
Sync4j SyncServer Developer's Guide
July 28, 2003



Change History

Date Author Description Rev #
July 28, 2003 Stefano Fornari Initial revision 1.0
October 30, 2003 Stefano Fornari Added section on message processing pipeline 1.3

Page 2



Table of Contents
1. Introduction...........................................................................................................................4
1.1. Comments and Feedbacks................................................................................................4
2. Data Synchronization............................................................................................................5
2.1. Id Handling.........................................................................................................................5
2.2. Change Detection..............................................................................................................6
2.3. Modification Exchange.......................................................................................................6
2.4. Conflict Detection...............................................................................................................6
2.5. Conflict Resolution.............................................................................................................7
2.6. Slow and Fast Synchronization.........................................................................................7
3. The SyncML Initiative........................... .................. ................. .................. .................. .........9
4. Sync4j SyncServer High-level Architecture........................................................................10
4.1. Sync4j Framework...........................................................................................................11
4.1.1. Transport Layer........................... .................. .................. .................. .................. .........13
4.1.2. Application Layer.................. ................................... ................................... ..................13
4.1.3. The Synchronization Engine.........................................................................................13
5. The Synchronization Process.............................................................................................15
5.1. Preparation......................................................................................................................15
5.2. Modifications Detection....................................................................................................16
5.3. Synchronization.......................................... ........................... ............................ ..............18
5.4. Finalization.......................................................................................................................18
5.5. Synchronization Sequence Diagram...............................................................................18
6. Developing a SyncSource..................................................................................................21
6.1. The SyncSource Interface and Related Classes.............................. ............................... 21
6.1.1. Principal and Since Timestamp......................... ................. ................. ................ .........22
6.1.2. SyncItem.......................................................................................................................22
6.2. Sync4j SyncServer Engine Configuration........................................................................23
7. Configuring Sync4j and Sync4j Components.....................................................................24
7.1. Sync4j.properties.............................................................................................................24
7.2. J2EE deployment environment entries...................................... ......................... .............24
7.3. Server JavaBeans........................... .................. ................. .................. .................. .........25
7.3.1. The configuration path..................................................................................................25
7.3.2. Lazy Initialization........................... ................. .................. ................. .................. .........26
8. Message Processing Pipeline.............................................................................................27
8.1. Architecture......................................................................................................................27
8.2. Design..............................................................................................................................28
8.2.1. Overview.......................................................................................................................28
8.2.2. Class Diagram......................................... ............................ ........................... ..............29
8.2.3. PipelineManager Configuration....................................................................................29
8.2.4. Error Handling...............................................................................................................30
9. Error and Exception Handling.............................................................................................31
9.1. Sync4j Exception......................................... ........................... ........................... ..............31
9.2. Server Exception................................. ..................... ...................... ...................... ...........32
9.2.1. SyncML Exceptions................................................... ................................................... 32
9.3. Protocol Exception...........................................................................................................32
10. Sync4j Modules.......................................... ............................ ............................ ..............34
10.1. Building a Sync4j Module..............................................................................................34
10.2. Modules, SyncConnectors and SyncSource Types.......................................................35
10.2.1. Registering Modules, SyncConnectors and SyncSource Tyoes................................35
11. References and Resources............................................... ............................................... 37
11.1. References.................... ...................................... ...................................... ....................37
11.2. Resources......................................................................................................................37

Page 3



1. Introduction

This document is intended for developers who aim to develop synchronization services based on
Sync4j SyncServer 4.0.x.

1.1. Comments and Feedbacks
The Sync4j team wants to hear  from you! Please submit  your questions, comments,
feedbacks or testimonials to sync4j-users@lists.sourceforge.net.

Page 4



2. Data Synchronization

All mobile devices – handheld computers, mobile phones, pagers, laptops – need to synchronize their
data with the server where the information is stored. This ability to access and update information on
the fly is key to the pervasive nature of mobile computing. Yet, today, almost every device uses a
different technology for performing data synchronization.

Data synchronization is helpful in respect to many areas:

• Propagating updates between a growing number of applications
• Overcome the limitations of mobile devices and wireless connections
• Maximizing user experience while minimizing data access latency
• Keeping scalability of the IT infrastructure in an environment where the number of devices (clients)

and connections tends to increase considerably
• Understanding the requirements of mobile applications, providing the user experience that helps

and it is not an obstacle for mobile tasks.

Data synchronization is the process of making two
sets of data look identical (Figure 1). This involves
many concepts, the most important are:

• ID handling
• Change detection
• Modification exchange
• Conflict detection
• Conflict resolution 
• Slow and fast synchronization

2.1. Id Handling
At  a  first  look,  id  handling  seems  a  pretty
straightforward process and of no interest. Instead,
id  handling  is  an  important  aspect  of  the
synchronization process and it  is not trivial.  Each
piece of data is usually uniquely  identifiable by a
subset  of  its  content  fields;  for  example,  in  the
case of a contact entry, the concatenation of first
name and last name uniquely selects an entry in
your directory. In other cases, the id is represented
by a particular field specifically introduced for that purpose. This may be the case, for example, of a
Sales  Force  Automation  mobile  application,  where  an  order  is  identified  by  an  order  number  or
reference. The way an item id is generated is not determinable a priori and it is application and device
specific.
In an enterprise system, however, data is stored in a centralized database, shared by all users; each
single item is known by the system with a unique global id. In same cases, two sets of data (i.e. the

Page 5

Figure 1 - Data synchronization process



order on the client and the order on the server) represent the same information (the “order” made by
the customer) but they differ. What could be done to reconcile client and server ids in order to make
the information consistent? Many approaches can be chosen:

• Clients and server agree on a id scheme (a convention on how to generate ids must be defined
and used);

• Each client generates globally unique ids (GUIDs) and the server accepts client-generated ids;
• The server generates globally unique ids (GUIDs) and each client accepts those ids;
• Client and server generate their own ids and a mapping is kept between the two. Client side ids

are  called  Local  Unique  IDentifiers  (LUID)  and  server  side  ids  are  called  Globale  Unique
IDentifiers (GUID).  The mapping between local and global identifiers is referred as LUID-GUID
mapping.

2.2. Change Detection
Change detection is the procedure of identifying which data is changed since a particular point in time
(i.e. the last synchronization).  This is usually achieved making use of additional information such as
timestamps and state information. For example, a possible database enabled for an efficient change
detection is the one depicted in Table 1.

ID first name last name telephone state last_update

12 John Doe +1 650 5050403 N 2003-04-22 13:22

13 Mike Smith +1 469 4322045 D 2003-05-21 17:32

14 Vincent Brown +1 329 2662203 U 2003-05-21 17:29

Table 1 - A database enabled for efficient change detection

However,  sometimes  legacy  databases  do not  provide  the  information  needed  to  accomplish  an
efficient change detection. Therefore, the matter becomes more complicate and alternative methods
must be adopted (for instance, based on content comparison).

