

BONITA Workflow Cooperative System

User’s Guide
(Version 1.1)

Miguel Valdés Faura
JIAP Project (BULL R&D)

Index

Foreword ...1

Chapter 1. Worklist application ...2

Worklist Introduction... 2

Worklist Example ... 3

Create and Clone Projects.. 5

Project Instances ... 6

Delete Project .. 7

Chapter 2. GraphEditor application ..8

Activity Colors... 9

Activity Information ... 10

Activity Routing .. 10

Sub-Process Activity ... 12

Activities Iteration .. 13

Activity transitions.. 15

Activity Properties .. 16

Edit Activity... 17

Activity Hooks ... 18
Sample Application ..19
Hook API..23

Add User to Project .. 28

Add Project Role ... 29

Add User Role ... 29

Chapter 3. Business Process Example...30

Introduction... 30

Do it with Bonita ... 30
Customer Service project..31
Creates Order Processing project..34

Business Process Execution .. 38

Conclusion ... 41

Foreword

-1-

Foreword

This document is based on the new Workflow model proposed by the ECOO Team for
applications supporting business processes.
This approach incorporates the anticipation of activities as a more flexible mechanism of
workflow execution. This flexibility allows a considerable increase of speed in the design and
development phases of cooperative applications

The development of the Bonita Workflow engine is built on EJB (Enterprise Java Beans)
technology that is the server-side component architecture for the J2EE (JavaTM 2 Platform,
Enterprise Edition). EJB enables rapid and simplified development of distributed,
transactional, secure and portable Java applications.
We have chosen JOnAS application server (http://jonas.objectweb.org/) in order to deploy
Bonita Cooperative Workflow System.

Bonita Workflow includes also an 100% browsed based application example created with the
Struts Framework that provides a simple environment to define and control the workflow
processes by means of your favourite browser. In the same way the use of the Java Web Start
Applications and the Bonita Web Services technology allows the users and the business
organisations to generate your web representation of Bonita Worklow System.

The principal objective of this guide is an initiation to the generic model of Bonita Workflow
System dedicated to specify, execute, monitor and coordinate the organizations flow of work.
Bonita offers a comprehensive set of graphical tools integrated into a single package in order
to perform process conception and definition, the instantiation and control of this process and
the interaction with the users and other applications.

These applications compose the Bonita Workflow Management System, known as “Manager”
and formed by the Bonita Workflow Definition Component (“GraphEditor” application) and
the Bonita Workflow Execution Component (Worklist application).
The Bonita Workflow Management System is designed in order to facilitate the definition and
execution of workflow processes.

In the next sections we explain the basic functionalities of Bonita Workflow Management
applications and we illustrate it with some workflow examples.

* Note: In this document terms like project/process are used to identify a workflow process.
In the same context node/activity identifies a workflow task/step/activity.

Chapter 1. Bonita Worklist Application

-2-

Chapter 1. Worklist application

When the user launches the manager application (by clicking on the manager link at Bonita’s
Web Menu or by typing ant manager in your command line) the next authentication screen
appears:

Worklist Introduction

If the user is correctly logged in the system, the Worklist application is shown. The User
Worklist application allows the users to control the process execution and provides different
information about the projects of every user. This information is organized in three lists:
Project List, ToDo List and the Activity List.
When the user selects one project from its project list, he obtains the list of executing
activities (executing or anticipating states) and his assigned activities (ready or anticipable).

The user Worklist provides different information:

Project List

List of user projects. In this list the user can see his projects and he can
select one of these in order to executes his assigned activities. The user
can also edit the project by double-clicking and launch the Bonita
Workflow Definition Component.

Todo List

List containing ready and anticipable activities of the current project
associated with a user. These activities are divided in two different
colours: yellow for the activities in ready state and green for the activities
in anticipable state. The important difference between these two activities
types is the execution mode. The ready activities are executed in a
traditional workflow model and the anticipable activities follow the Bonita
flexible model.

Activity List

List of executing and anticipating activities of the current project. These
activities are also divided in two different colours: red for the activities in
execution state and violet for the activities in anticipating state. Only the
activities started by the user are showed here.

Chapter 1. Bonita Worklist Application

-3-

Worklist Example

The next figures show the state changes when the user begins an activity:

Figure 1: Activities of the project

Figure 2: Execution of activity 1

Figure 3: Activity 1 terminated

The following example shows an execution environment with three users (admin, miguel and
scott). The user admin executes the first activity and the user worklists are automatically
updated (Figure 3). Only the user who has executed the activity is able to finish it.

Figure 4: User Worklists when the user admin executes the first activity

Chapter 1. Bonita Worklist Application

-4-

If the user miguel would like to anticipate second activity (with anticipable state in the
TodoList), the manager application updates all TodoLists and the user’s ActivityList.

Figure 5: User Worklists when the user test anticipates the second activity

Chapter 1. Bonita Worklist Application

-5-

Create and Clone Projects

Every user, provided that he is correctly authenticated, can execute, terminate and anticipate
activities. With the manager menu the user may create a new project or clone existing
projects and also ask for the project and activities information.

Create new project and
Clone existing project
functionalities, allow the
users to begin the definition
of a new Bonita Workflow
process.

With the Clone project
option we can use an
existing Bonita process in
order to create the new
process. The new project
contains the same activity
graph (at the initial state)
and copies the hooks and
roles of the previous one.

Figure 6: User Worklists when the user clones an existing project

Chapter 1. Bonita Worklist Application

-6-

Project Instances

Cooperatives workflows are mostly used for long running processes in which participants
work together in order to accomplish a common objective. This kind of workflows does not
generally use workflow instances. Users are working in the same workflow project instead of
one project instance by user.

Otherwise, if you want to use Bonita in a classical workflow administration mode, you can
use Bonita process instantiation functionality. In some applications, we need to define a
workflow project model that will be performed by different users in different contexts. For
example if we apply a workflow system in online shop application, the order sales process
will be instantiated by each customer of the system. Each project instance is assigned to a
specific user and will be managed by the customer services department.

In Bonita, Worklist application allows the users to instantiate an existing workflow project.
This operation creates a new project instance identified with an instance number: if the project
name is “Sale order” each project instance name follows the next syntax: “Sales
order_instance#instancesNumber”.

If the user wants to instantiate a project, he must select the option Instantiate Project by
clicking on the right mouse button over the Project List. You can also use the Manager Menu
to do this operation.

Figure 7: User Worklists when the user instantiates a project

Chapter 1. Bonita Worklist Application

-7-

Delete Project

If a user wants to remove an existing workflow project or an existing workflow instance, the
Worklist application offers “Delete Project” operation. Only the user has created the project
can removed it. For project instances this user is the same user that creates the instance and
for projects, the user is the principal administrator of the project.

