
Sync4j SyncServer Developer's Guide
January 2005

Table of Contents
1. Introduction... 4
1.1. Audience.. 4
1.2. Comments and Feedbacks.. 4
2. Data Synchronization.. 5
2.1. Id Handling... 5
2.2. Change Detection.. 6
2.3. Modification Exchange.. 6
2.4. Conflict Detection.. 6
2.5. Conflict Resolution... 7
2.6. Slow and Fast Synchronization.. 7
3. The SyncML Initiative... 8
4. Sync4j SyncServer High-level Architecture.. 9
4.1. System Architecture... 9
4.2. SyncServer Architecture Overview.. 10
4.2.1. The Synchronization Engine... 12
4.3. The Execution Flow... 13
5. The Synchronization Process... 14
5.1. Preparation.. 15
5.2. Modifications Detection.. 15
5.3. Synchronization... 18
5.4. Finalization.. 18
5.5. Synchronization Sequence Diagram.. 18
6. Extending the SyncServer with Sync4j Modules.. 20
6.1. Building a Sync4j Module.. 20
6.2. Modules, SyncConnectors and SyncSource Types... 21
6.2.1. Registering Modules, SyncConnectors and SyncSource Types................................... 22
7. Developing a SyncSource.. 23
7.1. The SyncSource Interface and Related Classes... 23
7.1.1. Principal and Since Timestamp.. 24
7.1.2. SyncItem... 24
7.1.3. Twin Items.. 25
7.1.4. The SyncAdmin Configuration Panel.. 26
8. Configuring Sync4j and Sync4j Components.. 30
8.1. System Properties.. 30
8.2. Sync4j.properties... 30
8.3. Server JavaBeans... 30
8.3.1. The configuration path.. 32
8.3.2. Lazy Initialization.. 32
8.4. How to Configure a Standard Component... 32
8.5. How to Create a Custom Configurable Object... 32
8.6. How to Get a Configured Instance... 34
8.6.1. Tips and Tricks... 34
9. Customizing Message Processing.. 35
9.1. Overview.. 35
9.2. Preprocessing an Incoming Message.. 36
9.2.1. Creating an Input Synclet... 36
9.2.2. Configuring an Input Synclet... 37
9.3. Postprocessing an Outgoing Message... 37
9.3.1. Creating an Output Synclet... 38
9.3.2. Configuring an Output Synclet.. 38
10. References and Resources... 40
10.1. References... 40
10.2. Resources.. 40
Appendices... 41
Appendix A - Sync4j Interchange Formats... 41
SIF-C.. 41

Copyright (c) 2005-2006 Funambol - Page 2

SIF-E... 45
SIF-T... 47
SIF-N.. 49

Copyright (c) 2005-2006 Funambol - Page 3

1. Introduction

This document is intended for developers who aim to develop synchronization services based on
Sync4j 2.3 SyncServer.

1.1. Audience
This document is addressed to anybody wanting to extend the Sync4j platform or simply looking for
detailed information on the Sync4j architecture. This development guide gives a deep insight of the
server internals and design, providing guidance to anyone aiming to take advantage of the full range
of possibilities that the platform provides.

1.2. Comments and Feedbacks
The Sync4j team wants to hear from you! Please submit your questions, comments,
feedbacks or testimonials to sync4j-users@lists.sourceforge.net.

Copyright (c) 2005-2006 Funambol - Page 4

mailto:sync4j-users@lists.sourceforge.net

2. Data Synchronization

All mobile devices – handheld computers, mobile phones, pagers, laptops – need to synchronize their
data with the server where the information is stored. This ability to access and update information on
the fly is key to the pervasive nature of mobile computing. Yet, today, almost every device uses a
different technology for performing data synchronization.

Data synchronization is helpful in respect to many areas:

• Propagating updates between a growing number of applications;
• Overcome the limitations of mobile devices and wireless connections;
• Maximizing user experience minimizing data access latency;
• Keeping scalability of the IT infrastructure in an environment where the number of devices (clients)

and connections tends to increase considerably;
• Understanding the requirements of mobile applications, providing the user experience that helps

and it is not an obstacle for mobile tasks.

Data synchronization is the process of making two
sets of data look identical (Figure 1). This involves
many concepts, the most important are:

• ID handling
• Change detection
• Modification exchange
• Conflict detection
• Conflict resolution
• Slow and fast synchronization

2.1. Id Handling
At a first look, id handling seems a pretty
straightforward process and of no interest. Instead,
id handling is an important aspect of the
synchronization process and it is not trivial. Each
piece of data is usually uniquely identifiable by a
subset of its content fields; for example, in the
case of a contact entry, the concatenation of first
name and last name uniquely selects an entry in
your directory. In other cases, the id is represented
by a particular field specifically introduced for that purpose. This may be the case, for example, of a
Sales Force Automation mobile application, where an order is identified by an order number or
reference. The way an item id is generated is not determinable a priori and it is application and device
specific.
In an enterprise system, however, data is stored in a centralized database, shared by all users; each
single item is known by the system with a unique global id. In same cases, two sets of data (i.e. the
order on the client and the order on the server) represent the same information (the “order” made by

Copyright (c) 2005-2006 Funambol - Page 5

Figure 1 - Data synchronization process

the customer) but they differ. What could be done to reconcile client and server ids in order to make
the information consistent? Many approaches can be chosen:

• Clients and server agree on a id scheme (a convention on how to generate ids must be defined
and used);

• Each client generates globally unique ids (GUIDs) and the server accepts client-generated ids;
• The server generates globally unique ids (GUIDs) and each client accepts those ids;
• Client and server generate their own ids and a mapping is kept between the two. Client side ids

are called Local Unique IDentifiers (LUID) and server side ids are called Globale Unique
IDentifiers (GUID). The mapping between local and global identifiers is referred as LUID-GUID
mapping.

2.2. Change Detection
Change detection is the process of identifying which data is changed since a particular point in time
(i.e. the last synchronization). This is usually achieved making use of additional information such as
timestamps and state information. For example, a possible database enabled for an efficient change
detection is the one shown in Table 1.

ID first name last name telephone state last_update

12 John Doe +1 650 5050403 N 2003-04-22 13:22

13 Mike Smith +1 469 4322045 D 2003-05-21 17:32

14 Vincent Brown +1 329 2662203 U 2003-05-21 17:29

Table 1 - A database enabled for efficient change detection

However, sometimes legacy databases do not provide the information needed to accomplish an
efficient change detection. Therefore, the matter becomes more complicated and alternative methods
must be adopted (based on content comparison, for instance).

2.3. Modification Exchange
A key component of a data synchronization infrastructure is the way modifications are exchanged
between client and server. This involves the definition of a synchronization protocol that client and
server have to use to initiate and carry on a synchronization session. In addition to the exchange
modification method, a synchronization protocol must also define a set of supported modification
commands. The minimal set of modification commands is represented by the following:

• Add
• Replace
• Delete

2.4. Conflict Detection
Let's suppose two users synchronize their local contacts database with a central server in the
morning, before going to the office. After syncing, they have exactly the same contacts on their
PDAs. Let's now suppose that they change the telephone number of the same “John Doe” entry, but
for some reason with a different number (maybe, one of the two made a mistake). What will happen
when the next morning they will synchronize again? Which one of the two new versions of the John
Doe record should be taken and stored into the server? This condition is called conflict and the server
has the duty of identifying and resolving it.
The simplest way to do detect a conflict is by the means of a “synchronization matrix” (Table 2).

Copyright (c) 2005-2006 Funambol - Page 6

Database A →

↓ Database B

New Deleted Updated Synchronized/Unc
hanged

Not Existing

New C C C C B

Deleted C X C D X

Updated C C C B B

Synchronized/U
nchanged

C D A = B

Not Existing A X A A X

Table 2 - The synchronization matrix

Because both users synchronize with the central database, we can consider what happens between
the server database and one of the client databases at a time: let's call Database A the client
database and Database B the server database. The symbols in the synchronization matrix have the
following meaning:

X : nothing to do
A : item A replaces item B
B : item B replaces item A
C : conflict
D : delete the item from the source(s) containing it

2.5. Conflict Resolution
Once a conflict arises and it is detected, a proper action must be taken. Different policies can be
applied:

• User decides: the user is notified of the conflict condition and decides what to do; this strategy, like
the following “Client wins” is a bit problematic in a server centric synchronization solution: each
user may have the same right to modify an item and one user could not be able to decide whether
his/her modification should win over the other ones.

• Client wins: the server silently replaces conflicting items with the ones sent by the client.
• Server wins: the client has to replace conflicting items with the ones from the server.
• Timestamp based: the last modified (in time) item wins
• Last/first in wins: the last/first arrived item wins
• Do not resolve

2.6. Slow and Fast Synchronization
There are many modes to carry on the synchronization process. The main distinction is between fast
and slow synchronization. A fast synchronization involves only the items changed since the last
synchronization between two devices. Of course, this is an optimized process that relies on the fact
that, some time in the past, the devices where fully synchronized; this way, the state at the beginning
of the sync operation is well known and sound. When this requisite is not true (because, for instance,
the mobile device has been reset and has lost the timestamp of the last synchronization), a slow
synchronization has to be performed. In this case, the client sends its entire database to the server,
which compares it with its local database and returns to the client the modifications that it has to apply
to be up to date again.
Either fast and slow synchronization modes can be performed in one of the following manners:

• Client to server: the server updates its database with client modifications, but sends no server-side
modifications.

• Server to client: the client updates its database with server modifications, but sends no client-side
modifications.

• Two-way: client and server exchange their modifications and both databases are updated
accordingly.

Copyright (c) 2005-2006 Funambol - Page 7

3. The SyncML Initiative

With the many devices available today and the different applications data synchronization applies to,
the need of a standard is evident. IT managers see the adoption of an industry standard as a way to
protect their investments in IT infrastructure and devices. Even if applications or mobile devices will
change in the future, if they speak the same language, servers and legacy systems will be only
slightly impacted.
The de-facto standard for data synchronization is called SyncML (Synchronization Markup Language)
which is now under the umbrella of the Open Mobile Alliance.

SyncML is defined as follows:

• SyncML is a new industry initiative to develop and promote a single, common data
synchronization protocol that can be used industry-wide.

• SyncML is a specification for a common data synchronization framework and XML-based format
for synchronizing data on networked devices.

• SyncML is a protocol for conveying data synchronization operations.

SyncML is targeted to personal and enterprise needs and it is application-agnostic: it defines how to
establish, carry on and complete a data synchronization session and how to exchange data
modifications and the commands to use. It does not specify, however, how to detect changes and
conflicts or how conflicts should be resolved. This is one of the areas where SyncML client and server
providers differentiate their offers.
SyncML has been designed to synchronize any type of data on different transport protocol (such as
HTTP, WSP, OBEX, etc.); types of data may include:

• Common personal data formats, such as vCard for contact information, vCalendar and iCalendar
for calendar, todo, and journal information

• Collaborative objects such as e-mail and network news
• Relational data
• XML (the Extensible Markup Language) and HTML documents
• Binary data, binary large objects, or “blobs”

To facilitate the adoption of the standard, SyncML initiative delivers:

• An architectural specification
• Two protocol specifications (SyncML representation protocol and SyncML synchronization

protocol)
• Bindings to common transport protocols
• Interfaces for a common programming language
• An openly available prototype implementation of the protocol

Copyright (c) 2005-2006 Funambol - Page 8

4. Sync4j SyncServer High-level Architecture

Being targeted to enterprise applications, Sync4j SyncServer is designed with modularity and
flexibility in mind. The main modules that build up Sync4j SyncServer are:

• The Sync4j Engine, which is extensible with additional pluggable modules
• The Transport Layer module implements the transport specific binding of SyncML. In the case of

the HTTP protocol, it is represented by a J2EE web module. Other transports can have specific
implementation.

• The SyncML module is responsible for the encoding/decoding of SyncML messages, as specified
by the representation specifications.

• The Protocol implements the SyncML synchronization protocol, which describes how SyncML
messages are combined to represent a correct synchronization session.

• The Services module furnishes many horizontal services such as authentication, security,
configuration, logging and so on.

• The SyncSources are the means Sync4j SyncServer can integrate with external and legacy
systems.

Sync4j SyncServer is based on a rich programming framework that implements the most important
functionalities and features that the different modules provide. Not all developers will have to deal
with every module; however, in the following sections the framework is described in more detail with
the purpose of helping the understanding of the inside aspects of Sync4j SyncServer and driving the
development of Sync4j SyncServer extensions.

4.1. System Architecture
The system architecture of the SyncServer is shown in Figure 2: the transport and the business logic
(protocol handling) are separated in two distinct blocks so that they can be handled respectively (but
not necessarily) by a web application running in a J2EE web container and by an Enterprise Java
Bean running in a J2EE EJB container.

The web module implements the transport protocol (being OMA DM messages transported over
HTTP). The EJB/Synchronization Engine layer contains the real synchronization logic
implementation, which is built of many components. Both the web layer and engine components are
described in further details in the following sections.