2.3. Modification Exchange
A key component  of a data synchronization  infrastructure is the way modifications are exchanged
between client and server. This involves the definition of a synchronization  protocol  that client and
server have to use to initiate and carry on a synchronization  session. In addition to the exchange
modification  method,  a synchronization protocol  must  also  define  a set  of supported  modification
commands. The minimal set of modification commands is represented by the following:

• Add
• Replace
• Delete

2.4. Conflict Detection
Let  us  suppose  two  users  synchronize  their  local  contact  database  with  a  central  server  in  the
morning, before going to the office. After syncing, they have exactly the same contacts on their PDAs.
Let us now suppose that they change the telephone number of the same “John Doe” entry, but for
some reason with a different number (maybe,  one of the two made a mistake). What will  happen
when the next morning they will synchronize again? Which one of the two new version of the John
Doe record should be taken and stored to the server? This condition is called a conflict and the server
has the duty of identifying and resolving it.
The simplest way to do detect a conflict is by the means of a “synchronization matrix” (Table 2).

Page 6



Database A
→

↓  Database
B

New Deleted Updated Synchronized/
Unchanged

Not Existing

New C C C C B

Deleted C X C D X

Updated C C C B B

Synchronize
d/Unchange

d

C D A = B

Not Existing A X A A X

Table 2 - The synchronization matrix

Because both users synchronize with the central database, we can consider what happens between
the  server  database  and  one  of  the  client  databases  at  a  time:  let's  call  Database  A  the  client
database and  Database B is the server database. The symbols in the synchronization matrix have
the following meaning:

X : nothing to do
A : item A replaces item B
B : item B replaces item A
C : conflict
D : delete the item from the source(s) containing it 

2.5. Conflict Resolution
Once a conflict arises and it is detected, a proper action must be taken. Different policies can be
applied:

• User decides: the user is notified of the conflict condition and decides what to do; this strategy, like
the following “Client wins” is a bit problematic in a server centric synchronization solution: each
user  may have the same right  to  modify  an item and one users  could not  be able to decide
whether his/her modification should win over the other ones.

• Client wins: the server silently replaces conflicting items with the ones sent by the client.
• Server wins: the client has to replace conflicting items with the ones from the server.
• Timestamp based: the last modified (in time) item wins
• Last/first in wins: the last/first arrived item wins
• Do not resolve

2.6. Slow and Fast Synchronization
There are many modes to carry on the synchronization process. The main distinction is between fast
and  slow synchronization.  A  fast  synchronization involves  only  the  items  changed since  the  last
synchronization between two devices. Of course, this is an optimized process that relies on the fact
that, some time in the past, the devices where fully synchronized; this way, the state at the beginning
of the sync operation is well known and sound. When this requisite is not true (because, for instance,
the mobile device has been reset and has lost the  timestamp of the last synchronization),  a  slow
synchronization has to be performed. In this case, the client sends its entire database to the server,
which compares it with its local database and returns to the client the modifications needed for it to be
up to date again.
Either fast and slow synchronization modes can be performed in one of the following manners:

• Client to server: the server updates its database with client modifications, but sends no server-side
modifications.

Page 7



• Server to client: the client updates its database with server modifications, but sends no client-side
modifications.

• Two-way:  client  and  server  exchange  their  modifications  and  both  databases  are  updated
accordingly.

Page 8



3. The SyncML Initiative

With the many devices available today and the different applications data synchronization applies to,
the need of a standard is evident. IT managers see the adoption of an industry standard as a way to
protect their investments in IT infrastructure and devices. Even if applications or mobile devices will
change  in  the future,  if  they speak the same  language,  servers  and legacy systems will  be only
slightly impacted.
The de-facto standard for data synchronization is called SyncML (Synchronization Markup Language)
which is now under the umbrella of the Open Mobile Alliance. 

SyncML is defined as follows:

• SyncML is a new industry initiative to develop and promote a single, common data synchronization
protocol that can be used industry-wide.

• SyncML is a specification for a common data synchronization framework and XML-based format
for synchronizing data on networked devices.

• SyncML is a protocol for conveying data synchronization operations.

SyncML is targeted to personal and enterprise needs and it is application-agnostic: it defines how to
establish,  carry  on  and  complete  a  data  synchronization  session  and  how  to  exchange  data
modifications and the commands to use. It does not specify, however, how to detect changes and
conflicts or how conflicts should be resolved. This is one of the areas where SyncML client and server
providers differentiate their offers.
SyncML has been designed to synchronize any type of data on different transport protocol (such as
HTTP, WSP, OBEX, etc.); types of data may include:

• Common personal data formats, such as vCard for contact information, vCalendar and iCalendar
for calendar, todo, and journal information

• Collaborative objects such as e-mail and network news
• Relational data
• XML (the Extensible Markup Language) and HTML documents
• Binary data, binary large objects, or “blobs”

To facilitate the adoption of the standard, SyncML initiative delivers:

• An architectural specification
• Two  protocol  specifications  (SyncML  representation  protocol  and  SyncML  synchronization

protocol)
• Bindings to common transport protocols
• Interfaces for a common programming language
• An openly available prototype implementation of the protocol

Page 9



4. Sync4j SyncServer High-level Architecture

Sync4j  SyncServer is designed with modularity and flexibility  in mind, being targeted to enterprise
applications. The main modules that build up Sync4j SyncServer are:

• The Sync4j Engine, which makes use of additional pluggable modules
• The Transport Layer module implements the transport specific binding of SyncML. In the case of

the HTTP protocol, it is represented by a J2EE web module. Other transports can have specific
implementation. 

• The SyncML module is responsible for the encoding/decoding of SyncML messages, as specified
by the representation specifications. 

• The  Protocol implements  the  SyncML synchronization  protocol,  which  describes  how SyncML
messages are combined to represent a correct synchronization session. 

• The  Services module  furnishes  many  horizontal  services  such  as  authentication,  security,
configuration, logging and so on. 

• The  SyncSources  are  the  means  Sync4j  SyncServer  can  integrate  with  external  and  legacy
systems.

Sync4j SyncServer is based on a rich programming framework that implements the most important
functionalities and features that the different modules provide. Not all  developers will have to deal
with every module; however, in the following sections the framework is described in more detail with
the purpose of helping the understanding of the inside aspects of Sync4j SyncServer and driving the
development of Sync4j SyncServer extensions.

