
XQuark Bridge 1.0

API Tutorial

XQUARK BRIDGE 1.0

API TUTORIAL

Document version 1.0

Copyright 2003 Université de Versailles Saint-Quentin.
Copyright 2003 XQuark Group.

All rights reserved.

All Trademarks are owned by their respective owners and are subject to Copyright laws.

 iii

Table of contents

Table of contents

ABSTRACT 1

INTRODUCTION 3
OVERVIEW 3

XML DATA 5

RELATIONAL SCHEMA 7

MAPPING 9

INSERTION OF DOCUMENTS 11

CONSTRUCTING XML DOCUMENTS VIA A QUERY 13

APPENDIX A - EXAMPLE 1 17

APPENDIX B - EXAMPLE 2 19

 v

Part 1 Abstract Part

 1

Abstract
This document is an introduction to the XQuark Bridge API, called
XML/DBC.

 1

Part 2 Introduction Part

 2

Introduction

Overview
This tutorial describes in detail a single complete example of the use of
XQuark Bridge. The intended audience is a programmer that is learning the
API for the product. A simple auction provides a scenario that consists of
users, items and bids of users on items. The product provides a powerful
mechanism to map XML data into a relational database and extract XML
from a relational database.

As the tutorial shows, only a few lines of code are required to perform these
operations where as a “hard-coded” implementation would require
hundreds of lines of code. In addition, since XQuark Bridge provides a
mapping file, modifications to the schema are now independent of
modifications to the XML. The remainder of this tutorial describes the
XML data, the relational schema, the mapping file, and example code for
insertion of documents and generation of XML from the schema.

 3

Part 3 XML Data Part

 3

XML Data
The current state of the auction is expressed as an XML file. The file
consists of five pieces: the header, the list of users, the list of items, the bids
on items by users, and the close of the record. For simplicity we do not
show all the items, users and bids that are subsequently used in this tutorial.

The heading announces the XML version, the character set encoding, the
namespace used, and the location of the schema. The parser automatically
uses the schema location to parse the XML. For simplicity we skip the
presentation of the schema.

<?xml version="1.0" encoding="iso-8859-1"?>
<AUCTION
 xmlns="http://www.xquark.org/Auction"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

xsi:schemaLocation="http://www.xquark.org/Auction
 auction.xsd">

A unique identifier, a string name and a rating (a measure of the trust that
can be placed in this user to deliver on a promised bid) describe a user.

 <USERS>
 <USERID>U01</USERID>
 <NAME>Tom Jones</NAME>
 <RATING>B</RATING>
 </USERS>
 <USERS>
 <USERID>U02</USERID>
 <NAME>Mary Doe</NAME>
 <RATING>A</RATING>
 </USERS>

Items are a little more complex. A unique identifier, a description, the user
identifier of the user that offered the item for auction, the start and end date
of the auction and the reserved price (the minimum price that wins at the
auction) describe an item.

 <ITEMS>
 <ITEMNO>1001</ITEMNO>
 <DESCRIPTION>Red Bicycle</DESCRIPTION>
 <OFFERED_BY>U01</OFFERED_BY>
 <START_DATE>
 2002-03-05T00:00:00

 5

 Part 3 XML Data

 </START_DATE>
 <END_DATE>2002-03-20T00:00:00</END_DATE>
 <RESERVE_PRICE>40</RESERVE_PRICE>
 </ITEMS>
 <ITEMS>
 <ITEMNO>1002</ITEMNO>
 <DESCRIPTION>Motorcycle</DESCRIPTION>
 <OFFERED_BY>U02</OFFERED_BY>
 <START_DATE>
 2002-04-11T00:00:00
 </START_DATE>
 <END_DATE>2002-05-15T00:00:00</END_DATE>
 <RESERVE_PRICE>500</RESERVE_PRICE>
 </ITEMS>

Each user makes a bid on a particular item at a particular time. For
simplicity we simply consider bids in terms of units without any cash
equivalent.

