
Funambol DM Server

Developer�s Guide
Version 3.0
September 2006

Important Information

© Copyright Funambol, Inc. 2006. All rights reserved.

The information contained in this publication is subject to US and international copyright laws and treaties. Except as permitted
by law, no part of this document may be reproduced or transmitted by any process or means without the prior written consent
of Funambol, Inc.

Funambol, Inc. has taken care in preparation of this publication, but makes no expressed or implied warranty of any kind.
Funambol, Inc. does not guarantee that any information contained herein is and will remain accurate or that use of the
information will ensure correct and faultless operation of the relevant software, service or equipment.

Funambol, Inc., its agents and employees shall not be held liable for any loss or damage whatsoever resulting from reliance on
the information contained herein.

Funambol and Sync4j are trademarks and registered trademarks of Funambol, Inc.

All other products mentioned herein may be trademarks of their respective companies.

Published by Funambol, Inc., 643 Bair Island Road, Suite 305, Redwood City, CA 94063

DM SERVER DEVELOPER�S GUIDE
Contents

Chapter 1 SyncML Device Management . 1
Introduction . 2

Purpose . 2

SyncML DM Protocol Message Sequence Overview . 3

SyncML Device Management Tree Overview. 6

The ./DevInfo Node. 6

Management Object Manipulation . 8

Management Object Security . 8

SyncML Security and Initial Provisioning (Bootstrap) . 9

Security. 9

Bootstrap Provisioning . 9

Bootstrap Methods . 10

Chapter 2 Developer Overview . 11
System Architecture . 12

Funambol DM Server Architecture . 12

Execution Flow . 14

Database Schema. 16

Device Management State . 18

Chapter 3 Server Configuration . 21
Overview . 22

Funambol.properties. 22

Server JavaBeans . 23

Lazy Initialization . 25

Configuring a Standard Component . 26

Configuring a Custom Component . 27

Getting a Configured Instance . 29

Tips and Tricks . 29

Logging . 30

Adding Logging for Custom Components. 31

Chapter 4 Customizing Message Processing . 33
Overview . 34

Preprocessing an Incoming Message . 37

Creating an Input Synclet . 37
iii

DM SERVER DEVELOPER�S GUIDE
Configuring an Input Synclet. 38

Postprocessing an Outgoing Message . 39

Creating an Output Synclet. 39

Configuring an Output Synclet . 40

Chapter 5 Implementing Management Operations . 41

Overview . 42

Creating a Processor Selector . 43

DeviceIdProcessorSelector . 43

Configuring the Management Engine . 48

Creating a Management Processor . 49

ManagementOperation . 50

ManagementOperationResult. 51

Using Scripting Management Processors . 53

Scripting Variables . 53

Chapter 6 External Applications . 59
External Application Interfaces . 60

The EJB Layer . 60

Implementing the Sender Component . 62

Sender Interface . 62

Sender Component Configuration . 64

Chapter 7 Bootstrapping Devices . 65
Bootstrap Overview. 66

WAP Provisioning Profile . 69

Plain Profile . 70

Appendix A Appendix . 71

Resources . 72

Related Documentation . 72

Other Resources. 73

Bootstrap XML Message Examples . 74

WAP Profile . 74

Plain Profile. 75

WAP Headers for Bootstrap Message . 80

PLAIN Profile . 80

WAP Profile . 80

Notification Message Using WAP Push . 82

Notification Message Created by the DM Server . 82

Complete SMS (WDP + WSP + Notification Message) . 82
iv

DM SERVER DEVELOPER�S GUIDE
Chapter 1 SyncML Device Management

Topics

• Introduction, page 2

• SyncML DM Protocol Message Sequence Overview, page 3

• SyncML Device Management Tree Overview, page 6

• SyncML Security and Initial Provisioning (Bootstrap), page 9
1

DM SERVER DEVELOPER�S GUIDE
Introduction

The Open Mobile Alliance Device Management (OMA DM) protocol, formerly known as the
SyncML DM protocol, specifies the message sequence and behaviors that will allow device
management commands to be executed against management objects on a SyncML DM
compliant device. Management objects might include configuration parameters that enable
Internet connectivity, e-mail connectivity, WAP connectivity, MMS settings, and basic network
configuration options allowing voice access to an operator network. Other management
objects may include the Java Runtime Environment on J2ME enabled devices or any other
applicable software environment where extensions of features and functionality can be added
via an Over The Air (OTA) upgrade to those environments. SyncML DM protocol is not
limited to any particular set of management objects that can be modified via OTA, although
the protocol does define a specific methodology and object management tree structure that
serves as a profile on how a DM server accesses specific management objects on a particular
device.

The Funambol DM Server is a server side implementation of the OMA DM protocol and an
extensible framework for the development of device management based applications. The
Funambol DM Server architecture and implementation derives from the Funambol OMA DS
platform.

Purpose

This document provides developers with basic concepts and guidance for extending the
functionality of the Funambol DM Server. Using this document, a developer will acquire the
following skills:

• An understanding of the OMA DM protocol

• An understanding of the Funambol DM Server architecture

• The ability to integrate the Funambol DM Server with external applications

• The ability to pre- and post-process incoming and outgoing OMA DM messages

• The ability to implement new management operations
2

DM SERVER DEVELOPER�S GUIDE
SyncML DM Protocol Message Sequence Overview

The SyncML DM protocol is relatively simple from a messaging sequence standpoint. The
message sequence consists of three parts:

• Alert phase – used only for unsolicited management initiation from the server to the client.

• Set up phase (authentication and device information exchange)

• Management phase

Transaction 1: Alert Phase � Server to Client Only

Not required if the client is contacting server. SyncML DM supports the concept of unsolicited
alerts via a “notification initiation alert” mechanism. This mechanism allows a management
server to initiate a management session with a device, rather than solely relying on a client
device to initiate a session. Some devices may be capable of listening on a particular port for
alert messages; other devices may not be capable of this paradigm and need an alternate
method to trigger a management session. SyncML will rely on two primary methods for
delivery of unsolicited alerts:

• WAP Push – This method will deliver the alert via a Push Initiator through a Push Proxy
Gateway as defined by the WAP protocol. The SyncML server will act as a Push Initiator in
this example, and will deliver the message via an SMS message. The message will have a
unique application ID and the message will be routed to the device management user
agent per the WAP Specification.

• OBEX – The OBEX protocol can be used to deliver unsolicited alerts to a device via the
PUT command as defined by the protocol.

Transaction 2: Set Up Phase � Client to Server

Always required. The set up phase consists of a request from the client and the response from
the server. The initial client request of the set up phase will contain three primary pieces of
information.

• The information contained in the DevInfo (Device Information) object, as follows:

Ext - An optional, internal object, marking up the single branch of the DevInfo sub tree
into which extensions can be added, permanently or dynamically.

Bearer - An optional, internal object, marking up a branch of the DevInfo sub tree into
which items related to the bearer (CDMA, etc.) are stored. Use of this sub tree can be
mandated by other standards.

DevId - A unique identifier for the device. SHOULD be globally unique.

Man - The manufacturer identifier.

Mod - A model identifier (manufacturer specified string).
3

DM SERVER DEVELOPER�S GUIDE
DmV - A SyncML device management client version identifier (manufacturer specified
string).
Lang - The current language setting of the device.

• The client credentials information used for authenticating the client.

• A token that informs the server if this is a client-initiated session or server-initiated
session. This is required so the server can synchronize a server-initiated session with an
initial incoming request from the client. From the server perspective, server-initiated
sessions will look the same as client-initiated sessions, and a token must be present so the
server can distinguish both types of transactions.

Transaction 3: Set-up Phase � Server to Client

Always required. The server will respond to the initial client request with server credentials,
so as to identify the server to the client for authentication and identification purposes. The
server may also send user interaction commands with the response, as well as initial
management data.

Transaction 4: Management Phase � Client to Server

Only required if management data or user interaction commands were sent in the previous
message. The client will respond to the server with the results of the management message
sent in the previous transaction, as well as any user interaction command results.

Transaction 5: Management Phase � Server to Client

Always required if Transaction 4 was initiated. This transaction will occur to either close the
management session or to begin a new iteration if more management operations are needed. If
additional management operations are needed the response to this message will be the same
transaction type as transaction 4. This iteration will continue until the management server
sends a message in this transaction to close the session with the client.
4

DM SERVER DEVELOPER�S GUIDE
The diagram below is a representation of the preceding transactions.

Device Push Proxy
Gateway

SyncML DM
Server

Transaction 1

Transaction 1 (Continued)

Transaction 2

Transaction 3

Transaction 4

Transaction 5
5

DM SERVER DEVELOPER�S GUIDE
SyncML Device Management Tree Overview

The SyncML DM protocol identifies various messages and message content, the sequence of
messages, security framework, and so on. The device itself must adhere to a specific
methodology of managing various functions. Because features and functionality are device
specific and are often proprietary, a framework defining how a device utilizes device
management messages must be specified and in place to operate properly with a device
management server. This framework allows a device manufacturer to add new devices or
functionality to the market, then modify or add a new device description to the device
management server’s library of device profiles. This framework is defined as the Device
Management Tree. The tree data structure allows URI addressing of SyncML DM messages, as
well as provides a common framework for device management object addressing.

The device management tree is a data structure of manageable device objects. Device objects
can be anything from a single parameter, to a splash screen GIF file, to an entire application.
The device management tree is essentially mapped to permanent or dynamic objects as an
addressing schema to manipulate these objects. Permanent objects can be thought of as objects
that are built into the device at the time of manufacture and typically cannot be deleted e.g.
the Device Info object that defines the basic information about a device such as manufacturer
or model number. Dynamic objects are objects that can be added or deleted, e.g., ringtones or
wallpaper.

The ./DevInfo Node

The initial request from the client will always contain information retrieved from the ./
DevInfo (or Device Info) sub tree. The ./DevInfo Node is only part of the overall device
management tree structure, and it maps to basic device parameters that allow initial
operations and inspection of the device by the CRM specialist
6

DM SERVER DEVELOPER�S GUIDE
The diagram below is an example that illustrates how the device management tree maps to
certain objects.

Properties of Management Tree Objects

Each management tree object has a set of properties that defines metadata information about
the object, such as access control, etc. The properties are as follows:

• ACL (required) – Access Control List, defines who can manipulate the underlying object.

• Format (required) – determines how an object is interpreted, i.e., if the underlying object is
a URL for a particular management server, the Format may be defined as chr (character).

• Name (required) – the object in the tree.

• Size (required for leaf objects, not applicable for interior nodes) – the size of the object in
bytes.

• Title (optional) – user-friendly name.

• Tstamp (optional) – the time stamp of the last modification.

• Type (required for leaf objects, optional for interior nodes) – the MIME type of the object.

• VerNo (optional) – the version number of the object.
7

DM SERVER DEVELOPER�S GUIDE
Management Object Manipulation

Management objects can be manipulated via SyncML messages with the following commands
through a valid SyncML DM message.

• Add – Adds an object (Node) to a tree.

• Get – Returns a Node name based on the URI passed with the GET request

• Replace – Replaces an object on the Tree.

• Delete – Deletes an object on the tree.

• Copy – Copies an object (Node) on the tree.

