
XQuark Bridge 1.0

XQuery Reference
Guide

 ii

XQUARK BRIDGE 1.0

XQUERY REFERENCE GUIDE

Document version 1.0

Copyright 2003 Université de Versailles Saint-Quentin.
Copyright 2003 XQuark Group.

All rights reserved.

All Trademarks are owned by their respective owners and are subject to Copyright laws.

 iii

FOREWORD

Status of the W3C references from which this document derives :

XML Schema Part 1: Structures. W3C Recommendation 2 May 2001. See
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

XML Schema Part 2: Datatypes. W3C Recommendation 2 May 2001. See
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

Namespaces in XML. W3C Recommendation 14 January 1999. See
http://www.w3.org/TR/1999/REC-xml-names-19990114

XML Information Set. W3C Recommendation 24 October 2001. See
http://www.w3.org/TR/2001/REC-xml-infoset-20011024

XML Path Language (XPath) version 1.0. W3C Recommendation 16
November 1999. See http://www.w3.org/TR/1999/REC-xpath-19991116

XQuery 1.0 An XML Query Language. W3C Working Draft 30 Avril 2002. See
http://www.w3.org/TR/2002/WD-xquery-20020430

XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working Draft 30
April 2002. See http://www.w3.org/TR/2002/WD-xquery-operators-
20020430/

XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft 30 April 2002.
See http://www.w3.org/TR/2002/WD-query-datamodel-20020430/

XML Query Use Cases. W3C Working Draft 30 April 2002. See
http://www.w3.org/TR/2002/WD-xmlquery-use-cases-20020430

XQuery 1.0 Formal Semantics. W3C Working Draft 26 March 2002. See
http://www.w3.org/TR/2002/WD-query-semantics-20020326/

This section describes the status of these documents from W3C at the time
of their publication. Other documents may supersede these documents. The
latest status of these document series is maintained at the W3C.

 iv

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xml-infoset-20011024
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2002/WD-xquery-20020430
http://www.w3.org/TR/2002/WD-xquery-operators-20020430/
http://www.w3.org/TR/2002/WD-xquery-operators-20020430/
http://www.w3.org/TR/2002/WD-query-datamodel-20020430/
http://www.w3.org/TR/2002/WD-xmlquery-use-cases-20020430
http://www.w3.org/TR/2002/WD-query-semantics-20020326/

Table of contents

Table of contents

ABSTRACT 1

INTRODUCTION 1
OVERVIEW 1
NOTATIONS AND CONVENTIONS 2
REFERENCES 4

XQUERY DATA MODEL FOR XQUARK BRIDGE 7
THE STANDARD XQUERY DATA MODEL 7
TYPING IN THE STANDARD XQUERY DATA MODEL 8
THE XQUARK BRIDGE DATA MODEL 9
GENERATED SCHEMA COMPONENTS 9
EXAMPLE 11
CONTROLLING THE XML VIEW GENERATION 14
SELECTING AND FILTERING RELATIONAL STRUCTURES 14
USING ALIASES TO RENAME RELATIONAL STRUCTURES 18

THE XQUERY PROLOG 21

XQUERY EXPRESSIONS 25
BASICS 25
EXPRESSION CONTEXT 25
EXPRESSION TYPING 28
PRIMARY EXPRESSIONS 30
LITERALS 30
VARIABLES 32
PARENTHESIZED EXPRESSIONS 32
FUNCTION CALLS 32
COMMENTS 33
PATH EXPRESSIONS 33
STEPS 35
PREDICATES 37
UNABBREVIATED SYNTAX 38
ABBREVIATED SYNTAX 38
ARITHMETIC EXPRESSIONS 39
COMPARISON EXPRESSIONS 40
LOGICAL EXPRESSIONS 42

 v

CONSTRUCTORS 44
ELEMENT CONSTRUCTORS 45
OTHER CONSTRUCTORS AND COMMENTS 46
FLWR EXPRESSIONS 46
SORTING EXPRESSIONS 51
QUANTIFIED EXPRESSIONS 53

BUILT-IN XQUERY FUNCTIONS 55
ACCESSORS 55
STRING 55
DATA 56
CONSTRUCTORS AND FUNCTIONS ON NUMBERS 57
NUMERIC TYPES 57
NUMERIC CONSTRUCTORS 57
FUNCTIONS ON NUMERIC VALUES 59
CONSTRUCTORS AND FUNCTIONS ON STRINGS 60
STRING CONSTRUCTOR 60
FUNCTIONS ON STRING VALUES 61
CONSTRUCTORS AND FUNCTIONS ON BOOLEANS 64
BOOLEAN CONSTRUCTORS 65
FUNCTIONS ON BOOLEAN VALUES 65
CONSTRUCTORS AND FUNCTIONS ON DATES AND TIMES 66
DATE AND TIME TYPES 66
DATE AND TIME CONSTRUCTORS 66
FUNCTIONS ON NODES 67
FUNCTIONS ON NODES 68
FUNCTIONS ON SEQUENCES 68
FUNCTIONS ON SEQUENCES 68
AGGREGATE FUNCTIONS 69
FUNCTIONS THAT GENERATE SEQUENCES 71
CONTEXT FUNCTIONS 73

INDEX 75

APPENDIX A – XML SCHEMA FOR THE XQUARK BRIDGE
CONFIGURATION FILE 77

APPENDIX B – COMPLETE BNF GRAMMAR 80

APPENDIX C – XQUERY 1.0: AN XML QUERY LANGUAGE 86

 vi

Part 1 Abstract Part

 1

Abstract

XQuery is an XML query language designed by the W3C to be
broadly applicable across a large variety of native or non-native
XML data sources, including structured and semi-structured
documents, relational databases, and object repositories. XQuark

Bridge provides an implementation compatible with XQuery and applicable
to relational data sources. It is a middleware that wraps a relational database
into an XML view, which can then be queried using XQuery.

This document is the query reference guide for XQuark Bridge: it describes
valid expressions of the language, as well as the specific, relational-backed
XML data model to which the queries are applied.

 1

 Part 1

 2

Part 2 Introduction Part

 2

Introduction

Overview

XML has established itself as the standard data exchange format
between applications on the Intranet and on the Internet. This has
created the need for applications to publish their data in XML. As a
large amount of today’s business data is stored in relational

databases, a general way of publishing relational data in XML is required.
This requirement has been taken into consideration when designing the
XQuery language: XQuery is an XML query language designed by the
World-Wide Web Consortium1 (W3C) to be broadly applicable across a
large variety of native or non-native XML data sources, including structured
and semi-structured documents, relational databases, and object repositories.
XQuery is currently work in progress at the W3C. This user guide is based
on the Working Draft dated April 30, 2002, which comprises four main
documents [XQuery 1.0 An XML Query Language], [XQuery 1.0 and XPath
2.0 Functions and Operators], [XQuery 1.0 and XPath 2.0 Data Model] and
[XML Query Use Cases].

XQuark Bridge provides an implementation compatible with XQuery and
applicable to relational data sources. It does so by defining a generic XML
view on top of a relational database schema, and by querying this view using
XQuery expressions and built-in functions.

XQuark Bridge provides mechanisms to:

• Expose a subset of a relational schema as an XML database. This XML
view exports its metadata information as a strongly-typed XML schema.

• Allow relational tables and views to be queried as collections of XML
documents, using XQuery syntax.

• Execute strongly-types XQuery queries over the exposed XML
collections.

• Return query results as newly constructed XML documents.

The above mechanisms represent a complete framework for efficiently
publishing relational data in XML.

1 The W3C is an organisation, widely supported by the industry, in charge of defining
Internet-related standards, including XML and derived standards.

 1

 Part 2 Introduction

This reference guide is organized in four main sections:

• A description of the XML data model which is constructed by XQuark
Bridge from the underlying relational model, and which defines the
XML information available to the query processor.

• A description of the overall syntax used to express XQueries and their
evaluation context.

• A guide to the XQuery language expressions, or more precisely to the
subset of the XQuery expressions which is used by XQuark Bridge to
query relational data.

• A list of available built-in functions.

Notations and conventions
This section introduces the typography used to present technical
information in this manual.

The XQuark Bridge configuration files use a specific XML vocabulary to
describe configuration options. In the XML representation, bold-face
attribute names indicate a required attribute information item, and the rest
are optional. Where an attribute information item has an enumerated type
definition, the values are shown separated by vertical bars; if there is a
default value, it is shown following a colon.

The allowed content of the information item is shown as a grammar
fragment, using the Kleene operators ? (0 or 1 occurrence), * (0 or more
occurences) and + (1 or more occurrences).

<datasource
....name = xs:string>
....Content: (description?, url, user?, password?,
 substitutions?, catalog*)
</datasource>

The XML Schema that formally defines the XML vocabulary for
configuration files is provided in

. This schema is associated to the
namespace identified by the following URI:
http://www.xquark.org/Bridge/1.0/Datasource.

Appendix A - XML Schema for the
XQuark Bridge configuration file

XQuery expressions are described using grammar productions, based on a
basic EBNF notation:

 2

Part 2 Introduction

Query ::= QueryProlog Expr

QueryProlog ::= (NamespaceDecl
| DefaultNamespaceDecl)*

NamespaceDecl ::= "namespace" NCName "="
StringLiteral

DefaultNamespaceDecl ::= "default element namespace ="
StringLiteral

Grammar productions within the body of the manual use only non-
terminals, and all terminals are expanded for readability. Some basic non-
terminals, defined in [XML Names] (e.g QName or NCName) are not defined
in the manual body, but are present in the complete grammar for the
XQuery language supported by XQuark Bridge, given in Appendix B –
Complete BNF Grammar.

This document defines constructors and other functions that apply to one
or more data types. Each constructor and function is defined by specifying
its signature, a description of each of its arguments, and its semantics.

Each function's signature is presented in a form like this:

function-name(parameter-type $parameter-name,…)
=> return-type

In this notation, function-name is the name of the function whose
signature is being specified. If the function takes no parameters, then the
name is followed by an empty set of parentheses: (); otherwise, the name is
followed by a parenthesized list of parameter declarations, each declaration
specifying the static type of the parameter and a non-normative name used
to reference the parameter when the function's semantics are specified. If
there are two or more parameter declarations, they are separated by a
comma. The return-type specifies the static type of the value returned by
the function.

The function name is a QName and must adhere to its syntatic conventions.
Following [XPath1.0], function names are composed of English words
separated by hyphens,"-". If a function name contains a [XML Schema Part
2] datatype name, this may have intercapitalized spelling and is used in the
function name as such. For example, current-dateTime. The functions
discussed in this manual are contained in the namespace for built-in
functions, namely http://www.w3.org/2002/04/xquery-functions. In
XQuark Bridge, this namespace is the default namespace for function
names, thus function names do not need to be prefixed.

As is customary, the parameter type name indicates that the function accepts
arguments of that type in that position. If the parameter type name is one of
the simple types defined in [XML Schema Part 2] the function also accepts

 3

 Part 2 Introduction

arguments with types derived from that type. These may be one of the
derived types in [XML Schema Part 2] or they may be user-derived types.

Some functions accept the empty sequence as an argument and some may
return the empty sequence. This is indicated in the function signature by
following the parameter type name with a question mark:

function-name(parameter-type? $parameter-name) =>
return-type?

In this manual, the namespace prefixes xs: and xsi: are considered to be
bound to the XML Schema namespaces
http://www.w3.org/2001/XMLSchema and
http://www.w3.org/2001/XMLSchema-instance, respectively. In some
cases, where the meaning is clear and namespaces are not important to the
discussion, built-in XML Schema typenames such as integer and string
will be used without a namespace prefix.

Examples are provided throughout this manual as code listings, for instance:

for $u in collection("USERS")/USERS,
 $i in collection("ITEMS")/ITEMS
where $u/USERID = $i/OFFERED_BY
return
 <result>
 { $u/NAME }
 { $i/DESCRIPTION }
 </result>

Important notes, such as standard compliance notes, are presented as:

Note: The JDBC type used when constructing the XML type
represents the native type of the column in the database, not
necessarily the one specified in the table creation statement. For
instance, Oracle replaces all ANSI column type specifications by its
own native types at table creation time.

References
[XML Schema Part 1] XML Schema Part 1: Structures. W3C

Recommendation 2 May 2001. See
http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/

[XML Schema Part 2] XML Schema Part 2: Datatypes. W3C
Recommendation 2 May 2001. See

 4

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

Part 2 Introduction

http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/

[XML Names] Namespaces in XML. W3C Recommendation 14
January 1999. See
http://www.w3.org/TR/1999/REC-xml-
names-19990114

[XML Infoset] XML Information Set. W3C Recommendation 24
October 2001. See
http://www.w3.org/TR/2001/REC-xml-
infoset-20011024

[XPath1.0] XML Path Language (XPath) version 1.0. W3C
Recommendation 16 November 1999. See
http://www.w3.org/TR/1999/REC-xpath-
19991116

[XQuery 1.0 An XML Query Language]
XQuery 1.0 An XML Query Language. W3C
Working Draft 30 Avril 2002. See
http://www.w3.org/TR/2002/WD-xquery-
20020430

[XQuery 1.0 and XPath 2.0 Functions and Operators]
XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Working Draft 30 Avril 2002. See
http://www.w3.org/TR/2002/WD-xquery-
operators-20020430/

[XQuery 1.0 and XPath 2.0 Data Model]
XQuery 1.0 and XPath 2.0 Data Model. W3C
Working Draft 30 Avril 2002. See
http://www.w3.org/TR/2002/WD-query-
datamodel-20020430/

[XML Query Use Cases] XML Query Use Cases. W3C Working Draft 30
Avril 2002. See
http://www.w3.org/TR/2002/WD-xmlquery-
use-cases-20020430

[XQuery 1.0 Formal Semantics]
XQuery 1.0 Formal Semantics. W3C Working
Draft 26 March 2002. See
http://www.w3.org/TR/2002/WD-query-
semantics-20020326/

 5

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xml-infoset-20011024
http://www.w3.org/TR/2001/REC-xml-infoset-20011024
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2002/WD-xquery-20020430
http://www.w3.org/TR/2002/WD-xquery-20020430
http://www.w3.org/TR/2002/WD-xquery-operators-20020430/
http://www.w3.org/TR/2002/WD-xquery-operators-20020430/
http://www.w3.org/TR/2002/WD-query-datamodel-20020430/
http://www.w3.org/TR/2002/WD-query-datamodel-20020430/
http://www.w3.org/TR/2002/WD-xmlquery-use-cases-20020430
http://www.w3.org/TR/2002/WD-xmlquery-use-cases-20020430
http://www.w3.org/TR/2002/WD-query-semantics-20020326/
http://www.w3.org/TR/2002/WD-query-semantics-20020326/

 Part 2

 6

Part 3 XQuery Data Model for XQuark Bridge Part

 3

XQuery Data Model for XQuark
Bridge
This section describes the XML view, defined on top of the relational
database, which can be queried through XQuark Bridge.

The standard XQuery data model
XQuery introduces an XML data model, which defines precisely the
information in an XML document that is available to an XQuery processor.
It also defines all permissible values of expressions in the XQuery language.

The XQuery data model extends existing XML data models, such as the
ones defined in XML Information Set [XML Infoset] or in XPath 1.0
[XPath1.0] by adding two new features to the model:

• Support for XML Schema types: XML elements, attributes and text
nodes can be associated to structured complex types and simple data
types, as defined in the XML Schema Recommendation (resp. [XML
Schema Part 1] and [XML Schema Part 2]).

• Representation of collections of documents and complex elements.

Every value handled by the data model is either a sequence of zero or more
items, or an error. An item is either a node or an atomic value.

A node is one of seven node kinds, as in the XPath 1.0 data model:
document, element, attribute, namespace, processing-instruction, comment,
text.

An atomic value encapsulates an XML Schema simple type and a
corresponding value of that type.

A sequence is an ordered collection of nodes, atomic values, or any mixture of
nodes and atomic values. A sequence cannot be a member of a sequence. A
single item appearing on its own is modeled as a sequence containing one
item.

The error value is a distinguished value used to identify error condions.

The XQuery data model can represent various values including not only the
input and the output of a query, but all values of expressions used during

 7

 Part 3 XQuery Data Model for XQuark Bridge

the intermediate calculations. Examples include the input document or
document collection (represented as a document node or a sequence of
document nodes), the result of a path expression (represented as a sequence
of nodes), the result of an arithmetic or a logical expression (represented as
an atomic value), a sequence expression resulting in a sequence of integers,
dates, QNames or other XML Schema atomic values (represented as a
sequence of atomic values), etc.

A complete specification of the XQuery data model can be obtained in the
W3C draft recommendation [XQuery 1.0 and XPath 2.0 Data Model].

Typing in the standard XQuery data model
The XQuery data model relies on the XML Information Set obtained after
XML Schema validity assessment. XML Schema validity assessment is the
process of assessing an XML element information item with respect to an
XML Schema and augmenting it and some or all of its descendants with
properties that provide information about validity and type assignment. The
result of schema validity assessment is an augmented Infoset, known as the
Post Schema-Validation Infoset, or PSVI. The type information associated
to each element node, attribute node or atomic value involves schema
components of four different kinds: element declaration, attribute declaration, complex
type and simple type, as defined in [XML Schema Part 1].

If validity has been successfully assessed, the item is guaranteed to be a valid
instance of its associated type as defined by XML Schema. If not (either
because no schema information was available or because the item is invalid),
the item is associated with the permissive predefined XML Schema types
xs:anyType (in the case of element nodes) or xs:anySimpleType (in the case
of attribute nodes and atomic values).

