
XQuark Bridge 1.1 

Mapping Reference 
Guide 



 

 ii 



XQUARK BRIDGE 1.1 

MAPPING REFERENCE GUIDE 

Document version 1.0 

Copyright  2003 Université de Versailles Saint-Quentin. 
Copyright  2003 XQuark Group. 

All rights reserved. 

All Trademarks are owned by their respective owners and are subject to Copyright laws. 

 iii 



 

FOREWORD 

This document refers to following W3C standards : 

[XML Schema Part 1] XML Schema Part 1: Structures. W3C Recommendation 
2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/ 

[XML Schema Part 2] XML Schema Part 2: Datatypes. W3C 
Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/ 

This section describes the status of this document from W3C at the time of 
its publication. Other documents may supersede this document. The latest 
status of this document series is maintained at the W3C. 

 iv 

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/


Table of contents 

Table of contents 

ABSTRACT 1 

INTRODUCTION 3 
OVERVIEW 3 
NOTATIONS AND CONVENTIONS 4 
REFERENCES 4 

CONCEPTS 5 
DATA MODEL 5 
XML TYPES 5 
MAPPING XML CONCEPTS TO RELATIONAL CONCEPTS 6 

RULES FOR MAPPING SIMPLE XML TYPES 9 
STANDARD CONVERSIONS 9 
IMPLICIT CONVERSIONS 12 
LIST AND UNION TYPES 14 

RULES FOR MAPPING COMPLEX XML TYPES 15 
MAPPING COMPLEX TYPES AND COMPLEX-TYPE ELEMENTS TO SQL 
TABLES 15 
MAPPING SIMPLE-TYPE ELEMENTS AND ATTRIBUTES TO SQL COLUMNS

 16 
MAPPING SIMPLE-TYPE ELEMENTS AND ATTRIBUTES TO SQL TABLES 17 
STORING PARENT-CHILD AGGREGATION IN THE CHILD TABLE 17 
STORING 1-1 PARENT-CHILD AGGREGATION IN THE PARENT TABLE 19 
CONTROLLING THE INSERTION OF ELEMENT DATA 20 

GENERATORS 21 
RATIONALE FOR GENERATORS 21 
USER-DEFINED GENERATORS 21 
PRE-DEFINED GENERATORS 22 
SYSTEM VARIABLES 22 
COLUMN REFERENCES 23 

 v 



 Table of contents 

THE MAPPING LANGUAGE 25 
OVERVIEW 25 
THE MAPPING ELEMENT 25 

THE MAP ELEMENT 26 

THE ELEMENT ELEMENT 27 

THE ATTRIBUTE ELEMENT 29 

THE GENERATOR ELEMENT 30 

INDEX 33 

TABLE OF FIGURES 35 

APPENDIX A - XML SCHEMA FOR THE MAPPING 
LANGUAGE 37 
 

 vi 



Part 1 ! Abstract Part 

 1 
Abstract 

The XQuark Mapping Language is a language that allows the 
definition of a mapping between an XML Schema and a relational 
database schema. This document is the language reference manual.  

 1 



 Part 1 !  

 2 



Part 2 ! Introduction Part 

 2 
Introduction 

Overview 
XQuark Bridge provides a powerful and flexible XML data import 
mechanism, called schema-based mapping, to import data contained in 
XML documents into existing, user-defined relational tables. 

The schema-based mapping requires XML documents to be conformant 
with one or several user-defined XML Schemas [XML Schema Part 1][XML 
Schema Part 2]. The mapping language provides mechanisms to: 

• Associate XML Schema type definitions, elements and attributes 
declarations to relational tables and columns. When importing an XML 
document conformant with the mapped XML Schemas, element and 
attribute content will be stored in relational structures according to this 
association. 

• Explicitly store in relational columns the implicit parent-child relations 
which appear in XML documents 

• Check the presence of tuples (rows) before insertion, and update them 
at user option 

• Transform XML data into internal reference code at insertion time 

• Execute user-defined Java methods to produce column values (e.g. 
internal primary keys). 

In addition, XQuark Bridge will check at declaration time the correctness of 
the mapping specification, e.g. the compatibility between XML types 
declared in the XML Schema specification and SQL types declared in the 
database, and more generally the feasibility of the mapping. 

By imposing a model to documents and detecting mapping incompatibilities 
at declaration time, this approach ensures that schema-valid documents will 
be stored without errors in the relational database. 

Mapping directives are defined in an XML document that uses its own XML 
vocabulary. The mapping directives reference XML Schema declarations, as 
well as relational database information. The mapping language is described 
in The mapping language. 

 3 



 Part 2 ! Introduction 

Notations and conventions 
This section introduces the typography used to present technical 
information in this manual. 

The XQuark mapping language use a specific XML vocabulary to represent 
mapping directives as element information items. 

 In the XML representation, bold-face attribute names indicate a required 
attribute information item, and the rest are optional. Where an attribute 
information item has an enumerated type definition, the values are shown 
separated by vertical bars; if there is a default value, it is shown following a 
colon.  

The allowed content of the information item is shown as a grammar 
fragment, using the Kleene operators ? (0 or 1 occurrence), * (0 or more 
occurences) and + (1 or more occurrences). 

<mapping 
  schemaLocation = anyURI 
  version = string : 1.0> 
Content: (element | map)* 
</mapping> 

The XML Schema that formally defines the mapping language is provided at 
the end of this manual, in Appendix A - XML Schema for the mapping 
language. This schema is associated to the namespace identified by the 
following URI: http://www.xquark.org/Bridge/1.0/Mapping.  

Java interfaces are introduced in this manual as a set of method signatures, 
using the standard Java notation: 

Object getValue(StorageContext) 

References 
[XML Schema Part 1] XML Schema Part 1: Structures. W3C 

Recommendation 2 May 2001. See 
http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/ 

[XML Schema Part 2] XML Schema Part 2: Datatypes. W3C 
Recommendation 2 May 2001. See 
http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/ 

 4 



Part 3 ! Concepts Part 

 3 
Concepts 

Data model 
The data model used to define the mapping is the standard XML data 
model, where: 

• The XML document has a single document element (the root of the 
document tree). 

• Each element can have a number of mandatory or optional mono-
valued attributes (i.e. each attribute can have 0 or 1 occurrence), whose 
order is not significant. Attributes can be typed, according to a 
predefined XML Schema simple type or a user-defined type derived 
from a predefined type. 

• Each element can contain (i) other elements only, (ii) character data 
only, (iii) nothing, or (iv) a mixture of elements and character data. The 
order of sub-elements and character data is generally significant. 

• A sub-element can have 0 (optional), 1 (mono-valued) or several (multi-
valued) occurrences within its parent element. 

When an element contains only character data, this data can be typed, 
according to a predefined XML Schema simple type or a user-defined type 
derived from a predefined type. When the character data is not typed, or 
when it occurs in a mixed-typed element, the data is considered as a string. 

XML types 
XML types can be of two kinds:  

• Simple types are those used to associate a data type to XML character 
data, which otherwise is considered as a string. Simple types are relevant 
only to the character contents of an XML document, and can be 
associated only to attributes and elements with no children (also referred 
to as character-data elements or simple-type elements). XML Schema 
[XML Schema Part 2] defines 19 primitive types and 25 predefined 
simple types derived from those primitive types. XML Schema also 
provides means to derive new simple types from existing types, by 
restricting their value space. 