Copyright (c) 2005-2006 Funambol - Page 9

Figure 2- System Architecture

Web AS

Sync4jServlet
Synchronization

Engine

4.2. SyncServer Architecture Overview
The SyncServer architecture is layered and modular (Figure 3).

Layers represent groups of functionality with well defined boundaries and communication interfaces.
They are:

• Transport layer (i.e. HTTP)
• Protocol layer (i.e. SyncML)
• Server layer (i.e. synchronization server)
• Application layer (i.e. customer care front end)

The transport layer is the door through which client messages reach the system. The current
implementation of the sync server implements the HTTP transport protocol and binding as defined by
the HTTP binding OMA DS specification. The system is designed so that other transport protocols
may be added in the future.

The protocol layer is responsible for the interpretation and handling of the SyncML protocol. It works
at both representation and protocol levels. This layer is designed so that other synchronization
protocols may be added in the future.

The server layer is the synchronization server implementation. The engine is entirely implemented as
java module that can easily wrapped into a J2EE based application by the means of the SyncBean
EJB. In this way, the server can be easily deployed on any J2EE compliant application server.

The application layer implements the way the synchronization server interacts with the external world.
In addition to be a full implementation of simple and commonly used components, this layer
implements also a framework used to extend the server in order to meet any application specific
needs.

The framework implements and provides services and abstractions used by the different layers to
implement the component they are built of. The most important services provided by the framework
are:

• Core SyncML representation and protocol
• Configuration framework
• Logging framework
• SyncML DS engine framework
• Security framework
• Commonly used utilities

Those services are implemented in many packages, of which, the most important are:

Copyright (c) 2005-2006 Funambol - Page 10

Figure 3 – DM Server layered architecture

Transport Layer

Server Layer

Protocol Layer

Application Layer
Fr

am
ew

or
k

• sync4j.framework.core;
• sync4j.framework.config;
• sync4j.framework.engine;
• sync4j.framework.logging;
• sync4j.framework.protocol;
• sync4j.framework.security;
• sync4j.framework.server.

sync4j.framework.core and sync4j.framework.protocol implement the block that in Figure 3 is called
Protocol and groups the foundation classes used to represent a SyncML message. This modules
allow an easy translation of a XML stream into an objects tree, which is more manageable from a
programming point of view. Vice versa, an object representing a message can be easily converted in
the corresponding XML representation. The classes of the framework are responsible for checking
that a given message is a valid SyncML message. Note that this validity check guarantees only that
the XML structure can really represent a message, regardless of the context in which the message is
processed. The scope of this check is to verify that the representation rules are all respected.
A SyncML communication is a sequence of correlated messages that must follow additional rules,
dictated as well by the specification of the protocol. For instance, consider the following message:

<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1028886155551</SessionID>
<MsgID>2</MsgID>
<Target>
<LocURI>URI:2002</LocURI>
</Target>
<Source>
<LocURI>http://www.sync4j.org/sync4j</LocURI>
</Source>
</SyncHdr>
</SyncML>

It is not a valid SyncML message in any context because it does not contain a <SyncBody> tag.

Consider the following instead:

<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1028886155551</SessionID>
<MsgID>2</MsgID>
<Target>
<LocURI>URI:2002</LocURI>
</Target>
<Source>
<LocURI>http://www.sync4j.org/sync4j</LocURI>
</Source>
</SyncHdr>
<SyncBody>
<Status>
<CmdID>5</CmdID>
<MsgRef>1</MsgRef>
<CmdRef>3</CmdRef>
<Cmd>Sync</Cmd>
<TargetRef>db1</TargetRef>
<SourceRef>db1</SourceRef>
<Data>405</Data>
</Status>

<Add><CmdID>3</CmdID>
<NoResp/>
<Meta><Type xmlns='syncml:metinf'>...</Type></Meta>
<Item>

Copyright (c) 2005-2006 Funambol - Page 11

http://www.sync4j.org/sync4j
http://www.sync4j.org/sync4j

<Target>
<LocURI>item1</LocURI>
</Target>
<Source>
<LocURI>item1</LocURI>
</Source>
<Data>some data </Data>
</Item>
</Add>
</SyncBody>
</SyncML>

Even if it follows the representation rules, it is valid only in the case a previous initialization was made
and the client requested the synchronization of the database db1.

sync4j.framework.config is used to deal with the server and additional modules configuration. The
Sync4j configuration architecture will be described later in this document.

The two packages sync4j.framework.security and sync4j.framework.logging implement logging and
security services. Note that, for the security aspects, Sync4j SyncServer adheres to the Java
Authentication and Authorization Service (JAAS) delivered with the JDK 1.4. It is therefore possible to
develop a proprietary authentication and authorization policy, configuring the system to use it instead
of the standard module.

A package that plays an important role in the Sync4j SyncServer architecture is
sync4j.framework.engine. It provides a basic interface of a synchronization engine, allowing a
pluggable architecture for customized engines. Generally speaking, the process of receiving and
interpreting a synchronization message and the process of updating the data sources and producing
the modifications for the client are distinct processes. They can also be applied independently one
from the other. For example, from the synchronization point of view it does not really matter if a
synchronization request cames from a SyncML message or a simple HTTP request. In the same way,
from the protocol point of view, it does not really matter which conflict resolution the synchronization
engine will adopt. With this pluggable architecture, the business logic of the protocol and
synchronization can be developed and extended separately (without modifying the server or the other
modules) to meet at best the requirements.

The last package, sync4j.framework.server includes classes for the development of server
applications and can be used to extend the standard Sync4j SyncServer implementation.

As a developer, you might be interested in modifying one or more of the above components, but you
are not forced to do it. Sync4j SyncServer is a full featured SyncML synchronization server and
provides a concrete implementation of the framework. However, flexibility and openness is the key in
enterprise deployment: Sync4j SyncServer allows you to customize and extend most of its features, if
you need to do it.

4.2.1. The Synchronization Engine
A synchronization server is not helpful without synchronization logic, so that a set of rules followed to:

• identify the sources and the destinations of the data sets to be synchronized;
• identify what data needs to be updated/added/deleted;
• determine how updates must be applied;
• detect conflicts;
• resolve conflicts.

In other words, the synchronization engine is the core of a data synchronization server.

Sync4j SyncServer allows developers to plug in their own implementation of the synchronization
engine. Therefore, developers can extend the basic behavior in order to meet their own requirements.
Developers can even completely substitute the default implementation with a custom engine
developed from scratch.

Copyright (c) 2005-2006 Funambol - Page 12

This brings a flexible and modular architecture, easier to reuse, extend and maintain.
The basic framework interfaces and classes are grouped in the package sync4j.framework.engine.

Since the synchronization process is the core of the synchronization engine, it is described in more
detail in a dedicated section later in this document.

4.3. The Execution Flow
The execution flow of an OMA DS request is shown in Figure 4.

In Figure 4, blue and light blue blocks are part of the server implementation; light red blocks instead a
re customizable components that developer can build/extend/embed.
Finally, the orange blocks are components added and customized by developers to meet the end-
user management application needs.

A synchronization session starts with the client device sending a first SyncML message to the server.
The request then follows the flow described below.

1. When a new request comes from the client, the HTTP handler takes care of it. After some
processing, for example the translation of the binary message into a more manageable form or the
association of the incoming message to an existing synchronization session, the HTTP handler
passes the request to the synchronization server.

2. The message first goes through the input message processing pipeline (see later) where it can be
preprocessed accordingly to the application needs.

3. The manipulated message comes out from the input pipeline and goes into the server engine for
the synchronization processing.

4. When needed, the server engine calls the services of the external (and custom) sync sources in
order to access the real data stores.

5. After processing the incoming message, the server engine builds the response message, which
goes through the output message processing pipeline for postprocessing.

6. The so postprocessed message is then returned to the HTTP handler, which packs the SyncML
message into a HTTP response and sends it back to the device.

Copyright (c) 2005-2006 Funambol - Page 13

Figure 4 - Execution flow of an OMA DM request

Device ManagerDevice ManagerSyncSource
Sync Server

Input Pipeline

Output Pipeline

Web
Layer

Server
Engine

1

HTTP
Handler

2

5

4

3

7

6

5. The Synchronization Process

The synchronization process is accomplished in three steps:

1. Preparation
2. Synchronization
3. Finalization

The Sync4j SyncServer engine goes through these steps coordinating their execution, but delegates
most of the synchronization logic to an auxiliary class, implementation of the SyncStrategy interface.

There are many types of synchronization; the ones specified by the SyncML protocol are:

Sync Type Description

Two-way sync (fast) A normal sync type in which the client and the server exchange information about
modified data in these devices. The client sends the modifications first.

Slow sync A form of two-way sync in which all items are compared with each other on a field-by-
field basis. In practice, this means that the client sends all its data from a database to
the server and the server does the sync analysis (field-by-field) for this data and the data
in the server.

One-way sync from client only A sync type in which the client sends its modifications to the server but the server does
not send its modifications back to the client.

Refresh sync from client only A sync type in which the client sends all its data from a database to the server (i.e.,
exports). The server is expected to replace all data in the target database with the data
sent by the client.

One-way sync from server only A sync type in which the client gets all modifications from the server but the client does
not send its modifications to the server.

Refresh sync from server only A sync type in which the server sends all its data from a database to the client. The
client is expected to replace all data in the target database with the data sent by the
server.

Server Alerted Sync1 A sync type in which the server to alerts the client to perform sync. That is, the server
informs the client to starts a specific type of sync with the server.

Table 3 - Sync modes defined by SyncML

The first two are the most important, since the others are derivation of slow and fast sync modes.
In a slow synchronization, the client sends all its items to server, which compare them with the server
database and then it sends back the modification that the client has to apply in order to be in sync
again. In the case of slow sync, the sources to be synchronized must be fully compared in order to
reconstruct the right image of the data on both synchronization endpoints. The way the sets of items
are compared is implementation specific and can vary from comparing just the item keys or the entire
content of an item.

1 The SyncML specification does not tell anything about how server alerted sync should be
achieved, therefore each product can implement it in a different and not interoperable way. As per
nowadays, only few devices are known to support this feature. Sync4j does not currently
implement server alerted sync.

Copyright (c) 2005-2006 Funambol - Page 14

A slow sync is prepared by calling prepareSlowSync(...) of the SyncStrategy object.

In a two-way fast synchronization, the sources are queried only for new, deleted or updated items
since a given point in time (and for a given user). In this case, the status (deleted/updated/new) and
the modification timestamp of the items can be checked in order to decide when a deeper comparison
is necessary.

A fast sync is prepared by calling prepareFastSync(...) of the SyncStrategy object.

prepareSlowSync(...) and prepareFastSync() require an additional java.security.Principal parameter in
input. The meaning of this parameter is implementation specific, but as a general rule, it is used to
operate on the data belonging to a given entity such as a user, an application, a device, etc.

The following sections describe in more detail each phase of the synchronization process and other
key aspects of the synchronization engine architecture. The section 5.5 puts all the pieces together,
showing and describing the sequence diagram of the synchronization process.

5.1. Preparation
The preparation phase is the process of analyzing the differences between two or more sources of
data (called SyncSources) with the goal of obtaining a list of sync operations that applied to the
sources involved in the synchronization, will make the databases look identical (Figure 5).

5.2. Modifications Detection
Modifications detection is based on the sets of items represented in Figure 6, applying the
modifications matrix of Table 4.

Copyright (c) 2005-2006 Funambol - Page 15

Figure 5- Preparation phase

Sync preparation

A

B

C

- Add item1 to SourceA
- Delete item2 from
SourceA, SourceB
- Add item10 to SourceC
- Update item5 in SourceB,
SourceC

A – Items belonging to source A (as known via LUID-GUID mapping)
B – Items belonging to source B
Am – Modified items belonging to source A
Bm – Modified items belonging to source B
AmBm – Items modified either in source A and B (intersection between Am and Bm)
(A-Am)Bm – Items unmodified in A, but modified in B
Am(B-Bm) – items unmodified in B, but modified in A

Note that A is the server view of the A source: it contains the items mapped in the server as they are
defined in the LUID-GUID mapping. If, for example, the client sends a new item that has never been
mapped, this item will be in Am, but not in A. In order to be sure that the new item is not equal to
some existing item in B, it must be looked up in B. If an item in B represents the same item as in Am,
A is virtually augment of such item, so that at the end, Am will be a sub-set of A.

Another important aspect to point out is that the entire data sets A and B can be considerably big.
Therefore, when possible, it is important to deal with the smallest possible sets of items instead of
doing a full item-per-item comparison.

The preparation phase is slightly different depending on the type of the synchronization. In the case of
a slow synchronization, all items in the sources must be compared looking for differences that will be
translated into synchronization operations. This type of process does not depend on previous
synchronizations and, in fact, it is used to fully recreate a database as if no synchronizations have
ever taken place. This is achieved resetting the LUID-GUID mapping before starting the modification
detection process.
On the contrary, when a fast synchronization is performed, it is assumed that the involved sources
rely on a previous data synchronization, so that only the changes since the time of the last
synchronization need to be considered.

