

 -1-

BONITA
Application Programming Interface

* This is a preliminary version of Bonita Application Programming Interface. You can find
more information of Bonita’s API in your $BONITA_HOME/javadoc installation directory.

 -2-

Index
Introduction..4
1 Concepts...5

1.1 Terminology ...5
1.2 Process..5

1.2.1 Life Cycle ...5
1.2.2 Relationship to Users...6
1.2.3 Process names ...6

1.3 Activities ..6
1.3.1 Activities basics ..6
1.3.2 Concept of Hooks..8
1.3.3 Relationship to Users...9

1.4 User ..9
1.4.1 Relationship to processes...9
1.4.2 Authentication scenario ...9

1.5 Role ..10
2 Project interface..11

2.1 Principle..11
2.2 Initiating the ProjectSessionBean ..11

2.2.1 Initiating with the fresh instance creation option..11
2.2.2 Initiating with the clone project creation option ...11
2.2.3 Initiating with the instantiate project creation option......................................11

2.3 Managing project ..12
2.3.1 Project attributes..12
2.3.2 Getting the name of a project...12
2.3.3 Getting the name of a project’s creator ..12
2.3.4 Properties ..12

2.4 Managing users ...13
2.4.1 Getting the list of users which are part of a project ..13
2.4.2 Adding a user to a project...13
2.4.3 Checking whether a user is part of a project..13

2.5 Managing roles ...13
2.5.1 Declaring a new role in the project ..13
2.5.2 Allocating a role to a User ...13
2.5.3 Getting the list of roles that an User can assume in the scope of a project14
2.5.4 Associating an activity with a role ...14

2.6 Edge (transitions between activities) ...14
2.6.1 Adding an edge to an activity ..14
2.6.2 Deleting an edge..14
2.6.3 Getting connected activities from an edge..14
2.6.4 Setting a condition on an edge ...15
2.6.5 Getting the condition on an edge ...15
2.6.6 Getting all existing edges in a project ..15
2.6.7 Getting all existing edges for an activity ...15
2.6.8 Reading an edge as a Java Object ..15
2.6.9 Changing the state of an Edge ...15

2.7 Hooks ...15
2.7.1 Adding a hook to a project...16
2.7.2 Deleting a hook from a project ..16

 -3-

2.7.3 Adding a hook to an activity..16
3 User interface ...17

3.1 Principle..17
3.2 Getting the name of the User...17
3.3 Getting the list of existing properties for the User...17
3.4 Setting a property for the User...17
3.5 Deleting a property of the User ...18
3.6 Getting the list of projects for the user...18
3.7 Getting the list of activities for a given project ..18
3.8 Getting the list of activities waiting to start for a given project18
3.9 Getting information about an activity ...18
3.10 Starting an activity ..19
3.11 Terminating an activity ...19
3.12 Cancelling an activity..19
3.13 Terminating a process ...19
3.14 Removing a process ..19

 -4-

Introduction

BONITA is a workflow system featuring a lot of innovative features like activities that can
start in anticipation, awareness infrastructure allowing users to be notified of any events
occurring during the execution in a given process , or automatic activation of user’s code
according to a defined activity life cycle.

BONITA is a fully conformant J2EE application, taking advantage of the power and
robustness of the J2EE platform. The BONITA API is accessible either thru an EJB.

Processes are created using a graphical definition tool or by using the Project interface API. A
process is defined as a set of activities and an associated execution model. The enactment
engine takes care of scheduling the activities according to the defined execution model. The
User API provides full control over the execution of the process, for example allowing to start
or stop an activity. BONITA supports also dynamic modification of an existing process, that
is the Project interface can be used against a running process.

Both User and project APIs are available either as Session Bean, or as web services.

.

 -5-

1 Concepts

1.1 Terminology

• A process is a set of activities. In BONITA, the term project is also used.
• An activity is an atomic unit of work. In BONITA, activities are also termed Nodes.
• A transition is a dependency expressing an order constraint between two activities. In

BONITA, transitions are also termed Edges.

1.2 Process

1.2.1 Life Cycle

BONITA has a very simple process life cycle

• A process is initial once it has been created. As soon as the process is in this state, it
can be controlled using both User API & Project API. The User API allows to monitor
the execution of the process. Whenever the first activity has been started using the
User API, the process goes to executing state. The execution of the process is
performed by the BONITA enactment engine, under control of applications thru the
use of the User API.

