Funambol DS Server

SyncSource API

Version 3.0
May 2006

L
|

funambol

Important Information

© Copyright Funambol, Inc. 2006. All rights reserved.

The information contained in this publication is subject to US and international copyright laws and treaties. Except as
permitted by law, no part of this document may be reproduced or transmitted by any process or means without the prior
written consent of Funambol, Inc.

Funambol, Inc. has taken care in preparation of this publication, but makes no expressed or implied warranty of any kind.
Funambol, Inc. does not guarantee that any information contained herein is and will remain accurate or that use of the
information will ensure correct and faultless operation of the relevant software, service or equipment.

Funambol, Inc,, its agents and employees shall not be held liable for any loss or damage whatsoever resulting from reliance on
the information contained herein.

Funambol and Sync4j are trademarks and registered trademarks of Funambol, Inc.
All other products mentioned herein may be trademarks of their respective companies.

Published by Funambol, Inc., 643 Bair Island Road, Suite 305, Redwood City, CA 94063

DS SERVER SYNCSOURCE API

Contents
L0 = T 1
Server Architecture e 1
Framework Layer Packages 2
The Engine Package i e e 2
The SyncSource Interface 3
Related Classes e 5
SYNCSOUICE ..ttt ittt et ia e tn et na s sanssannsnnnrannsnnns 7
addSyncltem e 7
DEgINSYNC . . e 7
COMMITSYNC . . oo e 7
BNASYNC . . . 7
getAllSyncltemKeys e 8
getDeletedSyncltemKeys 8
getinfo e 8
getName ... e 8
getNewSyncltemKeys e 9
getSourceURI e 9
getSyncltemFromld 9
getSyncltemKeysFromTwin 9
OB T PE oo e e e 10
getUpdatedSyncltemKeys 10
FEMOVESYNCHEM . .. e e 10
setOperationStatus i e 11
updateSyncHem e e 11

funambol

DS SERVER SYNCSOURCE API

MergeableSyncSourcec.ciiiiiiiiiiiiiiia it 12
MergeSyNCItemMS 12
FilterableSyncSourcettt iia e 12
getSyncltemStateFromld 12
isSynclteminFilterClause 12
isSynclteminFilterClause 13
Syncltem e a e 13
getContent 13
getFormat 13
getKBY . oo e 13
getParentey e 13
getState e 13
OEISYNCSOUICE e 14
getTimestamp 14
OB T PE oo e 14
setContent 14
SetFormat 14
SetState 14
setTimestamp e 15
SE Y P .o e e 15
ReSOUICeS0ttt ittt i s 16
Related Documentation e 16

DS SERVER SYNCSOURCE API ———

Overview

funambol.

This document describes the interface for developers who wish to develop a SyncSource. We
will use the following terms and concepts:

Module: a container for anything related to a Funambol DS Server extension. For example, a
module may consist of a packaged set of files, including classes, configuration files, server
beans, and initialization SQL scripts, that are embedded into the Funambol DS Server to
provide access to a specific database for data synchronization.

Connector: a server extension that provides support for data synchronization with a specific
data source. For example, the Funambol DB Connector provides a GUI and runtime classes for
the synchronization of generic data stored in a RDMS. Alternatively, a Connector could
support a data source that stores email messages, calendar events, or other data types.

SyncSource: a key component of a Connector, it defines the way a set of data is made
accessible to the Funambol DS Server for synchronization. Funambol provides SyncSources
for the common uses (such as for files), but also allows independently-developed SyncSources
to be plugged into the synchronization engine, allowing synchronization with virtually any
database or type of data.

This document provides reference information on the SyncSource interface and related
classes. For background information on the synchronization process, see Sync4j Architecture.

For instructions on packaging, installing and testing modules, see the Funambol DS Server
Module Development Tutorial.

Server Architecture

The Funambol DS Server architecture is implemented in layers, as shown below:

Transport
Layer

Application
Layer

Framework
Layer

Engine

Transport Layer — the server relies on the transport layer to receive messages delivered using
different protocols, such as HTTP, SMTP, OBEX, and so on. Currently, Funambol supports the
HTTP protocol for message transport.

