

BONITA Workflow Cooperative System

Application Programming Interface
(Version 3.1)

Christophe Loridan

Miguel Valdés Faura

Anne Géron

BULL R&D

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 2 / 70 -

CHANGES TRACK

REFERENCES DATE CHANGE

1.1 Document creation

2.0 30/06/04 User Registration API documentation

Integration of all API methods

2.1 16/07/04 Explanations & schema

Samples integration

2.2 11/08/04 Sub Process – Sub Process activities – roles

2.3 19/08/04 Added a paragraph about transitions in activity general description
Documented syntax of conditions in the description of the API

Project Session Access Control paragraph was updated.

2.4 27/08/04 Process terminology was updated. Processes examples were
reviewed. Projects attributes and new methods were added.

2.5 19/10/04 Added explanations about iterations in chapter 1

2.6 5/11/04 Added explanations about hooks, mappers and performers in
chapters 1 and 5.

2.7 21/01/05 New chapter User Management was included

2.8 22/03/05 Hooks types were updated. Process status types modification

2.9 11/05/2005 Global document revision. User management paragraph was
updated. Hide and Active status description was also updated.
New features such Relative Deadlines was added.

3.0 23/06/2005 Project hooks chapter was updated.

3.1 18/12/2005 Hooks at project level was reviewed. Initiators mappers chapter
was included.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 3 / 70 -

INDEX

1 Concepts...8

1.1 Terminology.. 8

1.2 Process... 8
1.2.1 Process basics.. 8
1.2.2 Life Cycle.. 8
1.2.3 Cooperative processes ... 9
1.2.4 Models & Instances... 9
1.2.5 Clone processes ..10
1.2.6 Concept of Hooks...11
1.2.7 SubProcesses ..11
1.2.8 Relationship to Users ...12

1.3 Activities ... 12
1.3.1 Activity basics..12
1.3.2 Transition between activities..14
1.3.3 Iterating activities...16
1.3.4 Concept of Hooks...18
1.3.5 Activity/hooks and transactions ...19
1.3.6 Practical steps to use hooks ..20

1.4 User ... 21
1.4.1 Relationship to processes ...21
1.4.2 Authentication scenario..22

1.5 Roles .. 22
1.5.1 J2EE Roles ...22
1.5.2 Bonita Roles ...23
1.5.3 Application Access control ..24

1.6 Mappers feature: automatic filling in of the bonita groups ... 26
1.6.1 Introduction ..26
1.6.2 LDAP, Custom and Properties Mappers ..26

1.7 Performer Assignment... 28
1.7.1 Introduction ..28
1.7.2 Description of these performer assignments ..28

1.8 Initiator Mapper .. 30
1.8.1 Introduction ..30
1.8.2 Description of these Initiators ..30

2 User Management...32
2.1.1 Bonita User Management basic configuration ...32
2.1.2 How to change the basic configuration ..32

3 User Registration Interface...34

3.1 Principle .. 34

3.2 Creating the UserRegistrationBean ... 34

3.3 Managing Users.. 35
3.3.1 Creating Users..35
3.3.2 Defining Users ...35
3.3.3 Deleting Users..35

3.4 Roles .. 35
3.4.1 Creating Roles..35

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 4 / 70 -

3.5 Code sample.. 36

4 Project interface ...37

4.1 Principle .. 37

4.2 Creating the ProjectSessionBean.. 37

4.3 Initiating the ProjectSessionBean... 38
4.3.1 Initiating the Session Bean (Cooperative projects & instances)...38
4.3.2 Initiating the Session Bean (Models) ...38
4.3.3 Initiating with the clone project creation option...38
4.3.4 Initiating with the instantiate project creation option ...38
4.3.5 Code sample ...39

4.4 Managing project ... 39
4.4.1 Project attributes...39
4.4.2 Active/Hide a workflow process ..40
4.4.3 Getting the name of a project or an instance ..40
4.4.4 Getting the name of the parent project ...40
4.4.5 Getting the name of a project’s creator ..40
4.4.6 Properties ...41
4.4.7 Project details ...41
4.4.8 Code sample ...42

4.5 Defining and Getting Informations about activities ... 43
4.5.1 Types of activities ..43
4.5.2 Activities states ..43
4.5.3 Creating activity ...44
4.5.4 Creating SubProcess activity..44
4.5.5 Configuring activity ...44
4.5.6 iterating activities ...45
4.5.7 Getting information about nodes in the project ..46
4.5.8 Getting information about a specific node ...46
4.5.9 Deleting activity ...46

4.6 Managing Edges ... 47
4.6.1 Adding an edge to an activity...47
4.6.2 Deleting an edge...47
4.6.3 Getting connected activities from an edge ...47
4.6.4 Setting a condition on an edge ...47
4.6.5 Getting the condition on an edge..48
4.6.6 Getting all existing edges in a project ..48
4.6.7 Getting all existing edges for an activity...48
4.6.8 Reading an edge as a Java Object ..48
4.6.9 Changing the state of an Edge..48

4.7 Managing Hooks .. 48
4.7.1 Hook at the project level ..49
4.7.2 Hooks associated to a specific activity...50
4.7.3 Code sample ...51

4.8 Managing users .. 52
4.8.1 Getting the list of all bonita registered users ..52
4.8.2 Getting the list of users which are part of a project..52
4.8.3 Adding a user to a project ...52
4.8.4 Checking whether a user is part of a project ...52
4.8.5 Code sample ...53

4.9 Managing roles in a Project .. 53
4.9.1 Declaring a new role in the project ..53
4.9.2 Allocating a role to a User..53
4.9.3 Getting the list of roles that an user can assume...54

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 5 / 70 -

4.9.4 Getting the list of roles that an user can assume in the scope of a project......................................54
4.9.5 Associating an activity with a role ...54
4.9.6 Code sample ...55

4.10 Mappers .. 56
4.10.1 Code sample ..56

4.11 Performer assignment ... 57
4.11.1 Addition of a performer assignment to a node ..57
4.11.2 Code sample ..57

5 User Session interface ..58

5.1 Principle .. 58

5.2 Creating the UserSessionBean .. 58

5.3 User Properties... 59
5.3.1 Setting User Properties...59
5.3.2 Getting User Information ...59

5.4 User and Projects ... 59
5.4.1 Getting the list of projects for the User ..59
5.4.2 Getting the list of instances for the User ..60
5.4.3 Managing the project for the User..60

5.5 User and Activities ... 61
5.5.1 Getting the list of activities for the User ..61
5.5.2 Getting Information on User activity ...61
5.5.3 Getting the ToDo list for the User..61
5.5.4 Managing activities for the User ..61

5.6 Code sample.. 62

6 Bonita Entities ..63

6.1 Diagram .. 63

6.2 Entities Attributes.. 64
6.2.1 BnAuthRoleValue ..64
6.2.2 BnEdgeValue ...64
6.2.3 BnInstanceValue ..64
6.2.4 BnIterationValue ..65
6.2.5 BnNodeHookValue ..65
6.2.6 BnNodeInterHookValue...66
6.2.7 BnNodePerformerAssignValue..66
6.2.8 BnNodePropertyValue ...66
6.2.9 BnNodeValue ...66
6.2.10 BnProjectHookValue...68
6.2.11 BnProjectInterHookValue ...68
6.2.12 BnProjectPropertyValue..68
6.2.13 BnProjectValue ...68
6.2.14 BnRoleMapperValue...69
6.2.15 BnRoleValue ...69
6.2.16 BnUserPropertyValue..70
6.2.17 BnUserValue ...70

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 6 / 70 -

Introduction

BONITA is a workflow system featuring a lot of innovative features like activities that can
start in anticipation, awareness infrastructure allowing users to be notified of any events
occurring during the execution in a given process , or automatic activation of user’s code
according to a defined activity life cycle. Traditional workflow features like dynamic
user/roles resolution, activity performer and sequential execution are also included in Bonita
to support both cooperative and administrative workflow processes.

BONITA is a fully conformant J2EE application, taking advantage of the power and
robustness of the J2EE platform. The BONITA API is accessible either thru EJB’s.

Processes are created using a graphical definition tool or by using the Project interface API. A
process is defined as a set of activities and an associated execution model. The enactment
engine takes care of scheduling the activities according to the defined execution model. The
User API provides full control over the execution of the process, for example allowing
starting or stopping an activity. BONITA supports also dynamic modification of an existing
process, that is the Project interface can be used against a running process.

Bonita Manager

Bonita Java Web Start

Application

Browser

YOUR APPLICATION

DB
Business Partner or

other system

Existing System

ERP System
LDAP

User Registration

Session Bean

Project Session Bean

User Session Bean

CMP Entity Beans

Bean Container
Message Driven Bean

J

A

A

S

Engine Session Bean

 Bonita API User Registration API User API Project API

Authentication &
Acces Control

Set & Query

Execute

Bonita
Hooks

Execute

OR

JMS

Topics

Listens

Instant Messaging Or

Mailer

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 7 / 70 -

• The User Registration Session bean provide the interface for :
- User creation and management
- Group creation

• The Project Session Bean provides the interface for :
- Creation of the process
- Definition of nodes and edges
- Modifications of properties

• The User Session Bean implements commands and queries related to
- Projects of a user
- Todo List
- Executing activities
- Start/terminate/Cancel commands

• The Engine Bean is a special session bean that implements the state machine and
controls Process execution. It is not part of the API.

• Each method call in the Bonita API involving a state modification of the workflow
system is registered into a JMS Topic. Depending on user preferences (defined while
user creation), the Message Driven Bean notifies the user either using Instant
Messaging services, either Traditional Mailer.