• A process is executing as soon as the first activity has started. While being executing,
the process definition still can be modified using the Project API. When all activities
are terminated, the process stays in state executing. It still can be modified , for
example new activities can be added.

• A process is terminated once it has been explicitly terminated by an application thru
the User API. In terminated state, the process definition cannot be modified any
more.

To allow the reuse of process definition across several process instances, BONITA builds on
this simple life cycle to provide process cloning and process model instantiation.

A process clone is a duplicate of an existing process. Once the cloning operation is
completed, the two processes will execute completely independently.

Just after the cloning operation:

• The process clone has the same set of activities than the original one. All activities are
in initial state, and without any properties being defined. Each activity is allocated to
the same role than in the original process. All activities have the same hooks (see
Hooks description in 1.3 below) than the ones in the original process.

• The process clone has no properties defined.
• No users are associated to the process clone.
• The process clone can be controlled without any restriction thru the User and Project

APIs.

 -6-

A process model is a specific definition of a process that can be instantiated many times. A
process model keeps track of all its instances, that is all instances of such a process can be
retrieved thru the User API.

Just after the instantiation operation:

• The process instance has the same set of activities than the process model, each
activity allocated to the same role than in the model. All activities are in initial state,
and have the same properties than in the model, without any associated value. All
activities have the same hooks and the same transition conditions than the ones in the
original process.

• The process properties are the same than the model’s one, but are not initialised.
• The users associated to the process are the same than in the process model, and have

the same associated roles.
• The process instance can be controlled without any restriction thru the User and

Project APIs.

1.2.2 Relationship to Users

A process has an associated set of Users. Such an user has access to the corresponding
process, meaning

• He knows about the existence of the process.
• He can take over roles that exist in the scope of the process.
• He can be notified of various events occurring in the process.
• He can control the execution of the process.

Users assuming the Admin role can modify the definition of the process.

The User on behalf of whom the project has been created is automatically assigned the Admin
role, he is then responsible for the creation of other users in the process, and to allocation of
role to those users (including the Admin role that can be allocated to several users).

1.2.3 Process names

Names are given to processes at creation time. There are no restrictions on the number of
characters used to name process.

Process instances are named automatically be BONITA, which derives the instance name
from the model name as follows:

<instance-name> = <model-name>_instance<sequence-number>

1.3 Activities

1.3.1 Activities basics

 -7-

The activity is the basic unit of work within a process.

• Execution of an activity can be automatic; in this case the BONITA enactment engine
will start it as soon as the applicable transitions from preceding activities are
successfully evaluated.

• Alternatively, the execution of an activity can be manual that is the BONITA
enactment engine will not start an activity until some application has explicitly started
it thru the User API.

The life cycle of an activity is as follows.

• Ready : This is the state of an activity ready to be started. There are two possible
situations when this occurs. In the first one, an activity has no parent activity. In the
second one, a normal activity has parent activities that have all terminated
successfully, and whose transition condition to the activity has been successfully
evaluated.

• Initial : This the state of an activity waiting for some processing to complete before
being ready to run. In case of normal activities, at least one of the parent activities is
still executing. In case of activity that can be anticipated, at least one of the parent
activities has not started.

• Anticipable : This is the state of an activity that can be started, without waiting for its
parents activity to complete. All the parents activities must be started however.

• Anticipating : A previously anticipable activity that has been started . Automatic
activities are automatically transitioned from anticipable to anticipating, manual
activities must be explicitely started. An anticipating activity cannot be terminated
until all its parent activity has themselves terminated, and the transition conditions
have been successfully evaluated.

• Executing: An activity being executed.
• Cancelled: An activity that has been cancelled. All the depending activities will be

automatically cancelled. Cancellation occurs in two cases : explicit cancellation, or
unsuccessful evaluation of one of the inwards transition condition.

• Terminated: An activity that has been successfully terminated.

The activity life cycle is figured below for activities that cannot be anticipated.

initinit readyready

executingexecuting

deaddead terminatedterminated

Start

terminatecancel

Parents
completed &
transitions
conditions OK

Activity created
without parentsActivity connected

to a parent

 -8-

Recall that for automatic activities, BONITA will automatically
• transition the state from ready to executing ,
• launch the executing hook
• terminate the activity whenever the executing hook has complete

The activity life cycle is figured below for activities that can be anticipated.

