

BONITA Workflow Cooperative System
Application Programming Interface

(Version 2.0)

Christophe Loridan
Miguel Valdés Faura

BULL R&D

* This is a preliminary version of Bonita Application Programming Interface. You can find
more information of Bonita’s API in your $BONITA_HOME/javadoc installation directory.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 2 / 50 -

Index

Introduction..5
1 Concepts...6

1.1 Terminology ...6
1.2 Process..6

1.2.1 Life Cycle ...6
1.2.2 Ad’hoc processes ..6
1.2.3 Instances processes..7
1.2.4 Relationship to Users...8
1.2.5 Process names ...8

1.3 Activities ..8
1.3.1 Activities basics ..8
1.3.2 Concept of Hooks..10
1.3.3 Relationship to Users...12
1.3.4 Activity and transactions ...12

1.4 User ..12
1.4.1 Relationship to processes...13
1.4.2 Authentication scenario ...13

1.5 Roles...13
1.6 Bonita LDAP Configuration (for JOnAS)..14

1.6.1 Installation ..14
1.6.2 Configuration ..14
1.6.3 What do this ldap Import? ...15
1.6.4 How you can use it? ..15

1.7 Mappers feature: automatic filling in of the bonita groups15
1.7.1 Introduction...16
1.7.2 Mappers types ...16

1.8 Performer Assignment ..17
1.8.1 Introduction...17
1.8.2 Description of these performer assignments...18

2 Project interface..20
2.1 Principle..20
2.2 Creating the ProjectSessionBean ...20
2.3 Initiating the ProjectSessionBean ..21

2.3.1 Initiating the Session Bean ..21
2.3.2 Initiating with the fresh instance creation option..21
2.3.3 Initiating with the clone project creation option ...21
2.3.4 Initiating with the instantiate project creation option......................................21
2.3.5 Code example..22

2.4 Managing project ..22
2.4.1 Project attributes..22
2.4.2 Getting the name of a project or an instance ..23
2.4.3 Getting the name of the parent project ...23
2.4.4 Getting the name of a project’s creator ..23
2.4.5 Properties ..23
2.4.6 Project details..24
2.4.7 Code example..24

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 3 / 50 -

2.5 Managing activities ...24
2.5.1 Types of activities ...24
2.5.2 Activities states ...25
2.5.3 Creating activity ..25
2.5.4 Creating SubProcess activity ...25
2.5.5 Configuring activity ..26
2.5.6 iterating activities ..26
2.5.7 Getting information about nodes in the project ..27
2.5.8 Code example..27
2.5.9 Getting information about a specific node ...27
2.5.10 Deleting activity ..28
2.5.11 Code example..28

2.6 Managing users ...28
2.6.1 Getting the list of all bonita registered users ..28
2.6.2 Getting the list of users which are part of a project ..28
2.6.3 Adding a user to a project...28
2.6.4 Checking whether a user is part of a project..28
2.6.5 Code example..29

2.7 Managing roles ...29
2.7.1 Declaring a new role in the project ..29
2.7.2 Allocating a role to a User ...29
2.7.3 Getting the list of roles that an user can assume...29
2.7.4 Getting the list of roles that an user can assume in the scope of a project29
2.7.5 Associating an activity with a role ...30

2.8 Edge (transitions between activities) ...30
2.8.1 Adding an edge to an activity ..30
2.8.2 Deleting an edge..30
2.8.3 Getting connected activities from an edge..30
2.8.4 Setting a condition on an edge ...31
2.8.5 Getting the condition on an edge ...31
2.8.6 Getting all existing edges in a project ..31
2.8.7 Getting all existing edges for an activity ...31
2.8.8 Reading an edge as a Java Object ..31
2.8.9 Changing the state of an Edge ...31

2.9 Hooks ...31
2.9.1 Managing a hook at the project level ...32
2.9.2 Managing a hook to an activity level ...33

2.10 Mappers ..34
2.10.1 Code example..35

2.11 Performer assignment..35
2.11.1 Addition of a performer assignment to a node..35
2.11.2 Code example..36

3 User Registration Interface ...37
3.1 Principle..37
3.2 Creating the UserRegistrationBean..37
3.3 Creating Users ..37
3.4 Creating Roles ..37
3.5 Defining Users ..38
3.6 Deleting Users ..38

4 User Session interface...39

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 4 / 50 -

4.1 Principle..39
4.2 Creating the UserSessionBean...39
4.3 Setting User Information...40
4.4 Getting User Information ..40
4.5 Getting the list of projects for the User..40
4.6 Getting the list of instances for the User ..41
4.7 Managing the project for the User ...41
4.8 Getting the list of activities for the User ..41
4.9 Getting Information on User activity ...42
4.10 Getting the ToDo list for the User ...42
4.11 Managing activities for the User..42
4.12 Getting the list of existing properties for the User...42

5 Bonita Entities ..43
5.1 Diagram..43
5.2 Entities Attributes ...43

5.2.1 BnAuthRoleValue ...43
5.2.2 BnEdgeValue ..44
5.2.3 BnInstanceValue ...44
5.2.4 BnIterationValue ...45
5.2.5 BnNodeHookValue ...45
5.2.6 BnNodeInterHookValue..45
5.2.7 BnNodePerformerAssignValue ...46
5.2.8 BnNodePropertyValue ..46
5.2.9 BnNodeValue..46
5.2.10 BnProjectHookValue...47
5.2.11 BnProjectInterHookValue ...48
5.2.12 BnProjectPropertyValue..48
5.2.13 BnProjectValue ...48
5.2.14 BnRoleMapperValue...49
5.2.15 BnRoleValue...49
5.2.16 BnUserPropertyValue..49
5.2.17 BnUserValue...50

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 5 / 50 -

Introduction

BONITA is a workflow system featuring a lot of innovative features like activities that can
start in anticipation, awareness infrastructure allowing users to be notified of any events
occurring during the execution in a given process , or automatic activation of user’s code
according to a defined activity life cycle. Traditional workflow features like dynamic
user/roles resolution, activity performer and sequential execution are also included in Bonita
to support both cooperative and administrative workflow processes.

BONITA is a fully conformant J2EE application, taking advantage of the power and
robustness of the J2EE platform. The BONITA API is accessible either thru EJB’s.

Processes are created using a graphical definition tool or by using the Project interface API. A
process is defined as a set of activities and an associated execution model. The enactment
engine takes care of scheduling the activities according to the defined execution model. The
User API provides full control over the execution of the process, for example allowing
starting or stopping an activity. BONITA supports also dynamic modification of an existing
process, that is the Project interface can be used against a running process.

Both User and project APIs are available either as Session Bean, or as web services.

The drawing hereunder shows the different components of BONITA

Bonita
Enactement
Engine

Project
Interface

User
Interface

Your
application

Process
creation
(graph
editor)

Process
control
(manager)

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 6 / 50 -

1 Concepts

1.1 Terminology

• A process is a set of activities. In BONITA, the term project is also used.
• An activity is an atomic unit of work. In BONITA, activities are also termed Nodes.
• A transition is a dependency expressing an order constraint between two activities. In

BONITA, transitions are also termed Edges.
• A property is a workflow unit of data, commonly known as workflow relevant data.
• A hook is a user defined logic adding automatic behaviour to activities/nodes.
• A mapper is a unit of work allowing dynamically roles resolution at workflow

instantiation time.
• A performer assignment is a unit of work adding additional activity assignment rules

at run time.

1.2 Process

1.2.1 Life Cycle

BONITA has a very simple process life cycle

• A process is initial once it has been created. As soon as the process is in this state, it
can be controlled using both User API & Project API. The User API allows
monitoring the execution of the process. Whenever the first activity has been started
using the User API, the process goes to started state. The execution of the process is
performed by the BONITA enactment engine, under control of applications thru the
use of the User API.

• A process is started as soon as the first activity has started. While being executing,
the process definition still can be modified using the Project API. When all activities
are terminated, the process stays in state started. It still can be modified, for example
new activities can be added.

• A process is terminated once it has been explicitly terminated by an application thru
the User API. In terminated state, the process definition cannot be modified any
more.

1.2.2 Ad’hoc processes

Bonita has always had a quite simple view of process enactment : once a process is defined, it
is enacted ! For example, just after the creation of a process with a single activity using the
Project API, you would be able to run it by using the User API and still be able to add new
activities to the process definition. This brings lot of flexibility to workflow participants, and
is particularly convenient for so-called collaborative (we also call them ad’hoc) processes.
You would typically set up a specific process in order to perform a given job between several
colleagues very easily . To allow some level of reuse of process definition, we introduced the
concept of process clone.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 7 / 50 -

A process clone is a duplicate of an existing process. Once the cloning operation is
completed, the two processes will execute completely independently.

Just after the cloning operation:

• The process clone has the same set of activities than the original one. All activities are
in initial state, and without any properties being defined. Each activity is allocated to
the same role than in the original process. All activities have the same hooks (see
Hooks description in 1.3 below) than the ones in the original process.

• The process clone has no properties defined.
• No users are associated to the process clone.
• The process clone can be controlled without any restriction thru the User and Project

APIs.