• Complex types are those used to specify the structure of an element 
containing attributes, character data and/or other elements. Those 

 5 



 Part 3 ! Concepts 

complex types are structured user-defined types built by aggregating 
elements of simple or previously defined complex types. XML Schema 
[XML Schema Part 1] also provides means to create new complex types 
by derivation from previously defined ones. As such, a complex type is 
similar to a class definition in object-oriented languages, and, to some 
extent, a SQL table definition (with the difference that SQL tables can 
usually not aggregate nor derive from previously defined tables).  

In XML Schema, type definitions are used to specify element and attribute 
declarations, which are the association of a name (the element or attribute 
name) and a type. For instance, the complete structure of an XML 
document can be specified by a single complex type associated to the 
document element declaration. 

Both type definitions and element or attribute declarations can be involved 
in mapping specifications. 

Mapping XML concepts to relational concepts 
Specifying an XML-to-SQL mapping for an XML document is equivalent to 
specifying a mapping between the top-level document element declaration 
and existing SQL structures. In the case where only sub-trees of the 
document must be mapped to existing SQL structures, the considered 
element declarations will be those corresponding to the sub-trees to be 
mapped.  

When several element declarations refer to the same complex type, it is 
usually easier to define the mapping for the shared complex type, and 
reference this mapping in the element declaration mappings. 

An XML document contains several types of information that are relevant 
to the XML-to-SQL mapping: 

• Contents: the content of an XML document is composed of all 
character data and attribute values. This content can thus be found in (i) 
attributes, (ii) character-data elements and (iii) mixed-type elements. In 
cases (i) and (ii), the contents will generally be typed by associating a 
simple type to the attribute or element declaration. Such contents will 
typically be stored as column values in the relational tables. In case (iii), 
as the character data can occur within a mixed-type element in multiple 
places, it is generally not possible to store this information in specific 
table columns. 

• Structure: each complex-type element will typically be mapped onto one 
or several existing SQL tables and be stored as tuples in those tables. 
Such a mapping also specifies a scope that will allow the element 
children to be mapped onto the table columns, as described in Mapping 
simple-type elements and attributes to SQL columns.  

 6 



Part 3 ! Concepts 

• Aggregation links: the structure of the XML document specifies an 
implicit aggregation relation between a given element and all the 
elements and attributes it contains. This relation can be either 1-1, when 
the child element occurs once in the parent element, or 1-N, when the 
child element occurs multiple times. In the case of child attributes, the 
relation is always 1-1, as attributes cannot be multi-valued. The way 
aggregation relations are represented in the relational model depends on 
the type and number of occurrences of each child: 
" Implicit relational aggregation: Mono-valued character-data element children and 

attribute children1 are usually mapped on columns in the table associated to their 
parent element. In this case, the child element content or the attribute value is 
stored as the column value.  

" Foreign key in the relational table associated to the child: In the case of multi-
valued element children, the children are necessarily mapped on separate relational 
tables (even in the case of simple-type child elements). In this case, the 1-N 
aggregation relations will typically be stored as foreign keys in those tables. Note 
that this approach can also be used in the case of mono-valued child elements and 
attributes. 

" Foreign key in the relational table associated to the parent: In the case of a mono-
valued child element or attribute mapped on a separate relational table, it is 
possible to store to represent the aggregation as a foreign key stored in the parent 
table, instead of in the child table. This is only possible because the parent-child 
relation is 1-1. 

" Omitted aggregation: When a mono-valued child element is itself of a complex 
type, its own children can directly be associated to their grandparent element, 
according to the rules described here, thus effectively flattening the XML structure 
by omitting pure structural information. This approach can be applied recursively, 
as long as the intermediate elements are mono-valued in their parent. 

• Association links: XML defines several ways to specify association 
relations between elements of the same or different documents. The 
most usual way, inherited from the DTDs, is to attach a unique ID to an 
element using an ID-typed attribute, and refer to this element in other 
elements of the same document using IDREF- or IDREFS-typed 
attributes. A similar, more complex mechanism is defined in the XML 
Schema specification, which allows the definition of keys and keyrefs in 
the document schema specification. Finally, the XLink and XPointer 
specifications provide a mechanism for establishing links between parts 
of different documents. In all cases, the association relations are explicit 
and use a primary key – foreign key approach easily mapped onto SQL 
structures. Therefore, for storage purposes, keys and keyrefs can be 
considered as any other attributes.  

The following table summarizes the main mapping principles: 
 
XML Concept Mapping 

type 
SQL 
Concept

Comments 

                                                 
1 Attributes are always mono-valued and associated to a simple type 

 7 



 Part 3 ! Concepts 

XML Concept Mapping 
type 

SQL 
Concept

Comments 

Complex type 
 
Complex-type 
element 

Table 
mapping 

Table Stores elements as tuples and 
defines a scope for storing 
attributes and child elements into 
table columns 

Complex type of 
mixed content 
 
Mixed-type element 

Table 
mapping 

Table Stores elements as tuples and 
defines a scope for storing 
attributes and child elements into 
table columns. Character data 
occurring within the element will 
not be stored. 

Attribute 
 
Simple-type 
element 

Column 
mapping 

Column Stores the attribute value or 
character data contents into the 
column. 

Attribute 
 
Simple-type 
element 

Table 
mapping 

Table Stores the attribute value or 
character data contents into a new 
tuple in the table. This type of 
mapping is especially useful in case 
of multi-valued simple-type 
elements. 

1-N parent-child 
aggregation  

Column 
mapping 

Foreign 
key 

Stores a reference to the table 
holding parent information into a 
column of the table holding child 
information 

1-1 parent-child 
aggregation 

Column 
mapping 

Foreign 
key 

Stores a reference to the table 
holding child information into a 
column of the table holding parent 
information 

1-1 parent-child 
aggregation (in the 
case of a complex-
type child) 

Column 
mappings 

Columns Stores the contents of the child 
attributes and elements in columns 
of the parent table. This approach 
can be generalized to any level in 
the hierarchy. 

Table 1– Mapping principles 

The above table does not specify conditions for a given mapping to be valid. 
Those conditions are discussed in the next sections. 

 8 



Part 4 ! Rules for mapping simple XML types Part 

 4 
Rules for mapping simple XML 
types 

Standard conversions 
Simple types can be used to specify the type of an attribute or of an element 
containing only character data. The XML Schema datatypes specification 
[XML Schema Part 2] defines 19 atomic primitive datatypes, and 25 derived 
datatypes (22 atomic and 3 list types2) that can be used as simple types. 
Attributes and elements having a simple type will normally be mapped onto 
a column in an SQL table. The XML-to-SQL mapping is able to verify that 
the datatypes used in a XML Schema are compatible with the SQL types 
used in the tables and columns in which schema-compliant documents will 
be stored. For portability reasons, the considered SQL types will be those 
defined in JDBC. 

The following table shows the correspondence between the 44 XML 
Schema predefined datatypes and the JDBC types.  
 