Page 10



4.1. Sync4j Framework
The Sync4j Framework architecture is conceptually divided in layers (Figure 2).

The bottom layer is a framework that implements and provides protocol implementation, horizontal
services and the the synchronization engine interface on top of which the transport and application
layers are developed. The application layer can be further divided in client and server, where server
indicates the software that accepts and processes SyncML messages. 

The  server  relays  on  the  transport  layer  in  order  to  receive  messages  delivered  with  different
protocols such as HTTP, SMTP, OBEX, etc. In the current implementation of Sync4j SyncServer the
server is implemented as an EJB service deployable in a J2EE compliant application server. 
Client applications take advantage of the services provided by the framework in order to code and
decode SyncML messages and to send and receive SyncML messages on one of the supported
transport protocol.

The framework includes many packages, the most important ones are:

• sync4j.framework.core;
• sync4j.framework.config;
• sync4j.framework.engine;
• sync4j.framework.logging;
• sync4j.framework.protocol;
• sync4j.framework.security;
• sync4j.framework.server.

sync4j.framework.core implements  the  block  that  in  Figure  2 is  called  SyncML and  groups  the
foundation classes used to represent a SyncML message. This module allows an easy translation of
a XML stream into an objects tree, which is more manageable from a programming point of view.
Vice versa,  an object  representing a message can be easily converted in the corresponding XML
representation. The classes of the framework are responsible for checking that a given message is a
valid  SyncML message.  Note that  this  validity  check guarantees only that  the XML structure can
really represent a message, regardless of the context in which the message is processed. The scope
of this check is to verify that the representation rules are all respected.

Page 11

Figure 2 - Sync4j SyncServer Framework architecture

 

Framework layer 

SyncML Protocol Services Engine 

Transport layer  

Application layer  

Client 

Server 



A SyncML communication is a sequence of correlated messages that must follow additional rules,
dictated as well by the specification of the protocol. For instance, consider the following message:

<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1028886155551</SessionID>
<MsgID>2</MsgID>
<Target>
<LocURI>URI:2002</LocURI>
</Target>
<Source>
<LocURI>http://www.sync4j.org/sync4j</LocURI>
</Source>
</SyncHdr>
</SyncML>

It is not a valid SyncML message in any context because it does not contain a <SyncBody> tag. 

Consider the following instead:

<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1028886155551</SessionID>
<MsgID>2</MsgID>
<Target>
<LocURI>URI:2002</LocURI>
</Target>
<Source>
<LocURI>http://www.sync4j.org/sync4j</LocURI>
</Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>5</CmdID>
<MsgRef>1</MsgRef>
<CmdRef>3</CmdRef>
<Cmd>Sync</Cmd>
<TargetRef>db1</TargetRef>
<SourceRef>db1</SourceRef>
<Data>405</Data>
</Status>

<Add><CmdID>3</CmdID>
<NoResp/>
<Meta><Type xmlns='syncml:metinf'>...</Type></Meta>
<Item>
<Target>
<LocURI>item1</LocURI>
</Target>
<Source>
<LocURI>item1</LocURI>
</Source>
<Data>some data </Data>
</Item>
</Add>
</SyncBody>
</SyncML>

Even if it follows the representation rules, it is valid only in the case a previous initialization was made
and the client requested the synchronization  of the database  db1. The package in charge of those
aspects is sync4j.framework.protocol.

sync4j.framework.config is  a  utility  module  used  to  deal  with  the  server  and  additional  modules
configuration. The Sync4j configuration architecture will be described later in this document.

The  two  packages  sync4j.framework.security and  sync4j.framework.logging represent  the  module
that in Figure 2 is called  Services. They implement logging and security services. Note that, for the

Page 12



security aspects,  Sync4j SyncServer adheres to the Java Authentication and Authorization Service
(JAAS) delivered with the JDK 1.4. It is therefore possible to develop a proprietary authentication and
authorization policy, configuring the system to use it instead of the standard module.

A  package  that  plays  an  important  role  in  the  Sync4j  SyncServer  architecture  is
sync4j.framework.engine.  It  provides  a  basic  interface  for  a  synchronization  engine,  allowing a
pluggable  architecture  for  customized engines.  Generally  speaking,  the process  of  receiving  and
interpreting a synchronization message and the process of updating the data sources and producing
the modifications for the client are distinct processes. They can also be applied independently one
from the other.  For example,  from the synchronization  point  of  view it  does not  really  matter  if  a
synchronization request came from a SyncML message or a simple HTTP request. In the same way,
from the protocol point of view, it does not really matter which conflict resolution the synchronization
engine  will  adopt.  With this  pluggable  architecture,  the business  logic  of  the protocol  and of  the
synchronization can be developed and extended separately (without modifying the server or the other
modules) to meet at best the requirements. 

The last package,  sync4j.framework.server includes common classes for the development of server
application and can be used to extend the standard Sync4j SyncServer implementation.

As a developer, you might be interested in modifying one or more of the above components, but you
are not  forced  to  do it.  Sync4j  SyncServer  is  a full  featured SyncML synchronization  server  and
provides a concrete implementation of the framework. However, flexibility and openness is the key in
enterprise deployment: Sync4j SyncServer allows you to customize and extend most of its features, if
you need it.

In the following sections, we are going to tell more about each single framework layer.

4.1.1. Transport Layer
This  layer  implements  the  support  for  the  various  transport  protocols  SyncML can  be  bound to.
Currently, Sync4j SyncServer supports only the HTTP protocol,  which is the most widely transport
protocol  used  by  the  SyncML  clients  on  the  market.  Other  protocols  might  be  added  in  future
releases.

4.1.2. Application Layer
sync4j.server provides a basic structure for implementing a SyncML server.
In Sync4j SyncServer, the server module is implemented as an Enterprise Java Bean that can be
deployed into any J2EE 1.3 compliant application server. Behind this choice lay the following factors:

 decoupling  between  the  transport  protocol  and  the  synchronization  logic  is  pivotal  in
enterprise deployments;

 application servers provide many out-of-the-box facilities and services that should otherwise
be  redeveloped  (i.e.  connection  management,  thread  management,  security,  scalability,
availability, reliability), simply reinventing the wheel;

 J2EE it is a widely accepted standard in enterprises IT infrastructure;
 reusing the existing application server infrastructure simplifies management and deployment.

4.1.3. The Synchronization Engine
A synchronization server is not helpful without synchronization logic, such as the set of rules followed
to:

 identify the sources and the destinations of data to be synchronized;
 identify what data needs to be updated/added/deleted
 determine how updates must be applied;
 detect conflicts;
 resolve conflicts.

Page 13



In other words, the synchronization engine is the core of a data synchronization server.