Every node has a typed value, which is a sequence of atomic values. The
typed value for the various kinds of nodes is defined as follows:

• The typed value of a document, namespace, comment, or processing
instruction node is the error value.

• The typed value of a text node is the string content of the node, as an
instance of xs:anySimpleType.

• The typed value of an element or attribute node that has no type
annotation is a sequence of atomic values that is stored in the Data
Model.

• The typed value of an element or attribute node whose type annotation
denotes either a simple type or a complex type with simple content is a
sequence of atomic values that is obtained by transforming the string
content of the node into the value space of the associated type, as
specified in [XML Schema Part 2].

 8

Part 3 XQuery Data Model for XQuark Bridge

• The typed value of an element node whose type annotation denotes a
complex type with complex content is the error value.

The XQuark Bridge data model
The default XQuark Bridge data model is obtained by mapping relational
structures and data into the XQuery data model introduced above. The
result is an XML view where :

• The relational structures are exposed as one or several XML schemas,
which contain all the schema components that are derived from the
relational model. Those components are element declarations, which
describe the XML structure of the content of each published relational
table. By default, when accessing a single relational container2, the
generated schema does not have a target namespace. When accessing
several containers, one XML schema is generated per container, and
must necessarily be associated with a user-specified target namespace.

• Each exposed relational table is viewed as a named collection of documents,
whose name is by default the name of the underlying relational object,
optionally prefixed with the name of the relational container to which it
belongs. Prefix and name are separated by a dot (e.g.
ORDERS.CUSTOMER), as usual in relational databases.

• Each row in the relational table is viewed as a document node. The
document has a top-level element which is schema-valid with respect to
the element declaration generated from the table structure.

XQuark Bridge not only supports relational tables, but also views and
synonyms, in a similar way. However, there are some limitations to the use
of views and synonyms, as rows in those structures cannot be easily
associated to identifiers. Those limitations appear when views or synonyms
are used in nested queries, and are further detailed in the FLWR
Expressions section of this manual.

XQuark Bridge also provides a way to control the XML view generation, by
providing support for filtering and renaming tables and columns. This
control is specified through a configuration file, whose syntax is detailed in
Controlling the XML view generation.

Generated schema components
Each published table is associated to a generated element declaration, which
provides an XML view of the table relational structure. The rules for
generating the element declaration are listed below:

2 A relational container is usually called a schema or a catalog, depending on the relational
database vendor.

 9

 Part 3 XQuery Data Model for XQuark Bridge

• The element declaration name is by default the name of the table, as
internally represented in the database metadata. Unlike some relational
databases, XML is case-sensitive, so a table name represented in upper
case in the database will have to be used exclusively in upper case in
queries. Table names that are not legal XML element names (e.g. those
containing ‘$’ or ‘#’ signs) are ignored by XQuark Bridge, unless they
are explicitly renamed in the XQuark Bridge configuration file, as
detailed below. If the container of the table is associated to a target
namespace, this namespace is the element declaration namespace,
otherwise the element declaration does not have a namespace.

• The element declaration type is a complex type, whose content is a
sequence containing a nested element declaration for each published
column in the table.

• Each nested element declaration name is by default the name of the
column, as internally represented in the database metadata. Column
names that are not legal XML element names (e.g. those containing ‘$’
or ‘#’ signs) are ignored by XQuark Bridge, unless they are explicitly
renamed in the XQuark Bridge configuration file, as detailed below.
Nested element declarations are always considered local to their
enclosing element, and therefore do not have a namespace.

• Each nested element declaration type is a predefined XML Schema
simple type, obtained from the column JDBC type according to the
table below. When a JDBC type is unsupported, the column is ignored
(i.e. no nested element declaration will appear in the complex type).

JDBC Type XML type

ARRAY not supported
BIGINT xs:long
BINARY not supported
BIT xs:boolean
BLOB not supported
CHAR xs:string
CLOB not supported
DATE xs:date
DECIMAL xs:decimal
DISTINCT not supported
DOUBLE xs:double
FLOAT xs:double
INTEGER xs:integer
JAVA not supported
LONGVARBINARY not supported

 10

Part 3 XQuery Data Model for XQuark Bridge

LONGVARCHAR not supported
NULL not supported
NUMERIC xs:decimal
OTHER not supported
REAL xs:float
REF not supported
SMALLINT xs:short
STRUCT not supported
TIME xs:time
TIMESTAMP xs:dateTime
TINYINT xs:byte
VARBINARY not supported
VARCHAR xs:string

Note: The JDBC type used when constructing the XML type
represents the native type of the column in the database, not
necessarily the one specified in the table creation statement. For
instance, Oracle replaces all ANSI column type specifications by its
own native types at table creation time.

Example

As an example, consider a relational database used by an online auction. The
auction maintains a USERS table containing information on registered users,
each identified by a unique userid, who can either offer items for sale or bid
on items. An ITEMS table lists items currently or recently for sale, with the
userid of the user who offered each item. A BIDS table contains all bids on
record, keyed by the userid of the bidder and the item number of the item to
which the bid applies.

The relational model for this example is defined below:

CREATE TABLE USERS (
 USERID CHAR(3) PRIMARY KEY,
 NAME VARCHAR(20) UNIQUE,
 RATING CHAR(1)
);

CREATE TABLE ITEMS (
 ITEMNO CHAR(4) PRIMARY KEY,
 DESCRIPTION VARCHAR(30),
 OFFERED_BY CHAR(3) REFERENCES USERS(USERID),
 START_DATE DATE,
 END_DATE DATE,
 RESERVE_PRICE NUMBER(10)
);

 11

 Part 3 XQuery Data Model for XQuark Bridge

CREATE TABLE BIDS (
 USERID CHAR(3) REFERENCES USERS(USERID),
 ITEMNO CHAR(4) REFERENCES ITEMS(ITEMNO),
 BID NUMBER(10) NOT NULL,
 BID_DATE DATE
);

The data for this example is given in the three tables below:

USERS

USERID NAME RATING
U01 Tom Jones B
U02 Mary Doe A
U03 Dee Linquent D
U04 Roger Smith C
U05 Jack Sprat B
U06 Rip Van Winkle B

ITEMS

ITEMNO DESCRIPTION OFFERED_BY START_DATE END_DATE RESERVE_PRICE
1001 Red Bicycle U01 99-01-05 99-01-20 40
1002 Motorcycle U02 99-02-11 99-03-15 500
1003 Old Bicycle U02 99-01-10 99-02-20 25
1004 Tricycle U01 99-02-25 99-03-08 15
1005 Tennis Racket U03 99-03-19 99-04-30 20
1006 Helicopter U03 99-05-05 99-05-25 50000
1007 Racing Bicycle U04 99-01-20 99-02-20 200
1008 Broken Bicycle U01 99-02-05 99-03-06 25

BIDS

USERID ITEMNO BID BID_DATE
U02 1001 35 99-01-07
U04 1001 40 99-01-08
U02 1001 45 99-01-11
U04 1001 50 99-01-13
U02 1001 55 99-01-15
U01 1002 400 99-02-14
U02 1002 600 99-02-16
U03 1002 800 99-02-17
U04 1002 1000 99-02-25

 12

Part 3 XQuery Data Model for XQuark Bridge

BIDS
USERID ITEMNO BID BID_DATE
U02 1002 1200 99-03-02
U04 1003 15 99-01-22
U05 1003 20 99-02-03
U01 1004 40 99-03-05
U03 1007 175 99-01-25
U05 1007 200 99-02-08
U04 1007 225 99-02-12

The XML schema generated by XQuark Bridge3 for this example is shown
below:

<?xml version='1.0'?>

<schema xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="BIDS">
 <complexType>
 <sequence>
 <element name="USERID" type="string"/>
 <element name="ITEMNO" type="string"/>
 <element name="BID" type="decimal"/>
 <element name="BID_DATE" type="dateTime"/>
 </sequence>
 </complexType>
 </element>

 <element name="ITEMS">
 <complexType>
 <sequence>
 <element name="ITEMNO" type="string"/>
 <element name="DESCRIPTION"
 type="string"/>
 <element name="OFFERED_BY"
 type="string"/>
 <element name="START_DATE"
 type="dateTime"/>
 <element name="END_DATE"
 type="dateTime"/>
 <element name="RESERVE_PRICE"
 type="decimal"/>
 </sequence>
 </complexType>
 </element>

 <element name="USERS">
 <complexType>
 <sequence>
 <element name="USERID" type="string"/>
 <element name="NAME" type="string"/>
 <element name="RATING" type="string"/>

3 This schema corresponds to the metadata information returned by the Oracle database for
the relational model shown above. Other databases might create slightly different XML
schemas.

 13

 Part 3 XQuery Data Model for XQuark Bridge

 </sequence>
 </complexType>
 </element>

</schema>

Controlling the XML view generation
As described above, XQuark Bridge publishes a relational schema as a
generic, strongly typed XML view, which can then be used as the basis for
running XQueries. Although this generic approach is convenient in many
situations, there are cases where finer control on the XML view generation
is required. Those cases include:

• Applications which access several relational schemas,

• Applications which access only a small fraction of the relational tables in
a relational schema,

• Applications which access tables and columns that are not legal XML
element names.

For the benefit of those applications, XQuark Bridge provides configuration
files that allow the application designer to better control the generated XML
view. Configuration files are written in XML. Each file describes the
wrapping of a single relational datasource, defined by the JDBC triple {
JDBC URL, user, password }.

Selecting and filtering relational structures

The general structure of a configuration file is shown below:

<datasource name="{ Datasource identifier }">
 <description>
 { Optional datasource description }
 </description>
 <url> { JDBC connection string } </url>
 <user> { User name } </user>
 <password> { User password } </password>

 <substitutions>
 <nameCase>
 { lower | upper | mixed }
 </nameCase>
 <character value="{ character }"
 subst="{ substitution string }"/>
 …
 </substitutions>

 <catalog name="{ Optional catalog name }">
 <schema name="{ Optional schema name }"
 targetNamespace="{ Namespace URI }"
 elementFormDefault="{ qualified
 | unqualified }">

 14

Part 3 XQuery Data Model for XQuark Bridge

 <includes>
 <table regex="{ Regular expression }"/>
 <table name="{ Table name }"
 alias="{ Table alias }">
 <includes>
 <column
 regex="{ Regular expression }"/>
 <column name="{ Column name }
 alias="{ Column alias }"/>
 </includes>
 <excludes>
 <column
 regex="{ Regular expression }"/>
 <column name="{ Column name }"/>
 </excludes>
 </table>
 </includes>
 <excludes>
 <table regex="{ Regular expression }"/>
 <table name="{ Table name }" />
 </excludes>
 </schema>
 </catalog>
</datasource>

The complete XML Schema for the configuration file is given in
.

Appendix
A - XML Schema for the XQuark Bridge configuration file

Three main sections appear in the configuration file:

• The datasource declaration,

• The substitutions declaration,

• The selection of the catalogs, schemas, tables and columns to be used in
the XML view.

The datasource declaration section is composed of the following elements:

<datasource
....name = xs:string>
....Content: (description?, url, user?, password?,
 substitutions?, catalog*)
</datasource>

<description>
 Content: xs:string
</description>

<url>
 Content: xs:string
</url>

<user>
 Content: xs:string
</user>

 15

 Part 3 XQuery Data Model for XQuark Bridge

<password>
 Content: xs:string
</password>

The role of the above elements and attributes is detailed below:

• The name attribute is an identifier defined by the application designer
for this particular datasource.

• The optional description element is present for documentation
purpose.

• The mandatory url element identifies the database instance to be
wrapped.

• The optional user and password elements are used for the connection
to the wrapped database instance.

The substitutions section is detailed in the next section.

The selection section is a set of hierarchical elements that represent
traditional relational concepts:

<catalog
....name = xs:string>
....Content: schema+
</catalog>

<schema
....name = xs:string
 targetNamespace = xs:anyURI
 elementFormDefault = qualified | unqualified
 : unqualified>
 Content: (includes?, excludes?)
</schema>

<includes>
 Content: table+ | column+
</includes>

<excludes>
 Content: table+ | column+
</excludes>

<table
 name = xs:string
 regex = xs:string
 alias = xs:NCName>
 Content: (includes?, excludes?)
</table>

<column
 name = xs:string
 regex = xs:string
 alias = xs:NCName />

 16

Part 3 XQuery Data Model for XQuark Bridge

The role of the above elements and attributes is detailed below:

• The catalog element can appear one or several times in the
datasource top-level element, and represents a relational catalog in the
wrapped database instance. The name attribute is optional and must be
omitted if the database does not support the catalog concept: in this
latter case, only a single, anonymous catalog element should appear in
the configuration file. On the other hand, if more than one catalog are
to be selected, each catalog element should have a name attribute,
which represents the name of the catalog to be selected.

• The schema element can appear one or several times in a catalog
element, and represents a relational schema in the enclosing catalog. The
name attribute is optional and must be omitted if the database does not
support the schema concept: in this latter case, only a single, anonymous
schema element should appear in each catalog element. On the other
hand, if more than one schema are to be selected, each schema element
should have a name attribute, which represents the name of the schema
to be selected. In addition, each schema element can have a
targetNamespace attribute, which specifies the namespace of the
generated element declarations associated to the schema tables. This
attribute is optional only when XQuark Bridge accesses a single
relational schema. In all other cases, each individual schema must be
associated to a target namespace. When a target namespace is specified,
an additional optional elementFormDefault attribute can be used to
control the qualification of the inner generated element declarations (the
ones corresponding to the table columns): if the attribute value is
qualified, inner element declarations are qualified with the target
namespace; if the attribute value is unqualified, or the attribute is
absent, inner element declarations are not qualified.

• The includes element can appear zero or one time in a schema
element (resp. a table element). It is used as a container for the
elements that select tables (resp. columns) to be included in the
generated XML view. When the includes element is absent, all tables
(resp. columns) contained in the enclosing object are included.

• The excludes element can appear zero or one time in a schema
element (resp. a table element). It is used as a container for the
elements that select tables (resp. columns) to be excluded in the
generated XML view.. Exclusion has higher priority than inclusion: a
table which is both included and excluded will not appear in the XML
view.

• The table element can appear one or several times in an includes or
excludes element, and is used to select tables, views or synonyms4 in
the enclosing schema. One and only one of the name or regex attribute
must be present. The name attribute selects the table of the given name
in the enclosing schema: if no table corresponding to the name is found,

4 In the following discussion, table is used to represent a relational table, view or catalog.

 17

 Part 3 XQuery Data Model for XQuark Bridge

an error is generated. The regex attribute selects all the tables in the
enclosing schema that have a name matching the specified regular
expression. This regular expression uses the grammar described in [XML
Schema Part 2], which is very close to the regular expression syntax of
the Perl language. No error is generated if no match is found for the
regular expression. When the name attribute is used, the element
declaration generated for the table can be further refined by using an
includes and/or excludes nested element to specify the columns to
be used. This possibility is not available when the regex attribute is
used. The use of the alias attribute is described in next section.

• The column element can appear one or several times in an includes or
excludes element, and is used to select columns in the enclosing table.
One and only one of the name or regex attribute must be present. The
name attribute selects the column of the given name in the enclosing
table: if no column corresponding to the name is found, an error is
generated. The regex attribute selects all the columns in the enclosing
table that have a name matching the specified regular expression. No
error is generated if no match is found for the regular expression. The
use of the alias attribute is described in next section.

Using aliases to rename relational structures

The XQuark Bridge configuration file also provides support for renaming
relational structures. Renaming can be useful when:

• Table or column names contain characters that are not legal XML
element names.

• Generated element declarations must match a predefined XML schema.

While both capabilities can be obtained using traditional relational database
techniques such as views or synonyms, XQuark Bridge offers an additional
level of flexibility through the configuration file.

Aliases for table and column names can be specified in two ways:

• Globally, by associating a substitution string to each unsupported
character. XQuark Bridge will automatically substitute the string each
time the character is encountered in a table or column name. The case of
the generated table or column names can also be controlled globally.

• Locally, by associating an alias to a specific table or column.

Global substitutions are specified by adding an optional substitutions
element after the datasource declaration section in the configuration file.

<substitutions>
 Content: (nameCase?, character*)
</substitutions>

 18

Part 3 XQuery Data Model for XQuark Bridge

<nameCase>
 Content: text() = mixed | upper | lower : mixed
</nameCase>

<character
 value = xs:string
 subst = xs:string />

This element contains:

• an optional nameCase element, which specifies the case management
policy: mixed (the default) to preserve the case of the names returned by
the database, upper or lower to impose a particular policy.

• one or several character elements, which specify the character to be
replaced (the value attribute) and the substitution string (the subst
attribute).

Local substitutions are specified by adding an optional alias attribute to
the table or column element selecting the table or column to be renamed.
The value of the attribute is the alias to be used by XQuark Bridge for the
relational structure: the generated element declaration associated to the table
or column will have the specified alias as name. The alias attribute can
only be used in conjunction with the name attribute in table or column
elements: structures selected through regular expressions cannot be
renamed. Alias values are case-sensitive.

 19

Part 4 The XQuery Prolog Part

 4

The XQuery Prolog
The Query Prolog is a series of declarations that affect query processing.
The Query Prolog is used to define namespace prefixes that are used in the
query expression.