XML datatype JDBC type Comments 
string VARCHAR The size constraints defined in the 

XML and relational models must be 
compatible.  

normalizedString VARCHAR See string. 
token VARCHAR See string. 
Name VARCHAR See string. 
NCName VARCHAR See string. 
ID VARCHAR See string. 
IDREF VARCHAR See string. 
ENTITY VARCHAR See string. 
NMTOKEN VARCHAR See string. 
IDREFS VARCHAR list type 
ENTITIES VARCHAR list type 
NMTOKENS VARCHAR list type 
anyUri VARCHAR See string. 

                                                 
2 List types are obtained from base types through list derivation. In practice, they 
correspond to a whitespace-separated list of values compliant with the list base type. 

 9 



 Part 4 ! Rules for mapping simple XML types 

XML datatype JDBC type Comments 
QName VARCHAR QNames are stored as 

{namespaceURI}localName, i.e. the 
prefix is replaced by its namespace 
value and curly brackets are added as 
separators. The size constraints 
defined in the XML and relational 
models must be compatible. 

NOTATION VARCHAR NOTATIONs are handled as 
QNames. 

boolean BIT As BIT is not widely implemented by 
databases, booleans are generally 
mapped on small integers.  

float REAL  
double DOUBLE  
decimal NUMERIC The precision and scale constraints 

defined in the XML and relational 
models must be compatible. decimal 
values can have arbitrary precision in 
XML. The mapping might induce 
precision losses when the XML value 
has a precision higher than the 
maximum precision supported in the 
database. 

integer NUMERIC 
with scale=0 

See decimal. 

long BIGINT  
int INTEGER  
short SMALLINT  
byte TINYINT  
nonNegativeInteger NUMERIC 

with scale=0 
See decimal. 

unsignedLong NUMERIC 
with scale=0 

See decimal. 

unsignedInt BIGINT  
unsignedShort INTEGER  
unsignedByte SMALLINT  
positiveInteger NUMERIC 

with scale=0 
See decimal. 

nonPositiveInteger NUMERIC 
with scale=0 

See decimal. 

negativeInteger NUMERIC 
with scale=0 

See decimal. 

base64Binary VARBINARY The size constraints defined in the 
XML and relational models must be 
compatible. 

 10 



Part 4 ! Rules for mapping simple XML types 

XML datatype JDBC type Comments 
hexBinary VARBINARY The size constraints defined in the 

XML and relational models must be 
compatible. 

duration VARCHAR duration values conceptually represent a 
sextuple (year, month, day, hour, 
minute, second), which cannot be 
mapped into another simpler 
representation (such as a number or a 
date) without loss of information. As 
JDBC does not define a standard type 
for holding such information, duration 
values are kept as strings. 

dateTime TIMESTAMP  
time TIME  
date DATE  
gYearMonth DATE gYearMonth values represent an 

incomplete date, namely a specific 
month in a specific year. In such a 
case, the complete date is obtained by 
using as default values for missing 
fields the corresponding fields in the 
date January 1st, 1970 at 00:00:00. 

gYear DATE See gYearMonth. 
gMonthDay DATE See gYearMonth. 
gDay DATE See gYearMonth. 
gMonth DATE See gYearMonth. 

Table 2– XML Schema to table correspondence 

For some types, the above table does not provide enough information: all 
VARCHAR and VARBINARY types should be associated with a maximum 
length. In fact, in an existing SQL database, all fields having those types will 
have a maximum length. Similarly, NUMERIC types can have precision and 
scale attributes, although default values are used for those attributes when 
they are not specified. Therefore, when designing an XML Schema to be 
mapped onto an existing database, the designer should derive new simple 
types enforcing the size or precision constraints of the database. Those 
constraints can be set in the derived types by using the length and maxLength 
facets3 for size constraints, and the precision and scale facets for numeric types. 

In the case of VARCHAR and VARBINARY, the insertion of a document 
in the database might fail, due to overflow, if the size constraints are not 
enforced in the XML Schema. XQuark Bridge will warn the user at mapping 
loading time when unconstrained XML types are mapped onto columns 
with limited size. It will then be up to the designer to constrain the XML 

                                                 
3 A facet is a constraining property of a simple XML type. See the XML Schema 
specifications for details. 

 11 



 Part 4 ! Rules for mapping simple XML types 

type or take the chance of a runtime error when storing a document. Note 
that it is a mapping error if size constraints are present in the XML Schema 
and not compatible with size constraints in the database. 

Similarly, in the case of numerical types, XQuark Bridge will warn the user 
when unconstrained XML types are mapped onto columns with limited 
precision and scale, which can result in runtime error when storing a 
document. The mapping tool will also issue a warning when precision losses 
can result from a given mapping, and produce an error when data losses can 
occur (e.g. when mapping a 64-bit integer onto a 16-bit column). 

Any data that can be stored in a VARCHAR column can also be stored in a 
CHAR column. The same size constraints apply. When the data is shorter 
than the size of the column, it will be padded with whitespace at the end. 

Mapping XML data on large columns (LONGVARCHAR, 
LONGVARBINARY, CLOB, BLOB) is not supported in this release. 

Implicit conversions 
The previous section has shown the correspondence between the XML 
types and the most constraining corresponding SQL types. Obviously, it is 
possible to map a given XML type on a more general SQL type than the one 
shown in the above table. This type widening (only applicable to numerical 
types) is called an implicit conversion. The legal implicit type conversions 
for numerical types are the usual ones: 

• Anything that can be stored in a BIT can be widened to a TINYINT, a 
TINYINT can be widened to a SMALLINT, a SMALLINT to an 
INTEGER, an INTEGER to a BIGINT, and a BIGINT to a 
NUMERIC (if its precision is large enough). 

• Anything that can be stored in a BIT, TINYINT, SMALLINT, 
INTEGER, BIGINT can be stored in a REAL or DOUBLE. 

• Anything that can be stored in a REAL can be stored in a DOUBLE. 

• Conversions from NUMERIC to REAL and DOUBLE and from 
REAL and DOUBLE to NUMERIC are possible, but may induce 
precision losses when the NUMERIC precision and scale are not 
compatible with the implicit precision and scale of REAL and 
DOUBLE. 

Another case of implicit conversion occurs when an XML type is mapped 
onto a CHAR or VARCHAR column: in this case, the string value as found 
in the XML document will be stored in the column4. Finally, XQuark Bridge 
also supports less usual conversions, such as conversions from XML string 

                                                 
4 When the XML type implicitly or explicitly defines size constraints, they will be checked 
against the column size. 

 12 



Part 4 ! Rules for mapping simple XML types 

to VARBINARY and from gYear, gMonth and gDay to numerical column 
types. 

