
SyncClient API 2.5 for Java
Programmer Guide

Sync4j
http://www.sync4j.org

Funambol
http://www.funambol.com

Revision History
Name Date Reason for Change Ver./Rev.

Stefano Fornari Original draft 1.0

Table of Contents
1. Overview..4
1.1. SyncClient API Architecture... 4
2. Data Synchronization API..5
2.1. The Sync Manager... 5
2.2. The Sync Sources.. 5
2.3. The Sync Process.. 7
2.4. Configuring the Sync Manager... 8
2.4.1. Configuring a Sync Source.. 9
3. Device Management API...11
3.1. The Device Manager.. 11
3.1.1. Management Nodes.. 11
3.1.2. SimpleDeviceManagement... 12
3.2. Examples... 12
3.2.1. Getting a DeviceManager Instance... 12
3.2.2. Getting the Root Management Tree.. 12
3.2.3. Reading Management Node Configurable Properties... 13
3.2.4. Reading Node Children... 13
3.2.5. Update Configurable Properties.. 13
4. Developing a Test Application...14
4.1. Test.java... 14
4.2. DummySyncSource.java.. 14
4.3. Configuration Files.. 17
4.3.1. syncml.properties.. 17
4.3.2. test.properties.. 18

1. Overview

The Sync4j SyncClient API is the means application developers can embed and interact with
the Sync4j platform in order to take advantage of its powerful data synchronization features.

This document explains, from a developer point of view, the architecture and the use of the
Sync4j SyncClient API 2.5 for Java.

1.1. SyncClient API Architecture
The SyncClient API is built up of two main modules: data synchronization and device
management; they are layered as shown in Figure 1, where the device management layer is
responsible for device and application configuration management and the data synchronization
layer is responsible for everything regarding the SyncML protocol and the data synchronization
process.

The host application can access the services provided by both modules: the Sync Manager
when a synchronization has to be performed and the Device Manager when the configuration
must be read, manipulated or written. In addition, the Device Manager is intended to store host
application configuration information, enabling the application to be transparently managed
remotely with the SyncML Device Management features that will be implemented in a next
release of the API.

A Sync Source is a host application module that groups callback functions called by Sync
Manager to interact with the application data sources. The way the Sync Source access the
external data source is application specific and transparent to the synchronization engine.

Figure 1 - SyncClient API architecture

Device Manager

Sync Manager

Host ApplicationSync Source

2. Data Synchronization API

The synchronization API is grouped under the packages sync4j.syncclient.spds and
sync4j.syncclient.spds.engine. The most important classes for a quick start are the Sync
Manager itself, implemented in sync4j.syncclient.spds.SyncManager and the Sync Source
interface, defined by sync4j.syncclient.spds.engine.SyncSource. The former is the driver of any
synchronization operation, whilst the latter is the interface the host application has to
implement to access external data sources. They are described in the following sections.

2.1. The Sync Manager
sync4j.syncclient.spds.SyncManager is the contact point between a host application and the
synchronization engine. It is designed to hidden as much as possible the details of the
synchronization logic, protocol and communication to the host application developer.

The simplest way to use SyncManager is to get a new instance and call its sync() method, as in
the example below:

SyncManager syncManager = SyncManager.getSyncManager("test");
syncManager.sync();

getSyncManager() is a factory method that creates a new SyncManager bound to the given
application URI. The application URI is an application identifier that must be unique amongst all
the SyncPlatform-enabled applications running on the device.

The information required by the synchronization engine to initialize and to kick off a data
synchronization session is stored in the device management configuration tree (see later) and
can be manipulated by the means of the SyncPlatform Device Management API.

Error conditions are signalled throwing sync4j.syncclient.spds.SyncException for
synchronization problems or sync4j.syncclient.spds.DMException for configuration problems.

See the javadoc documentation for the published API.

2.2. Sync Sources
A Sync Source is responsible for storing and retrieving data from/to an external data source.

A Sync Source is modeled by the interface sync4j.syncclient.spds.engine.SyncSource, which
defines the following methods:

Name Description
getName() Returns the source display name.

getSourceURI() Returns the source identifying target URI.

getType() Returns the encoding mime type for items content.