In some cases, for example when we try to delete a workflow project that has sub-processes
inside, the system does not accept project deletion because the system could be in an
inconsistent state. In these cases we have to delete different projects and sub-process in a
specific order.
The next table shows possible cases:

Delete operation Correct issue
The user tries to delete a project
which contains one or more sub-
processes.

We have to delete each sub-process activity from
parent workflow project. This operation removes the
sub-process activity and project associated.

The user tries to delete a project
which is a sub-process.

We have to delete sub-process activity first.

The user tries to delete a project
created by another user.

Contact the project administrator to remove the
project.

If the user wants to delete a project, he must select the option Delete Project by clicking on
the right mouse button over the project selected in Project List:

Figure 8: User Worklists when the user tries to delete a project

Chapter 2. Bonita GraphEditor Application

-8-

Chapter 2. GraphEditor application

This application allows the users to define the workflow process. This definition includes
activity definition, activities connection, users and roles definitions…

The user can run the application by double-clicking on one project of a previous manager
application.

Figure 9: GraphEditor when the user opens an existing project.

This is the first screen that
appears when any user opens a
project.

The GraphEditor application
provides several visual
definition functionalities to
make the workflow definition
easy and automatic.

Using the GraphEditor Menu
File Menu

• New: Creates a new empty project.
• Clone: Creates a new project with activities and edges from an
existing project.
• Open: Opens an existing project.
• Export: Stores the graphical workflow representation into different
image formats (png, jpeg, jpg).
•Exit: Finishes the GraphEditor session

Edit Menu

• Copy: Copies selected activity/activities and edges of the project.
• Paste: Pastes activity/activities and edges in the project.
• Paste: Deletes selected activity/activities and edges of the project.
• Select all: Selects all activities and edges of the project.
• Deselect all: Deselects all activities and edges of the project.

Chapter 2. Bonita GraphEditor Application

-9-

Activity Colors

With the GraphEditor application the user can visualize the Workflow process state. A Bonita
Workflow process is composed by the activities and the connections between these activities.
The user can identify the workflow execution by means of the activities color changes. Each
activity has a color associated with the state of this activity.
The next table shows the different activity colors:

Color Activity State
Yellow Initial state. Only for the start point activity and for the activities

with no connections.
Green Anticipable state. You can execute these activities in anticipation

mode.
Red Executing state. The activity is executing.

Violet Anticipating state. The activity has been executed in anticipation
mode.

Light Blue Terminated state. The activity is finished.
Dark Blue Cancel state. The activity was cancelled

Format Menu

• Automatic Layout: Activates the GraphEditor layout to
place automatically all activities in the screen.
• Circle Layout: Project activities are placed as a circle.
• Expand Layout: Project activities are expanded.

Users Menu

• • • • New User: Adds a system user to this project.
• Users In Project: Lists the users of this project.
• Add Role: Adds new role to the system.
• Add User to Role: Assigns a new role to a user.

Zoom Menu

• • • • Fit Window: Fits the workflow graph in the window..
• Zoom 100%: Applies a 100% zoom to the graph.
• Zoom In: Applies zoom in to the graph.
• Zoom Out: Applies zoom out to the graph.

Info Menu

• About Bonita: Shows a brief description about Bonita
definition and execution components.

Chapter 2. Bonita GraphEditor Application

-10-

Activity Information

You can move your mouse over the activities to obtain a little description: activity name,
activity state, activity deadline, activity role…

Activity Routing

Bonita Workflow System provides an integrated routing activity model, so each activity
integrates the process execution point of control. The routing modes available in Bonita are:
AND-JOIN, OR-JOIN, AND-SPLIT and OR-SPLIT. These routing modes can be used in a
flexible (activities anticipation) or traditional (isolation activities) execution modes. The
activities execution control can be effectuated by the user or automatically by the execution
engine (non-automatic/automatic activities).

When the user adds a new activity to the
workflow process he must select the activity
routing mode. This routing mode will be
AND JOIN or OR JOIN to make available the
control execution to the user or AND JOIN
AUTO or OR_JOIN AUTO to give the
control to the execution engine.

In order to insert AND SPLIT and OR SPLIT
routing modes the user must define the
activity connections (edges) conditions, so
first he chooses AND JOIN or OR SPLIT
activity routing nodes and then he edits edges
to define the split condition.

Figure 10: GraphEditor when the user adds a new
activity.

The next figures show the workflow process execution when the user selects AND JOIN
routing mode:

Figure 11: Workflow execution when the activity “node4” with AND JOIN routing mode is active
(anticipable state) by two anticipating activities.

In this example all activities are anticipable and use AND JOIN routing mode. When the user starts the
first activity (“node1”), activities “node2” and “node3” are in anticipable state. If the user starts theses
activities the “node4” activity becomes anticipable. “node4” activity is also AND JOIN, so it will be
active (ready or anticipable) only if previous connected activities are started or terminated.

Chapter 2. Bonita GraphEditor Application

-11-

Figure 12: Workflow execution when the activity “node4” with AND JOIN routing mode is
waiting (initial state) for the execution of activity “node3”.

In this example all activities are anticipable and use AND JOIN routing mode. When the user starts the
first activity (“node1”), activities “node2” and “node3” are in anticipable state. If the user starts “node2”
activity, this one is anticipating and “node4” activity is waiting for the start of “node3”.

The next figures show the workflow process execution when the user selects OR JOIN
routing mode:

Figure 13: Workflow execution when the activity “node4” with OR JOIN routing mode is active
(anticipable state) by the activity “node2”.

In the example “node4” activity has OR JOIN routing type, so when the user starts “node2”, the first one
becomes active (anticipable state in this case). So, an OR JOIN activity becomes active (ready or
anticipable state) when one of the previous connected activities are started or terminated.

Figure 14: Workflow execution when the activity “node4” with OR JOIN routing mode is waiting
(ready state) for the user execution of activity “node3”.

In the example, the execution of “node2” was cancelled, so the “node4” activity is waiting for the
execution of “node3” activity in order to become active (ready or anticipable state).

Chapter 2. Bonita GraphEditor Application

-12-

Sub-Process Activity

Bonita system allows the creation of a special activity containing a workflow process. This
activity is called Sub-Process activity. We can use this kind of activity in order to specify a
jerarquical structure of workflow processes. This feature is possible by assigning an activity
to an existing process, so in order to create a new sub-process activity the system makes a
clone of the process attached to it.