Query ::= QueryProlog Expr

QueryProlog ::= (NamespaceDecl
| DefaultNamespaceDecl)*

NamespaceDecl ::= "namespace" NCName "="
StringLiteral

DefaultNamespaceDecl ::= "default element namespace ="
StringLiteral

A namespace declaration defines a namespace prefix and associates it with
a namespace URI, adding the (prefix, URI) pair to the set of in-scope
namespaces. The namespace URI must be a valid URI, and may not be an
empty string. The namespace declaration is in scope for the rest of the query
in which it is declared. Consider the following query:

namespace foo = "http://www.foo.com"
<foo:bar> Lentils </foo:bar>

In the query result, the newly created node is in the namespace associated
with the namespace URI http://www.foo.com. The use of short prefixes
as placeholders for longer namespace URIs is in line with the approach
specified in [XML Names].

In XQuark Bridge, namespace URIs will either be:

• the namespaces associated to relational schemas in configuration files, or

• namespaces defining the structures of elements constructed in query
results.

Compatibility note: The XQuery draft standard allows schema
declarations to be imported from schema files. This feature is not
supported in XQuark Bridge, as all input data is associated to XML
schemas generated from database structures.

 21

 Part 4 The XQuery Prolog

In element constructors, namespace declaration attributes also associate a
namespace with a prefix, adding a (prefix, URI) pair to the set of in-scope
namespaces. In the data model, a namespace declaration is not an attribute,
and it will not be retrieved by queries that return the attributes of an
element. Namespace declarations are in scope within their containing
element. Nested elements and attributes inherit the in-scope namespaces of
their parents. The following query creates the same result as the previous
query.

<foo:bar xmlns:foo="http://www.foo.com">
 Lentils
</foo:bar>

Because namespace declarations are in-scope within their containing
element, they may be used in expressions that occur within an element
constructor, as in the following query.

<foo:bar xmlns:foo="http://www.foo.com">
 { /foo:bing }
</foo:bar>

Names are compared on the basis of the expanded name (see [XML Names]
for this and other namespace terms), not the QName. When element or
attribute names are compared, they are considered identical if the local part
and namespace URI match. Namespace prefixes are disregarded in name
comparisons.

It is invalid to redefine already existing namespace prefixes.

{-- Error: attempt to redefine 'xx' --}
namespace xx = "http://www.foo.com"
namespace xx = "http://www.bar.com"
/xx:bing

It is also invalid to use a QName with a namespace prefix that has not been
declared. The following query is also semantically invalid.

{-- Error: use of undeclared namespace prefix --}
/xx:bing

Namespace declaration attributes may redefine a namespace prefix
within a given scope. The following query is valid.

namespace xx = "http://www.fe.com"
<xx:bar xmlns:xx = "http://www.fi.com">
 <xx:bing xmlns:xx = "http://www.fo.com">
 One
 </xx:bing>
 <xx:bing xmlns:xx = "http://www.fu.com">
 Two
 </xx:bing>
 <xx:bing> Three </xx:bing>
</xx:bar>

 22

Part 4 The XQuery Prolog

The result of the above query is as follows.

<xx:bar xmlns:xx = "http://www.fi.com">
 <xx:bing xmlns:xx = "http://www.fo.com">
 One
 </xx:bing>
 <xx:bing xmlns:xx = "http://www.fu.com">
 Two
 </xx:bing>
 <xx:bing> Three </xx:bing>
</xx:bar>

A default namespace declaration can be used to define the namespace
URI to be associated with unprefixed element names. default element
namespace defines a namespace URI that is associated with unprefixed
names of elements.

Compatibility note: The XQuery draft standard also defines a
default namespace for unprefixed function names. In XQuark
Bridge, this default namespace is always associated to the built-in
XQuery functions URI, http://www.w3.org/2002/04/xquery-
operators.

If no default element namespace is in effect, unqualified names of elements
and types are in no namespace. Unqualified attribute names are always in no
namespace, since XQuery provides no way to declare a default namespace
for attributes.

The following example illustrates a default element namespace:

default element namespace = "http://www.foo.com"
<bar> Lentils </bar>

The result of the above query is shown below. Note that the name of the
newly created element is in the namespace associated with the namespace
URI http://www.foo.com, even though no namespace prefix occurs in
the query.

<bar xmlns = "http://www.foo.com"> Lentils </bar>

 23

Part 5 XQuery Expressions Part

 5

XQuery Expressions

Basics
The basic building block of XQuery is the expression. The language
provides several kinds of expressions which may be constructed from
keywords, symbols, and operands. In general, the operands of an expression
are other expressions. XQuery is a functional language which allows
various kinds of expressions to be nested. It is also a strongly-typed
language in which the operands of various expressions, operators, and
functions must conform to designated types. The following production
defines valid top-level XQuery expressions:

Expr ::= PrimaryExpr
| CommentExpr
| PathExpr
| AdditiveExpr
| Constructor
| FLWRExpr
| SortExpr

The value of an expression is either a sequence of items (nodes or atomic
values) belonging to the XQuery Data Model, or the special error value,
which indicates that an error has been encountered during the evaluation of
an expression. Except as noted in this document, if any operand of an
expression is the error value, the value of the expression is also the error
value.

Like XML, XQuery is a case-sensitive language. All keywords in XQuery use
lower-case characters.

Expression Context

The expression context for a given expression consists of all the
information that can affect the result of the expression. This information is
organized into two categories called the static context and the evaluation
context.

Static Context

The static context of an expression is defined as all information that is
available during static analysis of the expression, prior to its evaluation. This

 25

 Part 5 XQuery Expressions

information can be used to decide whether the expression contains a static
error.

In XQuery, the information in the static context is provided by declarations
in the query prolog (except as noted below). Static context consists of the
following components:

• In-scope namespaces. This is a set of (prefix, URI) pairs. The in-scope
namespaces are used for resolving prefixes used in QNames within the
expression.

• Default namespace for element and type names. This is a
namespace URI. This namespace is used for any unprefixed QName
appearing in a position where an element or type name is expected.

• Default namespace for function names. This is a namespace URI.
This namespace is used for any unprefixed QName appearing as the
function name in a function call. In XQuark Bridge, it is always bound
to the namespace of the core XQuery functions and operators
(http://www.w3.org/2002/04/xquery-operators).

• In-scope variables. This is a set of (QName, type) pairs. It defines the
set of variables that have been declared and are available for reference
within the XPath expression. The QName represents the name of the
variable, and the type represents its static data type. Unlike the other
parts of the static context, variable types are not declared in the query
prolog. Instead, they are derived from static analysis of the expressions
in which the variables are bound.

Evaluation Context

The evaluation context of an expression is defined as information that is
available at the time the expression is evaluated. The evaluation context
consists of all the components of the static context, and the additional
components listed below.

The first component of the dynamic context (context item) is called the
focus of the expression. The focus enables the processor to keep track of
which nodes are being processed by the expression.

The focus for the outermost expression is supplied by the environment in
which the expression is evaluated. Certain language constructs, notably the
path expression E1/E2, the filter expression E1[E2], and the ordering
expression E1 sortby E2, create a new focus for the evaluation of a sub-
expression. In these constructs, E2 is evaluated once for each item in the
sequence that results from evaluating E1. Each time E2 is evaluated, it is
evaluated with a different focus. The focus for evaluating E2 is referred to
below as the inner focus, while the focus for evaluating E1 is referred to as
the outer focus. The inner focus exists only while E2 is being evaluated.
When this evaluation is complete, evaluation of the containing expression
continues with its original focus unchanged.

 26

Part 5 XQuery Expressions

• The context item is the item currently being processed. An item is
either an atomic value or a node. When the context item is a node, it can
also be referred to as the context node. The context item is returned by
the expression ".". When an expression E1/E2, E1[E2] or E2 sortby
E2 is evaluated, each item in the sequence obtained by evaluating E1
becomes the context item in the inner focus for an evaluation of E2.

• Dynamic variables. This is a set of (QName, type, value) triples. It
contains the same QNames as the in-scope variables in the static context
for the expression. Each QName is associated with the dynamic type
and value of the corresponding variable. The dynamic type associated
with a variable may be more specific than the static type associated with
the same variable. The value of a variable is, in general, a sequence. The
dynamic types and values of variables are provided by execution of the
XQuery expressions in which the variables are bound.

• Current date and time. This information represents a point in time
during processing of a query. It can be retrieved by the current-
dateTime function. If invoked multiple times during the execution of a
query, this function always returns the same result.

• Input sequence. The input sequence is sequence of nodes that can be
accessed by the input function. It might be thought of as an "implicit
input". The content of the input sequence is determined in an
implementation-dependent way: in the case of XQuark Bridge, it is the
union of all collections (i.e. wrapped tables) available in the underlying
relational database.

Compatibility note: The XQuery draft standard defines three
additional components in the focus, namely ccontext document, context
position and context size. Those components, inherited from the
XPath1.0 standard, are not available in XQuark Bridge.

Input Functions

XQuery defines special functions that provide access to input data. These
functions are of particular importance because they provide the only way in
which an expression can reference a document or a collection of documents.

The input sequence is a part of the evaluation context for an expression.
The input function returns the input sequence. For example, the
expression input()/customer returns all the customer elements that are
children of nodes in the input sequence. In XQuark Bridge, the input
sequence is the union of all collections available in the underlying relational
database. The input function can be omitted in path expressions: the
expression /customer is equivalent to the expression input()/customer,
and returns all the customer root elements that are present in the
customer collection (i.e. all the rows present in the customer table).

 27

 Part 5 XQuery Expressions

The collection function returns the nodes found in a collection. In
XQuark Bridge, a collection is backed by a relational table, and is viewed as
a sequence of document nodes that represent rows in a relational table . A
collection is identified by a string, which is the relational table name,
optionally prefixed by the name of the relational container to which it
belongs. For example, the expression
collection("customer")/customer identifies all the customer root
elements found in the collection which is backed by the customer relational
table.

Compatibility note: The XQuery draft standard defines an
additional input function, called document. This function is not
available in XQuark Bridge.

Expression Typing

XQuery is a strongly typed language with a type system based on [XML
Schema Part 1]. The built-in types of XQuery include the node kinds of
XML (such as element, attribute, and text nodes) and the built-in atomic
types of [XML Schema Part 2] (such as xs:integer and xs:string).
Additional complex types are defined by XQuark Bridge when wrapping
one or several relational schemas, in the way described in Generated schema
components.

When the type of a value is not appropriate for the context in which it is
used, a type exception is raised. Any XQuery expression that raises a type
exception returns the error value.

In XQuark Bridge, types are associated with values in one of the following
ways:

• A literal value has a type; for example, the type of the value 47 is
xs:integer.

• The constructor functions described in [XQuery 1.0 and XPath 2.0
Functions and Operators] return typed values; for example,
date("2002-05-31") returns a value of type xs:date.

• When an instance of the Data Model is constructed from the database, it
is associated to the generated XML type corresponding to the relational
structure to which it belongs.

• Some functions, such as data(), extract typed values from nodes of the
Data Model, preserving the types of these values.

Type Checking

XQuery provides two kinds of type checking, called static type checking
and dynamic type checking.

 28

Part 5 XQuery Expressions

Static type checking is performed during the query analysis phase (also
known as "compile time.") Static type checking of an expression is based on
the expression itself and on the in-scope schema definitions. Static type
checking does not depend on the actual values found in any input
document. The purpose of static type checking is to provide early detection
of type errors and to compute the type of a query result.

During static type checking, each expression is assigned a static type. In
some cases, the static type is derived from the lexical form of the expression;
for example, the static type of the literal 5 is xs:integer. In other cases,
the static type of an expression is inferred according to rules based on the
static types of its operands; for example, the static type of the expression
size < 5 is xs:boolean.. The rules for inferring the static types of various
expressions are described in [XQuery 1.0 Formal Semantics]. During the
analysis phase, if an operand of an expression is found to have a static type
that is not appropriate for that operand, a static error is raised. If static type
checking raises no errors and assigns a static type T to an expression, then
execution of the expression on valid input data is guaranteed to produce
either a value of type T or the error value.

Dynamic type checking is performed during the query execution phase (also
known as "run time.") Dynamic checking depends on the actual values
found in input documents. At run time, a dynamic type is associated with
each value as it is computed. The dynamic type of a value may be more
specific than the static type of the expression that computed it (for example,
the static type of an expression might be "zero or more integers or strings,"
but at run time its value may have the dynamic type "integer.") If an operand
of an expression is found to have a dynamic type that is not appropriate for
that operand, a type exception is raised.

It is possible for static type checking of an expression to raise a static type
error, even though the expression might evaluate successfully on some valid
input data. For example, an expression might contain a function that
requires an element as its parameter, and static type checking might infer the
static type of the function parameter to be an optional element. In this case,
a static type error would result, even though the function call would be
successful for input data in which the optional element is present.

It is also possible for an expression to return the error value, even though
static type checking of the expression raised no error. For example, an
expression may contain a constructor of an integer from a string, which is
statically valid. However, if the actual value of the string at run time cannot
be cast into an integer, the error value will result.

If an implementation can determine by static analysis that an expression will
necessarily return the error value (for example, because it contains a division
by the constant zero), the implementation is allowed to report this error at
query analysis time (as well as at query execution time).

 29

 Part 5 XQuery Expressions

Type Conversions

Some expressions do not require their operands to exactly match the
expected type. For example, function parameters expect a value of a
particular type, but allow some basic conversions to be performed, such as
extraction of atomic values from nodes, promotion of numeric values, and
implicit casting of untyped values. Other operators that provide special
conversion rules include arithmetic operators and value comparisons.

The following numerical type promotions are permitted:

• A value of type xs:decimal can be promoted to the type xs:float.

• A value of type xs:float can be promoted to the type xs:double.

• A value of a derived type can be promoted to its base type. As an
example of this rule, a value of the derived type xs:integer can be
promoted to its base type xs:decimal.

Type conversions sometimes depend on a process called atomization,
which is used when an optional atomic value is expected. When atomization
is applied to a given value, the result is either a single atomic value, an empty
sequence, or a type exception. Atomization is defined as follows:

• If the value is a single atomic value or an empty sequence, atomization
simply returns the value.

• If the value is a single node, the typed value of the node is extracted
and returned; however, if the typed value is a sequence containing more
than one item, a type exception is raised.

• In any other case, atomization raises a type exception.

Primary Expressions
Primary expressions are the basic primitives of the language. They include
literals, variables, function calls, and the use of parentheses to control
precedence of operators.

PrimaryExpr ::= Literal
| FunctionCall
| Variable
| ParenthesizedExpr

Literals

A literal is a direct syntactic representation of an atomic value. XQuery
supports two kinds of literals: string literals and numeric literals.

 30

Part 5 XQuery Expressions

Literal ::= NumericLiteral | StringLiteral

NumericLiteral ::= IntegerLiteral
| DecimalLiteral
| DoubleLiteral

IntegerLiteral ::= [0-9]+

DecimalLiteral ::= ("." [0-9]+) | ([0-9]+ "." [0-9]*)

DoubleLiteral ::= (("." [0-9]+)
 | ([0-9]+ ("." [0-9]*)?))
([e] | [E]) ([+] | [-])? [0-9]+

StringLiteral ::= (["] ([^"])* ["])
| (['] ([^'])* ['])

The value of a string literal is a singleton sequence containing an item
whose primitive type is xs:string and whose value is the string denoted by
the characters between the delimiting quotation marks.

The value of a numeric literal containing no "." and no e or E character is
a singleton sequence containing an item whose type is xs:integer and
whose value is obtained by parsing the numeric literal according to the rules
of the xs:integer datatype. The value of a numeric literal containing "."
but no e or E character is a singleton sequence containing an item whose
primitive type is xs:decimal and whose value is obtained by parsing the
numeric literal according to the rules of the xs:decimal datatype. The
value of a numeric literal containing an e or E character is a singleton
sequence containing an item whose primitive type is xs:double and whose
value is obtained by parsing the numeric literal according to the rules of the
xs:double datatype.

Here are some examples of literal expressions:

• "12.5" denotes the string containing the characters '1', '2', '.', and '5'.

• 12 denotes the integer value twelve.

• 12.5 denotes the decimal value twelve and one half.

• 125E2 denotes the double value twelve thousand, five hundred.

Values of other XML Schema built-in types can be constructed by calling
the constructor for the given type. The constructors for XML Schema built-
in types are defined in Built-in XQuery Functions. For example:

• true() and false() return the boolean values true and false,
respectively.

• integer("12") returns the integer value twelve.

• date("2001-08-25") returns an item whose type is xs:date and
whose value represents the date 25th August 2001.

 31

 Part 5 XQuery Expressions

Variables

A variable evaluates to the value to which the variable's NCName is bound
in the evaluation context. If the variable's NCName is not bound, the
value of the variable is the error value. Variables can be bound by clauses in
for expressions and quantified expressions.

Variable ::= "$" NCName

Parenthesized Expressions

Parentheses may be used to enforce a particular evaluation order in
expressions that contain multiple operators. For example, the expression (2
+ 4) * 5 evaluates to thirty, since the parenthesized expression (2 + 4) is
evaluated first and its result is multiplied by five. Without parentheses, the
expression 2 + 4 * 5 evaluates to twenty-two, because the multiplication
operator has higher precedence than the addition operator.

ParenthesizedExpr ::= "(" Expr ")"

Function Calls

A function call consists of a QName followed by a parenthesized list of
zero or more expressions. In XQuark Bridge, the QName must represent a
built-in function. As XQuark Bridge automatically defines the built-in
function namespace as the default namespace for functions, built-in
function names can always be used without prefix. The expressions inside
the parentheses provide the arguments of the function call. The number of
arguments must equal the number of formal parameters in the function's
signature; otherwise a static error is raised.

FunctionCall ::= QName "(" (Expr ("," Expr)*)? ")"

A function call expression is evaluated as follows:

• Each argument expression is evaluated, producing an argument value.

