem of application-to-application communication, Funambol provides a web
services layer that allows for applications to be integrated with the Funambol Platform and to access
the resources provided by the system.

The application integration becomes much more flexible because web services provide a form of
communication that is not tied to any particular platform or programming language. Thanks to the web
service, Funambol makes resources available over the networks in a standardized fashion.

13.1. Introduction
The Funambol Data Synchronization Service exposes the web services listed in the next paragraphs.
The endpoint of the web service is: http://localhost:8080/funambol/services/admin.

In order to access the web service, the client must be authenticated. The default credentials are:

user = admin

password = sa

13.1.1. Funambol Data Synchronization Service Web Services
The following table lists the web services exposed by the Funambol Data Synchronization Service.

A clause, used as a parameter in several methods of this list, is an XML element that represents a
logical clause used to filter a list of results. It is generated by a Clause object as explained in the
Funambol Data Synchronization Service Architecture and Design Document (section
FilterableSyncSource).

Method Parameters Return Description

getServerVersion String version String Returns the server version.

setServerConfiguration ServerConfiguration
config

void Saves and apply the new server
configuration.

getServerConfiguration ServerConfiguration Returns the server configuration.

getServerBean String bean String Returns the server bean with the given
name. This is used to load a
configuration as explained in the
Funambol Data Synchronization Service
Architecture and Design Document
(section Server JavaBeans). If the bean
does not exist, an AdminException is
thrown.

setServerBean String bean, String obj void Sets the server bean with the given
name. This is used to set up a
configuration.

login String username void This method is only used to check
credentials. Being this WS stateless, its
methods are always called on request
and each of them has to pass
authentication. However, for instance
the SyncAdmin, has a login panel that is
displayed before any access to one of
the other WS methods. In order to
provide to the user an immediate
feedback, the SyncAdmin (or any other
client can just call login()

authorizeCredential Credential authCred,
String resource

AuthorizationResponse Checks if the user is authorized to use
the given resource. The credential
comprises the user name and the
corresponding password.

getUsers String clause Sync4jUser[] Gets all users that satisfy the parameter

Copyright © 2009 Funambol - Page 62

http://localhost:8080/funambol/services/admin

of search.

countUsers String clause int Counts the number of users that satisfy
a given clause.

addUser Sync4jUser user void Adds a new user with their assigned
role.

setUser Sync4jUser user void Updates the information about a user.

deleteUser String username void Deletes the user from the users list.

getDevices String clause Sync4jDevice[] Gets a list of devices that satisfy a given
clause.

countDevices String clause int Counts the number of device that satisfy
a given clause.

addDevice Sync4jDevice d String Inserts a new device in the devices list
and returns its newly assigned device
ID.

setDevice Sync4jDevice d void Updates the information about a device.

deleteDevice String deviceID void Deletes the device with the given ID
from the devices list.

getDevice String deviceID Sync4jDevice Retrieves the device with the given ID
from the devices list.

getDeviceCapabilities String deviceID String Gets a device's capabilities as a
SyncML node.

setDeviceCapabilities String caps, String
deviceID

Long Sets a device's capabilities for a specific
device and returns the identifier of the
newly added capabilities.

getPrincipals String clause Sync4jPrincipal[] Gets all principals that satisfy a given
clause. A principal comprises references
to a user and a device.

countPrincipals String clause int Counts the number of principals that
satisfy a given clause.

addPrincipal Sync4jPrincipal p long Adds a new principal and returns the
newly assigned principal ID.

deletePrincipal long principalID void Deletes a principal from the principals
list.

getRoles String[] Gets the list of available roles for users.

getLoggers LoggerConfiguration[] Returns the available configurations for
the logger.

getAppenders String Returns an XML serialization of a map
with all available Appender objects on
the server.

setAppender String appenderBean void Sets the given appender. The
configuration of the appender is
specifiied as a JavaBean.

getAppenderManagementPanel String
appenderClassName

String Returns the class name of the
management panel to be used to
configure an appender with the given
class name.

setLoggerConfiguration String loggerBean void Saves and applies the new logger
configuration. The configuration is
specified as a JavaBean.

setLoggingConfiguration LoggingConfiguration
config

void Saves and applies a new logging
configuration.

getLatestDSServerUpdate Component Returns the latest available Data
Synchronization Service update. The
Component class contains information
about the update: the updated
component's name, version, release
date, URL, short and long descriptions.
See the Funambol Data Synchronization
Service Architecture and Design
Document (section Automatic check for
updates).

getLastTimestamps String clause LastTimestamp[] Reads all sync timestamps that satisfy

Copyright © 2009 Funambol - Page 63

the clause.

deleteLastTimestamp long principalId, String
sourceId

void Deletes the timestamp of the last
synchronization performed by a given
principal with a given sync source.

countLastTimestamps String clause int Counts the number of sync timestamps
that satisfy a given clause.

getModulesName Sync4jModule[] Gets a list of all modules installed on the
server.

getModule String moduleID String Gets information about a module
installed on the server.

addSource String moduleId, String
connectorId, String
sourceTypeId, String
source

void Adds a new source into the datastore
and creates the corresponding XML file
with its configuration. The source must
have a defined source type. The source
type must refer to a connector. The
connector must refer to a module.

getSync4jSources String clause Sync4jSource[] Gets a list of sync sources that satisfy a
given clause.

getSyncSourceClasses String[] sourceTypesID String[] Returns an array with the classes used
for the given source types.

deleteSource String sourceUri void Removes a sync source and the
corresponding configuration file.

setSource String moduleId, String
connectorId, String
sourceTypeId, String
source

void Updates a specific source into the
datastore and creates the corresponding
XML file with its configuration. The
source must have a defined source type.
The source type must refer to a
connector. The connector must refer to
a module.

sendNotificationMessage String deviceID, String
alerts, Integer uimode

void Sends a notification message to the
given device. The uimode argument
specifies the “user interaction mode”
according to the SyncML notification
standard that can have four values: 0 –
unspecified, 1 – background action, 2 –
inform the user, 3 – require user
interaction. See OMA document about
SyncML Notification Initiated Session.

sendNotificationMessages String username, String
alerts, Integer uimode

void Sends a notification message to all
devices of the principals with the given
username.

Below is an example of the notification message needed by the sendNotification method of the WS
API; the “alert” parameter of the sendNotificationMessage method listed in the previous table is the
following:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.5.0_15" class="java.beans.XMLDecoder">
 <array class="com.funambol.framework.core.Alert" length="1">
 <void index="0">
 <object class="com.funambol.framework.core.Alert">
 <void property="cmdID">
 <object class="com.funambol.framework.core.CmdID"/>
 </void>
 <void property="data">
 <int>206</int>
 </void>
 <void property="items">
 <void method="add">
 <object class="com.funambol.framework.core.Item">

Copyright © 2009 Funambol - Page 64

 <void property="meta">
 <object class="com.funambol.framework.core.Meta">
 <void property="metInf">
 <void property="type">
 <string>application/vnd.omads-email+xml</string>
 </void>
 </void>
 </object>
 </void>
 <void property="target">
 <object class="com.funambol.framework.core.Target">
 <void property="locURI">
 <string>mail</string>
 </void>
 </object>
 </void>
 </object>
 </void>
 </void>
 </object>
 </void>
 </array>
</java>

For the details of the logging system used by Funambol and the usage of classes like
LoggerConfiguration and LoggingConfiguration, please see the Funambol Data Synchronization
Service Architecture and Design Document, section Logging.

The installation of the Email Module adds the web services listed in the following table. The endpoint of
the email module web service is: http://localhost:8080/funambol/services/email.

Method Parameters Return Description

getUsers String clause MailServerAccount[] Gets a list of users that matches the filter
clause.

getUser String username MailServerAccount Gets the user with the given username

getUserFromID long accountID MailServerAccount Gets the user with the given account ID.

insertUser MailServerAccount msa int Adds a user and the corresponding mail server
configuration.

updateUser MailServerAccount msa int Updates a user and the corresponding mail
server configuration.

disableUser long accountID int Disables an account.

enableUser long accountID int Enables an account.

markUserAsDelete long accountID int Deletes the user from the fnbl_email_account
table and sets them as 'D' in the
fnbl_email_push_registry table.

checkAccount MailServerAccount msa,
Integer timeout

MailServerError Checks the account on the mail server. If no
answer is received before the time-out, the
account is regarded as not verified.

insertPubMailServer MailServer ms int Adds a public mail server configuration to the
list.

deletePubMailServer String mailServerID int Deletes a public mail server configuration with
a given mail server ID.

updatePubMailServer MailServer ms int Updates a public mail server configuration.

getPubMailServers String clause MailServer[] Gets the list of the public mail servers that

Copyright © 2009 Funambol - Page 65

http://localhost:8080/funambol/services/email

satisfy the filter clause.

getPubMailServerFromID String mailServerID MailServer Gets a public mail server configuration.

getCachedInfo String username, String
protocol

SyncItemInfoAdmin[] Get the cached information from the local
inbox folder (fnbl_email_inbox) for the
specified username using the specified mail
protocol.

getImapFolders MailServerAccount msa Object[] Returns all the folders names for the given
IMAP account.

Copyright © 2009 Funambol - Page 66

14. Localizing Funambol clients

This section describes the steps needed to translate the strings that are shown to users of Funambol
clients into different languages. Each client uses the localization framework of the platform it is based
on, so in order to localize the various Funambol clients a translator should follow different steps, de-
pending on the target client platform.

The clients covered by this document are:

1. Windows Mobile Sync Client

2. Outlook Sync Client

3. Java ME Email Client

4. BlackBerry Sync Client

5. iPod Sync Client

6. iPhone/iPod Touch Sync Client

7. Symbian Sync Client

14.1. General considerations
The following sections provide some general considerations, common to all clients, related to their
localization.

14.1.1. Strings length
In the translation process, the length of the strings is very critical. The strings on mobile devices are of-
ten shown on displays with a limited space, so in many cases the English wording already fills the
available space.

There are languages, such as German, with words in average 20% longer than English words. Trans-
lating the sentences without keeping the available space in mind will probably lead to errors on the
device (for example, cut words).

As a rule of thumb, the translation should take the same space on the screen as the original (space
also depends on individual characters, since 'I' is thinner than 's') for single-word entries (e.g. the menu
items). Messages shown in an alert box, such as error messages, allow more flexibility. This is be-
cause generally there is extra space or scrollbars available; but also in this case the increase in text
should not exceed 15%.

If the translator has access to the device running the client to be translated, it can be useful in some
cases to see where the word is shown on the screen to understand whether there is room for more
characters.

14.1.2. Coherence among clients
In some languages, more words are needed to translate a single word in English, or the same mes-
sage can be expressed using different words.

If the same word or sentence can be reused on different clients, it's a big advantage to do so. If a
translation in a particular language is available for another client, check the wording used there before
using a different word or sentence. If you feel that the translation is not correct, please contact the au-
thor or raise the issue on the Funambol user forum.

14.2. Windows Mobile Sync Client
The Funambol Windows Mobile Sync Client is written in C++ using the tools available in the Microsoft
Visual Studio 2005 (and later) development environment. The localization of the client should be ac-

Copyright © 2009 Funambol - Page 67

complished using the tools and procedures offered by that environment.

The localization is done using Windows String Tables. To easily support different languages on the
same package, there are separate Visual Studio projects for each language (under localization, cur-
rently EN, DE and IT are available – the Italian version has not been tested or released). The correct
one will be loaded at runtime, if available, with default to English.

14.2.1. Languages currently available
Language DLL name Status

English language-en.dll Default language, officially maintained in the product.

German language-de.dll Used for one customer, bundled in the product.

Italian language-it.dll Available in CVS but not maintained.

14.2.2. How to add a new language
Using Visual Studio 2005 you can modify messages and labels from the resource files to obtain a cus-
tomized environment for a specific language.

The localization is done using Windows String Tables. To easily support different languages on the
same package, there are separate Visual Studio projects for each language (under the localization
folder). The correct one will be loaded at runtime, if available, with default to English.

To add a new language, the easiest way is to duplicate one existing language project and then trans-
late all strings into the new language, from Visual Studio string tables. The resources are different for
PocketPC (FunLanguageppc.rc) and for Smartphone (FunLanguagesp.rc) targets, so each language
project has 2 different string tables. However, they mostly overlap and the actual strings are largely the
same.

Below is a list of the steps to create a new language project (FR) from an existing one (EN):

● Go to the language directory

● Copy the EN folder and rename it to FR

● Go to the language\FR\language\build directory

● Rename file FunLanguage-en.vcproj to FunLanguage-fr.vcproj

● Open the file FunLanguage-fr.vcproj with a text editor, locate and change the line:

Name="FunLanguage-en

to:

Name="FunLanguage-fr

in the first lines of the file

● Open the WMPlugin solution with Visual Studio 2005

● Select File > Add > Existing Project... from the Visual Studio menu

● Browse and select the new project, FunLanguage-fr.vcproj (*)

● Right click on the FunLanguage-fr project and select Properties from the drop-down menu

● Click on Configuration Properties > Linker on the left menu

● Click on the Platform: drop-down list and select All Platforms

● Change the Output File value to:

$(PlatformName)\$(ConfigurationName)/language-fr.dll

● Click OK

● Select File > Save All to close the Solution (*)

Copyright © 2009 Funambol - Page 68

● Open the WMPlugin solution again with Visual Studio 2005

● Open the Resource View for the project FunLanguage-fr

● Under FunLanguageppc.rc and FunLanguagesp.rc there are String Tables with all strings to be
translated into the new language

(*) Visual Studio may display some 'unspecified errors' at this point. This may happen because the new
project configuration is not complete yet; do not worry and click OK.

The new language project will be built together with the other project of the Solution.

The final step is to include the new output file (language-fr.dll) in the packages for PocketPC and
Smartphone.

For PocketPC
● Go to the install\pocketpc\build directory

● Open the build file ppcwm5.xml

● All required files are copied under forge-no-checkout-release-wm5 target. Add the lines:

<copy todir="${dir.files}">
 <fileset dir="../../localization/FR/language/build/${wm.targetppcwm5}/$
{wm.configuration-release}/">
 <include name="language-fr.dll"/>
 </fileset>
</copy>

● Save and close the file

● Open the file setup-ppc-wm5.inf and add the lines:

language-fr.dll=1

under the [SourceDisksFiles] section, and

language-fr.dll, language-fr.dll

under the [CopyToProgramFiles] section

● Save and close the file

For Smartphone
The steps are the same.

The build file to modify is \install\smartphone\build\sphwm5.xml and the inf file is
\install\smartphone\build\setup-sph-wm5.inf.