Sync4j  SyncServer  allows  developers  to plug in  their  own implementation  of  the  synchronization
engine. Therefore, developers can extend the basic behavior in order to meet their own requirements.
Developers  can  even  completely  substitute  the  default  implementation  with  a  custom  engine
developed from scratch.
This brings a flexible and modular architecture, easier to reuse, extend and maintain.
The basic framework interfaces and classes are grouped in the package sync4j.framework.engine. 

Since the synchronization process is the core of the synchronization engine, it is described in more
detail in the following dedicated section.

Page 14



5. The Synchronization Process

The synchronization  process  is driven by the  synchronization  engine,  which in turn is  a concrete
implementation of the interface sync4j.framework.engine.SyncEngine.

The synchronization process is accomplished in three steps:

1. Preparation
2. Synchronization
3. Finalization

The  Sync4j  SyncServer  engine goes  through  these  steps  and  coordinates  the  execution,  but
delegates most of the synchronization logic to an auxiliary class, implementation of the SyncStrategy
interface.

As described before, two types of synchronization process are possible: slow and fast.
In  a  slow  synchronization,  the  sources  to  be  synchronized  must  be  fully  compared  in  order  to
reconstruct the right image of the data on both connection endpoints. The way the sets of items are
compared is implementation specific and can vary from comparing just the item keys or the entire
content of a SyncItem. In fact, in order to decide if two sync items are exactly the same or some fields
have changed, all fields might require a comparison.
A slow sync is prepared by calling prepareSlowSync(...) of the SyncStrategy object.

In a fast synchronization,  the sources are queried only for new, deleted or updated items since a
given point in time. In this case, the status of the items can be checked in order to decide when a
deeper comparison is necessary.
A fast sync is prepared by calling prepareFastSync(...) of the SyncStrategy object.

prepareSlowSync(...)  and prepareFastSync() require an additional  java.security.Principal parameter
in input. The meaning of this parameter is implementation specific, but as a general rule, it is used to
operate on the data belonging to a given entity such as a user, an application, a device, etc.

The following sections describe in more detail each phase of the synchronization process and other
key aspects of the synchronization engine architecture. The section 5.5 puts all the pieces together,
showing and describing the sequence diagram of the synchronization process.

5.1. Preparation
The preparation phase is the process of analyzing the differences between two or more sources of
data (called  SyncSources) with the goal of obtaining  a list  of sync operations that,  applied  to the
sources involved in the synchronization, will make the databases look identical (Figure 3).

Page 15



5.2. Modifications Detection
Modifications  detection  is  based  on  the  sets  of  items  represented  in  Figure  4,  applying  the
modifications matrix of Table 3.

A – Items belonging to source A (as known via LUID-GUID mapping)
B – Items belonging to source B
Am – Modified items belonging to source A
Bm – Modified items belonging to source B
AmBm – Items modified either in source A and B (intersection between Am and Bm)
(A-Am)Bm – Items unmodified in A, but modified in B
Am(B-Bm) – items unmodified in B, but modified in A

Note that A is the server view of the A source: it contains the items mapped in the server as they  are
defined in the LUID-GUID mapping. If, for example, the client sends a new item that has never been
mapped, this item will be in Am, but not in A. In order to be sure that the new item is not equal to
some existing item in B, it must be looked up in B. If an item in B represents the same item as in Am,
A is virtually augment of such item, so that at the end, Am will be a sub-set of A.

Page 16

Figure 3- Preparation phase

Sync preparation

A

B

C

- Add item1 to SourceA
- Delete item2 from 
SourceA, SourceB
- Add item10 to SourceC
- Update item5 in 
SourceB, SourceC

Figure 4 - Synchronization items sets

BA
Am

Bm

(A-Am)Bm
AmBm

Am(B-Bm)



Another important aspect to point out is that the entire data sets A and B can be considerably big.
Therefore, when possible, it is important to deal with the smallest possible sets of items instead of
doing a full item-per-item comparison.

The preparation phase is slightly different depending on the type of the synchronization. In the case
of a slow synchronization, all items in the sources must be compared looking for differences that will
be translated into synchronization operations.  This  type of process does  not depend on previous
synchronizations and, in fact, it is used to fully recreate a database as if no synchronizations have
ever taken place. This is achieved resetting the LUID-GUID mapping before starting the modification
detection process. 
On the contrary, when a fast synchronization is performed, it is assumed that the involved sources
rely  on  a  previous  data  synchronization,  so  that  only  the  changes  since  the  time  of  the  last
synchronization need to be considered.

The algorithm used in the preparation phase is as follows:

Given a set of sources A, B, C, D, etc, the synchronization process takes place between two sources
at a time: A is first synchronized with B, then AB with C, then ABC with D and so on.
Given the sources to be compared, suppose A and B, the goal of the algorithm is to produce an array
of SyncOperation objects, in which each element represents a particular synchronization action, i.e.
create the item X in the source A, delete the item Y from the source B, etc. Sometimes, it is not
possible to decide the action to perform, thus a  SyncConflict operation is used. A conflict might be
solved by something external the synchronization process, for instance by a user action. In order to
create the SyncOperation[] array, each item in the source A is compared with each item in the source
B (to be intended as the selected items depending on the synchronization type). 

To determine which operation should be performed the Synchronization matrix defined above is used.
We report the table here again for the sake of simplicity.

Database A
→

↓  Database
B

New Deleted Updated Synchronized/
Unchanged

Not Existing

New C C C C B

Deleted C X C D X

Updated C C C B B

Synchronize
d/Unchange

d

C D A = B

Not Existing A X A A X

Table 3 - Synchronization matrix

Where:
A : item A replaces item B
B : item B replaces item A
C : conflict
D : delete the target item
X : do nothing

Initially, items are compared based on a subset of the information they contain called  key (in the
synchronization  engine  it  is  called  SyncItemKey).  It  is  responsibility  of  the  SyncSource to  create
proper  and  unique  keys  for  each  item.  The  SyncItemKey is  stored in  the  SyncItem and  can  be
obtained  calling  getKey().  The  comparison  is  accomplished  by  the  method  equals() of  the
SyncItemKey object. 

Page 17



When the SyncStrategy performs a sync preparation, it returns the operations that have to be applied
to  the  sources  involved,  in  order  to  make  them look  equal.  From a  coding  point  of  view,  those
operations are represented by SyncOperation objects, which incapsulate the interested items and the
operation itself.

5.3. Synchronization
The synchronization step is the phase where the sync operations prepared in the previous step are
executed. Executing a  SyncOperation means applying the required modification to the sync source
involved. 
For example, the SyncOperation represented by:

operation: new
item A: ITM0040102001  ← (the item key)
item B: null

results in the addition of item B to source B. Instead, if the operation is:

operation: new
item A: null
item B: ITM0376488440

The item B will be added to source A. The following combination will result in a conflict:

operation: new
item A:  ITM0040102001
item B:  ITM0040102001

The synchronization phase is implemented in the sync(SyncOperation[]) method of SyncStrategy.