T DS SERVER SYNCSOURCE API

funambol

Application Layer — consists of the server that accepts and processes SyncML messages. The
server is implemented as a J2EE application that can be deployed in a J2EE-compliant
application server.

Framework Layer — implements and provides protocols, horizontal services, and the
synchronization engine.

Framework Layer Packages

The framework layer consists of several packages, the most important of which are shown
below:

Framework Layer

SyncML
Core

Protocol Services Sync Engine
Package Security & Engine
Package

Logging Package
Packages

Core Package — the foundation classes used to represent a message. This module provides for
the translation of an XML stream into an object tree, and an object representing a message can
be converted into the corresponding XML representation.

Protocol Package — a SyncML communication is a sequence of correlated messages that must
follow additional rules, as specified by the SyncML protocol. This module handles the
processing of such messages to ensure compliance with the protocol.

Security and Logging Packages — implements logging and security services.

Engine Package — provides the logic for the synchronization server, including the following:

Identify the source and destination of the data to be synchronized.

Identify the data that needs to be updated, added, or deleted.

® Determine how updates are to be applied.

Detect and resolve conflicts.

The Engine Package

The engine package provides an interface for the synchronization engine. The basic interface
and classes are grouped in the package com.funambol.framework.engine. The reference
implementation is grouped under com.funambol.server.engine. The core of the SyncSource
architecture is the interface com.funambol.framework.engine.source.SyncSource.

o

DS SERVER SYNCSOURCE API T

funambol
The SyncSource Interface
A SyncSource defines the way a set of data is made accessible to the Funambol DS Server for
synchronization. The SyncSource interface does not make any assumptions about the type of
data to be synchronized.
A SyncSource is identified by a unique domain-specific name and a unique sourceURI, which
is the URI that a SyncML client must specify to synchronize with the SyncSource. A
SyncSource is also associated with a MIME type that specifies the type of data handled.

The core of the SyncSource is the com.funambol.framework.engine.source.SyncSource interface.

<<interface>>
SyncSource

beginSync(context: SyncContext)
commitSync{): void
endSync(): void

addSyncltem(syncinstance: Syncltem): Syncltem
removeSyncltem(itemKey: SyncltemKey, time: Timestamp, softDelete: boolean): void
updateSyncltem(syncinstance: Syncltem): Syncltem

getinfo(): SyncSourcelnfo
getName(): String
getSourceURI{): String
getType(): String

getAllSyncltemKeys(): SyncltemKeyl]

getNewSyncltemKeys(sinceTS: Timestamp, untilTS: Timestamp): SyncltemKey[]
getDeleted SyncltemKeys(sinceTS: Timestamp, untilTS: Timestamp): SyncltemKey[|
getlpdatedSyncltemKeys(sinceTS: Timestamp, untilTS: Timestamp): SyncltemKey[]

getSyncitemFromlid{syncitemKey: SyncltemKey): Syncltem
getSynclitemKeysFromTwin(syncltem: Syncltemn): Syncltemiey[|

setOperationStatus(operationName: String, status: int, keys: SyncltemKey] 1): void

i i

<<interface>> <<interface>>
SULES . RIS AbstractSyncSource
MergeableSyncSource FilterableSyncSource
mergeSyncltems(serverey: SyncltemKey, getSyncltemStateFromld(syncltemKey: SyncltemKey): char
clientltem: Syncltem): boolean isSyncltemInFilterClause(item: Syncltem): boolean
isSyncltemInFilterClause(key: SyncltemKey): boolean

Funambol provides two extensions of the SyncSource interface named MergeableSyncSource
and FilterableSyncSource, as well as an abstract implementation AbstractSyncSource.