1.2.3 Instances processes

Obviously, there are usage scenario where the reuse of process definition is of key importance
; in these scenario, one spends a long-time to define carefully a generic process model, that
will be instantiated in the same way a lot of time. We call those processes administrative
processes (we also say instance processes). They are based on model-instance workflow
paradigm. In this kind of workflows, the Project API must be used to define the workflow
model. When the process definition is done, the workflow users are enabling to instantiate the
previous workflow model via Project API. Once model instance are created, workflow
participants can access to the User API to obtain their todolist, to execute assigned activities,
and so on.

So, either cooperative or administrative workflows use the same component definition API,
that is Project API. The main difference between those workflow types concerns the
execution. Cooperative workflows are ready to be executed and modified from the creation. In
the other hand, administrative workflows need to be instantiated before. The term process
model is used to talk about Bonita projects defined on the context of administrative workflow
use case.

A process model is a specific definition of a process that can be instantiated many times. A
process model keeps track of all its instances, that is all instances of such a process can be
retrieved thru the User API.

Just after the instantiation operation:

• The process instance has the same set of activities than the process model, each
activity allocated to the same role than in the model. All activities are in initial state,
and have the same properties than in the model, without any associated value. All
activities have the same hooks and the same transition conditions than the ones in the
original process.

• The process properties are the same than the model’s one, but are not initialised.
• The users associated to the process are the same than in the process model, and have

the same associated roles.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 8 / 50 -

• The process instance can be controlled without any restriction thru the User and
Project APIs.

In future releases of BONITA , the concept of Process model will be further extended,
with the implementation of a Process Model Repository allowing import of process
definition in a variety of format.

1.2.4 Relationship to Users

A process has an associated set of Users. Such an user has access to the corresponding
process, meaning

• He knows about the existence of the process.
• He can take over roles that exist in the scope of the process.
• He can be notified of various events occurring in the process.
• He can control the execution of the process.

Users assuming the Admin role can modify the definition of the process. The role Admin is
specific to each process, that’s means the role Admin for the “process1” is different than the
role Admin for the “process2”.

The User on behalf of whom the project has been created is automatically assigned the Admin
role, he is then responsible for the creation of other users in the process, and to allocation of
role to those users (including the Admin role that can be allocated to several users).

1.2.5 Process names

Names are given to processes at creation time. There are no restrictions on the number of
characters used to name process.

Process instances are named automatically be BONITA, which derives the instance name
from the model name as follows:

<instance-name> = <model-name>_instance<sequence-number>

1.3 Activities

1.3.1 Activities basics

The activity is the basic unit of work within a process.

• Execution of an activity can be automatic; in this case the BONITA enactment engine
will start it as soon as the applicable transitions from preceding activities are
successfully evaluated.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 9 / 50 -

• Alternatively, the execution of an activity can be manual that is the BONITA
enactment engine will not start an activity until some application has explicitly started
it thru the User API.

The life cycle of an activity is as follows.

• Ready : This is the state of an activity ready to be started. There are two possible
situations when this occurs. In the first one, an activity has no parent activity (so is the
first activity of the workflow process). In the second one, a normal activity has parent
activities that have all terminated successfully, and whose transition condition to the
activity has been successfully evaluated.

• Initial : This the state of an activity waiting for some processing to complete before
being ready to run. In case of normal activities, at least one of the parent activities is
still executing. In case of activity that can be anticipated, at least one of the parent
activities has not started.

• Anticipable: This is the state of an activity that can be started, without waiting for its
parent’s activity to complete. All the parents’ activities must be started however.

• Anticipating: A previously anticipable activity that has been started. Automatic
activities are automatically transitioned from anticipable to anticipating, manual
activities must be explicitly started. An anticipating activity cannot be terminated until
all its parent activity has themselves terminated, and the transition conditions have
been successfully evaluated.

• Executing: An activity being executed.
• dead: An activity that has been cancelled. All the depending activities will be

automatically cancelled. Cancellation occurs in two cases: explicit cancellation, or
unsuccessful evaluation of one of the inwards transition condition.

• Terminated: An activity that has been successfully terminated.

The activity life cycle is figured below for activities that cannot be anticipated.

initinit readyready

executingexecuting

deaddead terminatedterminated

Start

terminatecancel

Parents
completed &
transitions
conditions OK

Activity created
without parentsActivity connected

to a parent

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 10 / 50 -

Recall that for automatic activities, BONITA will automatically

• transition the state from ready to executing ,
• launch the executing hook
• terminate the activity whenever the executing hook has complete

The activity life cycle is figured below for activities that can be anticipated.

Recall that for automatic activities, BONITA will automatically

• transition the state from anticipable to anticipating ,
• launch the anticipating hook
• transition the state from anticipating to executing whenever all the parents complete
• terminate the activity whenever the executing hook has completed

1.3.2 Concept of Hooks

BONITA has the concept of Hooks, which are user defined logic that can be triggered at some
defined points in the life of the activity. These defined points are

• Before Start hook is called just before the activity starts. The Before Start hook is not

considered to be in the same transaction than the activity. The Before Start hook is not
triggered for automatic activities that cannot be anticipated.

• After Start hook is called just after the activity has started. It is considered to be in the
same transaction than the activity. The After Start hook is not triggered for automatic
activities that cannot be anticipated.

initinit anticipable

anticipating

deaddead

Start

Cancel or
transitions
NOK

Parents
executing or
anticipating

executingexecuting

terminatedterminated

terminate

cancel

Parents completed
transitions OK

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 11 / 50 -

• Cancel hook is called before cancelling an activity and it’s considered to be in the same
transaction than the activity.

• Before Terminate hook is called just before the activity terminates. The Before Terminate
hook is considered to be in the same transaction than the activity.

• After Terminate hook is called just after the activity has terminated. It is not considered to
be in the same transaction than the activity.

• Anticipating hook is called when an automatic activity is started, only if the activity is
anticipable. It is considered to be in the same transaction than the activity.

Fault management

If an exception occurs during the execution of a hook, it will be propagated to the application
having triggered the execution of the hook.

Consider the following simple scenario: an application calls the terminate Activity statement
on “Activity1”; this triggers the execution of a before Terminate hook which raises an
exception; the exception will be caught by the application.

Things may be a little bit trickier if you use automatic activities. Imagine that the terminate
Activity statement on “Activity 1” completes normally, and that “Activity 1” has an outgoing
edge towards an automatic activity “Activity 2”. “Activity 2” will be started and terminated
automatically in the context of the first call related to “Activity 1”. Therefore if “Activity 2”
has a Before Terminate Activity hook that raises an exception, it will interrupt the call related
to “Activity 1”. That’s means, “Activity1” does not terminate (the activity stay at executing
state) and the system throws an exception due to “Activity2” execution error.

Examples above show you two error scenarios related to transactional hooks execution. You
should be aware that Hooks can be executed in a transactional or in a non-transactional
context.

Transactional hooks are executed in the same transactional context than the activity in which
they are executed. Available transactional hooks in Bonita are: After Start, Before Terminate,
Anticipate and On Cancel hooks (see also activities and transaction below)..

• Any changes performed on a transactional resource will be included in this existing
transactional context.

• Any exception raised by the Hook will abort the existing transaction, so the activity
will be re-executed later on. Furthermore, all operations executed by the hook before
the exception was raised will be roll-backed.

Bonita also brings you the possibility to create hooks which can be executed without a
transactional context. In this case, Before Start and After Terminate hooks are executed
outside the activity transactional context.

• We extremely recommend to do not use these types of hooks to access either Bonita
APIs or other transactional APIs.

• If one of these hooks fails, during its execution the system will throw an exception
but the activity starts/terminates without roll-backing any operation.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 12 / 50 -

Consider the last sample scenario described above and change Before Terminate hook by
After Terminate hook. Let’s over the execution: Imagine that the terminate Activity statement
on “Activity 1” completes normally, and that “Activity 1” has an outgoing edge towards an
automatic activity “Activity 2”. “Activity 2” will be started and terminated automatically in
the context of the first call related to “Activity 1”. Therefore if “Activity 2” has an After
Terminate Activity hook that raises an exception, the hook does not interrupt the call related
to “Activity 1”. That’s means, “Activity1” terminates without problems, but the system
throws an exception due to “Activity2” execution error.

1.3.3 Relationship to Users

Any activity is associated with a role. All the users being allocated that role in the scope of
the process have the possibility to take over the activity.

1.3.4 Activity and transactions

Any change of state (that is startActivity, terminateActivity, cancelActivity statements)
performed against an activity is part of a transaction.

Such a transaction will typically involve more than one activity: for example, a terminate
Activity statement performed on a father activity will trigger a change of state in all daughter
activities. BONITA therefore keeps transactional consistency across activities.

BONITA will abort the transaction in two cases:

• A failure at system level (e.g. impossibility to access the BONITA database)
• An exception not catched by a transactional Hook.

You should therefore be aware that some Hook types are executed in a transactional context.

• Any changes performed on a transactional resource will be included in this existing
transactional context.

• Any exception raised by the Hook will abort the existing transaction.

1.4 User

BONITA manages users in a specific base.

This base allows to store properties for a given user. Properties are (key, value) pairs where
both key and values are java.lang.String variables. The application can set and retrieve
properties using the User interface. BONITA makes use of specific user properties in order to
store the User preferences.
BONITA make the distinction between Users and Participants. The User base is the
repository of all users that make use of the workflow system. Now for each process, one

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 13 / 50 -

should declare the Participants, that is all the Users that are allowed to play some role in the
given process.