The algorithm used in the preparation phase is as follows:

Given a set of sources A, B, C, D, etc, the synchronization process takes place between two sources
at a time: A is first synchronized with B, then AB with C, then ABC with D and so on.
Given the sources to be compared, suppose A and B, the goal of the algorithm is to produce an array
of SyncOperation objects, in which each element represents a particular synchronization action, i.e.
create the item X in the source A, delete the item Y from the source B, etc. Sometimes, it is not
possible to decide the action to perform, thus a SyncConflict operation is used. A conflict might be
solved by something external the synchronization process, for instance by a user action. In order to
create the SyncOperation[] array, each item in the source A is compared with each item in the source
B (to be intended as the selected items depending on the synchronization type).

To determine which operation should be performed the Synchronization matrix defined above is used.

Database A →

↓ Database B

New Deleted Updated Synchronized/Unc
hanged

Not Existing

New C C C C B

Deleted C X C D X

Updated C C C B B

Synchronized/U
nchanged

C D A = B

Not Existing A X A A X

Table 4 - Synchronization matrix

Where:
A : item A replaces item B
B : item B replaces item A
C : conflict
D : delete the target item

Copyright (c) 2005-2006 Funambol - Page 16

Figure 6 - Synchronization items sets

BA
Am

Bm

(A-Am)Bm
AmBm

Am(B-Bm)

X : do nothing

Initially, items are compared based on a subset of the information they contain called key (in the
synchronization engine it is called SyncItemKey). It is responsibility of the SyncSource to create
proper and unique keys for each item. The SyncItemKey is stored in the SyncItem and can be
obtained calling getKey(). The comparison is accomplished by the method equals() of the
SyncItemKey object.

When the SyncStrategy performs a sync preparation, it returns the operations that have to be applied
to the sources involved, in order to make them look equal. From a coding point of view, those
operations are represented by SyncOperation objects, which encapsulate the interested items and the
operation itself.

When a client item should be updated or inserted on the server, but the server does not have a
mapping for it, a deeper comparison must be performed. In fact, the new/updated item could have the
same content of an existing item on the server; this could even turn into a conflict. For example,
suppose that a client tries to insert a new appointment with id xyz at 20041029T1400Z in the meeting
room OceanSide. Even if there is no matching item on the server, if OceanSide is already busy at the
same time, this could be considered a conflict.
In order to detect such situations, the synchronization engine will ask for items similar to the one that
is trying to add/update. Those similar items are called Twins. Note that we used by choice similar and
not equal. This is because how much an item should look like an existing item in order to be
considered a twin is not fixed. Each source should be able to find twin items accordingly to its own
logic.

5.3. Synchronization
The synchronization step is the phase where the sync operations prepared in the previous step are
executed. Executing a SyncOperation means applying the required modification to the sync source
involved.
For example, the SyncOperation represented by:

operation: new
item A: ITM0040102001 ← (the item key)
item B: null

results in the addition of item B to source B. Instead, if the operation is:

operation: new
item A: null
item B: ITM0376488440

The item B will be added to source A. The following combination will result in a conflict:

operation: new
item A: ITM0040102001
item B: ITM0040102001

The synchronization phase is implemented in the sync(SyncOperation[]) method of SyncStrategy.

5.4. Finalization
The third and last step is intended for cleaning up purposes.

5.5. Synchronization Sequence Diagram
The sequence of operations that takes place during a fast synchronization is depicted in Figure 7,
which serves as a guide for the following description.

The SyncEngine object drives the execution of all steps in its sync() method, where the requested
sources are scanned for modified items. SyncSourceA and SyncSourceB represent the two sources
involved in the synchronization process; generally, one source is the client view of the database,

Copyright (c) 2005-2006 Funambol - Page 17

whilst the other source is the server view of the same data source.

First of all, SyncEngine calls SyncStrategy.prepareSync(SyncSource[]) which returns an array of
SyncOperation. Here, the synchronization engine has the opportunity to further processing the
operations returned. For example, at this level the engine can decide how to solve conflicts.

After preparation and additional operation processing, the engine is ready to fire the execution of the
real synchronization. Again, it performs the operation delegating the task to the sync() method of
SyncStrategy.

Finally, SyncStartegy.endSync() is used to terminate the process.

The figure shows only the main tasks that SyncStrategy performs. First of all, it queries source A and
B about which items have changed since the last synchronization and collects all of them in two lists,
one for source A's items and one for source B's items. At this point, SyncStrategy is ready to compare
those two sets of items and create the SyncOperation[] array. This is achieved by calling
checkSyncOperation(SyncItem[], SyncItem[]) where the rules described in the sections above and in
the synchronization matrix are applied.

Note that the SyncEngine implemented in Sync4j SyncServer makes use of the synchronization
strategy object in the generic form represented by the interface SyncStrategy. The concrete
implementation is configurable in the Sync4j.properties configuration file. Therefore, if you want or
need to implement your own synchronization strategy, you can easily plug it into Sync4j SyncServer
just modifying that file.

Copyright (c) 2005-2006 Funambol - Page 18

6. Extending the SyncServer with Sync4j Modules

Sync4j modules represent the means by which third party developers can extend the way Sync4j
works. A module is a packaged set of files containing classes, installation scripts, configuration files,
initialization SQL scripts and so on, used by the installation procedure to embed the extensions into
the Sync4j Enterprise Archives (the J2EE ear).

For more information on how to install Sync4j modules see [3].

For beginners information on how to build a Sync4j module see [4].

6.1. Building a Sync4j Module
A Sync4j module is a jar package named following the convention:

<module-name>-<major-version>.<minor-version>.s4j

Where <module-name> is the name of the module without spaces and with small caps only and
<major/minor-version> are the major and minor version numbers. Changes in the minor version
number must be backward-compatible, whilst changes in the major version number may require
migration efforts.

The package must have the structure presented in Figure 8.

Copyright (c) 2005-2006 Funambol - Page 19

Figure 7 - Synchronization sequence diagram

SyncEngine SyncStrategy SyncSourceA SyncSourceB

prepareSync(SyncSource[])

getNewItems()

getUpdatedItems()

getDeletedItems()

Item[]

Item[]

Item[]

getNewItems()

getUpdatedItems()

getDeletedItems()

Item[]

Item[]

Item[]

for each item

checkSyncOperation(itemA, itemB)

for each new/updated
unmapped item

getTwinSyncItem(itemA)

lib/

modulename.jar

dependent1.jar

dependent2.jar

...

config/

config.properties

MySyncSource.xml

SomeOtherBean.xml

...

exclude/

manifest.mf

install/

install.xml

sql/

oracle/

create_schema.ddl

drop_schema.ddl

init_schema.sql

postgresql/

...

Figure 8 - Module package structure

In the figure, entries ending with a '/' represent directories and filenames in italic are given just as
examples (in a real package they will be replaced with real filenames).
The module classes are packaged in a main jar file called <modulename>.jar. If this package requires
additional libraries, it must use the java extension mechanism to make them available (in particular,
depended libraries must be included in the Class-path manifest entry).
Configuration properties files and bean configuration files are stored under the package directory
config, creating subdirectories as needed.
The directory install contains install.xml, which is an Ant script, called when the module is being
installed; this is the hook where a module developer can insert module specific installation tasks.
Installation specific files can be organized in subdirectories under install. If the module requires a
custom database schema, the scripts to create, drop and initialize the database are stored under the
sql/<database> directory, where <database> is the name of the DBMS as listed in the
install.properties file. Finally, the exclude directory is used to store files that will be used by the
installation procedure, but that will not be included in the final server ear.

6.2. Modules, SyncConnectors and SyncSource Types
As already stated, the module is a container for anything related to one or more server extensions.
Those extensions may include one or more sync connectors. A SyncConnector is an extension to the
server intended to support the synchronization of a particular set of data sources. The Funambol's
SyncConnector DB, for example, provides a GUI and runtime classes for the synchronization of
generic data stored into a RDMS. The Sync4j Foundation module provides a SyncConnector
FileSystem that allows to synchronize data stored in a directory of the file system. A key piece of
software grouped under the umbrella of the SyncConnector is the sync source type. A SyncSource
Type represents the template from which a real SyncSource can be created. For example, the
FileSystemSyncSource type is the means the SyncServer can synchronize data stored in the file
system. However, it does not represent a particular directory to synchronize. To synchronize a
specific directory (for instance /data/contacts) a real SyncSource instance must be created and
configured with the wanted directory. Since this is a guide for developers, you can think of a
SyncSource Type as a class and of a SyncSource as an instance.

Copyright (c) 2005-2006 Funambol - Page 20

6.2.1. Registering Modules, SyncConnectors and SyncSource Types
Modules, SyncConnectors and SyncSource types are registered filling the following database tables:

• sync4j_module for Module information
• sync4j_connector for SyncConnector information
• sync4j_sync_source_type for SyncSource Type information
• sync4j_connector_source_type for SyncConnector-SyncSource type associations
• sync4j_module_connector for Module-SyncConnector association

Note that the last two tables are used to create the hierarchy Module-SyncConnector-SyncSource
Type that you can see in the SyncAdmin.

As an example, we are going to have a look at the foundation module registration. When Sync4j
SyncServer is installed, the foundation module is installed too. It brings a SyncConnector called
SyncConnector File System, which, in turn, contains the SyncSource type FileSystemSyncSource
(Figure 9).

This hierarchy is obtained with the following SQL commands:

1. Module registration:
insert into sync4j_module (id, name, description)
values('foundation','foundation-1.0','Foundation ver.1.0');

2. SyncConnector registration:
insert into sync4j_connector(id, name, description, admin_class)
values('foundation','SyncConnectorFoundation','SyncConnector
Foundation','');

3. The SyncConnector Foundation belongs to the foundation-1.0 module:
insert into sync4j_module_connector(module, connector)
values('foundation','foundation');

4. The FileSystem SyncSource type (fs-foundation) belongs to the SyncConnector Foundation:
insert into sync4j_connector_source_type(connector, sourcetype)
values('foundation','fs-foundation');

5. Finally, the SyncSource Type registration:
insert into sync4j_sync_source_type(id, description, class, admin_class)
values(
 'fs-foundation','FileSystem SyncSource',
 'sync4j.foundation.engine.source.FileSystemSyncSource',
 'sync4j.foundation.admin.FileSystemSyncSourceConfigPanel'
)

Note that in the SyncSource Type registration two classes are specified: FileSystemSyncSource,
which actually implements the SyncSource interface and FileSystemSyncSourceConfigPanel, which
instead is used to create a new SyncSource instance and to configure it in the SyncAdmin.

We will see how those implementing classes are developed in the following section.

Note also that in this guide very often SyncSource and SyncSource Type are considered synonyms,
even if they are in the template-instance relationship seen before.

Copyright (c) 2005-2006 Funambol - Page 21

Figure 9 - Foundation Sync4j Module in the SyncAdmin tool

7. Developing a SyncSource

A SyncSource is the means a set of data is made available to SyncServer for the purpose of the
synchronization. Therefore, in order to synchronize any type of data (files, database tables, calendar
events and so on), there must be a proper SyncSource able to extract and store the data from and to
the real data store.
Goal of the Sync4j platform is to provide a collection of SyncSources for the most common uses (i.e.
files), but new SyncSources can be independently developed and plugged in the synchronization
engine so that the server will be able to process synchronization requests targeted to virtually any
data source.

7.1. The SyncSource Interface and Related Classes
The core of the SyncSource architecture is the interface
sync4j.framework.engine.source.SyncSource. This interface does not make any assumption on the
type of data being synchronized, so that its concrete implementations are completely free to access
their own underlying storage.

A SyncSource is identified by a sourceURI and usually a name; the former is the URI that a SyncML
client must specify as target in order to synchronize this particular SyncSource; the latter is a reader-
friendly name used for display purposes only. Note that they must be both unique.

A SyncSource is also associated to a type, in the form of a mime type that represents the type of data
handled by the source.

The most important methods defined by the SyncSource interface are:

method description

beginSync() This is the first SyncSource method the sync engine calls and it is used to specify who is
going to synchronize and which type of synchronization is requested.

endSync() This is the latest SyncSource method the sync engine calls and it may be used to perform
finalization tasks.

getUpdatedSyncItems Called to retrieve the updated SyncItems for the given principal since the given point in
time.

getUpdatedSyncItemKeys Called to retrieve the SyncItemKey of the updated items for the given principal since the
given point in time.

getNewSyncItems Called to retrieve the new SyncItems for the given principal since the given point in time.

getNewSyncItemKeys Called to retrieve the SyncItemKey of the new items for the given principal since the given
point in time.

getDeletedSyncItems Called to retrieve the deleted SyncItems for the given principal since the given point in time.

getDeletedSyncItemKeys Called to retrieve the SyncItemKey of the deleted items for the given principal since the
given point in time.

getAllSyncItems Called to retrieve all the SyncItems for the given principal since the given point in time.

setSyncItem/s Called to insert or update the given item(s).

Copyright (c) 2005-2006 Funambol - Page 22

method description

removeSyncItem/s Called to remove the given item(s).

getSyncItemFromTwin Called to find items that represent the same information as the given item. It is used in
conflict detection and during slow sync to associate a client item with a server item which is
similar enough.

Table 5 - SyncSource methods

When a synchronization request reaches the engine, the SyncServer looks for a source whose
sourceURI matches the requested URI and computes the synchronization analysis calling the
methods defined above.

For an example on how to develop a SyncSource see [4] or the Sync4j source code.

