Foreword

XQuark Bridge 1.1
Xquery Reference Guide
XQuark Bridge 1.1
XQuery Reference Guide
Document version 1.1
Copyright (2003 Université de Versailles Saint-Quentin.
Copyright (2003-2004 XQuark Group.
All rights reserved.

All Trademarks are owned by their respective owners and are subject to Copyright laws.

Foreword

Status of the W3C references from which this document derives :

XML Schema Part 1: Structures. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
XML Schema Part 2: Datatypes. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
Namespaces in XML. W3C Recommendation 14 January 1999. See http://www.w3.org/TR/1999/REC-xml-names-19990114
XML Information Set. W3C Recommendation 24 October 2001. See http://www.w3.org/TR/2001/REC-xml-infoset-20011024
XML Path Language (XPath) version 1.0. W3C Recommendation 16 November 1999. See http://www.w3.org/TR/1999/REC-xpath-19991116
XQuery 1.0 An XML Query Language. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xquery-20031112
XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xpath-functions-20031112/
XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xpath-datamodel-20031112/

XML Query Use Cases. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xquery-use-cases-20031112/
XQuery 1.0 Formal Semantics. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xquery-semantics-20031112/
XSLT 2.0 and XQuery 1.0 Serialization. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xslt-xquery-serialization-20031112/

This section describes the status of these documents from W3C at the time of their publication. Other documents may supersede these documents. The latest status of these document series is maintained at the W3C.

 DOCVARIABLE "Titre" * MERGEFORMAT

 DOCVARIABLE "Nom" * MERGEFORMAT

Table of contents
1Abstract

1Introduction

1Overview

2Notations and conventions

3References

5XQuery Data Model for XQuark Bridge

5The standard XQuery data model

6Typing in the standard XQuery data model

7The XQuark Bridge data model

7Generated schema components

9Example

13Controlling the XML view generation

13Selecting and filtering relational structures

17Using aliases to rename relational structures

19XQuery queries

19Language specification reference

19Unsupported or partially supported features

19Prolog declarations

20Path expressions

21Sequence expressions

22Arithmetic expressions

22Comparison expressions

22FLWOR expressions

23Conditional expressions

23Expressions on Sequence Types

24Validate expressions

25Supported built-in functions

25Supported build-in functions

26Supported built-in type constructors

27Index

29Appendix A – XML Schema for the XQuark Bridge configuration file

32Appendix B – Complete BNF Grammar

32Named Terminals

33Non-Terminals

Abstract

X

Query is an XML query language designed by the W3C to be broadly applicable across a large variety of native or non-native XML data sources, including structured and semi-structured documents, relational databases, and object repositories. XQuark Bridge provides an implementation compatible with XQuery and applicable to relational data sources. It is a middleware that wraps a relational database into an XML view, which can then be queried using XQuery.

This document is the query reference guide for XQuark Bridge: it describes valid expressions of the language, as well as the specific, relational-backed XML data model XE "Data model" to which the queries are applied.

Introduction

Overview

X

ML has established itself as the standard data exchange format between applications on the Intranet and on the Internet. This has created the need for applications to publish their data in XML. As a large amount of today’s business data is stored in relational databases, a general way of publishing relational data in XML is required. This requirement has been taken into consideration when designing the XQuery language: XQuery is an XML query language designed by the World-Wide Web Consortium
 (W3C) to be broadly applicable across a large variety of native or non-native XML data sources, including structured and semi-structured documents, relational databases, and object repositories. XQuery is currently work in progress at the W3C. This user guide is based on the Working Draft dated November 12, 2003, which comprises four main documents [XQuery 1.0 An XML Query Language], [XQuery 1.0 and XPath 2.0 Functions and Operators], [XQuery 1.0 and XPath 2.0 Data Model] and [XML Query Use Cases].

XQuark Bridge provides an implementation compatible with XQuery and applicable to relational data sources. It does so by defining a generic XML view on top of a relational database schema, and by querying this view using XQuery expressions and built-in functions.

XQuark Bridge provides mechanisms to:

· Expose a subset of a relational schema XE "Configuration :Selection" as an XML database. This XML view exports its metadata information as a strongly-typed XML schema.

· Allow relational tables and views to be queried as collections of XML documents, using XQuery syntax.

· Execute strongly-types XQuery queries over the exposed XML collections.

· Return query results as newly constructed XML documents.

The above mechanisms represent a complete framework for efficiently publishing relational data in XML.

This reference guide is organized in four main sections:

· A description of the XML data model XE "Data model" which is constructed by XQuark Bridge from the underlying relational model, and which defines the XML information available to the query processor.

· A description of the overall syntax used to express XQueries and their evaluation context XE "Expression :Context" .

· A guide to the XQuery language expressions, or more precisely to the subset of the XQuery expressions which is used by XQuark Bridge to query relational data.

· A list of available built-in functions.

Notations and conventions

This section introduces the typography used to present technical information in this manual.

The XQuark Bridge configuration file XE "Configuration" s use a specific XML vocabulary to describe configuration options. In the XML representation, bold-face attribute XE "Data model:Attribute" names indicate a required attribute information item XE "Data model:Item" , and the rest are optional. Where an attribute information item has an enumerated type definition, the values are shown separated by vertical bars; if there is a default value, it is shown following a colon.
The allowed content of the information item XE "Data model:Item" is shown as a grammar fragment, using the Kleene operators ? (0 or 1 occurrence), * (0 or more occurences) and + (1 or more occurrences).

<datasource XE "Configuration :Selection"
....name = xs:string>
....Content: (description?, url, user?, password?,
 substitutions?, catalog*)
</datasource>

The XML Schema that formally defines the XML vocabulary for configuration file XE "Configuration" s is provided in Appendix A - XML Schema for the XQuark Bridge configuration file. This schema is associated to the namespace identified by the following URI: http://www.xquark.org/Bridge/1.0/Datasource.
XQuery expressions are described using grammar productions, based on a basic EBNF notation:

	Query
	::=
	QueryProlog Expr

	QueryProlog
	::=
	(NamespaceDecl
| DefaultNamespaceDecl)*

	NamespaceDecl
	::=
	"namespace" NCName "=" StringLiteral

	DefaultNamespaceDecl
	::=
	"default element XE "Data model:Element" namespace =" StringLiteral

Grammar productions within the body of the manual use only non-terminals, and all terminals are expanded for readability. Some basic non-terminals, defined in [XML Names] (e.g QName or NCName) are not defined in the manual body, but are present in the complete grammar for the XQuery language supported by XQuark Bridge, given in Appendix B – Complete BNF Grammar.

Examples are provided throughout this manual as code listings, for instance:

for $u in collection XE "Input function:Collection" ("USERS")/USERS,
 $i in collection("ITEMS")/ITEMS
where $u/USERID = $i/OFFERED_BY
return
 <result>
 { $u/NAME }
 { $i/DESCRIPTION }
 </result>

Important notes, such as standard compliance notes, are presented as:

Note: The JDBC type used when constructing the XML type represents the native type of the column in the database, not necessarily the one specified in the table creation statement. For instance, Oracle replaces all ANSI column type specifications by its own native types at table creation time.