 <BIDS>
 <USERID>U01</USERID>
 <ITEMNO>1002</ITEMNO>
 <BID>400</BID>
 <BID_DATE>2002-04-14T00:00:00</BID_DATE>
 </BIDS>
 <BIDS>
 <USERID>U02</USERID>
 <ITEMNO>1001</ITEMNO>
 <BID>35</BID>
 <BID_DATE>2002-03-07T00:00:00</BID_DATE>
 </BIDS>
 <BIDS>
 <USERID>U02</USERID>
 <ITEMNO>1001</ITEMNO>
 <BID>45</BID>
 <BID_DATE>2002-03-11T00:00:00</BID_DATE>
 </BIDS>

Finally, providing the matching element to the opening element closes the
XML document.

</AUCTION>

 6

Part 4 Relational Schema Part

 4

Relational Schema
In order to map an XML document into a relational schema, we first need a
target schema. In this tutorial we describe a simple schema that permits an
almost one-to-one mapping between the XML and the schema, as described
in the next section.

The schema consists of three tables, a USER table, an ITEMS table and a
BID table. The SQL to generate these tables is straightforward.

DROP TABLE BIDS;
DROP TABLE ITEMS;
DROP TABLE USERS;

CREATE TABLE USERS (
 USERID CHAR(3) PRIMARY KEY,
 NAME VARCHAR(20) UNIQUE,
 RATING CHAR(1)
);
CREATE TABLE ITEMS (
 ITEMNO CHAR(4) PRIMARY KEY,
 DESCRIPTION VARCHAR(30),
 OFFERED_BY CHAR(3) NOT NULL,
 START_DATE DATE,
 END_DATE DATE,
 RESERVE_PRICE NUMBER(10)
);
CREATE TABLE BIDS (
 USERID CHAR(3) NOT NULL,
 ITEMNO CHAR(4) NOT NULL,
 BID NUMBER(10) NOT NULL,
 BID_DATE DATE
);

 7

Part 5 Mapping Part

 5

Mapping
Next, the XML document is mapped to the schema. In this case, an almost
one-to-one mapping is provided. The mapping consists of the heading, the
mapping for the entire auction record, the mapping for each child element
of the auction record, and the closing of the mapping.

Since the mapping is an XML document itself, it has a typical heading that
declares the XML version. Then the namespaces and XML schema location
are declared. The mapping loader uses this information to locate the XML
schema to interpret the mapping.

<?xml version="1.0"?>
<xrm:mapping
 xmlns:xrm=
 "http://www.xquark.org/Bridge/1.0/Mapping"
 xmlns:a="http://www.xquark.org/Auction"
 schemaLocation=
 "http://www.xquark.org/Auction auction.xsd">

Next the mapping declares the mapping of the AUCTION element of the
XML document. The mapping of the auction element consists of the
mapping of its child elements described below.

 <xrm:element name="a:AUCTION">

The USERS child element of AUCTION is mapped to the USERS table in the
schema. In addition, the USERID child element is mapped to the USERID
column of the USERS table; similarly for the NAME and RATING child
elements. This key “twist” is the extraction of the inner most XML elements
for each type of data and mapping them to columns in the relational table.

 <xrm:element name="a:USERS">
 <xrm:map table="USERS">
 <xrm:element name="a:USERID"
 column="USERS.USERID"/>
 <xrm:element name="a:NAME"
 column="USERS.NAME"/>
 <xrm:element name="a:RATING"
 column="USERS.RATING"/>
 </xrm:map>
 </xrm:element>

The same key twist is used for the ITEMS and BIDS elements, mapping them
to the corresponding relational tables.

 9

 Part 5 Mapping

 <xrm:element name="a:ITEMS">
 <xrm:map table="ITEMS">
 <xrm:element name="a:ITEMNO"
 column="ITEMS.ITEMNO"/>
 <xrm:element name="a:DESCRIPTION"
 column="ITEMS.DESCRIPTION"/>
 <xrm:element name="a:OFFERED_BY"
 column="ITEMS.OFFERED_BY"/>
 <xrm:element name="a:START_DATE"
 column="ITEMS.START_DATE"/>
 <xrm:element name="a:END_DATE"
 column="ITEMS.END_DATE"/>
 <xrm:element name="a:RESERVE_PRICE"
 column="ITEMS.RESERVE_PRICE"/>
 </xrm:map>
 </xrm:element>
 <xrm:element name="a:BIDS">
 <xrm:map table="BIDS">
 <xrm:element name="a:USERID"
 column="BIDS.USERID"/>
 <xrm:element name="a:ITEMNO"
 column="BIDS.ITEMNO"/>
 <xrm:element name="a:BID"
 column="BIDS.BID"/>
 <xrm:element name="a:BID_DATE"
 column="BIDS.BID_DATE"/>
 </xrm:map>
 </xrm:element>
 </xrm:element>
</xrm:mapping>