7.1.1. Principal and Since Timestamp
SyncSource methods usually require two input parameters in order to retrieve the requested items:

• principal (of type java.security.Principal) and
• since (of type java.sql.Timestamp).

A principal represents any entity the data can be associated to. A principal is usually represented by a
user id, but it may be something different (like a device or a client agent). The principal is used to
limit data manipulation to the data set related to the given entity (for example, the contacts of a
specific user). If this parameter is null, all items in the datastore are considered for synchronization,
regardless the principal they belong to.

In Sync4j SyncServer, a principal is composed of a couple (user,device) because the same user may
make use of different devices.

The since timestamp represents the point in time of the last synchronization. It is used during fast
synchronization to get the changed items since the last synchronization request.

In case of slow sync, getAllItems() is called instead of get(Updated/New/Deleted)Items().

7.1.2. SyncItem
Items returned by a SyncSource are encapsulated in sync4j.framework.engine.SyncItem objects.
SyncItem is a Java interface that the developer can implement in order to meet specif requirements.
Sync4j SyncServer provides a standard implementation of a SyncItem represented by the class
sync4j.framework.engine.SyncItemImpl, which is ready to use and should be enough for the majority
of the SyncSources needs. SyncItem defines the following methods:

Copyright (c) 2005-2006 Funambol - Page 23

method description

getKey Returns the item key.

getMappedKey Returns the mapped key corresponding to this item's key

getState Returns the item state.

setState Sets the item state.

getProperties Returns all item properties.

setProperties Sets all item properties.

getProperty Returns a specific item property.

setProperty Sets a specific item property.

getPropertyValue Returns a specific item property value.

setPropertyValue Sets a specific item property value.

getSyncSource Returns the SyncSource the item belongs to.

Table 6 - SyncItem methods

The content of an item is stored in sync4j.framework.engine.SyncProperty objects which represent a
name-value pair. This suits almost any data representation requirements in a data synchronization
context.

Two standard properties are defined and used by Sync4j SyncServer: BINARY_CONTENT and
TIMESTAMP.
BINARY_CONTENT is intended to store an item in a raw binary form. This is used, for instance, when
the item is treated as a monolithic object identified only by its item key. No content parsing is
implemented in order to identify fields and data.
TIMESTAMP contains the timestamp of the last change of the item state and it is used in the
synchronization process, in order to determine the operation to be performed on the sources.

IMPORTANT: when a sync source creates a SyncItem, it must always provide a value for at least the
two properties BINARY_CONTENT and TIMESTAMP.

7.1.3. Twin Items
The concept of twin item is specific to Sync4j. An item X is a twin of an item Y when from the
SyncSource point of view, X and Y represent the same information.
For example, two event items, both at the same time in the same place may be considered the same
appointment, even if the associated note is different. Or two vcard objects may be considered the
same contact if they have the same first, middle and last name, but different phone number.
Because the SyncSource is the only Sync4j object with knowledge about how data are stored in the
data source, the SyncSource is the only component that can select the twins of a given item. This is
done calling getSyncItemsFromTwin().

Twin items are necessary in two circumstances:

1. During slow sync
2. During conflict detection

During slow sync, the client sends all its items and the server has to discover which operation the
client should apply in order to make its data set look identical to the one stored on the server.
Because the two devices are supposed to be out of sync, the server cannot relay on LUID-GUID
mappings, and then on a simple keys comparison. In this case, for each item given by the client, the
server must search for twin items. If a twin is not found, a delete command will be issued. If at least a
twin is found, the server will consider to have such client item and won't send back a command for it.

The same process is valid during conflict detection. When during fast sync a client sends a new item
into an add or replace command, the server should first check if this item is conflicting with something

Copyright (c) 2005-2006 Funambol - Page 24

else. Therefore, the server calls the SyncSource's getSyncItemsFromTwin(). If this method returns
something, a conflict is detected and handled accordingly. If no twin is found the item can be added.

The SyncSource developer is free to apply the more appropriated comparison logic accordingly to the
type of data the SyncSource deals with. This content based conflict detection can be disabled
returning always no twin items.

One final note about twin computation is that it should be kept as simplest as possible, since it may
have a big impact on performance during slow sync and conflict detection.

7.1.4. The SyncAdmin Configuration Panel
One of the most interesting feature introduced with SyncServer 4.0 was the SyncAdmin management
console. By the mean of the SyncAdmin tool it is possible to perform many administration tasks,
including the configuration of the standard Sync4j SyncServer sync sources.
After being logged in in the SyncAdmin and connected to the server, you will see something like what
shown in Figure 10. Selecting an existing SyncSource, a configuration panel is displayed in the
middle of the window.

The SyncAdmin tools is designed to be extended by developers so that a new custom sync source
type can be configured into the SyncAdmin through a custom management panel.
A management panel for a custom sync source is represented by an extension of the abstract class
sync4j.syncadmin.ui.ManagementPanel. This has the interface described in Table 7.

Copyright (c) 2005-2006 Funambol - Page 25

Figure 10 - SyncAdmin showing connectors, modules and SyncSources

Public methods

method description

setState(int state) Defines if the panel is creating a new sync source instance or editing an existing one.

int getState() Returns the creation sync source instance state (creation or editing).

setModuleId(id) Sets the id of the module the SyncSource instance belongs to.

String getModuleId() Returns the id of the module the SyncSource instance belongs to.

setConnectorId(id) Sets the id of the connector the SyncSource instance belongs to.

String getConnectorId() Returns the id of the connector the SyncSource instance belongs to.

setSetSourceTypeId(id) Sets the id of the SyncSource type the SyncSource instance belongs to.

String getSourceTypeId() Returns the id of the SyncSource type the SyncSource instance belongs to.

notifyError() Used to notify the user that an error occurred.

loadSyncSource(source) Used to display the values of a SyncSource instance.

Private methods

setSyncSource(source) Used to notify the SyncAdmin that a SyncSource instance has to be saved.

DeleteSyncSource(sourceURI) Used to notify the SyncAdmin that a SyncSource instance has to be deleted.

Table 7 - ManagementPanel interface

A SyncSource configuration panel can be in one of the two states INSERT or UPDATE. The former is
for when a new SyncSource is created, the latter for when it is edited.

One important thing to point out here is that the classes that implement both the SyncSource and its
configuration panel, are installed on the server at module installation time. The SyncAdmin retrives
them on demand via a customized class loader. The SyncAdmin knows about which classes to use,
thanks to the SyncSource Type registration seen before; for example, the statement

insert into sync4j_sync_source_type(id, description, class, admin_class)
values(
 'fs-foundation','FileSystem SyncSource',
 'sync4j.foundation.engine.source.FileSystemSyncSource',
 'sync4j.foundation.admin.FileSystemSyncSourceConfigPanel'
)

tells the server that the fs-foundation SyncSource Type is implemented by the
sync4j.foundation.engine.source.FileSystemSyncSource class and that its configuration panel is
implemented by the class sync4j.foundation.admin.FileSystemSyncSourceConfigPanel.

The way the SyncAdmin and the SyncSource management panel interact is pretty simple; the case of
creating a new SyncSource is shown in Figure 11.

Copyright (c) 2005-2006 Funambol - Page 26

First of all, when the user right clicks on a SyncSource type and selects Add, few things happen:

• The SyncAdmin knows the name of the SyncSource and management panel classes, therefore it
instantiates a new SyncSource and ManagementPanel objects. If the classes are not found locally,
they are downloaded from the server.

• The SyncAdmin displays the configuration panel and calls its setModuleId(), setConnectorId(),
setSourceTypeId() passing the appropriate ids.

• The SyncAdmin calls the panel's loadSyncSource() passing the newly created SyncSource
instance.

When the user commits the changes (for example pressing a button provided by the UI of the custom
management panel), the new values should be sent back to the server. This is done by the
setSyncSource() method implemented in the ManagementPanel class. The developer does not need
to know the details on how this is done, since it is a SyncAdmin specific functionality.
For example, a developer could add the following code to create a button that saves the newly
created SyncSource to the server.

Jbutton add = new Jbutton(“Add”);

add.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 try {
 validateValues(); // some validation code
 getValues(); // store the values in the UI elements into
 // the SyncSource instance

 setSyncSource(syncSource);
 } catch (Exception e) {
 error(e.getMessage());
 }
 }
});

Copyright (c) 2005-2006 Funambol - Page 27

Figure 11 - SyncAdmin-ManagementPanel interaction diagram

SyncAdmin Custom
ManagementPanel

get SyncSource class

User

create new SyncSource

Server

get ManagementPanel class

create new SyncSource
instance

create new
ManagementPanel
instance

loadSyncSource()

confirm the values

setSyncSource()save the new
SyncSpurce

save the new SyncSource

set module/connector/type ids

The update process is very similar, the only difference is that the SyncSource instance will not be
created from scratch; instead, the existing SyncSource instance will be used. Changes to the
SyncSource will be reflected on the server with the same mechanism described above.

For a complete example of how to develop a custom management panel see [4].

Copyright (c) 2005-2006 Funambol - Page 28

8. Configuring Sync4j and Sync4j Components

One of the Sync4j SyncServer design goal is to provide a framework that can be used to implement
any kind of synchronization service, extending existing modules or plugging in new modules. All this
require a lot of configuration information and possibly an easy way to add module configuration.
Configuration files should be easily understandable, accessible and editable.

Sync4j uses mainly three configuration techniques:

• System properties
• Sync4j.properties
• Server JavaBeans

In the following sections these three types of configuration are described in details.

8.1. System Properties
The only system property used by SyncServer 4.0.x is sync4j.home which must point to the directory
where the Sync4j package is installed (commonly referenced as $SYNC4J_HOME).
This property is specified at JVM invocation time using the -D option. On many systems, it is
sufficient to set the JAVA_OPTS environment variable in order to get it included into the JVM
launching command.

8.2. Sync4j.properties
This is the main Sync4j SyncServer configuration file, because it is used to initialize the engine. It is a
standard properties file, read at engine initialization time so that the engine classes can be
instantiated with the properties needed to bootstrap. See the Sync4j SyncServer administration
guide[3] for a list of all possible properties and their meanings.

8.3. Server JavaBeans
Many Sync4j SyncServer components are configured as server JavaBeans. Server JavaBeans are
JavaBeans used server-side. The idea is to store a bean configuration as the serialized form of the
bean itself. This way, a bean can be instantiated, configured and serialized to persist its configuration.
Later, the bean can be deserialized in memory as a properly configured instance.

Sync4j SyncServer makes use of the standard java facility to serialize objects into XML (and to
deserialize them from XML). This is achieved by using the classes java.beans.XMLEncoder and
java.beans.XMLDecoder. Since configuration files created with such encoder/decoder are easy to
use, read and write, they can be created and modified manually with a simple text editor, without the
need of a dedicated GUI. An additional advantage of this approach is that server JavaBeans are not
requested to implement java.io.Serializable because XMLEncoder does not require it.
This is an example of a server JavaBean:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.1_01" class="java.beans.XMLDecoder">

Copyright (c) 2005-2006 Funambol - Page 29

 <object class="sync4j.framework.server.store.PersistentStoreManager">
 <void property="jndiDataSourceName">
 <string>java:/jdbc/sync4j</string>
 </void>
 <void property="stores">
 <array class="java.lang.String" length="2">
 <void index="0">
 <string>sync4j.server.store.SyncPersistentStore</string>
 </void>
 <void index="1">
 <string>sync4j.server.store.EnginePersistentStore</string>
 </void>
 </array>
 </void>
 </object>
</java>

In order to help server JavaBeans handling, Sync4j SyncServer uses the factory class
sync4j.framework.tools.beans.BeanFactory, which in turn makes use of a customized class loader;
the class loader handles configuration files in a so called config path, in the same way a common
class loader handles classes in the classpath.

The XML syntax uses the following conventions:

• Each element represents a method call.
• The "object" tag denotes an expression whose value is to be used as the argument to the

enclosing element.
• The "void" tag denotes a statement which will be executed, but whose result will not be used as an

argument to the enclosing method.
• Elements which contain elements use those elements as arguments, unless they have the tag:

"void".
• The name of the method is denoted by the "method" attribute.
• XML's standard "id" and "idref" attributes are used to make references to previous expressions - so

as to deal with circularities in the object graph.
• The "class" attribute is used to specify the target of a static method or constructor explicitly; its

value being the fully qualified name of the class.
• Elements with the "void" tag are executed using the outer context as the target if no target is

defined by a "class" attribute.
• Java's String class is treated specially and is written <string>Hello, world</string> where the

characters of the string are converted to bytes using the UTF-8 character encoding.

Although all object graphs may be written using just these three tags, the following definitions are
included so that common data structures can be expressed more concisely:

• The default method name is "new".
• A reference to a java class is written in the form <class>javax.swing.JButton</class>.
• Instances of the wrapper classes for Java's primitive types are written using the name of the

primitive type as the tag. For example, an instance of the Integer class could be written:
<int>123</int>. Java's reflection is internally used for the conversion between Java's primitive
types and their associated "wrapper classes".

• In an element representing a nullary method whose name starts with "get", the "method" attribute
is replaced with a "property" attribute whose value is given by removing the "get" prefix and
decapitalizing the result.