14.3. Outlook Sync Client
The Funambol Outlook Sync Client is written in C++ using the tools available in the Microsoft Visual
Studio 2005 (and later) development environment. The customization of the Plugin should be accom-
plished using the tools and procedures offered by that environment.

The localization is done using Windows String Tables. In the same project, it is possible to define dif-
ferent string tables, and the system will use the one corresponding to the system language or English
by default. Currently, only English and a test Romanian and Italian versions (not delivered) are avail-
able.

14.3.1. Languages currently available
Language Status

Copyright © 2009 Funambol - Page 69

English Default language, officially maintained in the product.

French Used for one customer, not officially maintained yet.

14.3.2. How to add a new language
Using Visual Studio 2005 you can modify messages/labels from the resource file of the OutlookPlugin
project to obtain a customized environment for a specific language:

● Open the OutlookPlugin solution

● Open the resource file for the desired target (in Resource View, under the OutlookPlugin pro-
ject)

● Add a new string table for the desired language (right click and select Insert copy from the
drop-down menu, then choose the language)

● Change all the messages you want to customize from the new string table

● Build the application and run it on a PC with the Windows OS of the same language

By default, the application will choose the resources corresponding to the language of the current Op-
erating System; if some resources are not found, the default ones are used (English).

14.4. Java ME Email Client
The Funambol Java ME Email Client is written in Java for memory constrained devices based on MIDP
2.0 and CLDC 1.x.

The design goal of reducing the application size to the minimum, to run the application on as many
devices as possible, also impacts the localization model.

The client also has a text help, which differs for various phone manufacturers and models.

14.4.1. Languages currently available
Language File name Status

English UI/basic/res/localization/EN/language.properties Default language, officially maintained in the product.

Italian UI/basic/res/localization/IT/language.properties Available in the repository but not maintained.

14.4.2. How to add a new language
The localized strings are contained in a resource file, which is processed at build time to write a Java
class containing the localized strings. Currently, the application supports one language at a time,
chosen at build time.

To add a new language, follow these steps:

● Copy the default resource file (see table above) into a new folder named as the capitalized lan-
guage code (e.g. FR for French)

● Translate the strings

● Set the name of the property file to be used in the build/build.properties file

● Rebuild the application

14.4.3. How to translate the help text
For the most popular devices, the help text is customized to match the device specifics. The generic
help text is contained in the file UI/basic/res/help.txt, and is used for phones that are not in the table
below.

To translate the help, it is necessary to translate all these files and rebuild the application.

Device File name

BlackBerry UI/basic/res/help/Blackberry/help.txt

Copyright © 2009 Funambol - Page 70

LG UI/basic/res/help/LG/help.txt

Motorola UI/basic/res/help/Motorola/help.txt

Nokia UI/basic/res/help/Nokia/help.txt

Samsung UI/basic/res/help/Samsung/help.txt

SonyEricsson UI/basic/res/help/SonyEricsson/help.txt

14.5. BlackBerry Sync Client
The BlackBerry Sync Client is written in Java using Java ME on top of the RIM proprietary API.

14.5.1. Languages currently available
Language File name Status

English src/xml/language.xml Default language, officially maintained in the product.

German N/A Done for a customer, can be adapted and committed to CVS (not there yet).

14.5.2. How to add a new language
The localized strings are contained in an XML file. Currently, the application supports one language at
a time.

So, the language can be changed just translating the message in the language.xml file. To add a new
language, keeping more than one in the build environment and choose one at build time, you can fol-
low these steps:

● Copy the default resource file (see table above) into a new one; the following name scheme is
suggested: src/xml/language_<code>.xml (e.g. src/xml/language_fr.xml);

● Translate the strings in the new file

● Set the name of the property file to be used in the file:
src/java/com/funambol/util/StaticDataHelper.java

● Rebuild the application.

14.6. iPod Sync Client
The Funambol iPod Sync Client is written in Java standard edition; its customization and localization
are based on a property files.

14.6.1. Strings localization
Currently, only one language per build is available. All the strings are contained in the file:
src/properties/com/funambol/syncclient/util/language.properties.

To change the language, just change the content of the file and rebuild the application.

14.7. iPhone/iPod Touch Sync Client
The iPhone Sync Client is written in ObjectiveC and can run on the iPhone and on the iPod Touch.

The localization framework is the one provided by Apple with their Xcode development environment,
and the customization is based on the Xcode resources.

14.7.1. Languages currently available
Language File name Status

English UI/English.lproj/Localizable.strings Default language, officially maintained in the product

Copyright © 2009 Funambol - Page 71

14.7.2. How to add a new language
The strings are contained in a text file called UI/<Language>.lproj/Localizable.strings (for example, UI/
English.lproj/Localizable.strings).

To add a new language, follow these steps:

● Copy the folder English.lproj and its contents to another folder (e.g. French.lproj);

● Translate the strings in the file Localizable.strings under the new folder

● Rebuild the application

14.8. Symbian Sync Client
The Symbian Plugin is written in C++ and the customization and localization is based on the Symbian
toolchain resources.

14.8.1. Strings localization
All localized strings are defined inside a .rls resource file, found under the data directory of the client
source tree. For each language supported there is a different file that contains all the strings in that
language.

During install procedure a list of the language options is presented, to choose the desired language to
use. If one of the languages supported is exactly the same as the language of the OS in use, that lan-
guage will be automatically selected without prompting the user.

To add a new language (currently, only English and German are supported), follow these steps:

● Open the Funambol.mmp file under the group directory. Locate the LANG statement and add a
new language code; for example, change:

LANG EN DE

to:

LANG EN DE FR

● Open the customization.h header file, under the inc directory. Add an #if defined macro to
include the strings resource file for the new language supported; for example:

#if defined (LANGUAGE_FR) #include “strings_fr.rls” #endif”

● Create the new strings resource .rls file under the data directory, copying it from an existing
.rls file and translating all the desired definitions (e.g. create the file strings_fr.rls)

● Open the Funambol_gcce.pkg file under the sis directory. Locate the languages statement
beginning with “&” and add the new supported language code; for example, change:

&EN,GE

to:

&EN,GE,FR

Note: the codes MUST be the predefined two-letter language codes that identify the
language, for example “FR” for “French”.

● Add a localized string for all the following statements:

○ package header (line starts with “#”)

○ localized vendor name (line starts with “%”)

● Add the new localized resource files to the list of resource files to be installed; for example,
change:

Copyright © 2009 Funambol - Page 72

{...”resource.ren” “...resource.rde”} -”!:\...resource.rsc”

to:

{...”resource.ren” “...resource.rde” “...resource.rfr”} -”!:\...resource.rsc”

Note: the list of files to be installed MUST be in the same order as the list of supported lan-
guages in the “&” line.

Copyright © 2009 Funambol - Page 73

15. Funambol Software Development Kit

The Funambol Software Development Kit (SDK) [7] is the group of tools available to develop Funambol
extensions.

To install it, extract the archive funambol-sdk-<version>.tar.gz in a directory of choice; the directory
structure shown in Figure 19 will be created.

bin/

...

config/

...

data/

...

docs/

funambol-developers-guide.pdf

lib/

...

LICENSE.txt

Figure 19: Funambol SDK directory structure

There are two ways to develop Funambol extensions: using your own custom development
environment or using Maven [4]. Both methods will be explained in the following sections, but the
preferred method (since Funambol v6.5) is using Maven.

In the following sections, it is assumed that the developer is familiar with the following concepts:

● Java development

● Funambol architecture

● Maven (optional)

15.1. Obtaining and building the source code
Funambol is open source! The best source of information and documentation is the source code,
which is available on the Funambol public CVS [6].

The instructions on how to download and build Funambol v6.5 can be found here:

https://wiki.objectweb.org/sync4j/Wiki.jsp?page=BuildingFunambolV6.5

The instructions on how to download and build Funambol v7 can be found here:

https://wiki.objectweb.org/sync4j/Wiki.jsp?page=HOWTOBuildCapri

15.2. Developing with a custom environment
This section describes how to develop a Funambol extension using just an editor and the Java
Development Kit (JDK).

When developing in a custom environment there is no any additional requirement other than
generating a s4j package as described earlier; how to do it is left to the developer. One important thing
to note is that in order to compile your classes you have to make sure to have the following framework
jars in the build classpath:

Copyright © 2009 Funambol - Page 74

https://wiki.objectweb.org/sync4j/Wiki.jsp?page=HOWTOBuildCapri
https://wiki.objectweb.org/sync4j/Wiki.jsp?page=BuildingFunambolV6.5

Name Download url

Funambol v6.5

core-framework-<version>.jar http://m2.funambol.com/repositories/artifacts/funambol/core-
framework/ 6.5.4/core-framework-6.5.4.jar

server-framework-<version>.jar http://m2.funambol.com/repositories/artifacts/funambol/server-
framework/6.5.7/server-framework-6.5.8.jar

ds-server-<version.>jar http://m2.funambol.com/repositories/artifacts/funambol/ds-server/6.5.14/ds-
server-6.5.14.jar

admin-framework-<version>.jar http://m2.funambol.com/repositories/arti facts/funambol/admin-
framework/6.5.2/admin-framework-6.5.2.jar

Funambol v7

core-framework-<version>.jar http://m2.funambol.com/repositories/artifacts/funambol/core-
framework/7.0.0 /core-framework-7.0.0.jar

server-framework-<version>.jar http://m2.funambol.com/repositories/artifacts/funambol/server-
framework/7.0.3/server-framework-7.0.3.jar

ds-server-<version.>jar http://m2.funambol.com/repositories/artifacts/funambol/ds-server/7.0.2/ds-
server-7.0.2.jar

admin-framework-<version>.jar http://m2.funambol.com/repositories/arti facts/funambol/admin-
framework/6.5.2/admin-framework-6.5.2.jar

These libraries can be found under the directory lib of the Funambol SDK.

For an example on how to develop a connector, see chapter 2, “Getting started on connector
development“.

15.3. Developing with Maven
Maven is a software project management and comprehension tool. Based on the concept of a project
object model (POM), Maven can manage a project's build, reporting and documentation from a central
piece of information. For more information about Maven, see [4]. In the next section it is assumed that
the reader is already familiar with Maven and its concepts.

Even if many Funambol v6.5 components have been put under the Maven build system already, only
with Funambol v7 Maven has become the default build tool for Funambol components. All Funambol
artifacts are now represented, built and deployed as Maven artifacts. Funambol has also set up a
public maven repository where all components are published. Funambol maintains two repositories:
artifacts, for released artifacts and snapshots, for snapshots; the latter keeps the snapshots for the
last 10 days. The repository can be accessed through the URL http://m2.funambol.org/repositories

15.3.1. Maven configuration
Before using Maven, the repository above must be added to your maven environment. Do to so, edit
your settings.xml file (either under maven or your user home) and add the following sections:

<repositories>
 <repository>
 <id>artifacts</id>
 <url>http://m2.funambol.org/repositories/artifacts</url>
 </repository>
 <repository>
 <id>snapshots</id>
 <url>http://m2.funambol.org/repositories/snapshots</url>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>artifacts</id>

Copyright © 2009 Funambol - Page 75

http://m2.funambol.org/repositories/snapshots
http://m2.funambol.org/repositories/artifacts
http://m2.funambol.org/repositories
http://m2.funambol.com/repositories/artifacts/funambol/admin-framework/6.5.2/admin-framework-6.5.2.jar
http://m2.funambol.com/repositories/artifacts/funambol/admin-framework/6.5.2/admin-framework-6.5.2.jar
http://m2.funambol.com/repositories/arti
http://m2.funambol.com/repositories/artifacts/funambol/ds-server/6.5.14/ds-server-6.5.14.jar
http://m2.funambol.com/repositories/artifacts/funambol/ds-server/6.5.14/ds-server-6.5.14.jar
http://m2.funambol.com/repositories/artifacts/funambol/server-framework/6.5.7/server-framework-6.5.7.jar
http://m2.funambol.com/repositories/artifacts/funambol/server-framework/6.5.7/server-framework-6.5.7.jar
http://m2.funambol.com/repositories/artifacts/funambol/core-framework/6.5.4/core-framework-6.5.4.jar
http://m2.funambol.com/repositories/artifacts/funambol/core-framework/6.5.4/core-framework-6.5.4.jar
http://m2.funambol.com/repositories/artifacts/funambol/core-framework/6.5.4/core-framework-6.5.4.jar
http://m2.funambol.com/repositories/artifacts/funambol/admin-framework/6.5.2/admin-framework-6.5.2.jar
http://m2.funambol.com/repositories/artifacts/funambol/admin-framework/6.5.2/admin-framework-6.5.2.jar
http://m2.funambol.com/repositories/arti
http://m2.funambol.com/repositories/artifacts/funambol/ds-server/6.5.14/ds-server-6.5.14.jar
http://m2.funambol.com/repositories/artifacts/funambol/ds-server/6.5.14/ds-server-6.5.14.jar
http://m2.funambol.com/repositories/artifacts/funambol/server-framework/6.5.7/server-framework-6.5.7.jar
http://m2.funambol.com/repositories/artifacts/funambol/server-framework/6.5.7/server-framework-6.5.7.jar
http://m2.funambol.com/repositories/artifacts/funambol/core-framework/6.5.4/core-framework-6.5.4.jar
http://m2.funambol.com/repositories/artifacts/funambol/core-framework/6.5.4/core-framework-6.5.4.jar
http://m2.funambol.com/repositories/artifacts/funambol/core-framework/6.5.4/core-framework-6.5.4.jar

 <url>http://m2.funambol.org/repositories/artifacts</url>
 </pluginRepository>
 <pluginRepository>
 <id>snapshots</id>
 <url>http://m2.funambol.org/repositories/snapshots</url>
 </pluginRepository>
</pluginRepositories>

15.3.2. Creating a new module
The best and quickest way to create a Funambol module with Maven is using the funambol-module-
archetype:

mvn archetype:create -DarchetypeGroupId=funambol
-DarchetypeArtifactId=funambol-module-archetype -DarchetypeVersion=6.5.0
-DgroupId=<your group> -DartifactId=<your artifact>
-DarchetypeRepository=http://m2.funambol.org/repositories/artifacts
-Dversion=<version>

For example:

mvn archetype:create -DarchetypeGroupId=funambol
-DarchetypeArtifactId=funambol-module-archetype -DarchetypeVersion=6.5.0
-DgroupId=yourgroup -DartifactId=yourconnector
-DarchetypeRepository=http://m2.funambol.org/repositories/artifacts
-Dversion=1.0.0

This creates a new Maven project for yourgroup:yourconnector in a directory called myconnector. This
projects contain a skeleton of a SyncSource and of a input and output Synclet.