Bonita Hooks can access existing systems in the SI (Erp or whatever else), or Business
partner systems using JCA or Web services.

Both User and project APIs are available either as Session Bean, or as web services.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 8 / 70 -

1 CONCEPTS

1.1 Terminology

• A process is a set of activities. In BONITA, the term project is also used.

• An activity is an atomic unit of work. In BONITA, activities are also termed Nodes.

• A transition is a dependency expressing an order constraint between two activities. In
BONITA, transitions are also termed Edges.

• A property is a workflow unit of data, commonly known as workflow relevant data.

• A hook is a user defined logic adding automatic behaviour to activities/nodes and
workflow processes

• A mapper is a unit of work allowing dynamically roles resolution at workflow
instantiation time.

• A performer assignment is a unit of work adding additional activity assignment rules
at run time.

1.2 Process

1.2.1 Process basics

Bonita supports both cooperative and administrative workflows processes. These processes
are mapped on three Bonita types:

• Cooperative: flexible workflow process allowing definition and execution operations
just after the process is created.

• Model: workflow process which contains the workflow definition logic. These
projects can be instantiated by users.

• Instance: workflow process representing a specific execution of a workflow model.

The status of a workflow process can be controlled at definition or runtime by the workflow
process administrator/s. Two possible statuses are allowed for a workflow process:

• Active: the workflow process could be modified or executed. This is the default status
for a cooperative, model or instance process.

• Hidden: the process is not yet available. Operations like execution, cancel or
termination of cooperatives and instances projects are not allowed as well as model
instantiation. This is the status mode which allows models modifications after those
ones were instantiated.

1.2.2 Life Cycle

BONITA has a very simple process life cycle

• A process is initial once it has been created. As soon as the process is in this state, it
can be controlled using both User API & Project API. The User API allows
monitoring the execution of the process. Whenever the first activity has been started
using the User API, the process goes to started state. The execution of the process is

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 9 / 70 -

performed by the BONITA enactment engine, under control of applications thru the
use of the User API.

• A process is started as soon as the first activity has started. While being executing,
the process definition still can be modified using the Project API. When all activities
are terminated, the process stays in state started. It still can be modified, for example
new activities can be added.

• A process is terminated once it has been explicitly terminated by an application thru
the User API. In terminated state, the process definition cannot be modified any
more.

1.2.3 Cooperative processes

Bonita has always had a quite simple view of cooperative process enactment: once a process
is defined, it is enacted ! For example, just after the creation of a process with a single activity
using the Project API, you would be able to run it by using the User API and still be able to
add new activities to the process definition. This brings lot of flexibility to workflow
participants, and is particularly convenient for so-called cooperative (we also call them
ad’hoc) processes.
You would typically set up a specific process in order to perform a given job between several
colleagues very easily. To allow some level of reuse of process definition, we introduced the
concept of process clone (see 2.2.4 clone processes).

1.2.4 Models & Instances

Obviously, there are usage scenarios where the reuse of process definition is of key
importance; in these scenarios, one spends a long-time to define carefully a generic process
model that will be instantiated in the same way a lot of time. We call those processes
administrative processes (we also say process models).

A process model is a specific definition of a process that can be instantiated many times. They
are based on model-instance workflow paradigm. In this kind of workflows, the Project API
must be used to define the workflow model. When the process definition is done, the
workflow users are enabling to instantiate the previous workflow model via Project API.
Once model instance are created, workflow participants can access to the User API to obtain
their todolist, to execute assigned activities, and so on.
A process model keeps track of all its instances, that is all instances of such a process can be
retrieved thru the User API.

So, either cooperative or administrative workflows use the same component definition API
that is Project API. Depending of the type of the process with which we want to
create/initialize, this API must be initialized for.

There are also some differences between those workflow types concerning processes
execution. Cooperative workflows are ready to be executed and modified from the creation. In
the other hand, administrative workflows need to be instantiated before. The term process
model is used to talk about Bonita projects defined on the context of administrative workflow
use case.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 10 / 70 -

In future releases of BONITA , the concept of Process model will be further extended, with
the implementation of a Process Model Repository allowing import of process definition in a
variety of format.

Bonita Instantiation mechanism:

 Previous versions of Bonita workflow engine were “duplicating” in a new process
instance the whole process model (activities, properties, edges, hooks …) as a kind of new
clone of the project. This took quite a long time even for medium workflow processes, and it
was a problem for users at instantiation time.
The new versions (since 1.4) have been reviewed to improve the performances. Only the
Ready state activities (properties, roles and users if exist) are copied at the creation of the new
instance. Once activity is started, hooks are executed from the Model Hooks (they are not
copied anymore). Then, after activity termination, edges and Ready or Executable following
activities are copied as well.

Note :

- A process model which has been instantiated can still be modified, but be
aware that the modifications can bring errors in the instance execution,

- An instance can still be enriched, but be aware that the modifications can be in
conflict with the model definition that will be applied at execution time.

1.2.5 Clone processes

A process clone is a duplicate of an existing process. Once the cloning operation is
completed, the two processes will execute completely independently.

Just after the cloning operation:

• The process instance has the same set of activities than the process model, each
activity allocated to the same role than in the model. All activities are in initial state,
and have the same properties than in the model, with the associated value. All
activities have the same hooks and the same transition conditions than the ones in the
original process.

• The process properties are the same than the process one, with the same initial value.

• The users associated to the process are the same than in the first process, and has the
same associated roles.

• The process instance can be controlled without any restriction thru the User and
Project APIs.

• Iterations between activities are the same than in the process model.

Process clone is available for both cooperative and administrative workflow processes.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 11 / 70 -

1.2.6 Concept of Hooks

Hooks are user defined logic that can be triggered at some defined points of the process life
cycle. Those defined points are:

• OnInstantiate hook must be called just before the workflow instance is created. The
OnInstantiate hook is not considered to be in the same transaction than the process
instantiation action. In fact, this hook is not directly called by the workflow engine
you need to invoke the “executeProcessHook” just before the “instantiateProject”
operation.

• OnTerminate hook is called just after the end of the workflow instance termination.

This hook is not yet implemented.

1.2.7 SubProcesses

Sometimes, a business process which can exist independently can take part in another more
sophisticated process. Instead of defining again the activities, edges, properties, hooks … in
the parent process, it can be included in it as a “SubProcess” by the way of a specific kind of
node.
As execution logic is inside the subProcess itself, subProcess activities are started and
terminated automatically by the engine according to the subProcess state.

Creating a subProcess activity:
- In this case, when the SubProcess activity is added to the process, the sub
process is automatically cloned by Bonita in a new process which is given the
name of the subProcess activity in the parent process, and links are maintained
between the sub process and the parent Process.

Instantiating a Process with a SubProcess activity :
- While instantiating a Process with a subProcess activity, new instances of the
two processes are created (Parent process and Sub process). Bonita engine
assumes SubProcess node and equivalent Sub process instance to have the
same name, so it automatically give the Sub process instance name to the
subProcess activity in the parent process.

As any other activity, an SubProcess activity can be iterated as well.

Constraints :
- As in a normal process, activities, properties and hooks in the sub-process must
not have the same name than an activity existing in the whole process.

Properties propagation

The properties of the Sub Process Activity in the global Process are propagated as Process
properties in the Sub Process, as it is shown underneath:

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 12 / 70 -

Activity 1
- Act. Property P1 (Propagate True)
- Act. Property P2 (Propagate False)

SubProcess Activity SP
- Act. Property SP.P1 (Propagate = True)

- Act. Property P1

Activity 2
- Act. Property P1
- Act . Property SP.P1

Project Property : Prop

Activity A1
(own properties)

Activity A2
(own properties)

Sub Process

Project Property P1

Project Property SP.P1

Property : Project Property

Property : Activity Property wich has to be propagated

Process

1.2.8 Relationship to Users

A process has an associated set of Users. Such an user has access to the corresponding
process, meaning

• He knows about the existence of the process.

• He can take over roles that exist in the scope of the process.

• He can be notified of various events occurring in the process.

• He can control the execution of the process.

Users assuming the Admin role can modify the definition of the process. The role Admin is
specific to each process, that’s means the role Admin for the “process1” is different than the
role Admin for the “process2”.

The User on behalf of whom the project has been created is automatically assigned the Admin
role, he is then responsible for the creation of other users in the process, and to allocation of
role to those users (including the Admin role that can be allocated to several users).

1.3 Activities

1.3.1 Activity basics

The activity is the basic unit of work within a process.
Execution of an activity can either be automatic, or manual :

• Automatic : in this case the BONITA enactment engine will start it as soon as the
applicable transitions from preceding activities are successfully evaluated.

• Manual : the BONITA enactment engine will not start a manual activity until some
application has explicitly started it thru the User API.

The life cycle of an activity is then as follows :

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 13 / 70 -

Only for activities that can be anticipated

Ready Executing Terminated

Dead Initial

Anticipating

Anticipable

Parents completed &

Transitions Conditions OK

Start

Cancel

Terminate Activity created

without parents

Activity

connected to a

parent Parents executing

or anticipating

Parents completed &

Transitions Conditions OK

Start

Cancel or

Transitions Conditions NOK

• Ready : This is the state of an activity ready to be started. There are two possible
situations when this occurs. In the first one, an activity has no parent activity (so is the
first activity of the workflow process). In the second one, a normal activity has parent
activities that have all terminated successfully, and whose transition condition to the
activity has been successfully evaluated.

• Initial : This the state of an activity waiting for some processing to complete before
being ready to run. In case of normal activities, at least one of the parent activities is
still executing. In case of activity that can be anticipated, at least one of the parent
activities has not started.

