

BONITA Workflow Cooperative System

User’s Guide

Miguel Valdés Faura
INRIA Lorraine (ECOO TEAM)

Index

Foreword………………………………………………………………………………………1

Chapter 1: Manager Application ...….………………………………………………………2

 1.1 Worklist introduction…………………………………..……………………….2

 1.2 Worklist execution ..…..…………………………………..……………………….3

1.3 Worklist options …...…………………………………..……………………….4

Chapter 2: GraphEditor Application…...…………………………………………………...5

 2.1 Introduction ..………….…………………………..………………………..……..5

 2.2 Menus ……………………………….……..………………………..…………….6

 2.3 Activity colors ...……………..………………….…………………..……….…..6

 2.4 Activity information….…...……..……………………………….……..………....6

 2.5 Activity routing…...……….....………………………..……..………………….7-8

 2.6 Activity properties..…….....…...…………………..………...………………….…9

 2.7 Edit activity…..…………..…………...…………..………...…………………….10

 2.8 Activity hooks ……………..……..……………..………...………………….11-18

2.8.1 Hook Introduction..……..……………..………...……………………...11

2.8.2 Hook Example……....……………..………...……………………...12-15

2.8.3 Bonita Hook API…….……………..………...……………………..16-18

 2.9 Users in project ..………………………………..………...……………………...19

 2.10 Add user to project …….………….……….….………...……………………....19

 2.11 Add project role ……………..………………..………...……………………....20

 2.12 Add user role …….……...……………………..………...……………………...20

Foreword

-1-

Introduction

This document is based on the new Workflow model proposed by the ECOO Team for
applications supporting business processes.
This approach incorporates the anticipation of activities as a more flexible mechanism of
workflow execution. This flexibility allows a considerable increase of speed in the design and
development phases of cooperative applications

The development of the Bonita Workflow engine is built on EJB (Enterprise Java Beans)
technology that is the server-side component architecture for the J2EE (JavaTM 2 Platform,
Enterprise Edition). EJB enables rapid and simplified development of distributed,
transactional, secure and portable Java applications.
We have chosen JOnAS application server ((http://jonas.objectweb.org/) in order to deploy
Bonita Cooperative Workflow System.

Bonita Workflow includes also an 100% browsed based application example created with the
Struts Framework that provides a simple environment to define and control the workflow
processes by means of your favourite browser. In the same way the use of the Java Web Start
Applications and the Bonita Web Services technology allows the users and the business
organisations to generate your web representation of Bonita Worklow System.

The principal objective of this guide is an initiation to the generic model of Bonita Workflow
System dedicated to specify, execute, monitor and coordinate the organizations flow of work.
Bonita offers a comprehensive set of graphical tools integrated into a single package in order
to perform process conception and definition, the instantiation and control of this process and
the interaction with the users and other applications.

These applications compose the Bonita Workflow Management System, known as “Manager”
and formed by the Bonita Workflow Definition Component (“GraphEditor” application) and
the Bonita Workflow Execution Component (Worklist application).
The Bonita Workflow Management System are designed in order to facilitate the definition
and execution of workflow processes.

In the next sections we explains the basic functionalities of Bonita Workflow Management
applications and we illustrate these by means of some workflow examples.

Chapter 1. Bonita Worklist Application

-2-

Chapter 1. Worklist application

When the user launches the manager application (by clicking on the manager link at Bonita’s
Web Menu or by typing ant manager in your command line) the next authentication screen
appears:

If the user is correctly logged in the system, the Worklist application is shown. The User
Worklist application allow the users to control the process execution and provides different
information about the projects of every user. This information is organized in three list:
Project List, ToDo List and the Activity List.
When the user select one project from its project list, he obtains the list of executing activities
(executing or anticipating states) and his assigned activities (ready or anticipable).

The user Worklist provides different information:

Project List

List of user projects. In this list the user can see his projects and he can
select one of these in order to executes his assigned activities. The user
can also edit the project by double-clicking and launch the Bonita
Workflow Definition Component.