Note: the command line above creates a Funambol v6.5 module specifying all the required
dependencies. You don't need to worry about which jars you have to download and add to the
classpath, as Maven will do all this for you. To create a Funambol v7 module, just use the version
7.0.0 of funambol-maven-archetype:

mvn archetype:create -DarchetypeGroupId=funambol
-DarchetypeArtifactId=funambol-module-archetype -DarchetypeVersion=7.0.0
-DgroupId=yourgroup -DartifactId=yourconnector
-DarchetypeRepository=http://m2.funambol.org/repositories/artifacts
-Dversion=1.0.0

15.3.3. Building the module
To build the module created as described below, just go inside the newly created directory and run
maven. For example:

mvn package

15.4. The Funambol Connector Testing Framework
The Funambol Connector Testing Framework (FCTF) is a command-line tool that can be used to test
and validate any Funambol connector against any set of PIM or e-mail items, without setting up a
complete test environment comprising a device, a Data Synchronization server and a back-end
system.

Note: you need a running back-end system and the connector for an FCTF instance to work.

Copyright © 2009 Funambol - Page 76

http://m2.funambol.org/repositories/snapshots
http://m2.funambol.org/repositories/artifacts

Each FCTF instance is defined by its own set of PIM and/or e-mail items and corresponding expected
results, in addition to the connector to be used.

Three operation modes are available:

1. Automatic mode (default): only pre-defined sets of tests depending on the MIME type can be
performed.

2. Single-test mode: only one test is specified using the --command keyword.

3. Batch mode: a batch file containing a series of tests is specified using the --batch keyword.

Automatic tests allow for different levels of certification of a connector. A connector that passes the
basic automatic tests, for example, can be declared to be FCTF-certified at the basic level. The
certification level can be specified on the command line after the --testset keyword, the default value
being basic.

The batch files (and, therefore, also the items used for the individual tests) may or may not be
connector-specific, since the expected results can change depending on the features of the back-end
system.

15.4.1. Usage
The Funambol Connector Testing Framework has been designed to be used from the command line;
the executables can be found under the bin directory of the work environment.

Once the work environment has been generated, the user is expected to change their working
directory to $FUNAMBOL_HOME/tools/sdk and run the command bin/fctf from there.

An example of a typical command line that will launch the automatic tests at the basic certification level
for a vCard sync source belonging to the Foundation standard connector is:

bin/fctf -s config/foundation-vcard.xml

bin/fctf requires at least one argument (the SyncSource); the following tables details all available
options:

Argument Short
form Parameter(s) Default value Usage notes

--source -s The path to the XML file defining the
SyncSource; it usually begins with config. N/A

Mandatory. It is needed to load
the SyncSource that will be
operated by the tool.

--testset -t The certification level (it must correspond to
an existing subdirectory of data). basic

Default option. If this option is
selected, the FCTF will operate in
the automatic-tests mode.

--command -c A single command, according to the
grammar defined in section 15.4.1, Tests. N/A If this option is selected, the FCTF

will operate in singe-test mode.

--batch -b
The path to the batch command file
containing the tests to be performed (one
per line).

N/A If this option is selected, the FCTF
will operate in batch mode.

--datasource -D

A list of datasource names (usually, 2: the
user DB and the core DB). The first part of
each name must correspond to an existing
subdirectory of config/com/funambol/server/
db, the second part to an existing .xml file
within that subdirectory.

jdbc/fnblcore
jdbc/fnbluser

--authtype -a The type of authentication (basic, md5 or
MAC). basic

This is used for connector whose
officer uses a special
authentication type.

--path -P The path to the data item. data
This is used to load different sets
of items without modifying the
built-in work environment.

--user -u The username. fctf

--password -p The user's password. the username This is useful only when the user
needs be authenticated.

--device -d The device ID fctf

Copyright © 2009 Funambol - Page 77

Argument Short
form Parameter(s) Default value Usage notes

--officer -o The path to the XML file defining the officer;
it usually starts with config.

config/test-
officer.xml

This depends on the connector to
be tested.

--verbose -v No parameter. N/A
If selected, in case of error the
stack trace of the exception raised
will be displayed.

Tests
The FCTF performs a pre-defined series of tests that are a combination of the following basic tests:

● removal of an item from the back-end system (d);

● update of an item on the back-end system (u);

● retrieval of an item from the back-end system (g);

● retrieval of an item's twin from the back-end system (t).

All of these tests are preceded by the addition of an item on the back-end system, and followed, if
necessary, by the removal of the items. Therefore every test is independent and leaves the back-end
server in a clean state, if no concurrent operations are performed in the meanwhile on the same item.

In the list above, the letter in brackets is the one used to call for an individual test. It will be followed by
the item(s) file name(s). The letter x is also used to indicate the expected result, if applicable. The
same grammar is used both in the command-line single-test mode and the batch mode:

● <SyncSource> d <filename> - the item is added in the back-end system and then removed;

● <SyncSource> u <filename1> <filename2> x <filename3> - the first item is added in the back-
end system, it's updated with the modified content of filename2 and then compared to the
expected result in filename3;

● <SyncSource> g <filename1> x <filename2> - the first item is added in the back-end system,
then retrieved and compared to the expected result in filename2;

● <SyncSource> t <filename1> <filename2> ... <filenameN> x <K> - all items but the first one
are added in the back-end system, then the twins of the first one are looked for; K (any number
from 0 to N) twins are expected to be found.

If one such command is called in the single-test mode, it must be specified after the --test keyword. If a
a series of commands is launched in the batch mode, they will be listed, one per line, in the batch file.

In the automatic mode, the tests do not need to be specified using this grammar because the test set
is pre-defined. For example, if the items to be tested are item1.txt, item2.txt and item3.txt, the following
tests will be automatically generated and launched:

● g item1.txt x item1.txt

● g item2.txt x item2.txt

● g item3.txt x item3.txt

● u item1.txt item2.txt x item2.txt

● u item2.txt item3.txt x item3.txt

This will be done for every MIME type supported by the SyncSource being tested, starting from the
preferred MIME type.

Test items
The items are provided as vCalendar, iCalendar, vCard, SIF-E, SIF-T, SIF-C and RFC882 data.They
are in the data subdirectory. The MIME type of each item set is inferred from the file extension:

● .vcs for vCalendar (1.0)

● .ics for iCalendar (vCalendar 2.0)

● .vcf for vCard

Copyright © 2009 Funambol - Page 78

● .sife, .sift, .sifc for the SIF format

● .eml for RFC882 data

It's important to notice that these data are not filtered by the synclets, therefore this tester cannot be
used to test the behavior of different devices.

Items used in the automatic tests are grouped in different subdirectories of directory data according to
the certification level they belong to. Each MIME type within a certification level has its own directory
where items of that type will be collected. The directory subtree will reproduce the structure of MIME
taxonomy. For example, vCalendar (1.0) items belonging to the Basic certification level will be found
under data/basic/text/x-vcalendar. The file names are relevant because the items are sorted in
alphabetical order when the automatic tests are generated and launched.

Test pass conditions
During automatic tests, server-generated data (in vCalendar, iCalendar, vCard, SIF-E, SIF-T, SIF-C or
RFC882 format) are extracted by the back-end response message and compared with the
corresponding item in the pre-defined set of the expected results. If the comparison does not outline
any data loss, the tests have succeeded.

It is important to underline that the FCTF only checks for the possible loss of data between the
expected result and the actual result. If the actual result contains more information than the expected
one, that is considered as a successful comparison.

The comparison is done on a line-wise basis for vCard, vCalendar and iCalendar items, while for SIF
items it is based on (non-empty) end nodes (leaves) of the XML node tree.

In this way, the SyncML message is not compared as such to an expected result, as in the more
generic Funambol Test Suite. The FCTF focuses only on the PIM and e-mail data.

The same mechanism is used in the single-test and batch modes for retrieval and update tests. In the
removal and twin-search cases, the expected results are just the actual deletion of the item and a
positive result of the twin search. If these outcomes occur, the tests have succeeded.

15.4.2. Certifying a connector
The certification of a connector may require a few steps.

Installing the libraries
Note: This step is always necessary.

The libraries needed for the connector's SyncSources to run (for example, the connector's module)
must be copied as JARs in lib/ext. This includes the libraries for the access to data sources, like the
DB.

Installing the SyncSources
Note: This step is always necessary.

The .xml files containing the marshalled version of SyncSources must be copied in the config
subdirectory. These files are usually exactly the same .xml files that can be found under the config
directory in the connector's source, already prepared for usage by the Funambol Administration Tool.

Installing the officer
Note: This step is often, but not always, necessary.

Some connectors require an officer for user authentication. In this case, its marshalled version must
also be copied in the config subdirectory. If no user authentication is needed on the back-end system,
the default dummy officer (TestOfficer) can be used.

Setting up the data source
Note: This step is often not necessary.

Copyright © 2009 Funambol - Page 79

In the config/com/funambol/server/db directory and its subdirectory jdbc there are .xml files containing
the marshalled version of the automatic configurer of the JDBC connections to the datasources. New
files can be added or the default ones can be modified to replicate the features of the data source in
use.

Setting up the data for individual (or batch) tests
Note: This step is not strictly necessary for certification, only for other tests.

Item files can be added in the data subdirectory. It's important to follow the file extension rules as of
Test items, section 15.4.1.

Setting up the data for a custom certification
Note: this step is not necessary for pre-defined certification levels, only for custom certifications.

Custom certifications can be added under the data directory. In order to do that, a subdirectory must be
created with the name of the custom certification level. Under that subdirectory, it is necessary to
create a directory tree that follows the MIME types tree, including all MIME types that are wished to be
included in the custom certification. The data/basic subdirectory can be used as an example. Then,
item files must be created in the correct directories. The file names are relevant because the automatic
tests will be generated and launched on the basis of the alphabetical order.

Launching the tests
See section 15.4.1, Usage.

15.4.3. Limitations
A key purpose of the FCTF is to test the mapping between the foundation data model and the back-
end data model. This cannot be tested directly if the tool has to be an automated one because it
cannot perform any direct test on the status of the back-end system. The back-end status can only be
inferred by the data retrieved by the connector, but those data, in turn, are inserted there by the insert
method of the connector.

If a property A on a client item is incorrectly mapped to property b on the server and this is “correctly”
mapped back to the client as B, the difference between A and B may be used to detect an error in the
behavior of the connector. On the contrary, if a property A on a client item is correctly mapped to
property a on the server and this is correctly mapped back to the client as A, the item will pass the test.
But what if a property A on a client item is incorrectly mapped to property b on the server and this is
again incorrectly mapped back to the client as A? There is no way to tell this case from the previous
one.

Original value
Value on the server after
synchronization with the

client
Value on the client after
retrieval from the server

Test
outcome Bugs?

A b B Failed Yes

A a A Passed No

A b A Passed Yes

As a consequence, there's a class of bugs that cannot be verified with this tool, like field swaps, some
time zone errors etc. Manual tests with human interaction with the back-end system are still needed to
investigate these cases.

15.4.4. Error codes
Please note that a connector cannot be considered certified as long as it has not passed the automatic
tests for the required certification level with the application successfully exiting without displaying any
fatal warning or error.

When the application exits with an error, a brief error message is usually displayed and an error code
is provided. The most likely solution to the problem corresponding to each error code is explained in
this table:

Copyright © 2009 Funambol - Page 80

Code Mode Most likely solution

2 any Check that the SyncSource specified with the -s argument is valid and can be unmarshalled. The
required libraries must be under lib/ext.

3 any Check that the officer specified with the -o argument is valid and can be unmarshalled. The
required libraries must be under lib/ext.

4 any Check that the datasource name specified with the -D argument is correct.

5 any Check that the datasource is available, its parameters correct and the required libraries under
lib/ext.

6 any Check that the datasource is up and running properly.

7 any Check that the .xml files used to configure and bind the datasources are correct and in the correct
locations.

99 single test Check the grammar of the test command. It must match one of the cases listed in section 15.4.1,
Tests.

102 single test Check the mapping used by the SyncSource and debug the connector. Be sure that the expected
results were correct.

103 single test Check the mapping and twin search criterion used by the SyncSource and debug the connector. Be
sure that the expected twin count were correct.

104 single test Check that the back-end system is up and running. Debug the addition (create) function of the
SyncSource.

105 single test Debug the deletion (remove) function of the SyncSource.

106 single test Debug the retrieval (get) function of the SyncSource.

107 single test Debug the update (modify) function of the SyncSource.

108 single test Debug the twin search (get twins) function of the SyncSource.

110 single test Debug the SyncSource.

111 single test Check that all item files mentioned in the test command exist under the default item directory (data)
or the directory specified with the -P argument.

112 single test Check that the extensions of all item files mentioned in the test command are among the supported
extensions listed in section 15.4.1, Test items.

113 single test Check that the twin count command ends with an integer.

202 batch Check the mapping used by the SyncSource and debug the connector. Be sure that the expected
results were correct.

203 batch Check the mapping and twin search criterion used by the SyncSource and debug the connector. Be
sure that the expected twin count were correct.

204 batch Check that the back-end system is up and running. Debug the addition (create) function of the
SyncSource.

205 batch Debug the deletion (remove) function of the SyncSource.

206 batch Debug the retrieval (get) function of the SyncSource.

207 batch Debug the update (modify) function of the SyncSource.

208 batch Debug the twin search (get twins) function of the SyncSource.

210 batch Debug the SyncSource.

211 batch Check that all item files mentioned in the test command exist under the default item directory (data)
or the directory specified with the -P argument.

212 batch Check that the extensions of all item files mentioned in the test command are among the supported
extensions listed in section 15.4.1, Test items.

213 batch Check that the twin count command ends with an integer.

220 batch Check that the batch file specified with the -b option exists.

302 automatic tests Check the mapping used by the SyncSource during the addition of a new item and debug the
connector.

304 automatic tests Check that the back-end system is up and running. Debug the addition (create) function of the
SyncSource.

305 automatic tests Debug the deletion (remove) function of the SyncSource.

306 automatic tests Debug the retrieval (get) function of the SyncSource.

310 automatic tests Debug the SyncSource.

Copyright © 2009 Funambol - Page 81

Code Mode Most likely solution

311 automatic tests Do not modify the automatic test files while the application is running.

312 automatic tests Check that the extensions of all item files in the automatic tests directories are among the
supported extensions listed in section 15.4.1, Test items.

320 automatic tests Check that the directory specified with the -a option exists under the default item directory (data) or
the directory specified with the -P argument.

352 automatic tests Check the mapping used by the SyncSource during the update of an item and debug the
connector.

354 automatic tests Debug the addition (create) function of the SyncSource.

