Foreword

XQuark Bridge 1.0
Xquery Reference Guide
XQuark Bridge 1.0
XQuery Reference Guide
Document version 1.0
Copyright (2003 Université de Versailles Saint-Quentin.
Copyright (2003 XQuark Group.
All rights reserved.

All Trademarks are owned by their respective owners and are subject to Copyright laws.

Foreword

Status of the W3C references from which this document derives :

XML Schema Part 1: Structures. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
XML Schema Part 2: Datatypes. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
Namespaces in XML. W3C Recommendation 14 January 1999. See http://www.w3.org/TR/1999/REC-xml-names-19990114
XML Information Set. W3C Recommendation 24 October 2001. See http://www.w3.org/TR/2001/REC-xml-infoset-20011024
XML Path Language (XPath) version 1.0. W3C Recommendation 16 November 1999. See http://www.w3.org/TR/1999/REC-xpath-19991116
XQuery 1.0 An XML Query Language. W3C Working Draft 30 Avril 2002. See http://www.w3.org/TR/2002/WD-xquery-20020430
XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working Draft 30 April 2002. See http://www.w3.org/TR/2002/WD-xquery-operators-20020430/
XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft 30 April 2002. See http://www.w3.org/TR/2002/WD-query-datamodel-20020430/
XML Query Use Cases. W3C Working Draft 30 April 2002. See http://www.w3.org/TR/2002/WD-xmlquery-use-cases-20020430
XQuery 1.0 Formal Semantics. W3C Working Draft 26 March 2002. See http://www.w3.org/TR/2002/WD-query-semantics-20020326/
This section describes the status of these documents from W3C at the time of their publication. Other documents may supersede these documents. The latest status of these document series is maintained at the W3C.

 DOCVARIABLE "Titre" * MERGEFORMAT

 DOCVARIABLE "Nom" * MERGEFORMAT

Table of contents
1Abstract

3Introduction

3Overview

4Notations and conventions

6References

9XQuery Data Model for XQuark Fusion

9The standard XQuery data model

10Typing in the standard XQuery data model

11The XQuark Fusion data model

11Sources

12Selecting the sources

12Configuration File

13Connection String

15The XQuery Prolog

19XQuery Expressions

19Basics

19Expression Context

22Expression Typing

25Primary Expressions

25Literals

26Variables

27Parenthesized Expressions

27Function Calls

28Comments

28Path Expressions

30Steps

33Predicates

34Unabbreviated Syntax

35Abbreviated Syntax

36Arithmetic Expressions

38Comparison Expressions

39Logical Expressions

41Constructors

42Element Constructors

44Other Constructors and Comments

44FLWOR Expressions

49Sorting Expressions

52Quantified Expressions

55Built-in XQuery Functions

55Accessors

56string

56data

57Constructors and Functions on Numbers

57Numeric Types

58Numeric Constructors

60Functions on Numeric Values

61Constructors and Functions on Strings

61String Constructor

62Functions on String Values

66Constructors and Functions on Booleans

66Boolean Constructors

66Functions on Boolean Values

67Constructors and Functions on Dates and Times

67Date and Time Types

67Date and Time Constructors

69Functions on Nodes

69Functions on Nodes

69Functions on Sequences

70Functions on Sequences

71Aggregate Functions

73Functions that Generate Sequences

74Context Functions

75Index

77Appendix A – XML Schema for the XQuark Fusion configuration file

79Appendix B – Complete BNF Grammar

85Appendix C – XQuery 1.0: An XML Query Language

Abstract

X

Query is an XML query language designed by the W3C to be broadly applicable across a large variety of native or non-native XML data sources, including structured and semi-structured documents, relational databases, and object databases. XQuark Fusion provides an implementation compatible with XQuery and applicable to heterogeneous data distributed accross the enterprise. It is a middleware that wraps multiple and heterogeneous data sources into collections of XML documents, which can then be queried using XQuery.

This document is the query reference guide for XQuark Fusion: it describes valid expressions of the language, as well as the specific XML data model XE "Data model" to which the queries are applied.

Introduction

Overview

XML has established itself as the standard data exchange format between applications on the Intranet and on the Internet. This has created the need for applications to publish their data in XML. XQuery is an XML query language designed by the World-Wide Web Consortium
 (W3C) to be broadly applicable across a large variety of native or non-native XML data sources, including structured and semi-structured documents, relational databases, and object databases. XQuery is currently work in progress at the W3C. This user guide is based on the Working Draft dated April 30, 2002, which comprises four main documents [XQuery 1.0 An XML Query Language], [XQuery 1.0 and XPath 2.0 Functions and Operators], [XQuery 1.0 and XPath 2.0 Data Model] and [XML Query Use Cases].

XQuark Fusion provides an implementation compatible with XQuery and applicable to various data sources (including XML documents and relational databases). It does so by defining collections of documents, and by querying these documents using XQuery expressions and built-in functions.

XQuark Fusion provides mechanisms to:

· Expose several heterogeneous data sources as a single, virtual XML database (made of collections of XML documents). This XML view exports its metadata information as a strongly-typed XML schema.

· Execute strongly-types XQuery queries over the exposed XML collections.

· Return query results as newly constructed XML documents.

The above mechanisms represent a complete framework for efficiently publishing enterprise information in XML.

This reference guide is organized in four main sections:

· A description of the XML data model XE "Data model" which is constructed by XQuark Fusion from the underlying data sources, and which defines the XML information available to the query processor.

· A description of the overall syntax used to express XQueries and their evaluation context XE "Expression :Context" .

· A guide to the XQuery language expressions, or more precisely to the subset of the XQuery expressions which is used by XQuark Fusion to query data sources.

· A list of available built-in functions.

Notations and conventions

This section introduces the typography used to present technical information in this manual.

XQuery expressions are described using grammar productions, based on a basic EBNF notation:

	Query
	::=
	QueryProlog Expr

	QueryProlog
	::=
	(NamespaceDecl
| DefaultNamespaceDecl)*

	NamespaceDecl
	::=
	"namespace" NCName "=" StringLiteral

	DefaultNamespaceDecl
	::=
	"default element XE "Data model:Element" namespace =" StringLiteral

Grammar productions within the body of the manual use only non-terminals, and all terminals are expanded for readability. Some basic non-terminals, defined in [XML Names] (e.g. QName or NCName) are not defined in the manual body, but are present in the complete grammar for the XQuery language supported by XQuark Fusion, given in Appendix A – Complete BNF Grammar.

This document defines constructors and other functions that apply to one or more data types. Each constructor XE "Function:Constructor"

 XE "Expression:Constructor" and function is defined by specifying its signature, a description of each of its arguments, and its semantics.

Each function's signature is presented in a form like this:

function-name(parameter-type $parameter-name,…) => return-type
In this notation, function-name is the name of the function whose signature is being specified. If the function takes no parameters, then the name is followed by an empty set of parentheses: (); otherwise, the name is followed by a parenthesized list of parameter declarations, each declaration specifying the static type of the parameter and a non-normative name used to reference the parameter when the function's semantics are specified. If there are two or more parameter declarations, they are separated by a comma. The return-type specifies the static type of the value returned by the function.

The function name is a QName and must adhere to its syntactic conventions. Following [XPath1.0], function names are composed of English words separated by hyphens,"-". If a function name contains a [XML Schema Part 2] datatype name, this may have inter-capitalized spelling and is used in the function name as such. For example, current-dateTime XE "Function:Current date and time" . The functions discussed in this manual are contained in the namespace for built-in functions, namely http://www.w3.org/2002/04/xquery-functions. In XQuark Fusion 1.0, this namespace is the default namespace XE "Namespace declaration:Default" for function names, thus function names do not need to be prefixed.

As is customary, the parameter type name indicates that the function accepts arguments of that type in that position. If the parameter type name is one of the simple type XE "Expression:Typing"

 XE "Data model:Simple type" s defined in [XML Schema Part 2] the function also accepts arguments with types derived from that type. These may be one of the derived types in [XML Schema Part 2] or they may be user-derived types.

Some functions accept the empty sequence XE "Data model:Sequence" as an argument and some may return the empty sequence. This is indicated in the function signature by following the parameter type name with a question mark:

function-name(parameter-type? $parameter-name) => return-type?

In this manual, the namespace prefixes xs: and xsi: are considered to be bound to the XML Schema namespaces http://www.w3.org/2001/XMLSchema and http://www.w3.org/2001/XMLSchema-instance, respectively. In some cases, where the meaning is clear and namespaces are not important to the discussion, built-in XML Schema datatypes such as integer and string will be used without a namespace prefix.

Examples are provided throughout this manual as code listings, for instance:

for $u in collection XE "Input function:Collection" ("USERS")/USERS,
 $i in collection("ITEMS")/ITEMS
where $u/USERID = $i/OFFERED_BY
return
 <result>
 { $u/NAME }
 { $i/DESCRIPTION }
 </result>

Important notes, such as standard compliance notes, are presented as:

Compatibility note: …

References

[XML Schema Part 1]
XML Schema Part 1: Structures. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
[XML Schema Part 2]
XML Schema Part 2: Datatypes. W3C Recommendation 2 May 2001. See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[XML Names]
Namespaces in XML. W3C Recommendation 14 January 1999. See http://www.w3.org/TR/1999/REC-xml-names-19990114
[XML Infoset]
XML Information Set. W3C Recommendation 24 October 2001. See http://www.w3.org/TR/2001/REC-xml-infoset-20011024
[XPath1.0]
XML Path Language (XPath) version 1.0. W3C Recommendation 16 November 1999. See http://www.w3.org/TR/1999/REC-xpath-19991116
[XQuery 1.0 An XML Query Language]
XQuery 1.0 An XML Query Language. W3C Working Draft 30 April 2002. See http://www.w3.org/TR/2002/WD-xquery-20020430
[XQuery 1.0 and XPath 2.0 Functions and Operators]
XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working Draft 30 April 2002. See http://www.w3.org/TR/2002/WD-xquery-operators-20020430/
[XQuery 1.0 and XPath 2.0 Data Model]
XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft 30 April 2002. See http://www.w3.org/TR/2002/WD-query-datamodel-20020430/
[XML Query Use Cases]
XML Query Use Cases. W3C Working Draft 30 April 2002. See http://www.w3.org/TR/2002/WD-xmlquery-use-cases-20020430
[XQuery 1.0 Formal Semantics]
XQuery 1.0 Formal Semantics. W3C Working Draft 26 March 2002. See http://www.w3.org/TR/2002/WD-query-semantics-20020326/
XQuery Data Model for XQuark Fusion

This section describes the XQuark Fusion data model, which can be queried through XQuery.

The standard XQuery data model XE "Data model"
XQuery introduces an XML data model XE "Data model" , which defines precisely the information in an XML document that is available to an XQuery processor. It also defines all permissible values of expressions in the XQuery language.

The XQuery data model XE "Data model" extends existing XML data models, such as the ones defined in XML Information Set [XML Infoset] or in XPath 1.0 [XPath1.0] by adding two new features to the model:

· Support for XML Schema types: XML elements, attributes and text nodes can be associated to structured complex type XE "Expression:Typing"

 XE "Data model:Complex type" s and simple data types, as defined in the XML Schema Recommendation (resp. [XML Schema Part 1] and [XML Schema Part 2]).

· Representation of collections of documents and complex elements.

Every value handled by the data model XE "Data model" is either a sequence XE "Data model:Sequence" of zero or more items, or an error. An item XE "Data model:Item" is either a node XE "Data model:Node" or an atomic value XE "Data model:Atomic value" .

A node XE "Data model:Node" is one of seven node kinds, as in the XPath 1.0 data model XE "Data model" : document, element XE "Data model:Element" , attribute XE "Data model:Attribute" , namespace, processing-instruction, comment, text.

An atomic value XE "Data model:Atomic value" encapsulates an XML Schema simple type XE "Expression:Typing"

 XE "Data model:Simple type" and a corresponding value of that type.

A sequence XE "Data model:Sequence" is an ordered collection XE "Input function:Collection" of nodes, atomic value XE "Data model:Atomic value" s, or any mixture of nodes and atomic values. A sequence cannot be a member of a sequence. A single item XE "Data model:Item" appearing on its own is modeled as a sequence containing one item.

The error value XE "Expression:Error"

 XE "Data model:Error" is a distinguished value used to identify error conditions.

The XQuery data model XE "Data model" can represent various values including not only the input and the output of a query, but all values of expressions used during the intermediate calculations. Examples include the input document or document collection XE "Input function:Collection" (represented as a document node XE "Data model:Node" or a sequence XE "Data model:Sequence" of document nodes), the result of a path expression XE "Expression:XPath" (represented as a sequence of nodes), the result of an arithmetic or a logical expression XE "Expression:Logical" (represented as an atomic value XE "Data model:Atomic value"), a sequence expression resulting in a sequence of integers, dates, QNames or other XML Schema atomic values (represented as a sequence of atomic values), etc.

A complete specification of the XQuery data model XE "Data model" can be obtained in the W3C draft recommendation [XQuery 1.0 and XPath 2.0 Data Model].

Typing in the standard XQuery data model XE "Data model"
The XQuery data model XE "Data model" relies on the XML Information Set obtained after XML Schema validity assessment. XML Schema validity assessment is the process of assessing an XML element XE "Data model:Element" information item XE "Data model:Item" with respect to an XML Schema and augmenting it and some or all of its descendants with properties that provide information about validity and type assignment. The result of schema validity assessment is an augmented Infoset, known as the Post Schema-Validation Infoset, or PSVI. The type information associated to each element node XE "Data model:Node" , attribute XE "Data model:Attribute" node or atomic value XE "Data model:Atomic value" involves schema components of four different kinds: element declaration, attribute declaration, complex type XE "Expression:Typing"

 XE "Data model:Complex type" and simple type XE "Data model:Simple type" , as defined in [XML Schema Part 1].

If validity has been successfully assessed, the item XE "Data model:Item" is guaranteed to be a valid instance of its associated type as defined by XML Schema. If not (either because no schema information was available or because the item is invalid), the item is associated with the permissive predefined XML Schema types xs:anyType (in the case of element XE "Data model:Element" nodes) or xs:anySimpleType (in the case of attribute XE "Data model:Attribute" nodes and atomic value XE "Data model:Atomic value" s).

Every node XE "Data model:Node" has a typed value XE "Expression:Typing"

 XE "Data model:Atomic value" , which is a sequence XE "Data model:Sequence" of atomic values. The typed value for the various kinds of nodes is defined as follows:

· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of a document, namespace, comment, or processing instruction node XE "Data model:Node" is the error value XE "Expression:Error"

 XE "Data model:Error" .
· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of a text node XE "Data model:Node" is the string content of the node, as an instance of xs:anySimpleType.

· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of an element XE "Data model:Element" or attribute XE "Data model:Attribute" node XE "Data model:Node" that has no type annotation is a sequence XE "Data model:Sequence" of atomic values that is stored in the Data Model.

· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of an element XE "Data model:Element" or attribute XE "Data model:Attribute" node XE "Data model:Node" whose type annotation denotes either a simple type XE "Data model:Simple type" or a complex type XE "Data model:Complex type" with simple content is a sequence XE "Data model:Sequence" of atomic values that is obtained by transforming the string content of the node into the value space of the associated type, as specified in [XML Schema Part 2].

· The typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of an element XE "Data model:Element" node XE "Data model:Node" whose type annotation denotes a complex type XE "Data model:Complex type" with complex content is the error value XE "Expression:Error"

 XE "Data model:Error" .

The XQuark Fusion data model XE "Data model"
Sources

The XQuark Fusion data model is organized by sources. A source represents either an XQuark Bridge entity, a XQuark Fusion entity or an XML document. Whenever possible, to each source is associated one or several schemas and a path set. A path set is divided into collections, each of them possibly referencing the root node of a schema.

For more information on the XQuark Bridge data model please refer to the [XQuark Bridge XQuery Reference Guide].

Documents are viewed as a special source having no path set and optionally a schema.