Management Object Security

The ACL property defines the security framework for objects within a tree. This framework
allows only certain server’s access to objects for manipulation. This will allow tight control on
how objects are added, changed, deleted or replaced, as well as how object properties are
manipulated, and more importantly who is allowed to manipulate objects.
8

DM SERVER DEVELOPER�S GUIDE
SyncML Security and Init ial Provisioning (Bootstrap)

Security

Security is a primary concern when modifying any attributes on a device. SyncML DM
protocol specifies that authentication take place in either the transport level or the SyncML
DM protocol level. If the transport level authentication is considered too weak, then
authentication must occur at the protocol level.

Example 1 � Transport Level Authentication

A device may authenticate itself to a WAP server using basic HTTP authentication.
Authentication credentials accompany each request after the initial transaction is sent to the
WAP gateway. The WAP gateway in this case would be considered “trusted” since it serves as
a Proxy to the SyncML DM server, and additional authentication may not be required at the
SyncML protocol level if the requests come via the trusted proxy.

Example 2 � Session Level Authentication

Similar to example 1, this example assumes that a GPRS device authenticates to the operator’s
portal via TLS or HTTPS. The underlying session is established and considered authenticated
therefore any messages that are a part of this secured session can be considered authenticated.

Example 3 � SyncML Protocol Level Authentication

If session level or transport level authentication is not available or considered weak, then the
SyncML protocol level authentication must occur. SyncML requires that regardless what the
underlying security mechanism that is in place, if the server or client requests credentials one
or both must comply. The four basic credentials are Server ID, Username, Password, and
Nonce

SyncML DM requires that Basic, MD-5 (server side) and HMAC authentication must be
supported.

Bootstrap Provisioning

SyncML DM defines two different use cases of bootstrapping a device and two methods for
initial bootstrapping.

Bootstrap Use Cases

• Factory Bootstrap: Devices are loaded with SyncML DM bootstrap information at the time
of manufacture or initial distribution.

• Server Initiated Bootstrap: Server initiated bootstrap is intended for devices that do not
have the necessary configuration parameters set to establish a SyncML DM session.
9

DM SERVER DEVELOPER�S GUIDE
Bootstrap Methods

WAP Profile Provisioning

Other aspects of server initiated bootstrap are very similar if not identical to WAP bootstrap
provisioning. If the device supports WAP provisioning, extensions to the WAP profile that
define how SyncML parameters are mapped into the SyncML DM management object are
defined in the SyncML specifications, and can be used to configure the device for SyncML DM
via WAP bootstrap provisioning.

Plain Profile Bootstrap Provisioning

Plain profile is currently defined for devices that do not support WAP bootstrap provisioning.
This method utilizes the SyncML DM format for the bootstrap message, and uses the same
bootstrap method for security as WAP bootstrap provisioning.

WAP defines several methods for authenticating a bootstrap session and these methods are
utilized by the SyncML DM protocol:

• NETWPIN – a shared secret is known by the device and server i.e. an IMSI or ESN. No
user intervention is required, and is the simplest yet least secure method of authenticating
a bootstrap message.

• USERPIN – where the user enters a PIN code delivered out of band i.e. through customer
care who will initiates the bootstrap after confirming the identity of the user. A Plain
Profile can use any method capable of sending unprompted requests to a device, i.e.
OBEX, SMS, and WAP Push.

• USERNETWPIN – a combination of the NETWPIN and USERPIN methods, requiring the
use of a shared secret and a user PIN.

• USERPINMAC – the PIN is delivered out of band to the user. This method calculates the
PIN based on the actual bootstrap method using a hashing function. When the bootstrap
message arrives, the user is prompted to enter the PIN. If the PIN matches the re-hash of
the bootstrap message on the device then the message is accepted.
10

DM SERVER DEVELOPER�S GUIDE
Chapter 2 Developer Overview

This section provides an overview of the Funambol DM Server architecture appropriate for
developers who wish to extend the server or integrate it with other applications (i.e., a
customer care front end).

Topics

• System Architecture, page 12

• Execution Flow, page 14

• Database Schema, page 16

• Device Management State, page 18
11

DM SERVER DEVELOPER�S GUIDE
System Architecture

The system architecture of the Funambol DM Server is shown below. The transport and the
business logic (protocol handling) are separated in two distinct blocks and handled
respectively by a web application running in a J2EE web container and by an Enterprise Java
Bean running in a J2EE EJB container.

The web module implements the transport protocol (being OMA DM messages transported
over HTTP). The EJB layer contains the real device management server implementation,
which is built of many components. This represents the management engine of the system.
Both the web layer and engine components are described in further details in the following
sections.

Funambol DM Server Architecture

The Funambol DM Server architecture is layered and modular, as shown below:

Web AS

Sync4jServlet ManagementBean
12

DM SERVER DEVELOPER�S GUIDE
These layers represent groups of functionality with well-defined boundaries and
communication interfaces.

Layer Description

Transport Layer The medium through which client messages reach the system. The
current implementation of the Funambol DM Server implements
the HTTP transport protocol and binding as defined by the HTTP
binding OMA DM specification. The system is designed so that
other transport protocols can be added in the future.

Protocol Layer Responsible for the interpretation and handling of the SyncML
protocol. It works at both representation and protocol levels. This
layer is designed so that other device management protocols can
be added in the future.

Server Layer The Funambol DM Server implementation. It is a J2EE-based
application that can be deployed on any J2EE compliant
application server.

Application Layer Implements the way the Funambol DM Server interacts with end
user DM applications, such as the CRM applications used by
customer support personnel. It is not a fully implemented layer,
but more a framework used to extend the server in order to meet
any application-specific needs.

Framework Implements and provides services and abstractions used by the
different layers to implement the component they are built of. The
most important services provided by the framework are the
following:
• Core SyncML representation and protocol

• Configuration framework

• Logging framework

• SyncML DM engine framework

• Security framework

• Commonly used utilities
13

DM SERVER DEVELOPER�S GUIDE
Execution Flow

The execution flow of an OMA DM request is shown below:

The green blocks are external systems or applications. They interact with the Funambol DM
Server directly through its EJB interface or indirectly through a web services interface (not
available yet). The Notification Sender is used by the Funambol DM Server to send PKG 0
notifications to the devices (for server initiated management sessions).

The light blue and violet boxes represent the mainFunambol DM Server building blocks and
are part of the core implementation. The orange blocks are components added and
customized by developers to meet the end-user management application needs.

An OMA DM session can be started from the device or solicited by the server; when started
from the device, the execution flow of the message is slightly shorter than when started by the
server. When the server initiates the DM session, the execution flow is the following.

1. The management application (e.g., a customer support management console) starts a new
“management operation” for a specific device. This results in an interaction between the
external application and the Funambol DM Server, e.g., via a call to a web service
deployed into the server.

2. The web service invokes the corresponding service of the DM Sever EJB interface.

3. The EJB wrapper forwards the call to the management engine, which is the core of the
Funambol DM Server.

Notification
Sender

Device ManagerDevice ManagerManagement
Processor

DM Server

Management
Console

Input Pipeline

Output Pipeline

Web
Layer

WS
interface

Application

EJB
Interface

Management
Engine

1

2

3

45

HTTP
Handler

6

7

8

9

11

10
14

DM SERVER DEVELOPER�S GUIDE
4. The management engine builds the notification message (OMA DM PKG 0) and tells the
Notification Sender to push it to the phone; note in the picture that the management
engine is a logical component, which in reality is built of many other blocks.

5. The device receives the notification message; it starts a new OMA DM session sending the
OMA DM PKG 1 to the server; the DM message is first received by the HTTP listener and
processed by the Funambol DM Server's HTTP handler.

6. The HTTP handler is now ready to open the DM session on the Funambol DM Server and
start the real message processing; as show in the figure, the incoming message passes
through the input pipeline before getting to the management engine.

7. The management engine processes the request, including authentication and session
management.

8. To build the management commands to send to the client, the management engine selects
and calls the appropriate management processor for the management operation requested
in Step 1.

9. The management actions to be performed are ready to be sent to the client; the outgoing
message passes through the output pipeline for post-processing.

10. The return message is translated into an OMA DM message.

11. The return message is returned to the device.

The processing now starts again at Step 5 with a new message from the client; in this case, all
commands and results exchanged between client and server belong to the same session until
the server stops sending commands. Note that in the case of an unsolicited new DM session,
the client starts at Step 5 without receiving a notification message.
15

DM SERVER DEVELOPER�S GUIDE
Database Schema

The internal database schema used by the Funambol DM Server is shown below.

Table Name Description

fnbl_user Stores basic user information, such as username, first and last
name, and email. The internal_user field represents an applicative
user, not a real person, but an application. This field is currently
not used, but it was added for future use.

fnbl_role Stores the list of the available roles (for future use)

fnbl_user_role Stores the associations between the users and the roles (for future
use).
16

DM SERVER DEVELOPER�S GUIDE
fnbl_device Stores basic information about a device:
• device id

• description

• device type (e.g., Nokia 7650)

• digest (the MD5(user:password)) of the user this device will be
associated with

• client_nonce (the nonce that the client will use to calculate the
next session's digest)

• server_nonce (the nonce that the server will use to calculate the
next session's digest)

• server_password (the server password)

fnbl_principal A principal is an association between a user and a device. This
allows more generic scenarios where a user can use many devices
and/or a device can be used by many users. The current DM
implementation allows an 1:1 association between a user and a
device.

fnbl_dm_state Stores data on pending operations to be performed:
• id: record id

• device: device id

• mssid: session id

• state: operation status. One of the following: 'N' = notified; 'P' =
management session in progress; 'E' = error.

• start_ts: timestamp of the beginning of the session

• end_ts: timestamp of the end of the session

• operation: operation to be performed in this session

• info: application-specific details

fnbl_id Used to create unique ids in a database-independent manner.
There can be many counters, each identified by its own
namespace.

Table Name Description
17

DM SERVER DEVELOPER�S GUIDE
Device Management State

The management process is usually performed in multiple phases which are not necessarily
close in time or even bound to the same OMA DM session. The state of the overall
management process is partially the responsibility of the management server and partially
dependent on the specific management process or application. The DM Server defines and
handles the following state information for a management process:

• sid - the session id notified by the management server to the client.

• deviceId - the unique identifier of the device under management

• operation - the requested operation (application-specific)

• state - the operation state (management server/application-specific)

• start_ts - timestamp of the beginning of the session

• end_ts - timestamp of the end of the session

• info - additional application-specific details

The state diagram of a management session is illustrated belolw. The NOT EXISTING state is
not a real session state, it simply represents the absence of a session. If a device connects to the
server and there is no session associated with it, no management operations are executed.

A new session is automatically created by the engine when a device is notified to start a
server-initiated management session. In this case, the session is created with the state
NOTIFIED ('N'). When the device starts the management session, the state moves to
MANAGEMENT IN PROGRESS ('P'). During the management session, in which many
device-server interactions may take place, the session stays in state P. When the session
successfully completes, the state moves to COMPLETED ('C'). If an unrecoverable error
occurs, the state moves to ERROR ('E').
18

DM SERVER DEVELOPER�S GUIDE
Note that the scenario above requires that the device is notified to start the management
session. When a management application needs to support a device-initiated session, the
session must be created in state P. This is accomplished by creating a row in the
FNBL_DM_STATE table, as follows :

For details, see “Database Schema” on page 16.

id device mssid state start_ts end_ts operation info

row_id device_id NULL ‘P’ NULL NULL operation to
perform

application
specific value
19

DM SERVER DEVELOPER�S GUIDE
20

DM SERVER DEVELOPER�S GUIDE
Chapter 3 Server Configuration

Topics

• Overview, page 22

• Configuring a Standard Component, page 26

• Configuring a Custom Component, page 27

• Getting a Configured Instance, page 29

• Logging, page 30
21

DM SERVER DEVELOPER�S GUIDE
Overview

The Funambol DM Server provides a framework for implementing many kinds of device
management services. You can extend existing modules or add new modules. You configure
the server using the following:

• Funambol.properties

• Server JavaBeans

Configuration files are stored in a configuration path (or configpath) containing a tree of
subdirectories that is handled in the same way as the JVM classpath. The configuration path is
specified by the funambol.dm.home system property, to which config is appended. For
example, if the system property is set to /opt/funambol, the base directory of configuration
files is /opt/funambol/config/.