Todo List

List containing ready and anticipable activities of the current project
associated with a user. These activities are divided in two different
colours: yellow for the activities in ready state and green for the activities
in anticipable state. The important difference between these two activities
types is the execution mode. The ready activities are executed in a
traditional workflow model and the anticipable activities follows the
Bonita flexible model.

Activity List

List of executing and anticipating activities of the current project . These
activities are also divided in two different colours: red for the activities in
execution state and violet for the activities in anticipating state. Only the
activities started by the user are showed here.

Chapter 1. Bonita Worklist Application

-3-

The next figures show the state changes when the user begins an activity:

Figure 1 : Activities of the project

Figure 2: Execution of activity 1

Figure 3: Activity 1 terminated

The following example shows an execution environment with three users (admin, test and
scott). The user admin executes the first activity and the user worklists are automatically
updated (Figure 3). Only the user who has executed the activity is able to finish it.

Figure 3: User Worklists when the user admin executes the first activity

Chapter 1. Bonita Worklist Application

-4-

If the user test would like to anticipate the second activity (with anticipable state in the
TodoList), the manager application updates all TodoLists and the user’s ActivityList (Figure
4).

Figure 4: User Worklists when the user test anticipates the second activity

Every user, provided that he is correctly authenticated, can execute, terminate and anticipate
activities. With the manager menu the user may create a new project or clone existing
projects and also ask for the project and activities information.

Create new project and
Clone existing project
functionalities, allow the
users to begin the definition
of a new Bonita Workflow
process.

With the Clone project
option we can use an
existing Bonita process in
order to create the new
process. The new project
contains the same activity
graph (at the initial state)
and copy the hooks and roles
of the previous one.

Figure 5: User Worklists when the user clones an existing project

Chapter 2. Bonita GraphEditor Application

-5-

Chapter 2. GraphEditor application

This application allows the users to define the workflow process. This definition includes
activity definition, activities connection, users and roles definitions…

The user can run the application by double-clicking on one project of a previous manager
application.

Figure 5: GraphEditor when the user opens an existing project.

This is the first screen that
appears when any user opens a
project.

The GraphEditor application
provides several visual
definition functionalities to
make the workflow definition
easy and automatic.

Using the GraphEditor Menu
File Menu

• New: Creates a new empty project.
• Clone: Creates a new project with activities and edges from an
existing project.
• Open: Opens an existing project.
• Export: Stores the graphical workflow representation into different
image formats (png, jpeg, jpg).
•Exit: Finishes the GraphEditor session

Edit Menu

• Copy: Copies selected activity/activities and edges of the project.
• Paste: Pastes activity/activities and edges in the project.
• Paste: Deletes selected activity/activities and edges of the project.
• Select all: Selects all activities and edges of the project.
• Deselect all: Deselects all activities and edges of the project.

Chapter 2. Bonita GraphEditor Application

-6-

Activity Colors

With the GraphEditor application the user can visualize the Workflow process state. A Bonita
Workflow process is composed by the activities and the connections between these activities.
The user can identify the workflow execution by means of the activities color changes. Each
activity has a color associated with the state of this activity.
The next table shows the different activity colors:

Color Activity State
Yellow Initial state. Only for the start point activity and for the activities

with no connections.
Green Anticipable state. You can executes these activities in anticipation

mode.
Red Executing state. The activity is executing.

Violet Anticipating state. The activity has been executed in anticipation
mode.

Light Blue Terminated state. The activity is finished.
Dark Blue Cancel state. The activity was cancelled

Activity Information

You can move your mouse over the activities to obtains a little description: activity name,
activity state, activity deadline, activity role…

Format Menu

• Automatic Layout: Activates the GraphEditor layout to place
automatically all activities in the screen.
• Background: Selects the background colour.

Users Menu

• • • • New User: Adds a system user to this project.
• Users In Project: Lists the users of this project.
• Add Role: Adds new role to the system.
• Add User to Role: Assigns a new role to a user.

Zoom Menu

• • • • Fit Window: Fits the workflow graph in the window..
• Zoom 100%: Applies a 100% zoom to the graph.
• Zoom In: Applies zoom in to the graph.
 • Zoom Out: Applies zoom out to the graph.