Selecting the sources

The behavior of the XQuark Fusion component depends on the selection of its sub elements.

Configuration File

The configuration file enables to describe the Fusion component and its sub elements (for now only XQuark Bridge or XQuark Fusion components).

This file contains information on the XQuark Fusion component :

· Type, the only type supported yet is ‘mediator’

· Name, the name of the component

· Launcher type, the only type supported yet is ‘jvm’

· Specific optional characteristics, not used yet

and on its sub elements :

· Name, the name of the sub element

· Driver class, the class of the sub element, for now mediator or extractor

· Connection string, a string containing information on how to connect or/and to configure the sib element.

A configuration file example :

<accessor xmlns="http://www.xquark.org/Mediator" type="mediator" name="Mediator1">

<launcher type="jvm"/>
<specific>
</specific>

<subaccessors>

<subaccessor name="WrapperSQL1">

<driver>org.xquark.extractor.ExtractorDriver</driver>

<connection>xdbc:xquark:extractor:

file:e:/wincvs/qa/mediatordebug/ACC-WSQL1.xml</connection>

</subaccessor>

<subaccessor name="WrapperSQL2">

<driver>org.xquark.extractor.ExtractorDriver</driver>

<connection>xdbc: xquark:extractor:

file:e:/wincvs/qa/mediatordebug/ACC-WSQL2.xml</connection>

</subaccessor>

<subaccessor name="WrapperSQL3">

<driver>org.xquark.extractor.ExtractorDriver</driver>

<connection>xdbc: xquark:extractor:

file:e:/wincvs/qa/mediatordebug/ACC-WSQL3.xml</connection>

</subaccessor>

</subaccessors>

</accessor>

Connection String

The connection string contains the description of the sub element connection characteristics. It is a concatenation, separated by semi colons, of :

· The protocol description, for now it can only be ‘xdbc’,

· The vendor description, for now it can only be ‘xquark’,

· The source type, for now it only can be either ‘extractor’ or ‘mediator’,

· The configuration file or the jdbc connection string

Examples :
xdbc:xquark:extractor:jdbc:oracle:thin:@darkvador:1521:orcl;
xdbc:xquark:extractor:jdbc:microsoft:sqlserver://Nt4b3i:1433;SelectMethod=cursor
xdbc: xquark:extractor:file:e:/wincvs/qa/mediatordebug/ACC-WSQL3.xml
The complete XML Schema for the configuration file XE "Configuration" is given in Appendix A - XML Schema for the XQuark Fusion configuration file.

The XQuery Prolog

The Query Prolog is a series of declarations that affect query processing. The Query Prolog is used to define namespace prefixes that are used in the query expression.

	Query
	::=
	QueryProlog Expr

	QueryProlog
	::=
	(NamespaceDecl
| DefaultNamespaceDecl)*

	NamespaceDecl
	::=
	"namespace" NCName "=" StringLiteral

	DefaultNamespaceDecl
	::=
	"default element XE "Data model:Element" namespace =" StringLiteral

A namespace declaration XE "Namespace declaration" defines a namespace prefix and associates it with a namespace URI, adding the (prefix, URI) pair to the set of in-scope namespaces. The namespace URI must be a valid URI, and may not be an empty string. The namespace declaration is in scope for the rest of the query in which it is declared. Consider the following query:

namespace foo = "http://www.foo.com"
<foo:bar> Lentils </foo:bar>

In the query result, the newly created node XE "Data model:Node" is in the namespace associated with the namespace URI http://www.foo.com. The use of short prefixes as placeholders for longer namespace URIs is in line with the approach specified in [XML Names].

In XQuark Fusion 1.0, namespace URIs will either be:

· the namespaces associated to the XML Schemas imported from data sources, or

· the namespaces associated to the XML Schemas imported in the query prolog, or

· namespaces defining the structures of elements constructed in query results.

In element XE "Data model:Element" constructors, namespace declaration XE "Namespace declaration" attributes also associate a namespace with a prefix, adding a (prefix, URI) pair to the set of in-scope namespaces. In the data model XE "Data model" , a namespace declaration is not an attribute XE "Data model:Attribute" , and it will not be retrieved by queries that return the attributes of an element. Namespace declarations are in scope within their containing element. Nested elements and attributes inherit the in-scope namespaces of their parents. The following query creates the same result as the previous query.

<foo:bar xmlns:foo="http://www.foo.com">
 Lentils
</foo:bar>

Because namespace declaration XE "Namespace declaration" s are in-scope within their containing element XE "Data model:Element" , they may be used in expressions that occur within an element constructor XE "Function:Constructor"

 XE "Expression:Constructor" , as in the following query.

<foo:bar xmlns:foo="http://www.foo.com">
 { /foo:bing }
</foo:bar>

Names are compared on the basis of the expanded name (see [XML Names] for this and other namespace terms), not the QName. When element XE "Data model:Element" or attribute XE "Data model:Attribute" names are compared, they are considered identical if the local part and namespace URI match. Namespace prefixes are disregarded in name comparisons.

It is invalid to redefine already existing namespace prefixes.

{-- Error: attempt to redefine 'xx' --}
namespace xx = "http://www.foo.com"
namespace xx = "http://www.bar.com"
/xx:bing

It is also invalid to use a QName with a namespace prefix that has not been declared. The following query is also semantically invalid.

{-- Error: use of undeclared namespace prefix --}
/xx:bing

Namespace declaration attributes may redefine a namespace prefix within a given scope. The following query is valid.

namespace xx = "http://www.fe.com"
<xx:bar xmlns:xx = "http://www.fi.com">
 <xx:bing xmlns:xx = "http://www.fo.com">
 One
 </xx:bing>
 <xx:bing xmlns:xx = "http://www.fu.com">
 Two
 </xx:bing>
 <xx:bing> Three </xx:bing>
</xx:bar>

The result of the above query is as follows.

<xx:bar xmlns:xx = "http://www.fi.com">
 <xx:bing xmlns:xx = "http://www.fo.com">
 One
 </xx:bing>
 <xx:bing xmlns:xx = "http://www.fu.com">
 Two
 </xx:bing>
 <xx:bing> Three </xx:bing>
</xx:bar>

A default namespace XE "Namespace declaration:Default" declaration can be used to define the namespace URI to be associated with unprefixed element XE "Data model:Element" names. default element namespace defines a namespace URI that is associated with unprefixed names of elements.

Compatibility note: The XQuery draft standard also defines a default namespace XE "Namespace declaration:Default" for unprefixed function names. In XQuark Fusion 1.0, this default namespace is always associated to the built-in XQuery functions URI, http://www.w3.org/2002/04/xquery-operators.

If no default element XE "Data model:Element" namespace is in effect, unqualified names of elements and types are in no namespace. Unqualified attribute XE "Data model:Attribute" names are always in no namespace, since XQuery provides no way to declare a default namespace XE "Namespace declaration:Default" for attributes.

The following example illustrates a default element XE "Data model:Element" namespace:

default element namespace = "http://www.foo.com"
<bar> Lentils </bar>

The result of the above query is shown below. Note that the name of the newly created element XE "Data model:Element" is in the namespace associated with the namespace URI http://www.foo.com, even though no namespace prefix occurs in the query.

<bar xmlns = "http://www.foo.com"> Lentils </bar>

XQuery Expressions

Basics

The basic building block of XQuery is the expression. The language provides several kinds of expressions which may be constructed from keywords, symbols, and operands. In general, the operands of an expression are other expressions. XQuery is a functional language which allows various kinds of expressions to be nested. It is also a strongly-typed language in which the operands of various expressions, operators, and functions must conform to designated types. The following production defines valid top-level XQuery expressions:

	Expr
	::=
	PrimaryExpr
| CommentExpr
| PathExpr
| AdditiveExpr
| Constructor
| FLWORExpr
| SortExpr

The value of an expression is either a sequence XE "Data model:Sequence" of items (nodes or atomic value XE "Data model:Atomic value" s) belonging to the XQuery Data Model, or the special error value XE "Expression:Error"

 XE "Data model:Error" , which indicates that an error has been encountered during the evaluation of an expression. Except as noted in this document, if any operand of an expression is the error value, the value of the expression is also the error value.

Like XML, XQuery is a case-sensitive language. All keywords in XQuery use lower-case characters.

Expression Context

The expression context XE "Expression :Context" for a given expression consists of all the information that can affect the result of the expression. This information is organized into two categories called the static context and the evaluation context.

Static Context

The static context XE "Expression :Context" of an expression is defined as all information that is available during static analysis of the expression, prior to its evaluation. This information can be used to decide whether the expression contains a static error.

In XQuery, the information in the static context XE "Expression :Context" is provided by declarations in the query prolog (except as noted below). Static context consists of the following components:

· In-scope namespaces. This is a set of (prefix, URI) pairs. The in-scope namespaces are used for resolving prefixes used in QNames within the expression.
· Default namespace for element XE "Data model:Element" and type names. This is a namespace URI. This namespace is used for any unprefixed QName appearing in a position where an element or type name is expected.

· Default namespace for function names. This is a namespace URI. This namespace is used for any unprefixed QName appearing as the function name in a function call XE "Expression:Function call" . In XQuark Fusion 1.0, it is always bound to the namespace of the core XQuery functions and operators (http://www.w3.org/2002/04/xquery-operators).

· In-scope variables. This is a set of (QName, type) pairs. It defines the set of variables that have been declared and are available for reference within the XPath expression XE "Expression :XPath" . The QName represents the name of the variable XE "Expression :Variable" , and the type represents its static data type. Unlike the other parts of the static context XE "Expression :Context" , variable types are not declared in the query prolog. Instead, they are derived from static analysis of the expressions in which the variables are bound.

Evaluation Context

The evaluation context XE "Expression :Context" of an expression is defined as information that is available at the time the expression is evaluated. The evaluation context consists of all the components of the static context, and the additional components listed below.

The first component of the dynamic context (context item XE "Data model:Item") is called the focus XE "Expression :Context" of the expression. The focus enables the processor to keep track of which nodes are being processed by the expression.

The focus XE "Expression :Context" for the outermost expression is supplied by the environment in which the expression is evaluated. Certain language constructs, notably the path expression XE "Expression:XPath" E1/E2, the filter expression E1[E2], and the ordering expression E1 sortby E2, create a new focus for the evaluation of a sub-expression. In these constructs, E2 is evaluated once for each item XE "Data model:Item" in the sequence XE "Data model:Sequence" that results from evaluating E1. Each time E2 is evaluated, it is evaluated with a different focus. The focus for evaluating E2 is referred to below as the inner focus, while the focus for evaluating E1 is referred to as the outer focus. The inner focus exists only while E2 is being evaluated. When this evaluation is complete, evaluation of the containing expression continues with its original focus unchanged.

· The context item XE "Data model:Item" is the item currently being processed. An item is either an atomic value XE "Data model:Atomic value" or a node XE "Data model:Node" . When the context item is a node, it can also be referred to as the context node XE "Expression :Context" . The context item is returned by the expression ".". When an expression E1/E2, E1[E2] or E2 sortby E2 is evaluated, each item in the sequence XE "Data model:Sequence" obtained by evaluating E1 becomes the context item in the inner focus for an evaluation of E2.
· Dynamic variables. This is a set of (QName, type, value) triples. It contains the same QNames as the in-scope variables in the static context XE "Expression :Context" for the expression. Each QName is associated with the dynamic type and value of the corresponding variable XE "Expression :Variable" . The dynamic type associated with a variable may be more specific than the static type associated with the same variable. The value of a variable is, in general, a sequence XE "Data model:Sequence" . The dynamic types and values of variables are provided by execution of the XQuery expressions in which the variables are bound.

· Current date and time. This information represents a point in time during processing of a query. It can be retrieved by the current-dateTime XE "Function:Current date and time" function. If invoked multiple times during the execution of a query, this function always returns the same result.

· Input sequence XE "Data model:Sequence" . The input sequence XE "Input function:Input sequence" is sequence of nodes that can be accessed by the input function. It might be thought of as an "implicit input". The content of the input sequence is determined in an implementation-dependent way: in the case of XQuark Fusion 1.0, it is the empty sequence, as there is no defined default collection.

Compatibility note: The XQuery draft standard defines three additional components in the focus XE "Expression :Context" , namely context document, context position and context size. Those components, inherited from the XPath1.0 standard, are not available in XQuark Fusion 1.0.

Input Functions

XQuery defines special functions that provide access to input data. These functions are of particular importance because they provide the only way in which an expression can reference a document or a collection XE "Input function:Collection" of documents.

The input sequence XE "Input function:Input sequence" is a part of the evaluation context XE "Expression :Context" for an expression. The input function returns the input sequence XE "Data model:Sequence" . For example, the expression input()/customer returns all the customer elements that are children of nodes in the input sequence. In Fusion 2.0, the input sequence is the empty sequence.

The collection XE "Input function:Collection" function returns the nodes found in a collection. In Fusion 2.0, a collection is a named, user-defined container in which documents are stored. For example, the expression collection(“CUSTOMERS”)/customer returns all the customer elements that are children of document nodes in the CUSTOMERS collection.

Compatibility note: The XQuery draft standard defines an additional input function, called document. This function is not available in Fusion 2.0.

Expression Typing

XQuery is a strongly typed language with a type system based on [XML Schema Part 1]. The built-in types of XQuery include the node XE "Data model:Node" kinds of XML (such as element XE "Data model:Element" , attribute XE "Data model:Attribute" , and text nodes) and the built-in atomic types of [XML Schema Part 2] (such as xs:integer and xs:string). Additional complex type XE "Expression:Typing"

 XE "Data model:Complex type" s are defined in XML Schema documents stored in the Fusion.

When the type of a value is not appropriate for the context in which it is used, a type exception XE "Expression:Error" is raised. Any XQuery expression that raises a type exception returns the error value XE "Data model:Error" .

In Fusion 2.0, types are associated with values in one of the following ways:

· A literal XE "Expression:Literal" value has a type; for example, the type of the value 47 is xs:integer.
· The constructor XE "Function:Constructor"

 XE "Expression:Constructor" functions described in [XQuery 1.0 and XPath 2.0 Functions and Operators] return typed value XE "Expression:Typing"

 XE "Data model:Atomic value" s; for example, date("2002-05-31") returns a value of type xs:date.

· When an instance of the Data Model is constructed from the database, it is associated to its XML Schema type, as defined in the Post-Schema Validation Infoset..

· Some functions, such as data(), extract typed value XE "Expression:Typing"

 XE "Data model:Atomic value" s from nodes of the Data Model, preserving the types of these values.

Type Checking

XQuery provides two kinds of type checking XE "Expression:Typing" , called static type checking and dynamic type checking.

Static type checking XE "Expression:Typing" is performed during the query analysis phase (also known as "compile time.") Static type checking of an expression is based on the expression itself and on the in-scope schema definitions. Static type checking does not depend on the actual values found in any input document. The purpose of static type checking is to provide early detection of type errors and to compute the type of a query result.

During static type checking XE "Expression:Typing" , each expression is assigned a static type. In some cases, the static type is derived from the lexical form of the expression; for example, the static type of the literal XE "Expression:Literal" 5 is xs:integer. In other cases, the static type of an expression is inferred according to rules based on the static types of its operands; for example, the static type of the expression size < 5 is xs:boolean.. The rules for inferring the static types of various expressions are described in Erreur ! Source du renvoi introuvable.. During the analysis phase, if an operand of an expression is found to have a static type that is not appropriate for that operand, a static error is raised. If static type checking raises no errors and assigns a static type T to an expression, then execution of the expression on valid input data is guaranteed to produce either a value of type T or the error value XE "Expression:Error"

 XE "Data model:Error" .

Dynamic type checking XE "Expression:Typing" is performed during the query execution phase (also known as "run time.") Dynamic checking depends on the actual values found in input documents. At run time, a dynamic type is associated with each value as it is computed. The dynamic type of a value may be more specific than the static type of the expression that computed it (for example, the static type of an expression might be "zero or more integers or strings," but at run time its value may have the dynamic type "integer.") If an operand of an expression is found to have a dynamic type that is not appropriate for that operand, a type exception XE "Expression:Error" is raised.