1.4.1 Relationship to processes

So, users have to be explicitly associated to processes in order to participate and to have
visibility of events occurring in those processes.

Two scenarios allow to associate a User with a process (that is make a User a Participant of
this process)

• Whenever a process is created, it is created on behalf of the User that initiated the
Project Interface. This user is automatically associated to the newly created process,
and can from now on assume the Admin role in the scope of the process.

• The users assuming the admin role for a given process has the right to associate new

users to the process, and to allocate any role to them.

1.4.2 Authentication scenario

At the moment, User authentication is performed against BONITA specific database. It is also
possible to authenticate against an LDAP directory.
You will find below an example of how to code the authentication of the admin user, using
the “TestClient” login context proposes with Bonita.

Code example :

i m p o r t j a v a x . s e c u r i t y . a u t h . l o g i n . L o g i n C o n t e x t ;
i m p o r t h e r o . c l i e n t . t e s t . S i m p l e C a l l b a c k H a n d l e r ;

…

p u b l i c c l a s s M y W o r k F l o w C l a s s {

 s t a t i c p u b l i c v o i d m a i n (S t r i n g [] a r g s) t h r o w s E x c e p t i o n {
 / / U s e r A d m i n a u t h e n t i c a t i o n
 c h a r [] p a s s w o r d = { 't ', 'o ', 't ', 'o '} ;
 S i m p l e C a l l b a c k H a n d l e r h a n d l e r = n e w S i m p l e C a l l b a c k H a n d l e r (" a d m i n " , p a s s w o r d) ;
 L o g i n C o n t e x t l c = n e w L o g i n C o n t e x t (" T e s t C l i e n t " , h a n d l e r) ;
 l c . l o g i n () ;

 …
}

1.5 Roles

BONITA manages roles on a per Process basis. This allows to have different semantics
associated to the same role name in the scope of two different processes.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 14 / 50 -

Activities are associated to roles, that is each activity can be taken over only by a user
assuming a given role. There is a single role associated to each activity.

Roles are associated to Users, where a User can assume several roles in the scope of a given
process.

1.6 Bonita LDAP Configuration (for
JOnAS)

This chapter is an HowTo describing necessary steps for install and configures Bonita with
your LDAP directory. After this operation, you will use your own LDAP in order to control
user’s access to Bonita Workflow System. This configuration is specifically for JOnAS
Application Server 3.3.5 version.

For the moment, Bonita’s LDAP module offers two functionalities:

� Bonita User Authorization Access via LDAP.

� Users import from your LDAP directory to Bonita user’s database.

1.6.1 Installation
� The EJB implementing this function is compiled and deployed with others bonita files

(under ejb/hero/session repository).

� Ldap module for JOnAS application server needs javax77.jar and mejb.jar files, so
you have to invoke the ldap config task with the command: ant configLdap, in order to
copy and deploy these files into JOnAS directory.

1.6.2 Configuration
� As importLdap bean uses JMX, an LDAP resource in the JOnAS-realm.xml file is

required

� The configuration of this resource is detailed in the JONAS documentation
(you can also use JonasAdmin graphical tool to add the new ldap realm; defaults are
provided)

� Notice that you must have one and only one LDAP resources in JOnAS, otherwise the
ldapImport method will fail.

� The ldap base could be also your authentication base for both JOnAS and bonita. For
JOnAS, see the documentation. For bonita you have to set the ldap resourceName for
bonita context in $JONAS_ROOT/conf/server.xml and in
$JONAS_ROOT/conf/jaas.config for bonita entries.

� Configuration example:

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 15 / 50 -

 < j o n a s - l d a p r e a l m >
 < l d a p r e a l m n a m e = " l d a p r l m _ 1 "
 b a s e D N = " o u = f r , o = B u l l , c = f r "
 i n i t i a l C o n t e x t F a c t o r y = " c o m . s u n . j n d i . l d a p . L d a p C t x F a c t o r y "
 p r o v i d e r U r l = " l d a p : / / s e r v e u r _ h o s t : 3 8 9 "
 s e c u r i t y A u t h e n t i c a t i o n = " s i m p l e "
 a u t h e n t i c a t i o n M o d e = " b i n d "
 u s e r P a s s w o r d A t t r i b u t e = " u s e r P a s s w o r d "
 u s e r R o l e s A t t r i b u t e = " m e m b e r O f "
 r o l e N a m e A t t r i b u t e = " c n "
 u s e r D N = " o u = f r e c _ u s e r s , o u = f r , o = B u l l , c = f r "
 u s e r S e a r c h F i l t e r = " u i d = { 0 } "
 r o l e D N = " o u = f r e c _ g r o u p s , o u = f r , o = B u l l , c = f r "
 r o l e S e a r c h F i l t e r = " u n i q u e M e m b e r = { 0 } "
 r e f e r r a l = " f o l l o w " / >
 < / j o n a s - l d a p r e a l m >

1.6.3 What do this ldap Import?
This function is intended to search users under the userDN subtree with the userSearchFilter
filter and then for each found user get the attribute value specified into the userSearchFilter
and also get the mail attribute value (assuming that the attribute name for email in the ldap is:
mail, otherwise change it in the bean code). No mapping attribute name for email has been yet
introduced.

If the user doesn't exists in the bonita base, it is created by calling the userCreate() API with
parameters: name, password (filled in with the name value) , mail. If it already exists, the
email is updated (the user identifier in bonita db is the column-name: name). Remember also
that all users in bonita db that no more exist in the ldap subtree (and only if the user is not
involved in workflow projects) are removed. Previous operation except the default users of
Bonita Workflow System: “admin”, “admin2”, “nobody”.

1.6.4 How you can use it?
� This function can be integrated into your administration module. See example

provided under src\main\client\hero\client\importLdap to call the bean method.

� You can also simply invoke the ldap import with the command:
ant importLdap <uid> <password>

The user with the uid and password provided to the importLdap ant task has to be previously
declared into the directory under the userDN subtree and has also to be member of the group
Admin (under the RoleDN subtree)

Note: if the ldap server acts as your authentication base while the Bonita base is your user
base, you have also to declare the user accessing the bonita admin console as member of the
Admin group (under the RoleDN subtree)

1.7 Mappers feature: automatic filling in of
the bonita groups

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 16 / 50 -

1.7.1 Introduction
Mappers feature gives the possibility to fill in automatically the bonita roles defined into
the project model when the project is instantiated.

Three filling in methods are available (3 types of mappers) depending on the way to
retrieve the users in the information system

� by getting groups/roles in an LDAP server (ldap mapper)

� by calling a java class to request a database (custum mapper)

� by getting the initiator of the project instance (properties mapper)

Like others definitions of process elements, the access to this functionality is performed
throw the bonita API (See the ProjectSessionBean API). It's also accessible within the
graphEditor application.
This function is particularly interesting for process instantiation usage of Bonita workflow
System. The fill in of the groups happens at the first instantiation of the project model (for
both the project model and the 1st instance). Then, it happens at each instance creation.

1.7.2 Mappers types

1.7.2.1 LDAP mapper:

This mapper uses your LDAP directory to retrieve users corresponding with a specific
role defined in a Bonita Workflow project. Please refer to the documentation (Bonita
LDAP configuration for JOnAS) to apply this type of mapper .

• LDAP mapper specificities:

� The location of the LDAP groups depends on the attributes: roleDN and
roleNameAttribute .

� There is no mapping between roles/groups in the LDAP and roles in bonita

database (same name for both bases).

� The attribute name: uid has been used to realize the mapping between the actor
identifier in the LDAP base and the userName in the bonita base.

� If the goup does not exit an exception is thrown.

� Users found in the groups must have been deployed before usage of the

mapper function. Otherwise an exception is thrown.

� The name of the mapper could be what you want

• Limitations of this version:

� Groups cannot be recursive. Group’s inclusions are ignored.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 17 / 50 -

� No checking that the distinguished names (dn) for the users found in the groups
are compatible with the LDAP tree containing the users defined in the JOnAS
LDAP realm configuration.

1.7.2.2 Custom mapper
It lets the process developer to request its own user’s storage base. When this type of
mapper has been added, a call to a java class is performed. The name of this mapper is
the name of the called java class (ex.: hero.mapper.CustomSeachGroup) located under
BONITA_HOME\src\resources\mappers\hero\mapper. After retrieving users these
must be added to the project instance and also added to the targeted role. The Bonita
workflow engine loads and executes these classes at runtime, so, if you would add
your custom mapper, please follow the next steps:

- Take a look at sample class above and implements your custom mapper logic
in a new java file.

- Add your .java file into this directory and then launch “ant” task from your
$BONITA_HOME directory.

- After that, you can start JOnAS application server.

1.7.2.3 Properties mapper
At now, this type of mapper fills in the role with the user name of the creator of the
instance (based on the authenticated user that initiates the instance). This mapper is very
useful for administrative workflow processes in order to assign the role specified in the
property to the user which has instantiated the process.