• In an element representing a monadic method whose name starts with "set", the "method" attribute
is replaced with a "property" attribute whose value is given by removing the "set" prefix and
decapitalizing the result.

• In an element representing a method named "get" taking one integer argument, the "method"
attribute is replaced with an "index" attribute whose value the value of the first argument.

Copyright (c) 2005-2006 Funambol - Page 30

• In an element representing a method named "set" taking two arguments, the first of which is an
integer, the "method" attribute is replaced with an "index" attribute whose value the value of the
first argument.

• A reference to an array is written using the "array" tag. The "class" and "length" attributes specify
the sub-type of the array and its length respectively.

8.3.1. The configuration path
Server JavaBeans are looked for in the configuration path, which is analogous to the class path for
classes lookup. This is implemented reading the serialization files from a custom class loader,
sync4j.framework.config.ConfigClassLoader. This class loader (which is instead our server beans
loader), is configured to read objects from the configuration path. The config path is built appending
“/config” to the sync4j.home system property value. For example, if the sync4j.home is set to
“/opt/Sync4j-2.3/syncserver-4.2.x”, the config path would be “/opt/Sync4j-2.3/syncserver-4.2.x/config”.

8.3.2. Lazy Initialization
When a bean is deserialized from its XML form, the classloader that loads the
serialization file calls the empty constructor first and then it sets the bean property
values using the setXXX() methods provided by the class. However, some classes need
additional operations to be performed in order to properly initialize (after setXXX()
methods are called). To support this lazy initialization approach, these classes can
implement sync4j.framework.tools.beans.LayInitBean, which defines a separate init()
method. When the SyncServer loads a LazyInitBean, after bean instantiation (or
deserialization) and configuration (calling the setter methods), it calls the bean's init()
method, giving the bean the opportunity to complete its initialization.

8.4. How to Configure a Standard Component
Making a change to a configuration bean is as easy as editing a text file. Let's take as example the
configuration file for the DBOfficer component. The configuration bean full path is
sync4j/server/security/DBOfficer.xml (remember: this path is relative to the configpath) and its
content is below:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.0" class="java.beans.XMLDecoder">
 <object class="sync4j.server.security.DBOfficer">
 <void property="clientAuth">
 <string>syncml:auth-basic</string>
 </void>
 <void property="serverAuth">
 <string>none</string>
 </void>
 </object>
</java>

The object element specifies which Java class will be instantiated and the property element sets the
corresponding instance property. Therefore, to change the preferred client authentication type, it is
sufficient to edit the file, change the clientAuth property and save. The next time this bean will be
used, the new configuration value will be picked up.

8.5. How to Create a Custom Configurable Object
With this technique, any Java object can be configured, from a simple Java class to a very complex
Java object tree. For example, this configures a String object:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2" class="java.beans.XMLDecoder">
 <string>This is a String!</string>
</java>

Copyright (c) 2005-2006 Funambol - Page 31

A more interesting example is given, for instance, by the class
sync4j.framework.config.LoggingConfiguration. The class looks like the following:

public class LoggingConfiguration {
 // -- Private data
 private ArrayList loggers;
 // -- Constructors

 /** Creates a new instance of LoggingConfiguration */
 public LoggingConfiguration() {
 }

 /**
 * Getter for property loggers.
 *
 * @return Value of property loggers.
 */
 public ArrayList getLoggers() {
 return loggers;
 }

 /**
 * Setter for property loggers.
 *
 * @param loggers New value of property loggers.
 */
 public void setLoggers(ArrayList loggers) {
 this.loggers = loggers;
 }
}

A possible configuration file for such a class could be:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2_04" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.config.LoggingConfiguration">
 <void property="loggers">
 <object class="java.util.ArrayList">
 <!--
 sync4j
 -->
 <void method="add">
 <object class="sync4j.framework.config.LoggerConfiguration">
 <void property="append">
 <boolean>true</boolean>
 </void>
 <void property="count">
 <int>1</int>
 </void>
 <void property="fileOutput">
 <boolean>true</boolean>
 </void>
 <void property="level">
 <string>INFO</string>
 </void>
 <void property="limit">
 <int>100</int>
 </void>
 <void property="name">
 <string>sync4j</string>
 </void>
 <void property="pattern">
 <string>logs/syncserver.log</string>
 </void>
 </object>
 </void>

 <!--
 sync4j.engine
 -->
 <void method="add">
 <object class="sync4j.framework.config.LoggerConfiguration">

Copyright (c) 2005-2006 Funambol - Page 32

 <void property="append">
 <boolean>true</boolean>
 </void>
 <void property="count">
 <int>1</int>
 </void>
 <void property="inherit">
 <boolean>true</boolean>
 </void>
 <void property="level">
 <string>INFO</string>
 </void>
 <void property="limit">
 <int>100</int>
 </void>
 <void property="name">
 <string>sync4j.engine</string>
 </void>
 <void property="pattern">
 <string>logs/syncserver.engine.log</string>
 </void>
 </object>
 </void>

 </object>
 </void>
 </object>
</java>

NOTE: see later how to create such a file authomaically.

8.6. How to Get a Configured Instance
Configuration beans are accessed through the singleton sync4j.framework.config.Configuration object.
For example, to instantiate a configured LoggingConfiguration instance, use the code below.

Configuration c = Configuration.getConfiguration();

LoggingConfiguration logging = c.getBeanInstanceByName("sync4j/server/logging/logging.xml");

8.6.1. Tips and Tricks
It is not necessary to write a configuration file by hands from scratch. To write a bean instance for the
first time use the sync4j.framework.tools.beans.BeanFactory's saveBeanInstance() method to save a
configured instance into a file. For example:

Jbutton b = new Jbutton(“press me”);

BeanFactory.saveBeanInstance(b, new File("button.xml");

The result is the following:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.2_04" class="java.beans.XMLDecoder">
 <object class="javax.swing.JButton">
 <string>press me</string>
 </object>
</java>

Copyright (c) 2005-2006 Funambol - Page 33

9. Customizing Message Processing

This section explains how to extend the SyncServer customizing the processing of incoming and
outgoing messages.

9.1. Overview
The OMA DS protocol is an XML-based protocol. This means that each OMA DS message is an XML
document.
When a OMA DS message reaches the DM Server, it passes through some transformations. These
are divided into XML level transformations and message transformations. The former works on the
message in its XML representation, the latter on a Java representation of the message.

In order to save bandwith and processing power, OMA DS messages can be also WBXML encoded.
Regardless how the message is encoded, its content is first delivered to a SyncAdapter component by
the transport layer (Figure 6). The SyncAdapter first translates the message in XML if it was WBXML
encoded and then the XML message is reduced to a “canonical” form in order to get rid of device
specific singularities. XML canonization is the XML level transformation.

Even when in the canonical XML form, the message is still hard to manipulate, since XML needs to
be parsed. Plus, each component that needs to access any of the OMA DM message elements would
have to parse the XML again, with a big impact on performance. For these reasons, the canonic XML
message is translated into an object tree that represents exactly the message.

After an incoming message has been translated into an object tree, it passes through the input
message processing pipeline before it gets to the SyncEngine. This gives the opportunity of further
processing the message when it is in a more manageable representation. In a similar way, a response
message going out from the SyncEngine, passes through the output message processing pipeline
before getting translated to its XML (and then WBXML) representation.
The input and the output pipelines are completely customizable, so that custom message pre and
post processing can be easily added to the system.

Input and output message processing components are also called “synclets”.

Copyright (c) 2005-2006 Funambol - Page 34

Figure 12 - Message processing architecture

Sync
Engine

Input Pipeline

Output Pipeline

Pipeline Manager

Java

XML -
WBXML

Java

transport layer

XML Canonizer

SyncAdapter

JiBX

9.2. Preprocessing an Incoming Message
To preprocess an incoming message we have to create an input processor component and to
configure the pipeline manger accordingly. This is described below.

9.2.1. Creating an Input Synclet
An input synclet is a class that implements the
sync4j.framework.engine.pipeline.InputMessageProcessor interface. This interface defines just one
method: void preProcessMessage(MessageProcessingContext context, SyncML msg). context is a
parameter that is shared amongst all the synclets (both input and output) involved in the message
processing. msg is the object tree representing the SyncML message. The object tree is composed of
instances of classes in the sync4j.framework.core packages and represents a hierarchical view of the
message.

For example, the synchronization message below will be translated in the object hierarchy of Figure
12.

<SyncML>
<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>12345678</SessionID>
<MsgID>2</MsgID>
<Target><LocURI>http://localhost</LocURI></Target>
<Source><LocURI>syncml-phone</LocURI></Source>
<Cred>
 <Meta><Type>syncml:auth-basic</Type></Meta>
 <Data>Z3Vlc3Q6Z3Vlc3Q=</Data>
</Cred>
</SyncHdr>
<SyncBody>
<Alert>
<CmdID>1</CmdID>
<Data>200</Data>
<Item>
<Target><LocURI>test</LocURI></Target>
<Source><LocURI>test</LocURI></Source>
<Meta>
<Anchor>
<Last>234</Last>
<Next>276</Next>
</Anchor>
</Meta>
</Item>
</Alert>
<Final/>
</SyncBody>
</SyncML>

An example of an input synclet is the following.

Copyright (c) 2005-2006 Funambol - Page 35

Figure 13 - sync4j.framework.core object tree example

SyncML

SyncHdr

SyncBody
Alert

Replace

● verDTD
● verProto
● sessionID
● msgID
● target
● source

● commands[]

● cmdID
● data

● cmdID
● items

Cred
● type
● data

http://localhost/

package com.foo.synclet;

public class LoggingSynclet
implements InputMessageProcessor {
 // -- Private data
 private static final Logger log = Sync4jLogger.getLogger("engine");

 // -- Public methods

 /**
 * Logs the input message and context
 *
 * @param processingContext the message processing context
 * @param message the message to be processed
 *
 * @throws Sync4jException
 */
 public void preProcessMessage(MessageProcessingContext processingContext,
 SyncML message)
 throws Sync4jException {
 if (log.isLoggable(Level.INFO)) {
 log.info(“---");
 log.info("Input message processing context");
 log.info("");
 log.info(processingContext.toString());
 log.info("---");

 log.info("Input message");
 log.info("");
 log.info(Util.toXML(message));
 log.info("---");

 //
 // Sets the device id to foo
 //
 message.getSyncHdr().getSource().setLocURI(“foo”);

 }
 }
}

Scope of this synclet is pretty evident: it just logs to the sync4j.engine logger the input message. Plus,
it modifies the message setting the device id to “foo”.

9.2.2. Configuring an Input Synclet
The input synclet so created, is configured telling the Pipeline Manager to insert the new synclet in
the input pipeline. This is done like in the following server side JavaBeans.

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.0" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.engine.pipeline.PipelineManager">
 <void property="inputProcessors">
 <array class="sync4j.framework.engine.pipeline.InputMessageProcessor" length="1">
 <void index="0">
 <object class="com.foo.synclet.LoggingSynclet"/>
 </void>
 </array>
 </void>
 <void property="outputProcessors">
 <array class="sync4j.framework.engine.pipeline.OutputMessageProcessor" length="0"/>
 </void>
 </object>
</java>

9.3. Postprocessing an Outgoing Message
To postprocess an outgoing message we have to create an output processor component and to
configure the pipeline manger accordingly. This is described below.

Copyright (c) 2005-2006 Funambol - Page 36

9.3.1. Creating an Output Synclet
An output synclet is a class that implements the
sync4j.framework.engine.pipeline.OutputMessageProcessor interface. This interface defines just one
method: void postProcessMessage(MessageProcessingContext context, SyncML msg).
The concepts behind the output message processing are the same as per input processing.

An example of an output synclet is the class shown below. The scope of this synclet is to inject into
the outgoing message a Get command to request client capabilities:

package com.foo.synclet;

public class AddGetSynclet
implements OutputMessageProcessor {
 // --- Constants

 public static final String PARAM_SESSION_ID = "sid";

 // -- OutputMessageProcessor

 public void postProcessMessage(MessageProcessingContext processingContext,
 SyncML message)
 throws Sync4jException {
 AbstractCommand[] commands = message.getBody().getCommands();

 AbstractCommand[] newCommands = new AbstractCommand[commands.length+1];

 Meta meta = new Meta();
 meta.setType(“application/vnd.syncml-devinf+xml”);

 Item item = new Item(
 new Target(“/devinf11”),
 null,
 null,
 null,
 false
);

 Get get = new Get(
 new CmdID(newCommands.length),
 false,
 null,
 null,
 meta,
 new Item[] { item }
);

 System.arraycopy(commands, 0, newCommands, 0, commands.length);
 newCommands[commands.length] = get;
 }
}

9.3.2. Configuring an Output Synclet
The output synclet so created, is configured telling the Pipeline Manager to insert the new synclet in
the outut pipeline. This is done like in the following server side JavaBeans (keeping the same
configuration of the input pipeline as the previous example).