5.4. Finalization
The third and last step is intended for cleaning up purposes.

5.5. Synchronization Sequence Diagram
The sequence of operations that takes place during a fast synchronization is depicted in  Figure 5,
which serves as a guide for the following description.

The  SyncEngine object drives the execution of all steps in its  sync() method, where the requested
sources are scanned for modified items. SyncSourceA and SyncSourceB represent the two  sources
involved in the synchronization process; generally,  one source is the client view of the database,
whilst the other source is the server view of the same data source.

First  of  all,  SyncEngine calls  SyncStrategy.prepareSync(SyncSource[]) which  returns  an  array  of
SyncOperation.  Here,  the  synchronization  engine  has  the  opportunity  to  further  processing  the
operations returned. For example, at this level the engine can decide how to solve conflicts.

After preparation and additional operation processing, the engine is ready to fire the execution of the
real  synchronization.  Again,  it  performs the operation delegating the task to the  sync() method of
SyncStrategy. 

Finally, SyncStartegy.endSync() is used to terminate the process.

The figure shows only the main tasks that SyncStrategy performs. First of all, it queries source A and
B about which items have changed since the last synchronization and collects all of them in  two lists,
one for source A's items and one for source B's items. At this point, SyncStrategy is ready to compare
those  two  sets  of  items  and  create  the  SyncOperation[] array.  This  is  achieved  by  calling
checkSyncOperation(SyncItem[], SyncItem[]) where the rules described in the sections above and in
the synchronization matrix are applied.

Page 18



Note  that  the  SyncEngine implemented  in  Sync4j  SyncServer  makes  use  of  the  synchronization
strategy  object  in  the  generic  form  represented  by  the  interface  SyncStrategy.  The  concrete
implementation is configurable in the  Sync4j.properties configuration file. Therefore, if you want or
need to implement your own synchronization strategy, you can easily plug it into Sync4j SyncServer
just modifying that file.

Page 19



Page 20

Figure 5 - Synchronization sequence diagram

SyncEngine SyncStrategy SyncSourceA SyncSourceB

prepareSync(SyncSource[])

getNewItems()

getUpdatedItems()

getDeletedItems()

Item[]

Item[]

Item[]

getNewItems()

getUpdatedItems()

getDeletedItems()

Item[]

Item[]

Item[]

for each item

checkSyncOperation(itemA, itemB)



6. Developing a SyncSource

A SyncSource is the means a set of data made available to Sync4j SyncServer for synchronization.
Therefore, in order to synchronize any type of data (files, database tables, calendar events and so
on), there must be a proper SyncSource able to extract and store the data from and to the real data
store. 
Goal of Sync4j SyncServer is to provide a collection of SyncSources for the most common uses (i.e.
files),  but  new SyncSources can be independently  developed and plugged in the synchronization
engine  so  that  Sync4j  SyncServer  will  be  able  to  process  synchronization  requests  targeted  to
virtually any data source.

6.1. The SyncSource Interface and Related Classes
The  core  of  the  SyncSource  architecture  is  the  interface
sync4j.framework.engine.source.SyncSource. This interface does not make any assumption on the
type of data being synchronized, so that its concrete implementations are completely free to access
the storage they prefer.

A SyncSource is identified by a  name and a  sourceURI; the former  represents  a domain specific
name, the latter is the URI that a SyncML client must specify in order to synchronize this particular
SyncSource. Note that they must be both unique.
A SyncSource is also associated to a type, in the form of a mime type that represents the kind of data
handled by the source.

The most important methods defined by the SyncSource interface are:

method description

getUpdatedSyncItems Called to retrieve the updated SyncItems for the given principal since
the given point in time.

getUpdatedSyncItemKeys Called to retrieve the SyncItemKey of the updated items for the given
principal since the given point in time.

getNewSyncItems Called to retrieve the new SyncItems for the given principal since the
given point in time.

getNewSyncItemKeys Called to retrieve the SyncItemKey of the new items for the given
principal since the given point in time.

getDeletedSyncItems Called to retrieve the deleted SyncItems for the given principal since
the given point in time.

getDeletedSyncItemKeys Called to retrieve the SyncItemKey of the deleted items for the given
principal since the given point in time.

getAllSyncItems Called to retrieve all the SyncItems for the given principal since the
given point in time.

setSyncItem/s Called to insert or update the given item(s).

Page 21



method description

removeSyncItem/s Called to remove the given item(s).

Table 4 - SyncSource methods

When a synchronization requests reaches the engine, Sync4j SyncServer looks for a source whose
sourceURI  matches  the  requested  URI  and  computes  the  synchronization  analysis  calling  the
methods defined above.

6.1.1. Principal and Since Timestamp
SyncSource methods usually require two input parameters in order to retrieve the items:

• principal (of type java.security.Principal) and 
• since (of type java.sql.Timestamp). 

A principal represents any entity the data can be associated to. A principal is usually represented by a
user id, but it may be something different (like a device or a client agent). The principal is used to limit
the manipulation to the data related to the given entity, such as the contacts of a given user. If this
parameter  is null,  all  items in the datastore are considered for synchronization,  regardless of  the
principal they belong to.
In Sync4j SyncServer, a principal is composed of a userid and a deviceid, because the same user
may make use of different devices.

The  since  timestamp  represents  the  point  in  time  of  the  last  synchronization.  It  is  used  in  fast
synchronization to get the changed items since the last synchronization request. 

In case of slow sync, getAllItems() is called instead of get(Updated/New/Deleted)Items().

6.1.2. SyncItem
Items  returned  by  a  SyncSource  are  encapsulated  in  sync4j.framework.engine.SyncItem objects.
SyncItem is a Java interface that the developer can implement in order to meet specif requirements.
Sync4j  SyncServer  provides  a  standard  implementation  of  a  SyncItem  by  the  class
sync4j.framework.engine.SyncItemImpl. SyncItem defines the following methods:

method description

getKey Returns the item key.

getState Returns the item state.

setState Sets the item state.

getProperties Returns all item properties.

setProperties Sets all item properties.

getProperty Returns a specific item property.

setProperty Sets a specific item property.

getPropertyValue Returns a specific item property value.

setPropertyValue Sets a specific item property value.

getSyncSource Returns the SyncSource the item belongs to.

The content of an item is stored in sync4j.framework.engine.SyncProperty objects which represent a
name-value pair. This suits almost any data representation requirements in a data synchronization
context.