References

[XML Schema Part 1]
XML Schema Part 1: Structures. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
[XML Schema Part 2]
XML Schema Part 2: Datatypes. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[XML Names]
Namespaces in XML. W3C Recommendation 14 January 1999. See http://www.w3.org/TR/1999/REC-xml-names-19990114
[XML Infoset]
XML Information Set. W3C Recommendation 24 October 2001. See http://www.w3.org/TR/2001/REC-xml-infoset-20011024
[XPath1.0]
XML Path Language (XPath) version 1.0. W3C Recommendation 16 November 1999. See http://www.w3.org/TR/1999/REC-xpath-19991116
[XQuery 1.0 An XML Query Language]
XQuery 1.0 An XML Query Language. W3C Working Draft 30 Avril 2002. See http://www.w3.org/TR/2002/WD-xquery-20020430
[XQuery 1.0 and XPath 2.0 Functions and Operators]
XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xpath-functions-20031112/
[XQuery 1.0 and XPath 2.0 Data Model]
XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xpath-datamodel-20031112/

[XML Query Use Cases]
XML Query Use Cases. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xquery-use-cases-20031112/
[XQuery 1.0 Formal Semantics]
XQuery 1.0 Formal Semantics. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xquery-semantics-20031112/
[XSLT 2.0 and XQuery 1.0 Serialization]
XSLT 2.0 and XQuery 1.0 Serialization. W3C Working Draft 12 November 2003. See http://www.w3.org/TR/2003/WD-xslt-xquery-serialization-20031112/

XQuery Data Model for XQuark Bridge

This section describes the XML view, defined on top of the relational database, which can be queried through XQuark Bridge.

The standard XQuery data model XE "Data model"
XQuery introduces an XML data model XE "Data model" , which defines precisely the information in an XML document that is available to an XQuery processor. It also defines all permissible values of expressions in the XQuery language.

The XQuery data model XE "Data model" extends existing XML data models, such as the ones defined in XML Information Set [XML Infoset] or in XPath 1.0 [XPath1.0] by adding two new features to the model:

· Support for XML Schema types: XML elements, attributes and text nodes can be associated to structured complex type XE "Expression:Typing"

 XE "Data model:Complex type" s and simple data types, as defined in the XML Schema Recommendation (resp. [XML Schema Part 1] and [XML Schema Part 2]).

· Representation of collections of documents and complex elements.

Every value handled by the data model XE "Data model" is a sequence XE "Data model:Sequence" of zero or more items. An item XE "Data model:Item" is either a node XE "Data model:Node" or an atomic value XE "Data model:Atomic value" .

A node XE "Data model:Node" is one of seven node kinds, as in the XPath 1.0 data model XE "Data model" : document, element XE "Data model:Element" , attribute XE "Data model:Attribute" , namespace, processing-instruction, comment, text.

An atomic value XE "Data model:Atomic value" encapsulates an XML Schema simple type XE "Expression:Typing"

 XE "Data model:Simple type" and a corresponding value of that type.

A sequence XE "Data model:Sequence" is an ordered collection XE "Input function:Collection" of nodes, atomic value XE "Data model:Atomic value" s, or any mixture of nodes and atomic values. A sequence cannot be a member of a sequence. A single item XE "Data model:Item" appearing on its own is modeled as a sequence containing one item.

The XQuery data model XE "Data model" can represent various values including not only the input and the output of a query, but all values of expressions used during the intermediate calculations. Examples include the input document or document collection XE "Input function:Collection" (represented as a document node XE "Data model:Node" or a sequence XE "Data model:Sequence" of document nodes), the result of a path expression XE "Expression:XPath" (represented as a sequence of nodes), the result of an arithmetic or a logical expression XE "Expression:Logical" (represented as an atomic value XE "Data model:Atomic value"), a sequence expression resulting in a sequence of integers, dates, QNames or other XML Schema atomic values (represented as a sequence of atomic values), etc.

A complete specification of the XQuery data model XE "Data model" can be obtained in the W3C draft recommendation [XQuery 1.0 and XPath 2.0 Data Model].

Typing in the standard XQuery data model XE "Data model"
The XQuery data model XE "Data model" relies on the XML Information Set obtained after XML Schema validity assessment. XML Schema validity assessment is the process of assessing an XML element XE "Data model:Element" information item XE "Data model:Item" with respect to an XML Schema and augmenting it and some or all of its descendants with properties that provide information about validity and type assignment. The result of schema validity assessment is an augmented Infoset, known as the Post Schema-Validation Infoset, or PSVI. The type information associated to each element node XE "Data model:Node" , attribute XE "Data model:Attribute" node or atomic value XE "Data model:Atomic value" involves schema components of four different kinds: element declaration, attribute declaration, complex type XE "Expression:Typing"

 XE "Data model:Complex type" and simple type XE "Data model:Simple type" , as defined in [XML Schema Part 1].

If validity has been successfully assessed, the item XE "Data model:Item" is guaranteed to be a valid instance of its associated type as defined by XML Schema. If not (either because no schema information was available or because the item is invalid), the type of the item is unknown.

Every node XE "Data model:Node" has a string value, which is the textual content of the node, as in XPath 1.0, and a typed value XE "Expression:Typing"

 XE "Data model:Atomic value" , which is a sequence XE "Data model:Sequence" of atomic values. The typed value for the various kinds of nodes is defined as follows:
· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of a document, namespace, comment, text or processing instruction node XE "Data model:Node" is its string value.
· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of an element XE "Data model:Element" or attribute XE "Data model:Attribute" node XE "Data model:Node" that has no type annotation is its string value.

· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of an element XE "Data model:Element" or attribute XE "Data model:Attribute" node XE "Data model:Node" whose type annotation denotes either a simple type XE "Data model:Simple type" or a complex type XE "Data model:Complex type" with simple content is a sequence XE "Data model:Sequence" of atomic values that is obtained by transforming the string content of the node into the value space of the associated type, as specified in [XML Schema Part 2].

· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of an element XE "Data model:Element" node XE "Data model:Node" whose type annotation denotes a complex type XE "Data model:Complex type" with complex content is not defined, accessing it raises an error.

The XQuark Bridge data model XE "Data model"
The default XQuark Bridge data model XE "Data model" is obtained by mapping relational structures and data into the XQuery data model introduced above. The result is an XML view where :

· The relational structures are exposed as one or several XML schemas, which contain all the schema components that are derived from the relational model. Those components are element XE "Data model:Element" declarations, which describe the XML structure of the content of each published relational table. By default, when accessing a single relational container
, the generated schema does not have a target namespace. When accessing several containers, one XML schema is generated per container, and must necessarily be associated with a user-specified target namespace.

· Each exposed relational table is viewed as a named collection XE "Input function:Collection" of documents, whose name is by default the name of the underlying relational object, optionally prefixed with the name of the relational container to which it belongs. Prefix and name are separated by a dot (e.g. ORDERS.CUSTOMER), as usual in relational databases.

· Each row in the relational table is viewed as a document node XE "Data model:Node" . The document has a top-level element XE "Data model:Element" which is schema-valid with respect to the element declaration generated from the table structure.

XQuark Bridge not only supports relational tables, but also views and synonyms, in a similar way. However, there are some limitations to the use of views and synonyms, as rows in those structures cannot be easily associated to identifiers. Those limitations appear when views or synonyms are used in nested queries, and are further detailed in the FLWR Expressions section of this manual.

XQuark Bridge also provides a way to control the XML view generation, by providing support for filtering and renaming tables and columns. This control is specified through a configuration file XE "Configuration" , whose syntax is detailed in Controlling the XML view generation.

Generated schema components

Each published table is associated to a generated element XE "Data model:Element" declaration, which provides an XML view of the table relational structure. The rules for generating the element declaration are listed below:

· The element XE "Data model:Element" declaration name is by default the name of the table, as internally represented in the database metadata. Unlike some relational databases, XML is case-sensitive, so a table name represented in upper case in the database will have to be used exclusively in upper case in queries. Table names that are not legal XML element names (e.g. those containing ‘$’ or ‘#’ signs) are ignored by XQuark Bridge, unless they are explicitly renamed in the XQuark Bridge configuration file XE "Configuration" , as detailed below. If the container of the table is associated to a target namespace, this namespace is the element declaration namespace, otherwise the element declaration does not have a namespace.