1.8 Performer Assignment

This feature propose to increase the possibility of Bonita by giving a mean to modify the
standard assignment rules for activities
1.8.1 Introduction

This new feature allows getting additional assignment rules than in the standard bonita
model.
In the std model (oriented cooperative workflow), all the users defined into the group
associated to the activity can see and can execute (toDo List) this one.
By adding the new functionality, we can:

� assign the activity to a user of a group by calling a java class in
charge to do the user selection into the user group (callback performer assignment)

� assign dynamically the activity to a user by using an activity
property (properties performer assignment)

When this functionality is added, the user is notified (mail notification) that the activity is
ready to be started.

The users of the groups (role in Bonita) associated to the activity can see the activity but
cannot start and terminate it.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 18 / 50 -

This functionality is accessible within the Bonita API (see ProjectSessionBean API) and
inside the Bonita graphEditor application.

Furthermore, we can assign an activity to the initiator of the instance. It needs only the
use of a properties mapper (as described above).

1.8.2 Description of these performer assignments

1.8.2.1 callback performer assignment

It lets the process developer writing a request with its own algorithm of user selection.
When this type of callback performer assignment has been added, a call to a java
class is performed.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 19 / 50 -

The name of this callback performer assignment is the name of the called java
class (ex.: hero.performerAssign.CallbackSelectActors) located under
BONITA_HOME\src\resources\performerAssigns\hero\performerAssign. As mappers,
your callbacks are loaded and executed by Bonita workflow engine. If you would add
your own callback, please follow the next steps:

- Take a look at sample class above and implements your performer assignment
logic in a new java file.

- Add your .java file into this directory and then launch “ant” task from your
$BONITA_HOME directory.

- Start JOnAS application server.

1.8.2.2 Properties performer assignment
It allows the process developer to provide at the properties performer assignment
creation the activity property that is used by the workflow engine to assign the
activity. This activity property has to be defined either into a previously sequenced
activity with the property propagation or into the targeted activity to be assign.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 20 / 50 -

2 Project interface

2.1 Principle

The Project interface provides access to functions allowing to modify the execution of a given
process.

In case of EJB Session access, the Project interface will automatically retrieve the identity of
the calling user in the J2EE security context. Hence, calling the Project interface from an
unidentified context will fail. Therefore, the interface is initiated for a given user. Only the
processes where the User are declared can be accessed

Once the Project interface has been created, it must be initiated. Initiating the Project interface
allows to specify which project is going to be managed thru the Interface.

You will find below examples of code using this interface. These are extracts of the Sample1
process proposed in the “samples” directory of Bonita. The sample1xxx classes implement
the user guide workflow example (Order Processing and Customer Service).
You can run this example by using then ant tasks “sample1-create-process-model” (Model
creation), “sample1-admin-wf” (user administration and project instantiation), “sample1-
running-session” (Process execution).

2.2 Creating the ProjectSessionBean

Think about the ProjetSessionBean as an handle to your connexion with the BONITA
workflow System. You first have to create the handle, then to associate a given project to this
handle in order to be able to modify it.

Code example :

im p o r t j a v a x .s e c u r i t y .a u th . l o g in .L o g in C o n te x t ;
im p o r t h e r o .c l ie n t . te s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e r o . i n t e r f a c e s .P ro je c tS e s s io n ;
im p o r t h e r o . i n t e r f a c e s .P ro je c tS e s s io n H o m e ;
im p o r t h e r o . i n t e r f a c e s .P ro je c tS e s s io n U t i l ;

p u b l i c c la s s M y W o rk F lo w C la s s {

 s t a t i c p u b l ic v o id m a in (S t r i n g [] a r g s) t h r o w s E x c e p t io n {
 / / U s e r A d m in a u th e n t i c a t i o n
 c h a r [] p a s s w o r d = { 't','o ','t','o '} ;
 S im p le C a l lb a c k H a n d le r h a n d l e r = n e w S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s s w o r d) ;
 L o g in C o n te x t l c = n e w L o g in C o n te x t (" T e s tC l ie n t " , h a n d le r) ;
 lc . l o g in () ;

 / / P r o j e c t S e s s io n B e a n C re a t i o n u s in g R e m o te In te r f a c e
 P ro je c tS e s s io n H o m e p r jH o m e = (P r o j e c tS e s s io n H o m e) P ro je c tS e s s io n U ti l .g e tH o m e () ;
 P ro je c tS e s s io n p r jS e s s io n = p r jH o m e .c r e a t e () ;

/ * P ro je c t S e s s io n B e a n C r e a t io n u s in g l o c a l In t e r f a c e
P r o j e c tS e s s io n L o c a lH o m e p r o j e c th =
(P ro je c tS e s s io n L o c a lH o m e)h e ro . in te r f a c e s .P r o j e c tS e s s io n U ti l .g e tL o c a lH o m e () ;
P r o j e c tS e s s io n L o c a l p ro j e c ts e s s io n = p ro je c th .c r e a t e () ;
* /

 …
}

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 21 / 50 -

2.3 Initiating the ProjectSessionBean

2.3.1 Initiating the Session Bean

Void initProject (java.lang.String projectName)

The Project interface is initialised with the given projectName.
All subsequent interface methods further called will then deal with the corresponding project.

2.3.2 Initiating with the fresh instance creation option

Void initProject (java.lang.String projectName)

Same as before, but when the corresponding projectName does not exist.
A new empty project is then created and given this name.

2.3.3 Initiating with the clone project creation option

Void initProject (java.lang.String oldProject,
java.lang.String newProject)

The Project interface is initialised after oldProject was cloned. This interface is initialised
with the given newProject project name. All subsequent interface methods will then deal with
the corresponding newProject.

2.3.4 Initiating with the instantiate project creation option

Void instantiateProject (java.lang.String projectName)

The Project interface is initialised after new project instance was created. This interface is
initialised with the new project instance name (see process names description in 1.2.3). All
subsequent interface methods will deal with the corresponding project instance.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 22 / 50 -

2.3.5 Code example

im p o r t j a v a x . s e c u r i ty .a u th . lo g in .L o g in C o n te x t ;
im p o r t h e r o .c l i e n t . t e s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n ;
im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n H o m e ;
im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n U t i l ;

p u b l i c c l a s s M y W o r k F lo w C la s s {

 s t a t i c p u b l i c v o id m a in (S t r in g [] a r g s) th r o w s E x c e p t io n {
 / / U s e r A d m in a u th e n t i c a t io n
 c h a r [] p a s s w o r d = { 't','o ','t','o '} ;
 S im p le C a l lb a c k H a n d le r h a n d le r = n e w S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s s w o r d) ;
 L o g in C o n te x t lc = n e w L o g in C o n te x t(" T e s tC l i e n t " , h a n d le r) ;
 l c . l o g in () ;

 / / C o l l a b o r a t io n P r o je c t S e s s io n B e a n C r e a t io n u s in g R e m o te In te r f a c e
 P r o je c tS e s s io n H o m e p r jH o m e = (P r o je c tS e s s io n H o m e) P r o je c tS e s s io n U t i l .g e tH o m e () ;
 P r o je c tS e s s io n p r jS e s s io n = p r jH o m e .c r e a te () ;

 / / C u s to m e r S e r v ic e p r o je c t c r e a t io n
 p r jS e s s io n . in i tP r o je c t (" C u s to m e r S e r v ic e ") ;
 … C u s to m e r S e r v ic e P r o je c t D e f in i t io n (S e e th e f o l lo w in g s e c t io n s) …

 / / C u s to m e r S e r v ic e p r o je c t c lo n in g in to N e w C u s to m e r S e r v ic e P r o je c t
 t r y {
 p r jS e s s io n . in i tP r o je c t (" C u s to m e r S e r v ic e " ,” N e w C u s to m e r S e r v ic e ”) ;
 } c a tc h (E x c e p t io n e) { S y s te m .o u t .p r in t ln (e) ; } / / M a y b e p r o je c t d o e s n o t e x i s t s

 / / C u s to m e r S e r v ic e p r o je c t In s t a n t i a t io n
 t r y {
 S t r in g in s tN a m e = p r jS e s s io n . in s t a n t ia t e P r o je c t (" C u s to m e r S e r v ic e ") ;
 } c a tc h (E x c e p t io n e) { S y s te m .o u t .p r in t ln (e) ;} / / M a y b e p r o je c t d o e s n o t e x i s t s
 …
}

2.4 Managing project

With BONITA, there is a single API to cope with projects. This API is used to control
processes, no matter which kind of process they are:

• Processes can exist on their own, without having a relationship to a process model. In
this category we find processes created from scratch, and processes cloned from parent
processes.

• Process can be process model, from which process instances can be derived. At the
moment, a process model can be executed as well, but this behaviour will be
withdrawn in a near future.

• Process instances are specific runable processes whose definition are contained in a
process model. At creation time, the specific context of this instance is taken into
account in order to specialize the instance.

2.4.1 Project attributes

A project has a name, which is given at creation time thru the Project API.

Only the name of process instances is constrained, where BONITA automatically allocates a
name in the following form : <Project Model Name>_instance<Project Instance Number>.
The <Project Instance Number> is automatically managed by BONITA.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 23 / 50 -

A project has properties, which are simple (key, value) pairs.

A project records the name of the person which created it and the creation date.

2.4.2 Getting the name of a project or an instance

java.lang.String getName();

Returns the name of the project that is being managed by the current instance of
ProjectSessionBean interface.

java.lang.String getProjectNameOfInstance(java.lang.String instanceName)

Returns the project name of the instance instanceName.