355 automatic tests Debug the deletion (remove) function of the SyncSource.

356 automatic tests Debug the retrieval (get) function of the SyncSource.

357 automatic tests Debug the update (modify) function of the SyncSource.

360 automatic tests Debug the SyncSource.

361 automatic tests Do not modify the automatic test files while the application is running.

Copyright © 2009 Funambol - Page 82

16. The Funambol Device Simulator tool

This section describes the Funambol Device Simulator, a tool that allows to test the server simulating
SyncML devices; it is addressed to developers who want to run one or more existing test suites against
a bundle to test their own software, or who would like to add a brand new test.

With this tool, it is possible to run one of the test suites provided2, for example to test a new module
you are working on, and it is also possible to add new tests.

Using this tool, you can ensure that what you are doing does not break the protocol and synclets
compatibility.

Each test is made of a set of messages and some SQL scripts. The logic of this tool is based on ant
scripts and customized tasks that execute simple steps, such as:

● sending messages to the server

● matching response messages from the server with the expected ones

● executing SQL scripts, for example to clean up the database before or after running the tests,
or to change item statuses.

It is also possible to configure the Device Simulator tool to run a whole set of tests without having to
sync with each of them manually, which could be very time-consuming.

Note: at present, each test targets only a single SyncSource.

Most of the tests that you will find in the Device Simulator follow the same schema, although you are
free to customize each test:

1. in the first phase, items are sent from the client to the server

2. an update is executed to change the status of the items

3. in the second phase, items are sent back from the server

A test is passed if the significant part of the messages received from the server matches the expected
messages saved on the file system.

Using this tool, you can run both xml and wbxml based tests; keep in mind that they are launched with
two different commands and you will need to run both of them in order to pass the whole test suite.

The reason why two different commands are required is that a test could be both xml and wbxml
based, and each time you run a kind of test the test directory structure is changed and server
messages are stored. So if you launch two tests, you will only find info about the last executed test.

16.1. Prerequisites
In order to use the Funambol Device Simulator, the Funambol Server software must be installed on the
same host where the Funambol SDK has been unpacked.

The device to be tested must be SyncML 1.0, 1.1 or 1.2 compliant.

The scripts used to launch the tests require ant version 1.6.5.

Note: the Funambol Device Simulator only works with the community edition version of Funambol.

16.2. Directory structure
The Funambol Device Simulator is delivered with the Funambol SDK. You will find this tool in the
directory Funambol/tools/sdk, according to the structure showed in Table 7:

2 At present, only one test suite is available, called phone-testsuite.

Copyright © 2009 Funambol - Page 83

Directory Description

/bin This directory contains executable files

/config This directory contains configuration files

 /lib This directory contains libraries (i.e. jar files)

/report This directory contains report files (i.e. files containing info about failed/passed tests)

/data This directory contains testcases and other files.

Table 7: Device Simulator directory structure

16.3. Adding new tests

In this section we will describe the steps needed to add a new test. As noted before, only one
SyncSource per test case will be targeted.

The process to record a new test is almost the same for all SyncSources and it will be described for a
generic item; any points that might change when using a different SyncSource will be highlighted.

16.3.1. Setting up the environment
In order to record a new test, you will need a Funambol Server and the device you wish to test, which
must be able to reach the server.

First of all, you must set the debug level to TRUE and the server log level to ALL.

To change the debug level, edit the file FUNAMBOL_HOME/bin/funambol-server file and modify the
following line:

set JAVA_OPTS=%JAVA_OPTS% -D funambol.debug=true

This allows to make the content of SyncML objects viewable, as it is hidden by default for privacy
purposes.

The server log level can be modified using the Funambol Admin Tool: go to Server Settings | Logging |
Loggers | funambol and modify the Logging level to ALL.

16.3.2. Testing the device
In order to write a test case for a device, first of all it is necessary to check that the device is
synchronizing correctly against the Funambol Server and there are no blocking issues on this side.

In this step, you should run an initial sync with all the SyncSources that the device can synchronize
(contacts, calendar, tasks and notes), in order to create a synchronization profile on your device.

Once you have checked that the device can synchronize with the Funambol Server, the automated test
compilation can start.

16.4. Adding items to sync
During the first phase of the test, you will be sending items to the server, so will need to create some
new items on the device. In the next paragraphs, the guidelines to follow in order to add items to the
device's database will be detailed.

According to the type of item you wish to test, you will need to follow the instructions provided in one of
the following paragraphs: 16.4.1 for Contacts, 16.4.2 for Events, 16.4.3 for Tasks or 16.4.4 for Notes).
Then you can jump directly to paragraph 16.4.5 to finish recording the test.

16.4.1. Adding contacts to the address book
In order to test the Contact SyncSource, you will need to manually add some contacts on the device's
address book. Note that the existing test cases use 5 contacts.

All available fields should be filled for each contact, including:

Copyright © 2009 Funambol - Page 84

● first name and last name

● all available types of phone numbers: mobile, home, work, fax, etc.

● email addresses: home, work, other

● web address

● picture (if available)

● contact informations: home and work address, title, company, etc.

● birthday

● notes

In order to make the test more effective, contacts should contain special characters such as:

● symbols, for example: &, @, $, %

● language specific characters, for example: â, ã, ä, å, è, é

16.4.2. Adding events to the calendar
In order to test the Calendar SyncSource, you will need to manually add some events on the device's
calendar. Note that existing test cases use 6/8 events.

All available fields should be filled for each event, including:

● subject

● location

● description

● start/end time and date

● duration

The test should take into account all event types that the device supports, including recurring events
(daily, weekly, monthly and yearly) and recurring events exceptions; for this reason, all existing event
types should be added in the test case.

In order to make the test more effective, events should contain special characters such as:

● symbols, for example: &, @, $, %

● language specific characters, for example: â, ã, ä, å, è, é

Note: some devices, such as Nokia and some Samsung and LG devices, can synchronize Calendar
and Todos (i.e. Tasks) at the same time. In this case, refer to section 16.4.3 Adding tasks to include
these items in the synchronization.

16.4.3. Adding tasks
In order to test the Task SyncSource, you will need to manually add some tasks on the device. Note
that existing test cases use 2 tasks.

All available fields should be filled for each task, including:

● subject

● reminder

● priority

● start/end time and date (if available)

● duration (if available)

The test should take into account all task types that the device supports, including recurring tasks
(daily, weekly, monthly and yearly) and recurring tasks exceptions; for this reason, all existing event
types should be added in the test case.

Copyright © 2009 Funambol - Page 85

In order to make the test more effective, tasks should contain special characters such as:

● symbols, for example: &, @, $, %

● language specific characters, for example: â, ã, ä, å, è, é

Note: some devices, such as Nokia and some Samsung and LG devices, cannot synchronize Todos
(i.e. Tasks) separately from the rest of the calendar. In this case, refer to section 16.4.2 Adding events
to the calendar to include these items in the synchronization.

16.4.4. Adding notes
In order to test the Note SyncSource, you will need to manually add some notes on the device. Note
that existing test cases use 2 notes.

All available fields should be filled for each task, including:

● body

● subject (if available)

● date (if available)

In order to make the test more effective, notes should contain special characters such as:

● symbols, for example: &, @, $, %

● language specific characters, for example: â, ã, ä, å, è, é

16.4.5. Getting messages

Setting up the synchronization profile
Before starting the sync process, you will need to configure your profile on the device with the following
details:

● server address, that is your server's IP address or URL (for example:
http://127.0.0.1/funambol/ds)

● username; for automated tests, the default to be used is guest

● password; for automated tests, the default to be used is guest

● items to be synchronized (should be contacts only)

● remote contacts database, that is, card

Note: only the desired SyncSource will be synchronized in this step.

Starting the synchronization
Once the synchronization profile has been set up, the synchronization can start. In this phase, all items
present on the device will be sent to the server.

16.4.6. Phase 1: extracting SyncML messages
At the end of the synchronization, you will need to extract the logs from the
FUNAMBOL_HOME/logs/ds-server/ds-server.log file. In particular, it is necessary to isolate the
SyncML messages that are displayed before the SYNCLET processing phase.

The SyncML message is the XML content that can be easily located after the “Message to translate
into the SyncML object” trace, as shown in the following example:

[][funambol.server] [TRACE] [] [] [] [] Message to translate into the SyncML object:
<SyncML><SyncHdr><VerDTD>1.1</VerDTD><VerProto>SyncML/1.1</VerProto><SessionID>11</Ses
sionID><MsgID>1</MsgID><Target><LocURI>http://localhost:8080/funambol/ds</LocURI></Tar
get><Source><LocURI>syncml-phone</LocURI></Source><Cred><Meta><Type>syncml:auth-
basic</Type></Meta><Data>Z3Vlc3Q6Z3Vlc3Q=</Data></Cred><Meta><MaxMsgSize>10000</MaxMsg

Copyright © 2009 Funambol - Page 86

Size></Meta></SyncHdr><SyncBody><Alert><CmdID>1</CmdID><Data>200</Data><Item><Target><
LocURI>./card</LocURI></Target><Source><LocURI>./C\System\Data\Contacts.cdb</LocURI></
Source><Meta><Anchor><Last>1</Last><Next>10</Next></Anchor></Meta></Item></Alert><Fina
l></Final></SyncBody></SyncML>

Each SyncML message sent from the device must be copied in a single text file which should be
named msgX.xml, where X is the sequence number of the message. The set of .xml messages must
then be copied in a directory named as the device model concatenated with the SyncSource name (for
example: N70_CARD; see section 16.6 for the directory naming convention).

Each SyncML message sent from the server must be copied in a single text file which should be
named msgX.xml, where X is the sequence number of the message. The set of .xml messages must
then be copied in a directory named reference under the directory with the device model name
concatenated with the SyncSource name (for example: N70_CARD/reference; see section 16.6 for the
directory naming convention).

Creating the header.properties file
In the directory named as the device model, you will need to create the header.properties text file,
which will be used by the device simulator to simulate the HTTP headers sent by the device.

The HTTP headers of the device can be found in the ds-server.log file and is usually composed as
following:

> Cache-Control: no-store
> host: my.funambol.com
> accept: application/vnd.syncml+wbxml
> accept-charset: utf-8
> accept-language: en
> user-agent: Nokia SyncML HTTP Client
> content-length: 278
> content-type: application/vnd.syncml+wbxml

The header.properties file must then be filled with the following information (if present):

● user-agent

● x-wap-profile

For example, the header.properties file for Nokia N70 contains the following:

user-agent: Nokia SyncML HTTP Client

16.4.7. Syncing items back to the device and getting the logs
The next step of the test consists in syncing back all the items to the device, forcing an update from
the server's side.

Setting up the server
First of all, the server needs to be set up to send back all items to the device. To do this, you need to
perform an update on all the relevant server items.

From the command line of the database console, execute one of the following scripts according to the
type of items you are working on.

Supposing you are working with contacts, the update query is:

update fnbl_pim_contact
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =

Copyright © 2009 Funambol - Page 87

 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source = 'card'
);

Supposing you are working with calendar events, the update query is:

update fnbl_pim_calendar
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='cal'
);

Note: for devices that have separate tasks synchronization (such as the Sony Ericsson) and use the
Event SyncSource, the script to be used is the following:

update fnbl_pim_calendar
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='event'
);

Supposing you are working with tasks, the update query is:

update fnbl_pim_calendar
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='task'
);

Supposing you are working with notes, the update query is:

update fnbl_pim_note
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='note'
);

This query will update the status of all items on the server and will force it to send them back to the
device.

Starting the synchronization
The synchronization profile should be already set up by the initial sync, so you can start the new
synchronization. In this phase, all the items stored on the server will be sent back to the device that will
replace them. This will be also the second phase of the test.

Copyright © 2009 Funambol - Page 88

16.4.8. Phase 2: extracting the SyncML messages
At the end of the synchronization, you will need to extract the logs from the
FUNAMBOL_HOME/logs/ds-server/ds-server.log file. In particular, it is necessary to isolate the
SyncML messages that are displayed before the SYNCLET processing phase.

Each SyncML message sent from the device must be copied in a single text file which should be
named msgY.xml, where Y is the sequence number of the message. The set of .xml messages must
then be copied in a directory named as the device model concatenated with the SyncSource name (for
example: N70_CARD; see section 16.6 for the directory naming convention).

Each SyncML message sent from the server has to be copied in a single text file which should be
named msgY.xml, where Y is the sequence number of the message. The set of .xml messages must
then be copied in a directory named reference under the directory with the device model name
concatenated with the SyncSource name (for example: N70_CARD/reference; see section 16.6 for the
directory naming convention).

Note: the Y number of the sequence must start where the sequence reported in section 16.4.2 ended;
for example, if the name of the last message of Phase 1 was msg4.xml, the first message of Phase 2
will be msg5.xml.

16.4.9. Editing SyncML messages
The set of SyncML messages collected during the previous stages of the test need to be edited in
order to fit the Funambol Device Simulator standards; specifically, it is necessary to remove
information related to the server and the client that were used to write them.

Removing DeviceID and server information
In the .xml files collected during the initial stages of the test, you need to replace the DeviceID
information with a generic syncml-phone tag and the server information with a generic
http://localhost:8080/funambol/ds tag.

SessionID
Each synchronization session is characterized by a unique SessionID. The Funambol Device Simulator
uses <SessionID>1</SessionID> for Phase 1 and <SessionID>2</SessionID> for Phase 2.

Managing the SyncML content
This section presents an example of SyncML message sequence and what they should contain in
order to be compliant with the Funambol Device Simulator standards:

Device Server

msg1.xml

Synchronization starts

• credentials

• put (device capabilities)

• alert for synchronizing items (slow sync- 201)

msg1.xml

• status (200) for device capabilities

• status (200) for synchronizing items

• alert for synchronizing items (slow sync- 201)

msg2.xml

• status (200) for synchronizing items

• sync

• add command for each item (the <Data> tag contains the
item encoded according to its format)

msg2.xml

Copyright © 2009 Funambol - Page 89

• status (200) for synchronizing items

• status (201) for each added item

msg3.xml

• alert (222)

msg3.xml

• status (200) on alert

• sync (no items are added/replaced/deleted by the server)

msg4.xml

• status (200) for server sync request

msg4.xml

Synchronization ends

Table 8: Example of SyncML message sequence – Phase 1

The sequence exemplified in Table 8 corresponds to Phase 1 of the test, where the device requests a
slow sync and sends all its items to the server.