Recall that for automatic activities, BONITA will automatically

• transition the state from anticipable to anticipating ,
• launch the anticipating hook
• transition the state from anticipating to executing whenever all the parents complete
• terminate the activity whenever the executing hook has completed

1.3.2 Concept of Hooks

BONITA has the concept of Hooks, which are user defined logic that can be triggered at some
defined points in the life of the activity. These defined points are

• Before Start hook is called just before after the activity starts. The Before Start hook is not

considered to be in the same transaction than the activity. The Before Start hook is not
triggered for activities that can be anticipated

• After Start hook is called just after the activity has started. It is considered to be in the
same transaction than the activity.

• Cancel hook is called before cancelling an activity
• Before Terminate hook is called just before after the activity terminates. The Before

Terminate hook is considered to be in the same transaction than the activity.

initinit anticipable

anticipating

deaddead

Start

Cancel or
transitions
NOK

Parents
executing or
anticipating

executingexecuting

terminatedterminated

terminate

cancel

Parents completed
transitions OK

 -9-

• After Terminate hook is called just after the activity has terminated. It is not considered to
be in the same transaction than the activity.

• Anticipating hook is called when an automatic activity is started, only if the activity is
anticipable. It is considered to be in the same transaction than the activity.

1.3.3 Relationship to Users

Any activity is associated with a role. All the users being allocated that role in the scope of
the process have the possibility to take over the activity.

1.4 User

BONITA manages users in a specific base.

This base allows to store properties for a given user. Properties are (key, value) pairs where
both key and values are java.lang.String variables. The application can set and retrieve
properties using the User interface. BONITA makes use of specific user properties in order to
store the User preferences.

1.4.1 Relationship to processes

Users have also to be explicitly associated to processes in order to participate and to have
visibility of events occurring in those processes.

Two scenarios allow to associate a User with a process.

• Whenever a process is created, it is created on behalf of the User that initiated the
Project Interface. This user is automatically associated to the newly created process,
and can from now on assume the Admin role in the scope of the process.

• The users assuming the admin role for a given process has the right to associate new

users to the process, and to allocate any role to them.

1.4.2 Authentication scenario

At the moment, User authentication is performed against BONITA specific database. It is also
possible to authenticate against an LDAP directory.

 -10-

1.5 Role

BONITA manages roles on a per Process basis. This allows to have different semantics
associated to the same role name in the scope of two different processes.

Activities are associated to roles, that is each activity can be taken over only by a user
assuming a given role. There is a single role associated to each activity.

Roles are associated to Users, where a User can assume several roles in the scope of a given
process.

 -11-

2 Project interface

2.1 Principle

The Project interface provides access to functions allowing to modify the execution of a given
process.

In case of EJB Session access, the Project interface will automatically retrieve the identity of
the calling user in the J2EE security context. Hence, calling the Project interface from an
unidentified context will fail. Therefore, the interface is initiated for a given user. Only the
processes where the User are declared can be accessed

Once the Project interface has been created, it must be initiated. Initiating the Project interface
allows to specify which project is going to be managed thru the Interface.

2.2 Initiating the ProjectSessionBean

2.2.1 Initiating with the fresh instance creation option

Void initProject (java.lang.String projectName)

The Project interface is initialised with the given projectName. All subsequent interface
methods will deal with the corresponding project.

If the corresponding projectName does not exist, then a new empty project is created and
given this name.

2.2.2 Initiating with the clone project creation option

Void initProject (java.lang.String oldProject, java.lang.String newProject)

The Project interface is initialised after oldProject was cloned. This interface is initialised
with the given newProject project name. All subsequent interface methods will deal with the
corresponding newProject.

2.2.3 Initiating with the instantiate project creation option

Void instantiateProject (java.lang.String projectName)

The Project interface is initialised after new project instance was created. This interface is
initialised with the new project instance name (see process names description in 1.2.3). All
subsequent interface methods will deal with the corresponding project instance.

 -12-

2.3 Managing project

With BONITA, there is a single API to cope with projects. This API is used to control
processes, no matter which kind of process they are:

• Processes can exist on their own, without having a relationship to a process model. In
this category we find processes created from scratch, and processes cloned from parent
processes.

