
WebLab
Demo & Tutorial

WebLab development guidelines
Date: 2011–01–07

Cover and control page of document
Project WebLab
Version 1.1
Date 2011–01–07

Émilien Bondu (EADS)
Jérémie Doucy (EADS)
Gérard Dupont (EADS)

Authors (Organisation) Bruno Grilhères (EADS)
Patrick Giroux (EADS)
Khaled Khelif (EADS)
Yann Mombrun (EADS)
Arnaud Saval (EADS)

Document type PUB = public

Abstract: WebLab demonstration and tutorial for development of new We-
bLab services using the WebLab Core as a baseline.
Keword List: Tutorial, technical baseline, web services, WebLab, orchestra-
tion, ESB, portlets

2011–01–07 1/34

Modification control
Version Date Modification
1.0 2009–09–28 First version of the Demo README
1.1 2011–01–07 Adaptation to model 1.1.

Integration of a new WeblLab service
Modification of the chain and the visualisation portlet

2011–01–07 2/34

CONTENTS

Contents

1 Introduction 5
1.1 Overall presentation . 5
1.2 Prerequisites . 5
1.3 Vocabulary and definitions . 6

2 WebLab Demo 1.2 9
2.1 Goal and description . 9
2.2 Download and installation . 10

3 Development of a new service 11
3.1 Goal of the tutorial . 11
3.2 Maven configuration . 12
3.3 Creation of a Java web application . 12
3.4 Implementation of the Web service class 15
3.5 Compilation, packaging and test . 20
3.6 Going further . 21

3.6.1 Building custom project . 23
3.6.2 Using an IDE . 23
3.6.3 Custom implementation . 23
3.6.4 Adding dependencies to the project 24
3.6.5 Packaging and tests . 25
3.6.6 Delivery . 25
3.6.7 Extra documentation . 26

4 Tutorial for the integration of a service in the WebLab demo 27
4.1 Goal of the tutorial . 27
4.2 What is an ESB . 27
4.3 Integration of the LangDetector Service . 29
4.4 Modification of the BPEL chain SU . 33

2011–01–07 3/34

CONTENTS

4.5 Modification of the visualisation portlet . 33
4.6 Deployment on the petals ESB and tests 33

5 Conclusion 34

2011–01–07 4/34

CHAPTER 1

Introduction

1.1 Overall presentation
The WebLab platform is the generic name of the development and execution environment
platform provided by CASSIDIAN in several research projects (Vitalas, WebContent, e–
Wok Hub, Citrine, SAIMSI, VIRTUOSO, AXES. . .) involving the process of several types
of media.
This document is a tutorial for programmers who want to use the WebLab platform to
develop their own SOA-based applications. It contains the description of (i) a functional
demo of the Weblab platform and (ii) the different steps needed to integrate a new service.

This document is composed of the 4 following chapters:

• Introduction (current chapter) ;

• WebLab Demo 1.2 ;

• Tutorial for the development of a new service ;

• Tutorial for the integration of a service in the WebLab demo.

1.2 Prerequisites
To launch only the demo :

1. You should have a jdk1.6.20 or greater installed in order to run the WebLab demo ;

2. JAVA_HOME should be declared and Java should be available in your path ;

3. Your computer should have at least 2Go of memory (4Go recommended) to run the
WebLab demo efficiently.

2011–01–07 5/34

1.3. VOCABULARY AND DEFINITIONS

To integrate a new service :

1. You should have Maven1 2.0.9 (or later)

2. You should have soapUI2 if you want to test your service before integrating it in the
chain

To retrieve the sources on the OW2 forge, wou will also need a subversion3 client (see
for instance Tortoise SVN4).

1.3 Vocabulary and definitions
In the following chapters some ambiguous terms will appear. Here is the reference for
their definition in the context of this document:

1http://maven.apache.org/download.html
2http://www.soapui.org/
3http://subversion.apache.org/
4http://tortoisesvn.tigris.org/

2011–01–07 6/34

1.3. VOCABULARY AND DEFINITIONS

API Application programming interface.
BPEL Business Process Execution Language which is an XML

language using to orchestrate services (W3C standard).
Component Piece of software developed by a partner and which should

be integrated into the platform.
ESB Enterprise Service Bus which is a software infrastructure

to connect a set of heterogeneous software components.
Orchestrator Component dedicated to the orchestration of services and

thus the definition of processing chain.
POM Project Object Model, the fundamental unit of work in

Maven.
Service Piece of software which embeds a component and provides

the component functionality as a service (i.e. as much inde-
pendent from other components as possible). It can a be a
part of a processing chain and requires some pre-processing.

Service engine Software component embedded in the ESB which realises
technical process such as distribution or orchestration.

Service interface Definition of the input and output data for each method
proposed by a service (see service interface definitions).

SOAP Simple Object Access Protocol (W3C standard).
Technical service Service which could be embedded or not in the ESB and

providing a common technical functionality used by most
of the services.

WebLab Name of the platform composed among other by the ESB,
the data exchange model and the portal.

Web server A server which can handle HTTP request/response and
thus host web services.

Web service W3C standard defined to allow client and server compo-
nents to communicate using XML messages. It is based on
the Web service description language (WSDL) and use the
SOAP protocol.