MergeableSyncSource

You use the com.funambol.framework.engine.source.MergeableSyncSource interface when a data
source wants to support a conflict resolution strategy based on merging the conflicting data.
When a conflict is detected, a merge is performed to avoid loss of information. For example,
suppose the email address for a contact is updated on the server, and the phone number for
the same contact is updated on a client. In this case, the server contact data and the client
contact data can be merged. For additional details, see “MergeableSyncSource” on page 12.

o

funambol

DS SERVER SYNCSOURCE API

FilterableSyncSource

You use the com.funambol.framework.engine.source.FilterableSyncSource interface when a
SyncSource supports a filter as specified in the SyncML 1.2 protocol. The protocol specifies the
following types of filters that can be used by a device:

Record filter — specify the records to be synchronized, e.g., today’s email only.

Field filter — specify roles on the fields to be synchronized, e.g., no contact photos.

In addition, a filter can be specified as EXCLUSIVE or INCLUSIVE. When using an
EXCLUSIVE filter, the server deletes all items on the client that are not included in the filter.
When using an INCLUSIVE filter, the client deletes its items that are not included in the filter,

and sends the delete command to the server (soft delete).

For additional details, see “FilterableSyncSource” on page 12.

AbstractSyncSource

This is a utility class that implements the most common methods of the SyncSource interface,
but delegates the methods required to access the data source to concrete extensions. The
following are the defined abstract methods:

¢ getAllSyncltemKeys

e getDeletedSyncltemKeys

¢ getNewSyncltemKeys

e getSyncltemFromld

¢ removeSyncltem

* updateSyncltem

* addSyncltem

¢ getSyncltemKeysFromTwin

e setOperationStatus

DS SERVER SYNCSOURCE API

Related Classes

Classes related to the SyncSource interface include the Syncltem interface and the

SyncContext and SyncltemImp classes.

<<interface>>
Syncltem

SyncContext

getkey(): SyncltemKey
getParentKey(): SyncliemKey
getState(): char

getContent(): byte] |
getType(): String

getFormat(): String
getTimestamp(): Timestamp
getSyncSource(): SyncSource

setState(state: char); void
setContent(content; byte[1); void
setType(type: String): void
setFormat(format: String); void

setTi nip(ti tamp: Tim np): void

principal: Principal
syncMode: int
filterClause: FilterClause
conflictResolution: int
sourceQuery: String

o
\
\
\

Syncltemimpl

key
parentKey
state
content
type

format
timestamp
syncsource

Syncltem Interface

i

funambol

The items returned by a SyncSource are com.funambol.framework.engine.Syncltem objects. A
Syncltem is the indivisible entity that can be exchanged in a synchronization. It is identified by
a unique SyncltemKey, and also is associated with a state. A Syncltem has the following

properties:
e gtate

e content
* type

e format

¢ timestamp

Funambol provides a standard implementation of the Syncltem interface in the class
com.funambol.framework.engine.SyncltemImpl. For details on the methods defined in the
Syncltem interface, see “Syncltem” on page 13.

o

funambol

DS SERVER SYNCSOURCE API

SyncContext

A new synchronization is started by calling the beginsync method with SyncContext as the
input parameter (for details, see “beginSync” on page 7). A SyncContext contains the
following information:

principal — the entity that is requesting the synchronization; it represents the combination of a
user and a device and can be used by the SyncSource to consider only the data related to this
entity, such as the contacts of a particular user. If null, all items in the data source are
considered for synchronization, regardless of the principal to which they belong.

syncMode — the type of synchronization, specified as follows:

syncMode Type of Synchronization
200 TWO_WAY
201 SLOW
202 ONE_WAY_FROM_CLIENT
203 REFRESH_FROM_CLIENT
204 ONE_WAY_FROM_SERVER
205 REFRESH_FROM_SERVER

filter — the filter specified by the client. If specified, and the SyncSource is
FilterableSyncSource, the filter provides the following roles:

e The getallSyncItemKeys, getDeletedSyncItemKeys, getNewSyncItemKeys, and
getUpdatedSyncItemKeys methods return only the items that satisfy the filter criteria.