2.4.3 Getting the name of the parent project
public java.lang.String getParent()

If the current project is a subProcess, returns the name of its parent project.

2.4.4 Getting the name of a project’s creator

java.lang.String getCreator();

Returns the name of the user who has been creating the Project. The creator name is
automatically retrieved by BONITA executive when one creates a project thru the
ProjectSessionBean Interface.

2.4.5 Properties

void setProperty (java.lang.String key, java.lang.String value)

Creates a new property , assigning it a value, or override the value of an existing
property.

java.util.Collection getProperties();

Returns all the properties existing for this project. Properties are returned as
BnProjectPropertyValue

java.util.Collection getPropertiesKey()

Get properties key of the project. A property is a pair key/value representing workflow
relevant data. This methods obtains properties key of the project.

BnProjectPropertyValue getProperty(java.lang.String key)

Returns the property value of the project. A property is a pair key/value properties
associated to this project.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 24 / 50 -

void deleteProperty(java.lang.String key);
Delete a property of an existing project.

2.4.6 Project details

public BnProjectValue getDetails()

Returns project information: project attributes, nodes, edges, hooks, properties...

2.4.7 Code example

Scenario (To Be Implemented)

InitProject(P1)
GetName

 InstanciateProject(P1)
getParent
getCreator
setProperty(…)
setProperty(…)
setProperty(…)
collection getProperties : println
collection getPropertiesKet : iterator getProperty : println
deleteProperty
getProperties
getDetails

2.5 Managing activities
TBCompleted

2.5.1 Types of activities
Activity type can be either one of the following :

AND

Activity 1

Activity 2

Activity 3

Traditional
(Manual) or
Automatic

AND_JOIN_NOD
AND_JOIN_AUTOMATIC_NOD

OR

Activity 1

Activity 2

Activity 3

Traditional
(Manual) or
Automatic

OR_JOIN_NOD
OR_JOIN_AUTOMATIC_NOD

either SUB_PROCESS_NODE : this node is itself a complete process included in the current
process as a sub-process.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 25 / 50 -

Here are the values associated with the types constants :

CONSTANT VALUE
hero.interfaces.Constants.Nd.AND_JOIN_ 1
hero.interfaces.Constants.OR_JOIN_NODE 2
hero.interfaces.Constants.AND_JOIN_AUTOMATIC_NODE 3
hero.interfaces.Constants.OR_JOIN_AUTOMATIC_NODE 4
hero.interfaces.Constants.SUB_PROCESS_NODE 5

2.5.2 Activities states
See the “Activities basics “ section of this document.

The values associated with the main activities states constants are :

CONSTANT VALUE
hero.interfaces.Constants.Nd.INITIAL 0
hero.interfaces.Constants.Nd.READY 1
hero.interfaces.Constants.Nd.DEAD 2
hero.interfaces.Constants.Nd.ANTICIPABLE 3
hero.interfaces.Constants.Nd.ANTICIPATING 5
hero.interfaces.Constants.Nd.EXECUTING 6
hero.interfaces.Constants.Nd.TERMINATED 10

The following values can also be returned by the Bonita Engine :

CONSTANT EXPLANATION VALUE
EXPIRED Deadline expired 4
EXECUTED 7
INERROR 8
FINISHED 9
CHECKEDOUT 11
ANT_SUSPENDED 12
EXEC_SUSPENDED 13
BAD_TRANSITION 14

2.5.3 Creating activity
void addNode(java.lang.String name, int nodeType)

Add a node to the project. This method creates a node with the corresponding node
type and assign to it the hero.interfaces.Constants.InitialRole role.

2.5.4 Creating SubProcess activity

void addNodeSubProcess(java.lang.String name, java.lang.String projectName)

Add a subProcess node to the project. This method creates the subProject from an
existing project and creates the node associated to it. The type of created node is
hero.interfaces.Constants.Nd.SUB_PROCESS_NODE

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 26 / 50 -

2.5.5 Configuring activity
void setEditNode(java.lang.String node,java.lang.String role,
java.lang.String description, long deadline)

Set information on node changes (including role, description, deadline). This is
especially useful for graphical client application

void setNodeAnticipable(java.lang.String name)

Set the node in anticipable mode.

void setNodeAutomatic(java.lang.String name)

Set the node in automatic mode. The responsible of the activity execution is now the
engine.

void setNodeDeadline(java.lang.String name, long date)
Set the node deadline. Activity deadline is the lastest date in which the activity must
be finished.

void setNodeDescription(java.lang.String name,java.lang.String description)

Set the node description. Node description represents, explicity, execution related
information of this task.

void setNodeProperty (java.lang.String nodeName, java.lang.String key,
java.lang.String value)

Set a property of a node. A property is a pair key/value representing workflow
relevant data. With this method the property is propagated within others nodes.

void setNodeProperty(java.lang.String nodeName, java.lang.String key,
java.lang.String value, boolean propagate)

Set a property of a node. A property is a pair key/value representing workflow
relevant data. By using propagate argument we can specify if we want to propagate
this property.

void setNodeTraditional(java.lang.String name)

Set the node in traditional mode. When a node is traditional the anticipable attribute is
false. This method must be used if you want to execute this activity in a traditional
model.

void setNodeType(java.lang.String name, int type)

Set the node type. Change the current type of the node (if node is not executing).

2.5.6 iterating activities
void addIteration(java.lang.String from, java.lang.String to,
java.lang.String condition)

Add a new iteration between two nodes. This methods sets an iteration which is
stopped when the lastNode property "iterate" is false. “from” means the name of the
first node, to, the name of the last node.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 27 / 50 -

2.5.7 Getting information about nodes in the project

java.lang.Object getNodes()

Returns project nodes data as an array of StrutsNodeValue. This is especially useful
for Struts based IHM, but can be used also in any kind of application.

java.util.Collection getNodesNames()

Returns all node names of the project as a String Collection.

2.5.8 Code example

Scenario (To Be Implemented)

AddNode N1, N2, N4
AddNode N3 (subProcess)
SetNode DeadLine, Desc
 N2 : automatic
 3 properties
Iterate N1-N2
GetNodes
GetNodesNames

2.5.9 Getting information about a specific node

BnNodeValue getNode(java.lang.String projectName,java.lang.String nodeName)

Get Node Value from a specific project

java.lang.String getNodeDeadline(java.lang.String nodeName)

Returns node deadline. Activity deadline is the lastest date in which the activity must
be finished.

java.lang.String getNodeDescription(java.lang.String name)

Returns the node description. Node description represents, explicity, execution related
information of this task.

java.lang.String getNodeExecutor(java.lang.String name)

Returns the node executor. Get the name of the user which is executing the activity.

java.util.Collection getNodeProperties(java.lang.String nodeName)

Returns Node properties. Get a list of pair key/value properties associated to the node.

BnNodePropertyValue getNodeProperty(java.lang.String nodeName,
java.lang.String key)

Returns Node property value. Get a pair key/value properties associated to the node.

BnNodePropertyValue getNodeProperty(java.lang.String nodeName,
java.lang.String key)

Returns Node property value. Get a pair key/value properties associated to the node.

java.lang.String getNodeRoleName(java.lang.String nodeName)

Returns node role name. Obtains the role name of this node.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 28 / 50 -

int getNodeState(java.lang.String name)
Returns the state of the node.

int getNodeType(java.lang.String name)
Returns the type of the node.

BnNodeValue getNodeValue(java.lang.String name)
Returns the node Value. Returns node information.

boolean getNodeAnticipable(java.lang.String name)

Returns if the node is set to be executed in anticipated mode.

2.5.10 Deleting activity
void deleteNode(java.lang.String name)

Delete a node from the project. If this node is in executing, terminated or cancelled
state, the method throws an execption

void deleteNodeProperty(java.lang.String nodeName, java.lang.String key)

Delete a property of a node. Deletes the node property associated to this key

2.5.11 Code example

Scenario (To Be Implemented)

GetNodeValue, Type, …
Deleting
GetNodesNames

2.6 Managing users

2.6.1 Getting the list of all bonita registered users
java.util.Collection getAllUsers()

Return all registered users. Get user names of Bonita System

2.6.2 Getting the list of users which are part of a project

java.util.Collection getUsers();

Returns all users of the project. Users are returned as Strings.

2.6.3 Adding a user to a project

void addUser(java.lang.String username);

Add a user to this project (This user must exist at bonita database)

2.6.4 Checking whether a user is part of a project

boolean containsUser(java.lang.String username);

Test if the project contains this user

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 29 / 50 -

2.6.5 Code example

Scenario (To Be Implemented)

getUsers
addUser
containsUser

2.7 Managing roles

Role is the mean by which User can be associated to activities. A role has a name and a string
description.

Roles must be first declared in a project. Then role can be associated to Users and to
Activities.