WSDL WSDL (Web Services Description Language) document de-
scribes the contract between the web service endpoint and
the client. A WSDL document may include and/or import
XML schema files used to describe the data types used by
the web service (W3C standard).

XQuery W3C standard defined to Query XML data.
XSD XML Schema Definition (W3C standard).

Note that most of them are software related concepts and that a basic understanding
is needed on all of them. For some specific part of the platform, strong competences on

2011–01–07 7/34

1.3. VOCABULARY AND DEFINITIONS

some of them are mandatory and this glossary provide you some resources online for this
sake.

2011–01–07 8/34

CHAPTER 2

WebLab Demo 1.2

2.1 Goal and description
This simple demo just aims to show the WebLab platform basics in term of service inte-
gration and orchestration for unstructured document processing and retrieval.
In a nutshell, this demo crawl a local folder, analyze text based documents, index them
and finally offer access to them through a web portal. This portal allows to search by text
in the crawled documents and to visualize their annotated text content.
The processing capabilities are very limited (only gazetteer based on static dictionary)
but it allows to have a complete processing chains and aims to ease integration and test
of new components either on processing chain or on user interface.

It is composed of several WebLab services :

• A simple folder crawler able to crawl the content of a given folder ;

• A normaliser that will extract the text content of various files (ms-office, pdf, rtf,
etc.) based on Apache Tika1 ;

• A simple text formatter that removes extra newlines and offer a better (yet still
raw) presentation ;

• A simple information extraction service that detects words from gazetteers (technical
gazetteers) in the document and annotate it ;

• An indexer that will index the text content and make it searchable based on Apache
SOLR2 ;

1http://lucene.apache.org/tika/
2http://lucene.apache.org/solr/

2011–01–07 9/34

2.2. DOWNLOAD AND INSTALLATION

• A WebLab BPEL chain that chains the 5 previously mentioned services ;

• 4 WebLab portlets :

– A launchCrawl portlet that allows users to launch the crawling of documents
in a fixed directory ;

– A search portlet that will launch query on the SOLR searcher ;

– A result portlet that display the results of the query ;

– A annotated document portlet that display the document annotated with the
annotation added by the gazetteer service.

2.2 Download and installation

Waiting for update

2011–01–07 10/34

CHAPTER 3

Development of a new service

3.1 Goal of the tutorial
In this chapter we will describe the development of a new web service w.r.t the weblab
model. The development of web services is possible in several languages, in this tutorial we
chose to use JAVA. Moreover in each language, and especially in JAVA, multiple solutions
exists to implement a web service. In this tutorial we will rely on JAXWS1 which is one
of the reference implementation of the implementation of the JAX-WS APIs (Java API
for XML Web Services). Finally we will use maven2 as project configuration management
and building automation tool.
The objective of the new service will be to detect the language of text embedded in We-
bLab document. To do this we will use an existing API called ’the cngram library’3.

Next sections will detail :

1. Creation of a Java application scheme using maven

2. Implementation of the web service class

3. Packaging and test of the web service

This service will be added into the demo chain in the next chapter.
1http://jax-ws.java.net/
2http://maven.apache.org/
3http://ngramj.sourceforge.net/

2011–01–07 11/34

http://jax-ws.java.net/
http://jax-ws.java.net/
http://maven.apache.org/
http://maven.apache.org/
http://ngramj.sourceforge.net/
http://ngramj.sourceforge.net/

3.2. MAVEN CONFIGURATION

3.2 Maven configuration
First of all, if it’s not done, you have to install maven (see maven documentation4). Then,
you can download the WebLAb repository for service development available here5.

Unzip the <weblabdir>/repository.zip in a new folder. This folder will be named
<mavenRepository>. By default, the repository is placed in <home_folder>/.m2/repository,
but you can change it by modifying the file <maven directory>/conf/settings.xmland
change the localRepositorymarkup (see embedded comments) to your <mavenRepository>,
as follows :

[...]
<!-- localRepository
| The path to the local repository maven will use to store artifacts.
| Default: ~/.m2/repository

-->
<localRepository>/path/to/your/mavenRepository</localRepository>
[...]

Since the Maven repository is provided, you can set Maven to work offline in order
to avoid network connections. For this sake, just set the offline markup to true in the
settings.xml, such as: <offline>true</offline>.

3.3 Creation of a Java web application
Thanks to Maven this task is extremely easy and is reduce to a simple command:

mvn archetype:generate
-DgroupId=org.tutorial.ws
-DartifactId=langDetectorService
-DarchetypeArtifactId=maven-archetype-webapp
-Dversion=1.0-SNAPSHOT

The interactive creation plugin will ask you to confirme the configuration you defined
(ie. groupID, artifactID, archetype and version). Just type “y” and valid. The plugin will
tehn generate the following fodlers and files:

langDetectorService/
|-- pom.xml
‘-- src

‘-- main
|-- resources
‘-- webapp

|-- WEB-INF
| ‘-- web.xml
‘-- index.jsp

4http://maven.apache.org/
5http://download.forge.objectweb.org/weblab/repository.zip

2011–01–07 12/34

http://download.forge.objectweb.org/weblab/repository.zip
http://maven.apache.org/
http://maven.apache.org/
http://download.forge.objectweb.org/weblab/repository.zip
http://download.forge.objectweb.org/weblab/repository.zip

3.3. CREATION OF A JAVA WEB APPLICATION

Now we will modify the XML file called pom.xml that contains information about the
project and configuration details used by maven to build the project.