• Each argument value is converted to the declared type of the
corresponding function parameter, using the function conversion rules
listed below.

• The function is executed using the converted argument values. The
result is a value of the function's declared return type.

The function conversion rules are used to convert an argument value or a
return value to its required type; that is, to the declared type of the function
parameter or return. The function conversion rules are as follows:

• If the required type is an atomic type:

 32

Part 5 XQuery Expressions

• Atomization is applied to the given value. If the resulting atomic
value is of type xs:anySimpleType, an attempt is made to cast it to
the required type; if the cast fails, the function call returns the error
value. If the atomic value has a type that can be promoted to the
required type using the promotion rules described in Type
Conversions, the promotion is done. After applying the above rules,
if the resulting value does not conform to the required type, the
function call returns the error value.

• If the required type is a sequence of items:
• The given value is not converted. However, some functions may

apply further additional conversion to their parameters: for instance,
the avg function will attempt to convert any node in its input
sequence into a numeric atomic value by getting its typed value. If
this conversion fails, the function call returns the error value.

Comments
XQuery comments can be used to provide informative annotation. These
comments are lexical constructs only, and do not affect the processing of an
expression.

ExprComment ::= "{--" [^}]* "--}"

Comments may be used before and after major tokens within expressions
and within element content..

Path Expressions
A path expression selects nodes within a tree or a sequence of trees (where
a complex element node in the Data Model is seen as the root of a tree). A
path expression is always evaluated with respect to an evaluation context.

PathExpr ::= (PathExprRoot | StepExpr | PathExpr)?
"/" StepExpr

PathExprRoot ::= InputExpr | Variable

InputExpr ::= "collection(" StringLiteral ")"
| "input()"

 33

 Part 5 XQuery Expressions

Compatibility note: Path expressions in XQuark Bridge compose
a subset of the path expressions defined in the XQuery draft
standard, which emcompasses and extends the XPath 1.0
expressions. As documents in XQuark Bridge have a very simple
structure (featuring element nodes only with a depth of two), many
features of the XQuery path expressions are not useful in XQuark
Bridge. Examples include access to descendants at any hierarchical
level (there is only one hierarchical level), access by position (all
sequences of nodes are either of length 1 or unordered)…

A path expression consists of two expressions, separated by /. We will
refer to the expression on the left side of / as E1 and the expression on the
right side of / as E2. The expression E1 is evaluated, and if the result is not
a sequence of nodes, the error value is returned. Each node resulting from
the evaluation of E1 then serves in turn to provide an inner focus for an
evaluation of E2. Each evaluation of E2 must result in a sequence of nodes;
otherwise, the error value is returned. The sequences of nodes resulting
from all the evaluations of E2 are merged, eliminating duplicate nodes based
on identity and sorting the results in document order.

As an example of a path expression, child::item/child::description
selects the description element children of the item element children of
the context node, or, in other words, the description element
grandchildren of the context node that have div1 parents.

E1 expressions can be:

• Input functions: when a path expression is evaluated at the outermost
level of a query (i.e. with an empty focus), E1 must be one of the two
available input functions, input or collection. Both functions return
a sequence of nodes which can be used as inner focus for the evaluation
of E2.

• Variables: when a path expression is evaluated in an evaluation context
in which some variables are bound, any variable bound to a node or a
node sequence can be used as E1.

• Step expressions: when a path expression is evaluated in an evaluation
context in which a focus is defined, a step expression can be used as E1.

• Path expressions: several path expressions can be concatenated, the
result of the leftmost expressions being used recursively as the
evaluation context for the following one.

• Absent: when a path expression starts with a "/" (i.e. E1 is absent), the
input sequence is used as the sequence of nodes used as inner focus
for the evaluation of E2.

 34

Part 5 XQuery Expressions

E2 expressions are always step expressions, which are further described
below.

Steps

StepExpr ::= Step Predicates

Step ::= (Axis NodeTest) | AbbreviatedStep

A step is an expression that returns a sequence of nodes, in document order
and without duplicates. Steps are often used inside path expressions, and
must always be evaluated in an evaluation context in which the focus is
defined. A step might be thought of as beginning at the context node,
navigating to those nodes that are reachable from the context node via a
predefined axis, and selecting some subset of the reachable nodes. A step
has three parts:

• an axis, which specifies the relationship between the nodes selected by
the step and the context node. The axis might be thought of as the
"direction of movement" of the step.

• a node test, which specifies the node kind and/or name of the nodes
selected by the step.

• zero or more predicates, which further modify the sequence of nodes
selected by the step.

In the abbreviated syntax for a step, the axis can be omitted and other
shorthand notations can be used.

The unabbreviated syntax for an step consists of the axis name and node
test separated by a double colon, followed by zero or more predicates. For
example, in child::para[child::title = "Introduction"], child is
the name of the axis, para is the node test and [child::title =
"Introduction"] is a predicate.

The node sequence selected by a step is found by generating an initial node
sequence from the axis and node test, and then applying each of the
qualifiers in turn. The initial node sequence consists of the nodes reachable
from the context node via the specified axis that have the node kind and/or
name specified by the node test. For example, the step child::para selects
the para element children of the context node: child specifies that each
node in the initial node sequence must be a child of the context node, and
para specifies that each node in the initial node sequence must be an
element named para.

Axes

 35

 Part 5 XQuery Expressions

Axis ::= "child" "::"
| "attribute" "::"
| "self" "::"

XQuark Bridge supports three axes:

• the child axis contains the children of the context node.

• the attribute axis contains the attributes of the context node; the axis
will be empty unless the context node is an element.

• the self axis contains the context node itself.

Compatibility note: The XQuery draft standard defines several
additional axes: descendant, descendant-or-self and parent. Those
axes are not necessary in XQuark Bridge, due to the simple
structure of the documents in the Data Model.

Node Tests

A node test is a condition that must be true for each node selected by a
step. The condition may be based on the kind of the node (element,
attribute, text, document, comment, processing instruction, or namespace)
or on the name of the node.

NodeTest ::= KindTest | NameTest

NameTest ::= QName

KindTest ::= "text" "(" ")"
"node" "(" ")"

Every axis has a principal node kind. For both the child and self axes,
the principal node kind is element. For the attribute axis, the principal
node kind is attribute.

A node test that is a QName is true if and only if the kind of the node is the
principal node kind and the expanded-name of the node is equal to the
expanded-name specified by the QName. For example, child::para
selects the para element children of the context node; if the context node
has no para children, it selects an empty set of nodes. attribute::href
selects the href attribute of the context node; if the context node has no
href attribute, it selects an empty set of nodes. Note that static type
checking is enforced: if the compiler can derive from the context node type
that the name test will always be false, it will throw a type exception at
compile time.

A QName in a node test is expanded into an expanded-name using the in-
scope namespaces in the expression context. An unprefixed QName used
as a nametest has the namespaceURI associated with the default element

 36

Part 5 XQuery Expressions

namespace in the expression context. It has no namespace if the default
element namespace is not defined in the expression context. It is an error if
the QName has a prefix that does not correspond to any in-scope
namespace.

The node test text() is true for any text node. For example,
child::text() will select the text node children of the context node.

A node test node() is true for any node whatsoever.

Predicates

A predicate consists of an expression, called a predicate expression,
enclosed in square brackets. A predicate serves to filter a node sequence,
retaining some nodes and discarding others. For each node in the node
sequence to be filtered, the predicate expression is evaluated using an inner
focus derived from that node. The result of the predicate expression is
coerced to a Boolean value, called the predicate truth value, as described
below. Those nodes for which the predicate truth value is true are retained,
and those for which the predicate truth value is false are discarded.

Predicates ::= ("[" OrExpr "]")*

The predicate truth value is derived by applying the following rules, in order:

• If the value of the predicate expression is an empty sequence, the
predicate truth value is false.

• If the value of the predicate expression is an atomic value of type
xs:boolean, the predicate truth value is equal to the value of the
predicate expression.

• If the value of the predicate expression is a sequence that contains at
least one node and does not contain any item that is not a node, the
predicate truth value is true. The predicate truth value in this case does
not depend on the content of the node(s).

• In any other case, a type exception is raised.

Here are some examples of steps that contain predicates:

• This example selects all the children of the context node whose name is
"toy" and whose "color" attribute has the value "red":

child::toy[attribute::color = "red"]

• This example selects all the "employee" children of the context node
that have a "secretary" subelement:

child::employee[child::secretary]

 37

 Part 5 XQuery Expressions

Note that the above rules imply that child::person[child:married]
returns all person children of the context node that have a married
subelement, even if the content of this subelement is the boolean value false.
In order to return married persons, the expression should be written:

child::person[data(child:married) = true()]

Unabbreviated Syntax

This section provides a number of examples of path expressions in which
the axis is explicitly specified in each step. The syntax used in these
examples is called the unabbreviated syntax. In many common cases, it is
possible to write path expressions more concisely using an abbreviated
syntax.

• child::para selects the para element children of the context node

• child::text() selects all text node children of the context node

• child::node() selects all the children of the context node, whatever
their node type

• attribute::name selects the name attribute of the context node

• self::para selects the context node if it is a para element, and
otherwise selects nothing

• child::chapter/child::para selects the para element children of
the chapter element children of the context node

• child::chapter[child::title='Introduction']selects the
chapter children of the context node that have one or more title
children with string-value equal to Introduction

• child::chapter[child::title] selects the chapter children of the
context node that have one or more title children

• child::node()[self::chapter or self::appendix] selects the
chapter and appendix children of the context node

Abbreviated Syntax

AbbreviatedStep ::= "." | (@ NameTest) | NodeTest

The abbreviated syntax permits the following abbreviations:

• The most important abbreviation is that child:: can be omitted from a
step. In effect, child is the default axis. For example, a path expression
section/para is short for child::section/child::para.

• There is also an abbreviation for attributes: attribute:: can be
abbreviated by @. For example, a path expression
para[@type="warning"] is short for

 38

Part 5 XQuery Expressions

child::para[attribute::type="warning"] and so selects para
children with a type attribute with value equal to warning.

• A step consisting of . is short for self::node().

Here are some examples of path expressions that use the abbreviated syntax:

• para selects the para element children of the context node

• text() selects all text node children of the context node

• @name selects the name attribute of the context node

• . selects the context node

• chapter[title="Introduction"] selects the chapter children of
the context node that have one or more title children with string-
value equal to Introduction

• chapter[title] selects the chapter children of the context node that
have one or more title children

• employee[secretary and assistant] selects all the employee
children of the context node that have both a secretary subelement
and an assistant subelement.

Arithmetic Expressions
XQuery provides arithmetic operators for addition, subtraction,
multiplication, division, and modulus, in their usual binary and unary forms.
Usual precedence rules apply.

AdditiveExpr ::= (AdditiveExpr ("+" | "-"))?
MultiplicativeExpr

MultiplicativeExpr ::= (MultiplicativeExpr
 ("*" | "div" | "mod"))?
UnaryExpr

UnaryExpr ::= ("-" | "+")?
(PrimaryExpr
 | PathExpr
 | StepExpr)

The binary subtraction operator must be preceded by white space if it
follows an NCName, in order to distinguish it from a hyphen, which is a
valid name character. For example, a-b will be interpreted as a single token.

An arithmetic expression is evaluated by applying the following rules, in
order, until an error is encountered or a value is computed:

• Atomization is applied to each operand, resulting in a single atomic
value or an empty sequence for each operand.

 39

 Part 5 XQuery Expressions

• If either operand is an empty sequence, the result of the operation is an
empty sequence.

• If an operand has the type xs:anySimpleType, it is cast to xs:double.
If the cast fails, the error value is returned.

• If the two operands have different types, and these types can be
promoted to a common type using the standard promotion rules, the
operands are both promoted to their least common type. For example, if
the first operand is of type hatsize which is derived from
xs:decimal, and the second operand is of type shoesize which is
derived from xs:integer, then both operands are promoted to the
type xs:decimal.

• If the operand type(s) are valid for the given operator, the operator is
applied to the operand(s), resulting in an atomic value or an error (for
example, an error might result from dividing by zero.). If the operand
type(s) are not valid for the given operator, a type exception is raised.

In XQuark Bridge, arithmetic operators are only supported for numeric
types, thus arithmetic operations always result in numeric values. Static type
checking is enforced: using an expression returning a sequence as an
operand of an arithmetic operation will generate a type expression, unless
the compiler can determine at compile time that the sequence will be of
length 0 or 1.

Here are some examples of arithmetic expressions:

• Arithmetic operations on numeric values result in numeric values:

($salary + $bonus) div 12

• This example illustrates the difference between a subtraction operator
and a hyphen:

$unit-price - $unit-discount

• Unary operators have higher precedence than binary operators, subject
of course to the use of parentheses:

-($bellcost + $whistlecost)

Compatibility note: The XQuery draft standard defines arithmetic
operations on dates and durations. Those operations are not
supported in XQuark Bridge.

Comparison Expressions
Comparison expressions allow two values to be compared.

 40

Part 5 XQuery Expressions

CompExpr ::= AdditiveExpr

("=" | "!=" | "<" S | "<=" | ">" | ">=")
AdditiveExpr

The "<" comparison operator must be followed by white space in order to
distinguish it from a tag-open character

Comparisons can involve single values or sequences. In the absence of
errors, the result of a comparison is always true or false. When the two
operands are single values, the result of the comparison is defined by
applying the following rules, in order:

• Atomization is applied to each operand, resulting in a single atomic
value or an empty sequence for each operand.

• If either operand is an empty sequence, the result is an empty sequence.

• If either operand has the type xs:anySimpleType, that operand is cast
to a required type, which is determined as follows:
• If the type of the other operand is numeric, the required type is

xs:double.
• If the type of the other operand is xs:anySimpleType, the required

type is xs:string.
• Otherwise, the required type is the type of the other operand.
If the cast fails, the error value is returned.

• If the comparison has two numeric operands of different types, one of
the operands is promoted to the type of the other operand, following
the promotion rules. For example, a value of type xs:integer can be
promoted to xs:decimal, and a value of type xs:decimal can be
promoted to xs:double.

• The result of the comparison is true if the value of the first operand is
(equal, not equal, less than, less than or equal, greater than, greater than
or equal) to the value of the second operand; otherwise the result of the
comparison is false. If the value of the first operand is not comparable
with the value of the second operand, a type exception is raised. XQuark
Bridge allows strings, numeric values and dates to be compared to values
of the same type.

Sequence comparisons are defined by adding existential semantics to single
value comparisons. The operands may be sequences of any length greater
than 1.

The comparison A = B is true for sequences A and B if the value
comparison a = b is true for some item a in A and some item b in B.
Otherwise, A = B is false.

Similarly:

 41

 Part 5 XQuery Expressions

• A != B is true if and only if a != b is true for some a in A and some
b in B.

• A < B is true if and only if a < b is true for some a in A and some b
in B.

• A <= B is true if and only if a <= b is true for some a in A and some
b in B.

• A > B is true if and only if a > b is true for some a in A and some b
in B.

• A >= B is true if and only if a >= b is true for some a in A and some
b in B.

The sequence comparison may result in the error value if the value
comparison of any two values from A and B results in the error value.

Logical Expressions
A logical expression is either an and-expression or an or-expression. In
the absence of errors, the value of a logical expression is always one of the
boolean values true or false.

OrExpr ::= (OrExpr "or")? AndExpr
AndExpr ::= (AndExpr "and")? BoolExpr
BoolExpr ::= CompExpr

| PrimaryExpr
| PathExpr
| StepExpr
| QuantifiedExpr

The first step in evaluating a logical expression is to reduce each of its
operands to an effective boolean value, which is true, false, or the error
value. The effective boolean value of an operand is defined as follows:

• If the operand is an empty sequence, its effective boolean value is
false.

• If the operand is an atomic value of type xs:boolean, the operand
serves as its own effective boolean value.

• If the operand is a sequence that contains at least one node and does not
contain any item that is not a node, its effective boolean value is true.

• In any other case, a type exception is raised. In XQuery, a type
exception always results in the error value.

The value of an and-expression is determined by the effective boolean
values (EBV's) of its operands, according to the following table:

 42

Part 5 XQuery Expressions

 EBV2 = true EBV2 = false EBV2 = error
EBV1 = true true false error
EBV1 = false false false false or error
EBV1 = error error false or error error

The value of an or-expression is determined by the effective boolean values
(EBV's) of its operands, according to the following table:

 EBV2 = true EBV2 = false EBV2 = error
EBV1 = true true true true or error
EBV1 = false true false error
EBV1 = error true or error error error

The order in which the operands of a logical expression are evaluated is not
deterministic. The tables above are defined in such a way that an or-
expression can return true if the first expression evaluated is true, and it
can return the error value if the first expression evaluated contains an error.
Similarly, an and-expression can return false if the first expression
evaluated is false, and it can return the error value if the first expression
evaluated contains an error. As a result of these rules, the value of a logical
expression is not deterministic in the presence of errors, as illustrated in the
examples below.

Here are some examples of logical expressions:

• The following expressions return true:

1 = 1 and 2 = 2
1 = 1 or 2 = 3

• The following expression may return either false or the error value:

1 = 2 and 3 div 0 = 47

• The following expression may return either true or the error value:

1 = 1 or 3 div 0 = 47

• The following expression returns the error value:

1 = 1 and 3 div 0 = 47

In addition to and- and or-expressions, XQuery provides a function named
not that takes a general sequence as parameter and returns a boolean value.
The not function reduces its parameter to an effective boolean value using
the same rules that are used for the operands of logical expressions. It then
returns true if the effective boolean value of its parameter is false, and

 43

 Part 5 XQuery Expressions

false if the effective boolean value of its parameter is true. If the effective
boolean value of its operand is the error value, not returns the error value.