Funambol.properties

This is the primary configuration file. It is located directly under the configpath and defines
the following properties:

Property Description Default

server.uri The server URI that identifies the
server.

http://localhost:8080/
funambol/dm

server.id Server identifier. funambol

syncml.dtdversion The supported SyncML DTD
version

1.1

engine.
manufacturer

The manufacturer used in server
capabilities.

funambol

engine.modelname The model name used in server
capabilities.

DM Server

engine.oem The oem used in server capabilities. -

engine.firmware
version

The firmware version used in server
capabilities.

-

engine.software
version

The software version used in server
capabilities.

3.0.x

engine.hardware
version

The hardware version used in server
capabilities.

engine.deviceid The device identifier used in server
capabilities.

funambol

engine.devicetype The device type used in server
capabilities.
22

DM SERVER DEVELOPER�S GUIDE
Server JavaBeans

With the exception of Funambol.properties, all other Funambol DM Server components are
configured as server JavaBeans. Server JavaBeans are JavaBeans used server-side. A bean
configuration is stored as the serialized form of a bean instance; a bean can be instantiated,
configured and serialized to persist its configuration. Later, the bean can be deserialized in a
properly configured instance.

It would inconvenient, however, if a bean had to be instantiated, configured and serialized
every time its configuration changes. To avoid this, the Funambol DM Server uses the
standard Java facility to serialize objects into XML (and to deserialize them from XML) in the
form of the java.beans.XMLEncoder and java.beans.XMLDecoder classes. Configuration
files created with these classes are easy to work without a dedicated GUI – they can be created,
read, and modified with a text editor. An additional advantage is that server JavaBeans do not
implement java.io.Serializable because XMLEncoder does not require it.

engine.strategy The server bean (see the next
section) representing a
com.funambol.framework.engine.
SyncStrategy object. The given value
is searched for in the configuration
path first as the name of a serialized
object. If no serialized object is
found, the value is considered the
name of a class and a new instance
is created.

com.funambol.server.engine.
Sync4jStrategy

engine.store The server bean representing the
persistent store manager (see section
on the persistent store architecture).

com/funambol/server/
store/PersistentStore
Manager.xml

engine.handler The server bean representing the
session handler.

com.funambol.server.
session.Management
SessionHandler

engine.pipeline The server bean representing the
pipeline manager (see section on the
Message processing pipeline).

com/funambol/engine/
pipeline/PipelineManager.
xml

security.officer The server bean representing the
security officer.

com.funambol.framework.
security.DBOfficer

user.manager The server bean representing the
User Manager.

com/funambol/server/
admin/DBUserManager.xml

server.dm.selector The server bean representing the
processor selector (see section on the
Processor Selector).

com/funambol/server/dm/
OperationProcessorSelector.
xml

minXMLMaxMsg
Size

The minimum MaxMsgSize allowed
for XML messages

1500

minWBXMLMax
MsgSize

The minimum MaxMsgSize allowed
for WBXML messages

1000

Property Description Default
23

DM SERVER DEVELOPER�S GUIDE
The following is an example of a server JavaBean:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.1_01" class="java.beans.XMLDecoder">
 <object class="com.funambol.framework.server.store.PersistentStoreManager">
 <void property="jndiDataSourceName">
 <string>java:/jdbc/fnblds</string>
 </void>
 <void property="stores">
 <array class="java.lang.String" length="2">
 <void index="0">
 <string>com.funambol.server.store.SyncPersistentStore</string>
 </void>
 <void index="1">
 <string>com.funambol.server.store.EnginePersistentStore</string>
 </void>
 </array>
 </void>
 </object>
</java>

For server JavaBean handling, Funambol provides the factory class
com.funambol.framework.tools.beans.BeanFactory, which in turn uses a customized
class loader that handles configuration files in the configpath (class loaders normally handle
classes in the class path).

The XML syntax uses the following conventions:

• Each element represents a method call.

• The "object" tag denotes an expression whose value is to be used as the argument to the
enclosing element.

• The "void" tag denotes a statement which will be executed, but whose result will not be
used as an argument to the enclosing method.

• Elements which contain elements use those elements as arguments, unless they have the
tag: "void".

• The name of the method is denoted by the "method" attribute.

• XML's standard "id" and "idref" attributes are used to make references to previous
expressions - so as to deal with circularities in the object graph.

• The "class" attribute is used to specify the target of a static method or constructor
explicitly; its value being the fully qualified name of the class.

• Elements with the "void" tag are executed using the outer context as the target if no target
is defined by a "class" attribute.
24

DM SERVER DEVELOPER�S GUIDE
• Java's String class is treated specially and is written <string>Hello, world</string> where
the characters of the string are converted to bytes using the UTF-8 character encoding.

Although all object graphs may be written using just these three tags, the following definitions
are included so that common data structures can be expressed more concisely:

• The default method name is "new".

• A reference to a java class is written in the form <class>javax.swing.JButton</class>.

• Instances of the wrapper classes for Java's primitive types are written using the name of
the primitive type as the tag. For example, an instance of the Integer class could be written:
<int>123</int>. Java's reflection is internally used for the conversion between Java's
primitive types and their associated "wrapper classes".

• In an element representing a nullary method whose name starts with "get", the "method"
attribute is replaced with a "property" attribute whose value is given by removing the "get"
prefix and decapitalizing the result.

• In an element representing a monadic method whose name starts with "set", the "method"
attribute is replaced with a "property" attribute whose value is given by removing the "set"
prefix and decapitalizing the result.

• In an element representing a method named "get" taking one integer argument, the
"method" attribute is replaced with an "index" attribute whose value the value of the first
argument.

• In an element representing a method named "set" taking two arguments, the first of which
is an integer, the "method" attribute is replaced with an "index" attribute whose value the
value of the first argument.

• A reference to an array is written using the "array" tag. The "class" and "length" attributes
specify the sub-type of the array and its length respectively.

Lazy Initialization

When a bean is deserialized from its XML form, the classloader that loads the serialization file
first calls the bean class's empty constructor, then it sets the values of the bean properties using
the setXXX() methods. However, some classes need additional work to properly initialize; that
work has to be done with meaningful properties values (in other words, after the setXXX()
methods are called). To support this lazy initialization approach, those classes can implement
com.funambol.framework.tools.beans.LayInitBean, which defines a separate init()
method. When the DM Server loads a LazyInitBean, after the bean instantiation (or
deserialization), it calls its init() method, giving the bean the opportunity to complete its
initialization.
25

DM SERVER DEVELOPER�S GUIDE
Configuring a Standard Component

Changing a configuration bean is as easy as editing a text file. Let's take as an example the
configuration file for the NotificationSender component. The full path of the configuration
bean is com/funambol/server/engine/dm/NotificationSender.xml (this path is relative
to the configpath) and its contents are shown below:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2_01" class="java.beans.XMLDecoder">
 <object class="com.funambol.dm.engine.MySender">
 <void property="sendingUrl">
 <string>http://theserver.com/sms/send</string>
 </void>
 </object>
</java>

The object element specifies the Java class to be instantiated, and the property element sets the
corresponding instance property. To change the sending URL (suppose the sender has a HTTP
based interface) of the service used to send notifications, you simply edit and save the file. The
next time this bean is used, the new configuration value will be picked up.
26

DM SERVER DEVELOPER�S GUIDE
Configuring a Custom Component

Any Java object can be configured with this technique, from a simple Java class to a very
complex Java object tree. For example, the following configures a String object:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2" class="java.beans.XMLDecoder">
 <string>Hello world</string>
</java>

For a more interesting example, suppose we have a “device inventory” component that can
store the properties of a device, and when queried, retrieve the device’s capabilities. The class
could be defined as follows:

Example:

public class DeviceInventory {
 private String s1 = "s1";
 public String s2 = "s2";
 private HashMap capabilities = new HashMap();

 public DeviceInventory() {}

 public void setCapabilities(String model, Capabilities caps) {
 capabilities.put(model, caps);
 }

 public int getMaxMsgSize(String model) {
 return ((Capabilities)capabilities.get(model)).getMaxMsgSize();
 }

 public int getMaxObjSize(String model) {
 return ((Capabilities)capabilities.get(model)).getMaxObjSize();
 }

 public boolean supportNumberOfChanges(String model) {
 return
((Capabilities)capabilities.get(model)).getSupportNumberOfChanges();
 }

 public boolean supportLargeObjects(String model) {
 return
((Capabilities)capabilities.get(model)).getSupportLargeObjects();
 }

 public void setCapabilities(HashMap capabilities) {
 this.capabilities = capabilities;
 }

 public HashMap getCapabilities() {
 return capabilities;
 }
}

27

DM SERVER DEVELOPER�S GUIDE
The configuration file for such a class could be as folllows:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2_04" class="java.beans.XMLDecoder">
 <object class="com.funambol.dm.examples.DeviceInventory">
 <void property="capabilities">
 <void method="put">
 <string>siemens-s55</string>
 <object class="com.funambol.dm.examples.Capabilities">
 <void property="maxMsgSize">
 <int>2700</int>
 </void>
 <void property="supportLargeObjects">
 <boolean>true</boolean>
 </void>
 <void property="supportNumberOfChanges">
 <boolean>true</boolean>
 </void>
 </object>
 </void>
 <void method="put">
 <string>nokia-7650</string>
 <object class="com.funambol.dm.examples.Capabilities">
 <void property="maxMsgSize">
 <int>5000</int>
 </void>
 <void property="maxObjSize">
 <int>10000</int>
 </void>
 <void property="supportLargeObjects">
 <boolean>true</boolean>
 </void>
 <void property="supportNumberOfChanges">
 <boolean>true</boolean>
 </void>
 </object>
 </void>
 </void>
 </object>
</java>
28

DM SERVER DEVELOPER�S GUIDE
Getting a Configured Instance

Configuration beans are accessed through the singleton object
com.funambol.framework.config.Configuration. For example, to instantiate a configured
DeviceInventory instance, use the following code:

Example:

Configuration c = Configuration.getConfiguration();

DeviceInventory inventory = c.getBeanInstanceByName("com/funambol/server/dm/
DeviceInventory.xml");

Tips and Tricks

You do not need to manually write a configuration file from scratch. To write a bean instance
for the first time, use the saveBeanInstance() method from
com.funambol.framework.tools.beans.BeanFactory to save a configured instance into a
file, as shown below:

Example:

import com.funambol.dm.examples.DeviceInventory;
import com.funambol.dm.examples.Capabilities;
import com.funambol.framework.tools.beans.BeanFactory;

DeviceInventory inventory = new DeviceInventory();

Capabilities nokia = new Capabilities();
Capabilities siemens = new Capabilities();

nokia.setMaxMsgSize(5000);
nokia.setMaxObjSize(10000);
nokia.setSupportNumberOfChanges(true);
nokia.setSupportLargeObjects(true);

siemens.setMaxMsgSize(2700);
siemens.setMaxObjSize(0);
siemens.setSupportNumberOfChanges(true);
siemens.setSupportLargeObjects(false);

inventory.setCapabilities("nokia-7650", nokia);
inventory.setCapabilities("siemens-s55", siemens);

BeanFactory.saveBeanInstance(inventory, new java.io.File("inventory.xml"));
29

DM SERVER DEVELOPER�S GUIDE
Logging

The Funambol DM Server uses the standard Java logging APIs introduced with the JDK 1.4.x.
The output produced by the logging system can be configured in term of content and writing
media (the system output console, the file system, a database, etc.). To configure the JDK
logging system, edit the file {funambol.dm.home}/lib/logging/common/
logging.properties.