After activity sub-process creation, a new dependence relationship between sub-process and
the workflow project has been created in terms of parent-child relationship.
The life cycle of this sub-process is controlled by the parent. When the user starts sub-process
activity from parent workflow project, the life cycle of sub-process is activated.
In order to finish/terminate the sub-process activity, the system verifies if sub-process
activities are finish/terminate.

When we creates a new sub-process, the workflow relevant data of the parent project must be
accessible by this one, so we can use all Bonita properties available in sub-process activity
within the sub-process. Evidently, properties created by sub-process during its execution are
mapped within the parent activity after sub-process termination.

The next figures shows, step by step, the correct sequence to add a sub-process activity within
an existing workflow project:

Figure 15: GraphEditor when the user creates a new sub-process activity

Chapter 2. Bonita GraphEditor Application

-13-

In the last figure the workflow administration of “e-citizen” workflow project wants to insert
a sub-process activity called “Instruction order”. This activity will be attached to “Verify
Order” workflow project which is composed by two activities: “Receive order” and “Analyze
Order”.
After that “Instruction order” sub-process activity is created in “e-citizen” workflow project
and a new project is created with the same name. This project is a sub-process of the previous
one.

Figure 16: GraphEditor after sub-process activity creation

Activities Iteration

In this version, and as beta functionality for the moment, you can iterate between different
activities in Bonita. For this purpose, and when the user decides to iterate one or more
activities, the system is able to find the iteration path between two activities and then iterates
between all activities contained within this path.

If you want to iterates between “node5” and
“node1” activities, the system iterates also
activities placed in the iteration path, so
when the user terminates “node5” activity
and iteration condition is true, “node1”
activity is ready again and “node2” “node3”
and “node4” activities are also iterated.

Figure 17: Activities “node2”, “node3” and “node4” takes part of iteration between “node5” to “node1”.

Chapter 2. Bonita GraphEditor Application

-14-

In the same context, activities that are not in iteration path and having edges with one of
previous activities are standby until iteration is finished.

Figure 18: Activities “node6” and “node7” will be standby until iteration is finished.

With GraphEditor application you must insert a new iteration between two nodes by selecting
the option “Add Iteration” and clicking on the right mouse button over the last activity you
want iterate. In previous example you have to add a new iteration from “node5” activity to
“node1”. After this operation next icons are showed in your graph:

Figure 19: GraphEditor after insertion of iteration from “node5” activity to “node1”.

Chapter 2. Bonita GraphEditor Application

-15-

Activity transitions

The Bonita integrated routing mode allows the user to select between AND JOIN or OR JOIN
routing modes and by default AND SPLIT execution propagation is set. So, if you want to
control this propagation you can set edge conditions to implement the OR SPLIT routing
mode.

In the next figure the user defines activities with AND SPLIT or OR SPLIT routing modes by
setting edges conditions. When the user terminates an execution activity, the Bonita execution
engine evaluates the activity out edges conditions in order to propagate or not this event to
connected activities.

Normally, edges conditions use the activities properties values to select the progress of the
workflow process execution. In the example, when the activity “Verify order” is finished, the
execution engines evaluates out edges conditions and if the value of the property “correct” is
equal to “ok” the system actives the activity “Card order”.

Figure 20: GraphEditor when the user sets an edge condition.

In the previous example we can consider that edge transition between activities “Verify order”
and “Modify order” has the opposite condition than the last one, so correct.equals(“nok”). In
this case, if the “correct” property is equals to “ok”, the branch starts by activity “Modify
order” will be cancelled.

Chapter 2. Bonita GraphEditor Application

-16-

Activity Properties

Bonita Cooperative Workflow uses the concept of properties to control the process execution
data. Each Bonita Workflow process can have different properties which contains the process
execution data. These properties can be attached to the workflow process and/or the process
activities. The Flexible execution engine of Bonita allows the users to interchange
intermediate data/results. This flexibility is possible by means of the anticipation activity
model and the activity properties takes and important role.

If the user wants to add a new property to an activity, he must select the option Add Property
by clicking on the right mouse button over the activity. The “new property” dialog is
composed by the property key and value fields and propagate attribute. This Boolean allows
the property propagation when the associated activity is executed.
The GraphEditor application allows also the addition of new properties to workflow projects
by clicking on the right mouse button over the project definition surface. These properties are
defined as activity properties but does not have the propagate attribute. Project properties can
be used by all Bonita components takes part of the project: activities, edge conditions and
hooks.

The use of the activity properties in anticipation mode offers many possibilities to evaluate
intermediate results of the anticipating activities and it can be used to do backtracking
operations.

Figure 21: GraphEditor when the user set a new activity property.

We continue to talk about properties in section “Activity Hook”, and we will explain the steps
to follow in order to create properties dynamically at run time.

Chapter 2. Bonita GraphEditor Application

-17-

Edit Activity

With the GraphEditor application you can edit and modify some activity parameters. These
parameters are the activity deadline, the activity role and the activity description. By setting
these parameters the user defines the end date of the activity, the users authorized to execute
the activity and the activity description text.

If the user wants to edit an activity, he must select the option Edit Activity by clicking on the
right mouse button over the activity.

Figure 22: GraphEditor when the user edits the activity parameters.

When the user performs the workflow process definition he usually sets the activity deadline
value for each activity. The Bonita Workflow Systems uses the timer service in order to add
the new deadline and it sends a notification event to the client in order to warn the user that
the activity must be finished. This notification could be, for example, an email or a jabber
instant message.

All the activities in a workflow process have an assigned a role. Only the users having the
same role can start the activity, so only the users with this role will see these activities in the
Manager application todo list.

In this dialog box we can also change the activity execution model. By default, all created
activities are in anticipable mode, but if we want to execute one or more activities in a
traditional mode; the anticipable checkbox must be disabled.

Chapter 2. Bonita GraphEditor Application

-18-

Activity Hooks

The activity hooks are units of source code, associated to process activities. These source
code units will be executed at runtime by Bonita execution engine. Hooks should be written in
Java or in one of the object scripting languages available in Bonita (TCL, BeanShell).

In Bonita, hooks are divided in two types: Hooks and InterHooks. Each type can be assigned
to workflow projects and workflow activities. When the user sets a new hook for a workflow
project, this one is assigned to all activities of this project.
The key difference between these two types is the persistence data. In InterHooks, logical
syntax is stored in the database as a string field, so when the interpreter has to execute this
type of hook it loads this data before hook execution. Otherwise, Hooks uses, for example,
java classes in order to store the logical data, so the interpreter looks for this class in the
classpath and executes the hook.

With the GraphEditor application, the user can set and define activity actions by means of the
BeanShell interpret hooks (InterHooks).
If the user wants to set a new hook to an activity, he must select the option New Hook by
clicking on the right mouse button over the activity and the next dialog window will be
shown.