Constructors
XQuery provides constructors that can create XML structures within a
query. There are constructors for elements, attributes, CDATA sections,
processing instructions, and comments.

Constructor ::= ElementConstructor
| XmlComment
| XmlProcessingInstruction
| CdataSection

ElementConstructor ::= "<" QName AttributeList
("/>" | (">" ElementContent*
"</" QName ">"))

ElementContent ::= Char
| "{{"
| "}}"
| ElementConstructor
| EnclosedExpr
| CdataSection
| CharRef
| PredefinedEntityRef
| XmlComment
| XmlProcessingInstruction

AttributeList ::= (QName "=" AttributeValue)*

AttributeValue ::= (["]
 ("'" | AttrValueContent)*
 ["])
|([']
 (""" | AttrValueContent)*
 ['])

AttrValueContent ::= Char
| CharRef
| "{{"
| "}}"
| EnclosedExpr
| PredefinedEntityRef

EnclosedExpr ::= "{" Expr "}"

Char ::= [#x0009] | [#x000D]
| [#x000A] | [#x0020-#xFFFD])

CharRef ::= "&#" ([0-9]+
| ("x"([0-9] | [a-f]
 | [A-F])+)) ";"

PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp"
| "quot" | "apos") ";"

 44

Part 5 XQuery Expressions

Element Constructors

An element constructor creates an XML element. If the name, attributes,
and content of the element are all constants, the element constructor uses
standard XML notation. For example, the following expression creates a
book element that contains attributes, subelements, and text:

<book isbn="isbn-0060229357">
 <title>Harold and the Purple Crayon</title>
 <author>
 <first>Crockett</first>
 <last>Johnson</last>
 </author>
</book>

In an element constructor, the name used in an end tag must match the
name of the corresponding start tag. If namespace prefixes are declared in
the query prolog, the prefixes they declare may be used to create qualified
names for elements and attributes. It is an error to use a namespace prefix
that has not been declared.

In an element constructor, curly braces { } delimit enclosed expressions,
distinguishing them from literal text. Enclosed expressions are evaluated and
replaced by their value, whereas material outside curly braces is simply
treated as literal text, as illustrated by the following example:

<example>
 <p> Here is a query. </p>
 <eg> $i//title </eg>
 <p> Here is the result of the above query. </p>
 <eg>{ $i//title }</eg>
</example>

The above query might generate the following result (whitespace has been
added for readability to this result and other result examples in this
document):

<example>
 <p> Here is a query. </p>
 <eg> $i//title </eg>
 <p> Here is the result of the above query. </p>
 <eg>
 <title>Harold and the Purple Crayon</title>
 </eg>
</example>

In an element constructor, an enclosed expression may evaluate to any
sequence of nodes and/or atomic values. Attribute nodes occurring in this
sequence become the attributes of the constructed element. The remainder
of the sequence becomes the content of the constructed element.

An enclosed expression may also be used to compute the value of an
attribute. If the enclosed expression returns a node, the typed value of the

 45

 Part 5 XQuery Expressions

node is extracted and assigned to the attribute, as illustrated by the following
example:

<book isbn="{$i/@booknum}" />

Since XQuery uses curly braces to denote enclosed expressions, some
convention is needed to denote a curly brace used as an ordinary character.
For this purpose, XQuery adopts the same convention as XSLT: Two
adjacent curly braces in an XQuery character string are interpreted as a
single curly brace character.

Other Constructors and Comments

The syntax for a CDATA section constructor, a processing instruction
constructor, or an XML comment constructor is the same as the syntax
of the equivalent XML construct.

CdataSection ::= "<![CDATA[" Char* "]]>"

XmlProcessingInstruction ::= "<?" NCName Char* "?>"

XmlComment ::= "<!--" Char* "-->"

The following example illustrates constructors for processing instructions,
comments, and CDATA sections.

<?format role="output" ?>
<!-- Tags are ignored in the CDATA section -->
<![CDATA[
 <address>
 123 Roosevelt Ave. Flushing, NY 11368
 </address>
]]>

Note that an XML comment actually constructs an XML comment node.
An XQuery comment is simply a comment used in documenting a query,
and is not evaluated. Consider the following example.

{-- This is an XQuery comment --}
<!-- This is an XML comment -->

The result of evaluating the above expression is as follows.

<!-- This is an XML comment -->

FLWR Expressions
XQuery provides a FLWR expression for iteration and for binding variables
to intermediate results. This kind of expression is often useful for
computing joins between two or more documents or collections of
documents and for restructuring data. The name "FLWR", pronounced

 46

Part 5 XQuery Expressions

"flower", stands for the keywords for, let, where, and return, the four
clauses found in a FLWR expression.

FLWRExpr ::= (ForClause | LetClause)+
WhereClause? "return" Expr

ForClause ::= "for" Variable "in" Expr
("," Variable "in" Expr)*

LetClause ::= "let" Variable ":=" Expr
("," Variable ":=" Expr)*

WhereClause ::= "where" OrExpr

The clauses of a FLWR Expression are interpreted as follows:

• A for clause associates one or more variables with expressions, creating
tuples of variable bindings drawn from the Cartesian product of the
sequences of values to which the expressions evaluate. The variable
binding tuples are generated as an ordered sequence as described below.

• A let clause binds a variable directly to an entire expression. If for
clauses are present, the variable bindings created by let clauses are
added to the tuples generated by the for clauses. If there are no for
clauses, the let clauses generate one tuple with all variable bindings.

• A where clause can be used as a filter for the tuples of variable bindings
generated by the for and let clauses. The expression in the where
clause, called the where-expression, is evaluated once for each of these
tuples. If the effective boolean value of the where-expression is true,
the tuple is retained and its variable bindings are used in an execution of
the return clause. If the effective boolean value of the where-
expression is false, the tuple is discarded.

• The return clause contains an expression that is used to construct the
result of the FLWR expression. The return clause is invoked once for
every tuple generated by the for and let clauses, after eliminating any
tuples that do not satisfy the conditions of a where clause. The
expression in the return clause is evaluated once for every invocation,
and the result of the FLWR expression is an ordered sequence
containing the results of these invocations.

Expressions in for, let and return clauses can be any top-level
expression, with the restriction that: expressions in for and let clauses
should not contain constructor expressions, at any level.

A variable name may not be used before it is bound, nor may it be used in
the expression to which it is bound. Any variable bound in a for or let
clause is in scope until the end of the FLWR expression in which it is
bound. If the variable name used in the binding was already bound in the
current scope, the variable name refers to the newly bound variable until
that variable goes out of scope. At this point, the variable name again refers
to the variable of the prior binding.

 47

 Part 5 XQuery Expressions

Although for and let both bind variables, the manner in which variables
are bound is quite different. In a let clause, the variable is bound directly to
the expression, and it is bound to the expression as a whole. Consider the
following query, based on the data presented in the earlier Example section:

let $users := collection("USERS")/USERS/NAME
return <out>{$users}</out>

The variable $users is bound to the expression
collection("USERS")/USERS/NAME, i.e. the sequence containing all the
NAME subelements in the USERS table. There are no for clauses, so the
let clause generates one tuple that contains the variable binding of $users.
The return clause is invoked for this tuple, creating the following output:

<out>
 <NAME>Tom Jones</NAME>
 <NAME>Mary Doe</NAME>
 <NAME>Dee Linquent</NAME>
 <NAME>Roger Smith</NAME>
 <NAME>Jack Sprat</NAME>
 <NAME>Rip Van Winkle</NAME>
</out>

Now consider a similar query which contains a for clause instead of a let
clause:

for $user in collection("USERS")/USERS/NAME
return <out>{$user}</out>

The variable $user is associated with the expression
collection("USERS")/USERS/NAME, from which the variable bindings of
$user will be drawn. When only one expression is present, the Cartesian
product is equivalent to the sequence of values returned by that expression.
In this example, the variable $user is bound six times, to each NAME
subelement in the USERS table. One tuple is generated for each of these
variable bindings, and the return clause is invoked for each tuple, creating
the following output:

<out>
 <NAME>Tom Jones</NAME>
</out>
<out>
 <NAME>Mary Doe</NAME>
</out>
<out>
 <NAME>Dee Linquent</NAME>
</out>
<out>
 <NAME>Roger Smith</NAME>
</out>
<out>
 <NAME>Jack Sprat</NAME>
</out>
<out>

 48

Part 5 XQuery Expressions

 <NAME>Rip Van Winkle</NAME>
</out>

Note that the above result is not a well-formed XML document, as it
contains multiple root elements. It is necessary to enclose the result
fragments into an enclosing element to produce a valid XML document.

A FLWR Expression may contain multiple for clauses. In this case, the
tuples of variable bindings are drawn from the Cartesian product of the
sequences returned by the expressions in all the for clauses. The ordering of
the tuples is governed by the ordering of the sequences from which they
were formed, working from left to right.

The following expression illustrates how tuples are generated from the
Cartesian product of expressions in a for clause. For each user who has
offered an item for auction, it returns the user name and the item
description.

for $u in collection("USERS")/USERS,
 $i in collection("ITEMS")/ITEMS
where $u/USERID = $i/OFFERED_BY
return
 <result>
 { $u/NAME }
 { $i/DESCRIPTION }
 </result>

Here is the result of the above expression.

<result>
 <NAME>Tom Jones</NAME>
 <DESCRIPTION>Red Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Tom Jones</NAME>
 <DESCRIPTION>Tricycle</DESCRIPTION>
</result>
<result>
 <NAME>Tom Jones</NAME>
 <DESCRIPTION>Broken Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Mary Doe</NAME>
 <DESCRIPTION>Motorcycle</DESCRIPTION>
</result>
<result>
 <NAME>Mary Doe</NAME>
 <DESCRIPTION>Old Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Dee Linquent</NAME>
 <DESCRIPTION>Tennis Racket</DESCRIPTION>
</result>
<result>
 <NAME>Dee Linquent</NAME>

 49

 Part 5 XQuery Expressions

 <DESCRIPTION>Helicopter</DESCRIPTION>
</result>
<result>
 <NAME>Roger Smith</NAME>
 <DESCRIPTION>Racing Bicycle</DESCRIPTION>
</result>

The following expression is a slightly modified query, showing the
restructuring capabilities of XQuery. For each user, it returns the user name
and the description of all items it has offered for auction.

for $u in collection("USERS")/USERS
return
 <result>
 { $u/NAME }
 { for $i in collection("ITEMS")/ITEMS
 where $u/USERID = $i/OFFERED_BY
 return $i/DESCRIPTION }
 </result>

Here is the result of the above expression. Note that the result for users
having not offered items does not contain descriptions, although the user
name is still present. This is an example of how XQuery handles the
relational concept of outer join.

<result>
 <NAME>Tom Jones</NAME>
 <DESCRIPTION>Red Bicycle</DESCRIPTION>
 <DESCRIPTION>Tricycle</DESCRIPTION>
 <DESCRIPTION>Broken Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Mary Doe</NAME>
 <DESCRIPTION>Motorcycle</DESCRIPTION>
 <DESCRIPTION>Old Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Dee Linquent</NAME>
 <DESCRIPTION>Tennis Racket</DESCRIPTION>
 <DESCRIPTION>Helicopter</DESCRIPTION>
</result>
<result>
 <NAME>Roger Smith</NAME>
 <DESCRIPTION>Racing Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Jack Sprat</NAME>
</result>
<result>
 <NAME>Rip Van Winkle</NAME>
</result>

 50

Part 5 XQuery Expressions

Note on the use of views: The above restructuration uses unique
identifiers for rows to group results according to the external loop
variables. When using views (or synonyms), XQuark Bridge cannot
use such identifiers; in that case, it uses the complete row as
identifier, and automatically removes duplicate rows.

Sorting Expressions
A sorting expression provides a way to control the order of items in a
sequence.

SortExpr ::= (PathExpr | FLWRExpr)
"sortby" "(" SortSpecList ")"

SortSpecList ::= (PathExpr | StepExpr) SortModifier
("," SortSpecList)?

SortModifier ::= ("ascending" | "descending")?

The value of the expression on the left side of the sortby keyword is called
the input expression. The items in the input expression are called input
items. The result of the sorting expression is called the output expression.
The output expression contains all the input items, retaining their original
identities (if any), but possibly in a different order.

The expressions on the right side of the sortby keyword are called
ordering expressions. For each input item, the ordering expressions are
evaluated with an inner focus derived from the input item. The input items
are then reordered according to the values of their respective ordering
expressions. If more than one ordering expression is specified, the leftmost
ordering expression controls the primary sort, followed by the remaining
ordering expressions from left to right. Each ordering expression can be
followed by the keyword ascending or descending, which specifies the
direction of the sort (ascending is the default).

The process of evaluating and comparing the ordering expressions is based
on the following rules:

• Atomization is applied to the result of each ordering expression,
resulting in a single atomic value or an empty sequence for each operand
ordering expression. Static type checking is enforced: if the compiler
detects that an ordering expression may result in a sequence of length
greater than 1, a type exception is thrown.

• If the result of an ordering expression has the type xs:anySimpleType
(such as character data in a schemaless document), it is cast to the type
xs:string.

 51

 Part 5 XQuery Expressions

• Each ordering expression must return values of the same type for all
input items, and this type must be a (possibly optional) atomic type for
which the > operator is defined--otherwise, the error value is returned.

• For the purpose of the following rule, an ordering value that is an empty
sequence is treated as greater than any non-empty ordering value.

• If V1 and V2 are the values of an ordering expression for input items I1
and I2 respectively, then:
• If the ordering expression is ascending, and if V2 > V1 is true, then

I1 precedes I2 in the output sequence.
• If the ordering expression is descending, and if V1 > V2 is true, then

I1 precedes I2 in the output sequence.
• If neither V1 > V2 nor V2 > V1 is true, then the order of I1 and I2 in

the output sequence is implementation-defined.

Here are some examples of ordering expressions:

This example lists all bids in the auction database, ordered first by bid, then
by user name.

for $b in collection("BIDS")/BIDS,
 $u in collection("USERS")/USERS,
 $i in collection("ITEMS")/ITEMS
where $b/USERID = $u/USERID
 and $b/ITEMNO=$i/ITEMNO
return
 <result>
 { $u/NAME }
 { $b/BID }
 { $i/DESCRIPTION }
 </result>
sortby (BID, NAME)

Ordering may be specified at multiple levels of a query result.

<result>
 { for $i in collection("ITEMS")/ITEMS
 return
 <item>
 <name> { data($i/DESCRIPTION)} </name>
 <reserve>
 { data($i/RESERVE_PRICE) }
 </reserve>
 <bids>
 { for $b in collection("BIDS")/BIDS,
 $u in collection("USERS")/USERS
 where $b/ITEMNO = $i/ITEMNO
 and $b/USERID = $u/USERID
 return
 <bid>
 <name> { data($u/NAME) } </name>
 <value> { data($b/BID) } </value>
 </bid>
 sortby(value)

 52

Part 5 XQuery Expressions

 }
 </bids>
 </item>
 sortby(reserve)
 }
</result>

Quantified Expressions
Quantified expressions support existential and universal quantification. The
value of a quantified expression is always true or false.

QuantifiedExpr ::= ("some" | "every")
Variable "in" Expr
("," Variable "in" Expr)*
"satisfies" OrExpr

A quantified expression begins with a quantifier, which is the keyword
some or every, followed by one or more in-clauses that are used to bind
variables, followed by the keyword satisfies and a test expression. Each
in-clause associates a variable with an expression that returns a sequence of
values. Any top-level expression can be used, with the restriction that it
should not contain constructor expressions.

As in the case of a for-clause in a FLWR-expression, the in-clauses generate
tuples of variable bindings, using values drawn from the Cartesian product
of the sequences returned by the binding expressions. Conceptually, the test
expression is evaluated for each tuple of variable bindings. Results depend
on the effective boolean values of the test expressions. The value of the
quantified expression is defined by the following rules:

• If the quantifier is some, the quantified expression is true if at least one
evaluation of the test expression has the effective boolean value true;
otherwise the quantified expression is false. This rule implies that, if
the in-clauses generate zero binding tuples, the value of the quantified
expression is false.

• If the quantifier is every, the quantified expression is true if every
evaluation of the test expression has the effective boolean value true;
otherwise the quantified expression is false. This rule implies that, if
the in-clauses generate zero binding tuples, the value of the quantified
expression is true.

The order in which test expressions are evaluated for the various binding
tuples is implementation-defined. If the quantifier is some, an
implementation may return true as soon as it finds one binding tuple for
which the test expression has an effective Boolean value of true, and it may
return an error as soon as it finds one binding tuple for which the test
expression returns an error. Similarly, if the quantifier is every, an
implementation may return false as soon as it finds one binding tuple for

 53

 Part 5 XQuery Expressions

which the test expression has an effective Boolean value of false, and it
may return an error as soon as it finds one binding tuple for which the test
expression returns an error. As a result of these rules, the value of a
quantified expression is not deterministic in the presence of errors.