The Funambol DM Server uses many logging namespaces allowing you to selectively enable/
disable the logging of a specific module. The namespaces are as follows:

To enable the maximum of verbosity for a given module, the configuration file
logging.property should have the following line (other loggers settings under funambol
should be commented out):

funambol.level=ALL

Name Description

funambol The default logging namespace, used when no other
namespace is specified.

funambol.dm DM logging information.

funambol.dm.bootstrap DM Bootstrap logging information.

funambol.dm.notification DM Notification logging information.

funambol.engine Synchronization engine logging information.

funambol.engine.pipeline Pipeline logging information.

funambol.handler Session handling logging information.

funambol.framework.engine Framework engine logging information.

funambol.transport.http Transport logging information.
30

DM SERVER DEVELOPER�S GUIDE
Adding Logging for Custom Components

TheFunambol DM Server logging feature can be use by any Funambol DM Server class or
extension. It is even possible to create your own logging namespace, so that you can isolate the
logging information produced by your components from all other logging.

The java.util.logging.Logger used for logging is acquired with the following sample code:

Example:

Logger log = FunambolLogger.getLogger(name);

where name is one of the standard name defined in
com.funambol.framework.logging.FunambolLoggerName or your own logger name. Note
that “funambol” will be prepended to the given name, so that all Funambol DM Server
loggers will be hierarchically grouped under the funambol name space. This allows all
Funambol DM Server logging activity to be enabled or disabled by changing a single line in
the logging.properties file.
31

DM SERVER DEVELOPER�S GUIDE
32

DM SERVER DEVELOPER�S GUIDE
Chapter 4 Customizing Message Processing

This section explains how to extend the Funambol DM Server by customizing the processing
of incoming and outgoing messages.

Topics

• Overview, page 34

• Preprocessing an Incoming Message, page 37

• Postprocessing an Outgoing Message, page 39
33

DM SERVER DEVELOPER�S GUIDE
Overview

The OMA DM protocol is an XML-based protocol. This means that each OMA DM message is
an XML document.

When a OMA DM message reach the Funambol DM Server, it passes through both XML
transformations and message transformations. The former works on the message in its XML
representation, the latter on a Java representation of the message.

In order to save bandwith and processing power, OMA DM messages can be also WBXML
encoded. No matter how the message is coded, its content is first delivered to a SyncAdapter
component by the transport layer (). The SyncAdapter first translates the message in XML if it
was WBXML encoded and then the XML message is reduced to a “canonical” form in order to
get rid of device specific singularities. XML canonization is the XML level transformation.

Even when in the canonical XML form, the message is still hard to manipulate, since XML
needs to be parsed. Plus, each component that needs to access any of the OMA DM message
elements would have to parse the XML again, with a big impact on performance. For these
reasons, the canonic XML message is translated into an object tree that represents exactly the
message.

For example, the following DM PKG #1 message:

Example:

<SyncML xmlns='SYNCML:SYNCML1.1'>

 <SyncHdr>
 <VerDTD>1.1</VerDTD>
 <VerProto>DM/1.1</VerProto>
 <SessionID>5b</SessionID>
 <MsgID>1</MsgID>
 <Target>
 <LocURI>http://localhost:8080/funambol/dm</LocURI>
 </Target>
 <Source>
 <LocURI>FunambolTest</LocURI>
 </Source>

 <Cred>
 <Meta>
 <Format xmlns='syncml:metinf'>b64</Format>
 <Type xmlns='syncml:metinf'>syncml:auth-basic</Type>
34

DM SERVER DEVELOPER�S GUIDE
 </Meta>
 <Data>c3luYzRqOnN5bmM0ag==</Data>
 </Cred>
 <Meta>
 <MaxMsgSize xmlns='syncml:metinf'>20000</MaxMsgSize>
 </Meta>
 </SyncHdr>

 <SyncBody>
 <Alert>
 <CmdID>1</CmdID>
 <Data>1201</Data>
 </Alert>
 <Replace>
 <CmdID>2</CmdID>
 <Item>
 <Source>
 <LocURI>./DevInfo/Lang</LocURI>
 </Source>
 <Data>en-us</Data>
 </Item>

 [...]

 <Item>
 <Source>
 <LocURI>./DevInfo/DevId</LocURI>
 </Source>
 <Data>Funambol</Data>
 </Item>
 </Replace>
 <Final/>
 </SyncBody>
</SyncML>

This message will be translated into the object hierarchy shown below.
35

DM SERVER DEVELOPER�S GUIDE
After being translated into an object tree, an incoming message passes through the input
message processing pipeline, before getting to the Management Engine. This gives the
opportunity to further processing the message when it is in a manageable representation. In a
similar way, a response message going out from the Management Engine, passes through the
output message processing pipeline before getting translated to its XML (and then WBXML)
representation.

The input and the output pipelines are completely customizable, so that custom message pre-
and postprocessing can be easily added to the system.

Input and output message processing components are also referred to as “synclets.”
36

DM SERVER DEVELOPER�S GUIDE
Preprocessing an Incoming Message

To preprocess an incoming message, you create and input processor component and configure
the Pipeline Manger accordingly.

Creating an Input Synclet

An input synclet is a class that implements the
com.funambol.framework.engine.pipeline.InputMessageProcessor interface. This
interface defines a single method,

void preProcessMessage(MessageProcessingContext context, SyncML msg)

where context is a request-scoped parameter that is shared by all synclets (both input and
output) involved in the message processing, and msg is the object tree representing the DM
message.

The following is an example of an input synclet.

Example:

public class MotorolaV500
implements InputMessageProcessor {
 // -- InputMessageProcessor

 public void preProcessMessage(MessageProcessingContext processingContext,
 SyncML message)
 throws Sync4jException {
 List items, validItems;
 List results = message.getSyncBody().getCommands();
 Item item;

 AbstractCommand c;
 Results r;

 Iterator i = results.iterator();

 while (i.hasNext()) {
 c = (AbstractCommand)i.next();
 if (c instanceof Results) {
 r = (Results)c;
 validItems = new ArrayList();
 items = r.getItems();

 Iterator j = items.iterator();

 while (j.hasNext()) {
 item = (Item)j.next();
 if (item.getSource() != null) {
 validItems.add(item);
 }
 }
 List oldItems = r.getItems();
 oldItems.clear();
 oldItems.addAll(validItems);
 }
 }
37

DM SERVER DEVELOPER�S GUIDE
 }
}

The scope of the synclet is to remove all items from the incoming message that do not have a
Source element. For example, the Motorola V500 phone sometimes sends erroneous
 <Item></Item> elements that are not allowed in SyncML. With the above code, those Items
will be removed before the message is processed by the management engine.

Configuring an Input Synclet

You configure the input synclet by telling the Pipeline Manager to insert the new synclet in the
input pipeline, as shown in the following server-side JavaBean:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.0" class="java.beans.XMLDecoder">
 <object class="com.funambol.framework.engine.pipeline.PipelineManager">
 <void property="inputProcessors">
 <array class=
 "com.funambol.framework.engine.pipeline.InputMessageProcessor"
 length="1">
 <void index="0">
 <object class="com.funambol.dm.synclet.MotorolaV500"/>
 </void>
 </array>
 </void>
 <void property="outputProcessors">
 <array class=
 "com.funambol.framework.engine.pipeline.OutputMessageProcessor"
 length="0"/>
 </void>
 </object>
</java>
38

DM SERVER DEVELOPER�S GUIDE
Postprocessing an Outgoing Message

To postprocess an outgoing message, you create an output processor component and
configure the Pipeline Manger accordingly.

Creating an Output Synclet

An output synclet is a class that implements the
com.funambol.framework.engine.pipeline.OutputMessageProcessor interface. This
interface defines a single method,

void postProcessMessage(MessageProcessingContext context, SyncML msg)

The concepts behind output message processing are the same as with input processing.

An example of an output synclet is the com.funambol.server.engine.RespURISynclet
class. The scope of this synclet is to insert the RespURI element into the outgoing message;
this element tells the client the URL to which the next message is sent. The code is as follows:

Example:

public class RespURISynclet
implements OutputMessageProcessor {
 // -- Constants
 public static final String PARAM_SESSION_ID = "sid";
 // --- OutputMessageProcessor
 public void postProcessMessage(MessageProcessingContext
 processingContext,
 SyncML message)
 throws Sync4jException {
 Configuration config = Configuration.getConfiguration();
 String sessionId = (String)processingContext.getProperty(
 processingContext.PROPERTY_SESSIONID);
 if (sessionId == null) {
 if (log.isLoggable(Level.INFO)) {
 log.info(processingContext.PROPERTY_SESSIONID + " is null!
Synclet ignored");
 }
 return;
 }

 String serverUri =
 config.getStringValue(ConfigurationConstants.CFG_SERVER_URI);

 message.getSyncHdr().setRespURI(
 serverUri +
 '?' +
 PARAM_SESSION_ID +
 '=' +
 sessionId
);
 }
}

39

DM SERVER DEVELOPER�S GUIDE
Configuring an Output Synclet

You configure the output synclet by telling the Pipeline Manager to insert the new synclet in
the output pipeline, as shown in the following server-side JavaBean (using the same
configuration for the input pipeline as in the preceding section on the input synclet).

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.0" class="java.beans.XMLDecoder">
 <object class="com.funambol.framework.engine.pipeline.PipelineManager">
 <void property="inputProcessors">
 <array class=
 "com.funambol.framework.engine.pipeline.InputMessageProcessor"
 length="1">
 <void index="0">
 <object class="com.funambol.dm.synclet.MotorolaV500"/>
 </void>
 </array>
 </void>
 <void property="outputProcessors">
 <array class=
 "com.funambol.framework.engine.pipeline.OutputMessageProcessor"
 length="1">
 <void index="0">
 <object class="com.funambol.server.engine.RespURISynclet"/>
 </void>
 </array>
 </void>
 </object>
</java>
40

DM SERVER DEVELOPER�S GUIDE
Chapter 5 Implementing Management Operations

This chapter describes extending the Funambol DM Server by developing custom
management operations.

Topics

• Overview, page 42

• Creating a Processor Selector, page 43

• Creating a Management Processor, page 49

• Using Scripting Management Processors, page 53
41

DM SERVER DEVELOPER�S GUIDE
Overview

A management operation is a sequence of management commands that the server sends to the
device in order to perform a higher level task. For example, in the case of the client settings
provisioning, a “setBrowserSettings” operation is translated into a sequence of Get/Replace
commands that will result in setting the phone browser configuration.