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.0" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.engine.pipeline.PipelineManager">
 <void property="inputProcessors">
 <array class="sync4j.framework.engine.pipeline.InputMessageProcessor" length="1">
 <void index="0">
 <object class="com.foo.synclet.LoggingSynclec'è una funziont"/>
 </void>
 </array>
 </void>

Copyright (c) 2005-2006 Funambol - Page 37

 <void property="outputProcessors">
 <array class="sync4j.framework.engine.pipeline.OutputMessageProcessor" length="1">
 <void index="0">
 <object class="com.foo.synclet.AddGetSynclet"/>
 </void>
 </array>
 </void>
 </object>
</java>

Copyright (c) 2005-2006 Funambol - Page 38

10. References and Resources

10.1. References
[1] SyncML Representation Protocol, version 1.1,

http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf
[2] SyncML Sync Protocol, version 1.1,

http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf
[3] Sync4j SyncServer 4.0 Administration Guide
[4] Sync4j SyncServer 4.0 Module Development Tutorial

10.2. Resources
[1] www.syncml.org
[2] Java Authentication and Authorization Service, Reference Guide, JDK 1.4.x documentation

Copyright (c) 2005-2006 Funambol - Page 39

Appendices

Appendix A - Sync4j Interchange Formats
The Sync4j Interchange Format (SIF) is a way to represent PIM data coming from different clients in
a common structure to make it easier information exchange.
SIF format is based on a XML representation of PIM data.

The goal we wanted to achieve with this representation (as opposed to other standards) is having a
simple xml structure representing any possible PIM properties. The basic idea is that every PIM
object (contact, calendar, and so on) has properties in the form name-value. Therefore, in a SIF
document tags represent properties and tags content represent their values.

We have a SIF representation for each type of PIM data. They are SIF-C for contacts, SIF-E for
events, SIF-T for tasks and SIF-N for notes. The Following sections explain each SIF format in detail.

SIF-C
A contact contains information about a person. Each client (Outlook, Pocket PC, Palm...) can store
different kind of personal data. For example, Pocket PC devices use a subset of the information used
by Outlook.

An example of a SIF contact is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<contact>
 <Companies>Maga S.p.A.</Companies>
 <CompanyMainTelephoneNumber/>
 <Email3Address>john@yahoo.com</Email3Address>
 <Business2TelephoneNumber>+001 2345776</Business2TelephoneNumber>
 <CarTelephoneNumber/>
 <Email2Address>john2@hotmail.com</Email2Address>
 <OtherAddressCountry/>
 <OtherFaxNumber/>
 <Suffix/>
 <BusinessAddressPostOfficeBox/>
 <FirstName>John</FirstName>
 <Subject/>
 <Hobby>Hockey</Hobby>
 <HomeAddressPostOfficeBox/>
 <OtherTelephoneNumber/>
 <PersonalWebPage>http://www.jhon.com</PersonalWebPage>
 <Department>dep 1</Department>
 <Home2TelephoneNumber>+001 3456 7767</Home2TelephoneNumber>
 <HomeAddressStreet>21th Street</HomeAddressStreet>
 <JobTitle>Programmer</JobTitle>
 <Anniversary>2004-11-23</Anniversary>
 <PrimaryTelephoneNumber>+001 45667 34543</PrimaryTelephoneNumber>
 <MobileTelephoneNumber>3357766689</MobileTelephoneNumber>
 <YomiCompanyName/>
 <BusinessAddressCountry>New York</BusinessAddressCountry>
 <Sensitivity>0</Sensitivity>

Copyright (c) 2005-2006 Funambol - Page 40

 <OtherAddressState/>
 <NickName>JJ</NickName>
 <HomeAddressPostalCode>54065</HomeAddressPostalCode>
 <OrganizationalIDNumber/>
 <ManagerName>Mr.White</ManagerName>
 <BusinessTelephoneNumber>+001 12399 9999</BusinessTelephoneNumber>
 <YomiLastName/>
 <WebPage>http://www.maga.com</WebPage>
 <BusinessAddressCity>New York</BusinessAddressCity>
 <Email2AddressType>SMTP</Email2AddressType>
 <Title>Ing</Title>
 <FileAs>Doe,John</FileAs>
 <MiddleName>Patrick</MiddleName>
 <HomeAddressCountry>home country</HomeAddressCountry>
 <Birthday>1973-10-03</Birthday>
 <RadioTelephoneNumber/>
 <OtherAddressPostalCode/>
 <BusinessAddressPostalCode>54667</BusinessAddressPostalCode>
 <BusinessAddressStreet>45th street</BusinessAddressStreet>
 <AssistantTelephoneNumber/>
 <PagerNumber/>
 <HomeAddressCity>home city</HomeAddressCity>
 <Profession>IT developer</Profession>
 <HomeAddressState>home state</HomeAddressState>
 <YomiFirstName/>
 <OtherAddressStreet/>
 <OtherAddressCity/>
 <CallbackTelephoneNumber/>
 <OtherAddressPostOfficeBox/>
 <Initials>J.D.</Initials>
 <Mileage/>
 <Language/>
 <Email1Address>john.doe@funambol.com</Email1Address>
 <Children/>
 <BusinessFaxNumber>+001 456 65 5556456</BusinessFaxNumber>
 <Email3AddressType>SMTP</Email3AddressType>
 <Importance>0</Importance>
 <Email1AddressType>SMTP</Email1AddressType>
 <Body>a little note...</Body>
 <TelexNumber/>
 <OfficeLocation/>
 <AssistantName/>
 <Spouse/>
 <Categories/>
 <HomeTelephoneNumber>+001 456 65 5454 </HomeTelephoneNumber>
 <BusinessAddressState>USA</BusinessAddressState>
 <ComputerNetworkName/>
 <CompanyName>Sync4j</CompanyName>
 <HomeFaxNumber/>
 <LastName>Doe</LastName>
</contact>

The SIF-C fields defined by default in Sync4j are listed in the table below.

Property Description

Anniversary Returns or sets the anniversary. It is in format YYYY-MM-DD

AssistantName Returns or sets the name of the person who is the assistant for the contact. Corresponds to
the Assistant's name: box on the Details page of a ContactItem.

AssistantTelephoneNumber Returns or sets the telephone number of the person who is the assistant for the contact

Birthday Returns or sets the birthday. It is expressed in format YYYY-MM-DD

Body Returns or sets the clear-text body of the item.

Business2TelephoneNumber Returns or sets the second business telephone number for the contact.

BusinessAddressCity Returns or sets the city name portion of the business address for the contact

BusinessAddressCountry Returns or sets the country code portion of the business address for the contact

BusinessAddressPostalCode Returns or sets the postal code (zip code) portion of the business address for the contact

BusinessAddressPostOfficeBox Returns or sets the post office box number portion of the business address for the contact

BusinessAddressState Returns or sets the state code portion of the business address for the contact

Copyright (c) 2005-2006 Funambol - Page 41

Property Description

BusinessAddressStreet Returns or sets the street address portion of the business address for the contact

BusinessFaxNumber Returns or sets the business fax number for the contact

BusinessLabel Returns or sets a String with complete business address

BusinessTelephoneNumber Returns or sets the first business telephone number for the contact

BusinessWebPage Business web page

CallbackTelephoneNumber Returns or sets the callback telephone number for the contact

CarTelephoneNumber Returns or sets the car telephone number for the contact

Categories Returns or sets the categories assigned to the Outlook item.

Children Returns or sets the names of the children of the contact

CompanyMainTelephoneNumber Returns or sets the company main telephone number for the contact

CompanyName Returns or sets the company name for the contact

Companies Returns or sets the names of the companies associated with the item.

ComputerNetworkName Returns or sets the name of the computer network for the contact

Department Returns or sets the department name for the contact

Email1Address Returns or sets a String representing the e-mail address of the first e-mail entry for the
contact.

Email1AddressType Returns or sets a String representing the address type (such as EX or SMTP) of the first e-
mail entry for the contact. This is a free-form text field, but it must match the actual type of
an existing mail transport.

Email2Address Returns or sets the e-mail address of the second e-mail entry for the contact

Email2AddressType Returns or sets a String representing the address type (such as EX or SMTP) of the second
e-mail entry for the contact. This is a free-form text field, but it must match the actual type of
an existing mail transport.

Email3Address Returns or sets the e-mail address of the third e-mail entry

Email3AddressType Returns or sets a String representing the address type (such as EX or SMTP) of the third e-
mail entry for the contact. This is a free-form text field, but it must match the actual type of
an existing mail transport.

FileAs Returns or sets the default keyword string assigned to the contact when it is filed

FirstName Returns or sets the first name for the contact.

Folder Return or sets the Folder the contact has to be written in. The contact in the default contacts
folder can be represented with “/” root or wothout <Folder> tag. Eg.
<Folder>/subfolder1/subfolder11/</Folder>. Note the final “/”.

Gender Gender

Hobby Returns or sets the hobby for the contact

Home2TelephoneNumber Returns or sets the second home telephone number for the contact

HomeAddressCity Returns or sets the city portion of the home address for the contact

HomeAddressCountry Returns or sets the country portion of the home address for the contact

HomeAddressPostalCode Returns or sets the postal code portion of the home address for the contact

HomeAddressPostOfficeBox Returns or sets the post office box number portion of the home address

HomeAddressState Returns or sets the state portion of the home address for the contact

HomeAddressStreet Returns or sets the street portion of the home address for the contact

HomeFaxNumber Returns or sets the home fax number for the contact

HomeLabel Returns or sets a String with complete home address

HomeTelephoneNumber Returns or sets the first home telephone number for the contact

HomeWebPage Personal web page

id Returns or sets the identifier of contact item

Importance Returns or sets the relative importance level for the Outlook item. Can be one of the following
OlImportance constants: olImportanceHigh(2), olImportanceLow(0), or
olImportanceNormal(1). This property corresponds to the MAPI property

Copyright (c) 2005-2006 Funambol - Page 42

Property Description

PR_IMPORTANCE.

Initials Returns or sets the initials for the contact

JobTitle Returns or sets the job title for the contact

Language Returns or sets the language for the contact

LastName Returns or sets the last name for the contact

ManagerName Returns or sets the manager name for the contact

MiddleName Returns or sets a String representing the middle name for the contact.This property is
parsed from the FullName property, but may be changed or entered independently should it
be parsed incorrectly. Note that any such changes or entries to this property will be
overwritten by any subsequent changes of entries to FullName.

Mileage Returns or sets a String representing the mileage for an item. This is a free-form string field
and can be used to store mileage information associated with the item (for example, 100
miles documented for an appointment, contact, or task) for purposes of reimbursement.

MobileTelephoneNumber Returns or sets a String representing the mobile telephone number

NickName Returns or sets a String representing the nickname for the contact.

OfficeLocation Returns or sets a String specifying the specific office location (for example, Building 1 Room
1 or Suite 123) for the contact. This property corresponds to the MAPI property
PR_OFFICE_LOCATION.

OrganizationalIDNumber Returns or sets the organizational ID number for the contact

OtherAddressCity Returns or sets the city portion of the other address for the contact

OtherAddressCountry Returns or sets the country portion of the other address for the contact

OtherAddressPostalCode Returns or sets the postal code portion of the other address for the contact

OtherAddressPostOfficeBox Returns or sets the post office box portion of the other address for the contact

OtherAddressState Returns or sets the state portion of the other address for the contact

OtherAddressStreet Returns or sets the street portion of the other address for the contact

OtherFaxNumber Returns or sets the other fax number for the contact

OtherLabel Returns or sets a String with complete other address

OtherTelephoneNumber Returns or sets the other telephone number for the contact

PagerNumber Returns or sets the pager number for the contact

PrimaryTelephoneNumber Returns or sets the primary telephone number for the contact

Profession Returns or sets the profession for the contact

Revision Revision number

RadioTelephoneNumber Returns or sets the radio telephone number for the contact

Sensitivity Returns or sets the sensitivity for the Outlook item. Can be one of the following OlSensitivity
constants: olConfidential(3), olNormal(0), olPersonal(1), or olPrivate(2). This property
corresponds to the MAPI property PR_SENSITIVITY

Spouse Returns or sets the spouse name entry for the contact

Subject Returns or sets the subject for the Outlook item. This property corresponds to the MAPI
property PR_SUBJECT. The Subject property is the default property for Outlook items.

Suffix Returns or sets the name suffix (such as Jr., III, or Ph.D.) for the contact

TelexNumber Returns or sets the telex number for the contact

Timezone Returns or set the timezone for the contact

Title Returns or sets the title for the contact

Uid Unique id

WebPage Returns or sets the URL of the Web page for the contact

YomiCompanyName Returns or sets a String indicating the Japanese phonetic rendering (yomigana) of the
company name for the contact

YomiFirstName Returns or sets a String indicating the Japanese phonetic rendering (yomigana) of the first
name for the contact

Copyright (c) 2005-2006 Funambol - Page 43

Property Description

YomiLastName Returns or sets a String indicating the Japanese phonetic rendering (yomigana) of the last
name for the contact

You will note that some names and constants are a bit odd. This is for legacy reason since they are
used by Microsoft Exchange Server or some Microsoft clients (Outlook, Pocket Outlook).

In the following table there are the list of fields and their use on clients.