Open the file langDetectorService/pom.xml, which should look like this:� �
1 <?xml version="1.0" encoding="UTF−8" standalone="yes"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xsi :schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven−v4_0_0.xsd">

6 <modelVersion>4.0.0</modelVersion>
<groupId>org.tutorial.ws</groupId>
<artifactId>langDetectorService</artifactId>
<packaging>war</packaging>
<version>1.0−SNAPSHOT</version>

11 <name>langDetectorService Maven Webapp</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>junit</groupId>

16 <artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

21 <build>
<finalName>langDetectorService</finalName>

</build>
</project>
� �

Listing 3.1: The original pom.xml file

To adapt this file to our needs, you should add the dependency to the WebLab li-
braries. For this, you can copy the lines provided below into the pom file at the root
level under <modelVersion></modelVersion> markups. It will enables Maven to load
the proposed jars and all its dependencies.

� �
[...]
<parent>
<groupId>org.ow2.weblab.webservices</groupId>
<artifactId>parent</artifactId>

5 <version>1.2</version>
</parent>
[...]
� �
Now we have to add dependencies of the language detection API we will use. We

also add a standard logging and the WebLab RDF-Helper-Jena which provides a set of
functionnalities to annotate WebLab resources with RDF/xml.

2011–01–07 13/34

3.3. CREATION OF A JAVA WEB APPLICATION

To do this, you can copy the lines provided below under the <dependencies></dependencies>
markups. It will enables Maven to load the jar librairies and all its dependencies.� �

[...]
<dependency>

3 <groupId>de.spieleck.app.ngramj</groupId>
<artifactId>cngram</artifactId>
<version>1.0−0.060327</version>

</dependency>
<dependency>

8 <groupId>org.slf4j</groupId>
<artifactId>slf4j−log4j12</artifactId>
<version>1.5.6</version>
<scope>runtime</scope>

</dependency>
13 <dependency>

<groupId>org.ow2.weblab.core.helpers</groupId>
<artifactId>rdf−helper−jena</artifactId>
<version>1.3</version>

</dependency>
18 [...]
� �

The final POM file looks like the listing below.� �
<?xml version="1.0" encoding="UTF−8" standalone="yes"?>

2 <project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xsi :schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven−v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

7

<parent>
<groupId>org.ow2.weblab.webservices</groupId>
<artifactId>parent</artifactId>
<version>1.2</version>

12 </parent>

<groupId>org.tutorial.ws</groupId>
<artifactId>langDetectorService</artifactId>
<packaging>war</packaging>

17 <version>1.0−SNAPSHOT</version>

<name>langDetectorService Maven Webapp</name>
<url>http://maven.apache.org</url>

22 <dependencies>
<dependency>

2011–01–07 14/34

3.4. IMPLEMENTATION OF THE WEB SERVICE CLASS

<groupId>de.spieleck.app.ngramj</groupId>
<artifactId>cngram</artifactId>
<version>1.0−0.060327</version>

27 </dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j−log4j12</artifactId>
<version>1.5.6</version>

32 <scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.ow2.weblab.core.helpers</groupId>
<artifactId>rdf−helper−jena</artifactId>

37 <version>1.3</version>
</dependency>

</dependencies>

<build>
42 <finalName>langDetectorService</finalName>

</build>
</project>
� �

Listing 3.2: The final pom.xml file

The next step is the actual implementation of the service. In the WebLab platform,
services interfaces have been standardized in a small set of generic interfaces that rely on
the same data exchange model. They define the method that are used by the multiple
components that can be used in a multimedia processing chain (see on WebLab documen-
tation on the wiki6 for more information). Thus a “WebLab-compliant” service need to
implement one of these generic interfaces.

For our new service, we will use the Analyser interface. A UML description of this in-
terface can be found in WebLab documentation whereas the WSDL itself can be found in
the source repository. This WSDL has been used to generate the JAVA interface (through
JAXWS) which will be used in our example. It includes the JAVA classes associated with
elements of the data exchange model.

3.4 Implementation of the Web service class
The implementation itself will be quite easy. Our new service is an Analyser, so we have
to implement this interface which force us to add only one unique method. It is called to
parse resources and named process(ProcessArgs args). It receive a Resource as input
and answer a Resource as output (the ProcessArgs could optionally contain an extra
object called UsageContext but it will be ignored for this tutorial).

6http://weblab-project.org

2011–01–07 15/34

http://weblab-project.org
http://weblab-project.org

3.4. IMPLEMENTATION OF THE WEB SERVICE CLASS

First you need to create the sources folder where you will put the java class. Simply
create the folder /src/main/java in the root folder of your project

mkdir your-service-path/src/main/java

Note that this is imposed by the structure of a maven project7. Keeping on this
structure will ease the packaging and delivery through maven.