 10

Part 6 Insertion of Documents Part

 6

Insertion of Documents
Now that the set-up is complete, insertion of a document is straightforward
with XQuark Bridge. In this section, code fragments will be described, but
the complete code for this example is available in Appendix 1. (Note that in
the appendix, only 8 lines of code are critical, the remaining code is
declarations, set-up and error handling.) The coding required to do insertion
consists of three parts, the initialization of an XQBridge object, the
construction of a Mapper and the mapping of a document.

XQBridge setup uses JDBC connectivity to access a database.

Class.forName("oracle.jdbc.driver.OracleDriver");
Connection jdbc = DriverManager.getConnection(
 "jdbc:oracle:thin:@localhost:1521:oracle",
 "demo","demo");
XQBridge bridge = new XQBridge(jdbc);

The bridge XQBridge object provides the interface to the XQuark Bridge
product. Next a Mapper is constructed. This object permits the caching of
the initialization of mapping, giving very high performance for multiple
insertions of documents. Loading a mapping and then requesting a mapper
constructs a Mapper.

InputSource map = new InputSource("auction.map");
Mapping mapping = bridge.getMapping(map);
Mapper mapper = mapping.getMapper();

Finally, the insertion of a document is accomplished with a single line of
code.

mapper.insertDocument(new
InputSource("auction.xml"));

The result of this insertion is a batch transaction on the relational database.
The transaction consists of the table rows (tuples) constructed from the
mapping file.

 11

Part 7 Constructing XML Documents via a Query Part

 7

Constructing XML Documents via a
Query
XQuark Bridge provides an implementation of XQuery. The schema of the
relational database defines the data model for XQuery expressions. Each
relation is defined as a collection. Each row is an element and each value is
a leaf of the element. For example, a row of the ITEMS relation as follows

USERID NAME RATING
U01 Tom Jones B

Corresponds to the “virtual” XML fragment

<ITEMS>
 <ITEMS>
 <USERID>U01</USERID>
 <NAME>Tom Jones</NAME>
 <RATING>B</RATING>
 </ITEMS>
</ITEMS>

Note that this XML fragment is not the same as the input XML document.
In fact, the relationship between the two is defined purely by the mapping
document. The XQuery data model does not have any knowledge of the
mapping. In particular, the AUCTION element no longer exists and is not
recorded at all in the relational database.

For many applications, these data model semantics are required. For other
applications, the data model of the documents loaded is required as the data
model for XQuery expressions.

Appendix 2 lists a complete Java program that queries the database using
XQuery. To issue an XQuery, four steps are involved. The first step
connects to the database and sets up the XQBridge object. The second step
obtains a statement object. The third step issues a query and the fourth step
iterates over the result. The first step, connection to the database, is identical
to the mapping example, and we skip it.

The second step obtains a connect object in a manner similar to JDBC.

XMLConnection xc = bridge.getXMLConnection();
XMLStatement xs = xc.createStatement();

 13

 Constructing XML Documents via a Query

The third step issues an XQuery. Here we show a relatively simple XQuery
expression that computes the highest bid for bicycles. (Some formatting has
been added for legibility.) The XQuery uses a FLWR expression and
computes an aggregate for each item in the collection. The aggregate is
reported in the result expression. The boolean result is true if the query
generated a result.