The following table summarizes the legal conversions: 

  C
H

A
R 

 V
A

RC
H

A
R 

 L
O

N
G

V
A

RC
H

A
R 

 B
IT

 
 T

IN
Y

IN
T 

 S
M

A
LL

IN
T 

 IN
TE

G
E

R 
 B

IG
IN

T 
 R

E
A

L 
 F

LO
A

T 
 D

O
U

BL
E

 
 N

U
M

E
RI

C 
 D

E
CI

M
A

L 
 B

IN
A

RY
 

 V
A

RB
IN

A
RY

 
 L

O
N

G
V

A
RB

IN
A

RY
 

 D
A

TE
 

 T
IM

E
 

 T
IM

E
ST

A
M

P 
 C

LO
B 

 B
LO

B 

string 2 2             2       
normalizedString 2 2             2       
token 2 2             2       
Name 2 2             2       
NCName 2 2             2       
ID 2 2             2       
IDREF 2 2             2       
ENTITY 2 2             2       
NMTOKEN 2 2             2       
IDREFS 2 2             2       
ENTITIES 2 2             2       
NMTOKENS 2 2             2       
anyUri 2 2                    
QName 2 2                    
NOTATION 2 2                    
boolean 4 4  1 1 1 1 1 1 1 1 1 1         
float 4 4   5 5 5 5 1 1 1 3 3         
double 4 4   5 5 5 5 5 1 1 3 3         
decimal 2 2   5 5 5 5 5 5 5 2 2         
integer 2 2   2 2 2 2 2 2 2 2 2         
long 4 4      1 1 1 1 1 1         
int 4 4     1 1 1 1 1 1 1         
short 4 4    1 1 1 1 1 1 1 1         
byte 4 4   1 1 1 1 1 1 1 1 1         
nonNegativeInteger 2 2   2 2 2 2 2 2 2 2 2         
unsignedLong 4 4       1 1 1 1 1         
unsignedInt 4 4      1 1 1 1 1 1         
unsignedShort 4 4     1 1 1 1 1 1 1         
unsignedByte 4 4    1 1 1 1 1 1 1 1         
positiveInteger 2 2   2 2 2 2 2 2 2 2 2         
nonPositiveInteger 2 2   2 2 2 2 2 2 2 2 2         
negativeInteger 2 2   2 2 2 2 2 2 2 2 2         
base64Binary 2 2             2       
hexBinary 2 2             2       
duration 1 1                    
dateTime 4 4                 1   
time 4 4                1    
date 4 4               1  1   
gYearMonth 4 4               1  1   
gYear 4 4    1 1 1 1 1 1 1 1    1  1   
gMonthDay 4 4               1  1   
gDay 4 4   1 1 1 1 1 1 1 1 1    1  1   
gMonth 4 4   1 1 1 1 1 1 1 1 1    1  1   

Table 3 – Legal conversions 

 13 



 Part 4 ! Rules for mapping simple XML types 

The meaning of the codes used in the table is given below: 

1. The validity of the conversion can be verified at mapping definition time. 

2. When no additional XML facets are associated to the XML type, it is not 
possible to verify the legality of the conversion at mapping definition time. 
The conversion might fail at run-time, due to overflow. 

3. Precision loss can happen during the conversion. 

4. The conversion is safe, but the data type is lost during the conversion. 

5. When no additional XML facets are associated to the XML type, it is not 
possible to verify the legality of the conversion at mapping definition time. 
Both precision loss and data overflow might occur during the conversion. 

list and union types 
The XML Schema specification allows list and union simple types to be 
derived from atomic simple types. List types are always stored as strings 
(VARCHAR or CHAR), using as value the whitespace-separated list of 
values. Note that because the length and maxLength facets apply to the 
number of items in the list rather than the number of characters in the data, 
it is usually not possible to verify the size constraints at mapping definition 
time in the case of a list type. 

Union types can be converted to the most restricting common SQL type, as 
defined in the implicit conversions section above. In any cases, union types 
can always be stored as strings (VARCHAR or CHAR), as all types can be 
implicitly converted to strings. 

 14 



Part 5 ! Rules for mapping complex XML types Part 

 5 
Rules for mapping complex XML 
types 

Mapping complex types and complex-type 
elements to SQL tables 
Complex types are used to define the structure of XML documents. 
Complex-type elements contain structured information that is used to fill 
columns in the existing SQL tables. Complex types and complex-type 
elements are mapped onto SQL tables in two steps: 

1. A complex type or complex-type element declaration is associated to an 
SQL table (through a table mapping) to define the scope in which child 
elements or attributes will be mapped onto the table columns. Each 
complex-type element will become a tuple in its associated table.  

2. Child elements or attributes are associated either to a column of the table 
associated to their parent or to one of their ancestors (through a column 
mapping), or to another SQL table (as in step 1), in which case step 2 is 
recursively applied, thus resulting in nested table mappings. Nested table 
mappings correspond to parent-child aggregations in the XML document, 
and may involve the specification of foreign relations between the tables. 
The rules that control the validity of a column mapping depend on the type 
of the element or attribute, its number of occurrence (optional, mono-valued 
or multi-valued) and the column information. These rules are detailed below. 

The following figure represents the mapping of complex XML elements 
into relational tuples. Each complex-type element is stored as a tuple in the 
relational tables. 
 

 15 



 Part 5 ! Rules for mapping complex XML types 

! purchaseOrder 
" orderDate 
! billTo 
" name 
" street 
" town 
" zip 
" state 
" country 

# shipTo 
" comment 
! items 
! item 
" partNum 
" productName 
" quantity 
" price 
" shipDate 

# item 

PO 

CUSTOMER

ITEM 

 
Figure 1 –Mapping example of complex XML types 

This example is based on a small XML document describing a purchase 
order. This purchase order contains two customer references (a billing 
address and a shipping address) and a number of purchased items. In the 
figure, the XML document is represented as a tree, with expanded complex 
elements identified by a downward triangle, non-expanded complex 
elements by a rightward triangle, and leaf elements by a small square.  

Mapping simple-type elements and attributes 
to SQL columns 
Simple-type elements and attributes are usually mapped on table columns. A 
column mapping specifies that the value of the simple-type element or 
attribute is to be stored into the designated table column. As mentioned 
previously, the column is generally part of the table associated to the 
element or attribute parent element, but may also be part of the table 
associated to an ancestor of the element or attribute. 

In order to be valid, such a column mapping must verify the following 
conditions: 

• A simple-type element mapped onto a column cannot be multi-valued. 
If the column mapping refers to a table associated to an ancestor of the 
element or attribute to be mapped, none of the intermediate elements 
can be multi-valued either. This ensures that only a single value will ever 
be stored in the column. 

• If a simple-type element or attribute is optional with no default value, 
then the associated column must be nullable. Similarly, if the column 
mapping refers to a table associated to an ancestor of the element or 
attribute to be mapped, and if any intermediate element is optional, then 
the associated column must be nullable. This ensures that absent 

 16 



Part 5 ! Rules for mapping complex XML types 

optional values will not result in errors when the document is inserted in 
the database. 

• The simple-element or attribute XML type must be convertible to the 
SQL type of the column, as defined in the previous section. 

The following figure represents some column mappings for the previous 
example. 

! purchaseOrder 
" orderDate 
! billTo 
" name 
" street 
" town 
" zip 
" state 
" country 

# shipTo 
" comment 
! items 
! item 
" partNum 
" productName 
" quantity 
" price 
" shipDate 

# item 

PO 

CUSTOMER

ITEM 

Odate 

Street Name 

 
Figure 2 – Column mapping example 

Mapping simple-type elements and attributes 
to SQL tables 
In some cases, it may be necessary to map a simple-type element or an 
attribute to a separate table. This may occur for instance when a multi-
valued simple-type element appears in a parent element. As for complex-
type elements, each mapped element or attribute will become a tuple in its 
associated table.  