Chapter 2. Bonita GraphEditor Application

-7-

Activity Routing

Bonita Workflow System provides an integrated routing activity model, so each activity
integrates the process execution point of control. The routing modes available in Bonita are:
AND-JOIN, OR-JOIN, AND-SPLIT and OR-SPLIT. These routing modes can be used in a
flexible (activities anticipation) or traditional (isolation activities) execution modes. The
activities execution control can be effectuated by the user or automatically by the execution
engine (non-automatic/automatic activities).

When the user adds a new
activity to the workflow process
he must select the activity
routing mode. This routing
mode will be AND JOIN or OR
JOIN to make available the
control execution to the user or
AND JOIN AUTO or OR_JOIN
AUTO to give the control to the
execution engine.

In order to insert AND SPLIT
and OR SPLIT routing modes
the user must define the activity
connections (edges) conditions,
so first he chooses AND JOIN
or OR SPLIT activity routing
nodes and then he edits edges to
define the split condition.

Figure 6: GraphEditor when the user adds a new activity.

The next figures shows the workflow process execution when the user selects AND JOIN
routing mode:

Figure 7: Workflow execution when the activity
“node4” with AND JOIN routing mode is active
(anticipable state) by two anticipating activities.

Figure 8: Workflow execution when the activity
“node4” with AND JOIN routing mode is waiting
(initial state) for the execution of activity “node3”

Chapter 2. Bonita GraphEditor Application

-8-

The next figures shows the workflow process execution when the user selects OR JOIN
routing mode:

Figure 9: Workflow execution when the activity
“node4” with OR JOIN routing mode is active
(anticipable state) by the activity “node2”.

Figure 10: Workflow execution when the activity
“node4” with OR JOIN routing mode is waiting
(ready state) for the user execution.

In the next figure the user defines activities with AND SPLIT or OR SPLIT routing modes by
setting edges conditions. When the user terminates an execution activity, the Bonita execution
engine evaluates the activity out edges conditions in order to propagate or not this event to
connected activities.

Normally, edges conditions uses the activities properties values to select the progress of the
workflow process execution. In the example, when the activity node1 is finish, the execution
engines evaluates out edges conditions and if the value of the property “property1” is equal to
“78” the system actives the activity “node2”.

Figure 11: GraphEditor when the user set an edge condition.

Chapter 2. Bonita GraphEditor Application

-9-

The Bonita integrated routing mode allows the user to select between AND JOIN or OR JOIN
routing modes and by default AND SPLIT execution propagation is set. So, if you want to
control this propagation you can set edge conditions to implement the OR SPLIT routing
mode.

Activity Properties

Bonita Cooperative Workflow uses the concept of properties to control the process execution
data. Each Bonita Workflow process can be many properties which contains the process
execution data. These properties can be attached to the workflow process and/or the process
activities. The Flexible execution engine of Bonita allows the users to interchange
intermediate data/results. This flexibility is possible by means of the anticipation activity
model and the activity properties takes and important role.

If the user wants to add a new property to an activity, he must select the option Add Property
by clicking on the right mouse button over the activity. The “new property” dialog is
composed by the property key and value fields and the propagate Boolean. This Boolean
allows the property propagation when the associated activity is executed.

The use of the activity properties in anticipation mode offers many possibilities to evaluate
intermediate results of the anticipating activities and it can be used to do backtracking
operations.

Figure 12: GraphEditor when the user set a new activity property.

We continue to talk about the properties in section “Activity Hook”, and we explain the steps
to create this properties dynamically at run time.

Chapter 2. Bonita GraphEditor Application

-10-

Edit Activity

With the GraphEditor application you can edit and modify some activity parameters. These
parameters are the activity deadline, the activity role and the activity description. By setting
these parameters the user defines the end date of the activity, the users that can execute
activity and the list of steps that compose the activity.

If the user wants to edit an activity, he must select the option Edit Activity by clicking on the
right mouse button over the activity.

Figure 13: GraphEditor when the user edit the activity parameters.

When the user performs the workflow process definition he usually sets the activity deadline
value for each activity. The Bonita Workflow Systems uses the timer service in order to add
the new deadline and it sends a notification event to the client in order to warn the user that
the activity must be finished. This notification could be an email or a jabber instant message.