Property Outlook Pocket
PC

Palm Black
Berry

Java
GUI

Exchange VCARD

Anniversary Y Y N N N Y N

AssistantName Y Y N v N Y N

AssistantTelephoneNumber Y Y N N N Y N

Birthday Y Y N Y Y Y BDAY

Body Y Y Y N Y Y NOTE

Business2TelephoneNumber Y Y N N Y Y TEL;VOICE;WORK

BusinessAddressCity Y Y N Y Y Y ADR;WORK:-;-;-;CITY;-;-;-

BusinessAddressCountry Y Y N Y Y Y ADR;WORK:-;-;-;-;-;-
;COUNTRY

BusinessAddressPostalCode Y Y N Y Y Y ADR;WORK:-;-;-;-;-
;POSTALCODE;-

BusinessAddressPostOfficeBox Y N N N N Y ADR;WORK:POSTOFFICE;-;-
;-;-;-;-

BusinessAddressState Y Y N Y Y Y ADR;WORK:-;-;-;-;STATE;-;-

BusinessAddressStreet Y Y N Y Y Y ADR;WORK:-;-;STREET;-;-;-;-

BusinessFaxNumber Y Y Y Y Y Y TEL;FAX;WORK

BusinessLabel N N N N Y N LABEL;WORK

BusinessTelephoneNumber Y Y Y Y Y Y TEL;VOICE;WORK

BusinessWebPage Y N N N Y Y URL;WORK

CallbackTelephoneNumber Y N N N N Y N

CarTelephoneNumber Y Y N N N Y TEL;CAR;VOICE

Categories Y Y N N N Y N

Children Y Y N N N Y N

CompanyMainTelephoneNumber Y N N N N Y TEL;WORK;PREF

CompanyName Y Y Y Y Y Y ORG:COMPANYNAME;-

Companies Y N N N N Y N

ComputerNetworkName Y N N N N Y N

Department Y Y N Y Y Y ORG:-;DEPARTMENT

Email1Address Y Y Y N Y Y EMAIL;INTERNET

Email1AddressType Y N N N N Y N

Email2Address Y Y N N Y Y EMAIL;INTERNET;HOME

Email2AddressType Y N N N N Y N

Email3Address Y Y N N Y Y EMAIL;INTERNET;WORK

Email3AddressType Y N N N N Y N

FileAs Y Y N N Y Y FN

FirstName Y Y Y Y Y Y N:-;FIRSTNAME;-;-;-

Folder Y N N N N N N

Gender N N N N N N N

Copyright (c) 2005-2006 Funambol - Page 44

Property Outlook Pocket
PC

Palm Black
Berry

Java
GUI

Exchange VCARD

Hobby Y N N N N Y N

Home2TelephoneNumber Y Y N N Y Y TEL;VOICE;HOME

HomeAddressCity Y Y Y N Y Y ADR;HOME:-;-;-;CITY;-;-;-

HomeAddressCountry Y Y Y N Y Y ADR;HOME:-;-;-;-;-;-
;COUNTRY

HomeAddressPostalCode Y Y Y N Y Y ADR;HOME:-;-;-;-;-
;POSTALCODE;-

HomeAddressPostOfficeBox Y N N N N Y ADR;HOME:POSTOFFICE;-;-
;-;-;-;-

HomeAddressState Y Y Y N Y Y ADR;HOME:-;-;-;-;STATE;-;-

HomeAddressStreet Y Y Y N Y Y ADR;HOME:-;-;STREET;-;-;-;-

HomeFaxNumber Y Y N N Y Y TEL;FAX;HOME

HomeLabel N N N N Y N LABEL;HOME

HomeTelephoneNumber Y Y Y Y Y Y TEL;VOICE;HOME

HomeWebPage Y N N N N Y URL;HOME

id N N N N Y N N

Importance Y N N N Y Y N

Initials Y N N N N Y N

InstantMessenger N N N N N N N

JobTitle Y Y Y Y Y Y TITLE

Language Y N N N N Y N

LastName Y Y Y Y Y Y N:LASTNAME;-;-;-;-

ManagerName Y N N N N Y N

MiddleName Y Y N N Y Y N:-;-;MIDDLENAME;-;-

Mileage Y N N N Y Y N

MobileTelephoneNumber Y Y Y Y Y Y TEL;CELL

NickName Y N N N Y Y NICKNAME

OfficeLocation Y Y N N N Y N

OrganizationalIDNumber Y N N N N N N

OtherAddressCity Y Y N N N Y ADR:-;-;-;CITY;-;-;-

OtherAddressCountry Y Y N N N Y ADR:-;-;-;-;-;-;COUNTRY

OtherAddressPostalCode Y Y N N N Y ADR:-;-;-;-;-;POSTALCODE;-

OtherAddressPostOfficeBox Y N N N N N ADR:POSTOFFICE;-;-;-;-;-;-

OtherAddressState Y N N N N Y ADR:-;-;-;-;STATE;-;-

OtherAddressStreet Y Y N N N Y ADR:-;-;STREET;-;-;-;-

OtherFaxNumber Y N N N N Y TEL;FAX

OtherLabel N N N N N N N

OtherTelephoneNumber Y N Y N Y Y TEL;VOICE

PagerNumber Y Y Y N Y Y TEL;PAGER

PrimaryTelephoneNumber Y N Y N N N TEL;PREF;VOICE

Profession Y N N N Y Y ROLE

Revision N N N N Y N REV

RadioTelephoneNumber Y Y N N N N N

Sensitivity Y N N N Y Y N

Spouse Y Y N N N Y N

Copyright (c) 2005-2006 Funambol - Page 45

Property Outlook Pocket
PC

Palm Black
Berry

Java
GUI

Exchange VCARD

Subject Y N N N N Y N

Suffix Y Y N N Y Y N:-;-;-;-;SUFFIX

TelexNumber Y N N N N Y N

Timezone N N N N N N TZ:

Title Y Y N N Y Y N:-;-;-;SALUTATION;-

Uid N N N N N N UID:

WebPage Y Y N Y N Y URL:

YomiCompanyName Y Y N N N N N

YomiFirstName Y Y N N N N N

YomiLastName Y Y N N N N N

SIF-E
An calendar event represents an event scheduled for a day at a particular time or a series of days at
a particular time. An example of a SIF event is:

<?xml version="1.0" encoding="UTF-8"?>
<appointment>
 <Start>20040930T133000Z</Start>
 <End>20040930T140000Z</End>
 <AllDayEvent>0</AllDayEvent>
 <Body/>
 <BusyStatus>2</BusyStatus>
 <Categories/>
 <Companies/>
 <Importance>1</Importance>
 <IsRecurring>0</IsRecurring>
 <Location>Milan</Location>
 <MeetingStatus>0</MeetingStatus>
 <Mileage/>
 <ReminderMinutesBeforeStart>15</ReminderMinutesBeforeStart>
 <ReminderSet>1</ReminderSet>
 <ReminderSoundFile>CalenAlarmSound</ReminderSoundFile>
 <ReminderOptions>8</ReminderOptions>
 <ReminderInterval>5</ReminderInterval>
 <ReminderRepeatCount>2</ReminderRepeatCount>
 <ReplyTime/>
 <Sensitivity/>
 <Subject>Meeting with Maga developers</Subject>
 <RecurrenceType>1</RecurrenceType>
 <Interval>1</Interval>
 <MonthOfYear>0</MonthOfYear>
 <DayOfMonth>0</DayOfMonth>
 <DayOfWeekMask>16</DayOfWeekMask>
 <Instance>0</Instance>
 <PatternStartDate>20040930T230000Z</PatternStartDate>
 <NoEndDate>1</NoEndDate>
 <Occurrences>0</Occurrences>
 <PatternEndDate></PatternEndDate>
</appointment >

The fields defined and used by Sync4j are listed in the table below.

Property Description

AllDayEvent True if the appointment is an all-day event (as opposed to a specified time). Corresponds to the All
day event check box on the Appointment page of an AppointmentItem. True is 1.

Body Returns or sets the clear-text body of the item.

BusyStatus Returns or sets the busy status of the user for the appointment. Can be one of the following

Copyright (c) 2005-2006 Funambol - Page 46

Property Description

OlBusyStatus constants: olBusy(2), olFree(0), olOutOfOffice(3), or olTentative(1).

Calscale Defines the calendar scale used for the appointment

Categories Returns or sets the categories assigned to the Outlook item.

Companies Returns or sets the names of the companies associated with the Outlook item. This is a free-form
text field

Contact Represent the contact information or a reference to contact information associated with the
appointment.

CREATED Specifies the date and time that the calendar information was created by the calendar user agent in
the calendar store.

DALARM Display alarms that usually trigger a dialog box to be displayed by the client program

DCREATED Specifies the date and time that the calendar information was created by the calendar user agent in
the calendar store.

Dtstamp Indicates the date/time that the instance of the appointment was created.

End Returns or sets the end date and time of an appointment or journal entry. Expressed in UTC
YYYYMMDDTHHMMSSZ

Geo Specifies information related to the global position for the activity specified by an appointment.

id Returns or sets the identifier of the calendar item

Importance Returns or sets the relative importance level for the Outlook item. Can be one of the following
OlImportance constants: olImportanceHigh(2), olImportanceLow(0), or olImportanceNormal(1).
This property corresponds to the MAPI property PR_IMPORTANCE.

IsRecurring True if the appointment is recurring. True is 1.

Last-modified Specifies the date and time that the information associated with the appointment was last revised in
the calendar store

Location Returns or sets the specific location

MeetingStatus Returns or sets an OlMeetingStatus constant specifying the meeting status of the appointment.
The constants are: olNonMeeting (0), olMeeting (1), olMeetingReceived (3), olMeetingCanceled (5)

Mileage Returns or sets a String representing the mileage for an item. This is a free-form string field and
can be used to store mileage information associated with the item (for example, 100 miles
documented for an appointment, contact, or task) for purposes of reimbursement.

PALARM Is a procedure reminder, or application executable thatwill be run as an alarm for a calendar
component.

ProdId Specifies the identifier for the product that created the appointment.

ReminderInterval Returns or sets the interval in which the reminder has to be repeated.

ReminderMinutesBeforeStart Returns or sets the number of minutes the reminder should occur prior to the start of the
appointment

ReminderOptions Returns or sets the type of a reminder. Sum of any of the following constants. olLED activates the
LED (light emitting diode) on a device. olVibrate activates any vibration indicator on a device.
olDialog displays a dialog. olSound plays the file specified by ReminderSoundFile. olRepeat
repeats the reminder.

ReminderRepeatCount Returns or sets the number of times that the reminder has to be repeated.

ReminderSet True if a reminder has been set for this appointment, item or task.

ReminderSoundFile Returns or sets the path and file name of the sound file to play when the reminder occurs for the
Appointment. This property is valid only if the ReminderSet property is TRUE and the
ReminderOptions property includes olSound. The default for this is the current setting for the
Calendar application or Alarm1.wav if none.

ReplyTime Returns or sets a Date indicating the reply time for the appointment. Read/write

Revision Represents the date and time that this event's information was last modified

Rrule Defines a rule or repeating pattern for recurring events, to-dos, or time zone definitions.

Sensitivity Returns or sets the sensitivity for the Outlook item. Can be one of the following OlSensitivity
constants: olConfidential(3), olNormal(0), olPersonal(1), or olPrivate(2). This property corresponds
to the MAPI property PR_SENSITIVITY

Sequence The sequence field specifies the sequence number of a version of an appointment.

Start Returns or sets the starting date and time for the appointment or journal entry. Expressed in UTC

Copyright (c) 2005-2006 Funambol - Page 47

Property Description

YYYYMMDDTHHMMSSZ

Status Is the overall status or confirmation of the appointment. Can be one of the following values:
Tentative, Confirmed, Cancelled.

Subject The subject for the appointment

TimezoneId The timezoneid field specifies the time zone identifier of an appointment or meeting

Transp Defines whether an event is transparent or not to busy time searches.

Uid Defines the persistent, globally unique identifier for the appointment.

Url Defines a Uniform Resource Locator (URL) associated with the appointment.

Version Specifies the identifier corresponding to the highest version number or the minimum and maximum
range of the iCalendar specification that is required in order to interpret the iCalendar object

Recurrence properties

DayOfMonth The single day of the month from 1 to 31.

DayOfWeekMask The combination days of the week constants (i. e. event recurring on Monday and Wednesday. The
DayOfWeekMask should be olMonday + olWednesday)

Interval Is the interval of the recurrence. If RecurrenceType is olRecursDaily, event occurs every <interval>
day. If olRecursWeekly, event occurs every <inteval> week..

Instance The ordinal number of the day, week, month

MonthOfYear Month of year

NoEndDate True if there is no end date. True is 1.

Occurrences Number of occurrences for the recurrence.

PatternEndDate The end date of the recurrence

PatternStartDate The start day of the recurrence

RecurrenceType Returns or set a RecurrenceType. See below for the possible values.

In the following table there are the list of fields and their use on clients.