Any item contained in the <Data> tag of msg2.xml must be codified in one of the following formats:

● a Contact in vcard format

● a Note in text/plain format

● a Task in vcal format

● an Event in vcal format

Phase 2 is similar and is exemplified in the following table:

Device Server

msg5.xml

Synchronization starts

• credentials

• alert for synchronizing items (fast sync- 200)

msg5.xml

• status (200) for synchronizing items

• alert for synchronizing items (fast sync- 200)

msg6.xml

• status (200) for synchronizing items

• sync (no items are added/replaced/deleted by the device)

msg6.xml

• status (200) for synchronizing items

msg7.xml

• alert (222)

msg7.xml

• status (200) on alert

• replace command for each item (the <Data> tag contains
the item encoded according to its format)

msg8.xml

• status (200) for server sync request

• status (201) for each replaced item

msg8.xml

Synchronization ends

Table 9: Example of SyncML message sequence – Phase 2

Copyright © 2009 Funambol - Page 90

Note: the number of messages could be higher depending on the size of the items and on the
MaxMsgSize of the device. The sequence shown in Table 9 is just an example and it may not reflect
what really happens in a real-world scenario.

Any item contained in the <Data> tag must be codified in one of the following formats:

● a Contact in vcard format

● a Note in text/plain format

● a Task in vcal format

● an Event in vcal format

16.4.10. Building tests
This section presents the steps needed to complete the test in terms of scripting files.

Editing the build.xml file
The build.xml file contains the commands that will be executed by the automated script. Below is an
example of build.xml file:

<?xml version="1.0"?>

<!DOCTYPE project [
<!ENTITY test-wi SYSTEM "file:./test-wi.xml">
]>

<!-- $Id: build.xml, Exp $
 ==
 This is the driver script for QA testing, not at unit level, but at a
 protocol and client level.

 The following targets are available:

 This script should be started with the following command line :

 ant <target>

 ==
-->
<project name="Funambol DS Server Test" default="start_test" basedir=".">
 <target name="start_test" depends="init_data" />
 <target name="msg5.xml" depends="update_item"/>
 <target name="end_test" depends="reset_data" />

 <target name="init_data">
 <sql driver = "${jdbc.driver}"
 url = "${jdbc.url}"
 userid = "${jdbc.user}"
 password = "${jdbc.password}"
 classpath = "${jdbc.classpath}"
 onerror = "continue"
 autocommit= "true"

Copyright © 2009 Funambol - Page 91

 src = "msg1.sql"
 />
 <sleep seconds="${sleep-seconds}"/>
 </target>

 <target name="update_item">
 <sql driver = "${jdbc.driver}"
 url = "${jdbc.url}"
 userid = "${jdbc.user}"
 password = "${jdbc.password}"
 classpath = "${jdbc.classpath}"
 onerror = "continue"
 autocommit= "true"
 src = "msg5.sql"
 />
 <sleep seconds="${sleep-seconds}"/>
 </target>

 <target name="reset_data">
 <sql driver = "${jdbc.driver}"
 url = "${jdbc.url}"
 userid = "${jdbc.user}"
 password = "${jdbc.password}"
 classpath = "${jdbc.classpath}"
 onerror = "continue"
 autocommit= "true"
 src = "msg-end.sql"
 />
 <sleep seconds="${sleep-seconds}"/>
 </target>
</project>

The start_test target depends on the execution of the init_data target, which calls the msg1.sql script.
After initializing the database, the msg1.xml message is executed together with all the following
messages.

Before executing msg5.xml, the script launches the msg5.sql script that updates the server's contacts,
and then all the following messages are executed.

At the end, the reset_data target is called to restore the initial state.

Editing the msg1.sql file
The content of this scripting file depends on the type of item you are working on.

Supposing you are working with contacts:

--
-- Initialization data for testing
--
-- @version $Id: msg1.sql, Exp $
--
UPDATE fnbl_id SET counter=1, increment_by=1 WHERE idspace='pim.id';

Copyright © 2009 Funambol - Page 92

DELETE FROM fnbl_client_mapping WHERE principal=
 (SELECT MIN(id) FROM fnbl_principal WHERE username='guest');
DELETE FROM fnbl_last_sync WHERE principal=
 (SELECT MIN(id) FROM fnbl_principal WHERE username='guest');
DELETE FROM fnbl_pim_address WHERE contact IN
 (SELECT id FROM fnbl_pim_contact WHERE userid='guest');
DELETE FROM fnbl_pim_contact_item WHERE contact IN
 (SELECT id FROM fnbl_pim_contact WHERE userid='guest');
DELETE FROM fnbl_pim_contact_photo WHERE contact IN
 (SELECT id FROM fnbl_pim_contact WHERE userid='guest');
DELETE FROM fnbl_pim_contact WHERE userid='guest';

Supposing you are working with events:

--
–- Initialization data for testing
--
-- @version $Id: msg1.sql, Exp $
--
UPDATE fnbl_id SET counter=1, increment_by=1 WHERE idspace='pim.id';
DELETE FROM fnbl_client_mapping WHERE principal=
 (SELECT MIN(id) FROM fnbl_principal WHERE username='guest');
DELETE FROM fnbl_last_sync WHERE principal=
 (SELECT MIN(id) FROM fnbl_principal WHERE username='guest');
DELETE FROM fnbl_pim_calendar_exception WHERE calendar in
 (SELECT id FROM fnbl_pim_calendar WHERE userid='guest');
DELETE FROM fnbl_pim_calendar WHERE userid='guest';

Supposing you are working with tasks:

--
-- Initialization data for testing
--
-- @version $Id: msg1.sql, Exp $
--
UPDATE fnbl_id SET counter=1, increment_by=1 WHERE idspace='pim.id';
DELETE FROM fnbl_client_mapping WHERE principal=
 (SELECT MIN(id) FROM fnbl_principal WHERE username='guest');
DELETE FROM fnbl_last_sync WHERE principal=
 (SELECT MIN(id) FROM fnbl_principal WHERE username='guest');
DELETE FROM fnbl_pim_calendar_exception WHERE calendar in
 (SELECT id FROM fnbl_pim_calendar WHERE userid='guest');
DELETE FROM fnbl_pim_calendar WHERE userid='guest';

Supposing you are working with notes:

--
-- Initialization data for testing
--
-- @version $Id: msg1.sql, Exp $
--
UPDATE fnbl_id SET counter=1, increment_by=1 WHERE idspace='pim.id';

Copyright © 2009 Funambol - Page 93

DELETE FROM fnbl_client_mapping WHERE principal=
 (SELECT MIN(id) FROM fnbl_principal WHERE username='guest');
DELETE FROM fnbl_last_sync WHERE principal=
 (SELECT MIN(id) FROM fnbl_principal WHERE username='guest');
DELETE FROM fnbl_pim_note WHERE userid='guest';

This script deletes all items' information related to the user guest.

In this script it is possible to specify the charset used by the device by running the following update:

update fnbl_device set charset='ISO-8859-1' where id='syncml-phone';

Editing the msg5.sql file
The content of this scripting file depends on the type of item you are working on.

Supposing you are working with contacts:

--
-- Initialization data: updating all contacts
--
-- @version $Id: msg5.sql, Exp $
--

update fnbl_pim_contact
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='card'
);

Supposing you are working with events:

--
-- Initialization data: updating all contacts
--
-- @version $Id: msg5.sql, Exp $
--

update fnbl_pim_calendar
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='cal'
);

Note: for devices that have separate tasks synchronization (such as the Sony Ericsson) and use the
event SyncSource, the script to be used is the following:

--
-- Initialization data: updating all contacts
--

Copyright © 2009 Funambol - Page 94

-- @version $Id: msg5.sql, Exp $
--

update fnbl_pim_calendar
set status = 'U',
 last_update = (select end_sync
 from fnbl_last_sync
 where principal=
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='event'
);

Supposing you are working with tasks:

--
-- Initialization data: updating all tasks
--
-- @version $Id: msg5.sql, Exp $
--

update fnbl_pim_calendar
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='task'
);

Supposing you are working with notes:

--
-- Initialization data: updating all notes
--
-- @version $Id: msg5.sql, Exp $
--

update fnbl_pim_note
set status = 'U',
last_update = (select end_sync from fnbl_last_sync
 where principal =
 (select MIN(id) from fnbl_principal where username='guest')
 and sync_source='note'
);

This script will update the status of all items on the server.

Editing the msg_end.sql file
The content of this scripting file is standard and looks like the following:

--
-- Resetting data for testing

Copyright © 2009 Funambol - Page 95

--
-- @version $Id: msg1.sql, Exp $
--
update fnbl_device set charset='UTF-8' where id='syncml-phone';

This script updates the charset of the device in case it was changed by a previous script.

16.4.11. Conversion tool
In addition to tests based upon xml messages which have been described in the previous sections, the
Funambol Device Simulator is also able to run wbxml tests.

In order to obtain wbxml messages, a conversion tool is provided to transform messages from the xml
format. The conversion commands can be found in the bin directory of the Funambol Device Simulator
home.

Depending on the conversion you wish to perform, run one of the following scripts:

● xml-to-wbxml dir (all xml messages will be converted to wbxml messages)

● wbxml-to-xml dir (all wbxml messages will be converted to xml messages)

The parameter dir is the directory containing the messages you wish to convert; all messages
contained in the specified directory will be converted and placed in the same folder.

Note: the conversion tool will preserve source messages.

16.4.12. Configuring the Funambol Device Simulator
Before launching the Funambol Device Simulator tool, you will need to configure your environment
following these steps:

1. include the ant executable in the system path

Note: remember to use ant version 1.6.5

2. copy your JDBC driver in the directory SDK_HOME/tools/sdk/lib

3. set the funamboldir property in the properties file SDK_HOME/tools/sdk/config/phone-testsuite/
build.properties. This property points to the directory containing the Funambol server; by
default, it is set to C:\Programs\Funambol

4. set the JAVA_HOME variable

5. add/remove tests you wish to launch by editing the phone-testsuite property in the file
SDK_HOME/tools/sdk/config/phone-testsuite/build.properties. By default, all tests provided
with the SDK are launched.

16.4.13. Running the Funambol Device Simulator
In order to verify that the automated test is working properly, you will need to run it against the server to
be tested and verify that the execution is not blocked by any errors.

Before running the automated test, compile the SDK_HOME/config/phone-testsuite/build.properties file
adding the test case to the phone-testsuite variable, as shown in the following example:

phone-testsuite=NOKIA/N70_CARD

Note: multiple tests can be run at the same time by separating them with a comma.

Remember to grant executable permission to script files, by running the chmod command.

To run an xml test on a Linux system, go to the SDK_HOME directory and type:

bin/test

On Windows, go to the SDK_HOME directory and type:

Copyright © 2009 Funambol - Page 96

bin\test.cmd phone

To run a wbxml test on a Linux system, go to the SDK_HOME directory and type:

bin/testwbxml phone

On Windows, go to the SDK_HOME directory and type:

bin\testwbxml.cmd phone

Note: on some Linux/Unix system you may need to launch test scripts with super user privileges using
sudo. In this case, you may also need to specify the -E parameter in order to maintain the user
environment during script execution.

Expected results
If the test was successful, at the end of the test execution the expected result is:

[echo] Test results
[echo] ================
[echo] NOKIA/N70_CARD: passed

The full report on executed tests is stored in a file. According to the type of test that was launched (xml
or wbxml), you will find a file named results.testxml or results.testwbxml in the directory report.

16.5. Test case documentation
In this section you will learn how the documentation of an automated test case should be written.

16.5.1. Compiling the ReadMe.txt file
The ReadMe.txt file specifies which tests are performed by the Funambol Device Simulator. It must be
compiled with all relevant informations on the tested synclets.

The file contains the initial state of the tested scenario and the steps performed by the test, listing in
which messages the actions happen.

Below is an example of the ReadMe.txt taken from the Nokia N70 automated test for contacts:

Initial state:
Server with no contacts

Step performed:

1. (1-4) Slow sync. The mobile (a Nokia N70) sends 5 contacts to the
 server. Device capabilities are sent as well in this first step.
 Input synclets are tested in this step:
 . NokiaXin.bsh

a. Processes the incoming vcard items and adds the missing tokens.
b. Handles large objects.
c. Replace the property X-EPOCSECONDNAME with NICKNAME

2. (5-8) Fast sync: contacts status and last_timestamp are updated.
 The server sends all the contacts back to the device.
 Output synclets are tested in this step:
 . NokiaS60out.bsh

a. Moves some TEL properties to the end of the VCARD in a special order

Copyright © 2009 Funambol - Page 97

 because the devices don't behave properly at update time, otherwise.
b. Removes TYPE information from PHOTO token because the phones of the
 series 60 are not able to understand this information properly.
c. Replaces the TEL;CAR;VOICE token into TEL;VOICE;CAR.
d. Replace the property NICKNAME with X-EPOCSECONDNAME.

16.6. Funambol Device Simulator test case directory structure
The test case standard uses a specific directory structure and naming convention:

[manufacturer]/
[model_SyncSource]/

error/
reference/
response/

where:

● Manufacturer is the manufacturer's name (e.g. NOKIA)

● Model_SyncSource indicates the device's model and the tested SyncSource (e.g. N70_CARD)

● the error directory contains the errors reported during the automated test execution

● the reference directory contains the server's response messages, which will be used as
reference during the automated test execution to verify the correct behavior of the server that
is being tested. The messages contained in this directory correspond to the expected server's
response.

● the response directory contains the actual server's response to the messages sent by the
automated client. They represent how the tested server replies to the SyncML messages of the
simulated device.

Below is an example of how a test case directory should look:

NOKIA/
N70_CARD/

error/
reference/

msg1.xml
msg2.xml
msg3.xml
msg4.xml
msg5.xml
msg6.xml
msg7.xml
msg8.xml

response/
ReadMe.txt
build.xml
msg1.xml
msg2.xml
msg3.xml
msg4.xml
msg5.xml
msg6.xml

Copyright © 2009 Funambol - Page 98

msg7.xml
msg8.xml
header.properties
msg1.sql
msg5.sql
msg-end.sql

Note: the manufacturer and model_SyncSource names are in upper case format.

The directory structure exemplified above must be located under the FUNAMBOL_HOME/ds-
server/test/phone-testsuite/testcases/ directory.

Copyright © 2009 Funambol - Page 99

17. Appendix A - Sync4j Interchange Formats

The Sync4j Interchange Format (SIF) is a way to represent PIM data coming from different clients in a
common structure to make it easier information exchange.

SIF format is based on a XML representation of PIM data.

Since vCard and vCalendar/iCalendar are widely used standards and they must be supported anyway,
starting from Funambol version 7.1 the SIF representation will be smoothly phased out.

There is a SIF representation for each type of PIM data: SIF-C for contacts, SIF-E for events, SIF-T for
tasks and SIF-N for notes. They are documented in the following sections for reference and to ease
the understanding of existing code, even if the are not suggested for new developments.