· The element XE "Data model:Element" declaration type is a complex type XE "Expression:Typing"

 XE "Data model:Complex type" , whose content is a sequence XE "Data model:Sequence" containing a nested element declaration for each published column in the table.

· Each nested element XE "Data model:Element" declaration name is by default the name of the column, as internally represented in the database metadata. Column names that are not legal XML element names (e.g. those containing ‘$’ or ‘#’ signs) are ignored by XQuark Bridge, unless they are explicitly renamed in the XQuark Bridge configuration file XE "Configuration" , as detailed below. Nested element declarations are always considered local to their enclosing element, and therefore do not have a namespace.

· Each nested element XE "Data model:Element" declaration type is a predefined XML Schema simple type XE "Expression:Typing"

 XE "Data model:Simple type" , obtained from the column JDBC type according to the table below. When a JDBC type is unsupported, the column is ignored (i.e. no nested element declaration will appear in the complex type XE "Data model:Complex type").

	JDBC Type
	XML type

	ARRAY
	not supported

	BIGINT
	xs:long

	BINARY
	xs:base64Binary (with length attribute)

	BIT
	xs:boolean

	BLOB
	xs: base64Binary (with maxLength attribute)

	CHAR
	xs:string (with length attribute)

	CLOB
	xs:string (with maxLength attribute)

	DATE
	xs:date

	DECIMAL
	xs:decimal (with totalDigits and fractionDigits attributes)

	DISTINCT
	not supported

	DOUBLE
	xs:double

	FLOAT
	xs:double

	INTEGER
	xs:integer

	JAVA_OBJECT
	not supported

	LONGVARBINARY
	xs:base64Binary (with maxLength attribute)

	LONGVARCHAR
	xs:string (with maxLength attribute)

	NULL
	not supported

	NUMERIC
	xs:decimal (with totalDigits and fractionDigits attributes)

	OTHER
	not supported

	REAL
	xs:float

	REF
	not supported

	SMALLINT
	xs:short

	STRUCT
	not supported

	TIME
	xs:time

	TIMESTAMP
	xs:dateTime

	TINYINT
	xs:byte

	VARBINARY
	xs:base64Binary (with maxLength attribute)

	VARCHAR
	xs:string (with maxLength attribute)

Note: The JDBC type used when constructing the XML type represents the native type of the column in the database, not necessarily the one specified in the table creation statement. For instance, Oracle replaces all ANSI column type specifications by its own native types at table creation time.

Example

As an example, consider a relational database used by an online auction. The auction maintains a USERS table containing information on registered users, each identified by a unique userid, who can either offer items for sale or bid on items. An ITEMS table lists items currently or recently for sale, with the userid of the user who offered each item XE "Data model:Item" . A BIDS table contains all bids on record, keyed by the userid of the bidder and the item number of the item to which the bid applies.
The relational model for this example is defined below:

CREATE TABLE USERS (
 USERID CHAR(3) PRIMARY KEY,
 NAME VARCHAR(20) UNIQUE,
 RATING CHAR(1)
);

CREATE TABLE ITEMS (
 ITEMNO CHAR(4) PRIMARY KEY,
 DESCRIPTION VARCHAR(30),
 OFFERED_BY CHAR(3) REFERENCES USERS(USERID),
 START_DATE DATE,
 END_DATE DATE,
 RESERVE_PRICE NUMBER(10)
);

CREATE TABLE BIDS (
 USERID CHAR(3) REFERENCES USERS(USERID),
 ITEMNO CHAR(4) REFERENCES ITEMS(ITEMNO),
 BID NUMBER(10) NOT NULL,
 BID_DATE DATE
);

The data for this example is given in the three tables below:

	USERS

	USERID
	NAME
	RATING

	U01
	Tom Jones
	B

	U02
	Mary Doe
	A

	U03
	Dee Linquent
	D

	U04
	Roger Smith
	C

	U05
	Jack Sprat
	B

	U06
	Rip Van Winkle
	B

	ITEMS

	ITEMNO
	DESCRIPTION
	OFFERED_BY
	START_DATE
	END_DATE
	RESERVE_PRICE

	1001
	Red Bicycle
	U01
	99-01-05
	99-01-20
	40

	1002
	Motorcycle
	U02
	99-02-11
	99-03-15
	500

	1003
	Old Bicycle
	U02
	99-01-10
	99-02-20
	25

	1004
	Tricycle
	U01
	99-02-25
	99-03-08
	15

	1005
	Tennis Racket
	U03
	99-03-19
	99-04-30
	20

	1006
	Helicopter
	U03
	99-05-05
	99-05-25
	50000

	1007
	Racing Bicycle
	U04
	99-01-20
	99-02-20
	200

	1008
	Broken Bicycle
	U01
	99-02-05
	99-03-06
	25

	BIDS

	USERID
	ITEMNO
	BID
	BID_DATE

	U02
	1001
	35
	99-01-07

	U04
	1001
	40
	99-01-08

	U02
	1001
	45
	99-01-11

	U04
	1001
	50
	99-01-13

	U02
	1001
	55
	99-01-15

	U01
	1002
	400
	99-02-14

	U02
	1002
	600
	99-02-16

	U03
	1002
	800
	99-02-17

	U04
	1002
	1000
	99-02-25

	U02
	1002
	1200
	99-03-02

	U04
	1003
	15
	99-01-22

	U05
	1003
	20
	99-02-03

	U01
	1004
	40
	99-03-05

	U03
	1007
	175
	99-01-25

	U05
	1007
	200
	99-02-08

	U04
	1007
	225
	99-02-12

The XML schema generated by XQuark Bridge
 for this example is shown below:

<?xml version='1.0'?>

<schema xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="BIDS">
 <complexType>
 <sequence>
 <element name="USERID" minOccurs="0">
 <simpleType>
 <restriction base="string">
 <length value="3"/>
 </restriction>
 </simpleType>
 </element>
 <element name="ITEMNO" minOccurs="0">
 <simpleType>
 <restriction base="string">
 <length value="4"/>
 </restriction>
 </simpleType>
 </element>
 <element name="BID">
 <simpleType>
 <restriction base="decimal">
 <totalDigits value="10"/>
 <fractionDigits value="0"/>
 </restriction>
 </simpleType>
 </element>
 <element name="BID_DATE"
 minOccurs="0"
 type="dateTime"/>
 </sequence>
 </complexType>
 </element>

 <element name="ITEMS">
 <complexType>
 <sequence>
 <element name="ITEMNO">
 <simpleType>
 <restriction base="string">
 <length value="4"/>
 </restriction>
 </simpleType>
 </element>
 <element name="DESCRIPTION"
 minOccurs="0">
 <simpleType>
 <restriction base="string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>
 </element>
 <element name="OFFERED_BY" minOccurs="0">
 <simpleType>
 <restriction base="string">
 <length value="3"/>
 </restriction>
 </simpleType>
 </element>
 <element name="START_DATE" minOccurs="0"
 type="dateTime"/>
 <element name="END_DATE" minOccurs="0"
 type="dateTime"/>
 <element name="RESERVE_PRICE"
 minOccurs="0">
 <simpleType>
 <restriction base="decimal">
 <totalDigits value="10"/>
 <fractionDigits value="0"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>

 <element name="USERS">
 <complexType>
 <sequence>
 <element name="USERID">
 <simpleType>
 <restriction base="string">
 <length value="3"/>
 </restriction>
 </simpleType>
 </element>
 <element name="NAME" minOccurs="0">
 <simpleType>
 <restriction base="string">
 <maxLength value="20"/>
 </restriction>
 </simpleType>
 </element>
 <element name="RATING" minOccurs="0">
 <simpleType>
 <restriction base="string">
 <length value="1"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>

</schema>

Controlling the XML view generation

As described above, XQuark Bridge publishes a relational schema XE "Configuration :Selection" as a generic, strongly typed XML view, which can then be used as the basis for running XQueries. Although this generic approach is convenient in many situations, there are cases where finer control on the XML view generation is required. Those cases include:

· Applications which access several relational schema XE "Configuration :Selection" s,

· Applications which access only a small fraction of the relational tables in a relational schema XE "Configuration :Selection" ,

· Applications which access tables and columns whose names are not legal XML element XE "Data model:Element" names.