However, as simple-type elements and attributes have no structured 
contents, column mappings cannot be specified in the usual way. Instead, 
generators (described in Generators) are used to specify the contents of the 
table columns. 

Storing parent-child aggregation in the child 
table 
When parent and child elements are stored in separate tables, it is often 
useful to represent the parent-child aggregation that is implicit in the XML 
document as an explicit association between the parent table and the child 

 17 



 Part 5 ! Rules for mapping complex XML types 

table. This allows the SQL view of the document to reflect as closely as 
possible the XML structure. 

The implicit parent-child aggregation can be either 1-1 (case of a mono-
valued child) or 1-N (case of a multi-valued child). In the latter case, the 
corresponding relation must be stored in a column of the child table, while 
in the former case, it can be stored in a column of either the child or the 
parent table. This section describes storage in the child table, while the next 
one deals with storage in the parent table. 

As the aggregation is implicit, the document does not generally contain any 
data that represents the link between the parent and the child. Therefore, it 
is usually necessary to generate a value to be stored as a foreign key in the 
child table column. In many cases, this value will be obtained by copying the 
corresponding primary key previously stored in the parent table. This special 
kind of column mapping is described in details in Column references. 

Although the above discussion uses the concepts of primary and foreign 
keys, it is not required that the columns in the parent and child tables be 
linked through a formal foreign relation (i.e. a relation declared in the 
relational model). The only requirement is that the value obtained from the 
parent table can be legally stored in the child table column. 

The following figure shows a possible way of storing in the relational table 
the 1-N aggregation between the purchase order and each ordered item in 
the case of the purchase order document: 

! purchaseOrder 
" orderDate 
! billTo 
" name 
" street 
" town 
" zip 
" state 
" country 

# shipTo 
" comment 
! items 
! item 
" partNum 
" productName 
" quantity 
" price 
" shipDate 

# item 

PO 

CUSTOMER

ITEM 

ID 

PO 

 
Figure 3 – Aggregation example 

In this example, each tuple corresponding to an ordered item stores in its PO 
column a reference to the ID column of the PO tuple corresponding to its 
purchase order parent. 

 18 



Part 5 ! Rules for mapping complex XML types 

Storing 1-1 parent-child aggregation in the 
parent table 
When the parent-child aggregation cardinality is 1-1, it is possible to store 
the relation as a foreign key in the parent table. This means that a complex-
type child element will be mapped at the same time to a child table to 
generate the new tuple representing the element, and to a column in the 
parent table to store the reference to the newly created tuple. This reference 
is obtained by copying the corresponding primary key stored in the child 
table. The name of the column holding this key is a parameter of the dual 
table and column mapping. 

Here also, there is no need for the parent and child tables to be linked by a 
formal foreign relation. The validity conditions for this mapping are as 
follows: 

• The complete path between the parent element and the child element 
must consist of mono-valued elements. 

• If one of the elements in this path is optional, then the parent table 
column must be nullable. 

• The value obtained from the child table column must be legally storable 
in the parent table column. 

The following figure illustrates the use of this mapping to store a reference 
to both billing and shipping address in a purchase order: 

! purchaseOrder 
" orderDate 
! billTo 
" name 
" street 
" town 
" zip 
" state 
" country 

# shipTo 
" comment 
! items 
! item 
" partNum 
" productName 
" quantity 
" price 
" shipDate 

# item 

PO 

CUSTOMER

ITEM 

BillTo 

ID 

ShipTo 

 
Figure 4 – Multiple tables referencing example 

In this example, the tuple corresponding to the purchase order stores in its 
BillTo and ShipTo columns a reference to the ID column of the 
CUSTOMER tuples corresponding respectively to its billTo and shipTo child 
elements. 

 19 



 Part 5 ! Rules for mapping complex XML types 

Controlling the insertion of element data 
Unlike XML data, relational data is often normalized, i.e. the same data is 
generally not inserted twice in the same table. When mapping XML data 
onto relational tables, it is therefore sometimes necessary to control 
normalization at insertion time. In the above example, it might be necessary, 
for instance, to check that an address is not already present in the CUSTOMER 
table before inserting the contents of the billTo and shipTo elements. The 
mapping language provides a way to specify that a tuple must not be created 
if the content of the XML element to be inserted matches a subset of 
columns in the table. The list of columns to be used for the match can be 
specified in the language. 

It is also possible to specify that a matched tuple will be updated, i.e. that the 
columns not used for the match will receive their corresponding values from 
the XML element.. 

 20 



Part 6 ! Generators Part 

 6 
Generators 

Rationale for generators 
As explained previously, mapping XML documents onto relational tables 
may require the insertion in the table columns of information which is either 
non-relevant or implicit in the XML documents, and which therefore may 
not be found in those documents. Examples of such information include: 

• Internal identifiers (e.g. primary keys) used in the relational tables 

• Foreign keys used to represent the implicit aggregation between parent 
and child elements in a XML document 

The mechanism that allows the user to specify a different source of 
information to obtain values to be stored into columns is called a generator. 
There are three types of generators, which are described in more details 
below: 

• User-defined generators 

• System variables 

• Column references 

User-defined generators 
User-defined generators are Java classes that can be attached to a table 
column to generate a value. Each class must implement the UserGenerator 
interface. This interface consists of two methods, 

Object getValue(StorageContext) 

String getXMLType() 

that return respectively a Java Object containing the value to be stored in 
the table column, and a string describing the XML type of the generated 
value. The object should be convertible to the column SQL type as defined 
in the JDBC specification. 

The StorageContext interface provides access to some internal XQuark 
Bridge system variables, which can be used by the generator class to produce 
its value. Those variables include those described in the next section, as well 

 21 



 Part 6 ! Generators 

as the JDBC connection used by the storage algorithm. Access method 
details can be found in the StorageContext API documentation. Both 
interfaces are defined in the org.xquark.xml.mapping package. 

A typical use of user-defined generators is the generation of unique primary 
keys for tuples constructed from XML documents. This might involve for 
instance the use of a SEQUENCE or any similar SQL mechanism to 
generate unique values. 

Classes implementing the user generators must be available in the 
CLASSPATH at mapping loading time.  

Pre-defined generators 
Some standard user generators are provided with XQuark Bridge, for 
instance to generate keys for the rows created. Have a look to the API 
documentation (Javadoc) of the org.xquark.mapping package to check 
available generators. 

System variables 
System variables represent a special kind of generator that returns the 
current value of some internal variables. Those variables are generally 
associated to the current XML element being stored (i.e., the element to 
which the table currently being filled is associated). 

Five system variables can be accessed: 

• $NodeValue: this variable contains a string that represents the XML 
value of the current element or attribute. This variable is set to null for 
elements which do not contain only character data. 

• $NodeRank: this variable contains an integer that represents the rank of 
the current element or attribute within its parent element. 

• $LocalName: this variable contains a string that represents the local 
name of the current element or attribute. 

• $NamespaceURI: this variable contains a string that represents the 
namespace URI of the current element or attribute. 

• $QName: this variable contains a string that represents the qualified 
name of the current element or attribute. 