Then you need to create a class in the newly created source folder. The listing below
gives an example of implementation.� �

package org.ow2.weblab.tutorial;

import java.io .IOException;
import java. util . List ;

5

import javax.jws.WebService;

import org.apache.commons.logging.LogFactory;
import org.ow2.weblab.core.extended.factory.AnnotationFactory;

10 import org.ow2.weblab.core.extended.ontologies.DublinCore;
import org.ow2.weblab.core.extended.util.ResourceUtil;
import org.ow2.weblab.core.helper.PoKHelper;
import org.ow2.weblab.core.helper.RDFHelperFactory;
import org.ow2.weblab.core.model.Annotation;

15 import org.ow2.weblab.core.model.Document;
import org.ow2.weblab.core.model.Resource;
import org.ow2.weblab.core.model.Text;
import org.ow2.weblab.core.services .AccessDeniedException;
import org.ow2.weblab.core.services .Analyser;

20 import org.ow2.weblab.core.services .ContentNotAvailableException;
import org.ow2.weblab.core.services .InsufficientResourcesException;
import org.ow2.weblab.core.services .InvalidParameterException;
import org.ow2.weblab.core.services .ServiceNotConfiguredException;
import org.ow2.weblab.core.services .UnexpectedException;

25 import org.ow2.weblab.core.services .UnsupportedRequestException;
import org.ow2.weblab.core.services .analyser.ProcessArgs;
import org.ow2.weblab.core.services .analyser.ProcessReturn;

import de.spieleck .app.cngram.NGramProfiles;
30

/∗∗
∗ Basic service that annotate Text unit with the 2−char code of the detected
∗ language
∗ @author WebLab team

35 ∗/
@WebService(endpointInterface = "org.ow2.weblab.core.services.Analyser")

7http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.
html

2011–01–07 16/34

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

3.4. IMPLEMENTATION OF THE WEB SERVICE CLASS

public class LangDetectorService implements Analyser {

private NGramProfiles nps = null;
40 private NGramProfiles.Ranker ranker = null;

/∗∗
∗ Simple constructor that initiate the language profiles for NGramJ
∗/

45 public LangDetectorService() {
try {
nps = new NGramProfiles();
ranker = nps.getRanker();

} catch (IOException e) {
50 e.printStackTrace();

}
}

@Override
55 public ProcessReturn process(ProcessArgs args)

throws AccessDeniedException, ContentNotAvailableException,
InsufficientResourcesException, InvalidParameterException,
ServiceNotConfiguredException, UnexpectedException,
UnsupportedRequestException {

60 // check we received a valid request
checkArgs(args);
// Get text units in the Document received
List<Text> texts =
ResourceUtil.getSelectedSubResources(args.getResource(),

65 Text.class) ;
StringBuilder sb = new StringBuilder();
Resource res = args.getResource();
// Concatenation of the document text sections
for (Text text : texts) {

70 if (text .getContent() == null || text .getContent().isEmpty()) {
LogFactory.getLog(this.getClass())

.debug("Text ’" + text.getUri()
+ "’ has no content; ignored.");

continue;
75 }

sb.append(text.getContent());
sb.append("\n\n\n"); // insert line break to separate successive texts

}
// detecting of the language of the text

80 String textLanguage = this.detectLanguage(sb.toString());
// integration of the annotation dc:language in the document
Annotation annot = AnnotationFactory.createAndLinkAnnotation(res);
PoKHelper pokH = RDFHelperFactory.getPoKHelper(annot);

2011–01–07 17/34

3.4. IMPLEMENTATION OF THE WEB SERVICE CLASS

pokH.setAutoCommitMode(false);
85 pokH.createLitStat(res.getUri() , DublinCore.LANGUAGE_PROPERTY_NAME,

textLanguage);
pokH.commit();
LogFactory.getLog(this.getClass()) . info(

"Document ’" + res.getUri()
90 + "’ annotated with the dc:language property : "

+ textLanguage);

ProcessReturn pr = new ProcessReturn();
pr.setResource(res) ;

95

return pr;
}

/∗∗
100 ∗ Detecting the language of the text content passed as a String with NGramJ

∗ @param text : the text content
∗ @return a string that contains the 2 char code for the detected language
∗ or xx if the language is unkown
∗/

105 private String detectLanguage(String text) {
String retVal = "xx";
if (! ranker.equals(null)) {
ranker. reset () ;
ranker.account(text);

110 NGramProfiles.RankResult res = ranker.getRankResult();

if (res .getScore(0) > 0.1)
retVal = res.getName(0);

}
115 return retVal;

}

/∗∗
∗ Check the request sent to the service , mostly for null content.

120 ∗ @param args the arguments sent to the service
∗ @throws InvalidParameterException
∗ @throws UnsupportedRequestException
∗/
private void checkArgs(final ProcessArgs args)

125 throws InvalidParameterException, UnsupportedRequestException {
if (args == null) {
throw new InvalidParameterException("ProcessArgs was null.",

"ProcessArgs was null.");
}

130 final Resource res = args.getResource();

2011–01–07 18/34

3.4. IMPLEMENTATION OF THE WEB SERVICE CLASS

if (res == null) {
throw new InvalidParameterException("Resource was null.",

"Resource was null.");
}

135 if (!(res instanceof Document)) {
throw new UnsupportedRequestException(

"Resource was not a document.",
"Resource was not a document.");

}
140 }

}
� �
Listing 3.3: Implementation of the Language detector Service.

The web service part of this class is simply managed through the annotation @WebService
and the implementation of the Analyser interface which also hold extra annotations to
describe the methods exposed as web service (more information about these annotations
could be found in JAXWS documentation8).