Here are some examples of quantified expressions:

This expression returns the users, if any, that have bidded on every item:

<frequent_bidder>
{
 for $u in collection("USERS")/USERS
 where
 every $item in collection("ITEMS")/ITEMS
satisfies
 some $b in collection("BIDS")/BIDS
satisfies
 $item/ITEMNO = $b/ITEMNO
 and $u/USERID = $b/USERID
 return $u/NAME
}
</frequent_bidder>

This expression returns the users, if any, that have bidded on at least one
item:

<bidder>
{
 for $u in collection("USERS")/USERS
 where
 some $item in collection("ITEMS")/ITEMS
satisfies
 some $b in collection("BIDS")/BIDS
satisfies
 $item/ITEMNO = $b/ITEMNO
 and $u/USERID = $b/USERID)
 return $u/NAME
}
</bidder>

 54

Part 6 Built-in XQuery Functions Part

 6

Built-in XQuery Functions
 [XML Schema Part 2] defines a number of primitive and derived datatypes,
collectively known as built-in datatypes. This section defines operations on
those datatypes for use in XQuery. It also discusses operations on nodes
and node sequences as defined in the [XQuery 1.0 and XPath 2.0 Data
Model] for use in XQuery.

Note: XQuark Bridge only supports a subset of the built-in user
functions defined by the XQuery draft standard. The complete set
is described in [XQuery 1.0 and XPath 2.0 Functions and
Operators].

Accessors
The [XQuery 1.0 and XPath 2.0 Data Model] describes accessors on
different types of nodes and defines their semantics. In XQuark Bridge, two
of these accessors are exposed to the user through the functions described
below.

Function Accessor Accepts Returns
string string-value a sequence, a

node of any
kind, or a simple
value

string

data typed-value any kind of
node

a typed sequence
of atomic values

string

string(item* $srcval) => string

Returns the value of $srcval represented as a string.

If $srcval is the empty sequence, the empty string is returned.

If $srcval is a node, the return value depends on the node type:

 55

 Part 6 Built-in XQuery Functions

• for an attribute node or an element node with simple content, the string
value of the node’s sequence of atomic values is returned, as described
below.

• for a element node with complex content, a type exception occurs,
resulting in the error value.

Compatibility note: The XQuery draft standard specifies that the
string value of a complex element node is the concatenation of the
string values of its descendant text nodes in document order. This is
not supported by XQuark Bridge.

If $srcval is an atomic value, the function returns the canonical lexical
representation of the typed value, as defined in [XML Schema Part 2],
except in the case listed below:

• If the type of $srcval is xs:decimal, and the value is equal to an
integer, then the function returns the canonical representation of that
integer. This special rule allows integers to be displayed without the
decimal point.

If $srcval is a sequence of more than one item, a type exception occurs,
resulting in the error value.

data

data(node* $srcval) => value*

Returns the typed-value of each node in $srcval. Each node in $srcval
is processed as follows.

The static type of the result for each node is determined by the static type of
the value that is extracted.

If $srcval is not a element, attribute or text node, returns the error value.

If $srcval is a text node, returns the string content of the text node with
type annotation xs:anySimpleType.

If $srcval is an attribute node defined to have xs:anySimpleType, or an
element node with simple content defined to have xs:anySimpleType,
returns its string value with type annotation xs:anySimpleType.

If $srcval is an element or attribute node with a simple type other than
xs:anySimpleType or with a complex type with simple content other than
xs:anySimpleType, returns the node's typed value which is a sequence of
atomic values.

 56

Part 6 Built-in XQuery Functions

If $srcval is an element node with complex content, returns the error
value.

Constructors and Functions on Numbers
This section discusses arithmetic operators on the numeric datatypes
defined in [XML Schema Part 2].

Numeric Types

The operators described in this section are defined on the following numeric
types:

• xs:decimal

• xs:integer

• xs:double

They also apply to types derived by restriction from these types.

Numeric Constructors

The following constructors are defined on the above numeric types. Each
constructor takes a single xs:string literal as argument. Leading and
trailing whitespace, if present, is stripped from the literal before the value is
constructed.

Constructor Meaning

decimal Produces a decimal value by parsing and interpreting a string.
integer Produces an integer value by parsing and interpreting a string.
double Produces a double value by parsing and interpreting a string.

If the argument string passed to a constructor results in an error (for
example, if it contains a letter other than "E" or "e"), the constructor returns
the error value.

decimal

decimal(string $srcval) => decimal

Returns the decimal value that is represented by the characters contained in
the value of $srcval. For this constructor, $srcval must be a string
literal.

If the value of $srcval is not a valid lexical representation for the decimal
type as specified in [XML Schema Part 2], then the error value is returned.

 57

 Part 6 Built-in XQuery Functions

If the number of characters contained in the value of $srcval that are
digits is greater than the maximum number of decimal digits supported by
the implementation, then the error value is returned.

Examples:

• decimal('123.5') returns the decimal value corresponding to one
hundred twenty three and one-half.

• decimal('12.5E2') returns the error value, since the use of the letter
"E" is prohibited in the constructor for the decimal type.

• decimal(' 12.5 ') returns the decimal value corresponding to
twelve and one-half.

integer

integer(xs:string $srcval) => integer

Returns the integer value that is represented by the characters contained in
the value of $srcval. For this constructor, $srcval must be a string literal.

If the value of $srcval is not a valid lexical representation for the integer
type as specified in [XML Schema Part 2], then the error value is returned.

If the number of characters contained in the value of $srcval that are
digits is greater than the maximum number of digits supported by the
implementation, then the error value is returned.

Examples:

• integer('-123') returns the integer value corresponding to
negative one hundred twenty three.

• integer('123.5') returns the error value, since the use of a decimal
point is prohibited in the constructor for the integer type.

double

double(xs:string $srcval) => double

Returns the double value that is represented by the characters contained in
the value of $srcval. For this constructor, $srcval must be a string literal.

If the value of $srcval is not a valid lexical representation for the double
type as specified in [XML Schema Part 2], then the error value is returned.
Note that XQuark Bridge does not support the special values NaN, INF,
+INF and –INF.

Examples:

 58

Part 6 Built-in XQuery Functions

• double('510E2') returns the double value corresponding to fifty one
thousand.

• double('15.25') returns the double value corresponding to fifteen
and a quarter.

• double('51D1') returns the error value, since the use of the letter "D"
is prohibited in the constructor for the double type.

Functions on Numeric Values

The following functions are defined on numeric types. Each function
returns an integer except:

• If the argument is the empty sequence, the empty sequence is returned.

• The abs() function returns an xs:double.

floor

floor(xs:double? $srcval) => xs:integer?

Returns the largest (closest to positive infinity) integer that is not greater
than the value of $srcval.

If the argument is the empty sequence, returns the empty sequence.

Examples:

• floor(10.5) returns 10.

• floor(-10.5) returns -11.

ceiling

ceiling(xs:double? $srcval) => xs:integer?

Returns the smallest (closest to negative infinity) number that is not smaller
than the value of $srcvaland that is an integer.

 If the argument is the empty sequnce, returns the empty sequence.

Examples:

• ceiling(10.5) returns 11.

• ceiling(-10.5) returns -10.

round

round(xs:double? $srcval) => xs:integer?

 59

 Part 6 Built-in XQuery Functions

Returns the number that is closest to the argument and that is an integer.
More formally, round(x) produces the same result as floor(x+0.5). If
there are two such numbers, then the one that is closest to positive infinity
is returned.

If the argument is the empty sequence, returns the empty sequence.

Examples:

• round(2.5) returns 3.

• round(2.4999) returns 2.

• round(-2.5) returns -2.

abs

abs(xs:double? $srcval) => xs:double?

Returns the absolute value of the argument.

If the argument is the empty sequence, returns the empty sequence.

Examples:

• abs(2.5) returns 2.5.

• abs(-3) returns 3.

Constructors and Functions on Strings
This section discusses operators on the [XML Schema Part 2] xs:string
datatype. They also apply to types derived by restriction from this type.

String Constructor

The following constructor is defined on the xs:string type. This
constructor takes a single string literal as argument.

Constructor Meaning

string Produces a string value by parsing and interpreting a
supplied string.

string

string(xs:string $srcval) => xs:string

Returns a string value that is the value of $srcval. The more general
accessor-based function string returns the string value for several kinds of

 60

Part 6 Built-in XQuery Functions

input arguments. If the input argument is a string it just returns the
argument string. Thus, this constructor can be correctly perceived as a "no-
op", but is included for the sake of orthogonality.

Functions on String Values

The following functions are defined on these string types. Several of these
functions use a default collation, which is the collation used by the
underlying relational database.

Function Meaning
concat Concatenates two or more character strings.

starts-with Indicates whether the value of one string begins
with the characters of the value of another string.

ends-with Indicates whether the value of one string ends
with the characters of the value of another string.

contains
Indicates whether the value of one string
contains the characters of the value of another
string.

substring Returns a string located at a specified place in the
value of a string.

string-length Returns the length of the argument.
upper-case Returns the upper-cased value of the argument.
lower-case Returns the lower-cased value of the argument.

concat

concat() => xs:string

concat(xs:string? $op1) => xs:string

concat(xs:string? $op1, xs:string? $op2, ...)
=> xs:string

Accepts zero or more strings as arguments. Returns the string that is the
concatenation of the values of its arguments. The resulting string might not
be normalized in any Unicode or W3C normalization. If called with no
arguments, returns the zero-length string. If any of the arguments is the
empty sequence it is treated as the zero-length string.

Examples:

• concat('abc', 'def') returns "abcdef".

• concat('abc') returns abc.

 61

 Part 6 Built-in XQuery Functions

• concat('abc', 'def', 'ghi', 'jkl', 'mno') returns
"abcdefghijklmno".

starts-with

starts-with(xs:string? $op1, xs:string? $op2)
=> xs:boolean?

Returns a boolean indicating whether or not the value of $op1 starts with a
string that is equal to the value of $op2.

If the value of $op2 is the zero-length string, then the function returns
true. If the value of $op1 is the zero-length string and the value of $op2 is
not the zero-length string, then the function returns false.

If the value of $op1 or $op2 is the empty sequence, the empty sequence is
returned.

Examples:

• starts-with("goldenrod", "gold") returns true.

• starts-with("goldenrod", "") returns true.

• starts-with("goldenrod", "rod") returns false.

ends-with

ends-with(xs:string? $op1, xs:string? $op2)
=> xs:boolean?

Returns a boolean indicating whether or not the value of $op1 ends with a
string that is equal to the value of $op2.

If the value of $op2 is the zero-length string, then the function returns
true. If the value of $op1 is the zero-length string and the value of $op2 is
not the zero-length string, then the function returns false.

If the value of $op1 or $op2 is the empty sequence, the empty sequence is
returned.

Examples:

• ends-with("goldenrod","rod") returns true.

• ends-with("", "rod") returns false.

contains

contains(xs:string? $op1, xs:string? $op2)
=> xs:boolean?

 62

Part 6 Built-in XQuery Functions

Returns a boolean indicating whether or not the value of $op1 contains (at
the beginning, at the end, or anywhere within) a string equal to the value of
$op2.

If the value of $op2 is the zero-length string, then the function returns
true. If the value of $op1 is the zero-length string and the value of $op2 is
not the zero-length string, then the function returns false.

If the value of $op1 or $op2 is the empty sequence, the empty sequence is
returned.

substring

substring(xs:string? $sourceString,
 xs:decimal? $startingLoc)
=> xs:string?

substring(xs:string? $sourceString,
 xs:decimal? $startingLoc,
 xs:decimal? $length)
=> xs:string?

Returns the portion of the value of $sourceString beginning at the
position indicated by the value of $startingLoc and continuing for the
number of characters indicated by the value of $length. More specifically,
returns the characters in $sourceString whose position $p obeys:

round($startingLoc) <= $p < round($startingLoc + $length)

If $length is not specified, the substring identifies characters to the end of
$sourceString.

If $length is greater than the number of characters in the value of
$sourceString following $startingLoc, the substring identifies
characters to the end of $sourceString.

The first character of a string is located at position 1 (not position 0).

If the value of $startingLoc is negative or greater than the length of
$sourceString, the behavior is undefined.

If the value of any of the three parameters is the empty sequence, the empty
sequence is returned.

Examples:

• substring("motor car", 6) returns " car".

• substring("metadata", 4, 3) returns "ada".

 63

 Part 6 Built-in XQuery Functions

string-length

string-length(xs:string? $srcval) => xs:integer?

Returns an integer equal to the length in characters of the value of $srcval.
If the value of $srcval is the empty sequence, the empty sequence is
returned.

Examples:

• string-length("motor car") returns 9.

upper-case

upper-case(xs:string? $srcval) => xs:string?

Returns the value of $srcval after translating every lower-case letter to its
upper-case correspondent. Every lower-case letter that does not have an
upper-case correspondent, and every character that is not a lower-case letter,
is included in the returned value in its original form.

If the value of $srcval is the empty sequence, returns the empty sequence.

Examples:

• upper-case("abCd0") returns "ABCD0".

lower-case

lower-case(xs:string? $srcval) => xs:string?

Returns the value of $srcval after translating every upper-case letter to its
lower-case correspondent. Every upper-case letter that does not have a
lower-case correspondent, and every character that is not an upper-case
letter, is included in the output in its original form.

If the value of $srcval is the empty sequence, returns the empty sequence.

Examples:

• lower-case("ABc!D") returns "abc!d".

Constructors and Functions on Booleans
This section discusses operators on the [XML Schema Part 2] xs:boolean
datatype.

 64

Part 6 Built-in XQuery Functions

Boolean Constructors

The following constructors are defined on the boolean type.

Constructor Meaning
true boolean true value
false boolean false value

true

true() => xs:boolean

Returns the boolean value true.

false

false() => xs:boolean

Returns the boolean value false.

Functions on Boolean Values

The following function is defined on boolean values:

Function Meaning

xf:not Inverts the boolean value of the argument. A () argument
returns true.

not

not(item* $srcval) => xs:boolean

$srcval is first reduced to an effective boolean value by applying the
following rules:

• If $srcval is the empty sequence, its effective boolean value is false.

• If $srcval is a single boolean value, it serves as its own effective
boolean value.

• If $srcval is a sequence that contains at least one node, its effective
boolean value is true.

• In any other case, a type exception is invoked.

Returns true if the effective boolean value is false, and false if the
effective boolean value is true.

 65

 Part 6 Built-in XQuery Functions

Examples:

• not(true()) returns false.

Constructors and Functions on Dates and
Times
This section discusses operations on the [XML Schema Part 2] date and
time types.

Date and Time Types

The operators described in this section are defined on the following date
and time types:

• xs:dateTime

• xs:date

• xs:time

Date and Time Constructors

The following constructors are defined on date and time datatypes. Each
constructor takes a single string literal as argument. Leading and trailing
whitespace, if present, is stripped from the literal before the value is
constructed.

Constructor Meaning

dateTime Returns a dateTime type derived by parsing and
interpreting a string value.

date Returns a date type derived by parsing and interpreting a
string value.

time Returns a time type derived by parsing and interpreting
a string value.

dateTime

dateTime(xs:string $srcval) => xs:dateTime

If the value of $srcval conforms to the lexical representation of a
xs:dateTime as defined in [XML Schema Part 2], the constructor returns
the dateTime corresponding to that representation. Otherwise, the
constructor returns the error value.

Examples:

 66

Part 6 Built-in XQuery Functions

• dateTime("1999-05-31T05:00:00") returns a xs:dateTime value
corresponding to the 31st. of May, 1999 at 5:00 am in an unspecified
timezone.

• dateTime("1999-05-31T13:20:00-05:00") returns a xs:dateTime
value corresponding to 1:20 pm on May the 31st, 1999 for a timezone
which is 5 hours behind Coordinated Universal Time (UTC).

date

date(xs:string $srcval) => xs:date

If the value of $srcval conforms to the lexical representation of a xs:date
as defined in [XML Schema Part 2], the constructor returns the date
corresponding to that representation. Otherwise, the constructor returns the
error value.

Examples:

• date("2001-05-31") returns a xs:date value corresponding to the
31st of May, 2001.

• date("2001-04-31") returns an error.

time

time(xs:string $srcval) => xs:time

If the value of $srcval conforms to the lexical representation of a xs:time
as defined in [XML Schema Part 2], the constructor returns the time
corresponding to that representation. Otherwise, the constructor returns the
error value.

Examples:

• time("11:33:24") returns a xs:time value corresponding to 33
minutes and 24 seconds past 11 o'clock in an unspecified timezone.

• time("23:33:24.35-05:00") returns a xs:time value corresponding
to 33 minutes and 24.35 seconds past 23 o'clock for a timezone which is
5 hours behind Coordinated Universal Time (UTC).

Functions on Nodes
This section discusses operators on nodes. Nodes have been introduced in
The standard XQuery data model and are formally defined in [XQuery 1.0
and XPath 2.0 Data Model].

 67

 Part 6 Built-in XQuery Functions

Functions on Nodes

The following function is defined on nodes:

Function Meaning

number Returns the value of the context node or the specified node
converted to a number.

number

number(node? $srcval) => xs:double?

Returns the value of the node indicated by $srcval converted to a
xs:double. If the value of the node is not a valid lexical representation of a
numeric simple type as defined in [XML Schema Part 2], then the function
returns the error value.

If the value of $srcval is the empty sequence, the empty sequence is
returned.

Functions on Sequences
This section discusses operators on sequences, i.e. ordered collections of
zero or more items. The terms sequence and item have been introduced
in The standard XQuery data model and are defined formally in [XQuery
1.0 and XPath 2.0 Data Model].

Functions on Sequences

The following functions are defined on sequences.