System variables are particularly useful to fill table columns in the case 
where a simple-type element or attribute is mapped onto a table (e.g. when 
the element is multi-valued). In such cases, access to the element value and 
rank is often necessary. 

 22 



Part 6 ! Generators 

Column references 
Column reference generators are used to copy the contents of a previously 
filled column into a target column. The SQL types of the source and target 
columns must be compatible.  

Column reference generators are useful to create foreign keys representing 
the parent-child aggregations in XML documents.  

An important restriction in the use of column references is the requirement 
that: 

• The source table must be in the current scope, i.e. the source table must 
be associated to an ancestor element of the element associated to the 
target table. 

The source column must be filled before it can be copied into the target 
column. 

 23 



 Part 6 !  

 24 



Part 7 ! The mapping language Part 

 7 
The mapping language 

Overview 
The previous sections have described the main concepts and rules that 
govern the schema-based mapping. This section introduces a specific XML 
vocabulary, which is used to specify and represent a mapping associated to a 
given XML Schema. 

All the elements used in the XML representation of mappings are in a 
specific namespace, the URI of which is 
http://www.xquark.org/Bridge/1.0/Mapping.  

The specification of the mapping language is also provided as an XML 
schema in Appendix A - XML Schema for the mapping language. This 
schema can also be used as a source of information for checking number of 
allowed occurrences, possible values and default values of both elements 
and attributes. 

The mapping element 
A mapping is represented in XML as a mapping document, using a 
mapping element as the document root element. 

<mapping 
  schemaLocation = anyURI 
  version = string : 1.0> 
Content: (element | map)* 
</mapping> 

The mapping element contains two attributes: 

• schemaLocation: this required attribute declares the XML Schema of 
documents on which the mapping is defined. As in the XML Schema 
specifications, this attribute is made up of pairs of (namespace URI, 
schema URL) separated by blanks, allowing to specify multiple locations 
for a given target namespace, or locations for several target namespaces. 

• version: this attribute specifies the version of the mapping language to be 
used. In the current version, the value of this attribute is fixed and equal 
to “1.0”. 

 25 



 Part 7 ! The mapping language 

As the top-level element in the mapping document, the mapping element 
will also contain in most cases namespace declarations. Besides the mapping 
namespace itself, the namespaces of all schemas to be mapped on the 
relational structures must be declared, as qualified elements from those 
namespaces will be used in the table and column mapping declarations. 

The content of the mapping element consists of a set of map and element 
elements, which altogether represent the mapping specification. 

The map element 
The map element is used to define a table mapping by associating an XML 
type to a relational table. Map elements can appear at the top-level, in which 
case they must be explicitly associated to an XML complex type, or within 
the scope of an element or attribute element, in which case they are 
implicitly associated to the element or attribute type. 

<map 
  table = NCName 
  type = QName 
  name = NCName 
  action = (insert | check | select | update) : 
insert 

  batchSize = short> 
Content: (generator* ,element*, attribute*) 
</map> 

The map element can have four attributes: 

• table: this required attribute contains the name of the table in which the 
content of the associated type or element will be stored. 

• type: this attribute is required for top-level map declarations, and refers to 
the XML type that is mapped onto the table. In most cases, its value will 
be a qualified name, whose prefix will be the prefix associated to the 
namespace in which the type has been defined. This attribute should not 
be used when the mapping declaration appears in the scope of an 
element or attribute element. 

• name: this attribute is also used in the case of a top-level declaration, and 
should be a unique name which can be used in further declarations to 
refer to this particular table mapping. 

• action: this optional attribute specifies the action that is performed when 
an element or attribute using this table mapping is encountered in an 
XML document. The default action is to insert a new tuple in the table, 
based on element or attribute content. However, three other actions are 
available:  

 26 



Part 7 ! The mapping language 

" check: specifies that the new tuple must be inserted only if it is not already 
present in the table. The existence of the tuple is checked based on a user-defined 
subset of the mapped element content. 

" select: specifies that an existing tuple must be retrieved from the table, based on a 
user-defined subset of the mapped element content. Once the tuple is loaded, other 
tuples may refer to its content.  

" update: specifies that an existing tuple must be updated with the mapped element 
or attribute content. The existing tuple is retrieved based on a user-defined subset 
of the mapped element content. 

• batchSize: this attribute allows to control the JDBC batch size used for 
this table (default is 20). 

This last parameter is an important feature for performance 
optimization (with auto-commit control that is performed through 
the XML/DBC API).  

The content of the map element features: 

• generators and column mappings, which specify how each column of 
the table must be filled, 

• nested table mappings associated to child elements and more generally 
descendants of the mapped element. 

Within a map element, all generators will be declared first, followed by 
mappings for elements and finally attributes. 

The element element 
The element element is used to specify a table or column mapping for each 
mapped element from the source XML document. This element can appear 
at the top level, within another element element or within a table mapping 
(map element).  

<element 
  name = QName 
  column = NCName 
  ref = NCName 
  map = NCName 
  inSelect (true | false) : true> 
Content: (map* ,element*, attribute*) 
</element> 

The above syntax corresponds in reality to three distinct forms: 

• A scope declaration: in this first form, only the name and map attributes are 
allowed. The element defines a scope for further mapping elements, 

 27 



 Part 7 ! The mapping language 

including in this order map elements, other element elements and 
attribute elements. 

• A column mapping: in this second form, only the name, column and inSelect 
attributes can be present and the element content is empty. This form 
can only occur if the parent element is a map element. 

• A dual table-column mapping: in this third form, all attributes can be 
present. In addition, the element can contain a map element, which 
specifies the table involved in the dual table-column mapping. 

The element element has the following attributes: 

• name: this required attribute represents the qualified name of the 
element. If the element element occurs at the top level, it must refer to 
an existing global element declaration in a declared namespace. If it 
occurs within another element element, it must refer to an existing local 
element declaration within that parent element. 

• column: this attribute is required in the case of a column mapping, absent 
otherwise. It contains the name of the column into which the element 
value must be stored. The column name must be prefixed by a table 
name if the target column is defined in a containing table different from 
the immediate parent table (in the case of nested table mappings). If the 
table prefix is not present, it defaults to the table name in the innermost 
table mapping. 

• ref: this optional attribute is used only in the case of a dual table and 
column mapping (when a 1-1 parent-child aggregation must be stored in 
the parent table). It contains the column name (prefixed with the child 
table name) which contains the value to be used as foreign key in the 
parent table). 

• map: this optional attribute can be used when the element is associated 
to a table mapping (including the case of a dual table and column 
mapping). It refers to the name of a previously declared table mapping 
(using the map element). The element type must be compatible with the 
type associated to the referenced mapping. 

• inSelect: this optional attribute can be used in the case of a column 
mapping to specify that the column participates in the request which is 
performed before inserting a new tuple when the action associated to 
the enclosing table mapping is check, select or update. 

When the element defines a scope for further mapping declarations, the 
following child elements may appear in its content, in this order: 

• map elements are used to associate table mappings to the element. Note 
that several table mappings may be associated to a single element, which 
means that an element can be stored as several tuples in different tables. 

• element elements are used to create a new scope for a child of the 
current element. 

 28 



Part 7 ! The mapping language 

• attribute elements are used to create a new scope for an attribute of 
the current element. 