It is possible for static type checking XE "Expression:Typing" of an expression to raise a static type error, even though the expression might evaluate successfully on some valid input data. For example, an expression might contain a function that requires an element XE "Data model:Element" as its parameter, and static type checking might infer the static type of the function parameter to be an optional element. In this case, a static type error would result, even though the function call XE "Expression:Function call" would be successful for input data in which the optional element is present.

It is also possible for an expression to return the error value XE "Expression:Error"

 XE "Data model:Error" , even though static type checking XE "Expression:Typing" of the expression raised no error. For example, an expression may contain a constructor XE "Function:Constructor"

 XE "Expression:Constructor" of an integer from a string, which is statically valid. However, if the actual value of the string at run time cannot be cast into an integer, the error value will result.

If an implementation can determine by static analysis that an expression will necessarily return the error value XE "Expression:Error"

 XE "Data model:Error" (for example, because it contains a division XE "Expression:Arithmetic" by the constant zero), the implementation is allowed to report this error at query analysis time (as well as at query execution time).

Type Conversions

Some expressions do not require their operands to exactly match the expected type. For example, function parameters expect a value of a particular type, but allow some basic conversions to be performed, such as extraction of atomic value XE "Data model:Atomic value" s from nodes, promotion of numeric values, and implicit casting of untyped values. Other operators that provide special conversion rules include arithmetic operators and value comparisons.

The following numerical type promotions are permitted:

· A value of type xs:decimal can be promoted to the type xs:float.

· A value of type xs:float can be promoted to the type xs:double.

· A value of a derived type can be promoted to its base type. As an example of this rule, a value of the derived type xs:integer can be promoted to its base type xs:decimal.

Type conversions sometimes depend on a process called atomization XE "Expression:Atomization" , which is used when an optional atomic value XE "Data model:Atomic value" is expected. When atomization is applied to a given value, the result is either a single atomic value, an empty sequence XE "Data model:Sequence" , or a type exception XE "Expression:Error" . Atomization is defined as follows:

· If the value is a single atomic value XE "Data model:Atomic value" or an empty sequence XE "Data model:Sequence" , atomization XE "Expression:Atomization" simply returns the value.
· If the value is a single node XE "Data model:Node" , the typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of the node is extracted and returned; however, if the typed value is a sequence XE "Data model:Sequence" containing more than one item XE "Data model:Item" , a type exception XE "Expression:Error" is raised.

· In any other case, atomization XE "Expression:Atomization" raises a type exception XE "Expression:Error" .

Primary Expressions

Primary expressions are the basic primitives of the language. They include literals, variables, function call XE "Expression:Function call" s, and the use of parentheses to control precedence of operators.

	PrimaryExpr
	::=
	Literal
| FunctionCall
| Variable
| ParenthesizedExpr

Literals

A literal XE "Expression:Literal" is a direct syntactic representation of an atomic value XE "Data model:Atomic value" . XQuery supports two kinds of literals: string literals and numeric literals.

	Literal
	::=
	NumericLiteral | StringLiteral

	NumericLiteral
	::=
	IntegerLiteral
| DecimalLiteral
| DoubleLiteral

	IntegerLiteral
	::=
	[0-9]+

	DecimalLiteral
	::=
	("." [0-9]+) | ([0-9]+ "." [0-9]*)

	DoubleLiteral
	::=
	(("." [0-9]+)
 | ([0-9]+ ("." [0-9]*)?))
([e] | [E]) ([+] | [-])? [0-9]+

	StringLiteral
	::=
	(["] ([^"])* ["])
| (['] ([^'])* ['])

The value of a string literal XE "Expression:Literal" is a singleton sequence XE "Data model:Sequence" containing an item XE "Data model:Item" whose primitive type is xs:string and whose value is the string denoted by the characters between the delimiting quotation marks.

The value of a numeric literal XE "Expression:Literal" containing no "." and no e or E character is a singleton sequence XE "Data model:Sequence" containing an item XE "Data model:Item" whose type is xs:integer and whose value is obtained by parsing the numeric literal according to the rules of the xs:integer datatype. The value of a numeric literal containing "." but no e or E character is a singleton sequence containing an item whose primitive type is xs:decimal and whose value is obtained by parsing the numeric literal according to the rules of the xs:decimal datatype. The value of a numeric literal containing an e or E character is a singleton sequence containing an item whose primitive type is xs:double and whose value is obtained by parsing the numeric literal according to the rules of the xs:double datatype.

Here are some examples of literal XE "Expression:Literal" expressions:

· "12.5" denotes the string containing the characters '1', '2', '.', and '5'.
· 12 denotes the integer value twelve.

· 12.5 denotes the decimal value twelve and one half.

· 125E2 denotes the double value twelve thousand, five hundred.

Values of other XML Schema built-in types can be constructed by calling the constructor XE "Function:Constructor"

 XE "Expression:Constructor" for the given type. The constructors for XML Schema built-in types are defined in Built-in XQuery Functions. For example:

· true() and false() return the boolean values true and false, respectively.
· integer("12") returns the integer value twelve.

· date("2001-08-25") returns an item XE "Data model:Item" whose type is xs:date and whose value represents the date 25th August 2001.

Variables

A variable XE "Expression :Variable" evaluates to the value to which the variable's NCName is bound in the evaluation context XE "Expression :Context" . If the variable's NCName is not bound, the value of the variable is the error value XE "Expression:Error"

 XE "Data model:Error" . Variables can be bound by clauses in for expressions and quantified expression XE "Expression:Quantified" s.

	Variable
	::=
	"$" NCName

Parenthesized Expressions

Parentheses may be used to enforce a particular evaluation order in expressions that contain multiple operators. For example, the expression (2 + 4) * 5 evaluates to thirty, since the parenthesized expression (2 + 4) is evaluated first and its result is multiplied by five. Without parentheses, the expression 2 + 4 * 5 evaluates to twenty-two, because the multiplication XE "Expression:Arithmetic" operator has higher precedence than the addition operator.

	ParenthesizedExpr
	::=
	"(" Expr ")"

Function Calls

A function call XE "Expression:Function call" consists of a QName followed by a parenthesized list of zero or more expressions. In Fusion 2.0, the QName must represent a built-in function. As Fusion 2.0 automatically defines the built-in function namespace as the default namespace XE "Namespace declaration:Default" for functions, built-in function names can always be used without prefix. The expressions inside the parentheses provide the arguments of the function call. The number of arguments must equal the number of formal parameters in the function's signature; otherwise a static error is raised.

	FunctionCall
	::=
	QName "(" (Expr ("," Expr)*)? ")"

A function call XE "Expression:Function call" expression is evaluated as follows:

· Each argument expression is evaluated, producing an argument value.
· Each argument value is converted to the declared type of the corresponding function parameter, using the function conversion rules listed below.

· The function is executed using the converted argument values. The result is a value of the function's declared return type.

The function conversion rules are used to convert an argument value or a return value to its required type; that is, to the declared type of the function parameter or return. The function conversion rules are as follows:

· If the required type is an atomic type:
· Atomization is applied to the given value. If the resulting atomic value XE "Data model:Atomic value" is of type xs:anySimpleType, an attempt is made to cast it to the required type; if the cast fails, the function call XE "Expression:Function call" returns the error value XE "Expression:Error"

 XE "Data model:Error" . If the atomic value has a type that can be promoted to the required type using the promotion rules described in Type Conversions, the promotion is done. After applying the above rules, if the resulting value does not conform to the required type, the function call returns the error value.

· If the required type is a sequence XE "Data model:Sequence" of items:

· The given value is not converted. However, some functions may apply further additional conversion to their parameters: for instance, the avg function will attempt to convert any node XE "Data model:Node" in its input sequence XE "Input function:Input sequence" into a numeric atomic value XE "Data model:Atomic value" by getting its typed value XE "Expression:Typing" . If this conversion fails, the function call XE "Expression:Function call" returns the error value XE "Expression:Error"

 XE "Data model:Error" .

Comments

XQuery comments XE "Expression:Comments" can be used to provide informative annotation. These comments are lexical constructs only, and do not affect the processing of an expression.

	ExprComment
	::=
	"{--" [^}]* "--}"

Comments may be used before and after major tokens within expressions and within element XE "Data model:Element" content..

Path Expressions

A path expression XE "Expression:XPath" selects nodes within a tree or a sequence XE "Data model:Sequence" of trees (where a complex element XE "Data model:Element" node XE "Data model:Node" in the Data Model is seen as the root of a tree). A path expression is always evaluated with respect to an evaluation context XE "Expression :Context" .

	PathExpr
	::=
	(PathExprRoot | StepExpr | PathExpr)?
("/" | "//") StepExpr

	PathExprRoot
	::=
	InputExpr | Variable

	InputExpr
	::=
	"collection(XE "Input function:Collection" " StringLiteral ")"
| "input()" XE "Input function:Input sequence"

Compatibility note: Path expressions in Fusion 2.0 compose a subset of the path expression XE "Expression:XPath" s defined in the XQuery draft standard, which encompasses and extends the XPath 1.0 expressions. Limitations include access by position or range, descendant axis, dereference operator…

A path expression XE "Expression:XPath" consists of two expressions, separated by / or //. This section describes the use of /; the use of // is described in Abbreviated Syntax.

We will refer to the expression on the left side of / as E1 and the expression on the right side of / as E2. The expression E1 is evaluated, and if the result is not a sequence XE "Data model:Sequence" of nodes, the error value XE "Expression:Error"

 XE "Data model:Error" is returned. Each node XE "Data model:Node" resulting from the evaluation of E1 then serves in turn to provide an inner focus XE "Expression :Context" for an evaluation of E2. Each evaluation of E2 must result in a sequence of nodes; otherwise, the error value is returned. The sequences of nodes resulting from all the evaluations of E2 are merged, eliminating duplicate nodes based on identity and sorting the results in document order.

As an example of a path expression XE "Expression:XPath" , child::item XE "Data model:Item" /child::description selects the description element XE "Data model:Element" children of the item element children of the context node XE "Expression :Context" , or, in other words, the description element grandchildren of the context node XE "Data model:Node" that have item parents.

E1 expressions can be:

· Input functions: when a path expression XE "Expression:XPath" is evaluated at the outermost level of a query (i.e. with an empty focus XE "Expression :Context"), E1 must be one of the two available input functions, input or collection XE "Input function:Collection" . The collection function returns a sequence XE "Data model:Sequence" of nodes which can be used as inner focus for the evaluation of E2. The input function returns the empty sequence.

· Variables: when a path expression XE "Expression:XPath" is evaluated in an evaluation context XE "Expression :Context" in which some variables are bound, any variable XE "Expression :Variable" bound to a node XE "Data model:Node" or a node sequence XE "Data model:Sequence" can be used as E1.

· Step expressions: when a path expression XE "Expression:XPath" is evaluated in an evaluation context XE "Expression :Context" in which a focus is defined, a step expression can be used as E1.

· Path expressions: several path expression XE "Expression:XPath" s can be concatenated, the result of the leftmost expressions being used recursively as the evaluation context XE "Expression :Context" for the following one.

E2 expressions are always step expression XE "Expression:XPath" s, which are further described below.

Steps

	StepExpr
	::=
	Step Predicates

	Step
	::=
	(Axis NodeTest) | AbbreviatedStep

A step is an expression that returns a sequence XE "Data model:Sequence" of nodes, in document order and without duplicates. Steps are often used inside path expression XE "Expression:XPath" s, and must always be evaluated in an evaluation context XE "Expression :Context" in which the focus is defined. A step might be thought of as beginning at the context node XE "Data model:Node" , navigating to those nodes that are reachable from the context node via a predefined axis, and selecting some subset of the reachable nodes. A step has three parts:

· an axis XE "Expression:XPath" , which specifies the relationship between the nodes selected by the step and the context node XE "Expression :Context" . The axis might be thought of as the "direction of movement" of the step.
· a node XE "Data model:Node" test, which specifies the node kind and/or name of the nodes selected by the step.

· zero or more predicates XE "Expression:XPath" , which further modify the sequence XE "Data model:Sequence" of nodes selected by the step.

In the abbreviated syntax for a step, the axis XE "Expression:XPath" can be omitted and other shorthand notations can be used.

The unabbreviated syntax for an step consists of the axis XE "Expression:XPath" name and node XE "Data model:Node" test separated by a double colon, followed by zero or more predicates. For example, in child::para[child::title = "Introduction"], child is the name of the axis, para is the node test and [child::title = "Introduction"] is a predicate.

The node XE "Data model:Node" sequence XE "Data model:Sequence" selected by a step is found by generating an initial node sequence from the axis XE "Expression:XPath" and node test, and then applying each of the predicates in turn. The initial node sequence consists of the nodes reachable from the context node XE "Expression :Context" via the specified axis that have the node kind and/or name specified by the node test. For example, the step child::para selects the para element XE "Data model:Element" children of the context node: child specifies that each node in the initial node sequence must be a child of the context node, and para specifies that each node in the initial node sequence must be an element named para.

Axes

	Axis
	::=
	"child" "::"
| "attribute" XE "Data model:Attribute" "::"
| "self" "::"
| "descendant-or-self" "::"
| "parent" "::"

Fusion 2.0 supports five axes:

· the child axis XE "Expression:XPath" contains the children of the context node XE "Expression :Context" .

· the parent axis contains the parent of the context node, if there is one.

· the attribute XE "Data model:Attribute" axis XE "Expression:XPath" contains the attributes of the context node XE "Expression :Context" ; the axis will be empty unless the context node XE "Data model:Node" is an element XE "Data model:Element" .

· the self axis XE "Expression:XPath" contains the context node XE "Expression :Context" itself.

· the descendant-or-self axis contains the context node and the descendants of the context node.

Compatibility note: The XQuery draft standard defines two additional axes: namespace and descendant. Those axis are not supported in Fusion 2.0.

Node Tests

A node XE "Data model:Node" test is a condition that must be true for each node selected by a step. The condition may be based on the kind of the node or on the name of the node.

	NodeTest
	::=
	KindTest | NameTest

	NameTest
	::=
	QName | Wildcard

	Wildcard
	::=
	"*"
| NCName ":" "*"
| "*" ":" NCName

	KindTest
	::=
	"text" "(" ")"
"node" XE "Data model:Node" "(" ")"

Every axis XE "Expression:XPath" has a principal node XE "Data model:Node" kind. For the attribute XE "Data model:Attribute" axis, the principal node kind is attribute. For all other axes, the principal node kind is element XE "Data model:Element" .

A node XE "Data model:Node" test that is a QName is true if and only if the kind of the node is the principal node kind and the expanded-name of the node is equal to the expanded-name specified by the QName. For example, child::para selects the para element XE "Data model:Element" children of the context node XE "Expression :Context" ; if the context node has no para children, it selects an empty set of nodes. attribute XE "Data model:Attribute" ::href selects the href attribute of the context node; if the context node has no href attribute, it selects an empty set of nodes. Note that static type checking XE "Expression:Typing" is enforced: if the compiler can derive from the context node type that the name test will always be false, it will throw a type exception XE "Expression:Error" at compile time.

A QName in a node XE "Data model:Node" test is expanded into an expanded-name using the in-scope namespaces in the expression context XE "Expression :Context" . An unprefixed QName used as a nametest has the namespace URI associated with the default element XE "Data model:Element" namespace in the expression context. It has no namespace if the default element namespace is not defined in the expression context. It is an error if the QName has a prefix that does not correspond to any in-scope namespace.

A node test * is true for any node of the principal node kind. For example, child::* will select all element children of the context node, and attribute::* will select all attributes of the context node.
A node test can have the form NCName:*. In this case, the prefix is expanded in the same way as with a QName, using the context namespace declarations. It is an error if there is no namespace declaration for the prefix in the expression context. The node test will be true for any node of the principal node kind whose expanded-name has the namespace URI to which the prefix expands, regardless of the local part of the name.
A node test can also have the form *:NCName. In this case, the node test is true for any node of the principal node kind whose local name matches the given NCName, regardless of its namespace.