Page 22



Two  standard  properties  are  defined  and  used  by  Sync4j  SyncServer:  BINARY_CONTENT and
TIMESTAMP. 
BINARY_CONTENT is intended to store an item in a raw binary form. This is used,  for instance,
when the item is treated as a monolithic object identified only by the item key. No content parsing is
implemented in order to identify fields and data.
TIMESTAMP  contains  the  timestamp  of  the  last  change  of  the  item  state  and  it  is  used  in  the
synchronization process, in order to determine the operation to be performed on the sources.

IMPORTANT: when a sync source creates SyncItems, it must always provide a value for at least  the
two properties BINARY_CONTENT and TIMESTAMP.

6.2. Sync4j SyncServer Engine Configuration
To make a SyncSource available to Sync4j SyncServer, it must be registered inserting a row in the
sync4j_sync_source  database table. This table binds the source URI to the bean implementing the
SyncSource. For example, the test sync source might be configured as follows:

URI config

test com/funambol/Sync4j/engine/source/TestFileSystemSource.xml

The sources registered in sync4j_sync_source are loaded and initialized at engine startup. 

The specified server bean configuration is a configuration file that must be available as prescribed by
the configuration architecture (see later).

Page 23



7. Configuring Sync4j and Sync4j Components

One of the Sync4j SyncServer design goal is to provide a framework that can be used to implement
any kind of synchronization service, extending existing modules or plugging in new modules. All this
configuration  info  is  easily  accessible  and  editable,  with  the  aim of  avoiding  complex  and  huge
configuration files.

Sync4j uses three configuration techniques:

• Sync4j.properties
• J2EE deployment environment entries
• Server JavaBeans

In the following sections these three types of configuration are described in details.

7.1. Sync4j.properties
This is the main Sync4j SyncServer configuration file, because it is used to initialize the engine. It is a
standard  properties  file,  read  at  engine  initialization  time  so  that  the  engine  class
(sync4j.server.engine.Sync4jEngine) can be instantiated with the properties needed to bootstrap. See
the Sync4j SyncServer administration guide for a list of all possible properties and their meanings.

7.2. J2EE deployment environment entries
A standard way to configure J2EE components is using EJB and WAR environment entries. In Sync4j
SyncServer, the session EJB SyncBean is the first component activated when a request comes in to
the server. Therefore, it must be configured with the minimal information required to start the Sync4j
SyncServer engine. At this level the following parameters are specified:

Entry Description Default

syncengine/factory/bea
n

The name of the sync engine factory
bean to use. Changing this value, you
can  make  SyncBean  processing
requests with your own SyncEngine.

sync4j.server.engine.Sync4jEngineFactory

server/config_uri URI that points to Sync4j.properties. file://{sync4j-path}/config/Sync4j.properties

server/config_path The config path for server JavaBeans. file:///{Sync4j-path}/config/

The way SyncBean and Sync4jEngine interact is depicted in Figure 6.

SyncBean  uses  its  minimal  configuration  to  create  the  SyncEngineFactory and  set  the  engine
configuration read from the given server/config_uri environment entry. Later, when a new SyncEngine
is needed, Sync4jEngineFactory creates the  Sync4jEngine  object  with the configuration previously
set.

Page 24



7.3. Server JavaBeans
As seen in the previous sections,  some components are configured as  server JavaBeans. Server
JavaBeans  are  JavaBeans  used  server-side.  The  idea  is  to  store  a  bean  configuration  as  the
serialized form of the bean itself. This way, a bean can be instantiated, configured and serialized to
persist its configuration. Later, the bean can be deserialized in a properly configured instance. 

However, it would not make sense to force the bean to be instantiated, configured and serialized any
time its configuration changes. To solve this problem, Sync4j SyncServer makes use of the standard
java facility to serialize objects into XML (and to deserialize them from XML). This is achieved by the
means of the classes java.beans.XMLEncoder and java.beans.XMLDecoder. Since configuration files
created with such encoder/decoder are easy to use, read and write, they can be created and modified
manually with a simple text editor, without the need of a dedicated GUI. An additional advantage of
this approach is that server JavaBeans are not requested to implement java.io.Serializable because
XMLEncoder does not require it.
This is an example of a server JavaBean:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.1_01" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.server.store.PersistentStoreManager">
  <void property="jndiDataSourceName">
    <string>java:/jdbc/sync4j</string>
  </void>
  <void property="stores">
   <array class="java.lang.String" length="2">
     <void index="0">
      <string>sync4j.server.store.SyncPersistentStore</string>
     </void>
     <void index="1">
      <string>sync4j.server.store.EnginePersistentStore</string>
     </void>
   </array>
  </void>
 </object>
</java>

In  order  to  help  server  JavaBeans  handling,  Sync4j  SyncServer  uses  the  factory  class
sync4j.framework.tools.beans.BeanFactory,  which in turn makes use of a customized class loader;
the class loader handles configuration files in a so called  config path, in the same way  a common
class loader handles classes in a classpath.

7.3.1. The configuration path
Server JavaBeans are looked for in the configuration path, which is analogous to the class path for
classes  lookup.  This  is  implemented  reading  the  serialization  files  from  a  custom  class  loader,

Page 25

Figure 6 - SyncBean and SyncEngine Configuration 

SyncBean
●server/factory/bean
●server/config_uri

Sync4j.properties Sync4jEngine

Sync4jEngineFactorynewInstance()

configure(conf)

newInstance(conf)



sync4j.framework.config.ConfigClassLoader. This may or may not make use of a parent classloader
and can be configured with one or more URIs. In Sync4j SyncServer 4.0.x, only one directory is used
as config path as specified by the server/config_path SyncBean's environment entry. 

7.3.2. Lazy Initialization
When  a  bean  is  deserialized  from  its  XML  form,  the  classloader  that  loads  the
serialization  file  calls  first  the  empty  constructor  and  then  sets  the  bean  properties
values using the setXXX() methods provided by the class. However, some classes need
additional  operations  to  properly  initialize  (after  setXXX()  methods  are  called).  To
support  this  lazy  initialization approach,  these  classes  can  implement
sync4j.framework.tools.beans.LayInitBean,  which  defines  a  separate  init() method.
When  Sync4j  SyncServer  loads  a  LazyInitBean,  after  the  bean  instantiation  (or
deserialization), it calls its init() method, giving the bean the opportunity to complete its
initialization.

Page 26



8. Message Processing Pipeline

Goal  of  the message processing pipeline is to have a hook for adding additional  processing and
manipulation of the messages exchanged between the server and the client.
The kind of processing that is performed in the pipeline is a message level processing, such as the
manipulation of the message elements. Possible applications are:

• Encoding/decoding of item content
• Item filtering
• Item ordering
• Message decoration (adding/removing elements on a custom basis)

This  section  describe  the  architecture  and  the  design  of  the  message  processing  pipeline
implemented in Sync4j SyncServer.