The process implemented is also easy to understand: it uses the classes of the model to
exploit the method argument (here a ProcessArgs as defined in the WSDL and extended
from the service interface).

First the process defined will test if the Resource in the ProcessArgs is a Document
and then extract the text content of this document. After that, the text is sent to ’cngrmj’
API which returns its proposed language. Finally, the language code (en, fr, es...) is inte-
grated in the resource as value of the dc:language property using the WebLa RDF Helper.

The standard web.xml (located in your-service-path/WEB-INF) file has to be con-
figured to describe the URL which are listened by our application and the classes that
will handle this listening process. In our case, the classes will be the one from JAXWS
and thus the file will in most case be the same. However, we should define the name of
our service in it as presented below :� �

<web−app>
<display−name>Tutorial web service sample.</display−name>
<listener>

4 <listener−class>com.sun.xml.ws.transport.http.servlet.WSServletContextListener</
listener−class>

</listener>
<servlet>
<servlet−name>langDetector</servlet−name>
<servlet−class>com.sun.xml.ws.transport.http.servlet.WSServlet</servlet−class>

9 <load−on−startup>1</load−on−startup>
</servlet>
<servlet−mapping>
<servlet−name>langDetector</servlet−name>
<url−pattern>/∗</url−pattern>

8http://java.sun.com/webservices/jaxws/docs.html

2011–01–07 19/34

http://java.sun.com/webservices/jaxws/docs.html
http://java.sun.com/webservices/jaxws/docs.html

3.5. COMPILATION, PACKAGING AND TEST

14 </servlet−mapping>
<session−config>
<session−timeout>60</session−timeout>

</session−config>
</web−app>
� �
What you can see is that we associated the JAXWS servlet listener to a servlet named

langDetector and configured a url-mapping. One more configuration file has to be cre-
ated to fix the endpoint name: sun-jaxws.xml (in the same location). It will define the
endpoint name and the service implementation which will be used by the listener to realize
the process (thus associating the servlet listener to our class). This is again very simple
as shown below :� �

<?xml version="1.0" encoding="UTF−8"?>
2 <endpoints xmlns="http://java.sun.com/xml/ns/jax−ws/ri/runtime" version="2.0">

<endpoint name="langDetector" implementation="org.ow2.weblab.tutorial.
LangDetectorService" url−pattern="/∗" />

</endpoints>
� �
So the code is ready, let’s test it.

3.5 Compilation, packaging and test
The next step is to package our web service into a war file in order to deploy it on a web
server and to test it. For this, you can use maven and type the below command :

mvn package

This command will compile the project and create the war file of your web service under
the directory langDetectorService/target. You can now deploy it on your tomcat
server (we assume you used the tomcat web server provided with the demo) : simply copy
the resulting WAR file from langDetectorService/target/langDetectorService.war
to <tomcat-home>/webapps/. To ensure the service is correctly deployed on tomcat,
check the log (open <tomcat-home>/logs/catalina.out) or go to the service welcome
page URL http://localhost:8080/langDetectorService. If the service is correctly
statred you should see :

To test this service, you have to install SoapUI (see SoapUI documentation9). Then
simply :

1. Create a New soapUI project ;

2. Copy the URL of the service in the ’Initial WSDL/WADL’ box
(i.e. http://localhost:8080/langDetectorService?wsdl) ;

3. Edit the ’process’ request and copy the request provided hereafter ;

4. Send the request and check the results.
9http://www.soapui.org/

2011–01–07 20/34

http://localhost:8080/langDetectorService?wsdl
http://localhost:8080/langDetectorService?wsdl
http://www.soapui.org/
http://www.soapui.org/

3.6. GOING FURTHER

Figure 3.1: Welcome page of the service correclty deployed on tomcat.

� �
1 <soapenv:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:analyser="http://weblab.ow2.org/core/1.2/services/analyser"
xmlns:model="http://weblab.ow2.org/core/1.2/model#" >

6 <soapenv:Header/>
<soapenv:Body>

<analyser:processArgs>
<resource xsi:type="model:Document" uri="weblab://aaa/1">

<mediaUnit xsi:type="model:Text" uri="weblab://aaa/1#0">
11 <content>The WebLab platform is the generic name of the development

and execution environment
platform provided by EADS in several research projects (Vitalas , WebContent, e−

WokHub, Citrine...)
involving the process of several types of media.</content>

</mediaUnit>
</resource>

16 </analyser:processArgs>
</soapenv:Body>

</soapenv:Envelope>
� �
You can see here the result of this query, Fig 3.2:
Moreover if you check the logs of your apache tomcat server (default logger write in

<tomcat-home>/logs/catalina.out), you should see :

INFO [http-9080-2] (LangDetectorService.java:85) - Document ’weblab://aaa/1’
annotated with the dc:language property : en

So that’s the end of the service tutorial. The next section will provide you some insight
that may be useful when trying to go further and implement your own service.

3.6 Going further
After this tutorial is achieved, the next step is to implement your own service in accordance
to any service specification. Hopefully, the procedure is really similar to the proposed

2011–01–07 21/34

3.6. GOING FURTHER

Figure 3.2: Test of the langDetectorService using soapUI

2011–01–07 22/34

3.6. GOING FURTHER

tutorial so we will only provide you the information needed to your own whatYouWant-
Project.