Function Meaning

empty Indicates whether or not the provided sequence
is empty.

exists Indicates whether or not the provided sequence
is not empty.

distinct-values

Returns a sequence in which all redundant
duplicate elements, based on value equality, have
been deleted. The specific node in a collection of
redundant duplicate nodes that is retained in
implementation-dependent.

empty

empty(item* $srcval) => xs:boolean

 68

Part 6 Built-in XQuery Functions

If the the value of $srcval is the empty sequence, the function returns
true; otherwise, the function returns false.

exists

exists(item* $srcval) => xs:boolean

If the the value of $srcval is not the empty sequence, the function returns
true; otherwise, the function returns false.

distinct-values

distinct-values(item* $srcval) => item*

$srcval must contain either simple values or nodes, not both. If the
sequence contains both simple values and nodes, then the function returns
the error value.

If $srcval contains only nodes, returns the sequence that results from
removing from $srcval all but one of a set of nodes that are equal to one
other, based on the following comparison function. Two nodes are
considered equal if:

• they have the same node type (i.e. element or attribute),

• they have the same name,

• they have the same value, as obtained by the data() function. Note that
the use of the data() function implies that it is an error to apply the
distinct-values function to sequences containing element nodes
with complex content.

The specific node in a collection of nodes having equal values that is
retained is implementation-dependent.

If $srcval contains only values, returns the sequence that results from
removing from $srcval all but one of a set of values that are equal to one
other.

If $srcval is the empty sequence, returns the empty sequence.

Aggregate Functions

Aggregate functions take a sequence as argument and return a single value
computed from values in the sequence. Except for count, if the sequence
contains nodes, the value is extracted from the node and used in the
computation.

Function Meaning

 69

 Part 6 Built-in XQuery Functions

Function Meaning
count Returns the number of items in the sequence.
avg Returns the average of a sequence of numbers.

max Returns the object with maximum value from a collection
of comparable objects.

min Returns the object with minimum value from a collection
of comparable objects.

sum Returns the sum of a sequence of numbers.

count

count(item* $srcval) => xs:unsignedInt

Returns the number of items in the value of $srcval. Returns 0 if $srcval
is the empty sequence.

avg

avg(item* $srcval) => xs:double?

If $srcval contains nodes, the value of each node is extracted using the
data() function. Values that equal the empty sequence are discarded. If
after this, $srcval contains only numbers, avg() returns the average of the
numbers (computed as sum($srcval) div count($srcval)). If
$srcval is the empty sequence, the empty sequence is returned.

If, after extracting the values from nodes, $srcval does not contain only
numbers, the function returns the error value.

max

max(item* $srcval) => xs:anySimpleType?

If $srcval contains nodes, the value of each node is extracted using the
data() function. Values that equal the empty sequence are discarded. If,
after this, $srcval is the empty sequence, the empty sequence is returned.
After extracting the values from nodes, $srcval must contain only values
of a single type (for numeric values, the type promotion rules can be used to
promote them to a single type). Otherwise, the function returns the error
value.

max returns the item in the value of $srcval whose value is greater than
the value of every other item in the value of $srcval. If there are two or
more such items, then the specific item whose value is returned is
implementation-dependent.

 70

Part 6 Built-in XQuery Functions

min

min(item* $srcval) => xs:anySimpleType?

If $srcval contains nodes, the value of each node is extracted using the the
data() function. Values that equal the empty sequence are discarded. If,
after this, $srcval is the empty sequence, the empty sequence is returned.
After extracting the values from nodes, $srcval must contain only values
of a single type (for numeric values, the type promotion rules can be used to
promote them to a single type) Otherwise, the function returns the error
value.

min returns the item in the value of $srcval whose value is less than the
value of every other item in the value of $srcval. If there are two or more
such items, then the specific item whose value is returned is
implementation-dependent.

sum

sum(item* $srcval) => xs:double

If $srcval contains nodes, the value of each node is extracted using the
data() function. Values that equal the empty sequence are discarded. If,
after this, $srcval contains only numbers, xf:sum() returns the sum of the
numbers. If it is the empty sequence, 0.0 is returned.

If, after extracting the values from nodes, $srcval does not contain only
numbers, the function returns the error value.

Functions that Generate Sequences

Function Meaning

collection
Returns the collection (a sequence of document nodes)
retrieved using the string specified as its argument.

input Returns the input sequence.

collection

collection(xs:string $srcval) => node*

Takes a string as argument and returns the sequence of document nodes
generated from the corresponding relational table. $srcval should be the
name of an existing relational table (after applying to it the transformations
specified in the XQuark Bridge configuration file), prefixed by the relational
schema name, if several schemas are in use. The function returns the error
value if $srcval does not resolve to a valid table name.

 71

 Part 6 Built-in XQuery Functions

Note that collection() cannot be used by itself and must necessarily be
followed by a navigation expression (StepExpr or PathExpr). This
expression should always start with a step whose local name is equal to the
name of the table.

Examples:

• collection("ITEMS")/ITEMS returns the content of the ITEMS
table, as a sequence of ITEMS element nodes.

• collection("AUCTION.ITEMS")/ITEMS returns the content of the
ITEMS table located in the AUCTION relational schema, as a sequence
of ITEMS element nodes.

The above example assumes that the XML schema generated from the
AUCTION relational schema has no target namespace. Otherwise, the
query should be written:

namespace ns = "http://myauctionschema"
collection("AUCTION.ITEMS")/ns:ITEMS

input

input() => node*

Returns the input sequence, i.e. the union of all collections (i.e. wrapped
tables) available in the underlying relational database.

Note that input() cannot be used by itself and must necessarily be
followed by a navigation expression (StepExpr or PathExpr). This
expression selects the table to be accessed based on the name specified in
the first navigation step.

In XQuark Bridge, the input() function is implicit in outermost navigation
expressions.

Examples:

• input()/ITEMS returns the content of the ITEMS table, as a sequence
of ITEMS element nodes.

• namespace ns = "http://myauctionschema"
input()/ns:ITEMS
returns the content of theAUCTION.ITEMS table, as a sequence of
ns:ITEMS element nodes, assuming that the target namespace associated to
the AUCTION relation schema is "http://myauctionschema".

/ITEMS and /ns:ITEMS are respectively equivalent to the two previous
expressions.

 72

Part 6 Built-in XQuery Functions

Context Functions
The following function is defined to obtain information from the evaluation
context.

Function Meaning
current-dateTime Returns the current dateTime.

current-dateTime

current-dateTime() => xs:dateTime

Returns the xs:dateTime that is current at some time during the evaluation
of the XQuery expression in which current-dateTime() is executed. All
invocations of current-dateTime() that are executed during the course of
a single outermost XQuery expression return the same value. The precise
instant during that XQuery expression's evaluation represented by the value
of current-dateTime() is not defined.

 73

Index

Index
Configuration ... 2, 12, 13, 17, 18, 20,

21, 22, 25, 82, 87
Configuration

Renaming17, 20, 21, 22, 87
Selection 1, 2, 12, 17, 18, 19, 20,

21, 22, 25, 32, 82, 88
Data model 1, 2, 9, 10, 11, 26, 77

Atomic value...9, 10, 11, 29, 31,
33, 34, 35, 38, 43, 46, 47, 49,
52, 59, 63, 64, 65

Attribute2, 9, 10, 11, 19, 20, 21,
22, 26, 27, 32, 41, 42, 43, 44,
45, 52, 64, 65, 79, 87, 90

Complex type..9, 10, 11, 13, 32,
65

Element 3, 9, 10, 11, 12, 13, 16,
17, 19, 20, 21, 22, 25, 26, 27,
28, 30, 32, 34, 38, 39, 41, 42,
44, 45, 51, 52, 56, 64, 65, 79,
82, 83, 88, 90

Error .10, 11, 29, 33, 34, 37, 38,
39, 46, 47, 48, 49, 50, 59, 64,
65, 66, 67, 68, 76, 77, 78, 80,
81, 82

Item.2, 9, 10, 14, 30, 31, 35, 36,
37, 39, 43, 48, 49, 56, 58, 60,
61, 62, 64, 74, 77, 78, 80, 81

Node ... 9, 10, 11, 12, 25, 31, 32,
35, 38, 39, 40, 41, 42, 43, 44,
45, 49, 52, 53, 63, 64, 65, 75,
77, 78, 79, 80, 81, 82, 91

Sequence4, 9, 10, 11, 13, 16, 29,
31, 32, 35, 36, 38, 39, 40, 41,
43, 46, 47, 48, 49, 50, 52, 54,
55, 58, 59, 60, 63, 64, 65, 68,
69, 71, 72, 73, 74, 75, 77, 78,
79, 80, 81, 82, 83, 88

Simple type..4, 9, 10, 11, 13, 65,
77

Expression
Arithmetic20, 34, 37, 45, 50
Atomization 35

Comments...................38, 50, 53
Comparison47, 48, 79
Constructor..... 3, 26, 33, 34, 36,

51, 52, 53, 54, 61, 66, 67, 68,
69, 70, 75, 76

Error . 10, 11, 29, 33, 34, 35, 37,
38, 39, 42, 43, 46, 47, 48, 49,
50, 59, 64, 65, 66, 67, 68, 75,
76, 77, 78, 80, 81, 82

FLWR..........................53, 54, 55
Function call .. 30, 34, 35, 37, 38
Literal 33, 35, 36, 52, 66, 67, 69,

75
Logical10, 48, 49, 50, 54, 61,

74, 75
Quantified37, 60, 61
Sorting58
Typing....4, 9, 10, 11, 13, 32, 33,

34, 35, 38, 42, 46, 52, 59, 64,
65, 77

XPath 10, 30, 32, 38, 39, 40, 41,
42, 43, 44, 45

Expression
Context2, 29, 30, 31, 32, 37, 39,

40, 41, 42, 43, 44, 45, 58, 77,
83

Variable ...30, 31, 37, 40, 54, 55,
56, 60, 61

XPath..30
Function

Constructor..... 3, 26, 33, 34, 36,
51, 52, 53, 54, 61, 66, 67, 68,
69, 70, 75, 76

Current date and time .3, 31, 83
Input function

Collection..4, 10, 12, 32, 39, 40,
55, 56, 57, 59, 60, 61, 62, 78,
79, 81, 82, 90

Input sequence ... 31, 32, 38, 39,
40, 81, 82, 83, 90

Namespace declaration 25, 26
Default........................... 3, 27, 37

 75

 76

Appendix A – XML Schema for the XQuark Bridge configuration file

Appendix A – XML Schema for the XQuark
Bridge configuration file

<?xml version="1.0"?>
<schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ds="http://www.xquark.org/Bridge/1.0/Datasource"
 targetNamespace=
 " http://www.xquark.org/Bridge/1.0/Datasource ">

 <simpleType name="caseType">
 <restriction base="string">
 <enumeration value="mixed"/>
 <enumeration value="lower"/>
 <enumeration value="upper"/>
 </restriction>
 </simpleType>

 <simpleType name="elementFormType">
 <restriction base="string">
 <enumeration value="qualified"/>
 <enumeration value="unqualified"/>
 </restriction>
 </simpleType>

 <simpleType name="charType">
 <restriction base="string">
 <length value="1"/>
 </restriction>
 </simpleType>

 <simpleType name="substType">
 <restriction base="string">
 <pattern value="[\c-[:]]*" />
 </restriction>
 </simpleType>

 <complexType name="relationalStructType">
 <attribute name="regex" type="string" />
 <attribute name="name" type="string" />
 </complexType>

 <complexType name="aliasedRelationalStructType">
 <complexContent>
 <extension base="ds:relationalStructType">
 <attribute name="alias" type="NCName" />
 </extension>
 </complexContent>
 </complexType>

 <complexType name="excludedTableType">
 <complexContent>
 <extension base="ds:relationalStructType"/>

 77

 Appendix A – XML Schema for the XQuark Bridge configuration file

 </complexContent>
 </complexType>

 <complexType name="excludedColumnType">
 <complexContent>
 <extension base="ds:relationalStructType"/>
 </complexContent>
 </complexType>

 <complexType name="includedColumnType">
 <complexContent>
 <extension base="ds:aliasedRelationalStructType"/>
 </complexContent>
 </complexType>

 <complexType name="includedTableType">
 <complexContent>
 <extension base="ds:aliasedRelationalStructType">
 <sequence>
 <element name="includes" minOccurs="0">
 <complexType>
 <sequence>
 <element name="column" maxOccurs="unbounded"
 type="ds:includedColumnType" />
 </sequence>
 </complexType>
 </element>
 <element name="excludes" minOccurs="0">
 <complexType>
 <sequence>
 <element name="column" maxOccurs="unbounded"
 type="ds:excludedColumnType" />
 </sequence>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="datasource">
 <complexType>
 <sequence>
 <element name="description" minOccurs="0" type="string" />
 <element name="url" type="string" />
 <element name="user" type="string" />
 <element name="password" type="string"/>
 <element name="substitutions" minOccurs="0">
 <complexType>
 <sequence>
 <element name="nameCase" minOccurs="0"
 type="ds:caseType" />
 <element name="character" minOccurs="0"
 maxOccurs="unbounded">
 <complexType>
 <attribute name="value" type="ds:charType" />
 <attribute name="subst" type="ds:substType" />
 </complexType>

 78

Appendix A – XML Schema for the XQuark Bridge configuration file

 </element>
 </sequence>
 </complexType>
 </element>
 <element name="catalog" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="schema" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="includes" minOccurs="0">
 <complexType>
 <sequence>
 <element name="table"
 maxOccurs="unbounded"
 type="ds:includedTableType" />
 </sequence>
 </complexType>
 </element>
 <element name="excludes" minOccurs="0">
 <complexType>
 <sequence>
 <element name="table"
 maxOccurs="unbounded"
 type="ds:excludedTableType" />
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="string"
 use="optional" />
 <attribute name="targetNamespace" type="anyURI"
 use="optional" />
 <attribute name="elementFormDefault"
 type="ds:elementFormType"
 use="optional" />
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="string" use="optional" />
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="string"/>
 </complexType>
 </element>
</schema>

 79

Appendix B – Complete BNF Grammar

Appendix B – Complete BNF Grammar

Query ::= QueryProlog Expr

QueryProlog ::= (NamespaceDecl
| DefaultNamespaceDecl)*

NamespaceDecl ::= "namespace" NCName "=" StringLiteral

DefaultNamespaceDecl ::= "default element namespace ="
StringLiteral

Expr ::= PrimaryExpr
| CommentExpr
| PathExpr
| AdditiveExpr
| Constructor
| FLWRExpr
| SortExpr

PrimaryExpr ::= Literal
| FunctionCall
| Variable
| ParenthesizedExpr

Literal ::= NumericLiteral | StringLiteral

NumericLiteral ::= IntegerLiteral
| DecimalLiteral
| DoubleLiteral

IntegerLiteral ::= [0-9]+

DecimalLiteral ::= ("." [0-9]+) | ([0-9]+ "." [0-9]*)

DoubleLiteral ::= (("." [0-9]+)
 | ([0-9]+ ("." [0-9]*)?))
([e] | [E]) ([+] | [-])? [0-9]+

StringLiteral ::= (["] ([^"])* ["])
| (['] ([^'])* ['])

Variable ::= "$" NCName

ParenthesizedExpr ::= "(" Expr ")"

FunctionCall ::= QName "(" (Expr ("," Expr)*)? ")"

ExprComment ::= "{--" [^}]* "--}"

PathExpr ::= (PathExprRoot | StepExpr | PathExpr)?
"/" StepExpr

PathExprRoot ::= InputExpr | Variable

InputExpr ::= "collection(" StringLiteral ")"
| "input()"

StepExpr ::= Step Predicates

Step ::= (Axis NodeTest) | AbbreviatedStep

Axis ::= "child" "::"
| "attribute" "::"
| "self" "::"

NodeTest ::= KindTest | NameTest

 80

Appendix B – Complete BNF Grammar

NameTest ::= QName

KindTest ::= "text" "(" ")"
"node" "(" ")"

Predicates ::= ("[" OrExpr "]")*

AbbreviatedStep ::= "." | (@ NameTest) | NodeTest

AdditiveExpr ::= (AdditiveExpr ("+" | "-"))?
MultiplicativeExpr

MultiplicativeExpr ::= (MultiplicativeExpr
 ("*" | "div" | "mod"))?
UnaryExpr

UnaryExpr ::= ("-" | "+")?
(PrimaryExpr
 | PathExpr
 | StepExpr)

CompExpr ::= AdditiveExpr
("=" | "!=" | "<" S | "<=" | ">" | ">=")
AdditiveExpr

OrExpr ::= (OrExpr "or")? AndExpr

AndExpr ::= (AndExpr "and")? BoolExpr

BoolExpr ::= CompExpr
| PrimaryExpr
| PathExpr
| StepExpr
| QuantifiedExpr

Constructor ::= ElementConstructor
| XmlComment
| XmlProcessingInstruction
| CdataSection

ElementConstructor ::= "<" QName AttributeList
("/>" | (">" ElementContent*
"</" QName ">"))

ElementContent ::= Char
| "{{"
| "}}"
| ElementConstructor
| EnclosedExpr
| CdataSection
| CharRef
| PredefinedEntityRef
| XmlComment
| XmlProcessingInstruction

AttributeList ::= (QName "=" AttributeValue)*

AttributeValue ::= (["]
 ("'" | AttrValueContent)*
 ["])
|([']
 (""" | AttrValueContent)*
 ['])

AttrValueContent ::= Char
| CharRef
| "{{"

 81

 Appendix B – Complete BNF Grammar

| "}}"
| EnclosedExpr
| PredefinedEntityRef

EnclosedExpr ::= "{" Expr "}"

Char ::= [#x0009] | [#x000D]
| [#x000A] | [#x0020-#xFFFD])

CharRef ::= "&#" ([0-9]+
| ("x"([0-9] | [a-f]
 | [A-F])+)) ";"

PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp"
| "quot" | "apos") ";"

CdataSection ::= "<![CDATA[" Char* "]]>"

XmlProcessingInstruction ::= "<?" NCName Char* "?>"

XmlComment ::= "<!--" Char* "-->"

FLWRExpr ::= (ForClause | LetClause)+
WhereClause? "return" Expr

ForClause ::= "for" Variable "in" Expr
("," Variable "in" Expr)*

LetClause ::= "let" Variable ":=" Expr
("," Variable ":=" Expr)*

WhereClause ::= "where" OrExpr

SortExpr ::= (PathExpr | FLWRExpr)
"sortby" "(" SortSpecList ")"

SortSpecList ::= (PathExpr | StepExpr) SortModifier
("," SortSpecList)?