2.7.1 Declaring a new role in the project

void addRole java.lang.String roleName, java.lang.String description);
Add a role to the project. Creates a role within this project. The role is specific of this project

2.7.2 Allocating a role to a User

Roles are allocated to users in the scope of given project. That is, a user may assume different
roles in different project. Also, in the scope of a project, an user can assume several roles.

void setUserRole (java.lang.String userName, java.lang.String roleName);

void unsetUserRole (java.lang.String userName, java.lang.String roleName);

2.7.3 Getting the list of roles that an user can assume

java.util.Collection getUserRoles (java.lang.String userName);
Returns all the roles available for this user (independently of any project) as a collection of
BnRoleLOcal objects

2.7.4 Getting the list of roles that an user can assume in the scope of a

project

java.util.Collection getRoles()
Returns all roles of the current project as a collection of BnRoleLocal objects. These roles
have been associated with the nodes included in the project.

java.util.Collection getRolesNames()
Returns the names of all the roles of the current project as a collection of String objects.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 30 / 50 -

java.util.Collection getUserRolesInProject(java.lang.String userName)
Returns the roles of this user in the current project as a collection of BnRoleValue

java.util.Collection getUserRolesInProjectNames(java.lang.String userName)
Returns the role names of the user in the current project as a String Collection.

2.7.5 Associating an activity with a role

Only a single role can take over a given activity.

void setNodeRole(java.lang.String name, java.lang.String role)

Sets the role of an activity. Changes the role of this activity

2.8 Edge (transitions between activities)

2.8.1 Adding an edge to an activity

An edge is a way to establish a dependency between two activities.

 Edges have unique name in the scope of the project. The name of the edge can be choosen by
the application, or it can be automatically generated by BONITA.

java.lang.String addEdge(java.lang.String in, java.lang.String out);

The two activities named in and out will be connected by a new eddge. The method returns
the name of the newly created edge.

java.lang.String addEdge(java.lang.String name,java.lang.String in,
java.lang.String out);

The two activities named in and out will be connected by a new edge. The newly created edge
will be named according to the name passed as input parameter.

2.8.2 Deleting an edge

Void deleteEdge(java.lang.String name);

The edge named with the parameter name will be deleted.

2.8.3 Getting connected activities from an edge

java.lang.String getEdgeInNode(java.lang.String edgeName) ;

Get back the name of the inbound node of the given edgeName.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 31 / 50 -

java.lang.String getEdgeOutNode(java.lang.String edgeName) ;

Get back the name of the outbound node of the given edgeName.

2.8.4 Setting a condition on an edge

Void setEdgeCondition(java.lang.String edge, java.lang.String condition);

The condition is passed as a string expressing a condition in a scripting language.

2.8.5 Getting the condition on an edge

java.lang.String getEdgeCondition(java.lang.String edge);

2.8.6 Getting all existing edges in a project

java.util.Collection getEdgesNames();

Returns all the existing edges in the project.

2.8.7 Getting all existing edges for an activity

java.util.Collection getNodeInEdges();

Returns all the existing edges inbound for a given node .

java.util.Collection getNodeOutEdges();

Returns all the existing edges outbound for a given node .

2.8.8 Reading an edge as a Java Object

hero.interfaces.BnEdgeValue getEdgeValue (java.lang.String name);

Get the edge value.

2.8.9 Changing the state of an Edge

void setEdgeState(hero.interfaces.BnEdgeLocal edge, int state);

Set the edge state

2.9 Hooks

Hooks are piece of code that is executed at specific point during the activity life cycle.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 32 / 50 -

Must document in a central place the different possible scripting strategies

Hooks can be coded in a scripting language, or as java library. Therefore, the hook interface is
divided in two sets (Hooks and InterHooks).
Hooks can be defined at the project level. Such hooks will be activated for every activity
contained in the project.

Hooks can also defined at the activity level, they will be activated only in the context of the
related activity.

Interactive Hooks :
Script hooks are called interactive Hooks, hence all calls related to them will contain “Inter”
in their name. Their type is hero.hook.Hook.BSINTERACTIVE

Hooks are executed on reception of one of the following events, and the appropriate method
of the hook will be executed. If the hook does not include such a method, an exception is
raised.

EVENT VALUE METHOD
hero.interfaces.Constants.Nd.BEFORESTART "beforeStart" beforeStart
hero.interfaces.Constants.Nd.AFTERSTART "afterStart" afterStart
hero.interfaces.Constants.Nd.BEFORETERMINATE "beforeTerminate"; beforeTerminate
hero.interfaces.Constants.Nd.AFTERTERMINATE "afterTerminate"; afterTerminate
hero.interfaces.Constants.Nd.ONCANCEL "onCancel" onCancel
hero.interfaces.Constants.Nd.ANTICIPATE "anticipate"; anticipate

Different hooks types actually taken in count by the Bonita engine :

HOOK TYPE VALUE
hero.interfaces.Constants.Nd.TCL 4
hero.interfaces.Constants.Nd.BEANSHELL 5
hero.interfaces.Constants.Nd.BSINTERACTIVE 6

2.9.1 Managing a hook at the project level

Hooks associated at the project level are associated to all nodes of the project.

Creating

Void addHook (java.lang.String hookName, java.lang.String eventName,
int hookType)

Add an existing hook file to the project. This hook type uses a Java or TCL file loaded
at run time. The hookName represents the class java or tcl file to be loaded by the
system at run time. These classes must be in the application server classpath to be
correctly executed. Put your hooks classes in $BONITA_HOME\src\resources\hooks
and then redeploy bonita.ear (ant task).

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 33 / 50 -

Void addInterHook (java.lang.String hookName, java.lang.String eventName,
int hookType, java.lang.String value)

The hook with name hookName will be added to a project. The hook activation will be
triggered whenever the event eventName occurs in any activity of the project.

Deleting

Void deleteHook (java.lang.String hookName)

Void deleteInterHook (java.lang.String hookName)

The hook or interHook with name hookName will be deleted from all projects nodes.

Managing

void setInterHookValue(java.lang.String hook, java.lang.String value)

Set the value of the inter hook named « hook ». The value parameter contains the new
inter hook script which will be associated to all project nodes

void setNodeInterHookValue(String node, String hook, String value)

Set the value of the inter hook named « hook » associated to the node named « node ».
The value parameter contains the new inter hook script which will be associated to all
project nodes

java.util.Collection getHooks()

Returns all the hooks of the project as a collection of ProjectHooksValue.

java.util.Collection getInterHooks()

Returns the interactive hooks of the project as a collection of ProjectInterHookValue .

String getInterHookValue(java.lang.String hook)

Returns the inter hook value script.

2.9.2 Managing a hook to an activity level

Creating

Void addNodeHook (java.lang.String nodeName, java.lang.String hookName,
java.lang.String eventName, int hookType)

Add hook to a node. Add an existing hook file to the node. This type of hook use a
Java or TCL file loaded at run time. The hookName represents the class java or tcl file
to be loaded by the system at run time. These classes must be in the application server
classpath to be correctly executed. Put your hooks classes in
$BONITA_HOME\src\resources\hooks and then redeploy bonita.ear (ant task).

Void addNodeInterHook (java.lang.String nodeName,
java.lang.String hookName, java.lang.String eventName, int hookType,
java.lang.String value)

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 34 / 50 -

The hook with name hookName will be added to the node. The hook activation will be
triggered whenever the event eventName occurs for this activity.

Deleting

Void deleteNodeHook (java.lang.String hookName)

Delete a node hook.

Void deleteNodeInterHook (java.lang.String hookName)

Delete a node interHook. The hook or the interHook with name hookName will be
deleted from the node.

Managing

java.util.Collection getNodeHooks(java.lang.String nodeName)

Returns the Node hooks of the project as a NodeHookValue collection.

java.util.Collection getNodeInterHooks(java.lang.String nodeName)

Return all the Interactive Node hooks of the project as a NodeInterHookValue
collection.

BnNodeInterHookValue getNodeInterHook(java.lang.String nodeName,
java.lang.String interHook)

Returns all the node inter hook data associated to the hook of name « interHook » at
the node « nodeName).

String getNodeInterHookValue(java.lang.String node, java.lang.String hook)

This method returns the hook script associated to the hook with name « hook » of this
node

Void hookEvent(java.lang.String nodeName, java.lang.String event)

Execute the hook of node « nodeName » associated with the precised event.

2.10 Mappers

void addRoleMapper(java.lang.String roleName, java.lang.String mapperName,
int mapperType)

 Add an existing mapper to the role « roleName ». This type of mapper use a Java file
loaded at run time.

void deleteRoleMapper(java.lang.String roleName)

 Delete a role mapper.

java.util.Collection getRoleMappers()

 Returns all the role mappers of the project as a collection of BnRoleMapperValue.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 35 / 50 -

2.10.1 Code example

.../....
 ProjectSessionHome projectSessionh=ProjectSessionUtil.getHome();
 ProjectSession pss=projectSessionh.create();

 String role1="Admintoto";
 pss.addRole(role1, "role added for activity 1");
 String role2="Admintiti";
 pss.addRole(role2, "role added for activity 2");

 // NODE 1
 pss.addNode("h1",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h1",role1);

 // NODE 2
 pss.addNode("h2",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h2",role2);

 // add MAPPERS
 pss.addRoleMapper(role1,"mapper1",Constants.Mapper.LDAP);
 pss.addRoleMapper(role2,"mapper2",Constants.Mapper.PROPERTIES);

 pss.instantiateProject(projectName);
..../....