• Process can be process model, from which process instances can be derived. At the
moment, a process model can be executed as well, but this behaviour will be
withdrawn in a near future.

• Process instances are specific runable processes whose definition are contained in a
process model. At creation time, the specific context of this instance is taken into
account in order to specialize the instance.

2.3.1 Project attributes

A project has a name, which is given at creation time thru the Project API.

Only the name of process instances is constrained, where BONITA automatically allocates a
name in the following form : <Project Model Name>_instance<Project Instance Number>.
The <Project Instance Number> is automatically managed by BONITA.

A project has properties, which are simple (key, value) pairs.

A project records the name of the person which created it and the creation date.

2.3.2 Getting the name of a project

java.lang.String getName();

Returns the name of the project that is being managed by the current instance of
ProjectSessionBean interface.

2.3.3 Getting the name of a project’s creator

java.lang.String getCreator();

Returns the name of the user who has been creating the Project. The creator name is
automatically retrieved by BONITA executive when one creates a project thru the
ProjectSessionBean Interface.

2.3.4 Properties

void setProperty (java.lang.String key, java.lang.String value)

Creates a new property , assigning it a value, or override the value of an existing property.

 -13-

java.util.Collection getProperties();

Returns all the properties existing for this project. Properties are returned as
BnProjectPropertyValue

void deletteProperty(java.lang.String key);

Delete a property of an existing project.

2.4 Managing users

2.4.1 Getting the list of users which are part of a project

java.util.Collection getUsers();

Users are returned as Strings

2.4.2 Adding a user to a project

void addUser(java.lang.String username);

2.4.3 Checking whether a user is part of a project

boolean containsUser(java.lang.String username);

2.5 Managing roles

Role is the mean by which User can be associated to activities. A role has a name and a string
description.

Roles must be first declared in a project. Then role can be associated to Users and to
Activities.

2.5.1 Declaring a new role in the project

void addRole java.lang.String roleName, java.lang.String description);

2.5.2 Allocating a role to a User

Roles are allocated to users in the scope of given project. That is, a user may assume different
roles in different project. Also, in the scope of a project, an user can assume several roles.

 -14-

void setUserRole (java.lang.String userName, java.lang.String roleName);

void unsetUserRole (java.lang.String userName, java.lang.String roleName);

2.5.3 Getting the list of roles that an User can assume in the scope of a

project

java.util.Collection getUserRoles (java.lang.String userName);

2.5.4 Associating an activity with a role

Only a single role can take over a given activity.

2.6 Edge (transitions between activities)

2.6.1 Adding an edge to an activity

An edge is a way to establish a dependency between two activities.

 Edges have unique name in the scope of the project. The name of the edge can be choosen by
the application, or it can be automatically generated by BONITA.

java.lang.String addEdge(java.lang.String in, java.lang.String out);

The two activities named in and out will be connected by a new eddge. The method returns
the name of the newly created edge.

java.lang.String addEdge(java.lang.String name,java.lang.String in,
java.lang.String out);

The two activities named in and out will be connected by a new edge. The newly created edge
will be named according to the name passed as input parameter.

2.6.2 Deleting an edge

Void deleteEdge(java.lang.String name);

The edge named with the parameter name will be deleted.

2.6.3 Getting connected activities from an edge

java.lang.String getEdgeInNode(java.lang.String edgeName) ;

Get back the name of the inbound node of the given edgeName.

 -15-

java.lang.String getEdgeOutNode(java.lang.String edgeName) ;

Get back the name of the outbound node of the given edgeName.

2.6.4 Setting a condition on an edge

Void setEdgeCondition(java.lang.String edge, java.lang.String condition);

The condition is passed as a string expressing a condition in a scripting language.

2.6.5 Getting the condition on an edge

java.lang.String getEdgeCondition(java.lang.String edge);

2.6.6 Getting all existing edges in a project

java.util.Collection getEdgesNames();

Returns all the existing edges in the project.

2.6.7 Getting all existing edges for an activity

java.util.Collection getNodeInEdges();

Returns all the existing edges inbound for a given node .

java.util.Collection getNodeOutEdges();

Returns all the existing edges outbound for a given node .