SortModifier ::= ("ascending" | "descending")?

QuantifiedExpr ::= ("some" | "every")
Variable "in" Expr
("," Variable "in" Expr)*
"satisfies" OrExpr

NCName ::= (Letter | '_') (NCNameChar)*

QName ::= (NCName ":")? NCName

NCNameChar ::= Letter | Digit | '.' | '-' | '_'
| CombiningChar | Extender

Letter ::= BaseChar | Ideographic

BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A]
| [#x00C0-#x00D6] | [#x00D8-#x00F6]
| [#x00F8-#x00FF] | [#x0100-#x0131]
| [#x0134-#x013E] | [#x0141-#x0148]
| [#x014A-#x017E] | [#x0180-#x01C3]
| [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8]
| [#x02BB-#x02C1] | #x0386 | [#x0388-
#x038A] | #x038C | [#x038E-#x03A1]
| [#x03A3-#x03CE] | [#x03D0-#x03D6]
| #x03DA | #x03DC | #x03DE | #x03E0
| [#x03E2-#x03F3] | [#x0401-#x040C]
| [#x040E-#x044F] | [#x0451-#x045C]
| [#x045E-#x0481] | [#x0490-#x04C4]
| [#x04C7-#x04C8] | [#x04CB-#x04CC]

 82

Appendix B – Complete BNF Grammar

| [#x04D0-#x04EB] | [#x04EE-#x04F5]
| [#x04F8-#x04F9] | [#x0531-#x0556]
| #x0559 | [#x0561-#x0586] | [#x05D0-
#x05EA] | [#x05F0-#x05F2] | [#x0621-
#x063A] | [#x0641-#x064A] | [#x0671-
#x06B7] | [#x06BA-#x06BE] | [#x06C0-
#x06CE] | [#x06D0-#x06D3] | #x06D5
| [#x06E5-#x06E6] | [#x0905-#x0939]
| #x093D | [#x0958-#x0961] | [#x0985-
#x098C] | [#x098F-#x0990] | [#x0993-
#x09A8] | [#x09AA-#x09B0] | #x09B2
| [#x09B6-#x09B9] | [#x09DC-#x09DD]
| [#x09DF-#x09E1] | [#x09F0-#x09F1]
| [#x0A05-#x0A0A] | [#x0A0F-#x0A10]
| [#x0A13-#x0A28] | [#x0A2A-#x0A30]
| [#x0A32-#x0A33] | [#x0A35-#x0A36]
| [#x0A38-#x0A39] | [#x0A59-#x0A5C]
| #x0A5E | [#x0A72-#x0A74] | [#x0A85-
#x0A8B] | #x0A8D | [#x0A8F-#x0A91]
| [#x0A93-#x0AA8] | [#x0AAA-#x0AB0]
| [#x0AB2-#x0AB3] | [#x0AB5-#x0AB9]
| #x0ABD | #x0AE0 | [#x0B05-#x0B0C]
| [#x0B0F-#x0B10] | [#x0B13-#x0B28]
| [#x0B2A-#x0B30] | [#x0B32-#x0B33]
| [#x0B36-#x0B39] | #x0B3D | [#x0B5C-
#x0B5D] | [#x0B5F-#x0B61] | [#x0B85-
#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-
#x0B95] | [#x0B99-#x0B9A] | #x0B9C
| [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4]
| [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5]
| [#x0BB7-#x0BB9] | [#x0C05-#x0C0C]
| [#x0C0E-#x0C10] | [#x0C12-#x0C28]
| [#x0C2A-#x0C33] | [#x0C35-#x0C39]
| [#x0C60-#x0C61] | [#x0C85-#x0C8C]
| [#x0C8E-#x0C90] | [#x0C92-#x0CA8]
| [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9]
| #x0CDE | [#x0CE0-#x0CE1] | [#x0D05-
#x0D0C] | [#x0D0E-#x0D10] | [#x0D12-
#x0D28] | [#x0D2A-#x0D39] | [#x0D60-
#x0D61] | [#x0E01-#x0E2E] | #x0E30
| [#x0E32-#x0E33] | [#x0E40-#x0E45]
| [#x0E81-#x0E82] | #x0E84 | [#x0E87-
#x0E88] | #x0E8A | #x0E8D | [#x0E94-
#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-
#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-
#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0
| [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-
#x0EC4] | [#x0F40-#x0F47] | [#x0F49-
#x0F69] | [#x10A0-#x10C5] | [#x10D0-
#x10F6] | #x1100 | [#x1102-#x1103]
| [#x1105-#x1107] | #x1109 | [#x110B-
#x110C] | [#x110E-#x1112] | #x113C
| #x113E | #x1140 | #x114C | #x114E
| #x1150 | [#x1154-#x1155] | #x1159
| [#x115F-#x1161] | #x1163 | #x1165
| #x1167 | #x1169 | [#x116D-#x116E]
| [#x1172-#x1173] | #x1175 | #x119E

 83

 Appendix B – Complete BNF Grammar

| #x11A8 | #x11AB | [#x11AE-#x11AF]
| [#x11B7-#x11B8] | #x11BA | [#x11BC-
#x11C2] | #x11EB | #x11F0 | #x11F9
| [#x1E00-#x1E9B] | [#x1EA0-#x1EF9]
| [#x1F00-#x1F15] | [#x1F18-#x1F1D]
| [#x1F20-#x1F45] | [#x1F48-#x1F4D]
| [#x1F50-#x1F57] | #x1F59 | #x1F5B
| #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-
#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE
| [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC]
| [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB]
| [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4]
| [#x1FF6-#x1FFC] | #x2126 | [#x212A-
#x212B] | #x212E | [#x2180-#x2182]
| [#x3041-#x3094] | [#x30A1-#x30FA]
| [#x3105-#x312C] | [#xAC00-#xD7A3]

Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-
#x3029]

CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361]
| [#x0483-#x0486] | [#x0591-#x05A1]
| [#x05A3-#x05B9] | [#x05BB-#x05BD]
| #x05BF | [#x05C1-#x05C2] | #x05C4
| [#x064B-#x0652] | #x0670 | [#x06D6-
#x06DC] | [#x06DD-#x06DF] | [#x06E0-
#x06E4] | [#x06E7-#x06E8] | [#x06EA-
#x06ED] | [#x0901-#x0903] | #x093C
| [#x093E-#x094C] | #x094D | [#x0951-
#x0954] | [#x0962-#x0963] | [#x0981-
#x0983] | #x09BC | #x09BE | #x09BF
| [#x09C0-#x09C4] | [#x09C7-#x09C8]
| [#x09CB-#x09CD] | #x09D7 | [#x09E2-
#x09E3] | #x0A02 | #x0A3C | #x0A3E
| #x0A3F | [#x0A40-#x0A42] | [#x0A47-
#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-
#x0A71] | [#x0A81-#x0A83] | #x0ABC
| [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03]
| #x0B3C | [#x0B3E-#x0B43] | [#x0B47-
#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-
#x0B57] | [#x0B82-#x0B83] | [#x0BBE-
#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-
#x0BCD] | #x0BD7 | [#x0C01-#x0C03]
| [#x0C3E-#x0C44] | [#x0C46-#x0C48]
| [#x0C4A-#x0C4D] | [#x0C55-#x0C56]
| [#x0C82-#x0C83] | [#x0CBE-#x0CC4]
| [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD]
| [#x0CD5-#x0CD6] | [#x0D02-#x0D03]
| [#x0D3E-#x0D43] | [#x0D46-#x0D48]
| [#x0D4A-#x0D4D] | #x0D57 | #x0E31
| [#x0E34-#x0E3A] | [#x0E47-#x0E4E]
| #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-
#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-
#x0F19] | #x0F35 | #x0F37 | #x0F39
| #x0F3E | #x0F3F | [#x0F71-#x0F84]
| [#x0F86-#x0F8B] | [#x0F90-#x0F95]
| #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-
#x0FB7] | #x0FB9 | [#x20D0-#x20DC]

 84

Appendix B – Complete BNF Grammar

| #x20E1 | [#x302A-#x302F] | #x3099
| #x309A

CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361]
| [#x0483-#x0486] | [#x0591-#x05A1]
| [#x05A3-#x05B9] | [#x05BB-#x05BD]
| #x05BF | [#x05C1-#x05C2] | #x05C4
| [#x064B-#x0652] | #x0670 | [#x06D6-
#x06DC] | [#x06DD-#x06DF] | [#x06E0-
#x06E4] | [#x06E7-#x06E8] | [#x06EA-
#x06ED] | [#x0901-#x0903] | #x093C
| [#x093E-#x094C] | #x094D | [#x0951-
#x0954] | [#x0962-#x0963] | [#x0981-
#x0983] | #x09BC | #x09BE | #x09BF
| [#x09C0-#x09C4] | [#x09C7-#x09C8]
| [#x09CB-#x09CD] | #x09D7 | [#x09E2-
#x09E3] | #x0A02 | #x0A3C | #x0A3E
| #x0A3F | [#x0A40-#x0A42] | [#x0A47-
#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-
#x0A71] | [#x0A81-#x0A83] | #x0ABC
| [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03]
| #x0B3C | [#x0B3E-#x0B43] | [#x0B47-
#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-
#x0B57] | [#x0B82-#x0B83] | [#x0BBE-
#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-
#x0BCD] | #x0BD7 | [#x0C01-#x0C03]
| [#x0C3E-#x0C44] | [#x0C46-#x0C48]
| [#x0C4A-#x0C4D] | [#x0C55-#x0C56]
| [#x0C82-#x0C83] | [#x0CBE-#x0CC4]
| [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD]
| [#x0CD5-#x0CD6] | [#x0D02-#x0D03]
| [#x0D3E-#x0D43] | [#x0D46-#x0D48]
| [#x0D4A-#x0D4D] | #x0D57 | #x0E31
| [#x0E34-#x0E3A] | [#x0E47-#x0E4E]
| #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-
#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-
#x0F19] | #x0F35 | #x0F37 | #x0F39
| #x0F3E | #x0F3F | [#x0F71-#x0F84]
| [#x0F86-#x0F8B] | [#x0F90-#x0F95]
| #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-
#x0FB7] | #x0FB9 | [#x20D0-#x20DC]
| #x20E1 | [#x302A-#x302F] | #x3099
| #x309A

Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387
| #x0640 | #x0E46 | #x0EC6 | #x3005
| [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE]

 85

Appendix C – XQuery 1.0: An XML Query Language

Appendix C – XQuery 1.0: An XML Query
Language
W3C Working Draft 30 April 2002

This version:
http://www.w3.org/TR/2002/WD-xquery-20020430

Latest version:
http://www.w3.org/TR/xquery

Previous versions:
http://www.w3.org/TR/2001/WD-xquery-20011220 http://www.w3.org/TR/2001/WD-
xquery-20010607

Editors:
Scott Boag (XSL WG), IBM Research <scott_boag@us.ibm.com>
Don Chamberlin (XML Query WG), IBM Almaden Research Center
<chamberlin@almaden.ibm.com>
Mary F. Fernandez (XML Query WG), AT&T Labs <mff@research.att.com>
Daniela Florescu (XML Query WG), XQRL <dana@xqrl.com>
Jonathan Robie (XML Query WG), Invited Expert <jonathan.robie@datadirect-
technologies.com>
Jérôme Siméon (XML Query WG), Bell Labs, Lucent Technologies <simeon@research.bell-
labs.com>
Mugur Stefanescu (XML Query WG), Concentric Visions
<MStefanescu@Concentricvisions.com>
Copyright © 2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use, and software licensing rules apply.

Abstract

XML is a versatile markup language, capable of labeling the information content of diverse data
sources including structured and semi-structured documents, relational databases, and object
repositories. A query language that uses the structure of XML intelligently can express queries
across all these kinds of data, whether physically stored in XML or viewed as XML via
middleware. This specification describes a query language called XQuery, which is designed to be
broadly applicable across many types of XML data sources.

Status of this Document

This is a public W3C Working Draft for review by W3C Members and other interested parties.
This section describes the status of this document at the time of its publication. It is a draft
document and may be updated, replaced, or made obsolete by other documents at any time. It is
inappropriate to use W3C Working Drafts as reference material or to cite them as other than

 86

http://www.w3.org/TR/2002/WD-xquery-20020430
http://www.w3.org/TR/xquery
http://www.w3.org/TR/2001/WD-xquery-20011220
http://www.w3.org/TR/2001/WD-xquery-20010607
http://www.w3.org/TR/2001/WD-xquery-20010607
mailto: scott_boag@us.ibm.com
mailto: chamberlin@almaden.ibm.com
mailto: mff@research.att.com
mailto:dana@xqrl.com
mailto:jonathan.robie@datadirect-technologies.com
mailto:jonathan.robie@datadirect-technologies.com
mailto: simeon@research.bell-labs.com
mailto: simeon@research.bell-labs.com
mailto: MStefanescu@Concentricvisions.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612
http://www.w3.org/Consortium/Legal/ipr-notice-20000612
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Appendix C – XQuery 1.0: An XML Query Language

 87

"work in progress." A list of current public W3C technical reports can be found at
http://www.w3.org/TR/.

Much of this document is the result of joint work by the XML Query and XSL Working Groups,
which are jointly responsible for XPath 2.0, a language derived from both XPath 1.0 and
XQuery. The XPath 2.0 and XQuery 1.0 Working Drafts are generated from a common source.
These languages are closely related, sharing much of the same expression syntax and semantics,
and much of the text found in the two Working Drafts is identical.

This version of the document contains new details about the type system of XQuery, including a
syntax for declaring types in function signatures and other expressions. It describes the semantics
of several expressions that operate on types, including treat, assert, and validate
expressions. It also describes in greater detail the semantics of element and attribute constructors
and how they operate on the underlying data model.

This document is a work in progress. It contains many open issues, and should not be considered
to be fully stable. Vendors who wish to create preview implementations based on this document
do so at their own risk. While this document reflects the general consensus of the working
groups, there are still controversial areas that may be subject to change.

Public comments on this document and its open issues are welcome. Of particular interest are
comments on error handling (see issues 97 and 98.) Comments should be sent to the W3C
XPath/XQuery mailing list, public-qt-comments@w3.org (archived at
http://lists.w3.org/Archives/Public/public-qt-comments/).

XQuery 1.0 has been defined jointly by the XML Query Working Group (part of the XML
Activity) and the XSL Working Group (part of the Style Activity).

http://www.w3.org/TR/
mailto:public-qt-comments@w3.org
http://lists.w3.org/Archives/Public/public-qt-comments/
http://www.w3.org/XML/Query
http://www.w3.org/XML/Activity.html
http://www.w3.org/XML/Activity.html
http://www.w3.org/Style/XSL/
http://www.w3.org/Style/

	XQuery Reference Guide
	Table of contents
	Abstract
	Introduction
	Overview
	Notations and conventions
	References

	XQuery Data Model for XQuark Bridge
	The standard XQuery data model
	Typing in the standard XQuery data model
	The XQuark Bridge data model
	Generated schema components
	Example

	Controlling the XML view generation
	Selecting and filtering relational structures
	Using aliases to rename relational structures

	The XQuery Prolog
	XQuery Expressions
	Basics
	Expression Context
	Static Context
	Evaluation Context
	Input Functions

	Expression Typing
	Type Checking
	Type Conversions

	Primary Expressions
	Literals
	Variables
	Parenthesized Expressions
	Function Calls

	Comments
	Path Expressions
	Steps
	Axes
	Node Tests

	Predicates
	Unabbreviated Syntax
	Abbreviated Syntax

	Arithmetic Expressions
	Comparison Expressions
	Logical Expressions
	Constructors
	Element Constructors
	Other Constructors and Comments

	FLWR Expressions
	Sorting Expressions
	Quantified Expressions

	Built-in XQuery Functions
	Accessors
	string
	data

	Constructors and Functions on Numbers
	Numeric Types
	Numeric Constructors
	decimal
	integer
	double

	Functions on Numeric Values
	floor
	ceiling
	round
	abs

	Constructors and Functions on Strings
	String Constructor
	string

	Functions on String Values
	concat
	starts-with
	ends-with
	contains
	substring
	string-length
	upper-case
	lower-case

	Constructors and Functions on Booleans
	Boolean Constructors
	true
	false

	Functions on Boolean Values
	not

	Constructors and Functions on Dates and Times
	Date and Time Types
	Date and Time Constructors
	dateTime
	date
	time

	Functions on Nodes
	Functions on Nodes
	number

	Functions on Sequences
	Functions on Sequences
	empty
	exists
	distinct-values

	Aggregate Functions
	count
	avg
	max
	min
	sum

	Functions that Generate Sequences
	collection
	input

	Context Functions
	
	current-dateTime

	Index
	Appendix A – XML Schema for the XQuark Bridge con
	Appendix B – Complete BNF Grammar
	Appendix C – XQuery 1.0: An XML Query Language