8.1. Architecture
The idea behind the message processing pipeline is to be able to modify both incoming and outgoing
messages. In the former case, we want to be able to manipulate the message before it goes into the
sync engine; instead, in the latter, we want to be able to change the message returned by the sync
engine before send it to the client.

This is achieved with two different pipelines as outlined in Figure 7.

The input and output pipelines are constructed and managed by a Pipeline Manager  component,
which  is  configured  with  the  list  of  components  that  build  up  the  input  pipeline  and  the  list  of
components that build up the output pipeline.
The duties of the Pipeline Manager are:

• Creating the input and output pipelines at initialization time

Page 27

Figure 7 - Pipeline architecture

SyncBean Sync Engine
Input Pipeline

Output Pipeline

Pipeline Manager



• Provide a way to start the input or output message processing
• Coordinating the execution of the components in the pipelines
• Keep the “message processing context”, which is the state of one pipeline execution

8.2. Design

8.2.1. Overview
As said, the processing of a message starts just before an incoming message is submitted to the
sync engine or just before an outgoing message is returned to the client. 
As described in the sequence diagram of Figure 8, the pipeline manager creates a new “instance” of
the input and output pipelines when a new synchronization session begins (so that in the ejbCreate()
method  of  SyncBean).  When  a  message  comes  from  the  client,  instead  of  being  processed
immediately by the sync engine, it is passed to the input pipeline for preprocessing. Each component
of the pipeline can then pre-process the message and apply its changes. The decorated message is
then processed by the sync engine.

Page 28

Figure 8 - Message processing pipeline sequence diagram



8.2.2. Class Diagram
The classes involved in the message processing pipeline architecture are depicted in  Figure 9 and
grouped under the package sync4j.framework.server.engine.pipeline. 

Each component of the input pipeline must implement the InputMessageProcessor interface; on the
other  hand, each component of the output pipeline must  implement  the  OutputMessageProcessor
interface. The PipelineManager class implements the pipeline manager, which is the component that
the  transport  layer  deals  with.  The  Pipeline  Manager  component  is  configured  setting  its
inputProcessors and  outputProcessors arrays  directly  in  the  server  java  bean  configuration  file.
postProcessMessage() and  preProcessMessage() are called to start  the processing  of messages.
The  message  being  processed  is  passed  to  the  processing  methods  as  a
sync4j.framework.core.Message object, so that a processor can easily modify it.  When one of those
methods is called, PipelineManager creates a new MessageProcessingContext and loops through the
(input|output)Processors arrays  calling  each  element's  (pre|post)ProcessMessage() passing  the
context and the message as parameters.

8.2.3. PipelineManager Configuration
The  PipelineManager is  configured as a common Sync4j  SyncServer server  bean where the two
properties inputProcessors and outputProcessors must be set as array properties accordingly to the
java.beans.XMLDecoder specifications.

Here is an example of a PipelineManager configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.0" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.engine.pipeline.PipelineManager">
  <void property="inputProcessors">
    <array class="sync4j.framework.engine.pipeline.InputMessageProcessor" length="2">
     <void index="0">

Page 29

Figure 9 - Message processing pieline class diagram



       <object class="sync4j.framework.engine.pipeline.InputLogProcessor"></object>
     </void>
     <void index="1">
       <object class="com.funambol.syncserver.pipeline.ItemDecoder">
         <void property="type">
           <string>text/vcard</string>
         </void>
         <void property="version">
           <string>3.0</string>
         </void>
       </object>
     </void>
    </array>
  </void>
  <void property="outputProcessors">
    <array class="sync4j.framework.engine.pipeline.OutputMessageProcessor" length="1">
      <void index="0">
        <object class="com.funambol.syncserver.pipeline.ItemEncoder">
          <void property="type">
            <string>text/vcard</string>
          </void>
          <void property="version">
            <string>3.0</string>
          </void>
        </object>
      </void>
    </array>
  </void>
 </object>
</java>

8.2.4. Error Handling
Each processors  can throw a  sync4j.framework.core.Sync4jException in case of errors  during the
processing.  The  PipelineManager logs  the  error  condition  at  INFO  level  to  the  logger
sync4j.engine.pipeline and then carries on with the next pipeline component.

Page 30



9. Error and Exception Handling

This chapter describes the use of exceptions to handle error conditions at the different levels in the
layered architecture of Sync4j SyncServer. Simplifying the structure depicted in Figure 2 and focusing
on the execution flow of a SyncML request, we have the flow of Figure 10. 

The rule of thumb in handling error conditions is that when possible a SyncML message with an error
status code should be returned instead of other kind of errors (such as transport level errors). 
Like the picture suggests, only few types of exception should be thrown by the methods that cross the
layers boundaries. Those exceptions should be strongly related with the responsibility of the throwing
layer. However, inside the layer, other exception types can be defined and used as needed.
The following sections  describe the error handling at  each specific  layer and the meaning of  the
different exceptions used in Sync4j SyncServer and shown in Figure 11.

9.1. Sync4j Exception
Sync4jException is the base of most of the exceptions defined in Sync4j. It makes use of the new
Exception object provided by the JDK 1.4, which allows chaining an exception with the causing
exception. This functionality is very useful, because it allows to convert a low-level exception to an
exception that crosses the layer boundary, while keeping the root cause of the error.

Page 31

Figure 10 - Sync4j exception handling

SyncServer Engine

Transport Layer (web server)

ServerException

Server/Sync4jException

Protocol/RepresentationException

HTTP status code

SyncServer

Protocol



9.2. Server Exception
Sync4j  SyncServer and its extensions should only throw  ServerException exceptions.  This will
include the causing exception if the error condition is due to one of the underlying layers. In addition
to simply representing an error condition, ServerException stores also a status code associated to
the error.  This  is  particularly  helpful  when dealing with  exceptions  that  encapsulate  SyncML-level
errors such as the SyncML error codes. ServerExceptions should be let reach the transport layer
only when the error is in some way fatal, so that it is not possible to recover from it and produce a
proper SyncML response message. When possible, it is recommended to create a SyncML message
with a  <Status> element representing the error condition with a proper status code in its  <Data>
subelement; status codes are defined by the SyncML specifications in [1].

9.2.1. SyncML Exceptions
Each  SyncML  error  status  code  is  encapsulated  in  a  corresponding  exception,  for  example
NotImplementedException or  BadCGIScriptException.  All  these  exceptions  are  direct
subclasses of Sync4jException.

9.3. Protocol Exception
A protocol error can be of two types:

1. SyncML representation error
2. SyncML protocol error

SyncML  representation errors groups  the  errors  occurring  in  the  representation  of  a  SyncML
message: for example, when the XML document is not well formed, when there are parse or syntax
errors, or when, even if the message is a well formed XML content, it does not represent a SyncML
message (for example the <SyncHeader> element is missing). These are low level exceptions that
may make impossible returning a proper SyncML response containing the error status code. When
creating  the response SyncML error  message is  impossible,  the  exception  will  bubble  up  to  the
transport level and a transport specific error response will be returned to the client.