Starting from Funambol version 7.1, both the server and the client will use vCard as preferred format;
the server will still accept the old format for backward compatibility. In future releases, the other
variants of SIF will also be discontinued.

17.1. SIF-C
A contact contains information about a person. Each client (Outlook, Pocket PC, Palm...) can store
different kind of personal data. For example, Pocket PC devices use a subset of the information used
by Outlook.

An example of a SIF contact is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<contact>
 <Companies>Maga S.p.A.</Companies>
 <CompanyMainTelephoneNumber/>
 <Email3Address>john@yahoo.com</Email3Address>
 <Business2TelephoneNumber>+001 2345776</Business2TelephoneNumber>
 <CarTelephoneNumber/>
 <Email2Address>john2@hotmail.com</Email2Address>
 <OtherAddressCountry/>
 <OtherFaxNumber/>
 <Suffix/>
 <BusinessAddressPostOfficeBox/>
 <FirstName>John</FirstName>
 <Subject/>
 <Hobby>Hockey</Hobby>
 <HomeAddressPostOfficeBox/>
 <OtherTelephoneNumber/>
 <PersonalWebPage>http://www.jhon.com</PersonalWebPage>
 <Department>dep 1</Department>
 <Home2TelephoneNumber>+001 3456 7767</Home2TelephoneNumber>
 <HomeAddressStreet>21th Street</HomeAddressStreet>
 <JobTitle>Programmer</JobTitle>
 <Anniversary>2004-11-23</Anniversary>
 <PrimaryTelephoneNumber>+001 45667 34543</PrimaryTelephoneNumber>
 <MobileTelephoneNumber>3357766689</MobileTelephoneNumber>
 <YomiCompanyName/>

Copyright © 2009 Funambol - Page 100

 <BusinessAddressCountry>New York</BusinessAddressCountry>
 <Sensitivity>0</Sensitivity>
 <OtherAddressState/>
 <NickName>JJ</NickName>
 <HomeAddressPostalCode>54065</HomeAddressPostalCode>
 <OrganizationalIDNumber/>
 <ManagerName>Mr.White</ManagerName>
 <BusinessTelephoneNumber>+001 12399 9999</BusinessTelephoneNumber>
 <YomiLastName/>
 <WebPage>http://www.maga.com</WebPage>
 <BusinessAddressCity>New York</BusinessAddressCity>
 <Email2AddressType>SMTP</Email2AddressType>
 <Title>Ing</Title>
 <FileAs>Doe,John</FileAs>
 <MiddleName>Patrick</MiddleName>
 <HomeAddressCountry>home country</HomeAddressCountry>
 <Birthday>1973-10-03</Birthday>
 <RadioTelephoneNumber/>
 <OtherAddressPostalCode/>
 <BusinessAddressPostalCode>54667</BusinessAddressPostalCode>
 <BusinessAddressStreet>45th street</BusinessAddressStreet>
 <AssistantTelephoneNumber/>
 <PagerNumber/>
 <HomeAddressCity>home city</HomeAddressCity>
 <Profession>IT developer</Profession>
 <HomeAddressState>home state</HomeAddressState>
 <YomiFirstName/>
 <OtherAddressStreet/>
 <OtherAddressCity/>
 <CallbackTelephoneNumber/>
 <OtherAddressPostOfficeBox/>
 <Initials>J.D.</Initials>
 <Mileage/>
 <Language/>
 <Email1Address>john.doe@funambol.com</Email1Address>
 <Children/>
 <BusinessFaxNumber>+001 456 65 5556456</BusinessFaxNumber>
 <Email3AddressType>SMTP</Email3AddressType>
 <Importance>0</Importance>
 <Email1AddressType>SMTP</Email1AddressType>
 <Body>a little note...</Body>
 <TelexNumber/>
 <OfficeLocation/>
 <AssistantName/>
 <Spouse/>
 <Categories/>
 <HomeTelephoneNumber>+001 456 65 5454 </HomeTelephoneNumber>
 <BusinessAddressState>USA</BusinessAddressState>
 <ComputerNetworkName/>

Copyright © 2009 Funambol - Page 101

 <CompanyName>Sync4j</CompanyName>
 <HomeFaxNumber/>
 <LastName>Doe</LastName>
</contact>

The SIF-C fields defined by default in Sync4j are listed in the table below.

Property Description

Anniversary Returns or sets the anniversary. It is in format YYYY-MM-DD

AssistantName Returns or sets the name of the person who is the assistant for the contact.
Corresponds to the Assistant's name: box on the Details page of a ContactItem.

AssistantTelephoneNumber Returns or sets the telephone number of the person who is the assistant for the contact

Birthday Returns or sets the birthday. It is expressed in format YYYY-MM-DD

Body Returns or sets the clear-text body of the item.

Business2TelephoneNumber Returns or sets the second business telephone number for the contact.

BusinessAddressCity Returns or sets the city name portion of the business address for the contact

BusinessAddressCountry Returns or sets the country code portion of the business address for the contact

BusinessAddressPostalCode Returns or sets the postal code (zip code) portion of the business address for the
contact

BusinessAddressPostOfficeBox Returns or sets the post office box number portion of the business address for the
contact

BusinessAddressState Returns or sets the state code portion of the business address for the contact

BusinessAddressStreet Returns or sets the street address portion of the business address for the contact

BusinessFaxNumber Returns or sets the business fax number for the contact

BusinessLabel Returns or sets a String with complete business address

BusinessTelephoneNumber Returns or sets the first business telephone number for the contact

BusinessWebPage Business web page

CallbackTelephoneNumber Returns or sets the callback telephone number for the contact

CarTelephoneNumber Returns or sets the car telephone number for the contact

Categories Returns or sets the categories assigned to the Outlook item.

Children Returns or sets the names of the children of the contact

CompanyMainTelephoneNumber Returns or sets the company main telephone number for the contact

CompanyName Returns or sets the company name for the contact

Companies Returns or sets the names of the companies associated with the item.

ComputerNetworkName Returns or sets the name of the computer network for the contact

Department Returns or sets the department name for the contact

Email1Address Returns or sets a String representing the e-mail address of the first e-mail entry for the
contact.

Email1AddressType Returns or sets a String representing the address type (such as EX or SMTP) of the first
e-mail entry for the contact. This is a free-form text field, but it must match the actual
type of an existing mail transport.

Email2Address Returns or sets the e-mail address of the second e-mail entry for the contact

Email2AddressType Returns or sets a String representing the address type (such as EX or SMTP) of the
second e-mail entry for the contact. This is a free-form text field, but it must match the
actual type of an existing mail transport.

Email3Address Returns or sets the e-mail address of the third e-mail entry

Email3AddressType Returns or sets a String representing the address type (such as EX or SMTP) of the
third e-mail entry for the contact. This is a free-form text field, but it must match the
actual type of an existing mail transport.

FileAs Returns or sets the default keyword string assigned to the contact when it is filed

FirstName Returns or sets the first name for the contact.

Folder Return or sets the Folder the contact has to be written in. The contact in the default
contacts folder can be represented with “/” root or wothout <Folder> tag. Eg.

Copyright © 2009 Funambol - Page 102

Property Description

<Folder>/subfolder1/subfolder11/</Folder>. Note the final “/”.

Gender Gender

Hobby Returns or sets the hobby for the contact

Home2TelephoneNumber Returns or sets the second home telephone number for the contact

HomeAddressCity Returns or sets the city portion of the home address for the contact

HomeAddressCountry Returns or sets the country portion of the home address for the contact

HomeAddressPostalCode Returns or sets the postal code portion of the home address for the contact

HomeAddressPostOfficeBox Returns or sets the post office box number portion of the home address

HomeAddressState Returns or sets the state portion of the home address for the contact

HomeAddressStreet Returns or sets the street portion of the home address for the contact

HomeFaxNumber Returns or sets the home fax number for the contact

HomeLabel Returns or sets a String with complete home address

HomeTelephoneNumber Returns or sets the first home telephone number for the contact

HomeWebPage Personal web page

id Returns or sets the identifier of contact item

Importance Returns or sets the relative importance level for the Outlook item. Can be one of the
following OlImportance constants: olImportanceHigh(2), olImportanceLow(0), or
olImportanceNormal(1). This property corresponds to the MAPI property
PR_IMPORTANCE.

Initials Returns or sets the initials for the contact

JobTitle Returns or sets the job title for the contact

Language Returns or sets the language for the contact

LastName Returns or sets the last name for the contact

ManagerName Returns or sets the manager name for the contact

MiddleName Returns or sets a String representing the middle name for the contact.This property is
parsed from the FullName property, but may be changed or entered independently
should it be parsed incorrectly. Note that any such changes or entries to this property
will be overwritten by any subsequent changes of entries to FullName.

Mileage Returns or sets a String representing the mileage for an item. This is a free-form string
field and can be used to store mileage information associated with the item (for
example, 100 miles documented for an appointment, contact, or task) for purposes of
reimbursement.

MobileTelephoneNumber Returns or sets a String representing the mobile telephone number

NickName Returns or sets a String representing the nickname for the contact.

OfficeLocation Returns or sets a String specifying the specific office location (for example, Building 1
Room 1 or Suite 123) for the contact. This property corresponds to the MAPI property
PR_OFFICE_LOCATION.

OrganizationalIDNumber Returns or sets the organizational ID number for the contact

OtherAddressCity Returns or sets the city portion of the other address for the contact

OtherAddressCountry Returns or sets the country portion of the other address for the contact

OtherAddressPostalCode Returns or sets the postal code portion of the other address for the contact

OtherAddressPostOfficeBox Returns or sets the post office box portion of the other address for the contact

OtherAddressState Returns or sets the state portion of the other address for the contact

OtherAddressStreet Returns or sets the street portion of the other address for the contact

OtherFaxNumber Returns or sets the other fax number for the contact

OtherLabel Returns or sets a String with complete other address

OtherTelephoneNumber Returns or sets the other telephone number for the contact

PagerNumber Returns or sets the pager number for the contact

PrimaryTelephoneNumber Returns or sets the primary telephone number for the contact

Profession Returns or sets the profession for the contact

Revision Revision number

Copyright © 2009 Funambol - Page 103

Property Description

RadioTelephoneNumber Returns or sets the radio telephone number for the contact

Sensitivity Returns or sets the sensitivity for the Outlook item. Can be one of the following
OlSensitivity constants: olConfidential(3), olNormal(0), olPersonal(1), or olPrivate(2).
This property corresponds to the MAPI property PR_SENSITIVITY

Spouse Returns or sets the spouse name entry for the contact

Subject Returns or sets the subject for the Outlook item. This property corresponds to the MAPI
property PR_SUBJECT. The Subject property is the default property for Outlook items.

Suffix Returns or sets the name suffix (such as Jr., III, or Ph.D.) for the contact

TelexNumber Returns or sets the telex number for the contact

Timezone Returns or set the timezone for the contact

Title Returns or sets the title for the contact

Uid Unique ID

WebPage Returns or sets the URL of the Web page for the contact

YomiCompanyName Returns or sets a String indicating the Japanese phonetic rendering (yomigana) of the
company name for the contact

YomiFirstName Returns or sets a String indicating the Japanese phonetic rendering (yomigana) of the
first name for the contact

YomiLastName Returns or sets a String indicating the Japanese phonetic rendering (yomigana) of the
last name for the contact

You will note that some names and constants are a bit odd. This is for legacy reason since they are
used by Microsoft Exchange Server or some Microsoft clients (Outlook, Pocket Outlook).

The following table lists all fields and their use on clients:

Property Outlook Pocket
PC

Palm Black
Berry

Java
GUI

Exchange VCARD

Anniversary Y Y N N N Y N

AssistantName Y Y N v N Y N

AssistantTelephoneNumber Y Y N N N Y N

Birthday Y Y N Y Y Y BDAY

Body Y Y Y N Y Y NOTE

Business2TelephoneNumber Y Y N N Y Y TEL;VOICE;WORK

BusinessAddressCity Y Y N Y Y Y ADR;WORK:-;-;-;CITY;-;-;-

BusinessAddressCountry Y Y N Y Y Y ADR;WORK:-;-;-;-;-;-;COUNT
RY

BusinessAddressPostalCode Y Y N Y Y Y ADR;WORK:-;-;-;-;-;POSTALC
ODE;-

BusinessAddressPostOfficeBox Y N N N N Y ADR;WORK:POSTOFFICE;-;-
;-;-;-;-

BusinessAddressState Y Y N Y Y Y ADR;WORK:-;-;-;-;STATE;-;-

BusinessAddressStreet Y Y N Y Y Y ADR;WORK:-;-;STREET;-;-;-;-

BusinessFaxNumber Y Y Y Y Y Y TEL;FAX;WORK

BusinessLabel N N N N Y N LABEL;WORK

BusinessTelephoneNumber Y Y Y Y Y Y TEL;VOICE;WORK

BusinessWebPage Y N N N Y Y URL;WORK

CallbackTelephoneNumber Y N N N N Y N

CarTelephoneNumber Y Y N N N Y TEL;CAR;VOICE

Categories Y Y N N N Y N

Children Y Y N N N Y N

CompanyMainTelephoneNumber Y N N N N Y TEL;WORK;PREF

CompanyName Y Y Y Y Y Y ORG:COMPANYNAME;-

Copyright © 2009 Funambol - Page 104

Property Outlook Pocket
PC

Palm Black
Berry

Java
GUI

Exchange VCARD

Companies Y N N N N Y N

ComputerNetworkName Y N N N N Y N

Department Y Y N Y Y Y ORG:-;DEPARTMENT

Email1Address Y Y Y N Y Y EMAIL;INTERNET

Email1AddressType Y N N N N Y N

Email2Address Y Y N N Y Y EMAIL;INTERNET;HOME

Email2AddressType Y N N N N Y N

Email3Address Y Y N N Y Y EMAIL;INTERNET;WORK

Email3AddressType Y N N N N Y N

FileAs Y Y N N Y Y FN

FirstName Y Y Y Y Y Y N:-;FIRSTNAME;-;-;-

Folder Y N N N N N N

Gender N N N N N N N

Hobby Y N N N N Y N

Home2TelephoneNumber Y Y N N Y Y TEL;VOICE;HOME

HomeAddressCity Y Y Y N Y Y ADR;HOME:-;-;-;CITY;-;-;-

HomeAddressCountry Y Y Y N Y Y ADR;HOME:-;-;-;-;-;-;COUNTR
Y

HomeAddressPostalCode Y Y Y N Y Y ADR;HOME:-;-;-;-;-;POSTALC
ODE;-

HomeAddressPostOfficeBox Y N N N N Y ADR;HOME:POSTOFFICE;-;-;
-;-;-;-

HomeAddressState Y Y Y N Y Y ADR;HOME:-;-;-;-;STATE;-;-

HomeAddressStreet Y Y Y N Y Y ADR;HOME:-;-;STREET;-;-;-;-

HomeFaxNumber Y Y N N Y Y TEL;FAX;HOME

HomeLabel N N N N Y N LABEL;HOME

HomeTelephoneNumber Y Y Y Y Y Y TEL;VOICE;HOME

HomeWebPage Y N N N N Y URL;HOME

id N N N N Y N N

Importance Y N N N Y Y N

Initials Y N N N N Y N

InstantMessenger N N N N N N N

JobTitle Y Y Y Y Y Y TITLE

Language Y N N N N Y N

LastName Y Y Y Y Y Y N:LASTNAME;-;-;-;-

ManagerName Y N N N N Y N

MiddleName Y Y N N Y Y N:-;-;MIDDLENAME;-;-

Mileage Y N N N Y Y N

MobileTelephoneNumber Y Y Y Y Y Y TEL;CELL

NickName Y N N N Y Y NICKNAME

OfficeLocation Y Y N N N Y N

OrganizationalIDNumber Y N N N N N N

OtherAddressCity Y Y N N N Y ADR:-;-;-;CITY;-;-;-

OtherAddressCountry Y Y N N N Y ADR:-;-;-;-;-;-;COUNTRY

OtherAddressPostalCode Y Y N N N Y ADR:-;-;-;-;-;POSTALCODE;-

OtherAddressPostOfficeBox Y N N N N N ADR:POSTOFFICE;-;-;-;-;-;-

OtherAddressState Y N N N N Y ADR:-;-;-;-;STATE;-;-

OtherAddressStreet Y Y N N N Y ADR:-;-;STREET;-;-;-;-

Copyright © 2009 Funambol - Page 105

Property Outlook Pocket
PC

Palm Black
Berry

Java
GUI

Exchange VCARD

OtherFaxNumber Y N N N N Y TEL;FAX

OtherLabel N N N N N N N

OtherTelephoneNumber Y N Y N Y Y TEL;VOICE

PagerNumber Y Y Y N Y Y TEL;PAGER

PrimaryTelephoneNumber Y N Y N N N TEL;PREF;VOICE

Profession Y N N N Y Y ROLE

Revision N N N N Y N REV

RadioTelephoneNumber Y Y N N N N N

Sensitivity Y N N N Y Y N

Spouse Y Y N N N Y N

Subject Y N N N N Y N

Suffix Y Y N N Y Y N:-;-;-;-;SUFFIX

TelexNumber Y N N N N Y N

Timezone N N N N N N TZ:

Title Y Y N N Y Y N:-;-;-;SALUTATION;-

Uid N N N N N N UID:

WebPage Y Y N Y N Y URL:

YomiCompanyName Y Y N N N N N

YomiFirstName Y Y N N N N N

YomiLastName Y Y N N N N N

17.2. SIF-E
A calendar event represents an event scheduled for a day at a particular time or a series of days at a
particular time. An example of a SIF event is:

<?xml version="1.0" encoding="UTF-8"?>
<appointment>
 <Start>20040930T133000Z</Start>
 <End>20040930T140000Z</End>
 <AllDayEvent>0</AllDayEvent>
 <Body/>
 <BusyStatus>2</BusyStatus>
 <Categories/>
 <Companies/>
 <Importance>1</Importance>
 <IsRecurring>0</IsRecurring>
 <Location>Milan</Location>
 <MeetingStatus>0</MeetingStatus>
 <Mileage/>
 <ReminderMinutesBeforeStart>15</ReminderMinutesBeforeStart>
 <ReminderSet>1</ReminderSet>
 <ReminderSoundFile>CalenAlarmSound</ReminderSoundFile>
 <ReminderOptions>8</ReminderOptions>
 <ReminderInterval>5</ReminderInterval>
 <ReminderRepeatCount>2</ReminderRepeatCount>
 <ReplyTime/>

Copyright © 2009 Funambol - Page 106

 <Sensitivity/>
 <Subject>Meeting with Maga developers</Subject>
 <RecurrenceType>1</RecurrenceType>
 <Interval>1</Interval>
 <MonthOfYear>0</MonthOfYear>
 <DayOfMonth>0</DayOfMonth>
 <DayOfWeekMask>16</DayOfWeekMask>
 <Instance>0</Instance>
 <PatternStartDate>20040930T230000Z</PatternStartDate>
 <NoEndDate>1</NoEndDate>
 <Occurrences>0</Occurrences>
 <PatternEndDate></PatternEndDate>
</appointment >

The fields defined and used by Sync4j are listed in the table below.

Property Description

AllDayEvent True if the appointment is an all-day event (as opposed to a specified time). Corresponds to
the All day event check box on the Appointment page of an AppointmentItem. True is 1.

Body Returns or sets the clear-text body of the item.

BusyStatus Returns or sets the busy status of the user for the appointment. Can be one of the following
OlBusyStatus constants: olBusy(2), olFree(0), olOutOfOffice(3), or olTentative(1).

Calscale Defines the calendar scale used for the appointment

Categories Returns or sets the categories assigned to the Outlook item.

Companies Returns or sets the names of the companies associated with the Outlook item. This is a free-
form text field

Contact Represent the contact information or a reference to contact information associated with the
appointment.

CREATED Specifies the date and time that the calendar information was created by the calendar user
agent in the calendar store.

DALARM Display alarms that usually trigger a dialog box to be displayed by the client program

DCREATED Specifies the date and time that the calendar information was created by the calendar user
agent in the calendar store.

Dtstamp Indicates the date/time that the instance of the appointment was created.

End Returns or sets the end date and time of an appointment or journal entry. Expressed in UTC
YYYYMMDDTHHMMSSZ

Geo Specifies information related to the global position for the activity specified by an appointment.

id Returns or sets the identifier of the calendar item

Importance Returns or sets the relative importance level for the Outlook item. Can be one of the following
OlImportance constants: olImportanceHigh(2), olImportanceLow(0), or olImportanceNormal(1).
This property corresponds to the MAPI property PR_IMPORTANCE.

IsRecurring True if the appointment is recurring. True is 1.

Last-modified Specifies the date and time that the information associated with the appointment was last
revised in the calendar store

Location Returns or sets the specific location

MeetingStatus Returns or sets an OlMeetingStatus constant specifying the meeting status of the
appointment. The constants are: olNonMeeting (0), olMeeting (1), olMeetingReceived (3),
olMeetingCanceled (5)

Mileage Returns or sets a String representing the mileage for an item. This is a free-form string field
and can be used to store mileage information associated with the item (for example, 100 miles
documented for an appointment, contact, or task) for purposes of reimbursement.

PALARM Is a procedure reminder, or application executable thatwill be run as an alarm for a calendar
component.

ProdId Specifies the identifier for the product that created the appointment.

ReminderInterval Returns or sets the interval in which the reminder has to be repeated.

Copyright © 2009 Funambol - Page 107

Property Description

ReminderMinutesBeforeStart Returns or sets the number of minutes the reminder should occur prior to the start of the
appointment

ReminderOptions Returns or sets the type of a reminder. Sum of any of the following constants. olLED activates
the LED (light emitting diode) on a device. olVibrate activates any vibration indicator on a
device. olDialog displays a dialog. olSound plays the file specified by ReminderSoundFile.
olRepeat repeats the reminder.

ReminderRepeatCount Returns or sets the number of times that the reminder has to be repeated.

ReminderSet True if a reminder has been set for this appointment, item or task.

ReminderSoundFile Returns or sets the path and file name of the sound file to play when the reminder occurs for
the Appointment. This property is valid only if the ReminderSet property is TRUE and the
ReminderOptions property includes olSound. The default for this is the current setting for the
Calendar application or Alarm1.wav if none.

ReplyTime Returns or sets a Date indicating the reply time for the appointment. Read/write

Revision Represents the date and time that this event's information was last modified

Rrule Defines a rule or repeating pattern for recurring events, to-dos, or time zone definitions.

Sensitivity Returns or sets the sensitivity for the Outlook item. Can be one of the following OlSensitivity
constants: olConfidential(3), olNormal(0), olPersonal(1), or olPrivate(2). This property
corresponds to the MAPI property PR_SENSITIVITY

Sequence The sequence field specifies the sequence number of a version of an appointment.

Start Returns or sets the starting date and time for the appointment or journal entry. Expressed in
UTC YYYYMMDDTHHMMSSZ

Status Is the overall status or confirmation of the appointment. Can be one of the following values:
Tentative, Confirmed, Cancelled.

Subject The subject for the appointment

TimezoneId The timezoneid field specifies the time zone identifier of an appointment or meeting

Transp Defines whether an event is transparent or not to busy time searches.

Uid Defines the persistent, globally unique identifier for the appointment.

Url Defines a Uniform Resource Locator (URL) associated with the appointment.

Version Specifies the identifier corresponding to the highest version number or the minimum and
maximum range of the iCalendar specification that is required in order to interpret the
iCalendar object

Recurrence properties

DayOfMonth The single day of the month from 1 to 31.

DayOfWeekMask The combination days of the week constants (i. e. event recurring on Monday and
Wednesday. The DayOfWeekMask should be olMonday + olWednesday)

Interval Is the interval of the recurrence. If RecurrenceType is olRecursDaily, event occurs every
<interval> day. If olRecursWeekly, event occurs every <inteval> week..

Instance The ordinal number of the day, week, month

MonthOfYear Month of year

NoEndDate True if there is no end date. True is 1.

Occurrences Number of occurrences for the recurrence.

PatternEndDate The end date of the recurrence

PatternStartDate The start day of the recurrence

RecurrenceType Returns or set a RecurrenceType. See below for the possible values.

The following table lists all fields and their use on clients:

Property Oulook Pocket
PC

BlackBerry Java GUI Exchange iCAL

AllDayEvent Y Y N N Y N

Body Y Y Y Y Y DESCRIPTION

BusyStatus Y Y N N Y N

Calscale N N N N N CALSCALE

Copyright © 2009 Funambol - Page 108

Property Oulook Pocket
PC

BlackBerry Java GUI Exchange iCAL

Categories Y Y N N Y CATEGORIES

Companies Y N N N N ORGANIZER

Contact N N N N N CONTACT

CREATED N N N N N CREATED

DALARM N N N N N DALARM

DCREATED N N N N N DCREATED

Dtstamp N N N N N DTSTAMP

End Y Y Y Y Y DTEND

Geo N N N N N GEO:-;-

id N N N Y N N

Importance Y N N N Y PRIORITY

IsRecurring Y Y N N N N

Last-Modified N N N N N LAST-MODIFIED

Location Y Y Y Y Y LOCATION

MeetingStatus Y N N N Y N

Method N N N N N METHOD

Mileage Y N N N Y N

PALARM N N N N N PALARM

ProdId N N N N N PRODID

ReminderInterval N N N N N AALARM:-;INTERVAL;-;-;

ReminderMinutesBeforeStart Y Y Y N Y Is used with DTSTART to
calculate the reminder
start date.

ReminderOptions N Y N N N N

ReminderRepeatCount N N N N N AALARM:-;-;COUNT;-;

ReminderSet Y Y N N Y AALARM

ReminderSoundFile N Y N N N AALARM:-;-;-;SOUNDFIL
E

ReplyTime Y N N N Y N

Revision N N Y N N N

Rrule N N N N N RRULE

Sensitivity Y Y N N Y CLASS

Sequence N N N N N SEQUENCE

Start Y Y Y Y Y DTSTART

Status N N N N N STATUS

Subject Y Y Y Y Y SUMMARY

TimezoneId N N N N N N

Transp N N N N N TRANSP

Uid N N N N N UID

Url N N N N N URL

Version N N N N N VERSION

Recurrence properties

DayOfMonth Y Y N N N N

DayOfWeekMask Y Y N N N N

Interval Y Y N N N N

Instance Y Y N N N N

MonthOfYear Y Y N N N N

NoEndDate Y Y N N N N

Copyright © 2009 Funambol - Page 109

Property Oulook Pocket
PC

BlackBerry Java GUI Exchange iCAL

Occurrences Y Y N N Y N

PatternEndDate Y Y N N N N

PatternStartDate Y Y N N N N

RecurrenceType Y Y N N N N

17.2.1. Constants
The following constants are defined:

OlDaysOfWeek

olSunday = 1;
olMonday = 2;
olTuesday = 4;
olWednesday = 8;
olThursday = 16;
olFriday = 32;
olSaturday = 64;

OlRecurrenceType

olRecursDaily = 0;
olRecursWeekly = 1;
olRecursMonthly = 2;
olRecursMonthNth = 3;
olRecursYearly = 5;
olRecursYearNth = 6;

OlSensitivity

olNormal = 0;
olPersonal = 1;
olPrivate = 2;
olConfidential = 3;

OlBusyStatus

olFree = 0;
olTentative = 1;
olBusy = 2;
olOutOfOffice = 3;

OlImportance

olLow = 0;
olNormal = 1;
olHigh = 2;

Copyright © 2009 Funambol - Page 110

17.2.2. Recurrent event examples
An event happening every 2 weeks on Sunday and Monday:

RecurrenceType = olRecursWeekly
Instance = 2
DayOfWeekMask = olSunday + olMonday

An event scheduled the 2th Wednesday of April of every year:

RecurrenceType = olRecursYearNth
Interval = 12
MonthofYear = 4
DayOfWeekMask = olWednesday
Instance = 2
NoEndDate = True

To learn more about recurrence and how setting all the properties have a look at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbaol10/html/olobjRecurrencePattern.as p

Note for Outlook and PowerPC Client: the recurrent properties must be set in a proper order and
only some properties must be set related to the particular RecurrenceType property. If not, no event
can be added successfully.

RecurrenceType must be set as the first property and outlook client do it getting the value from the SIF
item.

Keeping olRecursWeekly as example only the properties Interval and DayOfWeekMask have to be
set meanwhile all the others must be 0. The Outlook Client skips the 0 value properties.

The same thing is for olRecursMonthNth: only the Interval, Instance and DayOfWeekMask must be
set to create a right event.