® The getSyncItemsFromId and getSyncItemsFromTwin methods ignore the filter.
For additional details, see “FilterableSyncSource” on page 4.

conflictResolution — specifies the conflict resolution used by the server in the
synchronization. Valid values:

® SyncContext.CONFLICT RESOLUTION SERVER WINS — conflicts resolved with server data.
® SyncContext.CONFLICT RESOLUTION CLIENT WINS — conflicts resolved with client data.

® SyncContext.CONFLICT_RESOLUTION_ MERGE_DATA — conflicts are resolved by merging
server and client data (see “MergeableSyncSource” on page 12).

sourceQuery — the query string specified by the client in the remote database name. For
example, if the following is specified: 'cal?paraml=valuel¶m2=value2' the source
query is paraml=valuel¶m2=value?2.

DS SERVER SYNCSOURCE API

Declaration

Description

Parameters

Throws

Declaration
Description

Parameters

Throws

Declaration

Description

Throws

Declaration
Description

Throws

-

funambol

SyncSource

The SyncSource interface defines the following methods:

addSyncltem
public SyncItem addSyncItem(SyncItem syncInstance)

Called by the engine to add a new Syncltem. The item is also returned, which enables the
source to modify its content and return the updated item (e.g., updating the id to the GUID).

syncInstance — The item to add.

SyncSourceException

beginSync
public void beginSync (SyncContext syncContext)
Called by the engine to start a new synchronization with the specified SyncContext.

syncContext — contains the principal, syncMode, and required filter. For details, see
“SyncContext” on page 6.

SyncSourceException

commitSync
public void commitSync ()

Called by the engine to commit the changes applied during the synchronization session. The
method is called for each SyncML message processed.

SyncSourceException

endSync
public void endSync ()
Called by the engine after the modifications have been applied.

SyncSourceException

Declaration

Description

Throws

Declaration

Description

Parameters

Throws

Declaration

Description

Declaration

Description

DS SERVER SYNCSOURCE API

getAllSyncltemKeys
public SyncItemKey[] getAllSyncItemKeys ()

Called by the engine to get the SyncltemKeys of all items based on the parameters used in the
beginSync call. Returns an array of the SyncltemKeys stored in this source. Returns an empty
array if there are no items.

SyncSourceException

getDeletedSyncltemKeys
public SyncItemKey[] getDeletedSyncItemKeys (Timestamp sinceTs,

Timestamp untilTs)

Called by the engine to get the SyncltemKey of all items deleted during the time period
sinceTs - untilTs. This time period is the time between the last synchronization and the start
time of the current synchronization. If sinceTs is null, gets the SyncltemKey of all items
deleted up to and including untilTs. If untilTs is null, gets the SyncltemKey of all items
deleted from sinceTs and later.

sinceTs — beginning point of time period, i.e., for a fast synchronization, the time of the last
synchronization. For a slow synchronization, this parameter is null.

untilTs — ending point of time period.

SyncSourceException

getinfo
public SyncSourceInfo getInfol()

Called by the engine to get the SyncSourcelnfo of the source.

getName
public String getName ()

Called by the engine to get the name of the source.

DS SERVER SYNCSOURCE API ‘zTrs

Declaration

Description

Parameters

Throws

Declaration

Description

Declaration
Description
Parameters

Throws

Declaration

Description

Parameters

Throws

-

funambol

getNewSyncltemKeys
public SyncItemKey[] getNewSyncItemKeys (Timestamp sinceTs,

Timestamp untilTs)

Called by the engine to get the SyncltemKey of the items created during the time period
sinceTs - untilTs. This time period is the time between the last synchronization and the start
time of the current synchronization. If sinceTs is null, gets the SyncltemKey of all items
created up to and including untilTs. If untilTs is null, gets the SyncltemKey of all items
created from sinceTs and later.

sinceTs — beginning point of time period, i.e., for a fast synchronization, the time of the last
synchronization. For a slow synchronization, this parameter is null.

untilTs — ending point of time period.