The node XE "Data model:Node" test text() is true for any text node. For example, child::text() will select the text node children of the context node XE "Expression :Context" .

A node XE "Data model:Node" test node() is true for any node whatsoever.

Predicates

A predicate consists of an expression, called a predicate expression, enclosed in square brackets. A predicate serves to filter a node XE "Data model:Node" sequence XE "Data model:Sequence" , retaining some nodes and discarding others. For each node in the node sequence to be filtered, the predicate expression is evaluated using an inner focus XE "Expression :Context" derived from that node. The result of the predicate expression is coerced to a Boolean value, called the predicate truth value, as described below. Those nodes for which the predicate truth value is true are retained, and those for which the predicate truth value is false are discarded.

	Predicates
	::=
	("[" OrExpr "]")*

The predicate truth value is derived by applying the following rules, in order:

· If the value of the predicate expression is an empty sequence XE "Data model:Sequence" , the predicate truth value is false.
· If the value of the predicate expression is an atomic value XE "Data model:Atomic value" of type xs:boolean, the predicate truth value is equal to the value of the predicate expression.

· If the value of the predicate expression is a sequence XE "Data model:Sequence" that contains at least one node XE "Data model:Node" and does not contain any item XE "Data model:Item" that is not a node, the predicate truth value is true. The predicate truth value in this case does not depend on the content of the node(s).

· In any other case, a type exception XE "Expression:Error" is raised.

Here are some examples of steps that contain predicates XE "Expression:XPath" :

· This example selects all the children of the context node XE "Expression :Context" whose name is "toy" and whose "color" attribute XE "Data model:Attribute" has the value "red":
child::toy[attribute XE "Data model:Attribute" ::color = "red"]

· This example selects all the "employee" children of the context node XE "Expression :Context" that have a "secretary" sub-element:
child::employee[child::secretary]

Note that the above rules imply that child::person[child:married] returns all person children of the context node XE "Expression :Context" that have a married sub-element, even if the content of this sub-element is the boolean value false. In order to return married persons, the expression should be written:

child::person[data(child:married) = true()]

Compatibility note: The XQuery draft standard uses the predicate notation to provide access by position or by range in XPath expressions. This feature is not supported in Fusion 2.0.

Unabbreviated Syntax

This section provides a number of examples of path expression XE "Expression:XPath" s in which the axis is explicitly specified in each step. The syntax used in these examples is called the unabbreviated syntax. In many common cases, it is possible to write path expressions more concisely using an abbreviated syntax.

· child::para selects the para element children of the context node
· child::* selects all element children of the context node

· child::text() selects all text node children of the context node

· child::node() selects all the children of the context node, whatever their node type

· attribute::name selects the name attribute of the context node

· attribute::* selects all the attributes of the context node

· descendant-or-self::para selects the para element descendants of the context node and, if the context node is a para element, the context node as well

· self::para selects the context node if it is a para element, and otherwise selects nothing

· child::*/child::para selects all para grandchildren of the context node

· child::para[attribute::type="warning"] selects all para children of the context node that have a type attribute with value warning

· child::chapter[child::title='Introduction'] selects the chapter children of the context node that have one or more title children with string-value equal to Introduction

· child::chapter[child::title] selects the chapter children of the context node that have one or more title children

· child::*[self::chapter or self::appendix] selects the chapter and appendix children of the context node

Abbreviated Syntax

	AbbreviatedStep
	::=
	"."
| ".."
|(@ NameTest)
| NodeTest

The abbreviated syntax permits the following abbreviations:

· The most important abbreviation is that child:: can be omitted from a step. In effect, child is the default axis XE "Expression:XPath" . For example, a path expression section/para is short for child::section/child::para.
· There is also an abbreviation for attributes: attribute XE "Data model:Attribute" :: can be abbreviated by @. For example, a path expression XE "Expression:XPath" para[@type="warning"] is short for child::para[attribute::type="warning"] and so selects para children with a type attribute with value equal to warning.

· // is short for /descendant-or-self::node()/. For example, div1//para is short for div1/descendant-or-self::node()/child::para and so will select all para descendants of div1 children.
· A step consisting of . is short for self::node XE "Data model:Node" ().

· A step consisting of .. is short for parent::node(). For example, ../title is short for parent::node()/child::title and so will select the title children of the parent of the context node.
Here are some examples of path expression XE "Expression:XPath" s that use the abbreviated syntax:

· para selects the para element children of the context node
· * selects all element children of the context node

· text() selects all text node children of the context node

· @name selects the name attribute of the context node

· @* selects all the attributes of the context node

· */para selects all para grandchildren of the context node

· chapter//para selects the para element descendants of the chapter element children of the context node

· . selects the context node

· .//para selects the para element descendants of the context node

· .. selects the parent of the context node

· ../@lang selects the lang attribute of the parent of the context node

· para[@type="warning"] selects all para children of the context node that have a type attribute with value warning

· chapter[title="Introduction"] selects the chapter children of the context node that have one or more title children with string-value equal to Introduction

· chapter[title] selects the chapter children of the context node that have one or more title children

· employee[@secretary and @assistant] selects all the employee children of the context node that have both a secretary attribute and an assistant attribute

Note: In Fusion 2.0, the XPath expressions E1/* and E1//text() may not work properly when the resulting nodes are mapped to relational columns of user-defined tables. This can only occur for documents stored in mapped collections.

Arithmetic Expressions

XQuery provides arithmetic operators for addition XE "Expression:Arithmetic" , subtraction, multiplication, division, and modulus, in their usual binary and unary forms. Usual precedence rules apply.

	AdditiveExpr
	::=
	(AdditiveExpr ("+" | "-"))?
MultiplicativeExpr

	MultiplicativeExpr
	::=
	(MultiplicativeExpr
 ("*" | "div" | "mod"))?
UnaryExpr

	UnaryExpr
	::=
	("-" | "+")?
(PrimaryExpr
 | PathExpr
 | StepExpr)

The binary subtraction operator must be preceded by white space if it follows an NCName, in order to distinguish it from a hyphen, which is a valid name character. For example, a-b will be interpreted as a single token.

An arithmetic expression is evaluated by applying the following rules, in order, until an error is encountered or a value is computed:

· Atomization is applied to each operand, resulting in a single atomic value XE "Data model:Atomic value" or an empty sequence XE "Data model:Sequence" for each operand.
· If either operand is an empty sequence XE "Data model:Sequence" , the result of the operation is an empty sequence.

· If an operand has the type xs:anySimpleType, it is cast to xs:double. If the cast fails, the error value XE "Expression:Error"

 XE "Data model:Error" is returned.

· If the two operands have different types, and these types can be promoted to a common type using the standard promotion rules, the operands are both promoted to their least common type. For example, if the first operand is of type hatsize which is derived from xs:decimal, and the second operand is of type shoesize which is derived from xs:integer, then both operands are promoted to the type xs:decimal.

· If the operand type(s) are valid for the given operator, the operator is applied to the operand(s), resulting in an atomic value XE "Data model:Atomic value" or an error (for example, an error might result from dividing by zero.). If the operand type(s) are not valid for the given operator, a type exception XE "Expression:Error" is raised.

In Fusion 2.0, arithmetic operators are only supported for numeric types, thus arithmetic operations always result in numeric values. Static type checking XE "Expression:Typing" is enforced: using an expression returning a sequence XE "Data model:Sequence" as an operand of an arithmetic operation will generate a type expression, unless the compiler can determine at compile time that the sequence will be of length 0 or 1.

Here are some examples of arithmetic expressions:

· Arithmetic operations on numeric values result in numeric values:
($salary + $bonus) div 12

· This example illustrates the difference between a subtraction operator and a hyphen:
$unit-price - $unit-discount

· Unary operators have higher precedence than binary operators, subject of course to the use of parentheses:
-($bellcost + $whistlecost)

Compatibility note: The XQuery draft standard defines arithmetic operations on dates and durations. Those operations are not supported in Fusion 2.0.

Comparison Expressions

Comparison expressions allow two values to be compared.

	CompExpr
	::=
	AdditiveExpr
("=" | "!=" | "<" S | "<=" | ">" | ">=")
AdditiveExpr

The "<" comparison XE "Expression:Comparison" operator must be followed by white space in order to distinguish it from a tag-open character

Comparisons can involve single values or sequences. In the absence of errors, the result of a comparison XE "Expression:Comparison" is always true or false. When the two operands are single values, the result of the comparison is defined by applying the following rules, in order:

· Atomization is applied to each operand, resulting in a single atomic value XE "Data model:Atomic value" or an empty sequence XE "Data model:Sequence" for each operand.
· If either operand is an empty sequence XE "Data model:Sequence" , the result is an empty sequence.

· If either operand has the type xs:anySimpleType, that operand is cast to a required type, which is determined as follows:

· If the type of the other operand is numeric, the required type is xs:double.

· If the type of the other operand is xs:anySimpleType, the required type is xs:string.

· Otherwise, the required type is the type of the other operand.

If the cast fails, the error value XE "Expression:Error"

 XE "Data model:Error" is returned.

· If the comparison XE "Expression:Comparison" has two numeric operands of different types, one of the operands is promoted to the type of the other operand, following the promotion rules. For example, a value of type xs:integer can be promoted to xs:decimal, and a value of type xs:decimal can be promoted to xs:double.

· The result of the comparison XE "Expression:Comparison" is true if the value of the first operand is (equal, not equal, less than, less than or equal, greater than, greater than or equal) to the value of the second operand; otherwise the result of the comparison is false. If the value of the first operand is not comparable with the value of the second operand, a type exception XE "Expression:Error" is raised. Fusion 2.0 allows strings, numeric values and dates to be compared to values of the same type.

Sequence comparisons are defined by adding existential semantics to single value comparisons. The operands may be sequences of any length greater than 1.

The comparison XE "Expression:Comparison" A = B is true for sequences A and B if the value comparison a = b is true for some item XE "Data model:Item" a in A and some item b in B. Otherwise, A = B is false.

Similarly:

· A != B is true if and only if a != b is true for some a in A and some b in B.
· A < B is true if and only if a < b is true for some a in A and some b in B.

· A <= B is true if and only if a <= b is true for some a in A and some b in B.

· A > B is true if and only if a > b is true for some a in A and some b in B.

· A >= B is true if and only if a >= b is true for some a in A and some b in B.

The sequence XE "Data model:Sequence" comparison XE "Expression:Comparison" may result in the error value XE "Expression:Error"

 XE "Data model:Error" if the value comparison of any two values from A and B results in the error value.

Logical Expressions

A logical expression XE "Expression:Logical" is either an and-expression or an or-expression. In the absence of errors, the value of a logical expression is always one of the boolean values true or false.

	OrExpr
	::=
	(OrExpr "or")? AndExpr

	AndExpr
	::=
	(AndExpr "and")? BoolExpr

	BoolExpr
	::=
	CompExpr
| PrimaryExpr
| PathExpr
| StepExpr
| QuantifiedExpr

The first step in evaluating a logical expression XE "Expression:Logical" is to reduce each of its operands to an effective boolean value, which is true, false, or the error value XE "Expression:Error"

 XE "Data model:Error" . The effective boolean value of an operand is defined as follows:

· If the operand is an empty sequence XE "Data model:Sequence" , its effective boolean value XE "Expression:Logical" is false.
· If the operand is an atomic value XE "Data model:Atomic value" of type xs:boolean, the operand serves as its own effective boolean value XE "Expression:Logical" .

· If the operand is a sequence XE "Data model:Sequence" that contains at least one node XE "Data model:Node" and does not contain any item XE "Data model:Item" that is not a node, its effective boolean value XE "Expression:Logical" is true.

· In any other case, a type exception XE "Expression:Error" is raised. In XQuery, a type exception always results in the error value XE "Data model:Error" .

The value of an and-expression is determined by the effective boolean value XE "Expression:Logical" s (EBV's) of its operands, according to the following table:

	
	EBV2 = true
	EBV2 = false
	EBV2 = error

	EBV1 = true
	True
	False
	error

	EBV1 = false
	False
	False
	false or error

	EBV1 = error
	Error
	false or error
	error

The value of an or-expression is determined by the effective boolean value XE "Expression:Logical" s (EBV's) of its operands, according to the following table:

	
	EBV2 = true
	EBV2 = false
	EBV2 = error

	EBV1 = true
	True
	true
	true or error

	EBV1 = false
	True
	false
	error

	EBV1 = error
	true or error
	error
	error

The order in which the operands of a logical expression XE "Expression:Logical" are evaluated is not deterministic. The tables above are defined in such a way that an or-expression can return true if the first expression evaluated is true, and it can return the error value XE "Expression:Error"

 XE "Data model:Error" if the first expression evaluated contains an error. Similarly, an and-expression can return false if the first expression evaluated is false, and it can return the error value if the first expression evaluated contains an error. As a result of these rules, the value of a logical expression is not deterministic in the presence of errors, as illustrated in the examples below.

Here are some examples of logical expression XE "Expression:Logical" s:

· The following expressions return true:
1 = 1 and 2 = 2
1 = 1 or 2 = 3

· The following expression may return either false or the error value XE "Expression:Error"

 XE "Data model:Error" :
1 = 2 and 3 div 0 = 47

· The following expression may return either true or the error value XE "Expression:Error"

 XE "Data model:Error" :
1 = 1 or 3 div 0 = 47

· The following expression returns the error value XE "Expression:Error"

 XE "Data model:Error" :
1 = 1 and 3 div 0 = 47

In addition XE "Expression:Arithmetic" to and- and or-expressions, XQuery provides a function named not that takes a general sequence XE "Data model:Sequence" as parameter and returns a boolean value. The not function reduces its parameter to an effective boolean value XE "Expression:Logical" using the same rules that are used for the operands of logical expressions. It then returns true if the effective boolean value of its parameter is false, and false if the effective boolean value of its parameter is true. If the effective boolean value of its operand is the error value XE "Expression:Error"

 XE "Data model:Error" , not returns the error value.

Constructors

XQuery provides constructors that can create XML structures within a query. There are constructors for elements, attributes, CDATA sections, processing instructions, and comments XE "Expression:Comments" .

	Constructor
	::=
	ElementConstructor
| XmlComment
| XmlProcessingInstruction
| CdataSection

	ElementConstructor
	::=
	"<" QName AttributeList
("/>" | (">" ElementContent*
"</" QName ">"))

	ElementContent
	::=
	Char
| "{{"
| "}}"
| ElementConstructor
| EnclosedExpr
| CdataSection
| CharRef
| PredefinedEntityRef
| XmlComment
| XmlProcessingInstruction

	AttributeList
	::=
	(QName "=" AttributeValue)*

	AttributeValue
	::=
	(["]
 ("'" | AttrValueContent)*
 ["])
|([']
 (""" | AttrValueContent)*
 ['])

	AttrValueContent
	::=
	Char
| CharRef
| "{{"
| "}}"
| EnclosedExpr
| PredefinedEntityRef

	EnclosedExpr
	::=
	"{" Expr "}"

	Char
	::=
	[#x0009] | [#x000D]
| [#x000A] | [#x0020-#xFFFD])

	CharRef
	::=
	"&#" ([0-9]+
| ("x"([0-9] | [a-f]
 | [A-F])+)) ";"

	PredefinedEntityRef
	::=
	"&" ("lt" | "gt" | "amp"
| "quot" | "apos") ";"

Element Constructors

An element XE "Data model:Element" constructor XE "Function:Constructor"

 XE "Expression:Constructor" creates an XML element. If the name, attributes, and content of the element are all constants, the element constructor uses standard XML notation. For example, the following expression creates a book element that contains attributes, sub-elements, and text:

<book isbn="isbn-0060229357">
 <title>Harold and the Purple Crayon</title>
 <author>
 <first>Crockett</first>
 <last>Johnson</last>
 </author>
</book>

In an element XE "Data model:Element" constructor XE "Function:Constructor"

 XE "Expression:Constructor" , the name used in an end tag must match the name of the corresponding start tag. If namespace prefixes are declared in the query prolog, the prefixes they declare may be used to create qualified names for elements and attributes. It is an error to use a namespace prefix that has not been declared.