Figure 23: GraphEditor when the user adds new hook.

In this dialog window, the user must insert the name of the hook and he must choose the hook
type. This hook type explains the hook execution moment of the activities life cycle: before
start, after start, create, before terminate, after terminate, anticipate, create and execute.

The previous operation creates the activity hook in the system. Now, its time to take a look at
hooks functionalities. The user can use all Bonita API in order to define hooks actions, so all
the Bonita EJB’s are accessible from the hook interface.

If you want to use external functionalities in your hook actions, like external web services or
other applications, you can access to all classes available in your JOnAS application server
used to deploy Bonita.

When the user inserts the hook name and selects one of the possible hook types, the Hook
Action Editor appears. Within the dialog hook window we can identify the default imports
and the action type function associated to this hook. Within this function the user can write

Chapter 2. Bonita GraphEditor Application

-19-

the actions of this hook by using Java syntax. These actions will be executed at run time by
the execution engine in a specific moment of the activity execution.

The next figure shows the Hook Action Editor when the user sets a new afterStart hook:

Figure 24: GraphEditor when the user defines the hook actions.

Sample Application

In order to explain the hook functionalities we can take an example of workflow application
that uses activity properties and hooks.
We can imagine a basic CRM system for an e-commerce organisation. In this organisation
different employees of the client relationship department work together in order to obtain
profiles of the users which access to the system.

The Bonita Workflow representation of this CRM system is composed by six activities: User
Registration, Contact User, Search Information, Financial Information, Social Information
and Set Profile.
This workflow process, allows the organisation to sets the user profile (the last activity of the
process) while is performing the registration (the first activity of the process). For that, the
CRM system must obtain some user’s information in order to present the best products lines
for him.

The learning information process about the user will be performed by the other activities in
the Workflow representation. For example, we can try to contact the user by email or
telephone from evaluation of some of the basic user information: its age, its nationality…
We can use also delegate to other employees the responsibility of search specific information
about this user: financial information or social information to fits the user’s needs products.

Chapter 2. Bonita GraphEditor Application

-20-

So, with Bonita we can integrate a great variety of systems, for example this basic CRM
system, in order to define and control the execution phases of the process.
The next figure shows the activities which compose the CRM workflow representation in
order to set the user profile.

Figure 25: Workflow Representation of the CRM System.

We can suppose the first activity “User Registration” is associated to a form web page. This
page is the new user account page, so the CRM workflow example starts when the user
submits his personal information: first name, second name, age and nationality. After that, the
first activity is automatically executed and terminated and the “Contact User” and “Search
User” activities are activated (ready state). See the next figures:

Figure 26: Worklist and GraphEditor application for the CRM System example. The “Contact User”
activity is associated to the employee Charles in the todo list.

Chapter 2. Bonita GraphEditor Application

-21-

Now, the user Charles can execute the activity “Contact User”, and for example this activity
sends an email to the user in order to present one of the best products of the current month. To
do that, the user administrator has set the following hook to this activity:

import javax.naming.InitialContext;
import javax.mail.Session;
import javax.mail.Address;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.rmi.PortableRemoteObject;
afterStart(Object b, Object n)
{
 try {
 Session session =
(Session)PortableRemoteObject.narrow(new
InitialContext().lookup("java:/Mail"), Session.class);

 MimeMessage m = new MimeMessage(session);
 m.setFrom();
 Address[] to = new InternetAddress[] {new
InternetAddress(usermail) };
 m.setRecipients(javax.mail.Message.RecipientType.TO, to);
 m.setSubject("Notification");
 m.setSentDate(new java.util.Date());
 m.setContent("Notification","text/plain");
 Transport.send(m);

 } catch (Exception e) {
 System.out.println("mail-service.xml configuration error:
"+e);
 }
}

* Note: In the previous Java source code we find the attribute
usermail. This attribute may be a user property set when the user
registration account was submitted.
In Bonita, all activities properties will be propagated and mapped
to the next activities, so if we defined the usermail property in
“User Registration” activity, the “Contact User” activity can
access it.

Figure 27: After start hook assigned to “Contact User” activity that send an email to the user.

If we want to present to the user only the products that fit his needs, we can filtrate the basic
user information before sending the email.

Figure 28: After start hook assigned to “Contact User” activity with filtration of user information.

Chapter 2. Bonita GraphEditor Application

-22-

At the same time that the “Contact User” activity was assigned to the user Charles, the
“Search Information” activity was appeared in the todo list of another user, for example
“Guillaume”. This user is the employee which controls the user information search, so if he
decides to start this, connected activities become anticipable: “Financial information” and
“Social Information”.

Figure 29: CRM workflow system when the user Guillaume executes “Search Information” activity.

Now, employees responsible of activities “Financial Information” and “Social Information”
can anticipate the execution of these activities in order to find interesting information about
the user. This information could be useful to allow the organisation to propose to the user the
products that better fits his profile.

If we focus the attention in the “Financial Information” activity, we can suppose the employee
involved in this activity uses the external systems functionalities to obtain information about
user bank accounts. In order to access to these functionalities the employee can use, for
example, web services technology.

Figure 30: After start hook assigned to “Financial Information” activity that uses web services calls

Chapter 2. Bonita GraphEditor Application

-23-

After that, the user responsible of the last activity “Set User Profile” inserts previous user
information into a database to obtain the user profile, and the CRM Workflow example is
finished.

Hook API

If we take a look to the hook Interface, we can see that each hook method: afterStart,
beforeStart… receives two parameters: Object b (EngineBean Session) and Object n
(NodeLocal Object). We can use these objects to obtain information about the activity
associated to this hook (by using the BnNodeLocal API) and to control the process execution
(by using EngineBean Session Bean API).