The attribute element 
The attribute element is used to specify a table or column mapping for 
each mapped attribute from the source XML document. This element can 
only appear within an element element or within a table mapping (map 
element).  

<attribute 
  name = QName 
  column = NCName 
  inSelect (true | false) : true> 
Content: (map*) 
</attribute > 

The above syntax corresponds in reality to two distinct forms: 

• A scope declaration: in this first form, only the name attribute is allowed. 
The element defines a scope for further table mapping declarations (map 
elements). 

• A column mapping: in this second form, all attributes can be present and 
the element content is empty. This form can only occur if the parent 
element is a map element. 

The attribute element has the following attributes: 

• name: this required attribute represents the qualified name of the 
attribute. It must refer to an existing local element declaration within the 
parent element. 

• column: this attribute is required in the case of a column mapping, absent 
otherwise. It contains the name of the column into which the attribute 
value must be stored. The column name must be prefixed by a table 
name if the target column is defined in a containing table different from 
the immediate parent table (in the case of nested table mappings). If the 
table prefix is not present, it defaults to the table name in the innermost 
table mapping. 

• inSelect: this optional attribute can be used in the case of a column 
mapping to specify that the column participates in the request which is 
performed before inserting a new tuple when the action associated to 
the enclosing table mapping is check, select or update. 

When the attribute element defines a scope for further mapping 
declarations, map elements can appear within its content to associate table 
mappings to the attribute.  

 29 



 Part 7 ! The mapping language 

The generator element 
The generator element is used to associate a generator to a column of a 
table. This element can only appear within a table mapping (map element).  

<generator 
  column = NCName 
  ref = NCName 
  class = NCName 
  variable = NCName 
  inKey = (true | false) : false 
  inSelect (true | false) : true/> 

This element can be used to define the three types of generators introduced 
in a previous section. The type of generator is specified by using one specific 
attribute among three mutually exclusive attributes ref, class and variable. 

The generator element has the following attributes: 

• column: this required attribute represents the name of the column into 
which the generated value must be stored. The column name must be 
prefixed by a table name if the target column is defined in a containing 
table different from the immediate parent table (in the case of nested 
table mappings). If the table prefix is not present, it defaults to the table 
name in the innermost table mapping. 

• ref: this optional attribute is used to define a column reference generator. 
It contains the name of the source column from which the value must 
be copied. The source column name must be prefixed by the name of its 
containing table, which must itself be in scope (i.e. be used in an 
enclosing table mapping). 

• class: this optional attribute is used to define a user generator. It contains 
the name of a user-defined Java class that implements the 
UserGenerator interface in the package org.xquark.xml.mapping. 

• variable: this optional attribute is used to define a system variable 
generator. It contains the name of one of the system variables defined in 
the previous section (e.g. $NodeValue or $LocalName). 

inSelect: this optional attribute can be used to specify that the column 
participates in the request which is performed before inserting a new tuple 
when the action associated to the enclosing table mapping is check, select or 
update. 

 30 



Index 
Index 
Aggregation... 7, 8, 17, 18, 19, 21, 28 Element declaration.........6, 15, 28, 29 
Association .........................3, 6, 7, 17 Generator .................... 21, 22, 26, 30 
Attribute declaration ..........................6 Simple type ...5, 6, 7, 8, 9, 11, 14, 16, 

17, 22 Column mapping...15, 16, 17, 18, 19, 
26, 27, 28, 29 Table mapping15, 19, 26, 27, 28, 29, 

30 Complex type .. 6, 7, 8, 15, 17, 19, 26 
Data model ........................................5 Type conversion ......................... 12, 14 

 

 31 



 Index 

 32 



Table of figures 
Table of figures 
Table 1– Mapping principles .................................................................................8 
Table 2– XML Schema to table correspondence .............................................11 
Table 3 – Legal conversions ................................................................................14 
Figure 1 –Mapping example of complex XML types ......................................16 
Figure 2 – Column mapping example ................................................................17 
Figure 3 – Aggregation example..........................................................................18 
Figure 4 – Multiple tables referencing example ................................................19 

 

 33 



 Table of figures 

 34 



Appendix A - XML Schema for the mapping language 
Appendix A - XML Schema for the mapping 
language 
 
<?xml version="1.0" encoding="iso-8859-1"?> 
 
<xsd:schema targetNamespace="http://www.xquark.org/Bridge/1.0/Mapping" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xmlns="http://www.xquark.org/Bridge/1.0/Mapping" 
  elementFormDefault="qualified"> 
 
  <xsd:annotation> 
    <xsd:documentation> 
       XML Schema for mapping language. See: 
       "XQuark Bridge - Mapping Reference Guide" 
    </xsd:documentation> 
  </xsd:annotation> 
 
  <xsd:element name="mapping"> 
    <xsd:annotation> 
      <xsd:documentation> 
         A mapping is represented in XML as a mapping document,  
         using a "mapping" element as the document root element 
      </xsd:documentation> 
    </xsd:annotation> 
    <xsd:complexType> 
      <xsd:choice maxOccurs="unbounded"> 
        <xsd:element name="map" type="topLevelMap"/> 
        <xsd:element name="element" type="scopeElement"/> 
      </xsd:choice> 
      <xsd:attribute name="schemaLocation" type="xsd:string" use="required"/> 
      <xsd:attribute name="version" type="versionNumber" fixed="1.0"/> 
    </xsd:complexType> 
  </xsd:element> 
 
  <xsd:complexType name="topLevelMap"> 
    <xsd:annotation> 
      <xsd:documentation> 
         the "map" element is used to define a table mapping by 
         associating an XML type to a relational table. 
         top-level "map" elements must be explicitly associated to  
         an XML complex type. 
      </xsd:documentation> 
    </xsd:annotation> 
    <xsd:choice maxOccurs="unbounded"> 
      <xsd:element ref="generator"/> 
      <xsd:element name="element" type="mappableElement"/> 
      <xsd:element name="attribute" type="mappableAttribute"/> 
    </xsd:choice> 
    <xsd:attribute name="table" type="tableName" use="required"/> 
    <xsd:attribute name="type" type="xsd:QName" use="required"/> 
    <xsd:attribute name="name" type="xsd:NCName" use="required"/> 
    <xsd:attribute name="action" type="actionType" default="insert"/> 
    <xsd:attribute name="batchSize" type="xsd:short"/> 

 35 



 Appendix A - XML Schema for the mapping language 

  </xsd:complexType> 
 
  <xsd:complexType name="localMap"> 
    <xsd:annotation> 
      <xsd:documentation> 
         the "map" element is used to define a table mapping by 
         associating an XML type to a relational table. 
         local "map" elements appear within the scope of an  
         "element" or "attribute" element, in which case they are implicitly  
         associated to the element or attribute type. 
      </xsd:documentation> 
    </xsd:annotation> 
    <xsd:choice maxOccurs="unbounded"> 
      <xsd:element ref="generator"/> 
      <xsd:element name="element" type="mappableElement"/> 
      <xsd:element name="attribute" type="mappableAttribute"/> 
    </xsd:choice> 
    <xsd:attribute name="table" type="tableName" use="required"/> 
    <xsd:attribute name="action" type="actionType" default="insert"/> 
    <xsd:attribute name="batchSize" type="xsd:short"/> 
  </xsd:complexType> 
 