SyncSourceException

getSourceURI
public String getSourceURI ()

Called by the engine to get the source URI of the source.

getSyncltemFromld

public SyncItem getSyncItemFromId (SyncItemKey syncIltemKey)

Called by the engine to get the item with the specified key. If no item is found, returns null.
syncItemKey — the SyncltemKey of the item.

SyncSourceException

getSyncltemKeysFromTwin
public SyncItemKey[] getSyncItemKeysFromTwin (SyncItem syncItem)

Called by the engine to get the SyncltemKeys of the twins of the given item. Each source
implementation can interpret this as desired (i.e., comparing all fields).

syncItem— the twin item.

SyncSourceException

-

o

10

funambol

Declaration

Description

Declaration

Description

Parameters

Throws

Declaration

Description

Parameters

Throws

DS SERVER SYNCSOURCE API

getType
public String getType ()

Called by the engine to get the type of the source, e.g., text/x-vcard.

getUpdatedSyncltemKeys

public SyncItemKey[] getUpdatedSyncItemKeys (Timestamp sinceTs,
Timestamp untilTs)

Called by the engine to get the SyncltemKey of the items updated during the time period
sinceTs - untilTs. This time period is the time between the last synchronization and the start
time of the current synchronization. If sinceTs is null, gets the SyncltemKey of all items
updated up to and including untilTs. If untilTs is null, gets the SyncltemKey of all items
updated from sinceTs and later.

sinceTs — beginning point of time period, i.e., for a fast synchronization, the time of the last
synchronization. For a slow synchronization, this parameter is null.

untilTs — ending point of time period.

SyncSourceException

removeSyncltem

public void removeSyncItem(SyncItemKey itemKey, Timestamp time,
boolean softDelete)

Called by the engine to remove (soft delete) a Syncltem that is identified by the specified key.

itemKey — the key of the item to remove.

time — the time of the deletion.
softDelete — specifies whether the removal is a soft delete.

SyncSourceException

DS SERVER SYNCSOURCE API

Declaration

Description

Parameters

Declaration

Description

Parameters

Throws

e

funambol

setOperationStatus

public void setOperationStatus (String operationName, int status,
SyncItemKey[] keys)

Called by the engine to notify the status of an operation (Add/Replace/Delete) performed on
the client.
operationName — the name of the operation. Valid values: Add, Replace, Delete.

status — the status of the operation.

keys — the SyncltemKeys of the items.

updateSyncltem

public SyncItem updateSyncItem(SyncItem syncInstance)

Called by the engine to update a Syncltem. The item is also returned, which gives the source
the opportunity to modify its content and return the updated item (e.g. update the id to the
GUID).

syncInstance — The item to update.

SyncSourceException

1"

LS

ol

funambol

DS SERVER SYNCSOURCE API

MergeableSyncSource

Declaration

Description

Parameters

Throws

The MergeableSyncSource interface defines the following method:

mergeSyncltems
public boolean mergeSyncItems (SyncItemKey serverKey, SynclItem clientItem)

Called when a conflict must be resolved by merging items. On the server side, the result of the
merge must be persistent in the underlying data source. If the item on the client is to be
updated, this method returns “true” and puts the new content in the specified clientItem.

serverKey — the item’s key on the server.

clientItem — the item on the client.

SyncSourceException

FilterableSyncSource

12

Declaration

Description

Parameters

Throws

Declaration

Description

Parameters

Throws

The FilterableSyncSource interface defines the following methods:

getSyncltemStateFromid
public char getSyncItemStateFromId (SyncItemKey syncItemKey)

Called by the engine to get the status of the item with the specified key. Used to discover the
status of an item that is not in the filter criteria. If no item is found, returns
SyncItemState.NOT_ EXISTING.

syncItemKey — the SyncltemKey of the item.

SyncSourceException

isSyncltemInFilterClause
public boolean isSyncItemInFilterClause (SyncItem item)

Called by the engine to check if the specified item satisfies the filter clause specified in the
beginsync call. Returns true if the item satisfies the filter, false otherwise.

item — the item to check.