The Management Engine is the core component that handles device management sessions and
then operations. It implements the protocol requirements but delegates to external
management processors the accomplishment of the management actions to perform during a
management session.

When a client starts a new management session, the Management Engine selects the
Management Processor to use by the means of the Manager Selector. The selector will make its
choice based on the content of the first device information sent by the client in the SyncML
DM PKG 1.

The architecture of the management engine is shown below.

The orange colored components are those that can be customized. In this section we will focus
on management selector and processor developments.
42

DM SERVER DEVELOPER�S GUIDE
Creating a Processor Selector

The Processor Selector component is represented by an implementation of the interface
com.funambol.framework.server.dm.ProcessorSelector, which is defined by the
following method:

Two simple Processor Selector implementations are provided out of the box:
DeviceIdProcessorSelector, which associates management processors to sets of device
identifiers; and OperationProcessorSelector, which associates a management processor to
the operation stored in the device management state.

DeviceIdProcessorSelector

This is represented by the class com.funambol.server.dm.DeviceIdProcessorSelector. It
is configured with an array of associations <regexp>-<management_processor>, where
<regexp> is a regular expression interpreted by the JDK package java.util.regex and used
to match the device id; <management_processor> is a server side bean configuration path. If
no device id matches any of the given regexp, a default processor will be returned; otherwise
the first match is returned.

An example of a DeviceIdProcessorSelector configuration file is as follows:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2" class="java.beans.XMLDecoder">
 <object class="com.funambol.server.dm.DeviceIdProcessorSelector">
 <void property="defaultProcessor">
 <string>com/funambol/server/dm/manager/DefaultProcessor.xml</string>
 </void>
 <void property="patterns">
 <array class="com.funambol.framework.tools.PatternPair" length="2">
 <void index="0">
 <object class="com.funambol.framework.tools.PatternPair">
 <void property="manager">
 <string>com/funambol/server/dm/manager/DeviceDetailProcessor.xml
 </string>
 </void>
 <void property="pattern">
 <string>IMEI:333*</string>
 </void>
 </object>
 </void>
 <void index="1">
 <object class="com.funambol.framework.tools.PatternPair">

Method Description

ManagementProcessor getProcessor(
 DeviceDMSession dms,
 DevInfo devInfo
)

Called by the Management Engine at the
beginning of a management session to determine
the manager that must handle the session.
43

DM SERVER DEVELOPER�S GUIDE
 <void property="manager">
 <string>com/funambol/server/dm/manager/SettingsProcessor.xml</string>
 </void>
 <void property="pattern">
 <string>IMEI:3335{3}1*</string>
 </void>
 </object>
 </void>
 </array>
 </void>
 </object>
</java>

The DeviceIdProcessorSelector class is a good example of how to develop a selector. A
simplified version of the source code is shown below.

Example:

public class DeviceIdProcessorSelector
implements ProcessorSelector, LazyInitBean {
 // --- Private data
 private Pattern[] regexps;
 // --- Properties
 /**
 * The pattern-pairs used to metch device ids
 */
 private PatternPair[] patterns;

 /**
 * Sets patterns
 *
 * @param patterns the new patterns
 */
 public void setPatterns(PatternPair[] patterns) {
 this.patterns = patterns;
 }

 /**
 * Gets patterns
 *
 * @return the patterns property
 */
 public PatternPair[] getPatterns() {
 return patterns;
 }

 /**
 * The default processor server bean name
 */
 private String defaultProcessor;

 /**
 * Sets defaultProcessor
 *
 * @param defaultProcessor the new default processor name
 */
 public void setDefaultProcessor(String defaultProcessor) {
44

DM SERVER DEVELOPER�S GUIDE
 this.defaultProcessor = defaultProcessor;
 }

 /**
 * Returns defaultProcessor
 *
 * @return defaultProcessor property value
 */
 public String getDefaultProcessor() {
 return this.defaultProcessor;
 }

 // -- ProcessorSelector

 /**
 * @param sessionId the management session id: ignored
 * @param devInfo the device info
 *
 * @see ProcessorSelector
 */
 public ManagementProcessor getProcessor(DeviceDMState dms, DevInfo
devInfo) {
 String beanName = defaultProcessor;

 String device = devInfo.getDevId();

 Matcher m;
 for (int i=0; i<regexps.length; ++i) {
 m = regexps[i].matcher(device);
 if (m.matches()) {
 beanName = patterns[i].processor;
 break;
 }
 }

 ManagementProcessor processor = null;
 try {
 processor = (ManagementProcessor)

Configuration.getConfiguration().getBeanInstanceByName(beanName);
 } catch (Exception e) {
 // error handling
 }

 return processor;
 }

 // --- LazyInitBean

 /**
 * During bean initialization all the given regular expressions are
compiled.
 * If there are errors, a BeanInitializationException is thrown.
 *
 * @throws BeanInitializationException if one of the patterns cannot be
compiled
 */
 public void init() throws BeanInitializationException {
 if ((patterns == null) || (patterns.length == 0)) {
 regexps = new Pattern[0];
 return;
 }
45

DM SERVER DEVELOPER�S GUIDE
 regexps = new Pattern[patterns.length];
 for (int i=0; i<patterns.length; ++i) {
 try {
 regexps[i] = Pattern.compile(patterns[i].pattern);
 } catch (Exception e) {
 if (log.isLoggable(Level.SEVERE)) {
 log.severe("Error compiling pattern '"
 + patterns[i].pattern
 + "': "
 + e.getMessage()
);
 }
 throw new BeanInitializationException(
 "Error compiling pattern '" + patterns[i].pattern + "'", e
);
 }
 }
 }
}

Most of the methods are getters and setters for the properties that we want to be able to
configure through the XML document seen above. The core of the class is the getSelector()
method, which tries a match between the device id (extracted from the DevInfo object) and the
given regular expressions. If a match is found, the corresponding processor name is
considered a server side JavaBean and then is instantiated by the means of the Configuration
object.

Note also the use of lazy initialization: init() is called after the instance is created and all
properties have been set. It gives DeviceIdProcessorSelector the opportunity to compile
the regular expressions specified in the configuration file as strings.

OperationProcessorSelector

This is implemented by the com.funambol.server.engine.dm.OperationProcessor
Selector class. This selector is used as a dispatcher – it reads the operation to perform on a
given device and uses that operation to build the name of the processor that should process
the request. This processor is configured with an error processor name (to be used if the device
state is 'E' - error) and a default processor name (to be used when no other processors could be
selected).

The management processor name is constructed as follows:

prefix + operation + suffix
46

DM SERVER DEVELOPER�S GUIDE
Where prefix and suffix are configurable values and operation is read from the device
management state.

The algorithm used to select the correct management state for the device currently under
management is represented in the above figure. If the device management session is in an
error state, the error processor is selected. If instead, the device management session is in any
other state, the operation field, if specified, is used to select the right processor. Otherwise, the
default selector will be used.

An example of an OperationProcessorSelector configuration file is as follows:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2" class="java.beans.XMLDecoder">
 <object class="com.funambol.server.dm.OperationProcessorSelector">
 <void property="defaultProcessor">
 <string>com/funambol/server/dm/processor/DefaultProcessor.xml</string>
 </void>
 <void property="errorProcessor">
 <string>com/funambol/server/dm/processor/ErrorProcessor.xml</string>
 </void>
 <void property="namePrefix">
 <string>com/funambol/server/dm/processor/</string>
 </void>
 <void property="namePostfix">
 <string>.xml</string>
 </void>
 </object>
</java>

start

Is the device
in error state

?

Select error processor
YES

NO

Is operation
not empty

?

Select
prefix + operation +suffix

processor

YES

Select default processor
NO
47

DM SERVER DEVELOPER�S GUIDE
Configuring the Management Engine

To configure the management engine in order to use a specific processor selector, set the
server.dm.selector property in Funambol.properties.

Example:

server.dm.selector=com/funambol/server/dm/OperationProcessorSelector.xml
48

DM SERVER DEVELOPER�S GUIDE
Creating a Management Processor

A Management Processor is represented by the interface
com.funambol.framework.engine.dm.ManagementProcessor, which defines the following
methods:

Method Description

void beginSession(
String sessionId,
Principal principal,
int type,
DevInfo info,
DeviceDMState dmstate
)

Called when a management session is started for
the given principal. SessionId is the content of the
SessionID element of the OTA DM message; type
is the management session type (as specified in
the message Alert); info is the device info of the
device under management; dmstate is the device
management state, which represents a row of the
fnbl_dm_state table.

void endSession(int completionCode) Called when the management session is closed.
CompletionCode can be one of the following:
• STATE_COMPLETED

• STATE_ABORTED

• STATE_ERROR

These constants are defined in com.funambol.
framework.engine.dm.DeviceDMState.

ManagementOperation[]
getNextOperations()

Called to retrieve the next management
operations to be performed.

void setOperationResults
(ManagementOperationResult[]
results)

Called to set the results of a set of management
operations.

String getName() Name to uniquely identify the management
processor instance (each installed management
processor should have a different name in its
configuration file).
49

DM SERVER DEVELOPER�S GUIDE
ManagementOperation

This class represents an action that can be performed on a client management tree, such as a
Get, Replace, Exec and so on. It belongs to the com.funambol.framework.engine.dm
package.

ManagementOperation can represent one of the following actions (for additional information,
see the SyncML Device Management Representation Protocol, version 1.1.2):

• Add

• Atomic

• Copy

• Delete

• Exec

• Get

• Replace

• Sequence

To represent all possible operations, the hierarchy shown above is implemented; gray boxes
are abstract classes, white boxes are concrete implementations.
com.funambol.framework.engine.dm.ManagementOperation is an abstract class used for
abstraction purposes only.
50

DM SERVER DEVELOPER�S GUIDE
AggregatedManagementOperation adds the following methods:

TreeManagementOperation adds the following methods:

The Map can contain the following:

• A pair of name/value. The value can be null performing a Get or a Delete.

• A pair of name/TreeNode. A TreeNode has the following properties: name; format; type;
value.

ManagementOperationResult

When a management action is performed on the client, result status and possibly data are
returned. This information is wrapped into a
com.funambol.framework.engine.dm.ManagementOperationResult object. It represents a
combination of the following SyncML DM commands:

• Results

• Status

For details, refer to the SyncML Device Management Representation Protocol (see “Open Mobile
Alliance Documentation, Version 1.1.2” on page 72).

com.funambol.framework.engine.dm.ManagementOperation has the following methods:

Method Description

ManagementCommand[] getCommands() Returns the contained commands.

void
setCommands(ManagementCommand[]
commands)

Sets the commands aggregation.

Method Description

Map getNodes() Returns the management nodes affected by the
operation.

void setNodes(Map) Sets the management nodes affected by the
operation.

Method Description

int getStatusCode() Returns the corresponding status for the
operation.

void setStatusCode(int statusCode) Sets the operation status code.

Map getNodes() Returns the nodes property.

void setNodes(Map nodes) Sets the nodes property.
51

DM SERVER DEVELOPER�S GUIDE
Note that the nodes properties may contain results if the ManagementOperationStatus
regards a Get, or a set of nodes if it relates to a status of any command with items in it. For
example, if the following status is returned for a Delete command:

Example:

<Status>
 <CmdID>2</CmdID>
 <MsgRef>1</MsgRef>
 <CmdRef>1</CmdRef>
 <Cmd>Delete</Cmd>
 <TargetRef>./DevInfo/Lang</TargetRef>
 <Data>405</Data>
</Status>

The corresponding ManagementOperationResults would have:

Example:

statusCode: 405
command: Delete
nodes: {./DevInfo/Lang}

String getCommand() Returns the requested command, e.g., Add,
Replace, Delete and so on.

void setCommand(String command) Sets the requested command, e.g., Add, Replace,
Delete and so on.