BnNodeLocal Object methods:

Method Summary

 hero.entity.EdgeState getActivation()
 Retrieve the BnNode's Activation type.

 boolean getAnticipable()
 Retrieve the BnNode's anticipation mode.

 java.util.Collection getBnHooks()

 java.util.Collection getBnInterHooks()

 hero.interfaces.BnNodeLightValue getBnNodeLightValue()

 hero.interfaces.BnNodeValue getBnNodeValue()

 hero.interfaces.BnProjectLocal getBnProject()

 java.util.Collection getBnProperties()

 hero.interfaces.BnRoleLocal getBnRole()
 Retrieve the BnNode's BnRole.

 java.util.Date getCreationDate()

 hero.interfaces.BnUserLocal getCreator()
 Retrieve the BnNode's Creator.

 java.util.Date getDeadline()
 Retrieve the BnNode's Deadline.

 java.lang.String getDescription()
 Retrieve the BnNode's Description.

 java.util.Date getEndDate()
 Retrieve the BnNode's EndDate.

 hero.interfaces.BnUserLocal getExecutor()
 Retrieve the BnNode's Executor.

 int getId()
 Retrieve the BnNode's id.

 java.util.Collection getInBnAgentEdges()

 java.util.Collection getInBnEdges()

 java.util.Date getModificationDate()

Chapter 2. Bonita GraphEditor Application

-24-

 java.lang.String getName()
 Retrieve the BnNode's Name.

 java.util.Collection getOutBnEdges()

 java.util.Date getStartDate()
 Retrieve the BnNode's StartDate.

 int getState()
 Retrieve the BnNode's state.

 hero.entity.NodeState getTransition()
 Retrieve the BnNode's Transition type.

 int getType()
 Retrieve the BnNode's type.

 boolean isCancelled()

 boolean isExecuting()

 boolean isTerminated()

 void setActivation(hero.entity.EdgeState activation)
 Set the BnNode's Activation

 void setAnticipable(boolean pAnticipable)
 Set the BnNode's Anticipable mode.

 void setBnHooks(java.util.Collection pHook)
 Set the Hooks of the node

 void setBnInterHooks(java.util.Collection pHook)
 Set the Hooks of the node

 void setBnNodeLightValue(hero.interfaces.BnNodeLightValue v)

 void setBnNodeValue(hero.interfaces.BnNodeValue v)

 void setBnProperties(java.util.Collection pPrp)
 Set the properties of the node

 void setBnRole(hero.interfaces.BnRoleLocal role)
 Set the BnNode's Creator.

 void setCreationDate(java.util.Date pDate)

 void setCreator(hero.interfaces.BnUserLocal pCreator)
 Set the BnNode's Creator.

 void setDeadline(java.util.Date pDeadline)
 Set the BnNode's Deadline.

 void setDescription(java.lang.String pDescription)
 Set the BnNode's Description.

 void setEndDate(java.util.Date pEndDate)
 Set the BnNode's EndDate.

 void setExecutor(hero.interfaces.BnUserLocal pExecutor)
 Set the BnNode's Creator.

 void setModificationDate(java.util.Date pDate)

 void setStartDate(java.util.Date pStartDate)
 Set the BnNode's StartDate.

 void setState(int pState)
 Set the BnNode's state.

 void setTransition(hero.entity.NodeState transition)
 Set the BnNode's Transition

 void setType(int pType)

Chapter 2. Bonita GraphEditor Application

-25-

 Set the BnNode's type.

Method Summary

 hero.entity.EdgeState getActivation()
 Retrieve the BnNode's Activation type.

 boolean getAnticipable()
 Retrieve the BnNode's anticipation mode.

 java.util.Collection getBnHooks()

 java.util.Collection getBnInterHooks()

 hero.interfaces.BnNodeLightValue getBnNodeLightValue()

 hero.interfaces.BnNodeValue getBnNodeValue()

 hero.interfaces.BnProjectLocal getBnProject()

 java.util.Collection getBnProperties()

 hero.interfaces.BnRoleLocal getBnRole()
 Retrieve the BnNode's BnRole.

 java.sql.Date getCreationDate()

 hero.interfaces.BnUserLocal getCreator()
 Retrieve the BnNode's Creator.

 java.sql.Date getDeadline()
 Retrieve the BnNode's Deadline.

 java.lang.String getDescription()
 Retrieve the BnNode's Description.

 java.sql.Date getEndDate()
 Retrieve the BnNode's EndDate.

 hero.interfaces.BnUserLocal getExecutor()
 Retrieve the BnNode's Executor.

 int getId()
 Retrieve the BnNode's id.

 java.util.Collection getInBnAgentEdges()

 java.util.Collection getInBnEdges()

 java.sql.Date getModificationDate()

 java.lang.String getName()
 Retrieve the BnNode's Name.

 java.util.Collection getOutBnEdges()

 java.sql.Date getStartDate()
 Retrieve the BnNode's StartDate.

 int getState()
 Retrieve the BnNode's state.

 hero.entity.NodeState getTransition()
 Retrieve the BnNode's Transition type.

 int getType()
 Retrieve the BnNode's type.

 boolean isCancelled()

Chapter 2. Bonita GraphEditor Application

-26-

 boolean isExecuting()

 boolean isTerminated()

 void setActivation(hero.entity.EdgeState activation)
 Set the BnNode's Activation

 void setAnticipable(boolean pAnticipable)
 Set the BnNode's Anticipable mode.

 void setBnHooks(java.util.Collection pHook)
 Set the Hooks of the node

 void setBnInterHooks(java.util.Collection pHook)
 Set the Hooks of the node

 void setBnNodeValue(hero.interfaces.BnNodeValue v)

 void setBnProperties(java.util.Collection pPrp)
 Set the properties of the node

 void setBnRole(hero.interfaces.BnRoleLocal role)
 Set the BnNode's Creator.

 void setCreationDate(java.sql.Date pDate)

 void setCreator(hero.interfaces.BnUserLocal pCreator)
 Set the BnNode's Creator.

 void setDeadline(java.sql.Date pDeadline)
 Set the BnNode's Deadline.

 void setDescription(java.lang.String pDescription)
 Set the BnNode's Description.

 void setEndDate(java.sql.Date pEndDate)
 Set the BnNode's EndDate.

 void setExecutor(hero.interfaces.BnUserLocal pExecutor)
 Set the BnNode's Creator.

 void setModificationDate(java.sql.Date pDate)

 void setStartDate(java.sql.Date pStartDate)
 Set the BnNode's StartDate.

 void setState(int pState)
 Set the BnNode's state.

 void setTransition(hero.entity.NodeState transition)
 Set the BnNode's Transition

 void setType(int pType)
 Set the BnNode's type.

Chapter 2. Bonita GraphEditor Application

-27-

EngineBean Session Bean methods:

Method Summary

 void activeAgent(java.lang.String projectName, java.lang.String agentName)
 Active an External Agent

 void cancelActivity(java.lang.String projectName, java.lang.String nodeName)
 Starts the activity nodeName

 void ejbActivate()

 void ejbCreate()

 void ejbPassivate()

 void ejbRemove()

 int evaluateCondition(hero.interfaces.BnEdgeLocal e)

 void initProject(java.lang.String projectName)
 init the Engine Session Bean

 void resumeActivity(java.lang.String projectName, java.lang.String nodeName)
 Resume the activity nodeName

 void setSessionContext(javax.ejb.SessionContext context)

 void startActivity(java.lang.String projectName, java.lang.String nodeName)
 Starts the activity nodeName

 void suspendActivity(java.lang.String projectName, java.lang.String nodeName)
 Suspend the activity nodeName

 void terminate(java.lang.String projectName)
 Terminates the project

 void terminateActivity(java.lang.String projectName, java.lang.String nodeName)
 Starts the activity nodeName

Within the code of our hook we can also use Bonita Workflow functionalities in order to
define and control Bonita workflow processes, so Bonita API is available to be used in the
hooks. In the same context, you can call your Java applications and objects from this hook
environment.