Name Description
beginSync() Called just before the source synchronization takes

place. If this method throws a SyncException, the
synchronization won't be performed.

commitSync() Called after the source synchronization has been
committed. If this method throws a SyncException, the
synchronization will not be committed.

getAllSyncItems(principal) Returns all items belonging to the given principal.

getDeletedSyncItems(principal,
since)

Returns deleted items belonging to the given user
since the given point in time.

getNewSyncItems(principal, since) Returns new items belonging to the given principal
since the given point in time.

getUpdatedSyncItems(principal,
since)

Returns updated items belonging to the given principal
since the given point in time.

removeSyncItem(principal, key) Removes the item belonging to the given principal and
corresponding to the given key.

removeSyncItems(principal, keys) Removes the items belonging to the given principal
and corresponding to the given keys.

setSyncItem(principal, key) Adds or updates the item belonging to the given
principal and corresponding to the given key.

setSyncItems(principal, keys) Adds or updates the items belonging to the given
principal and corresponding to the given keys.

A SyncSource handles the items it contains in term of SyncItem
(sync4j.syncclient.engine.SyncItem), another interface that models the smallest piece of
information that can be synchronized. Exampled of content delivered by a SyncItem are
database records or a vCard contacts.
A SyncItem is uniquely identified by its SyncItemKey (sync4j.syncclient.engine.SyncItemKey),
which can be any application defined object (even if usually a simple String object is good
enough).
Data are stored in one or more SyncProperty objects (sync4j.syncclient.engine.SyncProperty),
of which two are standard properties and must be set in each SyncItem:

• BINARY_CONTENT: the binary version of the content as created by the source or read
from the SyncML message. The format must be the one intended to be transported over the
SyncML message. This property is a mandatory property because used by the
synchronization engine.

• TIMESTAMP: contains the timestamp of the last modification (creation, update, deletion).
This property is a mandatory property because used by the synchronization engine.

A SyncSource can create its own concrete implementation of SyncItem, even if this is usually
not required. The SyncClient API provides a generic SyncItem implementation
(sync4j.syncclient.engine.SyncItemImpl) that meets the most common needs.

A SyncSource is not used directly by the host application, instead its methods are called by the
synchronization engine during modifications analysis (see the synchronization process section).

SyncSource methods are designed to perform an efficient synchronization process, letting the
source selecting the changed items instead of doing more complex field by field comparison. It
is source developer responsibility to make sure that the getNew/Updated/DeletedSyncItems()
methods return the correct and values.

2.3. The Sync Process
From the host application developer perspective, the interaction with the synchronization
engine is limited to firing the synchronization process calling sync(). However, under the
covers, a lot of work happens. The main tasks performed during a sync execution are:

• synchronization initialization
• client modifications detection
• SyncML synchronization with the server
• server modifications execution

In order to make it possible, the synchronization engine interacts with the host application in
two of the above tasks: client modifications detection and server modifications execution where
the methods of the synchronizing sync source are called.

An important aspect of the synchronization process is the concept of fast and slow
synchronization.
Fast synchronization can be performed when client and server rely on their respective state,
because, for example, they have synchronized recently. In this case only the differences (the
modifications) since the last synchronization are exchanged.
When for any reason, client and server are not confident about their respective state, fast
synchronization cannot be done and slow synchronization is performed. In this case, the client
sends its database content to the server, who compares the received information with its local
database and then sends back the operations the client has to apply in order to be again up to
date and in sync.

The synchronization process tasks are briefly described in the following.

Synchronization initialization
In this phase the synchronization engine prepares a new synchronization session,
communicating to the server which sources it wants to synchronize and for which user. The
server evaluates the request and responds a status message in which it allows or denies the
request.

The Sync Manager synchronized the sources registered in the way described in the Sync
Sources section.

Client modifications detection
Here there are two possibilities: in the case of fast sync, the Sync Manager asks the registered
Sync Sources which items have changed since the last synchronization; in the case of slow
sync, the Sync Manager asks for all items in the data store. As said, in this phase, the Sync
Manager calls back the SyncSource's methods getXXXSyncItem(), which return the modified
(or all) items.

SyncML synchronization with the server
This is the process of exchanging database modifications through the SyncML protocol. This
task is hidden to the host application developer.

Server modification execution
This is the phase where server side modifications must be applied to the locale data store.
Again, the Sync Manager delegates the SyncSources to execute the changes.

The synchronization process flow looks like Figure 2.