2.6.8 Reading an edge as a Java Object

hero.interfaces.BnEdgeValue getEdgeValue (java.lang.String name);

2.6.9 Changing the state of an Edge

void setEdgeState(hero.interfaces.BnEdgeLocal edge, int state);

2.7 Hooks

Hooks are piece of code that is executed at specific point during the activity life cycle.

Must document in a central place the different possible scripting strategies

 -16-

Hooks can be coded in a scripting language, or as java library. Therefore, the hook interface is
divided in two sets. Script hooks are called interactive Hooks, hence all calls related to them
will contain “Inter” in their name.

Hooks can be defined at the project level. Such hooks will be activated for every activity
contained in the project.

Hooks can also defined at the activity level, they will be activated only in the context of the
related activity.

2.7.1 Adding a hook to a project

Void addHook (java.lang.String hookName, java.lang.String eventName,
int hookType)

Void addInterHook (java.lang.String hookName, java.lang.String eventName,
int hookType, java.lang.String value)

The hook with name hookName will be added to a project. The hook activation will be
triggered whenever the event eventName occurs in any activity of the project.

2.7.2 Deleting a hook from a project

Void deleteHook (java.lang.String hookName)

Void deleteInterHook (java.lang.String hookName)

The hook with name hookName will be deleted.

2.7.3 Adding a hook to an activity

Void addNodeHook (java.lang.String nodeName, java.lang.String hookName,
java.lang.String eventName, int hookType)

Void addNodeInterHook (java.lang.String nodeName,
java.lang.String hookName, java.lang.String eventName, int hookType,
java.lang.String value)

The hook with name hookName will be added to the node. The hook activation will be
triggered whenever the event eventName occurs for this activity.

 -17-

3 User interface

3.1 Principle

The User interface provides access to process execution control functions. The interface is
initiated for a given user. Only the processes where the User are declared can be accessed.

In case of EJB Session access, the User interface will automatically retrieve the identity of
the calling user in the J2EE security context. Hence, calling the User interface from an
unidentified context will fail.

Much of the User interface methods are taking the Project name as parameter. This name may
be known directly from the application logic. Alternatively, the application may retrieve the
project name according to various search criteria. At the moment, the corresponding search
methods are not implemented.

3.2 Getting the name of the User

 Java.lang.String getUser()

Returns the name of the User who created the Interface as a
java.lang.String.

3.3 Getting the list of existing properties for
the User

Java.util.Collection getUserProperties ()

Returns the properties defined for a given User. Properties are returned as
a collection of BnUserProperty .

3.4 Setting a property for the User

Void setUserProperty (java.lang.String key, java.lang.String value)

Set the property whose name is key to the value value.
If the property already exists, the current value is overridden. If the properties does not exist,
it is created and its value is set to value.

 -18-

3.5 Deleting a property of the User

Void deleteUserProperty (java.lang.String key)

Delete the property whose name is key .

3.6 Getting the list of projects for the user

java.util.Collection getProjectListNames ()

 Returns the list of projects in which the current user is registered. Projects name are
returned as java.lang.String.

3.7 Getting the list of activities for a given
project

java.util.Collection geActivityList (java.lang.String projectName)

Returns all user activities from the specified project . Only activities in executing or
anticipating state are given back. Activities are returned back as BnNodeLocal objects.

3.8 Getting the list of activities waiting to
start for a given project

Void getToDoList ((java.lang.String projectName)

Returns all user activities from specific project (ready and anticipable state).

3.9 Getting information about an activity

hero.interfaces.BnNodeValue getNode (java.lang.String projectName,
java.lang.String nodeName)

 -19-

3.10 Starting an activity

Void startActivity (java.lang.String projectName,
java.lang.String nodeName)

Starts the activity that has the given name in the scope of the process with the given name.

3.11 Terminating an activity

Void terminateActivity (java.lang.String projectName,
java.lang.String nodeName)

Terminates the activity that has the given name in the scope of the process with the given
name.

3.12 Cancelling an activity

Void cancelActivity (java.lang.String projectName,
java.lang.String nodeName)

Cancels the activity that has the given name in the scope of the process with the given name.

3.13 Terminating a process

Void terminate (java.lang.String projectName)

Terminate the process that has the given name.

3.14 Removing a process

Void removeProcess (java.lang.String projectName)

Remove the process that has the given name.