Chapter 2. Bonita GraphEditor Application

-28-

Users in Project

Like in the others Workflow Management Systems, Bonita allows to some users participate in
the definition and execution of a workflow process. The Bonita Workflow Definition
Component (GraphEditor) controls the users that can access to the process definition.
If the user wants to know the list of the members and roles of this project, he must select the
option “Users in Projects” by clicking on the right mouse button over the GraphEditor panel.

Figure 31: GraphEditor when the user clicks to the Users in Project option.

Add User to Project

In order to incorporate and existing user to a specific Bonita project, the user must select the
option “New User” by clicking on the right mouse button over the GraphEditor panel.

Figure 32: GraphEditor when the user clicks to the Add User option.

Chapter 2. Bonita GraphEditor Application

-29-

Add Project Role

A role in Bonita represents the users who take part into definition and execution of the
workflow process. Each role in Bonita is associated to a project/process, so the role admin in
project “test” is different than the role admin in project test2.
If the user wants to insert a new role in a specific project, he must select the option “Add
Role” by clicking on the right mouse button over the GraphEditor panel.

Figure 33: GraphEditor when the user creates a new role into the project.

Add User Role

In order to set a new role to a user in a specific Bonita project, the user must select the option
“Add Role” by clicking on the right mouse button over the GraphEditor panel.

Figure 34: GraphEditor when the user assigns a role to another user.

Chapter 3. Business Process Example

-30-

Chapter 3. Business Process Example

Introduction

This example illustrates different features of Bonita Workflow System like: projects,
subprojects, project instances, users, roles, hooks, properties and conditions. This example
does not represent a real world workflow example or the better solution to resolve a specific
workflow problem. In this example we will use the Manager application (Worklist +
GraphEditor) to perform the workflow definition project and to simulate/execute a workflow
execution example.

This workflow example represents an order entry system in which a customer interacts with
the customer service to achieve his order.
This business example is composed by two projects (Bonita workflow process): Order
Processing project and Customer Service project.

Order Processing project is the main project. This project takes three strings as input data
corresponding to the customer name, product name and number of items for this product.
After processing this order the system indicates if the order was accepted or rejected.
This project contains the following steps:

• The customer sends his order to the system.
• The customer data is checked in order to verify the stock availability for this product.
• If the stock status is correct, the previous customer data is sent to a subProcess that

confirms the sale.
• When this subProcess is finished the system starts or rejects the sale order.

The Customer Service project is a subproject of the previous one. This project asks to the
customer for the order confirmation and then, the customer service employee in charge of
accepts the order notifies the user choice.
The project steps are the following:

• The system shows the order data to the customer and waits for the customer
confirmation or rejection.

• After user confirmation/reject the customer service authorizes this sale or cancels it.

Do it with Bonita

Let’s go to define the previous example using Bonita Manager application. This graphical
application is very useful in some kinds of workflow projects and it can be extended by
accessing directly to different Bonita’s API.

Once you correctly logged on Bonita Manager application, the Worklist tool should appeared
in your screen. Now, we start the Business Process definition example by creating Customer
Service sub-process, so you can use the Manager Menu for create a new Bonita project called
Customer Service.
This sub-process is composed by two activities; the first one will be performed by the
customer and the second one by one employee of customer service. These activities are not
anticipable and uses AND JOIN default mode.

Chapter 3. Business Process Example

-31-

Customer Service project

- Add “Ask Customer” activity: Activity which asks to the user if he wants to confirm the
order. For example we can imagine that this activity will show the customer order data:
customer name, product name, number of product.

- Add “Notify Sales” activity: Customer service notifies if the user accepts the order.

After activities connection (from “Ask Customer” to “Notify Sales”), the sub-process view is
the following:

Figure 35: GraphEditor for sub-process “Customer Service” after activities creation.

In order to unset the default anticipable attribute for these activities you have to click on your
right mouse button over each activity, select “Edit Activity” menu and disable anticipable
value.

Figure 36: “Edit Activity” dialog box for a specific activity.

When this operation is finished, you have to define the roles that are going to be assigned to
previous activities. In this example, we can imagine we have two roles: agent and customer.
The agent role is attached to the “Notify Sales” activity and customer role is attached to the
first one.

Chapter 3. Business Process Example

-32-

The next figure shows step by step the process to create these roles:

Figure 37: GraphEditor when the user adds customer and agent roles to the project.

Now you can change the default role assigned to each activity at creation time (InitialRole),
by new roles available for this project. To perform this operation you have to use “Edit
Activity” functionality:

Figure 38: “Edit Activity” dialog box for “Ask Customer” activity.

To familiarise you with Bonita InterHooks we are going to insert two hooks in this sub-
process. The first one is a basic InterHook that shows you in the command line(1) the customer
data for a specific order. In Bonita, properties (workflow relevant data) are automatically
mapped to be access from a hook or from an edge condition, so, in our example, when the
user sends a new order from “Order Processing” project; he introduce his name, the name of
the product and the number of items for this product he wants to buy. As we will see later,
this data will be stored as Bonita properties.

When this data arrives to the “Customer Service” sub-process, you can use directly each
property as a Java attribute within your Hooks.

(1) In a real world application, we can use other mechanisms to present order data to the customer, for example if
we use Bonita within a web application.

Chapter 3. Business Process Example

-33-

The next figure shows you how to insert a new hook for the “Ask Customer” activity:

Figure 39: New AfterStart hook for “Ask Customer” activity

Hook Source code:
import hero.interfaces.*;
import hero.interfaces.BnNodeLocal;
afterStart (Object b,Object n) {
 System.out.println("customer name: "+customer_name);
 System.out.println("product name: "+product_name);
 System.out.println("items: "+items);
}

The second hook is assigned to “Notify Sales” activity and it could be in charge of creating a
new property containing the user order confirmation choice.
If the user accepts the order this activity (executed by the customer service) sets a new
property “partial_sales_status” to “ok”. Otherwise, if customer cancel previous activity we
this property is set to “nok”.