All the activities in a workflow process has assigned a role. Only the users that has the same
role can start the activity, so only the users that has this role will see these activities in the
Manager application todo list.

Chapter 2. Bonita GraphEditor Application

-11-

Activity Hooks

The activity hooks are units of source code, associated to process activities, that will be
executed at runtime by Bonita execution engine. These hooks should be written in Java or in
one of the object scripting languages available in Bonita (TCL, BeanShell).

With the GraphEditor application, the user can set and define activity actions by means of the
BeanShell hooks.
If the user wants to set a new hook to an activity, he must select the option New Hook by
clicking on the right mouse button over the activity and the next dialog window will be
shown.

Figure 14: GraphEditor when the user adds new hook.

In this dialog window, the user must insert the name of the hook and he must choose the hook
type. This hook type explains the hook execution moment of the activities life cycle : before
start, after start, create, before terminate, after terminate, anticipate, create and execute.

The previous operation creates the activity hook on the system. Now its time to define the
actions of this hook. The user can use all Bonita functionalities in order to define the hooks
actions, so all the Bonita EJB are accessible by the hook interface.

If you wants to use external functionalities in your hook actions, like external web services or
other applications, you can do it because you can access to all classes available in the
classpath of the application server used to deploy Bonita.

When the user inserts the hook name and selects one of the possible hook types, the Hook
Action Editor appears. This dialog window, shows the default classes imports and the action
type function associated to this hook. Within this function the user can defines the actions of
this hooks in Java. These actions will be executed at run time by the execution engine in one
moment of the activity execution.

Chapter 2. Bonita GraphEditor Application

-12-

The next figure shows the Hook Action Editor when the user sets a new afterStart hook:

Figure 15: GraphEditor when the user defines the hook actions.

Sample Application

In order to explain the hook functionalities we can take an example of workflow application
that use activity properties and hooks.
We can imagine a basic CRM system for an e-commerce organisation. In this organisation
different employees of the client relationship department work together in order to obtain the
profiles of the users which access to the system.

The Bonita Workflow representation of this CRM system are composed by six activities: User
Registration, Contact User, Search Information, Financial Information, Social Information
and Set Profile.
This workflow process, allows the organisation to sets the user profile (the last activity of the
process) while is performing the registration (the first activity of the process). For that, the
CRM system must obtain some user’s information in order to present the best products lines
for him.

The learning information process about the user will be performed by the other activities in
the Workflow representation. For example, we can try to contact the user by email or
telephone from evaluation of some of the basic user information: its age, its nationality…
We can use also delegate to other employees the responsibility of search specific information
about this user: financial information or social information to fits the user’s needs products.

So, with Bonita we can integrate a great variety of systems, for example this basic CRM
system, in order to define and control the execution phases of the process.

Chapter 2. Bonita GraphEditor Application

-13-

The next figure shows the activities which compose the CRM workflow representation in
order to set the user profile.

Figure 16: Workflow Representation of the CRM System.

We can suppose the first activity “User Registration” is associated to a form web page. This
page is the new user account page, so the CRM workflow example starts when the user
submits his personal information: first name, second name, age and nationality. After that, the
first activity is automatically executed and terminated and the “Contact User” and “Search
User” activities are activated (ready state). See the next figures:

Figure 17: Worklist and GraphEditor application for the CRM System example. The “Contact User”

activity is associated to the employee “Charles” in the todo list.