Method Description
52

DM SERVER DEVELOPER�S GUIDE
Using Scripting Management Processors

The ability to implement your own management processing is a powerful tool for the
development of device management applications. However, the fact that you have to develop
a java class, compile it and embed it into the server may be somehow complicated. For this
reason, the Funambol DM Server provides out-of-the-box a concrete implementation of a
management processor that makes things much simpler.

The class com.funambol.server.engine.dm.ScriptManagementProcessor is a concrete
implementation of the ManagementProcessor interface that uses a scripting language to carry
on the required management logic. The scripting language supported by the current
Funambol DM Server implementation is BeanShell (see “Other Resources” on page 73).

The interpreter is created once in the ManagementProcessor's beginSession() method and is
initialized setting the scripting variable listed below and running the script specified in the
scriptFile property. Scripts are located under the config path com/funambol/server/dm/
processor/bsh.

The script specified in scriptFile must have five entry points: init(), getNextOperations(),
setOperationResults(), setGenericAlerts(), and endSession(). In order to keep the interaction
between ScriptManagementProcessor and the underlying scripting engine, input and
output values are passed by variables and not as input parameters and return values.

Scripting Variables

The following scripting variables are set in the interpreter environment:

Variable Description

processor The ManagementProcessor instance reference.

principal User principal to be managed.

devInfo Device info of the device to be managed.

managementType Value given by the device when starting the management
session (such as server or client initiated management session).

config The configuration object used to get server side JavaBeans
objects and other configuration parameters.

sessionId The current session identifier.

log The FunambolLogger to use for logging.

dmstate The DeviceDMState object associated with the session.
53

DM SERVER DEVELOPER�S GUIDE
The following scripting variables are input/output variables that the management script and
the management processor share:

Scripting Processor Example

A good example of how to develop a management processor script is represented by the
GetDeviceDetails script used to retrieve from a device some of its ./DevDetail parameters.
This script implements the GetDeviceDetails management operation. The code is the
following.

Example:

import java.util.*;
import java.util.logging.*;

import com.funambol.framework.core.*;
import com.funambol.framework.engine.dm.*;

// ---

final String DEVDETAIL_FWV = "./DevDetail/FwV";
final String DEVDETAIL_SWV = "./DevDetail/SwV";
final String DEVDETAIL_HWV = "./DevDetail/HwV";

// ---

String buildDetailString(HashMap nodes) {
 StringBuffer xml = new StringBuffer();

 xml.append("<DevDetail>")
 .append("<DevId>").append(devInfo.devId).append("</DevId>")
 .append("<Man>").append(devInfo.man).append("</Man>")
 .append("<Mod>").append(devInfo.mod).append("</Mod>")
 .append("<Lang>").append(devInfo.lang).append("</Lang>")
 .append("<FwV>").append(valueOf(nodes{DEVDETAIL_FWV})).append("</
FwV>")
 .append("<SwV>").append(valueOf(nodes{DEVDETAIL_SWV})).append("</
SwV>")
 .append("<HwV>").append(valueOf(nodes{DEVDETAIL_HWV})).append("</
HwV>")
 .append("</DevDetail>");

 return xml.toString();
}

// ---

void init() {
 log.info("Management script initialization");
 cont = true;
}

Variable Type Description

operations OUT ManagementOperation[] to be returned to the device
management engine.

results IN ManagementOperationResult[] returned by the device
management engine.
54

DM SERVER DEVELOPER�S GUIDE
void getNextOperations() {
 log.info("getNextOperations!");

 nodes = new HashMap();

 nodes.put(DEVDETAIL_FWV, "");
 nodes.put(DEVDETAIL_HWV, "");
 nodes.put(DEVDETAIL_SWV, "");

 o = new GetManagementOperation();
 o.nodes = nodes;
 if (cont) {
 operations = new ManagementOperation[] { o };
 cont = false;
 } else {
 operations = new ManagementOperation[0];
 }
}

void setOperationResults() {
 log.info("setOperationResults!");

 String fwv = null;
 String swv = null;
 String hwv = null;

 details = "";
 for (result: results) {
 if (log.isLoggable(Level.FINE)) {
 log.fine("status code: " + result.statusCode);
 log.fine("for: " + result.nodes);
 log.fine("command: " + result.command);
 }

 if (Get.COMMAND_NAME.equals(result.command)) {
 if (result.statusCode != 200) {
 if (log.isLoggable(Level.INFO)) {
 log.info("Received error code "
 + result.statusCode
 + " for nodes "
 + result.nodes
);
 log.info("Device: "
 + devInfo.devId
 + "; operation: GetDeviceDetail; sessionId: "
 + sessionId
);
 }
 } else {
 details = buildDetailString(result.nodes);
 }
 }
 }

 //
 // If any error occurred, error contains the error message
 //
 if (status.length() == 0) {
 status = "0:"; // it means ok!
 }
55

DM SERVER DEVELOPER�S GUIDE
 if (log.isLoggable(Level.FINE)) {
 log.fine("Device detail: " + details);
 }

 //
 // Reset the operation so that GetDeviceDetails won't be erroneously
 // called again
 //
 dmstate.operation = null;
 dmstate.state = DeviceDMState.STATE_COMPLETED;
}

void endSession(int code) {
 log.info("endSession with code: " + (char)code);
}

// ---

log.info("Global script!");

importCommands("com/funambol/server/dm/processor/bsh/command");

cont = true;

status = new StringBuffer();

The script looks very similar to a Java class without main(). As said before, when the
interpreter is first created, this script is evaluated; this makes the global part of the script (the
statements in the outermost scope) to be interpreted and executed. In the case above, the
utility commands are imported and some variables are initialized. Plus, remember that
ScriptManagementProcessor will have set the scripting variables in the table above.

Before calling any other method of the script, ScripManagementProcessor calls init(); this is a
good point where to put initialization code. Note that in our example there is only the
initialization of the cont variable. It is done again for two reasons:

• The global cont=true is done so that the variable cont will be created in the interpreter
global scope (it is like a declaration)

• The init() method could be called more then once (but always once per management
session) – for example when initialization is retried in the case of a failed authentication.

The management processor asks the script processors which commands to send to the client
calling getNextOperation(). In our case, we have to send a Get command for the three
parameters ./DevDetail/FwV, ./DevDetail/SwV, ./DevDetail/HwV; therefore, the needed
parameters are set in the nodes map and a new GetManagementOperation is created. Note
that a simplified syntax is used to set the operation's nodes.

The management operation so created is returned to the management processor as an array of
ManagementOperation objects setting the output variable operations. cont is then set to false to
remember that the Get command has already been returned to the processor.

The processor will then processes all the returned commands and will collect the results from
the device. Those results are translated to ManagementOperationsResult objects and
setOperationResults() is called. Again, note that the ManagementOperationResult[] array is
passed to the script in the input scripting variable results.
56

DM SERVER DEVELOPER�S GUIDE
setOperationResults() processes the status and returned data and builds the device detail string
calling buildDetailString().

Since a DM session is intended to be an iterative process, the processor will ask again for the
next operations to send calling again getNextOperation(). This time cont is false and an empty
array is returned. This tells the management processor that no more management commands
are required.

At the end of the process the management processor will call endSession().
57

DM SERVER DEVELOPER�S GUIDE
58

DM SERVER DEVELOPER�S GUIDE
Chapter 6 External Applications

This chapter describes how the Funambol DM Server interacts with external applications.

Topics

• External Application Interfaces, page 60

• Implementing the Sender Component, page 62
59

DM SERVER DEVELOPER�S GUIDE
External Application Interfaces

The Funambol DM Server interacts with the external world in many ways. Any extensible
module (such as synclets, message processors, and so on) can interface with external software
as needed. A good example is the Notification Sender as described in “Sender Interface” on
page 62. This type of integration is mainly used when going from the Funambol DM Server to
an external system.

To make Funambol DM Server accessible to other networked applications, an EJB layer is
provided. This can be accessed by any EJB client, on the same host or remotely. This EJB layer
can be easily wrapped by a web services layer using a WS toolkit such as Apache Axis (for
details, see “Other Resources” on page 73).

The EJB Layer

The management server can be accessed through the ManagementBean stateless session EJB.
This is implemented by the following classes:

• com.funambol.server.engine.dm.ejb.ManagementBean

• com.funambol.server.engine.dm.ejb.ManagementLocal

• com.funambol.server.engine.dm.ejb.ManagementRemote

• com.funambol.server.engine.dm.ejb.ManagementHomeLocal

• com.funambol.server.engine.dm.ejb.ManagementHomeRemote
60

DM SERVER DEVELOPER�S GUIDE
The following interface is exposed by the ManagementBean:

Method Description

bootstrap(int messageType,
int transportType,
String deviceUri,
String phoneNumber,
String username,
String password,
String info)

This method is used to create a new device into
the Funambol DM Server system. It may result in
sending a bootstrap message to the physical
device or not, depending by the configured
sender.
• messageType - the type of the bootstrap

message as define in NotificationConstants

• transportType - the type of the transport as
define in NotificationConstants

• deviceUri - the device id

• phoneNumber - the phone number of the
device

• username - the user name with which the
device will do the next device management

• password - the password with which the device
will do the next device management

• info - application specific info

sendNotification(int messageType,
 int transportType,
 String phoneNumber,
 String operation,
 String info)

Sends a notification message to the device with
the given phoneNumber

• messageType – the type of the notification
message as define in NotificationConstants

• transportType – the type of the transport as
define in NotificationConstants

• phoneNumber – the phone number

• operation – the management operation to be
performed

• info – application specific detail information

executeManagementOperation(
 String phoneNumber,
 String operation,
 String info)

Executes the management sequence identified by
the given operation name.
• phoneNumber – the phone number

• operation – the management operation name

• info – application specific detail information
61

DM SERVER DEVELOPER�S GUIDE
Implementing the Sender Component

This section describes how to implement the Sender component.

Sender Interface

This component dispatches notification and bootstrap messages. The behavior of a Sender is
defined by the interface com.funambol.framework.notification.Sender. You can create
multiple implementations of the interface, each specific to a particular protocol or delivery
mechanism.

The following interface is exposed by the ManagementBean:

Method Description

void sendMessage(int messageType,
 String phoneNumber,
 byte[] message,
 String info)

This method is used to send a single binary
message (notification or bootstrap).
• messageType – the type of message. It can be

one of the following:
MESSAGE_TYPE_NOTIFICATION_GENERIC.
MESSAGE_TYPE_BOOTSTRAP_WAP

MESSAGE_TYPE_BOOTSTRAP_PLAIN

• phoneNumber – the recipient of the messages.

• message – the message to be sent.

• info – application-specific detail information.

void sendMessages(int messageType,
 String[] phoneNumbers,
 byte[][] messages,
 String info)

This method is used to send multi-binary
notification messages.
• messageType – the type of message. In the

current version, it can only be
MESSAGE_TYPE_NOTIFICATION_GENERIC.

• phoneNumbers – the recipients of the
messages.

• messages – the messages to be sent.