2.11 Performer assignment

(TBD : types and property list)

2.11.1 Addition of a performer assignment to a node
void addNodePerformerAssign(java.lang.String nodeName,
java.lang.String performerAssignName,int performerAssignType,
java.lang.String propertyName)

Add an existing performerAssign to the node. This type of performerAssign use a Java
file loaded at run time.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 36 / 50 -

2.11.2 Code example

..../....
 // NODE 1
 pss.addNode("h1",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h1",role1);

 // NODE 2
 pss.addNode("h2",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h2",role2);

 // NODE 3
 pss.addNode("h3",Constants.Nd.AND_JOIN_NODE);
 pss.setNodeRole("h3",role3);

.../....

 // activity property
 pss.setNodeProperty("h3","acteurH3","gaillarr");
..../....

 // PERFORMER ASSIGN
 pss.addNodePerformerAssign("h2",
"hero.performerAssign.CallbackSelectActors" ,
Constants.Performer.CALLBACK,"");
pss.addNodePerformerAssign("h3",
"hero.performerAssign.PropertySelectActors" ,
Constants.Performer.PROPERTIES ,"acteurH3");

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 37 / 50 -

3 User Registration Interface

3.1 Principle
TBCompleted

3.2 Creating the UserRegistrationBean
TBCompleted

Code example :

im p o r t j a v a x .s e c u r i ty .a u th . lo g in .L o g in C o n te x t ;
im p o r t h e r o .c l i e n t . t e s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n ;
im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n H o m e ;
im p o r t h e r o . in t e r f a c e s .P r o je c tS e s s io n U t i l ;

p u b l i c c l a s s M y W o r k F lo w C la s s {

 s t a t i c p u b l i c v o id m a in (S t r in g [] a r g s) th r o w s E x c e p t io n {
 / / U s e r A d m in a u th e n t ic a t io n
 c h a r [] p a s s w o r d = { 't','o ','t','o '} ;
 S im p le C a l lb a c k H a n d le r h a n d le r = n e w S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s s w o r d) ;
 L o g in C o n te x t l c = n e w L o g in C o n te x t (" T e s tC l i e n t " , h a n d le r) ;
 l c . l o g in () ;

 / / U s e r R e g is t r a t io n B e a n C r e a t io n u s in g R e m o te In te r f a c e
 U s e r R e g i s t r a t io n H o m e u s e r R H o m e = (U s e r R e g i s t r a t io n H o m e) U s e r R e g i s t r a t io n U t i l .g e tH o m e () ;
 U s e r R e g i s t r a t io n u r S e s s io n = u s e r R H o m e .c r e a te () ;

 …
}

3.3 Creating Users
void userCreate(java.lang.String name, java.lang.String password,
java.lang.String email)

Creates user account. You have to call this method after "create" call (this API is an
stateles session bean).

void userCreate(java.lang.String name, java.lang.String password,
java.lang.String email, java.lang.String jabber)

Creates user account with an instant messaging address. You have to call this method
after "create" call (this API is an stateles session bean).

3.4 Creating Roles
void roleCreate(java.lang.String name, java.lang.String roleGroup)

Creates a new authorization role to the system. This kind of role is used to control the
user access to different APIs. You have to call this method after "create" call (this API
is an stateles session bean).

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 38 / 50 -

3.5 Defining Users
void setUserProperty(java.lang.String userName, java.lang.String key,
java.lang.String value)

Set a new property to the user. User properties will be used to define user preferences.
You have to call this method after "create" call (this API is an stateles session bean).

void setUserRole(java.lang.String userName, java.lang.String roleName)

Set a new authorization role to the user. You have to call this method after "create"
call (this API is an stateles session bean).

3.6 Deleting Users

void deleteUser(java.lang.String userName)

Detete a user from Bonita database. If the user is included in active projects this
methods throws an exception.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 39 / 50 -

4 User Session interface

4.1 Principle

The User interface provides access to process execution control functions. The interface is
initiated for a given user. Only the processes where the User are declared can be accessed.

In case of EJB Session access, the User interface will automatically retrieve the identity of
the calling user in the J2EE security context. Hence, calling the User interface from an
unidentified context will fail.

Much of the User interface methods are taking the Project name as parameter. This name may
be known directly from the application logic. Alternatively, the application may retrieve the
project name according to various search criteria. At the moment, the corresponding search
methods are not implemented.

The User Session Bean, is an stateful session bean that provides the user API to get
information on Todo list and started activities and to produce events on activities (start,
terminate, cancel).
This Session Bean is based on Engine Session Bean: a recursive implementation that manage
the previous execution operations and propagates the activity state changes to the activities
that are connected to this one.

The User Session Bean API provides information about user projects and activites (project
list, todo list and activity list) and also useful information about project instances or user
preferences. With this API users can performs his task/activities by using start, terminate and
cancel methods and also terminates workflow processes.

4.2 Creating the UserSessionBean
TBCompleted : User : authentified user.
Code example :

im p o r t j a v a x .s e c u r i t y .a u t h . lo g in .L o g i n C o n te x t ;
im p o r t h e ro .c l i e n t . te s t .S i m p l e C a l lb a c k H a n d l e r ;

im p o r t h e ro . i n te r f a c e s .P ro je c tS e s s i o n ;
im p o r t h e ro . i n te r f a c e s .P ro je c tS e s s i o n H o m e ;
im p o r t h e ro . i n te r f a c e s .P ro je c tS e s s i o n U t i l ;

p u b l ic c la s s M y W o rk F lo w C la s s {

 s ta t i c p u b l ic v o id m a in (S t r in g [] a rg s) t h ro w s E x c e p t io n {
 / / U s e r A d m in a u th e n t ic a t i o n
 c h a r [] p a s s w o rd = { 't ','o ','t','o '} ;
 S im p le C a l l b a c k H a n d le r h a n d l e r = n e w S im p le C a l l b a c k H a n d le r (" a d m in " ,p a s s w o rd) ;
 L o g in C o n t e x t l c = n e w L o g i n C o n t e x t (" T e s tC l i e n t " , h a n d le r) ;
 l c . lo g in () ;

 / / U s e r S e s s io n B e a n C re a t io n u s in g R e m o te In te r f a c e
 U s e r S e s s io n H o m e u s rH o m e = (U s e rS e s s i o n H o m e) U s e rS e s s i o n U t i l .g e tH o m e () ;
 U s e r S e s s io n m y S e s s io n = u s rH o m e .c r e a te () ;

 …
}

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 40 / 50 -

4.3 Setting User Information

Void setUserProperty (java.lang.String key, java.lang.String value)

Set the property whose name is key to the value value.
If the property already exists, the current value is overridden. If the properties does not
exist, it is created and its value is set to value.

void setUserMail(java.lang.String userName, java.lang.String mail)

Set the mail of this user into Bonita database.

4.4 Getting User Information

Java.lang.String getUser()

Returns the name of the User who created the Interface as a java.lang.String.

java.lang.String getUserPassword()

Returns the user password

java.lang.String getUserMail(java.lang.String userName)

Returns the mail of this user from Bonita database.

java.util.Collection getUserProperties()

Returns User properties as a BnUserPropertyValue Collection

4.5 Getting the list of projects for the User
java.util.Collection getProjectList()

Returns Workflow processes associated to this user as a Collection of
BnProjectLightValue objects.

java.util.Collection getProjectListNames()

Returns project list names for this user as a String Collection.

java.util.Collection getProjectsByProperty(java.lang.String key,
java.lang.String value)

Returns Workflow projects from a property as a BnProjectValue Collection.

java.util.Collection getProjectsByPropertyNames(java.lang.String key,
java.lang.String value)

Returns Workflow projects from a property as a String Collection.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 41 / 50 -

4.6 Getting the list of instances for the User

java.util.Collection getInstancesList()

Returns user instances list as a Collection of BnProjectLightValue objects. This
method is equivalent to getProjectList but it only returns the current instances of the
user.

java.util.Collection getInstancesListNames()

Get instances list names for this user as a String Collection. This method is equivalent
to getProjectListNames but it only returns the current instances of the user.

java.util.Collection getProjectInstances(java.lang.String projectName)

Returns Workflow instances of this project as a BnProjectValue Collection.

java.util.Collection getProjectInstancesNames(java.lang.String projectName)

Returns workflow instances names of this project as a String Collection.

java.util.Collection getInstancesByProperty(java.lang.String key,
java.lang.String value)

Returns Workflow instances from a property as a BnProjectValue Collection.

java.util.Collection getInstancesByPropertyNames(java.lang.String key,
java.lang.String value)

Returns a list of project instances from a property, as a String Collection.

4.7 Managing the project for the User

void removeProject(java.lang.String projectName)

Delete a Workflow project
Tries to terminate a project (only when all project activities are terminated)

void terminate(java.lang.String projectName)
Tries to terminate a project (only when all project activities are terminated)

4.8 Getting the list of activities for the User

java.util.Collection getActivityList(java.lang.String projectName)

Obtains all user activities from specific project (executing and anticipating state)

java.util.Collection getActivityListAllInstances()

Obtains a list of executing user activities for all instances (ready and anticipable state)
as a BnNodeValue Collection .

java.util.Collection getActivityListByProperty(java.lang.String key,
java.lang.String value)

Obtains executing user activities matching with property value (executing and
anticipating state activities) as a BnNodeValue Collection.