Page 32

Figure 11 - Exception hierarchy

sync4j.framework.core.Sync4jException

sync4j.framework.protocol.ProtocolException sync4j.framework.core.RepresentationException

sync4j.framework.server.error.ServerException

sync4j.framework.server.error.NotImplementedException sync4j.framework.server.error.BadGciScriptException...



SyncML protocol  errors groups errors  related to the  violation  of  the SyncML protocol  in  terms of
sequence of messages. Examples of these errors are the violations of the requirements mandated by
the SyncML specifications for the initialization or modifications message (see [2]).
Following the classification above, two different exception classes are defined in Sync4j:

1. core.framework.protocol.ProtocolExcepion
2. core.framework.core.RepresentationException

Page 33



10. Sync4j Modules

Sync4j  modules represent the means third party developers can extend the way Sync4j works.  A
module is a packaged set of files containing classes, configuration files, initialization SQL scripts and
so on, used by the installation procedure to embed the extensions into the Sync4j Enterprise Archives
(the J2EE ear).

For more information on how to install Sync4j modules see [3].

For beginners information on how to build a Sync4j module see [4].

10.1. Building a Sync4j Module
A Sync4j module is a jar package named following the convention:

<module-name>-<major-version>.<minor-version>.s4j

Where <module-name> is the name of the module without  spaces and with small  caps only and
<major/minor-version>  are  the  major  and  minor  version  numbers.  Changes  in  the  minor  version
number  must  be  backward-compatible,  whilst  changes  in  the  major  version  number  may  require
migration efforts.

The package must have the structure presented in Figure 12. 

lib/

modulename.jar

dependent1.jar

dependent2.jar

...

config/

config.properties

MySyncSource.xml

SomeOtherBean.xml

...

admin.war

meta-inf/

manifest.mf

install/

Page 34



lib/

install.xml

sql/

oracle

create_schema.ddl

drop_schema.ddl

init_schema.sql

postgresql

...

Figure 12 - Module package structure

In the figure, entries ending with a '/' represent directories and filenames in italic are given just as
examples (in a real package they will be replaced with real filenames). 
The module classes are packaged in a main jar file called <modulename>.jar. If this package requires
additional libraries, it must use the java extension mechanism to make them available (in particular,
depended libraries must be included in the Class-path manifest entry). 
Configuration  properties  files and bean configuration  files  are stored  under  the package directory
config, creating subdirectories as needed. 
The directory  install contains  install.xml, which is an Ant script,  called when the module  is being
installed;  this is the hook where a module developer can insert  module specific  installation  tasks.
Installation specific files can be organized in subdirectories under  install. If  the module requires a
custom database schema, the scripts to create, drop and initialize the database are stored under the
sql/<database> directory,  where  <database>  is  the  name  of  the  DBMS  as  listed  in  the
install.properties  file.  Finally,  the  exclude directory  is  used  to  store files  that  will  be used  by the
installation procedure, but that will not be included in final server ear.

10.2. Modules, SyncConnectors and SyncSource Types
As already stated, the module is a container for anything related to one or more server extensions.
Those extensions may include one or more SyncConnectors. A SyncConnector is an extension to the
server  intended  to  support  the  synchronization  of  a  particular  data  source.  The  Funambol's
SyncConnector  DB,  for  example,  provides  a  GUI  and runtime classes  for  the  synchronization  of
generic  data  stored  into  a  RDMS.  The  Sync4j  Foundation  module  provides  a  SyncConnector
FileSystem that allows to synchronize data stored in a directory of the file system. A key piece of
software grouped under the umbrella of the SyncConnector is the SyncSource type. A SyncSource
type  represents  the  template  from  which  a  real  SyncSource  can  be  created.  For  example,  the
FileSystemSyncSource type is the means the SyncServer  can synchronize  data stored in the file
system. However, it does not represents a particular instance of the SyncSource, therefore it does not
identify  a  particula  directory  to  syncrhronize.  To  synchronize  a  specific  directory  (for  instance  /
data/contacts) a real SyncSource must be created and configured with the wanted directory. Since
this is a guide for developers, you can think of a SyncSource type as a class and of a SyncSource as
an instance.

10.2.1. Registering Modules, SyncConnectors and SyncSource Tyoes
Modules, SyncConnectors and SyncSource types are registered filling the database tables: 

• sync4j_module for module information
• sync4j_connector for SyncConnector information
• sync4j_sync_source_type for SyncSource type information
• sync4j_connector_source_type for SyncConnector-SyncSource type associations
• sync4j_module_connector for module-SyncConnector association

Page 35



Note that the last two tables are used to create the hierarchy module-SyncConnector-SyncSource
Type.
As  an  example,  have  a  look  at  the  foundation  module  registration.  When  Sync4j  SyncServer  is
installed, the foundation module is installed too. It brings a SyncConnector called SyncConnector File
System, which, in turn, contains the SyncSource type FileSystemSyncSource (Figure 13).

This hierarchy is achieved with the following SQL commands:

1. SyncSource type registration:
insert into sync4j_sync_source_type(id, description, class, admin_class)
values(
 'fs-foundation','FileSystem SyncSource',
 'sync4j.foundation.engine.source.FileSystemSyncSource',
 'sync4j.foundation.admin.FileSystemSyncSourceConfigPanel'
)

2. module registration:
insert into sync4j_module (id, name, description)
values('foundation','foundation-1.0','Foundation ver.1.0');

3. SyncConnector registration:
insert into sync4j_connector(id, name, description, admin_class)
values('foundation','SyncConnectorFoundation','SyncConnector
Foundation','');

4. the SyncConnector Foundation belongs to the foundation-1.0 module:
insert into sync4j_module_connector(module, connector)
values('foundation','foundation');

5. the FileSystem SyncSource type (fs-foundation) belongs to the SyncConnector Foundation:
insert into sync4j_connector_source_type(connector, sourcetype)
values('foundation','fs-foundation');

Page 36

Figure 13 - Foundation Sync4j Module in the SyncAdmin tool



11. References and Resources

11.1. References
[1] SyncML Representation Protocol, version 1.1,

http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf
[2] SyncML Sync Protocol, version 1.1,

http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf
[3] Sync4j SyncServer 4.0 Administration Guide
[4] Sync4j SyncServer 4.0 Module Development Tutorial

11.2. Resources
[1] www.syncml.org
[2] Java Authentication and Authorization Service, Reference Guide, JDK 1.4.x documentation

Page 37