• Anticipable: This is the state of an activity that can be started, without waiting for its
parent’s activity to complete. All the parents’ activities must be started however.

• Anticipating: A previously anticipable activity that has been started. Automatic
activities are automatically transitioned from anticipable to anticipating, manual
activities must be explicitly started. An anticipating activity cannot be terminated until
all its parent activity has themselves terminated, and the transition conditions have
been successfully evaluated.

• Executing: An activity being executed.

• dead: An activity that has been cancelled. All the depending activities will be
automatically cancelled. Cancellation occurs in two cases: explicit cancellation, or
unsuccessful evaluation of one of the inwards transition condition.

• Terminated: An activity that has been successfully terminated.

For automatic activities, BONITA will automatically

• (Non anticipable activities) Transition the state from ready to executing ,

• (Anticipable activities) Transition the state from anticipable to anticipating ,

• (Anticipable activities) Transition the state from anticipating to executing whenever all
the parents complete

• Launch the executing hook

• Terminate the activity whenever the executing hook has complete

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 14 / 70 -

In case of activities involved in a sub process, the life cycle is as described below :

Father Process Act 1

Act 2 SupP_Act

State : Initial or Ready

Sub Process

SubAct 1

SubAct 2
State : Initial

State : Initial

Father Process Act 1

Act 2 SupP_Act

State : Executing

Sub Process

SubAct 1

SubAct 2 State : Ready

State : Initial

Any activity is associated with a role. All the users being allocated that role in the scope of
the process have the possibility to take over the activity.

Any activity is enclosed in a Transaction, and every call to a method of the Bonita API
which change the state of an activity is considered as part of a transaction (that means every
method but those beginning with “getxxx” which only retrieve information).

1.3.2 Transition between activities

Most of the usual transition patterns can be achieved with BONITA. There is no special node
to achieve these patterns; rather any activity can act as a routing node.

The transition pattern will be determined according to the type of the activity, which can be
one of AND-JOIN (also known as "synchronize"), or OR-JOIN (also known as
"asynchronous join").

The transition pattern will also be determined from and the number of outgoing edges from an
activity; that is the SPLIT construct, (which allows to have several activities executing in
parallel) is not a specific type of activities; if there are several outgoing nodes from a given
activity, then it is a SPLIT construct.

The most usual patterns are summed up below, where the activity controlling the pattern is
figured in blue, with the type of the activity shown beside.

SplitAct

P1Act P2Act

P1Act P1ActP2Act P2Act

SyncAct AsJoinActAndJoin OrJoin

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

- 15 / 70 -

The SplitAct activity
allows to start two parallel
activities. This is achieved
by having simply two
outgoing edges, one to
P1Act activity, and one to
P2Act Activity.

The SyncAct activity is of
type AND-JOIN. It will
be executed only where
both P1Act and P2Act are
in state terminated. If one
of those activities is
cancelled, then SyncAct
will be cancelled.

The AsJoinAct is of type
OR-JOIN. It will be
executed whenever either
P1Act or P2Act are
terminated. If both of
these activities are
cancelled, then AsJoinAct
will be cancelled as well.

The transition patterns can be refined by defining conditions on edges between activities. A
condition operates on the value of a property of the activities, and is expressed in Java. Any
string that can be the operand of an if statement is valid. Assuming that the property Prop is
defined for a given activity, any of the following constructs is a valid condition:

Prop.equals (“SomeString”)
(Prop.indexOf (“SomePart”) == 2)
(Prop.lenght() == 9)
orderType.equals("PO") && newInteger(Qte).intValue>100

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 16 / 70 -

1.3.3 Iterating activities

Bonita supports arbitrary cycles within a process. For this purpose, one attaches one iteration
to the last activity of the cycle. This iteration bears the name of the first activity of the cycle,
and the loop condition: while the condition evaluates to true, the Bonita execution engine will
loop to the first activity while executing the termination algorithm for the last activity.

Therefore, here is how the simplest loop ever looks like :

The condition is related to the value of
the property someProp. This property is
bound to the activity second, either
directly (it is an activity property), or
because it has been defined at the level
of the process (it is project property)

The following example is a bit more complex :

Note that all the execution paths
allowing to go from activity first to
activity second will be included in the
cycle, just like in the example beside,
where intermediate1 and intermediate2
will be iterated several times.

first

second
Iteration specification:

From: second to: first

While : someProp.equals("goon")

firstfirst

secondsecond
Iteration specification:

From: second to: first

While : someProp.equals("goon")

first

Intermediate1 Intermediate2

second

firstfirst

Intermediate1 Intermediate2

second

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 17 / 70 -

It is possible to have several exit points from an iteration, like in the example below:

Assuming that an iteration has been
set up between second and first, just
like in the examples above:

When the iteration is entered, the
outgoing transitions from second to
oneExitPoint and from Intermediate2
to anOtherExitPoint are both frozen,
meaning they are not evaluated during
the course of the iteration.

When the iteration condition set up on
second evaluates to false, the iteration
terminates, and all outgoing
transitions are reevaluated. If the
corresponding conditions are valid,
then both oneExitPoint and
anOtherExitPoint activities will be
started.

It is possible to have several entry points into an iteration, like in the example below:

Assuming that an iteration has been
declared between second and first just
like in the example below:

Because second is an AND activity, it
starts only when anotherEntryPoint has
terminated. This is true only for the
first occurrence of second : for the
following iterations, the incoming
transitions from anotherEntryPoint will
be ignored.

first

Intermediate1 Intermediate2

second

oneExitPoint anOtherExitPoint

firstfirst

Intermediate1 Intermediate2

second

oneExitPoint anOtherExitPoint

firstfirst

Second

(AND activity)

anotherEntryPoint

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 18 / 70 -

1.3.4 Concept of Hooks

Hooks are user defined logic that can be triggered at some defined points in the life of the
activity. Those defined points are :

• Before Start hook is called just before the activity starts. The Before Start hook is not
considered to be in the same transaction than the activity. The Before Start hook is not
triggered for automatic activities.

• After Start hook is called just after the activity has started. It is considered to be in
the same transaction than the activity. The After Start hook is not triggered for
automatic activities that cannot be anticipated.

• Cancel hook is called before cancelling an activity and it’s considered to be in the
same transaction than the activity.

• Before Terminate hook is called just before the activity terminates. The Before
Terminate hook is considered to be in the same transaction than the activity.

• After Terminate hook is called just after the activity has terminated. It is not
considered to be in the same transaction than the activity.

• Anticipating hook is called when an automatic activity is started, only if the activity
is anticipable. It is considered to be in the same transaction than the activity.

• OnReady hook is called when an activity becomes ready, so it would be very useful
to notify some kind of information to the user responsible to execute it. It is not
considered to be in the same transaction than the activity.

• OnDeadline hook is called when the activity deadline expires. It is not considered to
be in the same transaction than the activity.

Fault management

If an exception occurs during the execution of a hook, it will be propagated to the application
having triggered the execution of the hook.

Consider the following simple scenario:

• an application calls the terminate Activity statement on “Activity1”; this triggers the
execution of a before Terminate hook which raises an exception; the exception will
be caught by the application.

Things may be a little bit trickier if you use automatic activities :

• Imagine that the terminate Activity statement on “Activity 1” completes normally, and
that “Activity 1” has an outgoing edge towards an automatic activity “Activity 2”.

• “Activity 2” will be started and terminated automatically in the context of the first call
related to “Activity 1”.

• Therefore if “Activity 2” has a Before Terminate Activity hook that raises an
exception, it will interrupt the call related to “Activity 1”.

• That’s means, “Activity1” does not terminate (the activity stay at executing state) and
the system throws an exception due to “Activity2” execution error.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 19 / 70 -

Examples above show you two error scenarios related to transactional hooks execution. You

should be aware that Hooks can be executed in a transactional or in a non-transactional

context, depending on their types (before start, after start, …)

Transactional hooks are executed in the same transactional context than the activity in which
they are executed. Available transactional hooks in Bonita are: After Start, Before Terminate,
Anticipate and On Cancel hooks (see also activities and transaction below)..

• Any changes performed on a transactional resource will be included in this existing
transactional context.

• Any exception raised by the Hook will abort the existing transaction, so the activity
will be re-executed later on. Furthermore, all operations executed by the hook before
the exception was raised will be roll-backed.

Bonita also brings you the possibility to create hooks which can be executed without a
transactional context. In this case, Before Start and After Terminate hooks are executed
outside the activity transactional context.

• We extremely recommend to do not use these types of hooks to access either

Bonita APIs or other transactional APIs.

• If one of these hooks fails, during its execution the system will throw an

exception but the activity starts/terminates without roll-backing any operation.

Consider the last sample scenario described above and change Before Terminate hook by
After Terminate hook. Let’s over the execution:

• Imagine that the terminate Activity statement on “Activity 1” completes normally,
and that “Activity 1” has an outgoing edge towards an automatic activity “Activity
2”.

• “Activity 2” will be started and terminated automatically in the context of the first
call related to “Activity 1”.

• Therefore if “Activity 2” has an After Terminate Activity hook that raises an
exception, the hook does not interrupt the call related to “Activity 1”.

• That’s means, “Activity1” terminates without problems, but the system throws an
exception due to “Activity2” execution error.

1.3.5 Activity/hooks and transactions

Any change of state (that is startActivity, terminateActivity, cancelActivity statements)
performed against an activity is part of a transaction.

Such a transaction will typically involve more than one activity: for example, a terminate
Activity statement performed on a father activity will trigger a change of state in all daughter
activities. BONITA therefore keeps transactional consistency across activities.