Property Oulook Pocket
PC

BlackBerry Java GUI Exchange iCAL

AllDayEvent Y Y N N Y N

Body Y Y Y Y Y DESCRIPTION

BusyStatus Y Y N N Y N

Calscale N N N N N CALSCALE

Categories Y Y N N Y CATEGORIES

Companies Y N N N N ORGANIZER

Contact N N N N N CONTACT

CREATED N N N N N CREATED

DALARM N N N N N DALARM

DCREATED N N N N N DCREATED

Dtstamp N N N N N DTSTAMP

End Y Y Y Y Y DTEND

Geo N N N N N GEO:-;-

id N N N Y N N

Importance Y N N N Y PRIORITY

IsRecurring Y Y N N N N

Last-Modified N N N N N LAST-MODIFIED

Location Y Y Y Y Y LOCATION

MeetingStatus Y N N N Y N

Copyright (c) 2005-2006 Funambol - Page 48

Property Oulook Pocket
PC

BlackBerry Java GUI Exchange iCAL

Method N N N N N METHOD

Mileage Y N N N Y N

PALARM N N N N N PALARM

ProdId N N N N N PRODID

ReminderInterval N N N N N AALARM:-;INTERVAL;-;-;

ReminderMinutesBeforeStart Y Y Y N Y Is used with DTSTART to
calculate the reminder start
date.

ReminderOptions N Y N N N N

ReminderRepeatCount N N N N N AALARM:-;-;COUNT;-;

ReminderSet Y Y N N Y AALARM

ReminderSoundFile N Y N N N AALARM:-;-;-;SOUNDFILE

ReplyTime Y N N N Y N

Revision N N Y N N N

Rrule N N N N N RRULE

Sensitivity Y Y N N Y CLASS

Sequence N N N N N SEQUENCE

Start Y Y Y Y Y DTSTART

Status N N N N N STATUS

Subject Y Y Y Y Y SUMMARY

TimezoneId N N N N N N

Transp N N N N N TRANSP

Uid N N N N N UID

Url N N N N N URL

Version N N N N N VERSION

Recurrence properties

DayOfMonth Y Y N N N N

DayOfWeekMask Y Y N N N N

Interval Y Y N N N N

Instance Y Y N N N N

MonthOfYear Y Y N N N N

NoEndDate Y Y N N N N

Occurrences Y Y N N Y N

PatternEndDate Y Y N N N N

PatternStartDate Y Y N N N N

RecurrenceType Y Y N N N N

Constants
The following constants are defined:

OlDaysOfWeek

olSunday = 1;
olMonday = 2;
olTuesday = 4;

Copyright (c) 2005-2006 Funambol - Page 49

olWednesday = 8;
olThursday = 16;
olFriday = 32;
olSaturday = 64;

OlRecurrenceType

olRecursDaily = 0;
olRecursWeekly = 1;
olRecursMonthly = 2;
olRecursMonthNth = 3;
olRecursYearly = 5;
olRecursYearNth = 6;

OlSensitivity

olNormal = 0;
olPersonal = 1;
olPrivate = 2;
olConfidential = 3;

OlBusyStatus

olFree = 0;
olTentative = 1;
olBusy = 2;
olOutOfOffice = 3;

OlImportance

olLow = 0;
olNormal = 1;
olHigh = 2;

Recurrent event examples
An event happening every 2 weeks on Sunday and Monday:

RecurrenceType = olRecursWeekly
Instance = 2
DayOfWeekMask = olSunday + olMonday

An event scheduled the 2th Wednesday of April of every year:

RecurrenceType = olRecursYearNth
Interval = 12
MonthofYear = 4
DayOfWeekMask = olWednesday
Instance = 2
NoEndDate = True

To learn more about recurrence and how setting all the properties have a look at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaol10/html/olobjRecurrencePattern.asp

Note for Outlook and PPC Client:

the recurrent properties must be set in a propert order and only some properties must be set related
to the particular RecurrenceType property. If not, no event can be added successfully.
RecurrenceType must be set as the first property and outlook client do it getting the value from the
SIF item.
Keeping “olRecursWeekly” as example only the properties “Interval” and “DayOfWeekMask” have to
be set meanwhile all the others must be 0. The Outlook Client skips the 0 value properties.
The same thing is for “olRecursMonthNth”: only the “Interval”, “Instance” and “DayOfWeekMask”
must be set to create a right event.

Copyright (c) 2005-2006 Funambol - Page 50

SIF-T
A Task object is very similar to an event object. An example of SIF task is the following:

<?xml version="1.0" encoding="UTF-8"?>
<task>
 <Body/>
 <Categories/>
 <Companies>Maga S.p.A.</Companies>
 <Complete>0</Complete>
 <DueDate>20041008T230000Z</DueDate>
..<DueDate>20041008T230000Z </DueDate>
..<BillingInformation>information</BillingInformation>
..<ActualWork>10</ActualWork >
 <Importance>1</Importance>
 <IsRecurring>0</IsRecurring>
 <Mileage/>
 <PercentComplete>0</PercentComplete>
 <ReminderSet>1</ReminderSet>
 <ReminderTime/>
 <Sensitivity/>
 <StartDate>20041110T230000Z</StartDate>
 <Status>0</Status>
 <Subject>new task</Subject>
 <TeamTask>0</TeamTask>
 <TotalWork>0</TotalWork>
 <RecurrenceType>1</RecurrenceType>
 <Interval>1</Interval>
 <MonthOfYear>0</MonthOfYear>
 <DayOfMonth>0</DayOfMonth>
 <DayOfWeekMask>4</DayOfWeekMask>
 <Instance>0</Instance>
 <PatternStartDate>20040930T230000Z</PatternStartDate>
 <NoEndDate>1</NoEndDate>
 <Occurrences>0</Occurrences>
 <PatternEndDate></PatternEndDate>
</task>

The fields defined and used by Sync4j are listed in the table below.

Property Description

ActualWork Returns or sets the actual effort (in minutes) spent on the task.

BillingInformation Returns or sets the billing information associated with the Outlook item. This is a free-
form text field

Body Returns or sets the clear-text body of the Outlook item.

Categories Returns or sets the categories assigned to the Outlook item.

Companies Returns or sets the names of the companies associated with the Outlook item. This is a
free-form text field

Complete True if the task is completed. True is 1

DueDate Returns or sets a Date indicating the due date for the task.

DateCompleted Returns when the task is completed. It gets set to the current date on the device when you
set the Complete property

Importance Returns or sets the relative importance level for the Outlook item. Can be one of the
following OlImportance constants: olImportanceHigh(2), olImportanceLow(0), or
olImportanceNormal(1). This property corresponds to the MAPI property
PR_IMPORTANCE.

Mileage Returns or sets a String representing the mileage for an item. This is a free-form string
field and can be used to store mileage information associated with the item (for example,
100 miles documented for an appointment, contact, or task) for purposes of
reimbursement.

PercentComplete Returns or sets the percentage of the task completed at the current date and time

ReminderSet True if a reminder has been set for this appointment, mail item or task. True is 1

ReminderTime Returns or sets the date and time at which the reminder should occur for this item.

ReminderSoundFile Returns or sets the path and file name of the sound file to play when the reminder occurs
for the Appointment. This property is valid only if the ReminderSet property is TRUE and

Copyright (c) 2005-2006 Funambol - Page 51

Property Description

the ReminderOptions property includes olSound. The default for this is the current setting
for the Calendar application or Alarm1.wav if none.

ReminderOptions Returns or sets the type of a reminder. Sum of any of the following constants. olLED
activates the LED (light emitting diode) on a device. olVibrate activates any vibration
indicator on a device. olDialog displays a dialog. olSound plays the file specified by
ReminderSoundFile. olRepeat repeats the reminder.

IsRecurring True if the appointment is recurring. True is 1

Sensitivity Returns or sets the sensitivity for the Outlook item. Can be one of the following
OlSensitivity constants: olConfidential(3), olNormal(0), olPersonal(1), or olPrivate(2). This
property corresponds to the MAPI property PR_SENSITIVITY

StartDate Returns or sets the starting date and time for the task

Status Returns or sets the status for the task. Can be one of the following OlTaskStatus
constants: olTaskComplete(2), olTaskDeferred(4), olTaskInProgress(1),
olTaskNotStarted(0), or olTaskWaiting(3).

Subject Returns or sets the subject for the Outlook item. This property corresponds to the MAPI
property PR_SUBJECT. The Subject property is the default property for Outlook items. IT
IS READ ONLY FOR NOTES

TeamTask True if the task is a team task. True is 1

TotalWork Returns or sets the total work for the task

Recurrence properties

DayOfMonth For recurrence (see calendar property)

DayOfWeekMask For recurrence (see calendar property)

Interval Return the interval

Instance For recurrence (see calendar property)

MonthOfYear For recurrence (see calendar property)

NoEndDate For recurrence (see calendar property)

Occurrences For recurrence (see calendar property)

PatternStartDate For recurrence (see calendar property)

PatternEndDate For recurrence (see calendar property)

RecurrenceType Returns or set a RecurrenceType. values are orRecursDaily...

In the following table there are the list of fields and their use on clients.

Property Outlook Pocket PC Exchange

ActualWork Y Y Y

BillingInformation Y Y Y

Body Y Y Y

Categories Y Y Y

Companies Y N N

Complete Y Y Y

DueDate Y Y Y

DateCompleted Y Y Y

Importance Y Y Y

Mileage Y N Y

PercentComplete Y N Y

ReminderSet Y Y Y

ReminderTime Y Y Y

ReminderSoundFile N Y N

ReminderOptions N Y N

Copyright (c) 2005-2006 Funambol - Page 52

Property Outlook Pocket PC Exchange

IsRecurring Y Y N

Sensitivity Y Y Y

StartDate Y Y Y

Status Y N Y

Subject Y Y Y

TeamTask Y Y Y

TotalWork Y N N

Recurrence properties

DayOfMonth Y Y N

DayOfWeekMask Y Y N

Interval Y Y N

Instance Y Y N

MonthOfYear Y Y N

NoEndDate Y Y N

Occurrences Y Y Y

PatternStartDate Y Y N

PatternEndDate Y Y N

RecurrenceType Y Y N

SIF-N
SIF notes are also represented in a SIF format:

<?xml version="1.0" encoding="UTF-8"?>
<note>
 <Body>New Note the first note</Body>
 <Categories/>
 <Subject>New Note</Subject>
 <Color>3</Color>
 <Height>166</Height>
 <Width>200</Width>
 <Left>80</Left>
 <Top>80</Top>
</note>

The fields defined and used by Sync4j are listed in the table below.

Property Description

Body Returns or sets the clear-text body of the note item.

Categories Returns or sets the categories assigned to the note item.

Color Color of note

Date Date of received note

Height Height of the box note

Left Left position of the box of the note

Subject Returns or sets the subject for the note item. This property corresponds to the MAPI
property PR_SUBJECT. The Subject property is the default property for Outlook items. IT
IS READ ONLY FOR NOTES. It value is retrieved by the first line of the body.

Top Top position of the boxof the note

Width Width of the box note

Copyright (c) 2005-2006 Funambol - Page 53

In the following table there are the list of fields and their use on clients.

Property Outlook Pocket PC Exchange

Body Y Y Y

Categories Y N N

Color Y N N

Date N N Y

Height Y N N

Left Y N N

Subject Y Y Y

Top Y N N

Width Y N N

Constants
The following constants are defined

OlNoteColor

olBlue = 0;
olGreen = 1;
olPink = 2;
olYellow = 3;
olWhite = 4;

Copyright (c) 2005-2006 Funambol - Page 54

	1. Introduction
	1.1. Audience
	1.2. Comments and Feedbacks

	2. Data Synchronization
	2.1. Id Handling
	2.2. Change Detection
	2.3. Modification Exchange
	2.4. Conflict Detection
	2.5. Conflict Resolution
	2.6. Slow and Fast Synchronization

	3. The SyncML Initiative
	4. Sync4j SyncServer High-level Architecture
	4.1. System Architecture
	4.2. SyncServer Architecture Overview
	4.2.1. The Synchronization Engine

	4.3. The Execution Flow

	5. The Synchronization Process
	5.1. Preparation
	5.2. Modifications Detection
	5.3. Synchronization
	5.4. Finalization
	5.5. Synchronization Sequence Diagram

	6. Extending the SyncServer with Sync4j Modules
	6.1. Building a Sync4j Module
	6.2. Modules, SyncConnectors and SyncSource Types
	6.2.1. Registering Modules, SyncConnectors and SyncSource Types

	7. Developing a SyncSource
	7.1. The SyncSource Interface and Related Classes
	7.1.1. Principal and Since Timestamp
	7.1.2. SyncItem
	7.1.3. Twin Items
	7.1.4. The SyncAdmin Configuration Panel

	8. Configuring Sync4j and Sync4j Components
	8.1. System Properties
	8.2. Sync4j.properties
	8.3. Server JavaBeans
	8.3.1. The configuration path
	8.3.2. Lazy Initialization

	8.4. How to Configure a Standard Component
	8.5. How to Create a Custom Configurable Object
	8.6. How to Get a Configured Instance
	8.6.1. Tips and Tricks

	9. Customizing Message Processing
	9.1. Overview
	9.2. Preprocessing an Incoming Message
	9.2.1. Creating an Input Synclet
	9.2.2. Configuring an Input Synclet

	9.3. Postprocessing an Outgoing Message
	9.3.1. Creating an Output Synclet
	9.3.2. Configuring an Output Synclet

	10. References and Resources
	10.1. References
	10.2. Resources