17.3. SIF-T
A Task object is very similar to an event object. An example of SIF task is the following:

<?xml version="1.0" encoding="UTF-8"?>
<task>
 <Body/>
 <Categories/>
 <Companies>Maga S.p.A.</Companies>
 <Complete>0</Complete>
 <DueDate>20041008T230000Z</DueDate>
 <DueDate>20041008T230000Z </DueDate>
 <BillingInformation>information</BillingInformation>
 <ActualWork>10</ActualWork >
 <Importance>1</Importance>
 <IsRecurring>0</IsRecurring>
 <Mileage/>
 <PercentComplete>0</PercentComplete>
 <ReminderSet>1</ReminderSet>
 <ReminderTime/>
 <Sensitivity/>
 <StartDate>20041110T230000Z</StartDate>
 <Status>0</Status>

Copyright © 2009 Funambol - Page 111

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaol10/html/olobjRecurrencePattern.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaol10/html/olobjRecurrencePattern.as
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaol10/html/olobjRecurrencePattern.as

 <Subject>new task</Subject>
 <TeamTask>0</TeamTask>
 <TotalWork>0</TotalWork>
 <RecurrenceType>1</RecurrenceType>
 <Interval>1</Interval>
 <MonthOfYear>0</MonthOfYear>
 <DayOfMonth>0</DayOfMonth>
 <DayOfWeekMask>4</DayOfWeekMask>
 <Instance>0</Instance>
 <PatternStartDate>20040930T230000Z</PatternStartDate>
 <NoEndDate>1</NoEndDate>
 <Occurrences>0</Occurrences>
 <PatternEndDate></PatternEndDate>
</task>

The fields defined and used by Sync4j are listed in the following table:

Property Description

ActualWork Returns or sets the actual effort (in minutes) spent on the task.

BillingInformation Returns or sets the billing information associated with the Outlook item. This is a free-
form text field

Body Returns or sets the clear-text body of the Outlook item.

Categories Returns or sets the categories assigned to the Outlook item.

Companies Returns or sets the names of the companies associated with the Outlook item. This is
a free-form text field

Complete True if the task is completed. True is 1

DueDate Returns or sets a Date indicating the due date for the task.

DateCompleted Returns when the task is completed. It gets set to the current date on the device
when you set the Complete property

Importance Returns or sets the relative importance level for the Outlook item. Can be one of the
following OlImportance constants: olImportanceHigh(2), olImportanceLow(0), or
olImportanceNormal(1). This property corresponds to the MAPI property
PR_IMPORTANCE.

Mileage Returns or sets a String representing the mileage for an item. This is a free-form
string field and can be used to store mileage information associated with the item (for
example, 100 miles documented for an appointment, contact, or task) for purposes of
reimbursement.

PercentComplete Returns or sets the percentage of the task completed at the current date and time

ReminderSet True if a reminder has been set for this appointment, mail item or task. True is 1

ReminderTime Returns or sets the date and time at which the reminder should occur for this item.

ReminderSoundFile Returns or sets the path and file name of the sound file to play when the reminder
occurs for the Appointment. This property is valid only if the ReminderSet property is
TRUE and the ReminderOptions property includes olSound. The default for this is the
current setting for the Calendar application or Alarm1.wav if none.

ReminderOptions Returns or sets the type of a reminder. Sum of any of the following constants. olLED
activates the LED (light emitting diode) on a device. olVibrate activates any vibration
indicator on a device. olDialog displays a dialog. olSound plays the file specified by
ReminderSoundFile. olRepeat repeats the reminder.

IsRecurring True if the appointment is recurring. True is 1

Sensitivity Returns or sets the sensitivity for the Outlook item. Can be one of the following
OlSensitivity constants: olConfidential(3), olNormal(0), olPersonal(1), or olPrivate(2).
This property corresponds to the MAPI property PR_SENSITIVITY

StartDate Returns or sets the starting date and time for the task

Status Returns or sets the status for the task. Can be one of the following OlTaskStatus
constants: olTaskComplete(2), olTaskDeferred(4), olTaskInProgress(1),
olTaskNotStarted(0), or olTaskWaiting(3).

Copyright © 2009 Funambol - Page 112

Property Description

Subject Returns or sets the subject for the Outlook item. This property corresponds to the
MAPI property PR_SUBJECT. The Subject property is the default property for
Outlook items. IT IS READ ONLY FOR NOTES

TeamTask True if the task is a team task. True is 1

TotalWork Returns or sets the total work for the task

Recurrence properties

DayOfMonth For recurrence (see calendar property)

DayOfWeekMask For recurrence (see calendar property)

Interval Return the interval

Instance For recurrence (see calendar property)

MonthOfYear For recurrence (see calendar property)

NoEndDate For recurrence (see calendar property)

Occurrences For recurrence (see calendar property)

PatternStartDate For recurrence (see calendar property)

PatternEndDate For recurrence (see calendar property)

RecurrenceType Returns or set a RecurrenceType. values are orRecursDaily...

The following table lists all fields and their use on clients:

Property Outlook Pocket PC Exchange

ActualWork Y Y Y

BillingInformation Y Y Y

Body Y Y Y

Categories Y Y Y

Companies Y N N

Complete Y Y Y

DueDate Y Y Y

DateCompleted Y Y Y

Importance Y Y Y

Mileage Y N Y

PercentComplete Y N Y

ReminderSet Y Y Y

ReminderTime Y Y Y

ReminderSoundFile N Y N

ReminderOptions N Y N

IsRecurring Y Y N

Sensitivity Y Y Y

StartDate Y Y Y

Status Y N Y

Subject Y Y Y

TeamTask Y Y Y

TotalWork Y N N

Recurrence properties

DayOfMonth Y Y N

DayOfWeekMask Y Y N

Interval Y Y N

Instance Y Y N

MonthOfYear Y Y N

Copyright © 2009 Funambol - Page 113

Property Outlook Pocket PC Exchange

NoEndDate Y Y N

Occurrences Y Y Y

PatternStartDate Y Y N

PatternEndDate Y Y N

RecurrenceType Y Y N

17.4. SIF-N
SIF notes are also represented in a SIF format:

<?xml version="1.0" encoding="UTF-8"?>
<note>
 <Body>New Note the first note</Body>
 <Categories/>
 <Subject>New Note</Subject>
 <Color>3</Color>
 <Height>166</Height>
 <Width>200</Width>
 <Left>80</Left>
 <Top>80</Top>
</note>

The fields defined and used by Sync4j are listed in the following table.

Property Description

Body Returns or sets the clear-text body of the note item.

Categories Returns or sets the categories assigned to the note item.

Color Color of note

Date Date of received note

Height Height of the box note

Left Left position of the box of the note

Subject Returns or sets the subject for the note item. This property corresponds to the MAPI
property PR_SUBJECT. The Subject property is the default property for Outlook items. IT
IS READ ONLY FOR NOTES. It value is retrieved by the first line of the body.

Top Top position of the box of the note

Width Width of the box note

The following table lists all fields and their use on clients:

Property Outlook Pocket PC Exchange

Body Y Y Y

Categories Y N N

Color Y N N

Date N N Y

Height Y N N

Left Y N N

Subject Y Y Y

Top Y N N

Width Y N N

Copyright © 2009 Funambol - Page 114

17.4.1. Constants
The following constants are defined:

OlNoteColor

olBlue = 0;
olGreen = 1;
olPink = 2;
olYellow = 3;
olWhite = 4;

Copyright © 2009 Funambol - Page 115

18. Appendix B – List of acronyms

API Application Programming Interface

CTP Client TCP Push

CVS Concurrent Versions System

DB DataBase

DS Data Synchronization

GUI Graphical User Interface

GUID Globally Unique IDentifier

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IMAP Internet Message Access Protocol

IP Internet Protocol

JDK Java Development Kit

JVM Java Virtual Machine

LUID Local Unique IDentifier

OMA Open Mobile Alliance

OTA Over The Air

PDA Personal Digital Assistant

PIM Personal Information Management

POM Project Object Model

POP Post Office Protocol

REST REpresentational State Transfer

SDK Software Development Kit

SIF Sync4j Interchange Format

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

WS Web Service

XML eXtensible Markup Language

Copyright © 2009 Funambol - Page 116

19. Resources

This section lists resources you may find useful.

[1] SyncML Representation Protocol, version 1.1,
http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf

[2] SyncML Sync Protocol, version 1.1,
http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf

[3] Funambol Administration Guide

[4] Apache maven, http://maven.apache.org/index.html

[5] Community projects, http://www.funambol.com/opensource/projects.php

[6] Funambol public CVS, http://forge.objectweb.org/scm/?group_id=96

[7] Funambol SDK, http://m2.funambol.com/repositories/artifacts/funambol/sdk/7.0.3/sdk-7.0.3.tar.gz

[8] OpenXchange connector, https://funamboloxconnector.forge.funambol.org

[9] Exchange connector, https://exchange-connector.forge.funambol.org

[10] AGPL, http://www.fsf.org/licensing/licenses/agpl-3.0.html

[11] Liferay customization guide:
http://content.liferay.com/4.2/doc/installation/liferay_4_customization_guide.pdf

Copyright © 2009 Funambol - Page 117

http://www.fsf.org/licensing/licenses/agpl-3.0.html
https://exchange-connector.forge.funambol.org/
https://funamboloxconnector.forge.funambol.org/
http://download.forge.objectweb.org/sync4j/funambol-sdk-7.0.0-SNAPSHOT.tar.gz
http://forge.objectweb.org/scm/?group_id=96
http://www.funambol.com/opensource/projects.php
http://maven.apache.org/index.html
http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf
http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf

	1. Introduction	
	1.1. Document structure
	1.2. Audience
	1.3. Funambol licensing
	1.4. Comments and feedback

	2. Getting started on connector development
	2.1. Introduction
	2.2. Getting started
	2.3. Overview
	2.4. Create the connector project
	2.4.1. MyMergeableSyncSource type
	2.4.2. MySynclet
	2.4.3. MySyncSourceAdminPanel

	2.5. Creating and installing the connector package
	2.6. Creating a SyncSource
	2.7. Testing the connector
	2.8. Debugging

	3. Funambol development
	3.1. Data synchronization
	3.1.1. ID handling
	3.1.2. Change detection
	3.1.3. Modification exchange
	3.1.4. Conflict detection
	3.1.5. Conflict resolution
	3.1.6. Full and fast synchronization

	4. Funambol architecture
	4.1. System architecture
	4.1.1. Roles and responsibilities

	4.2. The synchronization engine
	4.3. Execution flow of a request

	5. The synchronization process
	5.1. Preparation
	5.2. Modifications detection
	5.3. Synchronization
	5.4. Finalization

	6. Extending Funambol
	6.1. Building a Funambol module
	6.2. Modules, connectors, listeners and SyncSource types
	6.2.1. Registering modules, connectors and SyncSource types

	7. Developing a SyncSource
	7.1. The SyncSource interface and related classes
	7.1.1. SyncContext
	7.1.2. SyncItem
	7.1.3. Twin items
	7.1.4. The Administration Tool configuration panel

	8. Extending the Funambol Administration Tool
	8.1. Architecture overview
	8.2. ManagementObject and subclasses
	8.2.1. com.funambol.admin.mo.SyncSourceManagementObject
	8.2.2. com.funambol.admin.mo.ConnectorManagementObject

	8.3. ManagementObjectPanel and subclasses
	8.3.1. SourceManagementPanel
	8.3.2. ConnectorManagementPanel

	9. Configuring Funambol components
	9.1. System properties
	9.2. Server JavaBeans
	9.2.1. The configuration path
	9.2.2. Lazy initialization

	9.3. How to configure a standard component
	9.4. How to create a custom configurable object
	9.5. How to get a configured instance
	9.5.1. Tips and tricks

	10. Customizing message processing
	10.1. Overview
	10.2. Preprocessing an incoming message
	10.2.1. Creating an input synclet
	10.2.2. Configuring an input synclet

	10.3. Postprocessing an outgoing message
	10.3.1. Creating an output synclet
	10.3.2. Configuring an output synclet
	10.3.3. The MessageProcessingContext
	10.3.4. How to stop message processing

	11. SyncSource API
	11.1. SyncSource class
	11.1.1. Methods list

	11.2. Mergeable SyncSource methods
	11.2.1. Methods list

	11.3. Filterable SyncSource methods
	11.3.1. Methods list

	12. Officer API
	12.1. Officer class
	12.1.1. Methods list
	12.1.2. Usage example

	13. Web Services API
	13.1. Introduction
	13.1.1. Funambol Data Synchronization Service Web Services

	14. Localizing Funambol clients
	14.1. General considerations
	14.1.1. Strings length
	14.1.2. Coherence among clients

	14.2. Windows Mobile Sync Client
	14.2.1. Languages currently available
	14.2.2. How to add a new language

	14.3. Outlook Sync Client
	14.3.1. Languages currently available
	14.3.2. How to add a new language

	14.4. Java ME Email Client
	14.4.1. Languages currently available
	14.4.2. How to add a new language
	14.4.3. How to translate the help text

	14.5. BlackBerry Sync Client
	14.5.1. Languages currently available
	14.5.2. How to add a new language

	14.6. iPod Sync Client
	14.6.1. Strings localization

	14.7. iPhone/iPod Touch Sync Client
	14.7.1. Languages currently available
	14.7.2. How to add a new language

	14.8. Symbian Sync Client
	14.8.1. Strings localization

	15. Funambol Software Development Kit
	15.1. Obtaining and building the source code
	15.2. Developing with a custom environment
	15.3. Developing with Maven
	15.3.1. Maven configuration
	15.3.2. Creating a new module
	15.3.3. Building the module

	15.4. The Funambol Connector Testing Framework
	15.4.1. Usage
	15.4.2. Certifying a connector
	15.4.3. Limitations
	15.4.4. Error codes

	16. The Funambol Device Simulator tool
	16.1. Prerequisites
	16.2. Directory structure
	16.3. Adding new tests
	16.3.1. Setting up the environment
	16.3.2. Testing the device

	16.4. Adding items to sync
	16.4.1. Adding contacts to the address book
	16.4.2. Adding events to the calendar
	16.4.3. Adding tasks
	16.4.4. Adding notes
	16.4.5. Getting messages
	16.4.6. Phase 1: extracting SyncML messages
	16.4.7. Syncing items back to the device and getting the logs
	16.4.8. Phase 2: extracting the SyncML messages
	16.4.9. Editing SyncML messages
	16.4.10. Building tests
	16.4.11. Conversion tool
	16.4.12. Configuring the Funambol Device Simulator
	16.4.13. Running the Funambol Device Simulator

	16.5. Test case documentation
	16.5.1. Compiling the ReadMe.txt file

	16.6. Funambol Device Simulator test case directory structure

	17. Appendix A - Sync4j Interchange Formats
	17.1. SIF-C
	17.2. SIF-E
	17.2.1. Constants
	17.2.2. Recurrent event examples

	17.3. SIF-T
	17.4. SIF-N
	17.4.1. Constants

	18. Appendix B – List of acronyms
	19. Resources