BONITA will abort the transaction in two cases:

• A failure at system level (e.g. impossibility to access the BONITA database)

• An exception not catched by a transactional Hook.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 20 / 70 -

When Hook are executed in a transactional context :

• Any changes performed on a transactional resource will be included in this existing
transactional context.

• Any exception raised by the Hook will abort the existing transaction.

1.3.6 Practical steps to use hooks

Hooks loading.

Hooks code can be stored in the Bonita database as beanshell programs. We call this kind of
hook Interactive Hooks, or "InterHook" To use hooks in this fashion, you should just store
programs in the Bonita database, either thru the graphical tool grapheditor (just right click on
an activity, select add Hook, and use the editor to enter beanshell code), or thru the project
API (see addInterHook, setInterHookValue, setNodeInterHookValue entry points).At
execution time, the Bonita executive will take care of reading the code from the Bonita
database, so you don’t need to care about code loading.

Hooks code can also be stored on the file system as standard java classes. In that case, you
need to load the code that you have written into the application server. The way to do this is
as follows:

• Create your source .java file, say MyHook.java. It must be within the package
hero.hook.

• Copy your java source file in the directory
$BONITA_HOME/src/resources/hooks/hero/hook

• Goto $BONITA_HOME directory and type : ant deployHook -DhookClass=<name of you

java source file>. In the example below, that's : ant deployHook –DhookClass=MyHook

Hooks Interface

All hooks must implement the hook interface. This interface is quite simple, with a single
method having two parameters: an object EngineBean which is a session bean allowing to
access the Bonita executive, and a BnNodeLocal object, which is a local interface to the entity
bean representing the activity whose execution has triggered the execution of the Hook.

• We do not recommend making direct use of the EngineBean object.

• The BnNodeLocal object can be used to retrieve information about the currently
executing activity.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 21 / 70 -

1.4 User

BONITA make the distinction between Users and Participants :

- Users are people who will make use of the workflow system (whatever process
they will be part of).

- Participants are all the users that are allowed to play some role in a given
process.

First, the user has to be registered in Bonita System, for authentication need (using Bonita
User Registration API). Then, he has to be declared as participant in each project he is
involved in (using Bonita Project API). He is then able to take part in the process.

Users are managed in BONITA specific base (or thru a LDAP repository as well). This base
allows to store properties (also called preferences) for a given user. Properties are (key, value)
pairs where both key and values are String variables. The application can set and retrieve
properties using the User interface. BONITA makes use of specific user properties in order to
store the User preferences.

User Registration API

User Session API Getting Information about user

Properties

Project API

Declaring user as participant

(Mandatory)

Name
Mail
Passwd

(Optional)

Jabber
(User Specific)

Prop 1
Prop 2
…

USER PROFILE
User Registration

 Properties Creation &Modification

Process

participate

1.4.1 Relationship to processes

So, users have to be explicitly associated to processes in order to participate and to have
visibility of events occurring in those processes.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 22 / 70 -

Two scenarios allow to associate a User with a process (that is make a User a Participant of
this process)

• Whenever a process is created, it is created on behalf of the User that initiated the
Project Interface. This user is automatically associated to the newly created process,
and can from now on assume the Admin role in the scope of the process.

• The users assuming the admin role for a given process has the right to associate new
users to the process, and to allocate any role to them.

1.4.2 Authentication scenario

BONITA performs the User Authentication using either its specific database (mySql,
Postgres, …) or a Ldap repository.. Here is an example of code running the authentication of
the admin user. It uses the “TestClient” login context implemented in Bonita.
All other users have to be authenticated the same way.

Code sample:

i m p o r t j a v a x . s e c u r i t y . a u t h . l o g i n . L o g i n C o n t e x t ;
i m p o r t h e r o . c l i e n t . t e s t . S i m p l e C a l l b a c k H a n d l e r ;

…

p u b l i c c l a s s M y W o r k F l o w C l a s s {

 s t a t i c p u b l i c v o i d m a i n (S t r i n g [] a r g s) t h r o w s E x c e p t i o n {
 / / U s e r A d m i n a u t h e n t i c a t i o n
 c h a r [] p a s s w o r d = { ' t ' , 'o ' , ' t ' , 'o '} ;
 S i m p l e C a l l b a c k H a n d l e r h a n d l e r = n e w S i m p l e C a l l b a c k H a n d l e r (" a d m i n " , p a s s w o r d) ;
 L o g i n C o n t e x t l c = n e w L o g i n C o n t e x t (" T e s t C l i e n t " , h a n d l e r) ;
 l c . l o g i n () ;

 …
}

1.5 Roles

1.5.1 J2EE Roles

The User Registration Interface, which allows to create users in Bonita database, is accessible
without role restriction, that means everybody can call its methods, with no need to be
authenticated.

Other Bonita Java Beans deal with the following J2EE roles: “Admin” and “users”. After
authentication, only users having these J2EE roles will be able to access the Project and User
Session Interface.

While being created with the User Registration Interface, a Bonita user is automatically
associated first the “Admin” J2EE role. Everybody can then access the User Registration
interface and create Bonita users.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 23 / 70 -

Once created and after J2EE authentication, each Bonita user can access the Project Interface
and create a new process, or clone or instantiate an existing process.

This J2EE security policy can be modified to enforce access control to Bonita Java beans
methods, but in this case, be aware that Bonita beans source code has to be adapted to your
own policy (especially if you modify role names). If you take this option you must have some
headaches in order to migrate to the new Bonita versions.

In fact, we strongly recommend to let Bonita way of running as it stands, and to implement
any user access restriction to Project or User Interface methods at an application level. See the
Application Access control paragraph below for more details.

1.5.2 Bonita Roles

BONITA roles are related to activities access in processes. Each Process has its specific role
management. This allows to have different semantics associated to the same role name in the
scope of two different processes.

Activities are associated to roles, that is each activity can be taken over only by a user
assuming a given role. There is a single role associated to each activity.
Users participate to a project, and in the scope of this project, a user can assume one or
several roles.

Process 2

Role 1

Role 2

Role 3

User 1

User 2

User 3

User 4

Process 1

Participate to this Project with this Role

User2 and User1 have to play Process1 alternatively; User1 can play every process2 activities
due to its accreditation in the two roles involved in it.

Note:
Despite he has no role to play in any process, Bonita user3 could be able to clone, instantiate
any of it but he don’t able to modify it. He just has to know the name of a process to be able
to call the Project interface methods to do this.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 24 / 70 -

However:
- No Project or User session Interface methods will give him the name of an
existing process, he is not involved in it,

- After instantiation, he won’t be able to play any activity in it, because of the
standard Bonita role access control.

Bonita Default roles :
Bonita handles two pre-existing roles : “admin” and “InitialRole”. While created, an activity
is automatically associated the “InitialRole”. Then you have to modify it to suit your
application functional requirements.
However, this InitialRole can be let for the first activity of the Workflow Process. This role
can be then granted to one of the participant of the process, in charge of starting the
workflow, independently of the other functional roles he can have in the process.

Additionally, this role could also be let for the automatic activities which do not need to be
taken by users.

1.5.3 Application Access control

As mentioned above, standard Bonita access control is really open and allows you to adapt it
to your organization needs.

The Bonita access control mechanism put in place a basic authentication scenario based on
the workflow projects roles:

- User who has created the project becomes the admin of the project.
- Only this user can add other participants/users to this project.
- Only admin users can modify the project (set, add and delete entities).
- Users take part of the project are authorized to obtain some project information
(get entities data).

- Project hooks and mappers could contain confidential information, so get data
methods can only be used by admin users.

- Participants of the project can set/update properties of activities in which they
are the corresponding role.

The Bonita Graph Editor application just follows these constraints: only the creator of a
process and the users he has given the Bonita “admin” role can modify it. Even if he has a
role to play in this process, another user can’t add, delete or modify any node in it but he are
able to visualize the evolution of it.
For example, a typical workflow application will distinguish three categories of users:

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 25 / 70 -

Conceptors Operator (s)

Users
(different Bonita groups for

each category of users)

Role :

- To create or modify
process models

- To test the models

Role :

- To manage users
- To instantiate model according its

own site requirement
- To do user/group association

Role :

- To play process they are involved

in

The application interface (graphical interface most of the time) will have to implement a kind
of façade to restrain the users actions.

Applicative restrictions can concern stronger access control than Bonita does. But of course,
you can’t relax others Bonita standard access control based on the analysis of the points
mentioned above:

- In this project, this node is associated to this role
- In this project, these users are participant
- In this project, this user can assume these roles
� Can this user access this node ?

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 26 / 70 -

1.6 Mappers feature: automatic filling in of

the bonita groups

1.6.1 Introduction

Mappers feature gives the possibility to fill in automatically the bonita roles defined into
the project model when the project is instantiated.

Three filling in methods are available (3 types of mappers) depending on the way to
retrieve the users in the information system

• by getting groups/roles in an LDAP server (ldap mapper)

• by calling a java class to request a database (custum mapper)

• by getting the initiator of the project instance (properties mapper)

Like others definitions of process elements, the access to this functionality is performed
throw the bonita API (See the ProjectSessionBean API). It's also accessible within the
graphEditor application.
This function is particularly interesting for process instantiation usage of Bonita workflow
System. The fill in of the groups happens at the first instantiation of the project model (for
both the project model and the 1st instance). Then, it happens at each instance creation.

1.6.2 LDAP, Custom and Properties Mappers

LDAP mapper:

This mapper uses your LDAP directory to retrieve users corresponding with a specific
role defined in a Bonita Workflow project. Please refer to the documentation (Bonita
LDAP configuration for JOnAS) to apply this type of mapper .