For the benefit of those applications, XQuark Bridge provides configuration file XE "Configuration" s that allow the application designer to better control the generated XML view. Configuration files are written in XML. Each file describes the wrapping of a single relational datasource XE "Configuration :Selection" , defined by the JDBC triple { JDBC URL, user, password }.

Selecting and filtering relational structures

The general structure of a configuration file XE "Configuration" is shown below:

<datasource XE "Configuration :Selection" name="{ Datasource identifier }">
 <description>
 { Optional datasource description }
 </description>
 <url> { JDBC connection string } </url>
 <user> { User name } </user>
 <password> { User password } </password>

 <substitutions>
 <nameCase>
 { lower | upper | mixed }
 </nameCase>
 <character value="{ character }"
 subst="{ substitution XE "Configuration :Renaming" string }"/>
 …
 </substitutions>

 <catalog name="{ Optional catalog name }">
 <schema name="{ Optional schema name }"
 targetNamespace="{ Namespace URI }"
 elementFormDefault="{ qualified
 | unqualified }">
 <includes>
 <table regex="{ Regular expression }"/>
 <table name="{ Table name }"
 alias="{ Table alias }">
 <includes>
 <column
 regex="{ Regular expression }"/>
 <column name="{ Column name }
 alias="{ Column alias }"/>
 </includes>
 <excludes>
 <column
 regex="{ Regular expression }"/>
 <column name="{ Column name }"/>
 </excludes>
 </table>
 </includes>
 <excludes>
 <table regex="{ Regular expression }"/>
 <table name="{ Table name }" />
 </excludes>
 </schema>
 </catalog>
</datasource>

The complete XML Schema for the configuration file XE "Configuration" is given in Appendix A - XML Schema for the XQuark Bridge configuration file.

Three main sections appear in the configuration file XE "Configuration" :

· The datasource XE "Configuration :Selection" declaration,

· The substitutions declaration,

· The selection of the catalogs, schemas, tables and columns to be used in the XML view.

The datasource XE "Configuration :Selection" declaration section is composed of the following elements:

<datasource XE "Configuration :Selection"
....name = xs:string>
....Content: (description?, url, user?, password?,
 substitutions?, catalog*)
</datasource>

<description>
 Content: xs:string
</description>

<url>
 Content: xs:string
</url>

<user>
 Content: xs:string
</user>

<password>
 Content: xs:string
</password>

The role of the above elements and attributes is detailed below:

· The name attribute XE "Data model:Attribute" is an identifier defined by the application designer for this particular datasource XE "Configuration :Selection" .

· The optional description element XE "Data model:Element" is present for documentation purpose.

· The mandatory url element XE "Data model:Element" identifies the database instance to be wrapped.

· The optional user and password elements are used for the connection to the wrapped database instance.

The substitutions section is detailed in the next section.

The selection section is a set of hierarchical elements that represent traditional relational concepts:

<catalog XE "Configuration :Selection"
....name = xs:string>
....Content: schema+
</catalog>

<schema
....name = xs:string
 targetNamespace = xs:anyURI
 elementFormDefault = qualified | unqualified
 : unqualified>
 Content: (includes?, excludes?)
</schema>

<includes>
 Content: table+ | column+
</includes>

<excludes>
 Content: table+ | column+
</excludes>

<table
 name = xs:string
 regex = xs:string
 alias XE "Configuration :Renaming" = xs:NCName>
 Content: (includes?, excludes?)
</table>

<column
 name = xs:string
 regex = xs:string
 alias XE "Configuration :Renaming" = xs:NCName />

The role of the above elements and attributes is detailed below:

· The catalog XE "Configuration :Selection" element XE "Data model:Element" can appear one or several times in the datasource top-level element, and represents a relational catalog in the wrapped database instance. The name attribute XE "Data model:Attribute" is optional and must be omitted if the database does not support the catalog concept: in this latter case, only a single, anonymous catalog element should appear in the configuration file XE "Configuration" . On the other hand, if more than one catalog are to be selected, each catalog element should have a name attribute, which represents the name of the catalog to be selected.

· The schema element XE "Data model:Element" can appear one or several times in a catalog XE "Configuration :Selection" element, and represents a relational schema in the enclosing catalog. The name attribute XE "Data model:Attribute" is optional and must be omitted if the database does not support the schema concept: in this latter case, only a single, anonymous schema element should appear in each catalog element. On the other hand, if more than one schema are to be selected, each schema element should have a name attribute, which represents the name of the schema to be selected. In addition XE "Expression:Arithmetic" , each schema element can have a targetNamespace attribute, which specifies the namespace of the generated element declarations associated to the schema tables. This attribute is optional only when XQuark Bridge accesses a single relational schema. In all other cases, each individual schema must be associated to a target namespace. When a target namespace is specified, an additional optional elementFormDefault attribute can be used to control the qualification of the inner generated element declarations (the ones corresponding to the table columns): if the attribute value is qualified, inner element declarations are qualified with the target namespace; if the attribute value is unqualified, or the attribute is absent, inner element declarations are not qualified.

· The includes element XE "Data model:Element" can appear zero or one time in a schema element (resp. a table element). It is used as a container for the elements that select tables (resp. columns) to be included in the generated XML view. When the includes element is absent, all tables (resp. columns) contained in the enclosing object are included.

· The excludes element XE "Data model:Element" can appear zero or one time in a schema element (resp. a table element). It is used as a container for the elements that select tables (resp. columns) to be excluded in the generated XML view.. Exclusion has higher priority than inclusion: a table which is both included and excluded will not appear in the XML view.

· The table element XE "Data model:Element" can appear one or several times in an includes or excludes element, and is used to select tables, views or synonyms
 in the enclosing schema. One and only one of the name or regex attribute XE "Data model:Attribute" must be present. The name attribute selects the table of the given name in the enclosing schema: if no table corresponding to the name is found, an error is generated. The regex attribute selects all the tables in the enclosing schema that have a name matching the specified regular expression. This regular expression uses the grammar described in [XML Schema Part 2], which is very close to the regular expression syntax of the Perl language. No error is generated if no match is found for the regular expression. When the name attribute is used, the element declaration generated for the table can be further refined by using an includes and/or excludes nested element to specify the columns to be used. This possibility is not available when the regex attribute is used. The use of the alias XE "Configuration :Renaming" attribute is described in next section.
· The column element XE "Data model:Element" can appear one or several times in an includes or excludes element, and is used to select columns in the enclosing table. One and only one of the name or regex attribute XE "Data model:Attribute" must be present. The name attribute selects the column of the given name in the enclosing table: if no column corresponding to the name is found, an error is generated. The regex attribute selects all the columns in the enclosing table that have a name matching the specified regular expression. No error is generated if no match is found for the regular expression. The use of the alias XE "Configuration :Renaming" attribute is described in next section.
Using aliases to rename relational structures

The XQuark Bridge configuration file XE "Configuration" also provides support for renaming relational structures. Renaming can be useful when:

· Table or column names contain characters that are not legal XML element XE "Data model:Element" names.

· Generated element XE "Data model:Element" declarations must match a predefined XML schema.