2.4. Configuring the Sync Manager
Sync Manager requires few configuration parameters such as the url of the SyncML server,
which Sync Sources must be synchronized and so on. This information is stored in the device
manager layer (see Device Management API). Configuration parameters are grouped by
configuration contexts and organized in a management tree.
Sync Manager makes use of the following configuration parameters, divided by context:

Property Description
<application uri>/spds/syncml

syncml-url The initial URL for the SyncML request

targetLocalUri Server target URI

username The principal to present to the server along with the
SyncML request

password Principal's credential

device-id The device unique id

<application uri>/spds/sources/<source name>

name Source display name

type Source type (e.g. text/plain, text/vcard, ...)

sourceClass Source class name

sourceURI Source URI

Figure 2 - Synchronization process flow

Sync
Manager

Sync
Source

sync()

get[All/New /Deleted/Updated]SyncIitem()

SyncItem[]

Sync
Server

SyncML modifications

SyncML initialization

[remove/set]SyncItem()

Host
Application

SyncML mapping

beginSync()

commitSync()

Property Description
... Other implementation specific parameters

Note that multiple sources can be put under the <application uri>/spds/sources context so that
many source will be synchronized in sequence during the synchronization process.

2.4.1. Configuring a Sync Source
When the Sync Manager synchronizes a Sync Source, it first of all needs an instance of the
implementation class. This is obtained thanks to the value specified for the sourceClass
configuration property. After the instance is created, the other configuration properties under
the <application uri>/spds/sources/<source name> management node are set to the
corresponding properties in the implementation class (as soon as they have a setter method).

For example, suppose the following SyncSource configuration is stored in the device
management:

• <application uri>/spds/sources/OrderSyncSource
• sourceClass=sync4j.example.DBSyncSource
• uri=OrderSyncSource
• type=xml/recordset
• database=orderdb
• tableName=order
• param=value

The DBSyncSource would look like:

public class sync4j.example.DBSyncSource
implements SyncSource
{
 private String uri;
 private String type;
 private String database;
 private String tableName;

 public DBSyncSource() {
 this.database = “default”; // setting a default database
 }

 public String getUri() {
 return uri;
 }

 public void setUri(String uri) {
 this.uri = uri;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

 public String getDatabase() {
 return database;
 }

 public void setDatabase(String database) {
 this.database = database;
 }

 public String getTableName() {
 return tableName;
 }

 public void setTableName(String tableName) {
 this.tableName = tableName;
 }

 ...
 // other methods
 ...
}

Note that the configuration parameters sourceClass and param have no corresponding setXXX
(), therefore they will not be set.

3. Device Management API

Goal of the device management module is to allow an easily management of a remote device,
usually by remote administration or help-desk staff. This means that a remote or local agent
can navigate, view and change device and applications configuration in a manner transparent
to the end user.

Configuration information is logically stored in a so called management tree, organized in a
hierarchy of contexts and management nodes. This hides the details of the physical
configuration storage that could be an SQL database, a device datastore, an XML file, a file
system tree or even the device memory.

NOTE: the current version of the Funamambol SyncClient API does not support remote device
management yet. This functionality will be added in a future release.

3.1. The Device Manager
The main classes of the Device Management API are shown in Figure 3. The entrypoint is
represented by the class DeviceManager who acts as a factory for concrete implementations.
In addition, concrete DeviceManager implementations can return the management tree root
relative to a base configuration context. The management tree is represented by a hierarchical
structure of ManagementNode objects. ManagementNode provides accessing methods for the
manageable properties stored in the node and additional methods to retrieve children nodes
and values. Children and parent nodes can also be accessed through the given utility methods.
The physical implementation of the management tree repository may vary from simple
properties files stored on a file system to configuration tables stored in a database.

3.1.1. Management Nodes
A management node can be considered a map that associates parameters names to values.
This is a generic view that covers almost all possible requirements. However, a management
node can have an optional special property: class. If class is specified, it is assumed that the
properties of the node are properties of that class so that an instance of the class can be
created and initialized with the node properties when getValue() is called. To do so, the class
specified with the class property must adhere to the standard JavaBeans conventions. In
particular:

• The standard empty constructor must be provided with public visibility
• For each property that is read/write from/to the ManagementNode the corresponding

get/setXXX() methods must be provided with public visibility

There is no need to implement a particular interface or extend a particular base class.

3.1.2. SimpleDeviceManagement
The Sync4j SyncClient API 2.5 provides a simple implementation of a device manager that
uses the file system to store the management tree. It is implemented by the class
sync4j.spdm.SimpleDeviceManager, which uses directories to represent configuration contexts
and properties files to store configurable properties.
The management tree is relative to a base directory specified with the system property
spdm.dir.base. If not set, the current directory is picked up.