• LDAP mapper specificities:

� The location of the LDAP groups depends on the attributes: roleDN and
roleNameAttribute .

� There is no mapping between roles/groups in the LDAP and roles in bonita
database (same name for both bases).

� The attribute name: uid has been used to realize the mapping between the actor
identifier in the LDAP base and the userName in the bonita base.

� If the goup does not exit an exception is thrown.

� Users found in the groups must have been deployed before usage of the
mapper function. Otherwise an exception is thrown.

� The name of the mapper could be what you want

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 27 / 70 -

• Limitations of this version:

� Groups cannot be recursive. Group’s inclusions are ignored.

� No checking that the distinguished names (dn) for the users found in the groups
are compatible with the LDAP tree containing the users defined in the JOnAS
LDAP realm configuration.

Custom mapper

It lets the process developer to request its own user’s storage base. When this type of
mapper has been added, a call to a java class is performed. The name of this mapper is
the name of the called java class (ex.: hero.mapper.CustomSeachGroup) located under
BONITA_HOME\src\resources\mappers\hero\mapper. After retrieving users these
must be added to the project instance and also added to the targeted role. The Bonita
workflow engine loads and executes these classes at runtime, so, if you would add
your custom mapper, please follow the next steps:

- Take a look at sample class above and implements your custom mapper logic
in a new java file.

- Create your source .java file, say MyMapper.java. It must be within the
package hero.mapper.

- Copy your java source file in the directory
$BONITA_HOME/src/resources/mappers/hero/mapper

- Goto $BONITA_HOME directory and type : ant deployMapper -

DmapperClass=<name of you java source file>. In the example below, that's : ant

deploMapper –DmapperClass=MyMapper

Properties mapper

At now, this type of mapper fills in the role with the user name of the creator of the
instance (based on the authenticated user that initiates the instance). This mapper is very
useful for administrative workflow processes in order to assign the role specified in the
property to the user which has instantiated the process.

Example of Mapper code are available under $BONITA_HOME/src/resources/mappers/hero/mapper.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 28 / 70 -

1.7 Performer Assignment

This feature propose to increase the possibility of Bonita by giving a mean to modify the
standard assignment rules for activities

1.7.1 Introduction

This new feature allows getting additional assignment rules than in the standard bonita model.
In the std model (oriented cooperative workflow), all the users defined into the group
associated to the activity can see and can execute (toDo List) this one.
By adding the new functionality, we can:

• assign the activity to a user of a group by calling a java class in charge to do the
user selection into the user group (callback performer assignment)

• assign dynamically the activity to a user by using an activity property (properties
performer assignment)

When this functionality is added, the user is notified (mail notification) that the activity is
ready to be started.
The users of the groups (role in Bonita) associated to the activity can see the activity but
cannot start and terminate it.

This functionality is accessible within the Bonita API (see ProjectSessionBean API) and
inside the Bonita graphEditor application.
Furthermore, we can assign an activity to the initiator of the instance. It needs only the use of
a properties mapper (as described above).

1.7.2 Description of these performer assignments

Callback performer assignment

It lets the process developer writing a request with its own algorithm of user selection.
When this type of callback performer assignment has been added, a call to a java
class is performed.

The name of this callback performer assignment is the name of the called java

class (ex.: hero.performerAssign.CallbackSelectActors) located under
BONITA_HOME\src\resources\performerAssigns\hero\performerAssign. As mappers,
your callbacks are loaded and executed by Bonita workflow engine. If you would add
your own callback, please follow the next steps:

o Take a look at sample class above and implements your performer
assignment logic in a new java file.

o Create your source .java file, say MyPerformer.java. It must be within
the package hero.performer.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 29 / 70 -

o Copy your java source file in the directory
$BONITA_HOME/src/resources/performers/hero/performer

o Goto $BONITA_HOME directory and type : ant deployPerformer -

DperformerClass=<name of you java source file>. In the example below,
that's : ant deploPerformer –DperformerClass=MyPerformer

Properties performer assignment

It allows the process developer to provide at the properties performer assignment
creation the activity property that is used by the workflow engine to assign the
activity. This activity property has to be defined either into a previously sequenced
activity with the property propagation or into the targeted activity to be assign.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 30 / 70 -

1.8 Initiator Mapper

This feature proposes to add a restriction to the workflow models in Bonita.

1.8.1 Introduction

This new feature adds an additional security constraint to the workflow instantiation
operation.
In fact by means of Initiators we are able to define the users which will be allowed to
instantiate a particular workflow models (all users by default).

By adding the new functionality, we can:

• reach your LDAP directory to dynamically resolve the list of users allowed to
instantiate a workflow process depending of your LDAP logic organization by using
the default LDAP Initiator

• resolve dynamically the list of users allowed to instantiate the workflow model
depending of your own logic by using an Custom Initiator

This functionality is accessible within the Bonita API (see ProjectSessionBean API). The
resolution of this entity will be done at getModels execution time.

1.8.2 Description of these Initiators

Custom Initiator

It lets the process developer writing a request with its own algorithm of user selection.
When this type of custom initiator mapper has been added, a call to a java class is
performed.

The name of this Custom Initiators is the name of the called java class (ex.:
hero.initiatorMapper.CustomGroupMembers.java) located under
BONITA_HOME\src\resources\iniitatorMappers\hero\initiatorMapper. As mappers
and performer assignments, your custom initiator are loaded and executed by Bonita
workflow engine. If you would add your own custom initiator, please follow the next
steps:

o Take a look at sample class above and implements your initiator logic
in a new java file.

o Create your source .java file, say MyInitiator.java. It must be within the
package hero.initiatorMapper.

o Copy your java source file in the directory $BONITA_HOME/
src\resources\iniitatorMappers\hero\initiatorMapper

o Goto $BONITA_HOME directory and type : ant deployInitiator -

DinitiatorClass=<name of you java source file>. In the example below,
that's : ant deployInitiatorMapper –DinitiatorMapperClass=MyInitiator

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 31 / 70 -

LDAP Initiator:

This Initiator uses your LDAP directory to retrieve users corresponding with a specific
role defined in a Bonita Workflow project. Please refer to the documentation (Bonita
LDAP configuration for JOnAS) to apply this type of initiator .

• LDAP initiator specificities:

� The location of the LDAP groups depends on the attributes: roleDN and
roleNameAttribute .

� There is no mapping between roles/groups in the LDAP and roles in bonita
database (same name for both bases).

� The attribute name: uid has been used to realize the mapping between the actor
identifier in the LDAP base and the userName in the bonita base.

� If the goup does not exit an exception is thrown.

� Users found in the groups must have been deployed before usage of the
mapper function. Otherwise an exception is thrown.

� The name of the initiator could be what you want

• Limitations of this version:

� Groups cannot be recursive. Group’s inclusions are ignored.

� No checking that the distinguished names (dn) for the users found in the groups
are compatible with the LDAP tree containing the users defined in the JOnAS
LDAP realm configuration.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 32 / 70 -

2 USER MANAGEMENT

2.1.1 Bonita User Management basic configuration

After Bonita installation and configuration, user specific data will be stored in the Bonita
database you choose during the configuration phase. That is, basically, some tables created in
the Bonita database allowing security control and user’s management as it is shown below.

Bonita User Management

J2EE Authentication

Realm : dsrlm_1
DSName : bonita
DSUrl : bonita
Mapper : hsql (default)

 User, with the following J2EE roles:

- Admin (for Bonita Authentication)

Bonita Process roles
User Specific Profile

Bonita
Datasource

This basic configuration can be changed according to your preferences, for example to use
your existing user database or your enterprise Ldap Directory.

2.1.2 How to change the basic configuration

User Management may move to the following schema, to make your application fully
integrate your enterprise Information System. Bonita will then take advantage of User
Management defined at an upper level than the only need of your workflow application.

Otengine
Datasource

 Datasource
Realm

Bonita User Management

J2EE Authentication

 User, with the following J2EE roles:
- Admin (for Bonita Authentication)

Bonita Process roles

User Specific Profile

Bonita
Datasource

Ldap Realm

OR

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 33 / 70 -

2.1.2.1 J2EE Authentication

Bonita uses the security realm defined at the global context for Jonas (jonas-realm.xml file in
$JONAS_BASE/conf directory). To change the basic configuration you will then have to:

In case of use of another Datasource Security Realm:
- Modify the existing datasource (called dsrlm_1) by your own user and roles queries.

In case of use of an Ldap Security Realm

- Uncomment the <jonas-ldaprealm> sample file and configured it. Take a look at
http://jonas.objectweb.org/current/doc/Config.html#Config-Security (look for
Configure LDAP resource in the jonas-realm.xml file)

2.1.2.2 Bonita User Management

By default, Bonita uses hero.user.DefaultUserBase user’s implementation class to manage
users. To add your own user’s management class you will have to:

- Implements the hero.user.UserBase interface providing users information required to
deal with your own user’s management system (database, LDAP directory, User
Interface…). This class must be under the hero.user package.

- Copy your java source file into $BONITA_HOME/src/resources/users/hero/user
directory.

- Goto $BONITA_HOME/src directory and type: ant deployUserBase -DhookClass=<name

of you java source file>. For instance: ant deployUser –DuserClass=MyUserClass

- Update the value of the user.base attribute with your class name implementation
($BONITA_HOME/.ant.properties file).

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 34 / 70 -

3 USER REGISTRATION INTERFACE

3.1 Principle
The User Registration interface provides access to J2EE users and roles definition.

In case of EJB Session access, the User Registration interface will automatically retrieve the
identity of the calling user in the J2EE security context. Hence, calling the User Registration
interface from an unidentified context will fail.