While both capabilities can be obtained using traditional relational database techniques such as views or synonyms, XQuark Bridge offers an additional level of flexibility through the configuration file XE "Configuration" .

Aliases for table and column names can be specified in two ways:

· Globally, by associating a substitution XE "Configuration :Renaming" string to each unsupported character. XQuark Bridge will automatically substitute the string each time the character is encountered in a table or column name. The case of the generated table or column names can also be controlled globally.

· Locally, by associating an alias XE "Configuration :Renaming" to a specific table or column.

Global substitutions are specified by adding an optional substitutions element XE "Data model:Element" after the datasource XE "Configuration :Selection" declaration section in the configuration file XE "Configuration" .

<substitutions>
 Content: (nameCase?, character*)
</substitutions>

<nameCase>
 Content: text() = mixed | upper | lower : mixed
</nameCase>

<character
 value = xs:string
 subst = xs:string />

This element XE "Data model:Element" contains:

· an optional nameCase element XE "Data model:Element" , which specifies the case management policy: mixed (the default) to preserve the case of the names returned by the database, upper or lower to impose a particular policy.

· one or several character elements, which specify the character to be replaced (the value attribute XE "Data model:Attribute") and the substitution XE "Configuration :Renaming" string (the subst attribute).

Local substitutions are specified by adding an optional alias XE "Configuration :Renaming" attribute XE "Data model:Attribute" to the table or column element XE "Data model:Element" selecting the table or column to be renamed. The value of the attribute is the alias to be used by XQuark Bridge for the relational structure: the generated element declaration associated to the table or column will have the specified alias as name. The alias attribute can only be used in conjunction with the name attribute in table or column elements: structures selected through regular expressions cannot be renamed. Alias values are case-sensitive.

XQuery queries

Language specification reference

The XQuery Language specification implemented by XQuark Bridge is available at http://www.w3.org/TR/2003/WD-xquery-20031112/.

XQuark Bridge only implements a subset of the above draft specification. Rather than repeating the specification contents, this chapter describes the main characteristics of the XQuery Language that are not supported by the product.

Grammar rules are referenced by their number as defined in the specification of the XQuery Language. Unsupported grammar elements are shown in bold. Partially supported grammar elements (i.e. those supported with some restrictions) are shown in italics.

All grammar rules can be found in Appendix B.

Unsupported or partially supported features

Prolog declarations

Variable declarations

External variable declarations are not supported.

	[38]
	VarDecl
	::=
	<"declare" "variable" "$"> VarName TypeDeclaration? (("{" Expr "}") | "external")

Function declarations

External function declarations are not supported.

	[120]
	FunctionDecl
	::=
	<"declare" "function"> <QName "("> ParamList? (")" | (<")" "as"> SequenceType)) (EnclosedExpr | "external")

Functions are always inlined within the expression in which they are called: they are in fact considered as parameterized views by the XQuery parser. This approach induces a few restrictions on the supported expressions within a function body:

· Recursive functions are not supported, even in the case when the recursion is indirect, i.e. when there is a cyclic function call graph.

· Functions should not return expressions that cannot be handled in the where clause of a FLWOR. For instance, conditional expressions or computed element constructors should not be used in function return values.

Path expressions

Filter steps

Filter steps are only supported as the first step in a path expression. Furthermore, predicates are not allowed in a filter step.

	[71]
	StepExpr
	::=
	AxisStep | FilterStep

	[73]
	FilterStep
	::=
	PrimaryExpr Predicates

Forward axes

The following and following-sibling forward axes are not supported.

	[89]
	ForwardAxis
	::=
	<"child" "::">
| <"descendant" "::">
| <"attribute" "::">
| <"self" "::">
| <"descendant-or-self" "::">
| <"following-sibling" "::">
| <"following" "::">

Reverse axes

The only supported reverse axis is parent.

	[90]
	ReverseAxis
	::=
	<"parent" "::">
| <"ancestor" "::">
| <"preceding-sibling" "::">
| <"preceding" "::">
| <"ancestor-or-self" "::">

Predicates

The XPath concepts of context position (position of the context item, i.e. the current node, in the current nodeset) and context size (size of the current nodeset) are not supported. Thus, predicate expressions returning numeric values are not supported either.
	[77]
	Predicates
	::=
	("[" Expr "]")*

Kind tests

Only the text() and node() kind tests are supported in step expressions. Note however that all kind tests can by used in sequence type expressions.
	[128]
	KindTest
	::=
	DocumentTest
| ElementTest
| AttributeTest
| PITest
| CommentTest
| TextTest
| AnyKindTest

Sequence expressions

Sequence constructors

Sequence construction can only be used for literals, within the where clause of FLWOR expressions.

	[40]
	Expr
	::=
	ExprSingle ("," ExprSingle)*

Range expressions

Construction of a sequence of values using a range expression is not supported.

	[62]
	RangeExpr
	::=
	AdditiveExpr ("to" AdditiveExpr)?

Set operations

Union, intersection and difference of sequence expressions are not supported.

	[66]
	UnionExpr
	::=
	IntersectExceptExpr (("union" | "|") IntersectExceptExpr)*

	[67]
	IntersectExceptExpr
	::=
	ValueExpr (("intersect" | "except") ValueExpr)*

Arithmetic expressions

Integral division

The idiv operator is not supported.

	[64]
	MultiplicativeExpr
	::=
	UnaryExpr (("*" | "div" | "idiv" | "mod") UnaryExpr)*

Comparison expressions

Node comparison

Node comparison is not supported.

	[61]
	ComparisonExpr
	::=
	RangeExpr ((ValueComp
| GeneralComp
| NodeComp) RangeExpr)?

	[84]
	NodeComp
	::=
	"is" | "<<" | ">>"

Constructors

Computed constructors

Computed constructors are only supported in the return clause of a FLWOR expression of the main module.

	[81]
	ComputedConstructor
	::=
	CompElemConstructor
| CompAttrConstructor
| CompDocConstructor
| CompTextConstructor
| CompXmlPI
| CompXmlComment
| CompNSConstructor

FLWOR expressions

Positional variable

Positional variables are not available.

	[43]
	ForClause
	::=
	<"for" "$"> VarName TypeDeclaration? PositionalVar? "in" ExprSingle ("," "$" VarName TypeDeclaration? PositionalVar? "in" ExprSingle)*

	[44]
	PositionalVar
	::=
	"at" "$" VarName

Stable order

Stable order is not supported.

	[47]
	OrderByClause
	::=
	(<"order" "by"> | <"stable" "order" "by">) OrderSpecList

Order modifier

Only the ascending and descending modifiers are supported.

	[50]
	OrderModifier
	::=
	("ascending" | "descending")? (<"empty" "greatest"> | <"empty" "least">)? ("collation" StringLiteral)?

Conditional expressions

Conditional (If-Then-Else) expressions can only be used in the return clause of a FLWOR expression of the main module. The condition expression should involve only simple path expressions starting with a variable, literals and built-in functions using the same type of expressions as arguments. Expressions used in the then and else clauses should not contain nested sub-queries.

	[54]
	IfExpr
	::=
	<"if" "("> Expr ")" "then" ExprSingle "else" ExprSingle

Expressions on Sequence Types

Typeswitch

Type switch expressions are not supported.

	[41]
	ExprSingle
	::=
	FLWORExpr
| QuantifiedExpr
| TypeswitchExpr
| IfExpr
| OrExpr

	[52]
	TypeswitchExpr
	::=
	<"typeswitch" "("> Expr ")" CaseClause+ "default" ("$" VarName)? "return" ExprSingle

	[53]
	CaseClause
	::=
	"case" ("$" VarName "as")? SequenceType "return" ExprSingle

Instance of

The expression type cannot be tested.