  <xsd:complexType name="valueMap"> 
    <xsd:annotation> 
      <xsd:documentation> 
         the "map" element is used to define a table mapping by 
         associating an XML type to a relational table. 
         value "map" elements appear within the scope of an  
         "attribute" element, in which case they are implicitly  
         associated to the element or attribute type. 
      </xsd:documentation> 
    </xsd:annotation> 
    <xsd:sequence> 
      <xsd:element ref="generator" minOccurs="0" maxOccurs="unbounded"/> 
    </xsd:sequence> 
    <xsd:attribute name="table" type="tableName" use="required"/> 
    <xsd:attribute name="action" type="actionType" default="insert"/> 
  </xsd:complexType> 
 
  <xsd:complexType name="scopeElement"> 
    <xsd:annotation> 
      <xsd:documentation> 
         The "element" element appearing outside a table mapping  
  (column mappings are not allowed) 
      </xsd:documentation> 
    </xsd:annotation> 
    <xsd:choice maxOccurs="unbounded"> 
      <xsd:element name="map" type="localMap"/> 
      <xsd:element name="element" type="scopeElement"/> 
      <xsd:element name="attribute" type="scopeAttribute"/> 
    </xsd:choice> 
    <xsd:attribute name="name" type="xsd:QName" use="required"/> 
    <xsd:attribute name="map" type="xsd:NCName"/> 
  </xsd:complexType> 
 
  <xsd:complexType name="mappableElement"> 
    <xsd:annotation> 
      <xsd:documentation> 

 36 



Part 12 ! Appendix A - XML Schema for the mapping language 

         The "element" element appearing inside a table mapping 
      </xsd:documentation> 
    </xsd:annotation> 
 <xsd:sequence> 
  <xsd:element ref="generator" minOccurs="0" maxOccurs="1"/> 
  <xsd:choice minOccurs="0" maxOccurs="unbounded"> 
    <xsd:element name="map" type="localMap"/> 
    <xsd:element name="element" type="mappableElement"/> 
    <xsd:element name="attribute" type="mappableAttribute"/> 
     </xsd:choice> 
 </xsd:sequence> 
    <xsd:attribute name="name" type="xsd:QName" use="required"/> 
    <xsd:attribute name="column" type="columnName"/> 
    <xsd:attribute name="ref" type="columnName"/> 
    <xsd:attribute name="map" type="xsd:NCName"/> 
    <xsd:attribute name="inSelect" type="xsd:boolean" default="true"/> 
  </xsd:complexType> 
 
  <xsd:complexType name="scopeAttribute"> 
    <xsd:annotation> 
      <xsd:documentation> 
         The "attribute" element appearing outside a table mapping  
  (column mappings are not allowed) 
      </xsd:documentation> 
    </xsd:annotation> 
    <xsd:sequence> 
      <xsd:element name="map" type="valueMap" minOccurs="0" 
maxOccurs="unbounded"/> 
    </xsd:sequence> 
    <xsd:attribute name="name" type="xsd:QName" use="required" /> 
  </xsd:complexType> 
 
  <xsd:complexType name="mappableAttribute"> 
    <xsd:annotation> 
      <xsd:documentation> 
         The "attribute" element appearing inside a table mapping 
      </xsd:documentation> 
    </xsd:annotation> 
 <xsd:sequence> 
      <xsd:element ref="generator" minOccurs="0" maxOccurs="1"/> 
   <xsd:element name="map" type="valueMap" minOccurs="0" 
maxOccurs="unbounded"/> 
 </xsd:sequence> 
    <xsd:attribute name="name" type="xsd:QName" use="required" /> 
    <xsd:attribute name="column" type="columnName"/> 
    <xsd:attribute name="inSelect" type="xsd:boolean" default="true"/> 
  </xsd:complexType> 
 
  <xsd:element name="generator"> 
    <xsd:annotation> 
      <xsd:documentation> 
         the "generator" element is used to associate a generator to  
         a column of a table. this element can only appear within a  
         table mapping (map element). 
      </xsd:documentation> 
    </xsd:annotation> 
    <xsd:complexType> 
      <xsd:attribute name="column" type="columnName" use="required"/> 

 37 



 Appendix A - XML Schema for the mapping language 

      <xsd:attribute name="ref" type="columnName"/> 
      <xsd:attribute name="variable" type="systemVariable"/> 
      <xsd:attribute name="method" type="xsd:NCName"/> <!-- deprecated --> 
      <xsd:attribute name="class" type="xsd:NCName"/>  
      <xsd:attribute name="inSelect" type="xsd:boolean" default="false"/> 
    </xsd:complexType> 
  </xsd:element> 
 
  <xsd:simpleType name="versionNumber"> 
    <xsd:restriction  base="xsd:decimal"> 
      <xsd:fractionDigits value="1"/> 
    </xsd:restriction> 
  </xsd:simpleType> 
 
  <xsd:simpleType name="actionType"> 
    <xsd:restriction  base="xsd:string"> 
      <xsd:enumeration value="insert"/> 
      <xsd:enumeration value="check"/> 
      <xsd:enumeration value="select"/> 
      <xsd:enumeration value="update"/> 
    </xsd:restriction> 
  </xsd:simpleType> 
 
  <xsd:simpleType name="tableName"> 
    <xsd:restriction  base="xsd:NCName"> 
      <xsd:pattern value="\i[\c-[\.]]*(\.\i[\c-[\.]]+)?"/> 
    </xsd:restriction> 
  </xsd:simpleType> 
 
  <xsd:simpleType name="columnName"> 
    <xsd:restriction  base="xsd:NCName"> 
      <xsd:pattern value="\i[\c-[\.]]*(\.\i[\c-[\.]]*){0,2}"/> 
    </xsd:restriction> 
  </xsd:simpleType> 
 
  <xsd:simpleType name="systemVariable"> 
    <xsd:restriction  base="xsd:string"> 
      <xsd:enumeration value="$QName"/> 
      <xsd:enumeration value="$NamespaceURI"/> 
      <xsd:enumeration value="$LocalName"/> 
      <xsd:enumeration value="$NodeRank"/> 
      <xsd:enumeration value="$NodeValue"/> 
    </xsd:restriction> 
  </xsd:simpleType> 
</xsd:schema> 

 

 38 


	Mapping Reference Guide
	Table of contents
	Abstract
	Introduction
	Overview
	Notations and conventions
	References

	Concepts
	Data model
	XML types
	Mapping XML concepts to relational concepts

	Rules for mapping simple XML types
	Standard conversions
	Implicit conversions
	list and union types

	Rules for mapping complex XML types
	Mapping complex types and complex-type elements to SQL tables
	Mapping simple-type elements and attributes to SQL columns
	Mapping simple-type elements and attributes to SQL tables
	Storing parent-child aggregation in the child table
	Storing 1-1 parent-child aggregation in the parent table
	Controlling the insertion of element data

	Generators
	Rationale for generators
	User-defined generators
	Pre-defined generators
	System variables
	Column references

	The mapping language
	Overview
	The mapping element
	The map element
	The element element
	The attribute element
	The generator element

	Index
	Table of figures
	Appendix A - XML Schema for the mapping language