Then, without modifying the Bonita sources, only users with “Admin” or “users” J2EE roles
will be able to access Project and User Session Interfaces.

* Important Note: UserRegistration API should only be used in the case of your User

Management configuration is the Bonita default configuration !! If you are using your

own User Management implementation just ignore this API.

3.2 Creating the UserRegistrationBean

The UserRegistrationBean can be seen as a handle to add new user or role in the J2EE
Application Server security context. You first have to create the handle, and the call the
UserRegistration interface methods.
This API is a stateless session bean.

Code sample :

im p o r t j a v a x . s e c u r i ty .a u th . lo g in .L o g in C o n te x t ;
im p o r t h e ro .c l i e n t . t e s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e ro . in t e r f a c e s .P ro je c tS e s s io n ;
im p o r t h e ro . in t e r f a c e s .P ro je c tS e s s io n H o m e ;
im p o r t h e ro . in t e r f a c e s .P ro je c tS e s s io n U t i l ;

p u b l i c c l a s s M yW o rk F lo w C la s s {

 s t a t i c p u b l i c v o id m a in (S t r in g [] a r g s) th r o w s E x c e p t io n {
 / / U s e r A dm in a u th e n t i c a t io n
 c h a r [] p a s sw o rd = { 't ', 'o ', 't ', 'o '} ;
 S im p le C a l lb a c k H a n d le r h a n d le r = n e w S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s sw o rd) ;
 L o g in C o n te x t l c = n e w L o g in C o n te x t (" T e s tC l ie n t " , h a n d le r) ;
 l c . lo g in () ;

 / / U s e r R e g i s t r a t io n B e a n C re a t io n u s in g R em o te In te r f a c e
 U s e rR e g i s t r a t io n H om e u s e rR H o m e = (U s e rR e g i s t r a t io n H om e) U s e rR e g i s t r a t io n U ti l .g e tH o m e () ;
 U s e rR e g i s t r a t io n u rS e s s io n = u s e rR H o m e .c r e a te () ;

 …
}

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 35 / 70 -

3.3 Managing Users
3.3.1 Creating Users

void userCreate(String name, String password, String email)

Creates user account. The user is automatically associated the “Admin” group.

void userCreate(String name, String password, String email, String jabber)

Creates user account with an instant messaging address. The user is automatically
associated the “Admin” group.

3.3.2 Defining Users
void setUserProperty(String userName, String key, String value)

Set a new property to the user. User properties will be used to define user preferences.

void setUserRole(String userName, String roleName)

Set a new authorization role to the user.

3.3.3 Deleting Users
void deleteUser(String userName)

Detete a user from Bonita database. If the user is included in active projects this
methods throws an exception.

3.4 Roles
3.4.1 Creating Roles

void roleCreate(String name, String roleGroup)

Creates a new authorization role to the system. This kind of role is used to control the
user access to different APIs. Remember that the User Registration API deals with
J2EE identities. These roles must not be mistaken with Bonita roles associated with
projects.
This function can be useful to change the defaults roles of Bonita and therefore control
more precisely the access rights.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 36 / 70 -

3.5 Code sample

im p o rt ja v a x .s e c u r i ty .a u th .lo g in .L o g in C o n te x t;
im p o rt h e ro .c l ie n t .te s t .S im p leC a llb a c kH an d le r ;

im p o rt h e ro .in te rfa c e s .P ro je c tS e s s io n ;
im p o rt h e ro .in te rfa c e s .P ro je c tS e s s io nH om e ;
im p o rt h e ro .in te rfa c e s .P ro je c tS e s s io nU ti l ;

p u b lic c la s s M yW o rkF low C la s s {

 s ta t ic p u b lic v o id m a in (S tr in g [] a rg s) th row s E x c ep tio n {
 / / U se r A dm in a u th en tic a t io n
 c h a r[] p a s sw o rd= { 't ', 'o ', 't ', 'o '} ;
 S im p leC a llb a c kH an d le r h an d le r = n ew S im p leC a llb a ckH an d le r("a dm in " ,p a s sw o rd) ;
 L o g in C o n te x t lc = n ew L o g in C o n te x t("T e s tC lie n t" , h a n d le r) ;
 lc .lo g in () ;

 / / U se r R e g is tra t io n B e an C re a t io n u s in g R em o te In te rfa c e
 U se rR eg is tra t io nH om e u s e rR H om e= (U se rR eg is tra t io nH om e) U s e rR e g is tra tio nU ti l .g e tH om e () ;
 U se rR eg is tra t io n u rS e s s io n = u se rR H om e .c re a te () ;

 / / U se r " ja ck " (c u s tom e r) c re a t io n in B o n ita d a tab a se
 t ry {
 u s e rR e g .u s e rC re a te (" ja c k " ," ja c k " ,"m ig u e l .v a ld e s -fa u ra@ ex t.b u ll .n e t") ;
 } c a tc h (E x c e p tio n e){ S y s tem .o u t .p r in tln (e) ;} / / M ay b e u se r e x is ts

 / / U se r " jo h n " (s e rv ic e cu s tom e r) c re a t io n in B o n ita d a ta b a se
 t ry {
 u s e rR e g .u s e rC re a te (" jo h n " ," jo h n " ,"m ig u e l .v a ld e s - fau ra@ ex t.b u ll .n e t") ;
 } c a tc h (E x c e p tio n e){ S y s tem .o u t .p r in tln (e) ;} / / M ay b e u se r e x is ts

 u s e rR e g .rem o v e () ;
}

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 37 / 70 -

4 PROJECT INTERFACE

4.1 Principle

The Project interface provides access to functions allowing to modify the execution of a given
process.

In case of EJB Session access, the Project interface will automatically retrieve the identity of
the calling user in the J2EE security context. Hence, calling the Project interface from an
unidentified context will fail. Therefore, the interface is initiated for a given user. Only the
processes where the User are declared can be accessed

Once the Project interface has been created, it must be initiated. Initiating the Project interface
allows to specify which project is going to be managed thru the Interface.

You will find below examples of code using this interface.
These are extracts of the SampleProjectApi.java example proposed in the “samples” directory
of Bonita. You can run this example by using then ant tasks “sample-project-api” .
You can also refer to the sample1xxx classes, which implement the user guide workflow
example (Order Processing and Customer Service).
You can run them by using then ant tasks “sample1-create-process-model” (Model creation),
“sample1-admin-wf” (user administration and project instantiation), “sample1-running-
session” (Process execution).

4.2 Creating the ProjectSessionBean

Think about the ProjetSessionBean as an handle to your connexion with the BONITA
workflow System. You first have to create the handle, then to associate a given project to this
handle in order to be able to modify it.

Code sample :

im p o r t j a v a x .s e c u r i ty .a u th . lo g in .L o g in C o n te x t ;
im p o r t h e ro . c l ie n t . t e s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e ro . in t e r fa c e s .P ro je c tS e s s io n H o m e ;

im p o r t h e ro . in t e r fa c e s .P ro je c tS e s s io n ;
im p o r t h e ro . in t e r fa c e s .P ro je c tS e s s io n U ti l ;

im p o r t h e ro . in t e r fa c e s .C o n s ta n t s ;

im p o r t j a v a .u t i l .* ;

p u b l i c c l a s s S am p le P ro je c tA p i {

 s t a t ic p u b l i c v o id m a in (S tr in g [] a r g s) th r o w s E x c e p tio n {

 / / U s e r A d m in lo g in
 c h a r [] p a s sw o r d = { 't ', 'o ', 't ', 'o '} ;
 S im p le C a llb a c k H a n d le r h a n d le r = n e w S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s sw o r d) ;

 L o g in C o n te x t l c = n ew L o g in C o n te x t (" T e s tC li e n t " , h a n d le r) ;
 l c . lo g in () ;

 / / P r o j e c t S e s s io n B e a n C re a t io n u s in g R e m o te I n te r fa c e
 P r o je c tS e s s io n H o m e p r jH o m e = (P r o j e c tS e s s io n H o m e) P r o j e c tS e s s io n U t i l .g e tH o m e () ;

 P r o je c tS e s s io n p r jS e s s io n = p r jH o m e .c r e a te () ;

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 38 / 70 -

4.3 Initiating the ProjectSessionBean

4.3.1 Initiating the Session Bean (Cooperative projects & instances)

Void initProject (String projectName)

Creates or initializes cooperatives workflow projects. This method

could also be used to initializes workflow instances.

The Project interface is initialized with the given projectName.

If the corresponding projectName does not exist.

A new empty project is then created and given this name.

The user is then associated the Bonita “admin” role for this project.
There are no restrictions on the number of characters used to name process.

4.3.2 Initiating the Session Bean (Models)

Void initModel (String modelName)

 Creates or initializes workflow models.

The Project interface is initialized with the given modelName.

If the corresponding modelName does not exist.

A new empty model is then created and given this name.

The user is then associated the Bonita “admin” role for this project.
There are no restrictions on the number of characters used to name process.

4.3.3 Initiating with the clone project creation option

Void initProject (String oldProject, String newProject)

The Project interface is initialised after oldProject was cloned. This interface is
initialised with the given newProject project name.

After using the initProject method, all subsequent interface methods further called will

then deal with the corresponding project.

4.3.4 Initiating with the instantiate project creation option

Void instantiateProject (String modelName)

The Project interface is initialised after new project instance was created.
This interface is initialised with the new project instance name, automatically given by
Bonita which derives the instance name from the model name as follows:

<instance-name> = <model-name>_instance<sequence-number>
All subsequent interface methods will deal with the corresponding project instance.
After this instantiation, users have to be added to the new instance if they were not
defined in the process model (if a RoleMapper entity was not defined).Also, they must
be associated roles to start/stop activities in this new project.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 39 / 70 -

Only workflow models can be instantiated. Cooperative projects are ready-to-define,

ready-to-execute just after creation.