Figure 40: New AfterTerminate hook for “Notify Sales” activity

Chapter 3. Business Process Example

-34-

Hook source code for “Notify Sales” activity is:

import hero.interfaces.*;
import hero.interfaces.BnNodeLocal;
afterTerminate (Object b,Object n) {
System.out.println("partial_sales_status=ok");
 hero.interfaces.ProjectSessionLocalHome pHome =
(hero.interfaces.ProjectSessionLocalHome)hero.interfaces.ProjectSessionUtil.getLocalHome();
 hero.interfaces.ProjectSessionLocal subProcess = pHome.create();
 subProcess.initProject(n.getBnProject().getName());
 subProcess.setProperty("partial_sales_status","ok");

}

It’s time to create the principal project of this Business Process example. This project is the
‘Order Processing’ workflow project and it is composed by four traditional activities and one
sub-process activity that has been created previously. In this project, all activities will be
executed in a traditional mode.

Creates Order Processing project

- Add “Receive Order” activity: This activity is an AND JOIN activity in traditional mode, so
you have to disable the anticipable attribute. In this activity the costumer enters his name, the
product name and desired number of product items as activity Bonita properties as follows:

Figure 41: GraphEditor when user adds “Receive Order” properties.

Each time, a new customer instantiates the project the values of theses properties are
actualized.

- Add “Check Stock” activity: This activity is an AutomaticAndJoin activity which verifies if
the customer order must be satisfy. In order to continue the execution in a traditional mode,
you have to disable anticipable attribute. After activity creation, you have to define a new
edge (transition) between “Receive Order” activity and this one.

Chapter 3. Business Process Example

-35-

When this activity is activated, it is automatically executed and finished by the engine. We
can define a simple Hook in order to emulate the check_stock process.
This hook set a new property called “stock_status” with the value “ok” or “nok”, depending
of the product availability. In this example the hook only verifies if the user has sent a correct
order(2).
Source code for this hook:
import hero.interfaces.*;
import hero.interfaces.BnNodeLocal;
beforeTerminate (Object b,Object n) {
hero.interfaces.ProjectSessionLocalHome pHome =
(hero.interfaces.ProjectSessionLocalHome)hero.interfaces.ProjectSessionUtil.getLocalHome();
 hero.interfaces.ProjectSessionLocal subProcess = pHome.create();
 subProcess.initProject(n.getBnProject().getName());
if (customer_name!=null && product_name!=null & items !=null)
{
 System.out.println("Stock_Status=ok");
 subProcess.setNodeProperty(n.getName(),"stock_status","ok",true);
}
else
{
 System.out.println("Stock_Status=nok");
 subProcess.setNodeProperty(n.getName(),"stock_status","nok",true);
}
}

Figure 42: GraphEditor when user adds beforeStart hook to “Check Stock” activity.

- Add “Accept Order” subProcess activity: This activity is a subProcess activity attached to
“Customer Service” project defined previously.
In order to create this sub-process activity, you have to click on the “New SubProcess”
button:

Figure 43: New SubProcess dialog box for Accept Order activity.

(2) In a real world application, this hook could access, for example, to an external web services in order to check
product availability.

Chapter 3. Business Process Example

-36-

Once sub-process activity is created, the system clones the project “Customer Service”
attached to this activity and sets all activities of sub-process to initial state. In execution time,
and when sub-process activity is activated, the first sub-process activity will be ready.
The next figure shows you the current state of our Business Process example after the user
adds a new edge between “Check Stock” and “Accept Order” activities:

Figure 44: On the left, “Order Processing” project with the new sub-process activity called “Accept
Order”. On the right, the “Accept Order” sub-process at initial state.

The transition between “Check Stock” activity and “Accept Order” activity has a condition
which verifies that stock_status property is “ok”. In order to inserts this condition you have to
double click on the edge and sets the following expression:

Figure 45: Set Edge Condition dialog box for transition between “Check Stock” and “Accept Order”

activities.

The definition of this project ends by defining two activities, connected with “Accept Order”
activity:

- Add “Ship & Report” activity: If the user confirms the order. AutomaticAndJoin activity.
Not anticipable activity activated if the property partial_sales_status = ok.

Figure 46: Set Edge Condition dialog box for transition between “Accept Order” and “Ship & Report”

activities.

Chapter 3. Business Process Example

-37-

- Add “Cancel Order”: If the user does not confirms the order. AutomaticAndJoin activity.
Not anticipable activity activated if the property partial_sales_status = nok.

Figure 47: Set Edge Condition dialog box for transition between “Accept Order” and “Cancel Order”
activities.

The “Order Processing” project definition is finished with the last operations:

Figure 48: “Order Processing” project when you finish the process definition.

Before workflow participants instantiates and executes this Business Process example, you
have to assign the correct role to each activity, like we did it for “Customer Service” sub-
process.
In this project we have three automatic activities with default role assigned at creation time:
“Check Stock”, “Ship & Report” and “Cancel Order”. First activity of the process: “Receive
Order” should be assigned to customer so, you have to define a new role called “customer”
and assign it to this activity.
The “Accept Order” activity will started by a Customer service employee so you have to
create the role “agent” and assign it to this activity.

Chapter 3. Business Process Example

-38-

Business Process Execution

The Bonita Manager application allows you to execute workflow projects/instances by using
the Worklist graphical component. This tool is useful in order to visualize the state of
activities in which a specific user takes part and also to control the projects/instances
execution.
When you integrate Bonita with your application you probably want to use your own
execution component in order to control the workflow execution process. In our Business
Process example this component could be integrated in a web application, so this web
application could call Bonita API’s to control projects/instances execution.

We will use the Bonita Worklist in order to illustrate a common workflow instance execution,
so you have to see that as a workflow instance simulation for the Business Process example.

In this example, the administrator of the “Order Processing” workflow project instantiates the
project in order to begin a new sales order. For this example we have three users: the
workflow administrator, the customer and the employee of customer service. These users
could be: admin, miguel and christophe. The first one is the default user who has created the
project and other users have been created with Bonita web Interface:
http://{YourServer}:{YourPort}/bonita or directly by calling the Bonita UserRegistration API.

So, let’s go to instantiate the “Order Processing” project and then assign to it the previous
users with corresponding roles:

Administrator adds miguel and christophe users to this project.

The administrator instantiates
“Order Processing” project
and open new instance
called: “Order
Processing_instance1”.

Administrator assigns users to roles.

Figure 49: “Order Processing” instance and users-roles assignment

Chapter 3. Business Process Example

-39-

After that we have three participants for this instance with the following roles:

Figure 50: Users-Roles obtained with “Users In Project” functionality.

You have to do the same operation for Accept Order instance created automatically by the
system(3).