3.2. Examples

3.2.1. Getting a DeviceManager Instance

import sync4j.syncclient.spdm.DeviceManager;
import sync4j.syncclient.spdm.SimpleDeviceManager;

...

System.setPropety(“spdm.dir.base”, “/config”);
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

NOTE: each DeviceManager implementation is also a factory for concrete instances.

3.2.2. Getting the Root Management Tree

import sync4j.syncclient.spdm.ManagementNode;
import sync4j.syncclient.spdm.DeviceManager;
import sync4j.syncclient.spdm.SimpleDeviceManager;

...
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

ManagementNode rootNode = dm.getManagementNode();

Figure 3 - SyncPlatform DM class diagram

3.2.3. Reading Management Node Configurable Properties

import sync4j.syncclient.spdm.ManagementNode;
import sync4j.syncclient.spdm.DeviceManager;
import sync4j.syncclient.spdm.SimpleDeviceManager;

...
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

ManagementNode rootNode = dm.getManagementNode();

Hashtable params = rootNode.getNodeValues();

System.out.println(“syncml-url: “ + params.get(“syncml-url”));

3.2.4. Reading Node Children

import sync4j.syncclient.spdm.ManagementNode;
import sync4j.syncclient.spdm.DeviceManager;
import sync4j.syncclient.spdm.SimpleDeviceManager;

...
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

ManagementNode rootNode = dm.getManagementNode();

ManagementNode sourcesNode = rootNode.getChildNode(CONTEXT_SOURCES);

ManagementNode[] sources = sourcesNode.getChildren();

Hashtable sourceConfig = null;
for (int i=0; i<sources.length; ++i) {
 sourceConfig = sources[i].getValues();
 System.out.println(sourceConfig.get(“sourceURI”));
}

3.2.5. Update Configurable Properties

import sync4j.syncclient.spdm.ManagementNode;
import sync4j.syncclient.spdm.DeviceManager;
import sync4j.syncclient.spdm.SimpleDeviceManager;

...
DeviceManager dm = SimpleDeviceManager.getDeviceManager();

ManagementNode rootNode = dm.getManagementNode();

ManagementNode testNode = rootNode.getChildNode(CONTEXT_SOURCES + “/test”);

testNode.setValue(“property”, “value”);

4. Developing a Test Application

In this section, we are going to develop a test application from scratch. Our test application is a
J2SE application, composed of the following files:

• Test.java: the main test application.
• DummySyncSource: a sync source that just prints out messages when its callback methods

are called.
• Configuration files for the Device Manager
• The Sync4j SyncClient API jar files (SPDM.jar and SPDS.jar)

You can find all those files in the examples directory of the SyncClient API installation
directory. The following sections explain the main files and the steps to build and run the
example.

4.1. Test.java
This is the java program that we are going to launch, since it contains the main() method. This
is all you need to use the Sync4j SyncClient data synchronization functionality:

package sync4j.syncclient.test;

import sync4j.syncclient.spdm.SimpleDeviceManager;
import sync4j.syncclient.spds.*;
import sync4j.syncclient.spds.engine.*;

public class Test {
 public static void main(String[] args) throws Exception {
 System.setProperty(SimpleDeviceManager.PROP_DM_DIR_BASE, "config");

 //
 // Starts and initializes the Sync Manager with application URI
 // sync4j.org/test
 //
 SyncManager syncManager =
 SyncManager.getSyncManager("sync4j.org/test");

 //
 // Synchronize!
 //
 syncManager.sync();
 }
}

4.2. DummySyncSource.java
This is a test implementation of a SyncSource, with the only goal of showing when its methods
are called and with which parameters.

package sync4j.syncclient.test;

import java.security.Principal;
import java.util.Date;

import sync4j.syncclient.spds.engine.*;
import sync4j.syncclient.spds.SyncException;

public class DummySyncSource implements SyncSource {

 private String name = null;
 private String type = null;
 private String sourceURI = null;

 private SyncItem[] allItems = null;
 private SyncItem[] newItems = null;
 private SyncItem[] deletedItems = null;
 private SyncItem[] updatedItems = null;