• info – application-specific detail information.
62

DM SERVER DEVELOPER�S GUIDE
All constants used in the Sender interface are defined in
com.funambol.framework.notification.NotificationConstants.

public void sendMessages(int
messageType,
 String contentType,
 String[] macs,
 int[] authMethods,
 String[] phoneNumbers,
 byte[][] messages,
 String info)
throws NotificationException;

This method is used to send multi-binary
bootstrap messages
• messageType – the type of message. It can be

one of the following:
MESSAGE_TYPE_BOOTSTRAP_WAP

MESSAGE_TYPE_BOOTSTRAP_PLAIN

• contentType – the content type of the message.
In the current version, it is the value:
application/vnd.syncml.dm+wbxml

• macs[] – the macs values of the messages.

• authMethod[] – the authentication method to
use: Valid values:
AUTH_METHOD_NETWPIN

AUTH_METHOD_USERPIN

AUTH_METHOD_USERNETWPIN

• phoneNumbers – the recipients of the
messages.

• messages – the messages to be sent.

• info[] – application-specific detail information.

Method Description
63

DM SERVER DEVELOPER�S GUIDE
Sender Component Configuration

You configure the sender components using the following server-side JavaBeans:

• NotificationSender – com/funambol/server/engine/dm/NotificationSender.xml

• BootStrapSender – com/funambol/server/engine/dm/BootstrapSender.xml

A sample configuration is shown below:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2" class="java.beans.XMLDecoder">
 <object class="com.funambol.dm.engine.MySender">
 <... any MySender specific property ...>
 </object>
</java>

NOTE: Since Funambol does not implement a service to deliver SMS messages (i.e., shipping
notification/bootstrap messages), a custom component must be implemented. You can
configure the Funambol DM Server to use such a component by simply changing the
appropriate server JavaBean.
64

DM SERVER DEVELOPER�S GUIDE
Chapter 7 Bootstrapping Devices

Topics

• Bootstrap Overview, page 66

• WAP Provisioning Profile, page 69

• Plain Profile, page 70
65

DM SERVER DEVELOPER�S GUIDE
Bootstrap Overview

The Open Mobile Alliance defines bootstrap as "the process of provisioning the DM client to a
state where it is able to initiate a management session to a new DM server." The DM client
requires the following information to perform a management session:

• Account information

• Connectivity information

The DM Server uses the information contained in the dm-server/config/com/funambol/
server/engine/dm/SyncMLDMbootstrapMessage.xml file to create the bootstrap message.
The file is an XML serialization of the com.funambol.framework.core.dm.ddf.SyncMLDM
class and contains the information to send to the device. In addition, the following
information is created or set by the server at the time of the bootstrap:

Information Example

Name of the account Funambol

Address to be used in the management
sessions

http://myserver:myport/funambol/dm

Server identifier funambol

Server password srvpwd

Server nonce cy8rVlFOVi5NJmokM0xcYw==

Client username funambol

Client password funambol

Client nonce PyQzSUM4PDwjJjw/WzlKLA==

Preferred authentication type syncml:auth-md5
66

DM SERVER DEVELOPER�S GUIDE
The following is an example of the SyncMLDMbootstrapMessage.xml file:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2_01" class="java.beans.XMLDecoder">
 <object class="com.funambol.framework.core.dm.ddf.SyncMLDM">
 <void property="dmAcc">
 <object class="com.funambol.framework.core.dm.ddf.DMAcc">
 <void property="DMAccounts">
 <object class="org.apache.commons.collections.map.ListOrderedMap">
 <void method="put">
 <!-- This name will be replaced from the server -->
 <string>AccountName</string>
 <object class="com.funambol.framework.core.dm.ddf.DMAccount">
 <void property="conRef">
 <string>test</string>
 </void>
 </object>
 </void>
 </object>
 </void>
 </object>
 </void>
 <void property="con">
 <object class="com.funambol.framework.core.dm.ddf.ConNode">
 <void property="connections">
 <void method="put">
 <string>test</string>
 <object class="com.funambol.framework.core.dm.ddf.Connection">
 <void property="PX">
 <object class="com.funambol.framework.core.dm.ddf.PX">
 <void property="address">
 <string>address</string>
 </void>
 <void property="addressType">
 <string>5</string>
 </void>
 <void property="auths">
 <object class="org.apache.commons.collections.map.ListOrderedMap">
 <void method="put">
 <string>auth-method</string>
 <object class="com.funambol.framework.core.dm.ddf.Auth">
 <void property="id">
 <string>username</string>
 </void>
 <void property="secret">
 <string>password</string>
 </void>
 </object>
 </void>
 </object>
 </void>
 <void property="portNbr">
 <string>80</string>
 </void>
 </object>
 </void>
67

DM SERVER DEVELOPER�S GUIDE
 <void property="nap">
 <object class="com.funambol.framework.core.dm.ddf.NAP">
 <void property="address">
 <string>address</string>
 </void>
 <void property="addressType">
 <string>5</string>
 </void>
 <void property="auths">
 <object class="org.apache.commons.collections.map.ListOrderedMap">
 <void method="put">
 <string>PAP</string>
 <object class="com.funambol.framework.core.dm.ddf.Auth">
 <void property="id">
 <string>username</string>
 </void>
 <void property="secret">
 <string>password</string>
 </void>
 </object>
 </void>
 </object>
 </void>
 <void property="bearer">
 <string>11</string>
 </void>
 </object>
 </void>
 </object>
 </void>
 </void>
 </object>
 </void>
 </object>
</java>
68

DM SERVER DEVELOPER�S GUIDE
WAP Provisioning Profi le

The content of the bootstrap message is based on the OMA Provisioning Content Specification
using the registered document 'w7' that specifies how the APPLICATION characteristic
should be used to bootstrap a DM device. For an example, see “Bootstrap XML Message
Examples” on page 74.

An external application can start a bootstrap process with this profile using the bootstrap()
method of the external application API, with the following message type:

com.funambol.framework.notification.NotificationConstants.
MESSAGE_TYPE_BOOTSTRAP_WAP.

For details on the external application API, see “External Application Interfaces” on page 60.

The process of generating and sending a bootstrap message by the server consists of the
following steps:

1. Update the database with the information of the device to be bootstrapped.

2. Read the SyncMLboostrapMessage.xml file and create a new SyncMLDM object.

3. Update the object created at the previous step with the server information.

4. Convert the SyncMLDM object in a WBXML WAP message and send it using the
configured BootStrap sender.
69

DM SERVER DEVELOPER�S GUIDE
Plain Profi le

The content of the bootstrap message is a SyncML DM message containing the nodes to be
added to the device. For an example, see “Bootstrap XML Message Examples” on page 74.

An external application can start a bootstrap process with this profile using the bootstrap()
method of the external application API, with the following message type:

com.funambol.framework.notification.NotificationConstants.
MESSAGE_TYPE_BOOTSTRAP_PLAIN.

For details on the external application API, see “External Application Interfaces” on page 60.

The process of generating and sending a bootstrap message by the server consists of the
following steps:

1. Update the database with the information of the device to be bootstrapped.

2. Read the SyncMLboostrapMessage.xml file and create a new SyncMLDM object.

3. Update the object created at the previous step with the server information.

4. Create a SyncML DM 1.1.2 message with the bootstrap information.

5. Convert the message in WBXML and send it using the configured BootStrap sender
70

DM SERVER DEVELOPER�S GUIDE
Appendix A Appendix

Topics

• Resources, page 72

• Bootstrap XML Message Examples, page 74

• WAP Headers for Bootstrap Message, page 80

• Notification Message Using WAP Push, page 82
71

DM SERVER DEVELOPER�S GUIDE
Resources

This section lists resources you may find useful.

Related Documentation

This section lists documentation resources you may find useful.

Funambol DM Server Documentation

The Funambol DM Server documentation set includes the following documents:

• Funambol DM Server Administration Guide: Read this guide for server installation
instructions.

• Funambol DM Server Developer’s Guide: This document.

• Funambol DM Server DM Demo User’s Guide: Read this guide for a demonstration of the
basic management operations of the DM Server.

• Funambol DM Server SCTS Testing Guide: Read this guide for instructions on using the
SCTS tool to test devices and the DM Server for SyncML 1.1.2 compliance.

Open Mobile Alliance Documentation, Version 1.1.2

• SyncML Device Management Protocol

• SyncML Device Management Tree and Description

• SyncML Device Management Bootstrap

• SyncML Notification Initiated Session

• SyncML Device Management Security

• SyncML Device Management Standardized Objects

• SyncML Device Management Representation Protocol

• SyncML Data Sync Protocol

• SyncML Representation Protocol (version 1.1)
72

DM SERVER DEVELOPER�S GUIDE
Other Resources

For information on BeanShell, visit http://www.beanshell.org.

Read the BeanShell User's Guide at http://www.beanshell.org/manual/contents.html.

For information on Apache Axis, visit http://ws.apache.org/axis/.
73

DM SERVER DEVELOPER�S GUIDE
Bootstrap XML Message Examples

WAP Profile

The following example is for demonstrative purposes only.

Example

<?xml version="1.0" encoding="UTF-8"?>
<wap-provisioningdoc version="1.0">
 <characteristic type="APPLICATION">
 <parm name="APPID" value="w7"/>
 <parm name="NAME" value="1"/>
 <parm name="PROVIDER-ID" value="funambol"/>
 <parm name="TO-NAPID" value="test"/>
 <characteristic type="APPADDR">
 <parm name="ADDR" value="http://localhost/funambol/dm"/>
 <characteristic type="PORT">
 <parm name="PORTNBR" value="8080"/>
 </characteristic>
 </characteristic>
 <characteristic type="APPAUTH">
 <parm name="AAUTHLEVEL" value="APPSRV"/>
 <parm name="AAUTHNAME" value="funambol"/>
 <parm name="AAUTHSECRET" value="PkFcRTVRLzc1dUd1Qns1JA=="/>
 <parm name="AAUTHDATA" value="Q3lHUkRRKUEhMlQnSH88Tg=="/>
 </characteristic>
 <characteristic type="APPAUTH">
 <parm name="AAUTHLEVEL" value="CLIENT"/>
 <parm name="AAUTHNAME" value="1"/>
 <parm name="AAUTHSECRET" value="1"/>
 <parm name="AAUTHDATA" value="TzpNeD5FWSctMGRHPCdOMg=="/>
 </characteristic>
 </characteristic>
 <characteristic type="NAPDEF">
 <parm name="NAPID" value="test"/>
 <parm name="BEARER" value="11"/>
 <parm name="NAP-ADDRESS" value="address"/>
 <parm name="NAP-ADDRTYPE" value="5"/>
 <characteristic type="NAPAUTHINFO">
 <parm name="AUTHTYPE" value="PAP"/>
 <parm name="AUTHNAME" value="username"/>
 <parm name="AUTHSECRET" value="password"/>
 </characteristic>
 </characteristic>
 <characteristic type="PXLOGICAL">
 <characteristic type="PXPHYSICAL">
 <parm name="PXADDR" value="address"/>
 <parm name="PXADDRTYPE" value="5"/>
 <characteristic type="PORT">
 <parm name="PORTNBR" value="80"/>
 </characteristic>
 <characteristic type="PXAUTHINFO">
 <parm name="PXAUTH-TYPE" value="auth-method"/>
 <parm name="PXAUTH-ID" value="username"/>
 <parm name="PXAUTH-PW" value="password"/>
74

DM SERVER DEVELOPER�S GUIDE
 </characteristic>
 </characteristic>
 </characteristic>
</wap-provisioningdoc>

Plain Profile

The following example is for demonstrative purposes only.