Chapter 2. Bonita GraphEditor Application

-14-

Now, the user “Charles” can execute the activity “Contact User”, and for example this activity
sends an email to the user in order to present one of the best products of the current month.
To do that, the user administrator has set the following hook to this activity:

import javax.naming.InitialContext;
import javax.mail.Session;
import javax.mail.Address;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.rmi.PortableRemoteObject;
afterStart(Object b, Object n)
{
 try {
 Session session =
(Session)PortableRemoteObject.narrow(new
InitialContext().lookup("java:/Mail"), Session.class);

 MimeMessage m = new MimeMessage(session);
 m.setFrom();
 Address[] to = new InternetAddress[] {new
InternetAddress(usermail) };
 m.setRecipients(javax.mail.Message.RecipientType.TO, to);
 m.setSubject("Notification");
 m.setSentDate(new java.util.Date());
 m.setContent("Notification","text/plain");
 Transport.send(m);

 } catch (Exception e) {
 System.out.println("mail-service.xml configuration error:
"+e);
 }
}

* Note: In the previous Java source code we find the attribute
usermail. This attribute may be a user property set when the user
registration account was submitted.
In Bonita, all activities properties will be propagated and mapped
to the next activities, so if we defined the usermail property in
“User Registration” activity, the “Contact User” activity can
access it.

Figure 18: After start hook assigned to “Contact User” activity that send an email to the user.

If we want to present to the user only the products that fits his needs, we can filtrate the basic
user information before sending the email.

Figure 19: After start hook assigned to “Contact User” activity with filtration of user information.

Chapter 2. Bonita GraphEditor Application

-15-

At the same time that the “Contact User” activity was assigned to the user “Charles”, the
“Search Information” activity was appeared in the todo list of another user, for example
“Guillaume”. This user is the employee which control the user information search, so if he
decides to start this, the connected activities becomes anticipable: “Financial information” and
“Social Information”.

Figure 20: CRM workflow system when the user Guillaume executes “Search Information” activity.

Now, the responsible employees of activities “Financial Information” and “Social
Information” can anticipate the execution of these activities in order to find interesting
information about the user. This information could be useful to allow the organisation to
propose to the user the products that better fits his profile.

If we focus the attention in the “Financial Information” activity, we can suppose the employee
involved in this activity uses the external systems functionalities to obtain information about
user bank accounts. In order to access to these functionalities the employee can use, for
example, web services technology.

Chapter 2. Bonita GraphEditor Application

-16-

After that, the user responsible of the last activity “Set User Profile” inserts previous user
information into a database to obtain the first user profile, and the CRM Workflow example is
finished.

Hook API

If we take a look to the hook Interface, we can see that each hook method: afterStart,
beforeStart… receives two parameters: Object b (EngineBean Session) and Object n
(NodeLocal Object). We can use these objects to obtain information about the activity
associated to this hook (by using the BnNodeLocal API) and to control the process execution
(by using EngineBean Session Bean API).

BnNodeLocal Object methods:

Method Summary

 hero.entity.EdgeState getActivation()
 Retrieve the BnNode's Activation type.

 boolean getAnticipable()
 Retrieve the BnNode's anticipation mode.

 java.util.Collection getBnHooks()

 java.util.Collection getBnInterHooks()

 hero.interfaces.BnNodeLightValue getBnNodeLightValue()

 hero.interfaces.BnNodeValue getBnNodeValue()

 hero.interfaces.BnProjectLocal getBnProject()

 java.util.Collection getBnProperties()

 hero.interfaces.BnRoleLocal getBnRole()
 Retrieve the BnNode's BnRole.

 java.sql.Date getCreationDate()

 hero.interfaces.BnUserLocal getCreator()
 Retrieve the BnNode's Creator.

 java.sql.Date getDeadline()
 Retrieve the BnNode's Deadline.

 java.lang.String getDescription()
 Retrieve the BnNode's Description.

 java.sql.Date getEndDate()
 Retrieve the BnNode's EndDate.

 hero.interfaces.BnUserLocal getExecutor()
 Retrieve the BnNode's Executor.

 int getId()
 Retrieve the BnNode's id.

 java.util.Collection getInBnAgentEdges()

 java.util.Collection getInBnEdges()

 java.sql.Date getModificationDate()

 java.lang.String getName()
 Retrieve the BnNode's Name.