In an element XE "Data model:Element" constructor XE "Function:Constructor"

 XE "Expression:Constructor" , curly braces { } delimit enclosed expressions, distinguishing them from literal XE "Expression:Literal" text. Enclosed expressions are evaluated and replaced by their value, whereas material outside curly braces is simply treated as literal text, as illustrated by the following example:

<example>
 <p> Here is a query. </p>
 <eg> $i//title </eg>
 <p> Here is the result of the above query. </p>
 <eg>{ $i//title }</eg>
</example>

The above query might generate the following result (whitespace has been added for readability to this result and other result examples in this document):

<example>
 <p> Here is a query. </p>
 <eg> $i//title </eg>
 <p> Here is the result of the above query. </p>
 <eg>
 <title>Harold and the Purple Crayon</title>
 </eg>
</example>

In an element XE "Data model:Element" constructor XE "Function:Constructor"

 XE "Expression:Constructor" , an enclosed expression may evaluate to any sequence XE "Data model:Sequence" of nodes and/or atomic value XE "Data model:Atomic value" s. Attribute nodes occurring in this sequence become the attributes of the constructed element. The remainder of the sequence becomes the content of the constructed element.

An enclosed expression may also be used to compute the value of an attribute XE "Data model:Attribute" . If the enclosed expression returns a node XE "Data model:Node" , the typed value XE "Expression:Typing"

 XE "Data model:Atomic value" of the node is extracted and assigned to the attribute, as illustrated by the following example:

<book isbn="{$i/@booknum}" />

Since XQuery uses curly braces to denote enclosed expressions, some convention is needed to denote a curly brace used as an ordinary character. For this purpose, XQuery adopts the same convention as XSLT: Two adjacent curly braces in an XQuery character string are interpreted as a single curly brace character.

Other Constructors and Comments

The syntax for a CDATA section constructor XE "Function:Constructor"

 XE "Expression:Constructor" , a processing instruction constructor, or an XML comment constructor is the same as the syntax of the equivalent XML construct.

	CdataSection
	::=
	"<![CDATA[" Char* "]]>"

	XmlProcessingInstruction
	::=
	"<?" NCName Char* "?>"

	XmlComment
	::=
	"<!--" Char* "-->"

The following example illustrates constructors for processing instructions, comments XE "Expression:Comments" , and CDATA sections.

<?format role="output" ?>
<!-- Tags are ignored in the CDATA section -->
<![CDATA[
 <address>
 123 Roosevelt Ave. Flushing, NY 11368
 </address>
]]>

Note that an XML comment actually constructs an XML comment node XE "Data model:Node" . An XQuery comment is simply a comment used in documenting a query, and is not evaluated. Consider the following example.

{-- This is an XQuery comment --}
<!-- This is an XML comment -->

The result of evaluating the above expression is as follows.

<!-- This is an XML comment -->

FLWOR Expressions

XQuery provides a FLWOR expression XE "Expression:FLWOR" for iteration and for binding variables to intermediate results. This kind of expression is often useful for computing joins between two or more documents or collections of documents and for restructuring data. The name "FLWOR", pronounced "flower", stands for the keywords for, let, where, and return, the four clauses found in a FLWOR expression.

	FLWORExpr
	::=
	(ForClause | LetClause)+
HintClause?

WhereClause?

OrderByClause?

"return" Expr

	ForClause
	::=
	"for" Variable "in" Expr
("," Variable "in" Expr)*

	LetClause
	::=
	"let" Variable ":=" Expr
("," Variable ":=" Expr)*

	HintClause
	::=
	(:: pragma hint

(outer-merge | outer-nested)?

HintSubClause?

::)

	HintSubClause
	::=
	("merge" | "nested")

"("

(HintSubClause | Variable)

","

(HintSubClause | Variable)

")"

	WhereClause
	::=
	"where" OrExpr

	OrderByClause
	::=
	"order" "by"

OrderSpec ("," OrderSpec)*

	OrderSpec
	::=
	Expr ("ascending" | "descending")?

The clauses of a FLWOR Expression are interpreted as follows:
· A for clause associates one or more variables with expressions, creating tuples of variable XE "Expression :Variable" bindings drawn from the Cartesian product of the sequences of values to which the expressions evaluate. The variable binding tuples are generated as an ordered sequence XE "Data model:Sequence" as described below.

· A let clause binds a variable XE "Expression :Variable" directly to an entire expression. If for clauses are present, the variable bindings created by let clauses are added to the tuples generated by the for clauses. If there are no for clauses, the let clauses generate one tuple with all variable bindings.

· A hint clause contains information on how variables of the FLWOR expression are to be joined with each other and eventually with the variables of the parent FLWOR expression (the FLWOR expression whose return clause contains this FLWOR expression).Concerning the variables of this FLWOR, the hint clause can be considered as a tree, each leaf being a variable and each node being a hint on how to join to leaves. The possible hints are “merge” and “nested”.
Hints are only used whenever possible, they are ignored if they induce an error. Hints define the way two variables on different sources having a joint should be handled using eather a sorted merge or a nested loop.
The default behavior is the sorted merge.

· A where clause can be used as a filter for the tuples of variable XE "Expression :Variable" bindings generated by the for and let clauses. The expression in the where clause, called the where-expression, is evaluated once for each of these tuples. If the effective boolean value XE "Expression:Logical" of the where-expression is true, the tuple is retained and its variable bindings are used in an execution of the return clause. If the effective boolean value of the where-expression is false, the tuple is discarded.

· The order by clause contains one or several expressions that are used to order the tuple stream.

· The return clause contains an expression that is used to construct the result of the FLWOR expression XE "Expression:FLWOR" . The return clause i

Expressions in for, let and return clauses can be any top-level expression, with the restriction that: expressions in for and let clauses should not contain constructor XE "Function:Constructor"

 XE "Expression:Constructor" expressions, at any level.

A variable XE "Expression :Variable" name may not be used before it is bound, nor may it be used in the expression to which it is bound. Any variable bound in a for or let clause is in scope until the end of the FLWOR expression XE "Expression:FLWOR" in which it is bound. If the variable name used in the binding was already bound in the current scope, the variable name refers to the newly bound variable until that variable goes out of scope. At this point, the variable name again refers to the variable of the prior binding.

Although for and let both bind variables, the manner in which variables are bound is quite different. In a let clause, the variable XE "Expression :Variable" is bound directly to the expression, and it is bound to the expression as a whole. Consider the following query, based on the data presented in Appendix B – Example:

let $users := collection XE "Input function:Collection" ("USERS")/USER/NAME
return <out>{$users}</out>

The variable XE "Expression :Variable" $users is bound to the expression collection XE "Input function:Collection" ("USERS")/USER/NAME, i.e. the sequence XE "Data model:Sequence" containing all the NAME sub-elements in the USERS collection. There are no for clauses, so the let clause generates one tuple that contains the variable binding of $users. The return clause is invoked for this tuple, creating the following output:

<out>
 <NAME>Tom Jones</NAME>
 <NAME>Mary Doe</NAME>
 <NAME>Dee Linquent</NAME>
 <NAME>Roger Smith</NAME>
 <NAME>Jack Sprat</NAME>
 <NAME>Rip Van Winkle</NAME>
</out>

Now consider a similar query which contains a for clause instead of a let clause:

for $user in collection XE "Input function:Collection" ("USERS")/USER/NAME
return <out>{$user}</out>

The variable XE "Expression :Variable" $user is associated with the expression collection XE "Input function:Collection" ("USERS")/USER/NAME, from which the variable bindings of $user will be drawn. When only one expression is present, the Cartesian product is equivalent to the sequence XE "Data model:Sequence" of values returned by that expression. In this example, the variable $user is bound six times, to each NAME sub-element in the USERS table. One tuple is generated for each of these variable bindings, and the return clause is invoked for each tuple, creating the following output:

<out>
 <NAME>Tom Jones</NAME>
</out>
<out>
 <NAME>Mary Doe</NAME>
</out>
<out>
 <NAME>Dee Linquent</NAME>
</out>
<out>
 <NAME>Roger Smith</NAME>
</out>
<out>
 <NAME>Jack Sprat</NAME>
</out>
<out>
 <NAME>Rip Van Winkle</NAME>
</out>

Note that the above result is not a well-formed XML document, as it contains multiple root elements. It is necessary to enclose the result fragments into an enclosing element XE "Data model:Element" to produce a valid XML document.

A FLWOR Expression may contain multiple for clauses. In this case, the tuples of variable XE "Expression :Variable" bindings are drawn from the Cartesian product of the sequences returned by the expressions in all the for clauses. The ordering of the tuples is governed by the ordering of the sequences from which they were formed, working from left to right.

The following expression illustrates how tuples are generated from the Cartesian product of expressions in a for clause. For each user who has offered an item XE "Data model:Item" for auction, it returns the user name and the item description.

for $u in collection XE "Input function:Collection" ("USERS")/USER,
 $i in collection("ITEMS")/ITEM
where $u/USERID = $i/OFFERED_BY
return
 <result>
 { $u/NAME }
 { $i/DESCRIPTION }
 </result>

Here is the result of the above expression.

<result>
 <NAME>Tom Jones</NAME>
 <DESCRIPTION>Red Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Tom Jones</NAME>
 <DESCRIPTION>Tricycle</DESCRIPTION>
</result>
<result>
 <NAME>Tom Jones</NAME>
 <DESCRIPTION>Broken Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Mary Doe</NAME>
 <DESCRIPTION>Motorcycle</DESCRIPTION>
</result>
<result>
 <NAME>Mary Doe</NAME>
 <DESCRIPTION>Old Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Dee Linquent</NAME>
 <DESCRIPTION>Tennis Racket</DESCRIPTION>
</result>
<result>
 <NAME>Dee Linquent</NAME>
 <DESCRIPTION>Helicopter</DESCRIPTION>
</result>
<result>
 <NAME>Roger Smith</NAME>
 <DESCRIPTION>Racing Bicycle</DESCRIPTION>
</result>

The following expression is a slightly modified query, showing the restructuring capabilities of XQuery. For each user, it returns the user name and the description of all items it has offered for auction.

for $u in collection XE "Input function:Collection" ("USERS")/USER
return
 <result>
 { $u/NAME }
 { for $i in collection("ITEMS")/ITEM
 where $u/USERID = $i/OFFERED_BY
 return $i/DESCRIPTION }
 </result>

Here is the result of the above expression. Note that the result for users having not offered items does not contain descriptions, although the user name is still present. This is an example of how XQuery handles the relational concept of outer join.

<result>
 <NAME>Tom Jones</NAME>
 <DESCRIPTION>Red Bicycle</DESCRIPTION>
 <DESCRIPTION>Tricycle</DESCRIPTION>
 <DESCRIPTION>Broken Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Mary Doe</NAME>
 <DESCRIPTION>Motorcycle</DESCRIPTION>
 <DESCRIPTION>Old Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Dee Linquent</NAME>
 <DESCRIPTION>Tennis Racket</DESCRIPTION>
 <DESCRIPTION>Helicopter</DESCRIPTION>
</result>
<result>
 <NAME>Roger Smith</NAME>
 <DESCRIPTION>Racing Bicycle</DESCRIPTION>
</result>
<result>
 <NAME>Jack Sprat</NAME>
</result>
<result>
 <NAME>Rip Van Winkle</NAME>
</result>

Sorting Expressions

A sorting expression XE "Expression:Sorting" provides a way to control the order of items in a sequence XE "Data model:Sequence" .

	SortExpr
	::=
	(PathExpr | FLWORExpr)
"sortby" "(" SortSpecList ")"

	SortSpecList
	::=
	(PathExpr | StepExpr) SortModifier
("," SortSpecList)?

	SortModifier
	::=
	("ascending" | "descending")?

The value of the expression on the left side of the sortby keyword is called the input expression. The items in the input expression are called input items. The result of the sorting expression XE "Expression:Sorting" is called the output expression. The output expression contains all the input items, retaining their original identities (if any), but possibly in a different order.

The expressions on the right side of the sortby keyword are called ordering expressions. For each input item XE "Data model:Item" , the ordering expressions are evaluated with an inner focus XE "Expression :Context" derived from the input item. The input items are then reordered according to the values of their respective ordering expressions. If more than one ordering expression is specified, the leftmost ordering expression controls the primary sort, followed by the remaining ordering expressions from left to right. Each ordering expression can be followed by the keyword ascending or descending, which specifies the direction of the sort (ascending is the default).

The process of evaluating and comparing the ordering expressions is based on the following rules:

· Atomization is applied to the result of each ordering expression, resulting in a single atomic value XE "Data model:Atomic value" or an empty sequence XE "Data model:Sequence" for each operand ordering expression. Static type checking XE "Expression:Typing" is enforced: if the compiler detects that an ordering expression may result in a sequence of length greater than 1, a type exception XE "Expression:Error" is thrown.
· If the result of an ordering expression has the type xs:anySimpleType (such as character data in a schemaless document), it is cast to the type xs:string.

· Each ordering expression must return values of the same type for all input items, and this type must be a (possibly optional) atomic type for which the > operator is defined--otherwise, the error value XE "Expression:Error"

 XE "Data model:Error" is returned.

· For the purpose of the following rule, an ordering value that is an empty sequence XE "Data model:Sequence" is treated as greater than any non-empty ordering value.

· If V1 and V2 are the values of an ordering expression for input items I1 and I2 respectively, then:

· If the ordering expression is ascending, and if V2 > V1 is true, then I1 precedes I2 in the output sequence XE "Data model:Sequence" .

· If the ordering expression is descending, and if V1 > V2 is true, then I1 precedes I2 in the output sequence XE "Data model:Sequence" .

· If neither V1 > V2 nor V2 > V1 is true, then the order of I1 and I2 in the output sequence XE "Data model:Sequence" is implementation-defined.

Here are some examples of ordering expressions:

This example lists all bids in the auction database, ordered first by bid, then by user name.

for $b in collection XE "Input function:Collection" ("BIDS")/BID,
 $u in collection("USERS")/USER,
 $i in collection("ITEMS")/ITEM
where $b/USERID = $u/USERID
 and $b/ITEMNO=$i/ITEMNO
return
 <result>
 { $u/NAME }
 { $b/BID }
 { $i/DESCRIPTION }
 </result>
sortby (BID, NAME)

Ordering may be specified at multiple levels of a query result.

<result>
 { for $i in collection XE "Input function:Collection" ("ITEMS")/ITEM
 return
 <item XE "Data model:Item" >
 <name> { data($i/DESCRIPTION)} </name>
 <reserve>
 { data($i/RESERVE_PRICE) }
 </reserve>
 <bids>
 { for $b in collection("BIDS")/BID,
 $u in collection("USERS")/USER
 where $b/ITEMNO = $i/ITEMNO
 and $b/USERID = $u/USERID
 return
 <bid>
 <name> { data($u/NAME) } </name>
 <value> { data($b/BID) } </value>
 </bid>
 sortby(value)
 }
 </bids>
 </item>
 sortby(reserve)
 }
</result>

Quantified Expressions

Quantified expressions support existential and universal quantification. The value of a quantified expression XE "Expression:Quantified" is always true or false.

	QuantifiedExpr
	::=
	("some" | "every")
Variable "in" Expr
("," Variable "in" Expr)*
"satisfies" OrExpr

A quantified expression XE "Expression:Quantified" begins with a quantifier, which is the keyword some or every, followed by one or more in-clauses that are used to bind variables, followed by the keyword satisfies and a test expression. Each in-clause associates a variable XE "Expression :Variable" with an expression that returns a sequence XE "Data model:Sequence" of values. Any top-level expression can be used, with the restriction that it should not contain constructor XE "Function:Constructor"

 XE "Expression:Constructor" expressions.