	[57]
	InstanceofExpr
	::=
	TreatExpr (<"instance" "of"> SequenceType)?

Casting operations

Static and dynamic casting is not supported.
	[58]
	TreatExpr
	::=
	CastableExpr (<"treat" "as"> SequenceType)?

	[59]
	CastableExpr
	::=
	CastExpr (<"castable" "as"> SingleType)?

	[60]
	CastExpr
	::=
	ComparisonExpr (<"cast" "as"> SingleType)?

Validate expressions

Explicit validation expressions are not supported. Note however that implicit validation, based on the global validation mode, in-scope schema definitions and contructed element QNames, is fully supported.

	[68]
	ValueExpr
	::=
	ValidateExpr | PathExpr

	[78]
	ValidateExpr
	::=
	(<"validate" "{"> | (<"validate" "global"> "{") | (<"validate" "context"> SchemaContextLoc "{") | (<"validate" SchemaMode> SchemaContext? "{")) Expr "}"

	[79]
	SchemaContext
	::=
	("context" SchemaContextLoc) | "global"

Supported built-in functions

Supported build-in functions

The following functions are supported by XQuark Bridge:

· fn:abs

· fn:avg

· fn:ceiling

· fn:collection

· fn:concat

· fn:contains

· fn:count

· fn:current-date

· fn:current-datetime

· fn:current-time

· fn:data

· fn:deep-equals

· fn:distinct-values

· fn:empty

· fn:ends-with

· fn:exists

· fn:false

· fn:floor

· fn:matches

· fn:max

· fn:min

· fn:not

· fn:number

· fn:round

· fn:starts-with

· fn:string-length

· fn:substring

· fn:sum

· fn:true

· fn:upper-case

Supported built-in type constructors

The following type constructors are supported by XQuark Bridge:

· xs:date

· xs:datetime

· xs:decimal

· xs:double

· xs:float

· xs:integer

· xs:string

· xs:time

 Note that those constructors can only take string literals as parameters.

Index

Configuration
2, 7, 8, 13, 14, 16, 17, 18, 29

Configuration

Renaming
13, 16, 17, 18, 29

Selection
1, 2, 7, 13, 14, 15, 16, 17, 18, 30

Data model
1, 2, 5, 6, 7

Atomic value
5, 6

Attribute
2, 5, 6, 15, 16, 17, 18, 29

Complex type
5, 6, 8

Element
3, 5, 6, 7, 8, 13, 15, 16, 17, 18, 30

Item
2, 5, 6, 9

Node
5, 6, 7

Sequence
5, 6, 8, 30

Simple type
5, 6, 8

Expression

Arithmetic
16

Logical
6

Typing
5, 6, 8

XPath
6

Expression

Context
2

Input function

Collection
3, 5, 6, 7

Appendix A – XML Schema for the XQuark Bridge configuration file XE "Configuration"
<?xml version="1.0"?>
<schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ds="http://www.xquark.org/Bridge/1.0/Datasource"
 targetNamespace=
 " http://www.xquark.org/Bridge/1.0/Datasource ">

 <simpleType name="caseType">
 <restriction base="string">
 <enumeration value="mixed"/>
 <enumeration value="lower"/>
 <enumeration value="upper"/>
 </restriction>
 </simpleType>

 <simpleType name="elementFormType">
 <restriction base="string">
 <enumeration value="qualified"/>
 <enumeration value="unqualified"/>
 </restriction>
 </simpleType>

 <simpleType name="charType">
 <restriction base="string">
 <length value="1"/>
 </restriction>
 </simpleType>

 <simpleType name="substType">
 <restriction base="string">
 <pattern value="[\c-[:]]*" />
 </restriction>
 </simpleType>

 <complexType name="relationalStructType">
 <attribute XE "Data model:Attribute" name="regex" type="string" />
 <attribute name="name" type="string" />
 </complexType>

 <complexType name="aliasedRelationalStructType">
 <complexContent>
 <extension base="ds:relationalStructType">
 <attribute name="alias XE "Configuration :Renaming" " type="NCName" />
 </extension>
 </complexContent>
 </complexType>

 <complexType name="excludedTableType">
 <complexContent>
 <extension base="ds:relationalStructType"/>
 </complexContent>
 </complexType>

 <complexType name="excludedColumnType">
 <complexContent>
 <extension base="ds:relationalStructType"/>
 </complexContent>
 </complexType>

 <complexType name="includedColumnType">
 <complexContent>
 <extension base="ds:aliasedRelationalStructType"/>
 </complexContent>
 </complexType>

 <complexType name="includedTableType">
 <complexContent>
 <extension base="ds:aliasedRelationalStructType">
 <sequence XE "Data model:Sequence" >
 <element XE "Data model:Element" name="includes" minOccurs="0">
 <complexType>
 <sequence>
 <element name="column" maxOccurs="unbounded"
 type="ds:includedColumnType" />
 </sequence>
 </complexType>
 </element>
 <element name="excludes" minOccurs="0">
 <complexType>
 <sequence>
 <element name="column" maxOccurs="unbounded"
 type="ds:excludedColumnType" />
 </sequence>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="datasource XE "Configuration :Selection" ">
 <complexType>
 <sequence>
 <element name="description" minOccurs="0" type="string" />
 <element name="url" type="string" />
 <element name="user" type="string" />
 <element name="password" type="string"/>
 <element name="substitutions" minOccurs="0">
 <complexType>
 <sequence>
 <element name="nameCase" minOccurs="0"
 type="ds:caseType" />
 <element name="character" minOccurs="0"
 maxOccurs="unbounded">
 <complexType>
 <attribute name="value" type="ds:charType" />
 <attribute name="subst" type="ds:substType" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="catalog" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="schema" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="includes" minOccurs="0">
 <complexType>
 <sequence>
 <element name="table"
 maxOccurs="unbounded"
 type="ds:includedTableType" />
 </sequence>
 </complexType>
 </element>
 <element name="excludes" minOccurs="0">
 <complexType>
 <sequence>
 <element name="table"
 maxOccurs="unbounded"
 type="ds:excludedTableType" />
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="string"
 use="optional" />
 <attribute name="targetNamespace" type="anyURI"
 use="optional" />
 <attribute name="elementFormDefault"
 type="ds:elementFormType"
 use="optional" />
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="string" use="optional" />
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="string"/>
 </complexType>
 </element>
</schema>

Appendix B – Complete BNF Grammar

Note 1 : Rule numbers are those used in XQuery language specifications.

Note 2 : Bold underlined items are not supoorted in the current version.