Chapter 2. Bonita GraphEditor Application

-17-

 java.util.Collection getOutBnEdges()

 java.sql.Date getStartDate()
 Retrieve the BnNode's StartDate.

 int getState()
 Retrieve the BnNode's state.

 hero.entity.NodeState getTransition()
 Retrieve the BnNode's Transition type.

 int getType()
 Retrieve the BnNode's type.

 boolean isCancelled()

 boolean isExecuting()

 boolean isTerminated()

 void setActivation(hero.entity.EdgeState activation)
 Set the BnNode's Activation

 void setAnticipable(boolean pAnticipable)
 Set the BnNode's Anticipable mode.

 void setBnHooks(java.util.Collection pHook)
 Set the Hooks of the node

 void setBnInterHooks(java.util.Collection pHook)
 Set the Hooks of the node

 void setBnNodeValue(hero.interfaces.BnNodeValue v)

 void setBnProperties(java.util.Collection pPrp)
 Set the properties of the node

 void setBnRole(hero.interfaces.BnRoleLocal role)
 Set the BnNode's Creator.

 void setCreationDate(java.sql.Date pDate)

 void setCreator(hero.interfaces.BnUserLocal pCreator)
 Set the BnNode's Creator.

 void setDeadline(java.sql.Date pDeadline)
 Set the BnNode's Deadline.

 void setDescription(java.lang.String pDescription)
 Set the BnNode's Description.

 void setEndDate(java.sql.Date pEndDate)
 Set the BnNode's EndDate.

 void setExecutor(hero.interfaces.BnUserLocal pExecutor)
 Set the BnNode's Creator.

 void setModificationDate(java.sql.Date pDate)

 void setStartDate(java.sql.Date pStartDate)
 Set the BnNode's StartDate.

 void setState(int pState)
 Set the BnNode's state.

 void setTransition(hero.entity.NodeState transition)
 Set the BnNode's Transition

 void setType(int pType)
 Set the BnNode's type.

Chapter 2. Bonita GraphEditor Application

-18-

EngineBean Session Bean methods:

Within the code of our hook we can also use Bonita Workflow functionalities in order to
define and control Bonita workflow processes, so Bonita API is available to be used in the
hooks. In the same context, you can call your Java applications and objects from this hook
environment.

Method Summary

 void activeAgent(java.lang.String agentName)
 Active an External BnAgent

 void cancelActivity(java.lang.String nodeName)
 Starts the activity nodeName

 void ejbActivate()

 void ejbCreate(java.lang.String projectName)
 Create the BnProject Session Bean

 void ejbPassivate()

 void ejbRemove()

 int evaluateCondition(hero.interfaces.BnEdgeLocal e)

 void resumeActivity(java.lang.String nodeName)
 Resume the activity nodeName

 void setSessionContext(javax.ejb.SessionContext context)

 void startActivity(java.lang.String nodeName)
 Starts the activity nodeName

 void suspendActivity(java.lang.String nodeName)
 Suspend the activity nodeName

 void terminate()
 Terminates the project

 void terminateActivity(java.lang.String nodeName)
 Starts the activity nodeName

Chapter 2. Bonita GraphEditor Application

-19-

Users in Project

Like in the others Workflow Management Systems, Bonita allows to some users participate in
the definition and execution of a workflow process. The Bonita Workflow Definition
Component (GraphEditor) controls the users that can access to the process definition.

If the user wants to know the list of the members and roles of this project, he must select the
option “Users in Projects” by clicking on the right mouse button over the GraphEditor panel.

Figure 15: GraphEditor when the user clicks to the Users in Project option.

Add User to Project

In order to incorporate and existing user to a specific Bonita project, the user must select the
option “New User” by clicking on the right mouse button over the GraphEditor panel.

Figure 16: GraphEditor when the user clicks to the Add User option.

Chapter 2. Bonita GraphEditor Application

-20-

Add Project Role

Roles in Bonita represents the users who take part into definition and execution of the
workflow process. Each role in Bonita is associated to a project/process, so the role “admin”
in project “test” is different than the role “admin” in project “test2”.

If the user wants to insert a new role in a specific project, he must select the option “Add
Role” by clicking on the right mouse button over the GraphEditor panel.

Figure 16: GraphEditor when the user creates a new role into the project.

Add User Role

In order to set a new role to a user in a specific Bonita project, the user must select the option
“Add Role” by clicking on the right mouse button over the GraphEditor panel.

Figure 17: GraphEditor when the user assign a role to another user.