SyncSourceException

DS SERVER SYNCSOURCE API

Declaration

Description

Parameters

Throws

Syncltem

Declaration

Description

Declaration

Description

Declaration

Description

Declaration

Description

Declaration

Description

funambol

isSyncltemInFilterClause
public boolean isSyncItemInFilterClause (SyncItemKey key)

Called by the engine to check if the item with the specified key satisfies the filter clause
specified in the beginSync call. Returns true if the item satisfies the filter, false otherwise.

key — the key of the item to check.

SyncSourceException

The Syncltem interface defines the following methods:

getContent
public byte[] getContent ()

Called to get the Syncltem's content.

getFormat
public String getFormat ()

Called to get the Syncltem's format.

getKey
public SyncItemKey getKey ()

Called to get the Syncltem's key (i.e., unique identifier).

getParentKey
public SyncItemKey getParentKey ()

Called to get the Syncltem's parent key.

getState
public char getState()

Called to get the Syncltem's state.

13

-

ol

14

funambol

Declaration

Description

Declaration

Description

Declaration

Description

Declaration
Description

Parameters

Declaration
Description

Parameters

Declaration
Description

Parameters

getSyncSource
public SyncSource getSyncSource ()

Called to get the Syncltem's SyncSource.

getTimestamp
public Timestamp getTimestamp ()

Called to get the Syncltem's timestamp.

getType

public String getType ()

Called to get the type of the Syncltem's content.

setContent
public void setContent (byte[] content)
Called to set the Syncltem's content.

content — the content to set.

setFormat
public void setFormat (String format)
Called to set the Syncltem's format.

format — the format to set.

setState
public void setState(char state)
Called to set the Syncltem's state.

state — the state to set.

DS SERVER SYNCSOURCE API

DS SERVER SYNCSOURCE API

Declaration
Description

Parameters

Declaration
Description

Parameters

setTimestamp

public void setTimestamp (Timestamp timestamp)
Called to set the Syncltem's timestamp.

timestamp — the timestamp to set.

setType
public void setType (String type)
Called to set the type of the Syncltem's content.

type — the type to set.

-

ol

funambol

15

I

funambol

Resources

16

DS SERVER SYNCSOURCE API

This section lists resources you may find useful.

Related Documentation

This section lists documentation resources you may find useful.

Funambol DS Server Documentation

The following documents form the Funambol DS Server documentation set:

Funambol DS Server Architectural Overview: Read this document for an overview of the
architecture.

Funambol DS Server Administration Guide: Read this guide to gain an understanding of
installation, configuration, and administration.

Funambol DS Server Developer’s Guide: Read this guide to understand how to develop
extensions to the server.

Funambol DS Server SyncSource API: This document.

Funambol DS Server Quick Start Guide: Read this guide to install and run a simple
demonstration of synchronizing PIM data using the Funambol DS Server.

Funambol DS Server Module Development Tutorial: Read this tutorial for instructions on
packaging, installing and testing modules.

	Overview
	Server Architecture
	Framework Layer Packages
	The Engine Package
	The SyncSource Interface
	MergeableSyncSource
	FilterableSyncSource
	AbstractSyncSource

	Related Classes
	SyncItem Interface
	SyncContext

	SyncSource
	addSyncItem
	beginSync
	commitSync
	endSync
	getAllSyncItemKeys
	getDeletedSyncItemKeys
	getInfo
	getName
	getNewSyncItemKeys
	getSourceURI
	getSyncItemFromId
	getSyncItemKeysFromTwin
	getType
	getUpdatedSyncItemKeys
	removeSyncItem
	setOperationStatus
	updateSyncItem

	MergeableSyncSource
	mergeSyncItems

	FilterableSyncSource
	getSyncItemStateFromId
	isSyncItemInFilterClause
	isSyncItemInFilterClause

	SyncItem
	getContent
	getFormat
	getKey
	getParentKey
	getState
	getSyncSource
	getTimestamp
	getType
	setContent
	setFormat
	setState
	setTimestamp
	setType

	Resources
	Related Documentation
	Funambol DS Server Documentation