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 42 / 50 -

4.9 Getting Information on User activity

BnNodeValue getNode(java.lang.String projectName,java.lang.String nodeName)

Returns Node Value from a specific project .

4.10 Getting the ToDo list for the User
java.util.Collection getToDoList(java.lang.String projectName)

Obtains all user activities from specific project (ready and anticipable state) as a String
Collection.

java.util.Collection getToDoListAllInstances()

Obtains the list of todo activities of the user for all instances (ready and anticipable
state) as a BnNodeValue Collection.

java.util.Collection getToDoListByProperty(java.lang.String key,
java.lang.String value)

Obtains the list of todo activities for the user matching to property value (ready and
anticipable state activities) as a BnNodeValue Collection.

4.11 Managing activities for the User
void startActivity(java.lang.String projectName, java.lang.String nodeName)

Tries to start an activity (when activity state is ready or anticipable)

void terminateActivity(java.lang.String projectName,
java.lang.String nodeName)

Tries to terminate an activity (when activity state is executing or anticipating)

void cancelActivity(java.lang.String projectName,
java.lang.String nodeName)

Tries to cancel an activity (when activity is executing or anticipating)

4.12 Getting the list of existing properties
for the User

Java.util.Collection getUserProperties ()

Returns the properties defined for a given User. Properties are

returned as a collection of BnUserProperty .

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 43 / 50 -

5 Bonita Entities

To have an idea of which kind of data can be accessed thru the bonita classes, you will find
below the list of attributes of these classes. For further information, refer to the code in the
bonita/build/generate/hero/interfaces directory.

5.1 Diagram

BnProperty

key
value
CreationDate
...

BnHook
Name
Event
Type
CreationDate
...

BnInterHook

Name
Event
Type
Script
...

BnRole

Name
Description
CreationDate
...

BnUserProp.

Key
Value
...

BnProject

Name
Creator
State
CreationDate
...

BnNode

Name
Creator
State
CreationDate
...

BnEdge

Name
State
Condition
CreationDate
...

0..* 1 1 0..*

2 0..*

0..*

1

0..*

1

1..* 1 0..* 1

1

0..*

1

1
0..*

0..*

BnUser

Name
Password
Email
Jabber
...

1

5.2 Entities Attributes

5.2.1 BnAuthRoleValue

TYPE ATTRIBUTE MEANING
int id
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String bnRoleGroup;
boolean bnRoleGroupHasBeenSet
hero.interfaces.BnAuth pk;

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 44 / 50 -

RolePK

5.2.2 BnEdgeValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
int state;
boolean stateHasBeenSet
java.lang.String condition;
boolean conditionHasBeenSet
java.sql.Date creationDate;
boolean creationDateHasBeenSet
java.sql.Date modificationDate;
boolean modificationDateHasBeenSet
hero.interfaces.BnNode
Value

InBnNode;

boolean InBnNodeHasBeenSet
hero.interfaces.BnNode
Value

OutBnNode;

boolean OutBnNodeHasBeenSet
hero.interfaces.BnEdgeP
K

pk;

5.2.3 BnInstanceValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String creator;
boolean creatorHasBeenSet
java.lang.String parent;
boolean parentHasBeenSet
int state;
boolean stateHasBeenSet
java.util.Date creationDate;
boolean creationDateHasBeenSet
java.util.Date modificationDate;
boolean modificationDateHasBeenSet
hero.interfaces.BnProjec
tValue

javaTree;

boolean javaTreeHasBeenSet
Collection BnUsers
Collection BnRoles

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 45 / 50 -

Collection BnNodes
Collection BnProperties
hero.interfaces.BnInstan
cePK

pk;

5.2.4 BnIterationValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String fromNode;
boolean fromNodeHasBeenSet
java.lang.String toNode;
boolean toNodeHasBeenSet
java.lang.String condition;
boolean conditionHasBeenSet
hero.interfaces.BnIterati
onPK

pk;

5.2.5 BnNodeHookValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String event;
boolean eventHasBeenSet
int type;
boolean typeHasBeenSet
hero.interfaces.BnNode
HookPK

pk

5.2.6 BnNodeInterHookValue

TYPE ATTRIBUTE MEANING
int id
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String event
boolean eventHasBeenSet
int type
boolean typeHasBeenSet
java.lang.String script
boolean scriptHasBeenSet
hero.interfaces.BnNodeI
nterHookPK

pk

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 46 / 50 -

5.2.7 BnNodePerformerAssignValue

TYPE ATTRIBUTE MEANING
int id
boolean idHasBeenSet
java.lang.String name
boolean nameHasBeenSet
int type;
boolean typeHasBeenSet
java.lang.String propertyName
boolean propertyNameHasBeenSet
hero.interfaces.BnNode
PerformerAssignPK

pk

5.2.8 BnNodePropertyValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String theKey;
boolean theKeyHasBeenSet
java.lang.String theValue;
boolean theValueHasBeenSet
boolean propagate;
boolean propagateHasBeenSet
hero.interfaces.BnNode
PropertyPK

pk;

5.2.9 BnNodeValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
int type;
boolean typeHasBeenSet
int state;
boolean stateHasBeenSet
boolean anticipable;
boolean anticipableHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String description;
boolean descriptionHasBeenSet
java.lang.String activityPerformer;
boolean activityPerformerHasBeenSet
hero.entity.NodeState transition;

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 47 / 50 -

boolean transitionHasBeenSet
hero.entity.EdgeState activation;
 boolean activationHasBeenSet
java.util.Date startDate;
boolean startDateHasBeenSet
java.util.Date endDate;
boolean endDateHasBeenSet
java.util.Date deadline;
boolean deadlineHasBeenSet
java.util.Date creationDate;
boolean creationDateHasBeenSet
java.util.Date modificationDate;
boolean modificationDateHasBeenSet
hero.interfaces.BnUserL
ightValue

Creator;

boolean CreatorHasBeenSet
hero.interfaces.BnUserL
ightValue

Executor;

boolean ExecutorHasBeenSet
hero.interfaces.BnRole
Value

BnRole;

boolean BnRoleHasBeenSet
hero.interfaces.BnNode
PerformerAssignValue

BnNodePerformerAssign;

boolean BnNodePerformerAssignHas
BeenSet

hero.interfaces.BnProjec
tLightValue

BnProject;

boolean BnProjectHasBeenSet
Collection BnProperties
Collection BnHooks
Collection BnInterHooks
hero.interfaces.BnNode
PK

pk;

5.2.10 BnProjectHookValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String event;
boolean eventHasBeenSet
int type;
boolean typeHasBeenSet
hero.interfaces.BnProjec
tHookPK

pk;

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 48 / 50 -

5.2.11 BnProjectInterHookValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String event;
boolean eventHasBeenSet
int type;
boolean typeHasBeenSet
java.lang.String script;
boolean scriptHasBeenSet
hero.interfaces.BnProjec
tInterHookPK

pk;

5.2.12 BnProjectPropertyValue

TYPE ATTRIBUTE MEANING
Int id;
Boolean idHasBeenSet
java.lang.String theKey;
Boolean theKeyHasBeenSet
java.lang.String theValue;
Boolean theValueHasBeenSet
hero.interfaces.BnProjec
tPropertyPK

pk;

5.2.13 BnProjectValue

TYPE ATTRIBUTE MEANING
Int id;
boolean idHasBeenSet
int instanceNs;
boolean instanceNsHasBeenSet
java.lang.String parent;
boolean parentHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String creator;
boolean creatorHasBeenSet
int state;
boolean stateHasBeenSet
java.util.Date creationDate;
boolean creationDateHasBeenSet
java.util.Date modificationDate;

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 49 / 50 -

boolean modificationDateHasBeenSet
Collection BnUsers
Collection BnRoles
Collection BnInstances
Collection BnNodes
Collection BnEdges
Collection BnAgents
Collection BnAgentEdges
Collection BnProperties
Collection BnIterations
Collection BnHooks
Collection BnInterHooks
hero.interfaces.BnProjec
tPK

pk;

5.2.14 BnRoleMapperValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
int type;
boolean typeHasBeenSet
hero.interfaces.BnRole
MapperPK

pk;

5.2.15 BnRoleValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String description;
boolean descriptionHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
hero.interfaces.BnRole
MapperValue

BnRoleMapper;

boolean BnRoleMapperHasBeenSet
hero.interfaces.BnRoleP
K

pk;

5.2.16 BnUserPropertyValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String theKey;

Bull R&D BONITA / Application Programming Interface V2.0
25/06/04

- 50 / 50 -

boolean theKeyHasBeenSet
java.lang.String theValue;
boolean theValueHasBeenSet
hero.interfaces.BnUserP
ropertyPK

pk;

5.2.17 BnUserValue

TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
java.lang.String name;
boolean nameHasBeenSet
java.lang.String password;
boolean passwordHasBeenSet
java.lang.String email;
boolean emailHasBeenSet
java.lang.String jabber;
boolean jabberHasBeenSet
java.sql.Date creationDate;
boolean creationDateHasBeenSet
java.sql.Date modificationDate;
boolean modificationDateHasBeenSet
Collection BnProjects
Collection BnInstances
Collection BnRoles
Collection BnAuthRoles
hero.interfaces.BnUserP
K

pk;