As in the case of a for-clause in a FLWOR-expression, the in-clauses generate tuples of variable XE "Expression :Variable" bindings, using values drawn from the Cartesian product of the sequences returned by the binding expressions. Conceptually, the test expression is evaluated for each tuple of variable bindings. Results depend on the effective boolean value XE "Expression:Logical" s of the test expressions. The value of the quantified expression XE "Expression:Quantified" is defined by the following rules:

· If the quantifier is some, the quantified expression XE "Expression:Quantified" is true if at least one evaluation of the test expression has the effective boolean value XE "Expression:Logical" true; otherwise the quantified expression is false. This rule implies that, if the in-clauses generate zero binding tuples, the value of the quantified expression is false.
· If the quantifier is every, the quantified expression XE "Expression:Quantified" is true if every evaluation of the test expression has the effective boolean value XE "Expression:Logical" true; otherwise the quantified expression is false. This rule implies that, if the in-clauses generate zero binding tuples, the value of the quantified expression is true.

The order in which test expressions are evaluated for the various binding tuples is implementation-defined. If the quantifier is some, an implementation may return true as soon as it finds one binding tuple for which the test expression has an effective Boolean value of true, and it may return an error as soon as it finds one binding tuple for which the test expression returns an error. Similarly, if the quantifier is every, an implementation may return false as soon as it finds one binding tuple for which the test expression has an effective Boolean value of false, and it may return an error as soon as it finds one binding tuple for which the test expression returns an error. As a result of these rules, the value of a quantified expression XE "Expression:Quantified" is not deterministic in the presence of errors.

Here are some examples of quantified expression XE "Expression:Quantified" s:

This expression returns the users, if any, that have bid on every item XE "Data model:Item" :

<frequent_bidder>
{
 for $u in collection XE "Input function:Collection" ("USERS")/USER
 where
 every $item XE "Data model:Item" in collection("ITEMS")/ITEM
 satisfies
 some $b in collection("BIDS")/BID
 satisfies
 $item/ITEMNO = $b/ITEMNO
 and $u/USERID = $b/USERID
 return $u/NAME
}
</frequent_bidder>

This expression returns the users, if any, that have bid on at least one item XE "Data model:Item" :

<bidder>
{
 for $u in collection XE "Input function:Collection" ("USERS")/USER
 where
 some $item XE "Data model:Item" in collection("ITEMS")/ITEM
 satisfies
 some $b in collection("BIDS")/BID
 satisfies
 $item/ITEMNO = $b/ITEMNO
 and $u/USERID = $b/USERID)
 return $u/NAME
}
</bidder>

Built-in XQuery Functions

 [XML Schema Part 2] defines a number of primitive and derived datatypes, collectively known as built-in datatypes. This section defines operations on those datatypes for use in XQuery. It also discusses operations on nodes and node XE "Data model:Node" sequences as defined in the [XQuery 1.0 and XPath 2.0 Data Model] for use in XQuery.

Note: Fusion 2.0 only supports a subset of the built-in user functions defined by the XQuery draft standard. The complete set is described in [XQuery 1.0 and XPath 2.0 Functions and Operators].

Accessors

The [XQuery 1.0 and XPath 2.0 Data Model] describes accessors on different types of nodes and defines their semantics. In Fusion 2.0, two of these accessors are exposed to the user through the functions described below.

	Function
	Accessor
	Accepts
	Returns

	string
	string-value
	a sequence, XE "Data model:Sequence" a node XE "Data model:Node" of any kind, or a simple value
	string

	data
	typed-value
	any kind of node XE "Data model:Node"
	a typed sequence XE "Data model:Sequence" of atomic values XE "Data model:Atomic value"

string

string(item XE "Data model:Item" * $srcval) => string
Returns the value of $srcval represented as a string.

If $srcval is the empty sequence XE "Data model:Sequence" , the empty string is returned.

If $srcval is a node XE "Data model:Node" , the return value depends on the node type:

· for an attribute XE "Data model:Attribute" node XE "Data model:Node" or an element XE "Data model:Element" node with simple content, the string value of the node’s sequence XE "Data model:Sequence" of atomic value XE "Data model:Atomic value" s is returned, as described below.

· for a element XE "Data model:Element" node XE "Data model:Node" with complex content, a type exception XE "Expression:Error" occurs, resulting in the error value XE "Data model:Error" .

Compatibility note: The XQuery draft standard specifies that the string value of a complex element XE "Data model:Element" node XE "Data model:Node" is the concatenation of the string values of its descendant text nodes in document order. This is not supported by Fusion 2.0.

If $srcval is an atomic value XE "Data model:Atomic value" , the function returns the canonical lexical representation of the typed value XE "Expression:Typing" , as defined in [XML Schema Part 2], except in the case listed below:

· If the type of $srcval is xs:decimal, and the value is equal to an integer, then the function returns the canonical representation of that integer. This special rule allows integers to be displayed without the decimal point.

If $srcval is a sequence XE "Data model:Sequence" of more than one item XE "Data model:Item" , a type exception XE "Expression:Error" occurs, resulting in the error value XE "Data model:Error" .

data

data(node XE "Data model:Node" * $srcval) => value*
Returns the typed-value of each node XE "Data model:Node" in $srcval. Each node in $srcval is processed as follows.

The static type of the result for each node XE "Data model:Node" is determined by the static type of the value that is extracted.

If $srcval is not a element XE "Data model:Element" , attribute XE "Data model:Attribute" or text node XE "Data model:Node" , returns the error value XE "Expression:Error"

 XE "Data model:Error" .

If $srcval is a text node XE "Data model:Node" , returns the string content of the text node with type annotation xs:anySimpleType.

If $srcval is an attribute XE "Data model:Attribute" node XE "Data model:Node" defined to have xs:anySimpleType, or an element XE "Data model:Element" node with simple content defined to have xs:anySimpleType, returns its string value with type annotation xs:anySimpleType.

If $srcval is an element XE "Data model:Element" or attribute XE "Data model:Attribute" node XE "Data model:Node" with a simple type XE "Expression:Typing"

 XE "Data model:Simple type" other than xs:anySimpleType or with a complex type XE "Data model:Complex type" with simple content other than xs:anySimpleType, returns the node's typed value XE "Data model:Atomic value" which is a sequence XE "Data model:Sequence" of atomic values.

If $srcval is an element XE "Data model:Element" node XE "Data model:Node" with complex content, returns the error value XE "Expression:Error"

 XE "Data model:Error" .

Constructors and Functions on Numbers

This section discusses arithmetic operators on the numeric datatypes defined in [XML Schema Part 2].

Numeric Types

The operators described in this section are defined on the following numeric types:

· xs:decimal

· xs:integer

· xs:double

They also apply to types derived by restriction from these types.

Numeric Constructors

The following constructors are defined on the above numeric types. Each constructor XE "Function:Constructor"

 XE "Expression:Constructor" takes a single xs:string literal XE "Expression:Literal" as argument. Leading and trailing whitespace, if present, is stripped from the literal before the value is constructed.

	Constructor
	Meaning

	decimal
	Produces a decimal value by parsing and interpreting a string.

	integer
	Produces an integer value by parsing and interpreting a string.

	double
	Produces a double value by parsing and interpreting a string.

If the argument string passed to a constructor XE "Function:Constructor"

 XE "Expression:Constructor" results in an error (for example, if it contains a letter other than "E" or "e"), the constructor returns the error value XE "Expression:Error"

 XE "Data model:Error" .

decimal

decimal(string $srcval) => decimal
Returns the decimal value that is represented by the characters contained in the value of $srcval. For this constructor XE "Function:Constructor"

 XE "Expression:Constructor" , $srcval must be a string literal XE "Expression:Literal" .

If the value of $srcval is not a valid lexical representation for the decimal type as specified in [XML Schema Part 2], then the error value XE "Expression:Error"

 XE "Data model:Error" is returned.

If the number of characters contained in the value of $srcval that are digits is greater than the maximum number of decimal digits supported by the implementation, then the error value XE "Expression:Error"

 XE "Data model:Error" is returned.

Examples:

· decimal('123.5') returns the decimal value corresponding to one hundred twenty three and one-half.

· decimal('12.5E2') returns the error value XE "Expression:Error"

 XE "Data model:Error" , since the use of the letter "E" is prohibited in the constructor XE "Function:Constructor"

 XE "Expression:Constructor" for the decimal type.

· decimal(' 12.5 ') returns the decimal value corresponding to twelve and one-half.

integer

integer(xs:string $srcval) => integer
Returns the integer value that is represented by the characters contained in the value of $srcval. For this constructor XE "Function:Constructor"

 XE "Expression:Constructor" , $srcval must be a string literal XE "Expression:Literal" .

If the value of $srcval is not a valid lexical representation for the integer type as specified in [XML Schema Part 2], then the error value XE "Expression:Error"

 XE "Data model:Error" is returned.

If the number of characters contained in the value of $srcval that are digits is greater than the maximum number of digits supported by the implementation, then the error value XE "Expression:Error"

 XE "Data model:Error" is returned.

Examples:

· integer('-123') returns the integer value corresponding to negative one hundred twenty three.

· integer('123.5') returns the error value XE "Expression:Error"

 XE "Data model:Error" , since the use of a decimal point is prohibited in the constructor XE "Function:Constructor"

 XE "Expression:Constructor" for the integer type.

double

double(xs:string $srcval) => double
Returns the double value that is represented by the characters contained in the value of $srcval. For this constructor XE "Function:Constructor"

 XE "Expression:Constructor" , $srcval must be a string literal XE "Expression:Literal" .

If the value of $srcval is not a valid lexical representation for the double type as specified in [XML Schema Part 2], then the error value XE "Expression:Error"

 XE "Data model:Error" is returned. Note that Fusion 2.0 does not support the special values NaN, INF, +INF and –INF.

Examples:

· double('510E2') returns the double value corresponding to fifty one thousand.

· double('15.25') returns the double value corresponding to fifteen and a quarter.

· double('51D1') returns the error value XE "Expression:Error"

 XE "Data model:Error" , since the use of the letter "D" is prohibited in the constructor XE "Function:Constructor"

 XE "Expression:Constructor" for the double type.

Functions on Numeric Values

The following functions are defined on numeric types. Each function returns an integer except:

· If the argument is the empty sequence XE "Data model:Sequence" , the empty sequence is returned.

· The abs() function returns an xs:double.

floor

floor(xs:double? $srcval) => xs:integer?
Returns the largest (closest to positive infinity) integer that is not greater than the value of $srcval.

If the argument is the empty sequence XE "Data model:Sequence" , returns the empty sequence.

Examples:

· floor(10.5) returns 10.

· floor(-10.5) returns -11.

ceiling

ceiling(xs:double? $srcval) => xs:integer?
Returns the smallest (closest to negative infinity) number that is not smaller than the value of $srcvaland that is an integer.

 If the argument is the empty sequence, returns the empty sequence XE "Data model:Sequence" .

Examples:

· ceiling(10.5) returns 11.

· ceiling(-10.5) returns -10.

round

round(xs:double? $srcval) => xs:integer?
Returns the number that is closest to the argument and that is an integer. More formally, round(x) produces the same result as floor(x+0.5). If there are two such numbers, then the one that is closest to positive infinity is returned.

If the argument is the empty sequence XE "Data model:Sequence" , returns the empty sequence.

Examples:

· round(2.5) returns 3.

· round(2.4999) returns 2.

· round(-2.5) returns -2.

abs

abs(xs:double? $srcval) => xs:double?
Returns the absolute value of the argument.

If the argument is the empty sequence XE "Data model:Sequence" , returns the empty sequence.

Examples:

· abs(2.5) returns 2.5.

· abs(-3) returns 3.

Constructors and Functions on Strings

This section discusses operators on the [XML Schema Part 2] xs:string datatype. They also apply to types derived by restriction from this type.

String Constructor

The following constructor XE "Function:Constructor"

 XE "Expression:Constructor" is defined on the xs:string type. This constructor takes a single string literal XE "Expression:Literal" as argument.

	Constructor
	Meaning

	string
	Produces a string value by parsing and interpreting a supplied string.

string

string(xs:string $srcval) => xs:string
Returns a string value that is the value of $srcval. The more general accessor-based function string returns the string value for several kinds of input arguments. If the input argument is a string it just returns the argument string. Thus, this constructor XE "Function:Constructor"

 XE "Expression:Constructor" can be correctly perceived as a "no-op", but is included for the sake of orthogonality.

Functions on String Values

The following functions are defined on these string types. Several of these functions use a default collation, which is the collation used by the underlying relational database.

	Function
	Meaning

	concat
	Concatenates two or more character strings.

	starts-with
	Indicates whether the value of one string begins with the characters of the value of another string.

	ends-with
	Indicates whether the value of one string ends with the characters of the value of another string.

	contains
	Indicates whether the value of one string contains the characters of the value of another string.

	substring
	Returns a string located at a specified place in the value of a string.

	string-length
	Returns the length of the argument.

	upper-case
	Returns the upper-cased value of the argument.

	lower-case
	Returns the lower-cased value of the argument.

concat

concat() => xs:string
concat(xs:string? $op1) => xs:string
concat(xs:string? $op1, xs:string? $op2, ...)
=> xs:string
Accepts zero or more strings as arguments. Returns the string that is the concatenation of the values of its arguments. The resulting string might not be normalized in any Unicode or W3C normalization. If called with no arguments, returns the zero-length string. If any of the arguments is the empty sequence XE "Data model:Sequence" it is treated as the zero-length string.

Examples:

· concat('abc', 'def') returns "abcdef".

· concat('abc') returns abc.

· concat('abc', 'def', 'ghi', 'jkl', 'mno') returns "abcdefghijklmno".

starts-with

starts-with(xs:string? $op1, xs:string? $op2)
=> xs:boolean?
Returns a boolean indicating whether or not the value of $op1 starts with a string that is equal to the value of $op2.

If the value of $op2 is the zero-length string, then the function returns true. If the value of $op1 is the zero-length string and the value of $op2 is not the zero-length string, then the function returns false.

If the value of $op1 or $op2 is the empty sequence XE "Data model:Sequence" , the empty sequence is returned.

Examples:

· starts-with("goldenrod", "gold") returns true.

· starts-with("goldenrod", "") returns true.

· starts-with("goldenrod", "rod") returns false.

ends-with

ends-with(xs:string? $op1, xs:string? $op2)
=> xs:boolean?
Returns a boolean indicating whether or not the value of $op1 ends with a string that is equal to the value of $op2.

If the value of $op2 is the zero-length string, then the function returns true. If the value of $op1 is the zero-length string and the value of $op2 is not the zero-length string, then the function returns false.

If the value of $op1 or $op2 is the empty sequence XE "Data model:Sequence" , the empty sequence is returned.

Examples:

· ends-with("goldenrod","rod") returns true.

· ends-with("", "rod") returns false.

contains

contains(xs:string? $op1, xs:string? $op2)
=> xs:boolean?
Returns a boolean indicating whether or not the value of $op1 contains (at the beginning, at the end, or anywhere within) a string equal to the value of $op2.

If the value of $op2 is the zero-length string, then the function returns true. If the value of $op1 is the zero-length string and the value of $op2 is not the zero-length string, then the function returns false.

If the value of $op1 or $op2 is the empty sequence XE "Data model:Sequence" , the empty sequence is returned.

substring

substring(xs:string? $sourceString,
 xs:decimal? $startingLoc)
=> xs:string?
substring(xs:string? $sourceString,
 xs:decimal? $startingLoc,
 xs:decimal? $length)
=> xs:string?
Returns the portion of the value of $sourceString beginning at the position indicated by the value of $startingLoc and continuing for the number of characters indicated by the value of $length. More specifically, returns the characters in $sourceString whose position $p obeys:

round($startingLoc) <= $p < round($startingLoc + $length)

If $length is not specified, the substring identifies characters to the end of $sourceString.