 // -- Constructors

 /** Creates a new instance of AbstractSyncSource */
 public DummySyncSource() {
 newItems = new SyncItem[] {
 createItem("10", "This is a new item", SyncItemState.NEW)
 };
 deletedItems = new SyncItem[] {
 createItem("20", "This is a deleted item", SyncItemState.DELETED)
 };
 updatedItems = new SyncItem[] {
 createItem("30", "This is an updated item", SyncItemState.UPDATED)
 };

 allItems = new SyncItem[newItems.length + updatedItems.length + 1];

 allItems[0] = createItem("40", "This is an unchanged item",
SyncItemState.SYNCHRONIZED);
 allItems[1] = newItems[0];
 allItems[2] = updatedItems[0];
 }

 // -- Public methods

 public String getName() {
 return name;
 }

 public void setName(String name) {
 System.out.println("setName(" + name + ")");
 this.name = name;
 }

 public String getType() {
 return this.type;
 }

 public void setType(String type) {
 System.out.println("setType(" + type + ")");
 this.type = type;
 }

 public String getSourceURI() {
 return sourceURI;
 }

 public void setSourceURI(String sourceURI) {
 System.out.println("setSourceURI(" + sourceURI + ")");
 this.sourceURI = sourceURI;
 }

 public void setParam1(String value) {
 System.out.println("setParam1(" + value + ")");
 }

 public SyncItem[] getAllSyncItems(Principal principal)
 throws SyncException {
 System.out.println("getAllSyncItems(" + principal + ")");
 return allItems;
 }

 public SyncItem[] getDeletedSyncItems(Principal principal,
 Date since)
 throws SyncException {
 System.out.println("getDeletedSyncItems(" + principal + " , " + since + ")");

 return deletedItems;
 }

 public SyncItem[] getNewSyncItems(Principal principal,
 Date since)
 throws SyncException {
 System.out.println("getNewSyncItems(" + principal + " , " + since + ")");
 return newItems;
 }

 public SyncItem[] getUpdatedSyncItems(Principal principal,
 Date since)
 throws SyncException {
 System.out.println("getUpadtedSyncItems(" + principal + " , " + since + ")");

 return updatedItems;
 }

 public void removeSyncItem(Principal principal, SyncItem syncItem)
 throws SyncException {
 System.out.println("removeSyncItem(" + principal + " , " + syncItem.getKey().
getKeyAsString() + ")");
 }

 public SyncItem setSyncItem(Principal principal, SyncItem syncItem)
 throws SyncException {
 System.out.println("setSyncItem(" + principal + " , " + syncItem.getKey().
getKeyAsString() + ")");
 return new SyncItemImpl(this, syncItem.getKey().getKeyAsString()+"-1");
 }

 // --- Private methods

 private SyncItem createItem(String id, String content, char state) {
 SyncItem item = new SyncItemImpl(this, id, state);

 item.setProperty(
 new SyncItemProperty(
 SyncItem.PROPERTY_BINARY_CONTENT,
 content.getBytes()
)
);

 return item;
 }
}

4.3. Configuration Files
Because the Sync Manager uses the SimpleDeviceManager as Device Manager, the
configuration properties can be stored in the file system configuration tree as properties files.
This has the advantage of making easy changing the configuration by hands, without other
tools than a simple text editor.

The example has the following configuration structure:

<installation dir>
 + config
 + sync4j.org
 + test
 + spds
 - syncml.properties
 + sources
 - test.properties

Note that the management tree starts at the sync4j.org directory, since the spdm.dir.base
system property points to <installation directory>/config and the application URI is
sync4j.org/test.

4.3.1. syncml.properties
#
Configuration file for the SyncML client agent
#

#
The initial URL for the SyncML request
#
syncml-url=http://localhost:8080/sync4j/sync

#
The target URI of the server being contacted
#
targetLocalUri=sync.sync4j.org

#
Username and password for authentication to the sync server
#
username=test
password=test

#
The identification tag of this SyncML agent
#
device-id=test

4.3.2. test.properties
name=test
type=clear/text
last=1056201555322
class=sync4j.syncclient.test.DummySyncSource
sourceURI=test
param2=value2
param1=value1

4.4. Building and Running
To compile the classes, use the following commands:

set CLASSPATH=..\output\SPDM.jar;..\output\SPDS.jar;config\xml
%JAVA_HOME%\bin\javac -d classes src\sync4j\syncclient\test*.java

If they compiled without errors, run the test program:

set CLASSPATH=classes;..\output\SPDM.jar;..\output\SPDS.jar;..\lib\sync4j-
clientframework.jar
%JAVA_HOME%\bin\java sync4j.syncclient.test.Test