boolean result = xs.execute(
"{-- For all bicycles, list the item number,
 description, and highest bid
 (if any), ordered by item number. --}
<result>
 { for $i in collection(\"ITEMS\")/ITEMS
 let $b :=
 collection(\"BIDS\")/BIDS[ITEMNO =
$i/ITEMNO]
 where contains($i/DESCRIPTION, \"Bicycle\")
 return
 <item>
 { $i/ITEMNO }
 { $i/DESCRIPTION }
 <high_bid>{ max($b/BID) }</high_bid>
 </item>
 sortby(ITEMNO)
 }
</result> ");

Finally, iteration over the result set of the query produces the XML result
generated by the XQuery. In this example, there is only a single result, as the
query starts with an enclosing result tag.

if (result) {
 XMLResultSet xrs = xs.getResultSet();
 for (;xrs.hasNext();) {
 String result = xrs.nextAsString();
 System.out.println(result);
 }
}

The XML document produced by this query for the entire data set is the
following:

<result>
 <item>
 <ITEMNO>1001</ITEMNO>
 <DESCRIPTION>Red Bicycle</DESCRIPTION>
 <high_bid>55</high_bid>
 </item>
 <item>
 <ITEMNO>1003</ITEMNO>
 <DESCRIPTION>Old Bicycle</DESCRIPTION>
 <high_bid>20</high_bid>
 </item>
 <item>
 <ITEMNO>1007</ITEMNO>
 <DESCRIPTION>Racing Bicycle</DESCRIPTION>

 14

Part 7 Constructing XML Documents via a Query

 <high_bid>225</high_bid>
 </item>
 <item>
 <ITEMNO>1008</ITEMNO>
 <DESCRIPTION>Broken Bicycle</DESCRIPTION>
 <high_bid/>
 </item>
</result>

 15

Appendix A - Example 1

Appendix A - Example 1
import org.xquark.xml.xdbc.*;
import org.xquark.bridge.*;
import oracle.jdbc.driver.*;
import java.sql.*;
import org.xml.sax.*;
import org.w3c.dom.*;

public class Four {
 public static void main(String args[]) {
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection jdbc = DriverManager.getConnection(
 "jdbc:oracle:thin:@localhost:1521:oracle","demo","demo");
 XQBridge bridge = new XQBridge(jdbc);

 InputSource source = new InputSource("auction.map");
 Mapping mapping = bridge.getMapping(source);
 Mapper mapper = mapping.getMapper();
 mapper.insertDocument(new InputSource("auction.xml"));
 } catch (Exception e) {
 e.printStackTrace();
 }
 System.out.println("done");
 }
}

 17

Appendix B - Example 2

Appendix B - Example 2
import org.xquark.xml.xdbc.*;
import org.xquark.bridge.*;
import oracle.jdbc.driver.*;
import java.sql.*;
import org.xml.sax.*;
import org.w3c.dom.*;
import java.io.*;
import javax.xml.parsers.*;

public class Eight {
 public static void main(String args[]) {
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection jdbc = DriverManager.getConnection(
 "jdbc:oracle:thin:@localhost:1521:oracle","demo","demo");
 XQBridge bridge = new XQBridge(jdbc);

 XMLConnection xc = bridge.getXMLConnection();
 XMLStatement xs = xc.createStatement();
 boolean result = xs.execute(
 "{-- For all bicycles, list the item number,
 description, and highest bid
 (if any), ordered by item number. --}
 <result>
 { for $i in collection(\"ITEMS\")/ITEMS
 let $b :=
 collection(\"BIDS\")/BIDS[ITEMNO = $i/ITEMNO]
 where contains($i/DESCRIPTION, \"Bicycle\")
 return
 <item>
 { $i/ITEMNO }
 { $i/DESCRIPTION }
 <high_bid>{ max($b/BID) }</high_bid>
 </item>
 sortby(ITEMNO)
 }
 </result> ");
 if (result) {
 XMLResultSet xrs = xs.getResultSet();
 for (;xrs.hasNext();) {
 String result = xrs.nextAsString();
 System.out.println(result);
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 System.out.println("done");
 }
}

 19

	API Tutorial
	Table of contents
	Abstract
	Introduction
	Overview

	XML Data
	Relational Schema
	Mapping
	Insertion of Documents
	Constructing XML Documents via a Query
	Appendix A - Example 1
	Appendix B - Example 2