Now, if the customer miguel launches Manager Application, the “Order
Processing_instance1” will appear in his Project List and he can start the “Receive Order”
activity by clicking on the right mouse button: “Start Activity”. After that, and before
terminate the activity he has to set the order data by using Bonita Web Interface(4) : right
mouse button over activity:”Details…’ and go to the edition mode to set the following
properties values: “customer_name”=”miguel”, “product_name”=”tv” and “items”=”1”.

When the customer miguel terminates the activity the “Order Processing” project executes
automatically “Check Stock” activity, and if order data is correct (all properties are set) the
message Stock_Status=”ok” message appeared in your server console and sub-process
activity is activated:

Figure 51: “Order Processing” instance when the customer terminates first activity without error.

It’s time to play for the customer service employee: chistophe. If he starts the “Accept Order”
activity, the first activity of sub-process associated is available for the customer miguel.

(3)In the next version the users-roles assignment operations will be performed automatically by the system by
means of specific mappers(LDAP queries, DB queries, properties…) .
(4)In your applications these operations will typically performed with your dedicated web form.

Chapter 3. Business Process Example

-40-

The next figures show the state of the instances “Order Processing” and “Accept Order” when
the user Christophe start “Accept Order” sub-process activity.

Figure 52: Order Processing and Accept Order instances when Christophe starts sub-process activity.

The first activity of this sub-process is now in ready state, so the customer miguel can start the
“Ask Customer” activity to visualize his order (this operation shows order data in the server
console) and then terminates activity to confirm.

Finally, the customer service employee accepts the user order (start/terminate) “Notify Sales”
and terminates “Accept Order” sub-process activity.

Figure 53: Order Processing instance when Christophe terminates sub-process activity.

This operation launches automatically the “Ship & Report” activity and cancels the other
workflow branch by evaluating the “partial_sales_status” property.

Chapter 3. Business Process Example

-41-

Conclusion

The Business Process workflow example shows you some functionalities of Bonita Graphical
Components: Worklist and GaphEditor applications. These generic applications are useful in
some cases in order to perform the workflow process definition. You can improve and adapt
these applications or use them together with your own applications (via Bonita’s API), to fit
your application needs.

In order to introduce you to Bonita’s API, you can take a look at Bonita samples applications
available at $BONITA_HOME/src/main/client/hero/client/samples directory. Within this
directory you have an example of use of Bonita Project Definition API (ProjectSession) and
Bonita User Execution API (UserSession).

-42-

Index of figures

Figure 1: Activities of the project ...3
Figure 2: Execution of activity 1...3
Figure 3: Activity 1 terminated...3
Figure 4: User Worklists when the user admin executes the first activity.................................3
Figure 5: User Worklists when the user test anticipates the second activity.............................4
Figure 6: User Worklists when the user clones an existing project ..5
Figure 7: User Worklists when the user instantiates a project..6
Figure 8: User Worklists when the user tries to delete a project ..7
Figure 9: GraphEditor when the user opens an existing project. ..8
Figure 10: GraphEditor when the user adds a new activity..10
Figure 11: Workflow execution when the activity “node4” with AND JOIN routing mode is

active (anticipable state) by two anticipating activities. ...10
Figure 12: Workflow execution when the activity “node4” with AND JOIN routing mode is

waiting (initial state) for the execution of activity “node3”..11
Figure 13: Workflow execution when the activity “node4” with OR JOIN routing mode is

active (anticipable state) by the activity “node2”...11
Figure 14: Workflow execution when the activity “node4” with OR JOIN routing mode is

waiting (ready state) for the user execution of activity “node3”.....................................11
Figure 15: GraphEditor when the user creates a new sub-process activity12
Figure 16: GraphEditor after sub-process activity creation..13
Figure 17: Activities “node2”, “node3” and “node4” takes part of iteration between “node5”

to “node1”. ...13
Figure 18: Activities “node6” and “node7” will be standby until iteration is finished...........14
Figure 19: GraphEditor after insertion of iteration from “node5” activity to “node1”.14
Figure 20: GraphEditor when the user sets an edge condition. ..15
Figure 21: GraphEditor when the user set a new activity property...16
Figure 22: GraphEditor when the user edits the activity parameters.17
Figure 23: GraphEditor when the user adds new hook. ...18
Figure 24: GraphEditor when the user defines the hook actions. ...19
Figure 25: Workflow Representation of the CRM System. ...20
Figure 26: Worklist and GraphEditor application for the CRM System example. The “Contact

User” activity is associated to the employee “Charles” in the todo list...........................20
Figure 27: After start hook assigned to “Contact User” activity that send an email to the user.

...21
Figure 28: After start hook assigned to “Contact User” activity with filtration of user

information. ..21
Figure 29: CRM workflow system when the user Guillaume executes “Search Information”

activity..22
Figure 30: After start hook assigned to “Financial Information” activity that uses web services

calls ..22
Figure 31: GraphEditor when the user clicks to the Users in Project option...........................28
Figure 32: GraphEditor when the user clicks to the Add User option.28
Figure 33: GraphEditor when the user creates a new role into the project..............................29
Figure 34: GraphEditor when the user assigns a role to another user.29
Figure 35: GraphEditor for sub-process Customer Service after activities creation................31
Figure 36: Edit Activity dialog box for a specific activity. ..31
Figure 37: GraphEditor when the user adds “customer” and “agent” roles to the project.32
Figure 38: Edit Activity dialog box for Ask “Customer” activity. ...32

-43-

Figure 39: New AfterStart hook for “Ask Customer” activity ...33
Figure 40: New AfterTerminate hook for “Notify Sales” activity ..33
Figure 41: GraphEditor when user adds “Receive Order” properties.34
Figure 42: GraphEditor when user adds beforeStart hook to “Check Stock” activity.35
Figure 43: New SubProcess dialog box for Accept Order activity. ..35
Figure 44: On the left, Order Processing project with the new sub-process activity called

“Accept Order”. On the right, the Accept Order sub-process at initial state.36
Figure 45: Set Edge Condition dialog box for transition between “Check Stock” and “Accept

Order” activities..36
Figure 46: Set Edge Condition dialog box for transition between “Accept Order” and “Ship &

Report” activities. ...36
Figure 47: Set Edge Condition dialog box for transition between “Accept Order” and “Cancel

Order” activities..37
Figure 48: Order Processing project when you finish the process definition.37
Figure 49: “Order Processing” instance and users-roles assignment38
Figure 50: Users-Roles obtained with “Users In Project” functionality.39
Figure 51: Order Processing instance when the customer terminates first activity without

error..39
Figure 52: Order Processing and Accept Order instances when “Christophe” starts sub-

process activity. ..40
Figure 53: Order Processing instance when “Christophe” terminates sub-process activity....40