3.6.1 Building custom project
First of all, you need to build a new Maven project using your own names. So the
command can be change to:

mvn archetype:create -DgroupId=anyGroupId
-DartifactId=newNameOfTheProject
-DarchetypeArtifactId=maven-archetype-webapp

Note that this will create a new folder which will be named after the project name
and that the group and artifact ID will be in the pom.xml.

3.6.2 Using an IDE

There are plenty of maven plugins in order to enable the use of your service project in
your favorite IDE (including Eclipse; Netbeans, JDeveloper and more . . .). Since this
tutorial tries to be “IDE-indenpendent” we do not document this part. Sorry but this is
just out of the scope. Just check on the web for more information.

3.6.3 Custom implementation

To implement the service, just create a new class in the project (in the package you want)
and make it implementing the right interface previously generated. In the tutorial it was
org.ow2.weblab.core.services.Analyser, but if you change it, it may use another
name (and probably package). Remember, that you also need to add the annotation
concerning the web service implementation like:

@WebService(endpointInterface = "package.plus.name.of.interface")

The class is now specifying that it implements the service interface both to Java (with
classing implements statement) and jaxws (with annotation). You should now implement
the needed methods in accordance to the interface definition. This is where you can do
“what you want”. Which means that this is the place of your code which can call your own
external applications, use your own libraries. . . Just make sure that it achieve the right
process.

2011–01–07 23/34

3.6. GOING FURTHER

When you develop your own service, there are two possibilities:

• add your own code to the existing project created with the tutorial pro-
cedure. It means that your business classes will be directly in the project.
Thus you can easily package the application.

• package your code in a JAR. It will allow your code to be independent
from the service implementation and thus to be easily reusable in other
application. However, you should follow the procedure to add correctly
your jar as a dependency in the project (see hereafter).

In both cases, SoapUI will only test that the communication with the service
is valid (i.e. it can handle the arguments and provide response) and that
the arguments and output are valid or not against the data exchange model.
However no validation can be made on the content of the response to test if
the process that should be done by your service has been correctly done. You
should either valid the results manually or test it outside the soapUI (using
JUnit for instance).

3.6.4 Adding dependencies to the project

If your project depends on external libraries (classic Java libraries or your
own libraries), two step are required to use the benefits of Maven. First you
need to install the jar libraries into your local repository and then declare the
dependence in your project POM file.

As explained in the Maven documentation, libraries are identified by their group id,
artifact id and version number. Thus for each libraries you depends on you should choose
those references. For instance if you have a myLibrary.jar, you can choose this configu-
ration:

• groupId = my.organisation.group

• artifactId = myLibrary

• version = 1.0

Then you have to install it in your local repository using the Maven command:

mvn install:install-file -Dfile=path/to/your/jar/myLibrary.jar
-DgroupId=my.organisation.group -DartifactId=myLibrary

-Dversion=1.0 -Dpackaging=jar -DgeneratePom=true

Then, add the following dependency to the POM file of your project:� �
[...]

2 <dependency>
<groupId>my.organisation.group</groupId>

2011–01–07 24/34

3.6. GOING FURTHER

<artifactId>myLibrary</artifactId>
<version>1.0</version>

</dependency>
7 [...]
� �

Finally, run the following command to ensure that Maven correctly take this new
dependency in account:

mvn clean compile

If you have several dependencies, you can install all of them, add all dependencies to
the POM file and execute only one time the previous command.

If the JAR you want to install depends itself on other libraries, the easiest way
is to include them directly in the JAR itself. The other procedure can be to
convert your entire project to the Maven structure, but this task is out of the
scope of this tutorial. However, as already mentioned, one can look into Maven
documentation for more information on Maven dependencies management.

You may have set maven to work “offline” if you follow the steps proposed in
the tutorial. It may be time to go back online and configure some repositories
if you want to use extra dependencies.

3.6.5 Packaging and tests

Nothing change here except that the provided arguments should be in accordance with
the new interface implemented (and perhaps your own service pre-conditions).

3.6.6 Delivery

To deliver your component embedded in a web service, you have to provide of course the
WAR file, ready to be deployed on Tomcat application server. However some more data
are needed to ensure it will be integrable easily.

A complete description of the services provided by the component is needed in order to
build the correct processing chain without misunderstanding on any component function-
ality. A dedicated sheet is provided and should be filled by partners for each components
they will develop.

Then a test kit should be provided in order to be able to replay the internal tests
that have been made to validate the component functionality. It involves data to build
requests and valid the results of each service methods:

• SOAP request samples,

• SOAP responses (one for each requests),

• configuration procedures,

2011–01–07 25/34

3.6. GOING FURTHER

• testing data (i.e. multimedia content for most of the services) provided in input
and/or expected results.

Without those information and data, the integration of any component can be very
time consuming and one should take car on provided the right information in them.