Named Terminals

	[1]
	Pragma
	::=
	"(::" "pragma" QName PragmaContents* "::)"

	[2]
	MUExtension
	::=
	"(::" "extension" QName ExtensionContents* "::)"

	[3]
	ExprComment
	::=
	"(:" (ExprCommentContent | ExprComment)* ":)"

	[4]
	ExprCommentContent
	::=
	Char

	[5]
	PragmaContents
	::=
	Char

	[6]
	ExtensionContents
	::=
	Char

	[7]
	IntegerLiteral
	::=
	Digits

	[8]
	DecimalLiteral
	::=
	("." Digits) | (Digits "." [0-9]*)

	[9]
	DoubleLiteral
	::=
	(("." Digits) | (Digits ("." [0-9]*)?)) ("e" | "E") ("+" | "-")? Digits

	[10]
	StringLiteral
	::=
	('"' (PredefinedEntityRef | CharRef | ('"' '"') | [^"&])* '"') | ("'" (PredefinedEntityRef | CharRef | ("'" "'") | [^'&])* "'")

	[11]
	S
	::=
	[http://www.w3.org/TR/REC-xml#NT-S] XML

	[12]
	SchemaMode
	::=
	"lax" | "strict" | "skip"

	[13]
	SchemaGlobalTypeName
	::=
	"type" "(" QName ")"

	[14]
	SchemaGlobalContext
	::=
	QName | SchemaGlobalTypeName

	[15]
	SchemaContextStep
	::=
	QName

	[16]
	Digits
	::=
	[0-9]+

	[17]
	EscapeQuot
	::=
	'"' '"'

	[18]
	PITarget
	::=
	NCName

	[19]
	NCName
	::=
	[http://www.w3.org/TR/REC-xml-names/#NT-NCName] Names

	[20]
	VarName
	::=
	QName

	[21]
	Qname
	::=
	[http://www.w3.org/TR/REC-xml-names/#NT-QName] Names

	[22]
	PredefinedEntityRef
	::=
	"&" ("lt" | "gt" | "amp" | "quot" | "apos") ";"

	[23]
	HexDigits
	::=
	([0-9] | [a-f] | [A-F])+

	[24]
	CharRef
	::=
	"&#" (Digits | ("x" HexDigits)) ";"

	[25]
	EscapeApos
	::=
	"''"

	[26]
	Char
	::=
	[http://www.w3.org/TR/REC-xml#NT-Char] XML

	[27]
	ElementContentChar
	::=
	Char - [{}<&]

	[28]
	QuotAttContentChar
	::=
	Char - ["{}<&]

	[29]
	AposAttContentChar
	::=
	Char - ['{}<&]

Non-Terminals
	[30]
	Module
	::=
	VersionDecl? (MainModule | LibraryModule)

	[31]
	MainModule
	::=
	Prolog QueryBody

	[32]
	LibraryModule
	::=
	ModuleDecl Prolog

	[33]
	ModuleDecl
	::=
	<"module" "namespace"> NCName "=" StringLiteral Separator

	[34]
	Prolog
	::=
	((NamespaceDecl
| XMLSpaceDecl
| DefaultNamespaceDecl
| DefaultCollationDecl
| BaseURIDecl
| SchemaImport
| ModuleImport
| VarDecl
| ValidationDecl
| FunctionDecl) Separator)*

	[35]
	Separator
	::=
	";"

	[36]
	VersionDecl
	::=
	<"xquery" "version" StringLiteral> Separator

	[37]
	ModuleImport
	::=
	<"import" "module"> ("namespace" NCName "=")? StringLiteral <"at" StringLiteral>?

	[38]
	VarDecl
	::=
	<"declare" "variable" "$"> VarName TypeDeclaration? (("{" Expr "}") | "external")

	[39]
	QueryBody
	::=
	Expr

	[40]
	Expr
	::=
	ExprSingle ("," ExprSingle)*

	[41]
	ExprSingle
	::=
	FLWORExpr
| QuantifiedExpr
| TypeswitchExpr
| IfExpr
| OrExpr

	[42]
	FLWORExpr
	::=
	(ForClause | LetClause)+ HintClause? WhereClause? OrderByClause? "return" ExprSingle

	[43]
	ForClause
	::=
	<"for" "$"> VarName TypeDeclaration? PositionalVar? "in" ExprSingle ("," "$" VarName TypeDeclaration? PositionalVar? "in" ExprSingle)*

	[44]
	PositionalVar
	::=
	"at" "$" VarName

	[45]
	LetClause
	::=
	<"let" "$"> VarName TypeDeclaration? ":=" ExprSingle ("," "$" VarName TypeDeclaration? ":=" ExprSingle)*

	[46]
	WhereClause
	::=
	"where" Expr

	[47]
	OrderByClause
	::=
	(<"order" "by"> | <"stable" "order" "by">) OrderSpecList

	[48]
	OrderSpecList
	::=
	OrderSpec ("," OrderSpec)*

	[49]
	OrderSpec
	::=
	ExprSingle OrderModifier

	[50]
	OrderModifier
	::=
	("ascending" | "descending")? (<"empty" "greatest"> | <"empty" "least">)? ("collation" StringLiteral)?

	[51]
	QuantifiedExpr
	::=
	(<"some" "$"> | <"every" "$">) VarName TypeDeclaration? "in" ExprSingle ("," "$" VarName TypeDeclaration? "in" ExprSingle)* "satisfies" ExprSingle

	[52]
	TypeswitchExpr
	::=
	<"typeswitch" "("> Expr ")" CaseClause+ "default" ("$" VarName)? "return" ExprSingle

	[53]
	CaseClause
	::=
	"case" ("$" VarName "as")? SequenceType "return" ExprSingle

	[54]
	IfExpr
	::=
	<"if" "("> Expr ")" "then" ExprSingle "else" ExprSingle

	[55]
	OrExpr
	::=
	AndExpr ("or" AndExpr)*

	[56]
	AndExpr
	::=
	InstanceofExpr ("and" InstanceofExpr)*

	[57]
	InstanceofExpr
	::=
	TreatExpr (<"instance" "of"> SequenceType)?

	[58]
	TreatExpr
	::=
	CastableExpr (<"treat" "as"> SequenceType)?

	[59]
	CastableExpr
	::=
	CastExpr (<"castable" "as"> SingleType)?

	[60]
	CastExpr
	::=
	ComparisonExpr (<"cast" "as"> SingleType)?

	[61]
	ComparisonExpr
	::=
	RangeExpr ((ValueComp
| GeneralComp
| NodeComp) RangeExpr)?

	[62]
	RangeExpr
	::=
	AdditiveExpr ("to" AdditiveExpr)?

	[63]
	AdditiveExpr
	::=
	MultiplicativeExpr (("+" | "-") MultiplicativeExpr)*

	[64]
	MultiplicativeExpr
	::=
	UnaryExpr (("*" | "div" | "idiv" | "mod") UnaryExpr)*

	[65]
	UnaryExpr
	::=
	("-" | "+")* UnionExpr

	[66]
	UnionExpr
	::=
	IntersectExceptExpr (("union" | "|") IntersectExceptExpr)*

	[67]
	IntersectExceptExpr
	::=
	ValueExpr (("intersect" | "except") ValueExpr)*

	[68]
	ValueExpr
	::=
	ValidateExpr | PathExpr

	[69]
	PathExpr
	::=
	("/" RelativePathExpr?)
| ("//" RelativePathExpr)
| RelativePathExpr

	[70]
	RelativePathExpr
	::=
	StepExpr (("/" | "//") StepExpr)*

	[71]
	StepExpr
	::=
	AxisStep | FilterStep

	[72]
	AxisStep
	::=
	(ForwardStep | ReverseStep) Predicates

	[73]
	FilterStep
	::=
	PrimaryExpr Predicates

	[74]
	ContextItemExpr
	::=
	"."

	[75]
	PrimaryExpr
	::=
	Literal | VarRef | ParenthesizedExpr | ContextItemExpr | FunctionCall | Constructor

	[76]
	VarRef
	::=
	"$" VarName

	[77]
	Predicates
	::=
	("[" Expr "]")*

	[78]
	ValidateExpr
	::=
	(<"validate" "{"> | (<"validate" "global"> "{") | (<"validate" "context"> SchemaContextLoc "{") | (<"validate" SchemaMode> SchemaContext? "{")) Expr "}"

	[79]
	SchemaContext
	::=
	("context" SchemaContextLoc) | "global"

	[80]
	Constructor
	::=
	DirElemConstructor
| ComputedConstructor
| XmlComment
| XmlPI
| CdataSection

	[81]
	ComputedConstructor
	::=
	CompElemConstructor
| CompAttrConstructor
| CompDocConstructor
| CompTextConstructor
| CompXmlPI
| CompXmlComment
| CompNSConstructor

	[82]
	GeneralComp
	::=
	"=" | "!=" | "<" | "<=" | ">" | ">="

	[83]
	ValueComp
	::=
	"eq" | "ne" | "lt" | "le" | "gt" | "ge"

	[84]
	NodeComp
	::=
	"is" | "<<" | ">>"

	[85]
	ForwardStep
	::=
	(ForwardAxis NodeTest) | AbbrevForwardStep

	[86]
	ReverseStep
	::=
	(ReverseAxis NodeTest) | AbbrevReverseStep

	[87]
	AbbrevForwardStep
	::=
	"@"? NodeTest

	[88]
	AbbrevReverseStep
	::=
	".."