If $length is greater than the number of characters in the value of $sourceString following $startingLoc, the substring identifies characters to the end of $sourceString.

The first character of a string is located at position 1 (not position 0).

If the value of $startingLoc is negative or greater than the length of $sourceString, the behavior is undefined.

If the value of any of the three parameters is the empty sequence XE "Data model:Sequence" , the empty sequence is returned.

Examples:

· substring("motor car", 6) returns " car".

· substring("metadata", 4, 3) returns "ada".

string-length

string-length(xs:string? $srcval) => xs:integer?
Returns an integer equal to the length in characters of the value of $srcval. If the value of $srcval is the empty sequence XE "Data model:Sequence" , the empty sequence is returned.

Examples:

· string-length("motor car") returns 9.

upper-case

upper-case(xs:string? $srcval) => xs:string?
Returns the value of $srcval after translating every lower-case letter to its upper-case correspondent. Every lower-case letter that does not have an upper-case correspondent, and every character that is not a lower-case letter, is included in the returned value in its original form.

If the value of $srcval is the empty sequence XE "Data model:Sequence" , returns the empty sequence.

Examples:

· upper-case("abCd0") returns "ABCD0".

lower-case

lower-case(xs:string? $srcval) => xs:string?
Returns the value of $srcval after translating every upper-case letter to its lower-case correspondent. Every upper-case letter that does not have a lower-case correspondent, and every character that is not an upper-case letter, is included in the output in its original form.

If the value of $srcval is the empty sequence XE "Data model:Sequence" , returns the empty sequence.

Examples:

· lower-case("ABc!D") returns "abc!d".

Constructors and Functions on Booleans

This section discusses operators on the [XML Schema Part 2] xs:boolean datatype.

Boolean Constructors

The following constructors are defined on the boolean type.

	Constructor
	Meaning

	true
	boolean true value

	false
	boolean false value

true

true() => xs:boolean
Returns the boolean value true.

false

false() => xs:boolean
Returns the boolean value false.

Functions on Boolean Values

The following function is defined on boolean values:

	Function
	Meaning

	xf:not
	Inverts the boolean value of the argument. A () argument returns true.

not

not(item XE "Data model:Item" * $srcval) => xs:boolean
$srcval is first reduced to an effective boolean value XE "Expression:Logical" by applying the following rules:

· If $srcval is the empty sequence XE "Data model:Sequence" , its effective boolean value XE "Expression:Logical" is false.

· If $srcval is a single boolean value, it serves as its own effective boolean value XE "Expression:Logical" .

· If $srcval is a sequence XE "Data model:Sequence" that contains at least one node XE "Data model:Node" , its effective boolean value XE "Expression:Logical" is true.

· In any other case, a type exception XE "Expression:Error" is invoked.

Returns true if the effective boolean value XE "Expression:Logical" is false, and false if the effective boolean value is true.

Examples:

· not(true()) returns false.

Constructors and Functions on Dates and Times

This section discusses operations on the [XML Schema Part 2] date and time types.

Date and Time Types

The operators described in this section are defined on the following date and time types:

· xs:dateTime

· xs:date

· xs:time

Date and Time Constructors

The following constructors are defined on date and time datatypes. Each constructor XE "Function:Constructor"

 XE "Expression:Constructor" takes a single string literal XE "Expression:Literal" as argument. Leading and trailing whitespace, if present, is stripped from the literal before the value is constructed.

	Constructor
	Meaning

	dateTime
	Returns a dateTime type derived by parsing and interpreting a string value.

	date
	Returns a date type derived by parsing and interpreting a string value.

	time
	Returns a time type derived by parsing and interpreting a string value.

dateTime

dateTime(xs:string $srcval) => xs:dateTime
If the value of $srcval conforms to the lexical representation of a xs:dateTime as defined in [XML Schema Part 2], the constructor XE "Function:Constructor"

 XE "Expression:Constructor" returns the dateTime corresponding to that representation. Otherwise, the constructor returns the error value XE "Expression:Error"

 XE "Data model:Error" .

Examples:

· dateTime("1999-05-31T05:00:00") returns a xs:dateTime value corresponding to the 31st of May, 1999 at 5:00 am in an unspecified timezone.

· dateTime("1999-05-31T13:20:00-05:00") returns a xs:dateTime value corresponding to 1:20 p.m. on May the 31st, 1999 for a timezone, which is 5 hours behind Coordinated Universal Time (UTC).

date

date(xs:string $srcval) => xs:date
If the value of $srcval conforms to the lexical representation of a xs:date as defined in [XML Schema Part 2], the constructor XE "Function:Constructor"

 XE "Expression:Constructor" returns the date corresponding to that representation. Otherwise, the constructor returns the error value XE "Expression:Error"

 XE "Data model:Error" .

Examples:

· date("2001-05-31") returns a xs:date value corresponding to the 31st of May, 2001.

· date("2001-04-31") returns an error.

time

time(xs:string $srcval) => xs:time
If the value of $srcval conforms to the lexical representation of a xs:time as defined in [XML Schema Part 2], the constructor XE "Function:Constructor"

 XE "Expression:Constructor" returns the time corresponding to that representation. Otherwise, the constructor returns the error value XE "Expression:Error"

 XE "Data model:Error" .

Examples:

· time("11:33:24") returns a xs:time value corresponding to 33 minutes and 24 seconds past 11 o'clock in an unspecified timezone.

· time("23:33:24.35-05:00") returns a xs:time value corresponding to 33 minutes and 24.35 seconds past 23 o'clock for a timezone which is 5 hours behind Coordinated Universal Time (UTC).

Functions on Nodes

This section discusses operators on nodes. Nodes have been introduced in The standard XQuery data model XE "Data model" and are formally defined in [XQuery 1.0 and XPath 2.0 Data Model].

Functions on Nodes

The following function is defined on nodes:

	Function
	Meaning

	number
	Returns the value of the context node XE "Expression :Context" or the specified node XE "Data model:Node" converted to a number.

number

number(node XE "Data model:Node" ? $srcval) => xs:double?
Returns the value of the node XE "Data model:Node" indicated by $srcval converted to a xs:double. If the value of the node is not a valid lexical representation of a numeric simple type XE "Expression:Typing"

 XE "Data model:Simple type" as defined in [XML Schema Part 2], then the function returns the error value XE "Expression:Error"

 XE "Data model:Error" .

If the value of $srcval is the empty sequence XE "Data model:Sequence" , the empty sequence is returned.

Functions on Sequences

This section discusses operators on sequences, i.e. ordered collections of zero or more items. The terms sequence XE "Data model:Sequence" and item XE "Data model:Item" have been introduced in The XQuery data model and are defined formally in [XQuery 1.0 and XPath 2.0 Data Model].

Functions on Sequences

The following functions are defined on sequences.

	Function
	Meaning

	empty
	Indicates whether or not the provided sequence XE "Data model:Sequence" is empty.

	exists
	Indicates whether or not the provided sequence XE "Data model:Sequence" is not empty.

	distinct-values
	Returns a sequence XE "Data model:Sequence" in which all redundant duplicate elements, based on value equality, have been deleted. The specific node XE "Data model:Node" in a collection XE "Input function:Collection" of redundant duplicate nodes that is retained in implementation-dependent.

empty

empty(item XE "Data model:Item" * $srcval) => xs:boolean
If the value of $srcval is the empty sequence XE "Data model:Sequence" , the function returns true; otherwise, the function returns false.

exists

exists(item XE "Data model:Item" * $srcval) => xs:boolean
If the value of $srcval is not the empty sequence XE "Data model:Sequence" , the function returns true; otherwise, the function returns false.

distinct-values

distinct-values(item XE "Data model:Item" * $srcval) => item*
$srcval must contain either simple values or nodes, not both. If the sequence XE "Data model:Sequence" contains both simple values and nodes, then the function returns the error value XE "Expression:Error"

 XE "Data model:Error" .

If $srcval contains only nodes, returns the sequence XE "Data model:Sequence" that results from removing from $srcval all but one of a set of nodes that are equal to one other, based on the following comparison XE "Expression:Comparison" function. Two nodes are considered equal if:

· they have the same node XE "Data model:Node" type (i.e. element XE "Data model:Element" or attribute XE "Data model:Attribute"),

· they have the same name,

· they have the same value, as obtained by the data() function. Note that the use of the data() function implies that it is an error to apply the distinct-values function to sequences containing element XE "Data model:Element" nodes with complex content.

The specific node XE "Data model:Node" in a collection XE "Input function:Collection" of nodes having equal values that is retained is implementation-dependent.

If $srcval contains only values, returns the sequence XE "Data model:Sequence" that results from removing from $srcval all but one of a set of values that are equal to one other.

If $srcval is the empty sequence XE "Data model:Sequence" , returns the empty sequence.

Aggregate Functions

Aggregate functions take a sequence XE "Data model:Sequence" as argument and return a single value computed from values in the sequence. Except for count, if the sequence contains nodes, the value is extracted from the node XE "Data model:Node" and used in the computation.

	Function
	Meaning

	count
	Returns the number of items in the sequence. XE "Data model:Sequence"

	avg
	Returns the average of a sequence XE "Data model:Sequence" of numbers.

	max
	Returns the object with maximum value from a collection XE "Input function:Collection" of comparable objects.

	min
	Returns the object with minimum value from a collection XE "Input function:Collection" of comparable objects.

	sum
	Returns the sum of a sequence XE "Data model:Sequence" of numbers.

count

count(item XE "Data model:Item" * $srcval) => xs:unsignedInt
Returns the number of items in the value of $srcval. Returns 0 if $srcval is the empty sequence XE "Data model:Sequence" .

avg

avg(item XE "Data model:Item" * $srcval) => xs:double?
If $srcval contains nodes, the value of each node XE "Data model:Node" is extracted using the data() function. Values that equal the empty sequence XE "Data model:Sequence" are discarded. If after this, $srcval contains only numbers, avg() returns the average of the numbers (computed as sum($srcval) div count($srcval)). If $srcval is the empty sequence, the empty sequence is returned.

If, after extracting the values from nodes, $srcval does not contain only numbers, the function returns the error value XE "Expression:Error"

 XE "Data model:Error" .

max

max(item XE "Data model:Item" * $srcval) => xs:anySimpleType?
If $srcval contains nodes, the value of each node XE "Data model:Node" is extracted using the data() function. Values that equal the empty sequence XE "Data model:Sequence" are discarded. If, after this, $srcval is the empty sequence, the empty sequence is returned. After extracting the values from nodes, $srcval must contain only values of a single type (for numeric values, the type promotion rules can be used to promote them to a single type). Otherwise, the function returns the error value XE "Expression:Error"

 XE "Data model:Error" .

max returns the item XE "Data model:Item" in the value of $srcval whose value is greater than the value of every other item in the value of $srcval. If there are two or more such items, then the specific item whose value is returned is implementation-dependent.

min

min(item XE "Data model:Item" * $srcval) => xs:anySimpleType?
If $srcval contains nodes, the value of each node XE "Data model:Node" is extracted using the data() function. Values that equal the empty sequence XE "Data model:Sequence" are discarded. If, after this, $srcval is the empty sequence, the empty sequence is returned. After extracting the values from nodes, $srcval must contain only values of a single type (for numeric values, the type promotion rules can be used to promote them to a single type) Otherwise, the function returns the error value XE "Expression:Error"

 XE "Data model:Error" .

min returns the item XE "Data model:Item" in the value of $srcval whose value is less than the value of every other item in the value of $srcval. If there are two or more such items, then the specific item whose value is returned is implementation-dependent.

sum

sum(item XE "Data model:Item" * $srcval) => xs:double
If $srcval contains nodes, the value of each node XE "Data model:Node" is extracted using the data() function. Values that equal the empty sequence XE "Data model:Sequence" are discarded. If, after this, $srcval contains only numbers, sum() returns the sum of the numbers. If it is the empty sequence, 0.0 is returned.

If, after extracting the values from nodes, $srcval does not contain only numbers, the function returns the error value XE "Expression:Error"

 XE "Data model:Error" .

Functions that Generate Sequences

	Function
	Meaning

	collection XE "Input function:Collection"
	Returns the collection XE "Input function:Collection" (a sequence XE "Data model:Sequence" of document nodes) retrieved using the string specified as its argument.

	input
	Returns the input sequence. XE "Input function:Input sequence"

collection XE "Input function:Collection"
collection XE "Input function:Collection" (xs:string $srcval) => node XE "Data model:Node" *
Takes a string as argument and returns the sequence XE "Data model:Sequence" of document nodes contained in the corresponding Fusion collection. $srcval should be the name of an existing user-defined Fusion collection. The function returns the error value XE "Expression:Error"

 XE "Data model:Error" if $srcval does not resolve to a valid table name.

Note that collection XE "Input function:Collection" () cannot be used by itself and must necessarily be followed by a navigation expression (StepExpr or PathExpr).

Example:

· collection XE "Input function:Collection" ("ITEMS")/ITEMS returns ITEMS document elements found in the ITEMS collection.

input

input() XE "Input function:Input sequence" => node XE "Data model:Node" *
Returns the input sequence XE "Input function:Input sequence" , i.e. the empty sequence in the Fusion 2.0.

Context Functions

The following function is defined to obtain information from the evaluation context XE "Expression :Context" .

	Function
	Meaning

	current-dateTime XE "Function:Current date and time"
	Returns the current dateTime.

current-dateTime XE "Function:Current date and time"
current-dateTime XE "Function:Current date and time" () => xs:dateTime
Returns the xs:dateTime that is current at some time during the evaluation of the XQuery expression in which current-dateTime XE "Function:Current date and time" () is executed. All invocations of current-dateTime() that are executed during the course of a single outermost XQuery expression return the same value. The precise instant during that XQuery expression's evaluation represented by the value of current-dateTime() is not defined.