4.3.5 Code sample

 //***/
 //********* API Documentation - Sample 1 (adapted version) *************/
 //***/

 //Process creation by user admin
 prjSession.initProject("Original Process");
 // if "Original Process" does not exists, it is created.
 // Process definition see following sections
 // adding activities, edges, ...
 //

 //Process "Original Process" Cloning into "Clone Process"
 try {
 prjSession.initModel("Original Process", "Clone Process");
 } catch(Exception e) {System.out.println(e);} //Maybe project does not exists

 // "Original Process" instantiation
 try {
 prjSession.instantiateProject("Original Process");
 } catch(Exception e) {System.out.println(e);} //Maybe project does not exists
 // The new instance becomes the current project

4.4 Managing project

With BONITA, there is a single API to cope with projects. This API is used to control
processes, no matter which kind of process they are:

• Processes can exist on their own, without having a relationship to a process model. In
this category we find processes created from scratch, and processes cloned from parent
processes.

• Process can be process model, from which process instances can be derived. At the
moment, a process model can be executed as well, but this behaviour will be
withdrawn in a near future.

• Process instances are specific runable processes whose definition are contained in a
process model. At creation time, the specific context of this instance is taken into
account in order to specialize the instance.

4.4.1 Project attributes

A project has a name, which is given at creation time thru the Project API.

Only the name of process instances is constrained, where BONITA automatically allocates a
name in the following form : <Project Model Name>_instance<Project Instance Number>.
The <Project Instance Number> is automatically managed by BONITA.

A project has properties, which are simple (key, value) pairs. Enumeration String type is also
available.

A project records the name of the person which created it and the creation date.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 40 / 70 -

The values associated with processes states constants are:

CONSTANT VALUE

hero.interfaces.Constants.Pj.INITAL 0

hero.interfaces.Constants.Pj.STARTED 1

hero.interfaces.Constants.Pj.TERMINATED 2

The values associated with processes types constants are:

CONSTANT VALUE

hero.interfaces.Constants.Pj.COOPERATIVE Cooperative

hero.interfaces.Constants.Pj.MODEL Model

hero.interfaces.Constants.Pj.INSTANCE Instance

The values associated with processes status constants are:

CONSTANT VALUE

hero.interfaces.Constants.Pj.ACTIVE Active

hero.interfaces.Constants.Pj.HIDDEN Hidden

4.4.2 Active/Hide a workflow process

public void activeProcess()

Set the process status to Active (model/cooperative/instance).
Workflow processes can only be executed/instantiated if they are active

public void hideProcess()
Set the process status to Hidden (model/cooperative/instance).
Hide this workflow process. This state allows workflow models modifications once
they are instantiated.

4.4.3 Getting the name of a project or an instance

public String getName();

Returns the name of the project that is being managed by the current instance of
ProjectSessionBean interface.

public String getProjectNameOfInstance(String instanceName)

Returns the project name of the instance instanceName.

4.4.4 Getting the name of the parent project
public String getParent()

If the current project is a subProcess, returns the name of its parent project.

4.4.5 Getting the name of a project’s creator

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 41 / 70 -

String getCreator();
Returns the name of the user who has been creating the Project. The creator name is
automatically retrieved by BONITA executive when one creates a project thru the
ProjectSessionBean Interface.

4.4.6 Properties

void setProperty (String key, String value)

Creates a new property , assigning it a value, or override the value of an existing
property.

Collection getProperties() (BnProjectPropertyValue Collection)

Returns all the properties existing for this project.

Collection getPropertiesKey() (String Collection)

Get properties key of the project. A property is a pair key/value representing workflow
relevant data.

BnProjectPropertyValue getProperty(String key)

Returns the property value of the project. A property is a pair key/value properties
associated to this project.

void deleteProperty(String key);

Delete a property of an existing project.

4.4.7 Project details

public BnProjectValue getDetails()

Returns project information: project attributes, nodes, edges, hooks, properties...

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 42 / 70 -

4.4.8 Code sample

 /***/
 /************** API Documentation - Sample 2 *******************/
 /***/

 String processName = prjSession.getName() ;
 System.out.println("Current Process : " + processName) ;

 try {
 String parentName = prjSession.getParent();
 System.out.println("Parent Process : " + parentName) ;
 } catch(Exception e) {System.out.println(e);} //Maybe there is no parent

 try {
 String creatorName = prjSession.getCreator();
 System.out.println("Process Creator : " + creatorName) ;
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 try {
 prjSession.setProperty("userId","user1");
 prjSession.setProperty("recordId","1111");
 prjSession.setProperty("orderId","0001");
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 // First way to get properties values
 System.out.println("First way to access proprerty values : ");

 Collection properties = prjSession.getProperties() ;
 Iterator i = properties.iterator();

 while (i.hasNext())
 {
 hero.interfaces.BnProjectPropertyValue property = (hero.interfaces.BnProjectPropertyValue)i.next();
 try {
 String propertyKeyName = property.getTheKey();
 String propertyValue = (String)property.getTheValue();
 System.out.println("Property (Key, Value) : " + propertyKeyName + "/" + propertyValue);
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem
 }

 // Second way to get properties values
 System.out.println("Second way to access proprerty values : ");
 properties = prjSession.getPropertiesKey() ;
 i = properties.iterator();
 while (i.hasNext())
 {
 String propertyKey = (String)i.next();
 try {
 hero.interfaces.BnProjectPropertyValue propertyValue = prjSession.getProperty(propertyKey);
 System.out.println("Property (Key, Value) : " + i + "/" + propertyValue);
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem
 }

 //Deleting Property
 try {
 prjSession.deleteProperty("orderId");
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem

 //Verification

 System.out.println("Properties after one deletion : ");
 Collection propertiesLeft = prjSession.getPropertiesKey() ;

 Iterator j = properties.iterator();
 while (j.hasNext())
 {
 String propertyLeftKey = (String)j.next();
 try {

 hero.interfaces.BnProjectPropertyValue propertyValue = prjSession.getProperty(propertyLeftKey);
 System.out.println("Property (Key, Value) : " + i + "/" + propertyValue);

 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem
 }

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 43 / 70 -

4.5 Defining and Getting Informations about

activities

4.5.1 Types of activities
Activity type can be either one of the following :

AND

Activity 1

Activity 2

Activity 3

Traditional
(Manual) or

Automatic

AND_JOIN_NOD

AND_JOIN_AUTOMATIC_NOD

OR

Activity 1

Activity 2

Activity 3

Traditional
(Manual) or

Automatic

OR_JOIN_NOD

OR_JOIN_AUTOMATIC_NOD

or SUB_PROCESS_NODE : this node is itself a complete process included in the current
process as a sub-process.

Here are the values associated with the types constants :

CONSTANT VALUE

hero.interfaces.Constants.Nd.AND_JOIN_ 1

hero.interfaces.Constants.OR_JOIN_NODE 2

hero.interfaces.Constants.AND_JOIN_AUTOMATIC_NODE 3

hero.interfaces.Constants.OR_JOIN_AUTOMATIC_NODE 4

hero.interfaces.Constants.SUB_PROCESS_NODE 5

4.5.2 Activities states
See the “Activities basics “ section of this document.

The values associated with the main activities states constants are :

CONSTANT VALUE

hero.interfaces.Constants.Nd.INITIAL 0

hero.interfaces.Constants.Nd.READY 1

hero.interfaces.Constants.Nd.DEAD 2

hero.interfaces.Constants.Nd.ANTICIPABLE 3

hero.interfaces.Constants.Nd.ANTICIPATING 5

hero.interfaces.Constants.Nd.EXECUTING 6

hero.interfaces.Constants.Nd.TERMINATED 10

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 44 / 70 -

4.5.3 Creating activity
void addNode(String name, int nodeType)

Add a node to the project. This method creates a node with the corresponding node
type and assign it InitialRole role. This role is not assigned to any user at creation
time, so this activity isn’t eligible without using the setNodeRole method.

4.5.4 Creating SubProcess activity

void addNodeSubProcess(String name, String projectName)

Add a subProcess node to the project. This method creates the subProject from an
existing project and creates the node associated to it. The type of created node is
hero.interfaces.Constants.Nd.SUB_PROCESS_NODE

4.5.5 Configuring activity
void setEditNode(String node,String role, String description,

long deadline)

Set information on node changes (including role, description, deadline). This is
especially useful for graphical client application

void setNodeAnticipable(String name)

Set the node in anticipable mode.

void setNodeAutomatic(String name)

Set the node in automatic mode. The responsible of the activity execution is now the
engine.

void setNodeDeadline(String name, long date)

Set an absolute node deadline (ex 11-05-2005). Activity deadline is the lastest date in
which the activity must be finished. Deprecated. replaced by setDeadlines(String
name, Collection co)

void setNodeRelativeDeadline(String name, long date)

Set a relative node deadline (ex: 2 hours). Activity deadline is the lastest date in which
the activity must be finished. Deprecated. replaced by setRelativeDeadlines(String
name, Collection co)

void setNodeDeadlines(String name, Collection co)

Set one or more deadlines for the node. Activity deadline is the lastest date in which
the activity must be finished.be finished.

void setNodeRelativeDeadlines(String name, Collection co)

Set one or more deadlines for the node. Activity deadline is the lastest date in which
the activity must be finished.be finished.

void setNodeDescription(String name,String description)

Set the node description. Node description represents, explicity, execution related
information of this task.

void setNodeProperty (String nodeName, String key, String value)

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 45 / 70 -

Set a property of a node. A property is a pair key/value representing workflow
relevant data. With this method the property is propagated within others nodes.

void setNodeProperty(String nodeName, String key, String value,

boolean propagate)

Set a property of a node. A property is a pair key/value representing workflow
relevant data. By using propagate argument we can specify if we want to propagate
this property.

void setNodePropertyPossibleValues(String nodeName, String key, Collection

values)

Set property possible values for a specific node. Values argument represents the values
which are accepted as possible property values. Only for enumerated types.

void setNodeTraditional(String name)

Set the node in traditional mode. When a node is traditional the anticipable attribute is
false. This method must be used if you want to execute this activity in a traditional
model.

void setNodeType(String name, int type)

Set the node type. Change the current type of the node (if node is not executing).