	[89]
	ForwardAxis
	::=
	<"child" "::">
| <"descendant" "::">
| <"attribute" "::">
| <"self" "::">
| <"descendant-or-self" "::">
| <"following-sibling" "::">
| <"following" "::">

	[90]
	ReverseAxis
	::=
	<"parent" "::">
| <"ancestor" "::">
| <"preceding-sibling" "::">
| <"preceding" "::">
| <"ancestor-or-self" "::">

	[91]
	NodeTest
	::=
	KindTest | NameTest

	[92]
	NameTest
	::=
	QName | Wildcard

	[93]
	Wildcard
	::=
	"*"
| <NCName ":" "*">
| <"*" ":" NCName>

	[94]
	Literal
	::=
	NumericLiteral | StringLiteral

	[95]
	NumericLiteral
	::=
	IntegerLiteral | DecimalLiteral | DoubleLiteral

	[96]
	ParenthesizedExpr
	::=
	"(" Expr? ")"

	[97]
	FunctionCall
	::=
	<QName "("> (ExprSingle ("," ExprSingle)*)? ")"

	[98]
	DirElemConstructor
	::=
	"<" QName AttributeList ("/>" | (">" ElementContent* "</" QName S? ">"))

	[99]
	CompDocConstructor
	::=
	<"document" "{"> Expr "}"

	[100]
	CompElemConstructor
	::=
	(<"element" QName "{"> | (<"element" "{"> Expr "}" "{")) Expr? "}"

	[101]
	CompNSConstructor
	::=
	<"namespace" NCName "{"> Expr "}"

	[102]
	CompAttrConstructor
	::=
	(<"attribute" QName "{"> | (<"attribute" "{"> Expr "}" "{")) Expr? "}"

	[103]
	CompXmlPI
	::=
	(<"processing-instruction" NCName "{"> | (<"processing-instruction" "{"> Expr "}" "{")) Expr? "}"

	[104]
	CompXmlComment
	::=
	<"comment" "{"> Expr "}"

	[105]
	CompTextConstructor
	::=
	<"text" "{"> Expr? "}"

	[106]
	CdataSection
	::=
	"<![CDATA[" Char* "]]>"

	[107]
	XmlPI
	::=
	"<?" PITarget Char* "?>"

	[108]
	XmlComment
	::=
	"<!--" Char* "-->"

	[109]
	ElementContent
	::=
	ElementContentChar
| "{{"
| "}}"
| DirElemConstructor
| EnclosedExpr
| CdataSection
| CharRef
| PredefinedEntityRef
| XmlComment
| XmlPI

	[110]
	AttributeList
	::=
	(S (QName S? "=" S? AttributeValue)?)*

	[111]
	AttributeValue
	::=
	('"' (EscapeQuot | QuotAttrValueContent)* '"')
| ("'" (EscapeApos | AposAttrValueContent)* "'")

	[112]
	QuotAttrValueContent
	::=
	QuotAttContentChar
| CharRef
| "{{"
| "}}"
| EnclosedExpr
| PredefinedEntityRef

	[113]
	AposAttrValueContent
	::=
	AposAttContentChar
| CharRef
| "{{"
| "}}"
| EnclosedExpr
| PredefinedEntityRef

	[114]
	EnclosedExpr
	::=
	"{" Expr "}"

	[115]
	XMLSpaceDecl
	::=
	<"declare" "xmlspace"> ("preserve" | "strip")

	[116]
	DefaultCollationDecl
	::=
	<"declare" "default" "collation"> StringLiteral

	[117]
	BaseURIDecl
	::=
	<"declare" "base-uri"> StringLiteral

	[118]
	NamespaceDecl
	::=
	<"declare" "namespace"> NCName "=" StringLiteral

	[119]
	DefaultNamespaceDecl
	::=
	(<"declare" "default" "element"> | <"declare" "default" "function">) "namespace" StringLiteral

	[120]
	FunctionDecl
	::=
	<"declare" "function"> <QName "("> ParamList? (")" | (<")" "as"> SequenceType)) (EnclosedExpr | "external")

	[121]
	ParamList
	::=
	Param ("," Param)*

	[122]
	Param
	::=
	"$" VarName TypeDeclaration?

	[123]
	TypeDeclaration
	::=
	"as" SequenceType

	[124]
	SingleType
	::=
	AtomicType "?"?

	[125]
	SequenceType
	::=
	(ItemType OccurrenceIndicator?)
| <"empty" "(" ")">

	[126]
	AtomicType
	::=
	QName

	[127]
	ItemType
	::=
	AtomicType | KindTest | <"item" "(" ")">

	[128]
	KindTest
	::=
	DocumentTest
| ElementTest
| AttributeTest
| PITest
| CommentTest
| TextTest
| AnyKindTest

	[129]
	ElementTest
	::=
	<"element" "("> ((SchemaContextPath ElementName)
| (ElementNameOrWildcard ("," TypeNameOrWildcard "nillable"?)?))? ")"

	[130]
	AttributeTest
	::=
	<"attribute" "("> ((SchemaContextPath AttributeName)
| (AttribNameOrWildcard ("," TypeNameOrWildcard)?))? ")"

	[131]
	ElementName
	::=
	QName

	[132]
	AttributeName
	::=
	QName

	[133]
	TypeName
	::=
	QName

	[134]
	ElementNameOrWildcard
	::=
	ElementName | "*"

	[135]
	AttribNameOrWildcard
	::=
	AttributeName | "*"

	[136]
	TypeNameOrWildcard
	::=
	TypeName | "*"

	[137]
	PITest
	::=
	<"processing-instruction" "("> (NCName | StringLiteral)? ")"

	[138]
	DocumentTest
	::=
	<"document-node" "("> ElementTest? ")"

	[139]
	CommentTest
	::=
	<"comment" "("> ")"

	[140]
	TextTest
	::=
	<"text" "("> ")"

	[141]
	AnyKindTest
	::=
	<"node" "("> ")"

	[142]
	SchemaContextPath
	::=
	<SchemaGlobalContext "/"> <SchemaContextStep "/">*

	[143]
	SchemaContextLoc
	::=
	(SchemaContextPath? QName) | SchemaGlobalTypeName

	[144]
	OccurrenceIndicator
	::=
	"?" | "*" | "+"

	[145]
	ValidationDecl
	::=
	<"declare" "validation"> SchemaMode

	[146]
	SchemaImport
	::=
	<"import" "schema"> SchemaPrefix? StringLiteral <"at" StringLiteral>?

	[147]
	SchemaPrefix
	::=
	("namespace" NCName "=") | (<"default" "element"> "namespace")

� The W3C is an organisation, widely supported by the industry, in charge of defining Internet-related standards, including XML and derived standards.

� A relational container is usually called a schema or a catalog� XE "Configuration :Selection" �, depending on the relational database vendor.

� This schema corresponds to the metadata information returned by the Oracle database for the relational model shown above. Other databases might create slightly different XML schemas.

� In the following discussion, table is used to represent a relational table, view or catalog� XE "Configuration :Selection" �.

iii