Index

Configuration
12, 69

Data model
1, 3, 9, 10, 11, 14, 61

Atomic value
9, 10, 11, 17, 19, 20, 21, 22, 25, 29, 33, 34, 35, 39, 46, 49, 50

Attribute
9, 10, 14, 15, 20, 27, 28, 29, 31, 39, 50, 63, 71

Complex type
9, 10, 11, 20, 50

Element
4, 9, 10, 11, 13, 14, 15, 18, 20, 21, 25, 26, 27, 28, 38, 39, 43, 50, 51, 63, 71

Error
9, 10, 11, 17, 20, 21, 24, 25, 26, 33, 34, 35, 36, 37, 46, 50, 51, 52, 53, 60, 61, 62, 63, 64, 65

Item
9, 10, 18, 19, 22, 23, 26, 29, 35, 43, 45, 46, 48, 49, 50, 59, 62, 63, 64, 65

Node
9, 10, 11, 13, 19, 20, 22, 25, 26, 27, 28, 29, 31, 35, 39, 40, 49, 50, 51, 59, 62, 63, 64, 65, 66, 72

Sequence
5, 9, 10, 17, 18, 19, 22, 23, 25, 26, 27, 29, 33, 34, 35, 37, 39, 41, 42, 43, 45, 46, 47, 49, 50, 53, 54, 55, 56, 57, 58, 59, 62, 63, 64, 65

Simple type
5, 9, 10, 50, 62

Expression
Arithmetic
21, 24, 32, 37

Atomization
22

Comments
25, 37, 40

Comparison
34, 35, 63

Constructor
4, 14, 20, 21, 23, 38, 39, 40, 42, 47, 51, 52, 53, 54, 55, 60, 61

Error
9, 10, 11, 17, 20, 21, 22, 24, 25, 26, 28, 29, 33, 34, 35, 36, 37, 46, 50, 51, 52, 53, 59, 60, 61, 62, 63, 64, 65

FLWOR
40, 42

Function call
18, 21, 22, 24, 25

Literal
20, 21, 22, 23, 39, 51, 52, 54, 60

Logical
10, 35, 36, 37, 42, 47, 48, 59

Quantified
24, 47, 48

Sorting
45

Typing
5, 9, 10, 11, 20, 21, 22, 25, 28, 33, 39, 46, 50, 62

XPath
10, 18, 25, 26, 27, 28, 29, 30, 31

Expression

Context
4, 17, 18, 19, 24, 25, 26, 27, 28, 29, 30, 45, 62, 66

Variable
18, 19, 24, 26, 41, 42, 43, 47

XPath
18

Function
Constructor
4, 14, 20, 21, 23, 38, 39, 40, 42, 47, 51, 52, 53, 54, 55, 60, 61

Current date and time
5, 19, 66

Input function
Collection
5, 9, 10, 19, 25, 26, 42, 43, 44, 46, 48, 62, 63, 64, 65, 66, 71

Input sequence
19, 25, 65, 66, 71

Namespace declaration
13, 14

Default
5, 15, 24

Appendix A – XML Schema for the XQuark Fusion configuration file XE "Configuration"
<?xml version="1.0"?>
<schema xmlns=http://www.w3.org/2001/XMLSchema
 xmlns:ipo=http://www.xquark.org/Mediator
 targetNamespace="http://www.xquark.org/Mediator">
 <element name="accessor">
 <complexType>
 <sequence>
 <element ref="ipo:launcher"/>
 <element ref="ipo:specific"/>
 <element ref="ipo:subaccessors" minOccurs="0" />
 </sequence>
 <attribute name="type" type="string"/>
 <attribute name="name" type="string"/>
 </complexType>
 </element>

 <element name="classname">
 <complexType mixed="true" />
 </element>

 <element name="conffile">
 <complexType mixed="true" />
 </element>

 <element name="host">
 <complexType mixed="true" />
 </element>

 <element name="url">
 <complexType mixed="true" />
 </element>

 <element name="object">
 <complexType mixed="true" />
 </element

 <element name="port">
 <complexType mixed="true" />
 </element>

 <element name="launcher">
 <complexType>
 <sequence>
 <element ref="ipo:classname" minOccurs="0">
 <element ref="ipo:conffile" minOccurs="0"/>
 <element ref="ipo:host" minOccurs="0"/>
 <element ref="ipo:port" minOccurs="0"/>
 <element ref="ipo:object" minOccurs="0"/>
 <element ref="ipo:url" minOccurs="0"/>
 </sequence>
 <attribute name="type" type="string"/>
 </complexType>
 </element>

 <element name="specific">
 <complexType>
 <sequence>
 <any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>

 <element name="driver">
 <complexType mixed="true" />
 </element>

 <element name="connection">
 <complexType mixed="true" />
 </element>

 <element name="user">
 <complexType mixed="true" />
 </element>

 <element name="password">
 <complexType mixed="true" />
 </element>

 <element name="subaccessor">
 <complexType>
 <sequence>
 <element ref="ipo:driver" minOccurs="0" />
 <element ref="ipo:connection" minOccurs="0" />
 <element ref="ipo:user" minOccurs="0" />
 <element ref="ipo:password" minOccurs="0" />
 </sequence>
 <attribute name="name" type="string" />
 </complexType>
 </element>

 <element name="subaccessors">
 <complexType>
 <sequence>
 <element ref="ipo:subaccessor" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 </element>

</schema>

Appendix B – Complete BNF Grammar

	Query
	::=
	QueryProlog Expr

	QueryProlog
	::=
	(NamespaceDecl
| DefaultNamespaceDecl)*

	NamespaceDecl
	::=
	"namespace" NCName "=" StringLiteral

	DefaultNamespaceDecl
	::=
	"default element XE "Data model:Element" namespace =" StringLiteral

	Expr
	::=
	PrimaryExpr
| CommentExpr
| PathExpr
| AdditiveExpr
| Constructor
| FLWORExpr
| SortExpr

	PrimaryExpr
	::=
	Literal
| FunctionCall
| Variable
| ParenthesizedExpr

	Literal
	::=
	NumericLiteral | StringLiteral

	NumericLiteral
	::=
	IntegerLiteral
| DecimalLiteral
| DoubleLiteral

	IntegerLiteral
	::=
	[0-9]+

	DecimalLiteral
	::=
	("." [0-9]+) | ([0-9]+ "." [0-9]*)

	DoubleLiteral
	::=
	(("." [0-9]+)
 | ([0-9]+ ("." [0-9]*)?))
([e] | [E]) ([+] | [-])? [0-9]+

	StringLiteral
	::=
	(["] ([^"])* ["])
| (['] ([^'])* ['])

	Variable
	::=
	"$" NCName

	ParenthesizedExpr
	::=
	"(" Expr ")"

	FunctionCall
	::=
	QName "(" (Expr ("," Expr)*)? ")"

	ExprComment
	::=
	"{--" [^}]* "--}"

	PathExpr
	::=
	(PathExprRoot | StepExpr | PathExpr)?
"/" StepExpr

	PathExprRoot
	::=
	InputExpr | Variable

	InputExpr
	::=
	"collection(XE "Input function:Collection" " StringLiteral ")"
| "input()" XE "Input function:Input sequence"

	StepExpr
	::=
	Step Predicates

	Step
	::=
	(Axis NodeTest) | AbbreviatedStep

	Axis
	::=
	"child" "::"
| "attribute" XE "Data model:Attribute" "::"
| "self" "::"

	NodeTest
	::=
	KindTest | NameTest

	NameTest
	::=
	QName

	KindTest
	::=
	"text" "(" ")"
"node" XE "Data model:Node" "(" ")"

	Predicates
	::=
	("[" OrExpr "]")*

	AbbreviatedStep
	::=
	"." | (@ NameTest) | NodeTest

	AdditiveExpr
	::=
	(AdditiveExpr ("+" | "-"))?
MultiplicativeExpr

	MultiplicativeExpr
	::=
	(MultiplicativeExpr
 ("*" | "div" | "mod"))?
UnaryExpr

	UnaryExpr
	::=
	("-" | "+")?
(PrimaryExpr
 | PathExpr
 | StepExpr)

	CompExpr
	::=
	AdditiveExpr
("=" | "!=" | "<" S | "<=" | ">" | ">=")
AdditiveExpr

	OrExpr
	::=
	(OrExpr "or")? AndExpr

	AndExpr
	::=
	(AndExpr "and")? BoolExpr

	BoolExpr
	::=
	CompExpr
| PrimaryExpr
| PathExpr
| StepExpr
| QuantifiedExpr

	Constructor
	::=
	ElementConstructor
| XmlComment
| XmlProcessingInstruction
| CdataSection

	ElementConstructor
	::=
	"<" QName AttributeList
("/>" | (">" ElementContent*
"</" QName ">"))

	ElementContent
	::=
	Char
| "{{"
| "}}"
| ElementConstructor
| EnclosedExpr
| CdataSection
| CharRef
| PredefinedEntityRef
| XmlComment
| XmlProcessingInstruction

	AttributeList
	::=
	(QName "=" AttributeValue)*

	AttributeValue
	::=
	(["]
 ("'" | AttrValueContent)*
 ["])
|([']
 (""" | AttrValueContent)*
 ['])

	AttrValueContent
	::=
	Char
| CharRef
| "{{"
| "}}"
| EnclosedExpr
| PredefinedEntityRef

	EnclosedExpr
	::=
	"{" Expr "}"

	Char
	::=
	[#x0009] | [#x000D]
| [#x000A] | [#x0020-#xFFFD])

	CharRef
	::=
	"&#" ([0-9]+
| ("x"([0-9] | [a-f]
 | [A-F])+)) ";"

	PredefinedEntityRef
	::=
	"&" ("lt" | "gt" | "amp"
| "quot" | "apos") ";"

	CdataSection
	::=
	"<![CDATA[" Char* "]]>"

	XmlProcessingInstruction
	::=
	"<?" NCName Char* "?>"

	XmlComment
	::=
	"<!--" Char* "-->"

	FLWORExpr
	::=
	(ForClause | LetClause)+
WhereClause? "return" Expr

	ForClause
	::=
	"for" Variable "in" Expr
("," Variable "in" Expr)*

	LetClause
	::=
	"let" Variable ":=" Expr
("," Variable ":=" Expr)*

	WhereClause
	::=
	"where" OrExpr

	SortExpr
	::=
	(PathExpr | FLWORExpr)
"sortby" "(" SortSpecList ")"

	SortSpecList
	::=
	(PathExpr | StepExpr) SortModifier
("," SortSpecList)?

	SortModifier
	::=
	("ascending" | "descending")?

	QuantifiedExpr
	::=
	("some" | "every")
Variable "in" Expr
("," Variable "in" Expr)*
"satisfies" OrExpr

	NCName
	::=
	(Letter | '_') (NCNameChar)*

	QName
	::=
	(NCName ":")? NCName

	NCNameChar
	::=
	Letter | Digit | '.' | '-' | '_'
| CombiningChar | Extender

	Letter
	::=
	BaseChar | Ideographic

	BaseChar
	::=
	[#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] | [#x0141-#x0148] | [#x014A-#x017E] | [#x0180-#x01C3] | [#x01CD-#x01F0] | [#x01F4-#x01F5] | [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] | #x0386 | [#x0388-#x038A] | #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE] | [#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE | #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C] | [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-#x0481] | [#x0490-#x04C4] | [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB] | [#x04EE-#x04F5] | [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2] | [#x0621-#x063A] | [#x0641-#x064A] | [#x0671-#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] | [#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6] | [#x0905-#x0939] | #x093D | [#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990] | [#x0993-#x09A8] | [#x09AA-#x09B0] | #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD] | [#x09DF-#x09E1] | [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-#x0A10] | [#x0A13-#x0A28] | [#x0A2A-#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36] | [#x0A38-#x0A39] | [#x0A59-#x0A5C] | #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B] | #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] | #x0ABD | #x0AE0 | [#x0B05-#x0B0C] | [#x0B0F-#x0B10] | [#x0B13-#x0B28] | [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39] | #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61] | [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C | [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5] | [#x0BB7-#x0BB9] | [#x0C05-#x0C0C] | [#x0C0E-#x0C10] | [#x0C12-#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39] | [#x0C60-#x0C61] | [#x0C85-#x0C8C] | [#x0C8E-#x0C90] | [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C] | [#x0D0E-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39] | [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-#x0E82] | #x0E84 | [#x0E87-#x0E88] | #x0E8A | #x0E8D | [#x0E94-#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0 | [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4] | [#x0F40-#x0F47] | [#x0F49-#x0F69] | [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100 | [#x1102-#x1103] | [#x1105-#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-#x1112] | #x113C | #x113E | #x1140 | #x114C | #x114E | #x1150 | [#x1154-#x1155] | #x1159 | [#x115F-#x1161] | #x1163 | #x1165 | #x1167 | #x1169 | [#x116D-#x116E] | [#x1172-#x1173] | #x1175 | #x119E | #x11A8 | #x11AB | [#x11AE-#x11AF] | [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2] | #x11EB | #x11F0 | #x11F9 | [#x1E00-#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45] | [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59 | #x1F5B | #x1F5D | [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE | [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB] | [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B] | #x212E | [#x2180-#x2182] | [#x3041-#x3094] | [#x30A1-#x30FA] | [#x3105-#x312C] | [#xAC00-#xD7A3]

	Ideographic
	::=
	[#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]

	CombiningChar
	::=
	[#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] | [#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-#x05C2] | #x05C4 | [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] | [#x06DD-#x06DF] | [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] | [#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D | [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983] | #x09BC | #x09BE | #x09BF | [#x09C0-#x09C4] | [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7 | [#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] | [#x0A47-#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C | [#x0B3E-#x0B43] | [#x0B47-#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-#x0B57] | [#x0B82-#x0B83] | [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] | #x0BD7 | [#x0C01-#x0C03] | [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-#x0C4D] | [#x0C55-#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57 | #x0E31 | [#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84] | [#x0F86-#x0F8B] | [#x0F90-#x0F95] | #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 | [#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] | #x3099 | #x309A

	CombiningChar
	::=
	[#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] | [#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-#x05C2] | #x05C4 | [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] | [#x06DD-#x06DF] | [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] | [#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D | [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983] | #x09BC | #x09BE | #x09BF | [#x09C0-#x09C4] | [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7 | [#x09E2-#x09E3] | #x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] | [#x0A47-#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C | [#x0B3E-#x0B43] | [#x0B47-#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-#x0B57] | [#x0B82-#x0B83] | [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] | #x0BD7 | [#x0C01-#x0C03] | [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-#x0C4D] | [#x0C55-#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43] | [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57 | #x0E31 | [#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 | #x0F3E | #x0F3F | [#x0F71-#x0F84] | [#x0F86-#x0F8B] | [#x0F90-#x0F95] | #x0F97 | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 | [#x20D0-#x20DC] | #x20E1 | [#x302A-#x302F] | #x3099 | #x309A

	Extender
	::=
	#x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 | #x0EC6 | #x3005 | [#x3031-#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

Appendix C – XQuery 1.0: An XML Query Language
W3C Working Draft 30 April 2002

This version:

http://www.w3.org/TR/2002/WD-xquery-20020430

Latest version:

http://www.w3.org/TR/xquery

Previous versions:

http://www.w3.org/TR/2001/WD-xquery-20011220 http://www.w3.org/TR/2001/WD-xquery-20010607

Editors:

Scott Boag (XSL WG), IBM Research <scott_boag@us.ibm.com>

Don Chamberlin (XML Query WG), IBM Almaden Research Center <chamberlin@almaden.ibm.com>

Mary F. Fernandez (XML Query WG), AT&T Labs <mff@research.att.com>

Daniela Florescu (XML Query WG), XQRL <dana@xqrl.com>

Jonathan Robie (XML Query WG), Invited Expert <jonathan.robie@datadirect-technologies.com>

Jérôme Siméon (XML Query WG), Bell Labs, Lucent Technologies <simeon@research.bell-labs.com>

Mugur Stefanescu (XML Query WG), Concentric Visions <MStefanescu@Concentricvisions.com>

Copyright © 2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use, and software licensing rules apply.

Abstract

XML is a versatile markup language, capable of labeling the information content of diverse data sources including structured and semi-structured documents, relational databases, and object Fusion. A query language that uses the structure of XML intelligently can express queries across all these kinds of data, whether physically stored in XML or viewed as XML via middleware. This specification describes a query language called XQuery, which is designed to be broadly applicable across many types of XML data sources.

Status of this Document

This is a public W3C Working Draft for review by W3C Members and other interested parties. This section describes the status of this document at the time of its publication. It is a draft document and may be updated, replaced, or made obsolete by other documents at any time. It is inappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in progress." A list of current public W3C technical reports can be found at http://www.w3.org/TR/.

Much of this document is the result of joint work by the XML Query and XSL Working Groups, which are jointly responsible for XPath 2.0, a language derived from both XPath 1.0 and XQuery. The XPath 2.0 and XQuery 1.0 Working Drafts are generated from a common source. These languages are closely related, sharing much of the same expression syntax and semantics, and much of the text found in the two Working Drafts is identical.

This version of the document contains new details about the type system of XQuery, including a syntax for declaring types in function signatures and other expressions. It describes the semantics of several expressions that operate on types, including treat, assert, and validate expressions. It also describes in greater detail the semantics of element and attribute constructors and how they operate on the underlying data model.

This document is a work in progress. It contains many open issues, and should not be considered to be fully stable. Vendors who wish to create preview implementations based on this document do so at their own risk. While this document reflects the general consensus of the working groups, there are still controversial areas that may be subject to change.

Public comments on this document and its open issues are welcome. Of particular interest are comments on error handling (see issues 97 and 98.) Comments should be sent to the W3C XPath/XQuery mailing list, public-qt-comments@w3.org (archived at http://lists.w3.org/Archives/Public/public-qt-comments/).

XQuery 1.0 has been defined jointly by the XML Query Working Group (part of the XML Activity) and the XSL Working Group (part of the Style Activity).

� The W3C is an organisation, widely supported by the industry, in charge of defining Internet-related standards, including XML and derived standards.

iii