3.6.7 Extra documentation

For more information, follow the links hereafter:

• Service interfaces:
http://weblab-project.org/index.php?title=WebLab_services_interfaces

• Data exchange model:
http://weblab-project.org/index.php?title=WebLab_data_exchange_model

• Document structure:
http://weblab-project.org/index.php?title=WebLab_Structure_Representation

• Document annotation:
http://weblab-project.org/index.php?title=WebLab_Document_Annotation

• Anything:
http://weblab-project.org/forum/yabb2/YaBB.pl

2011–01–07 26/34

http://weblab-project.org/index.php?title=WebLab_services_interfaces
http://weblab-project.org/index.php?title=WebLab_services_interfaces
http://weblab-project.org/index.php?title=WebLab_data_exchange_model
http://weblab-project.org/index.php?title=WebLab_data_exchange_model
http://weblab-project.org/index.php?title=WebLab_Structure_Representation
http://weblab-project.org/index.php?title=WebLab_Structure_Representation
http://weblab-project.org/index.php?title=WebLab_Document_Annotation
http://weblab-project.org/index.php?title=WebLab_Document_Annotation
http://weblab-project.org/forum/yabb2/YaBB.pl
http://weblab-project.org/forum/yabb2/YaBB.pl

CHAPTER 4

Tutorial for the integration of a service in the WebLab demo

4.1 Goal of the tutorial
In this chapter we describe the integration of the web service developed above in a WebLab
application. The objective is to integrate the language detection function in the processing
chain of the demonstration application in order to add a language attribute to the crawled
documents.
This feature is then used by the visualisation portlet to display a ’country flag’ based on
the language detected next to each document in the result portlet. Next sections will
detail :

1. Integration of the langDetectorService into petals ESB

2. Modification of the BPEL chain service unit

3. Re-deployment on the petals ESB

4. Tests of the new WebLab demo

Before going deeper in this chapter, some explanation about ESB, JBI, service assem-
bly, service unit, etc. are needed. It the the goal of the next section.

4.2 What is an ESB
An ESB is a software bus used to integrate heterogeneous applications and applications
parts. JBI is a Java specification used to integrate software components. Of course there
are some ESB which implement JBI, and PEtALS is one of them.

An ESB is able to compose heterogeneous components using normalized installing,
requesting and messaging paradigms.

To do this it uses:

2011–01–07 27/34

4.2. WHAT IS AN ESB

• Service Engines (SE): used to do business processes like XSL transformation,
orchestration, composition, load balancing. . .

• Binding Components (BC): used to get inside and outside the bus. For example
a MAIL BC, a SOAP BC, an XMPP BC. . .

• Endpoints: used for service generalisation, each endpoint can be found and re-
quested through the bus.

• Service Units (SU): used to configure SE and BC, each SU is linked to an SE or
BC.

• Service Assembly (SA): deployable in the bus, used to configure SUs.

Figure 4.1: ESB architecture example.

In this guide you are going to create SUs, package them in a SA and deploy this SA
in the bus. The figure 4.1 presents the bus capabilities:

• BCs provide protocol abstraction (multiples client / component integration possi-
bilities);

• Endpoint provide service abstraction, reusing and composition;

2011–01–07 28/34

4.3. INTEGRATION OF THE LANGDETECTOR SERVICE

• Service composition provides flexibility and scalability;

• Many others things that can’t be listed here. . .

Figure 4.2: Architecture deployed during the integration on ESB.

4.3 Integration of the LangDetector Service
The first integration step is to expose the langDetectorService as an endpoint. To do this,
we need to deploy a SU on the SOAP BC. When the SU will be deployed, it will create
a new endpoint on the bus “connected” to the langDetectorService. It means that when
the endpoint will be called, the langDetectorService will be threw the SOAP BC.

Go to your workspace directory and create an SU artefact using this command:

mvn archetype:create -DarchetypeGroupId=org.objectweb.petals
-DarchetypeArtifactId=maven-archetype-petals-jbi-service-unit

-DarchetypeVersion=1.0.0 -DgroupId=org.weblab.example
-DartifactId=langDetectorProvideSU -Dversion=1.0-SNAPSHOT

This command creates the folder langDetectorProvideSU:

langDetectorProvideSU/
|-- pom.xml
‘-- src

2011–01–07 29/34

4.3. INTEGRATION OF THE LANGDETECTOR SERVICE

‘-- main
|-- jbi
| ‘-- jbi.xml
‘-- resources

So the first thing to change is the generated jbi.xml file by the following one:� �
<?xml version="1.0" encoding="UTF−8"?>
<jbi:jbi version="1.0"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xmlns:jbi="http://java.sun.com/xml/ns/jbi"
xmlns:petalsCDK="http://petals.ow2.org/components/extensions/version−4.0"
xmlns:soap="http://petals.ow2.org/components/soap/version−3.1"
xmlns:analyser="http://weblab−project.org/services/analyser">

8 <!−− Import a Service into PEtALS or Expose a PEtALS Service => use a BC. −−>
< jbi:services binding−component="true">
<!−− Import a Service into PEtALS => provides a Service. −−>
<jbi:provides interface−name="analyser:Analyser"

service−name="analyser:LanguageDetector" endpoint−name="lg1">
13

<petalsCDK:wsdl>wsdl/Analyser.wsdl</petalsCDK:wsdl>
<soap:address>http://localhost:8080/langDetectorService
</soap:address>
<soap:synchronous−timeout>0</soap:synchronous−timeout>

18 <soap:mode>SOAP</soap:mode>
</jbi:provides>

</ jbi:services>
</jbi:jbi>
� �
This file is the service unit configuration file and as you can see, the only parameter

which depend on the service are the service URL and the WSDL URL.
So using this file, the SOAP BC is able to know that when the endpoint
PEtALSneeds the WSDL file to correctly deploy the service unit. So you have to copy

langDetectorService/src/wsdl directory into src/main/jbi.
Edit the AnalyserWSDL file located in langDetectorProvideSU/src/main/jbi/wsdl.