Example

<?xml version="1.0" encoding="UTF-8"?>
<SyncML>
 <SyncHdr>
 <VerDTD>1.1</VerDTD>
 <VerProto>DM/1.1</VerProto>
 <SessionID>0</SessionID>
 <MsgID>0</MsgID>
 <Target>
 <LocURI>1</LocURI>
 </Target>
 <Source>
 <LocURI>http://localhost:8080/funambol/dm</LocURI>
 </Source>
 </SyncHdr>
 <SyncBody>
 <Add>
 <CmdID>1</CmdID>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol</LocURI>
 </Target>
 <Meta>
 <Format xmlns='syncml:metinf'>node</Format>
 </Meta>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/Addr</LocURI>
 </Target>
 <Data>http://localhost/funambol/dm</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/AddrType</LocURI>
 </Target>
 <Data>1</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/PortNbr</LocURI>
 </Target>
 <Data>8080</Data>
75

DM SERVER DEVELOPER�S GUIDE
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/ConRef</LocURI>
 </Target>
 <Data>test</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/ServerId</LocURI>
 </Target>
 <Data>funambol</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/ServerPW</LocURI>
 </Target>
 <Data>PkFcRTVRLzc1dUd1Qns1JA==</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/ServerNonce</LocURI>
 </Target>
 <Data>Q3lHUkRRKUEhMlQnSH88Tg==</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/UserName</LocURI>
 </Target>
 <Data>1</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/ClientPW</LocURI>
 </Target>
 <Data>1</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/ClientNonce</LocURI>
 </Target>
 <Data>TzpNeD5FWSctMGRHPCdOMg==</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/AuthPref</LocURI>
 </Target>
 <Data>syncml:auth-md5</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/DMAcc/funambol/Name</LocURI>
 </Target>
 <Data>1</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test</LocURI>
 </Target>
76

DM SERVER DEVELOPER�S GUIDE
 <Meta>
 <Format xmlns='syncml:metinf'>node</Format>
 </Meta>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/NAP</LocURI>
 </Target>
 <Meta>
 <Format xmlns='syncml:metinf'>node</Format>
 </Meta>
 <Data></Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/NAP/Bearer</LocURI>
 </Target>
 <Data>11</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/NAP/AddrType</LocURI>
 </Target>
 <Data>5</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/NAP/Addr</LocURI>
 </Target>
 <Data>address</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/NAP/Auth</LocURI>
 </Target>
 <Meta>
 <Format xmlns='syncml:metinf'>node</Format>
 </Meta>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/NAP/Auth/PAP</LocURI>
 </Target>
 <Meta>
 <Format xmlns='syncml:metinf'>node</Format>
 </Meta>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/NAP/Auth/PAP/Id</LocURI>
 </Target>
 <Data>username</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/NAP/Auth/PAP/Secret</LocURI>
 </Target>
 <Data>password</Data>
 </Item>
77

DM SERVER DEVELOPER�S GUIDE
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/PX</LocURI>
 </Target>
 <Meta>
 <Format xmlns='syncml:metinf'>node</Format>
 </Meta>
 <Data></Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/PX/PortNbr</LocURI>
 </Target>
 <Data>80</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/PX/AddrType</LocURI>
 </Target>
 <Data>5</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/PX/Addr</LocURI>
 </Target>
 <Data>address</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/PX/Auth</LocURI>
 </Target>
 <Meta>
 <Format xmlns='syncml:metinf'>node</Format>
 </Meta>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/PX/Auth/auth-method</LocURI>
 </Target>
 <Meta>
 <Format xmlns='syncml:metinf'>node</Format>
 </Meta>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/PX/Auth/auth-method/Id</LocURI>
 </Target>
 <Data>username</Data>
 </Item>
 <Item>
 <Target>
 <LocURI>./SyncML/Con/test/PX/Auth/auth-method/Secret</
LocURI>
 </Target>
 <Data>password</Data>
 </Item>
 </Add>
 <Final></Final>
78

DM SERVER DEVELOPER�S GUIDE
 </SyncBody>
</SyncML>
79

DM SERVER DEVELOPER�S GUIDE
WAP Headers for Bootstrap Message

PLAIN Profile

Header

06 05 04 0B 84 C0 02 01 06 2E C2 91 80 92 45 36 34 30 37 42 37 42 30 46 37 42
46 38 39 37 43 32 45 44 37 43 43 45 46 35 31

35 43 30 37 44 42 31 44 32 34 33 39 34 00 AF 87

WDP Header

06: User-Data-Header(UDHL) Length

05: UDH IE Identifier Port Number

04: UDH port number IE length

0B: Destination port (high)

84: Destination port (low)

C0: Origination port (high)

02: Origination port (low)

WSP Header

01: Transaction ID / Push ID

06: PDU Type(push)

2E: Headerslength (content type + headers)

C2: Content-type

91: SEC

80: Auth. method = 0

92: MAC

MAC Value: 45 36 34 30 37 42 37 42 30 46 37 42 46 38 39 37 43 32 45 44 37 43
43 45 46 35 31 35 43 30 37 44 42 31 44 32 34 33 39 34 00

AF: X-WAP-Application-ID

87: x-wap-application:syncml.dm

WAP Profile

Header

06 05 04 0B 84 C0 02 01 06 2E B6 91 80 92 36 34 42 33 45 46 37 35 45 38 39 42
32 35 41 33 44 35 36 45 37 30 30 32 33 30 33

46 41 31 39 41 36 34 38 41 33 34 42 37 00 AF 82
80

DM SERVER DEVELOPER�S GUIDE
WDP Header

06: User-Data-Header(UDHL) Length

05: UDH IE Identifier Port Number

04: UDH port number IE length

0B: Destination port (high)

84: Destination port (low)

C0: Origination port (high)

02: Origination port (low)

WSP Header

01: Transaction ID / Push ID

06: PDU Type(push)

2E: Headerslength (content type + headers)

B6: Content-type

91: SEC

80: Auth. method = 0

92: MAC

MAC Value: 36 34 42 33 45 46 37 35 45 38 39 42 32 35 41 33 44 35 36 45 37 30
30 32 33 30 33 46 41 31 39 41 36 34 38 41 33 34 42 37 00

AF: X-WAP-Application-ID

82: x-wap-application:wml.ua
81

DM SERVER DEVELOPER�S GUIDE
Notif ication Message Using WAP Push

Notification Message Created by the DM Server

The following examples are valid notification messages with 'sync4j' as server id.

Example 1

81 6B 41 D3 1C 99 84 52 65 73 70 F8 C1 CC 32 C5 02 C0 00 00 00 00 04 06 73 79
6E 63 34 6A

Example 2

47 E3 FC D5 C5 09 81 36 AF 01 4F E7 9C 1C AD F1 02 C0 00 00 00 00 03 06 73 79
6E 63 34 6A

Complete SMS (WDP + WSP + Notification Message)

Example 1

06 05 04 0B 84 C0 02 01 06 03 C4 AF 87 81 6B 41 D3 1C 99 84 52 65 73 70 F8 C1
CC 32 C5 02 C0 00 00 00 00 04 06 73 79 6E 63 34 6A

Example 2

06 05 04 0B 84 C0 02 01 06 03 C4 AF 87 47 E3 FC D5 C5 09 81 36 AF 01 4F E7 9C
1C AD F1 02 C0 00 00 00 00 03 06 73 79 6E 63 34 6A

Example 3

06 05 04 0B 84 C0 02 01 06 03 C4 AF 87 A0 96 3B 47 B8 D0 B3 D7 4C 45 9F B5 44
35 98 B1 02 C0 00 00 00 00 09 06 73 79 6E 63 34 6A

Explanation of Example 3:

WDP Header:

06: User-Data-Header(UDHL) Length = 6 bytes

05: UDH IE Identifier Port Number

04: UDH port number IE length

0B: Destination port (high)

84: Destination port (low)

C0: Origination port (high)

02: Origination port (low)
82

DM SERVER DEVELOPER�S GUIDE
WSP Header:

01: Transaction ID / Push ID

06: PDU Type(push)

03: Headers length (content type + headers)

C4: Content type

AF: X-WAP-Application-ID

87: Id for urn: x-wap-application:syncml.dm

Digest:

A0 96 3B 47 B8 D0 B3 D7 4C 45 9F B5 44 35 98 B1

Notification Message:

02 C0 00 00 00 00 09 06 73 79 6E 63 34 6A
83

	Chapter 1 SyncML Device Management
	Introduction
	Purpose

	SyncML DM Protocol Message Sequence Overview
	Transaction 1: Alert Phase - Server to Client Only
	Transaction 2: Set Up Phase - Client to Server
	Transaction 3: Set-up Phase - Server to Client
	Transaction 4: Management Phase - Client to Server
	Transaction 5: Management Phase - Server to Client

	SyncML Device Management Tree Overview
	The ./DevInfo Node
	Properties of Management Tree Objects

	Management Object Manipulation
	Management Object Security

	SyncML Security and Initial Provisioning (Bootstrap)
	Security
	Example 1 - Transport Level Authentication
	Example 2 - Session Level Authentication
	Example 3 - SyncML Protocol Level Authentication

	Bootstrap Provisioning
	Bootstrap Use Cases

	Bootstrap Methods
	WAP Profile Provisioning
	Plain Profile Bootstrap Provisioning

	Chapter 2 Developer Overview
	System Architecture
	Funambol DM Server Architecture

	Execution Flow
	Database Schema
	Device Management State

	Chapter 3 Server Configuration
	Overview
	Funambol.properties
	Server JavaBeans
	Lazy Initialization

	Configuring a Standard Component
	Configuring a Custom Component
	Getting a Configured Instance
	Tips and Tricks

	Logging
	Adding Logging for Custom Components

	Chapter 4 Customizing Message Processing
	Overview
	Preprocessing an Incoming Message
	Creating an Input Synclet
	Configuring an Input Synclet

	Postprocessing an Outgoing Message
	Creating an Output Synclet
	Configuring an Output Synclet

	Chapter 5 Implementing Management Operations
	Overview
	Creating a Processor Selector
	DeviceIdProcessorSelector
	OperationProcessorSelector

	Configuring the Management Engine

	Creating a Management Processor
	ManagementOperation
	ManagementOperationResult

	Using Scripting Management Processors
	Scripting Variables
	Scripting Processor Example

	Chapter 6 External Applications
	External Application Interfaces
	The EJB Layer

	Implementing the Sender Component
	Sender Interface
	Sender Component Configuration

	Chapter 7 Bootstrapping Devices
	Bootstrap Overview
	WAP Provisioning Profile
	Plain Profile

	Appendix A Appendix
	Resources
	Related Documentation
	Funambol DM Server Documentation
	Open Mobile Alliance Documentation, Version 1.1.2

	Other Resources

	Bootstrap XML Message Examples
	WAP Profile
	Plain Profile

	WAP Headers for Bootstrap Message
	PLAIN Profile
	Header
	WDP Header
	WSP Header

	WAP Profile
	Header
	WDP Header
	WSP Header

	Notification Message Using WAP Push
	Notification Message Created by the DM Server
	Example 1
	Example 2

	Complete SMS (WDP + WSP + Notification Message)
	Example 1
	Example 2
	Example 3