You can now copy these lines at the end of the document before the </definitions>
markup. It is the definition of our new service.� �

[...]
<service name="LanguageDetector">

<port name="LangPort" binding="tns:AnalyserSOAPBinding">
4 <soap:address location="http://www.example.org/"/>

</port>
</service>
[...]
� �

Now, we have to install it in our local repository, to do this just type this command
in the langDetectorProvideSU folder:
mvn clean install

2011–01–07 30/34

4.3. INTEGRATION OF THE LANGDETECTOR SERVICE

Now to deploy it on the bus, you need to create a service assembly which contains this
service unit. To do this type this command in your workspace:

mvn archetype:create -DarchetypeGroupId=org.objectweb.petals
-DarchetypeArtifactId=maven-archetype-petals-jbi-service-assembly

-DarchetypeVersion=1.0.0 -DgroupId=org.objectweb.example
-DartifactId=langDetectorProvideSA -Dversion=1.0-SNAPSHOT

This command creates the folder langDetectorProvideSA:

langDetectorProvideSA/
|-- pom.xml
‘-- src

‘-- main
|-- jbi
| ‘-- jbi.xml
‘-- resources

First we have to add a dependency to the newly created service unit (langDetectorProvideSU)
in the pom.xml file:� �

<?xml version="1.0" encoding="UTF−8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven−v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

8 <!−− ============== −−>
<!−− Identification −−>
<!−− ============== −−>
<name>SA :: langDetectorProvideSA</name>
<artifactId>langDetectorProvideSA</artifactId>

13 <groupId>org.weblab.example</groupId>
<version>1.0−SNAPSHOT</version>
<packaging>jbi−service−assembly</packaging>
<description>langDetectorProvideSA description.</description>

18 <!−− ============ −−>
<!−− Dependencies −−>
<!−− ============ −−>
<dependencies>
<dependency>

23 <groupId>org.weblab.example</groupId>
<artifactId>langDetectorProvideSU</artifactId>
<version>1.0−SNAPSHOT</version>
<type>jbi−service−unit</type>

</dependency>
28 </dependencies>

2011–01–07 31/34

4.3. INTEGRATION OF THE LANGDETECTOR SERVICE

<!−− ===== −−>
<!−− Build −−>
<!−− ===== −−>

33 <build>
<plugins>
<plugin>
<groupId>org.objectweb.petals</groupId>
<artifactId>maven−petals−plugin</artifactId>

38 <version>1.0.0</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
43

</project>
� �
The next step is to edit the jbi.xml file and copy this content:� �

1 <?xml version="1.0" encoding="UTF−8"?>

<jbi version="1.0" xmlns="http://java.sun.com/xml/ns/jbi"
xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance">
<service−assembly>

6 <identification>
<name>langDetectorProvideSA</name>
<description>langDetectorProvideSA description</description>

</identification>
<service−unit>

11 <identification>
<name>langDetectorProvideSU</name>
<description>langDetectorProvideSU description</description>

</identification>
<target>

16 <artifacts−zip>langDetectorProvideSU−1.0−SNAPSHOT.zip</artifacts−zip>
<component−name>petals−bc−soap</component−name>

</target>
</service−unit>

</service−assembly>
21 </jbi>
� �

Take care about the correctness of the name in the identification part. It must match
the name of the service unit previously created.
Before deploying this service assembly on the bus, we must package it. Go to the
langDetectorProvideSA folder and type:
mvn clean package

2011–01–07 32/34

4.4. MODIFICATION OF THE BPEL CHAIN SU

4.4 Modification of the BPEL chain SU

Waiting for update

4.5 Modification of the visualisation portlet

Waiting for update

4.6 Deployment on the petals ESB and tests

Waiting for update

2011–01–07 33/34

CHAPTER 5

Conclusion

2011–01–07 34/34

	1 Introduction
	1.1 Overall presentation
	1.2 Prerequisites
	1.3 Vocabulary and definitions

	2 WebLab Demo 1.2
	2.1 Goal and description
	2.2 Download and installation

	3 Development of a new service
	3.1 Goal of the tutorial
	3.2 Maven configuration
	3.3 Creation of a Java web application
	3.4 Implementation of the Web service class
	3.5 Compilation, packaging and test
	3.6 Going further
	3.6.1 Building custom project
	3.6.2 Using an IDE
	3.6.3 Custom implementation
	3.6.4 Adding dependencies to the project
	3.6.5 Packaging and tests
	3.6.6 Delivery
	3.6.7 Extra documentation

	4 Tutorial for the integration of a service in the WebLab demo
	4.1 Goal of the tutorial
	4.2 What is an ESB
	4.3 Integration of the LangDetector Service
	4.4 Modification of the BPEL chain SU
	4.5 Modification of the visualisation portlet
	4.6 Deployment on the petals ESB and tests

	5 Conclusion