4.5.6 iterating activities

void addIteration(String from, String to, String condition)

Add a new iteration between two nodes. This methods sets an iteration which is
stopped when the condition is false. “from” means the name of the first node, “to”, the
name of the last node.

Note that the iteration must be added on the node which executes the last; in the
example below, activity A is executed, then some activities between A and B take
place, and then B is executed. After the processing of B, control will go back to A if
the iteration condition that has been set on B evaluates to true.

Activity A (To) …
Edge Edge

Activity B (From)

Iteration from B to A

The condition can be something like “lastNodeProperty.equals(\”value\”)”, while the
value of the property is positioned depending on the execution of the process.

Code sample : To see activity iteration, refer also to Sample1CreateProcessModel example
in the Bonita samples directory. Sample1RunningSession will play the fisrt iteration of the
process. To terminate it after the second iteration, you just have to modify the once_more
value of the Receive Order activity in the Order Processing Instance you are running.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 46 / 70 -

4.5.7 Getting information about nodes in the project

Object getNodes()

Returns project nodes data as an array of StrutsNodeValue. This is especially useful
for Struts based IHM, but can be used also in any kind of application.

Collection getNodesNames() (String Collection)

Returns all node names of the project .

4.5.8 Getting information about a specific node

BnNodeValue getNode(String projectName,String nodeName)

Get Node Value from a specific project

String getNodeDeadline(String nodeName)

Returns node deadline. Activity deadline is the lastest date in which the activity must
be finished.

String getNodeDescription(String name)

Returns the node description. Node description represents, explicity, execution related
information of this task.

String getNodeExecutor(String name)

Returns the node executor. Get the name of the user which is executing the activity.

Collection getNodeProperties(String nodeName) (BnNodePropertyValue

Collection)

Returns Node properties as a list of pair key/value properties associated to the node.

BnNodePropertyValue getNodeProperty(String nodeName, String key)

Returns Node property value. Get a pair key/value properties associated to the node.

BnNodePropertyValue getNodeProperty(String nodeName, String key)

Returns Node property value. Get a pair key/value properties associated to the node.

int getNodeState(String name)

Returns the state of the node.

int getNodeType(String name)

Returns the type of the node.

BnNodeValue getNodeValue(String name)

Returns the node Value. Returns node information.

boolean getNodeAnticipable(String name)

Returns if the node is set to be executed in anticipated mode.

4.5.9 Deleting activity
void deleteNode(String name)

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 47 / 70 -

Delete a node from the project. If this node is in executing, terminated or cancelled
state, the method throws an execption

void deleteNodeProperty(String nodeName, String key)

Delete a property of a node. Deletes the node property associated to this key

4.6 Managing Edges

4.6.1 Adding an edge to an activity

An edge is a way to establish a dependency between two activities.

 Edges have unique name in the scope of the project. The name of the edge can be choosen by
the application, or it can be automatically generated by BONITA.

String addEdge(String in, String out);

The two activities named in and out will be connected by a new eddge. The method
returns the name of the newly created edge.

String addEdge(String name,String in, String out);

The two activities named in and out will be connected by a new edge. The newly
created edge will be named according to the name passed as input parameter.

4.6.2 Deleting an edge

Void deleteEdge(String name);

The edge named with the parameter name will be deleted.

4.6.3 Getting connected activities from an edge

String getEdgeInNode(String edgeName) ;

Get back the name of the inbound node of the given edgeName.

String getEdgeOutNode(String edgeName) ;

Get back the name of the outbound node of the given edgeName.

4.6.4 Setting a condition on an edge

Void setEdgeCondition(String edge, String condition);

A condition operates on the value of a property of the activities, and is expressed in Java. Any
string that can be the operand of an if statement is valid. Assuming that the property Prop is
defined for a given activity, any of the following constructs is a valid condition:

Condition = “Prop.equals (\“SomeString\”)
Condition = “(Prop.indexOf (\“SomePart\”) == 2)”

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 48 / 70 -

Condition = “(Prop.lenght() == 9)”

4.6.5 Getting the condition on an edge

String getEdgeCondition(String edge);

4.6.6 Getting all existing edges in a project

Collection getEdgesNames() (String Collection)

Returns all the existing edges in the project.

4.6.7 Getting all existing edges for an activity

Collection getNodeInEdges() (String Collection)

Returns all the existing edges inbound for a given node.

Collection getNodeOutEdges() (String Collection)

Returns all the existing edges outbound for a given node.

4.6.8 Reading an edge as a Java Object

hero.interfaces.BnEdgeValue getEdgeValue (String name);

Get the edge value.

4.6.9 Changing the state of an Edge

void setEdgeState(hero.interfaces.BnEdgeLocal edge, int state);

Set the edge state

4.7 Managing Hooks

Hooks are piece of code that is executed at specific point during the activity life cycle.

Must document in a central place the different possible scripting strategies

Hooks can be coded in a scripting language, or as java library. Therefore, the hook interface is
divided in two sets (Hooks and InterHooks).
Hooks can be defined at the project level. Such hooks will be activated once a project is
instantiated or when it finishes.

Hooks can also defined at the activity level, they will be activated only in the context of the
related activity.

Interactive Hooks :
Script hooks are called interactive Hooks, hence all calls related to them will contain “Inter”
in their name. Their type is hero.hook.Hook.BSINTERACTIVE

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 49 / 70 -

Hooks are executed on reception of one of the following events, and the appropriate method
of the hook will be executed. If the hook does not include such a method, an exception is
raised.

The possible node Hooks events:

EVENT VALUE METHOD

hero.interfaces.Constants.Nd.BEFORESTART "beforeStart" beforeStart

hero.interfaces.Constants.Nd.AFTERSTART "afterStart" afterStart

hero.interfaces.Constants.Nd.BEFORETERMINATE "beforeTerminate"; beforeTerminate

hero.interfaces.Constants.Nd.AFTERTERMINATE "afterTerminate"; afterTerminate

hero.interfaces.Constants.Nd.ONCANCEL "onCancel" onCancel

hero.interfaces.Constants.Nd.ANTICIPATE "anticipate"; anticipate

hero.interfaces.Constants.Nd.ONREADY "onReady"; onReady

hero.interfaces.Constants.Nd.ONDEADLINE “onDeadLine”; onDeadline

Project Hooks events:

EVENT VALUE METHOD

hero.interfaces.Constants.Pj.ONINSTANTIATE "onInstantiate" onInstantiate

hero.interfaces.Constants.Pj.ONTERMINATE "onTerminated" onTerminated

Different hooks types actually taken in count by the Bonita engine:

HOOK TYPE VALUE

hero.interfaces.Constants.Hook.JAVA 0

hero.interfaces.Constants.Hook.BSINTERACTIVE 6

4.7.1 Hook at the project level

Creating

Void addHook (String hookName, String eventName, int hookType)

Add hook to project. Add an existing hook file to the project. This hook type uses a
Java file loaded at run time. The hookName represents the class java file to be loaded
by the system at run time. These classes must be in the application server classpath to
be correctly executed.

Deleting

Void deleteHook (String hookName)

Void deleteInterHook (String hookName)

The hook or interHook with name hookName will be deleted from all projects nodes.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 50 / 70 -

Managing

Collection getHooks() (ProjectHooksValue Collection)

Returns all the hooks of the project.

4.7.2 Hooks associated to a specific activity

Creating

Void addNodeHook (String nodeName, String hookName, String eventName,

int hookType)

Add hook to a node. Add an existing hook file to the node. This type of hook use a
Java or TCL file loaded at run time. The hookName represents the class java or tcl file
to be loaded by the system at run time. These classes must be in the application server
classpath to be correctly executed. Put your hooks classes in
$BONITA_HOME\src\resources\hooks and then redeploy bonita.ear (ant task).

Void addNodeInterHook (String nodeName, String hookName,

String eventName, int hookType, String value)

The hook with name hookName will be added to the node. The hook activation will be
triggered whenever the event eventName occurs for this activity.

Deleting

Void deleteNodeHook (String hookName)

Delete a node hook.

Void deleteNodeInterHook (String hookName)

Delete a node interHook. The hook or the interHook with name hookName will be
deleted from the node.

Managing

Collection getNodeHooks(String nodeName) (NodeHookValue Collection)

Returns the Node hooks of the project.

Collection getNodeInterHooks(String nodeName) (NodeInterHookValue

Collection)

Return all the Interactive Node hooks of the project.

BnNodeInterHookValue getNodeInterHook(String nodeName, String interHook)

Returns all the node inter hook data associated to the hook of name « interHook » at
the node « nodeName).

String getNodeInterHookValue(String node, String hook)

This method returns the hook script associated to the hook with name « hook » of this
node

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 51 / 70 -

4.7.3 Code sample

 /***/
 /************** API Documentation - Sample 3 *******************/
 //************** Activities in Project *****************/
 /***/

 System.out.println("Activities creation ... ");
 try {
 prjSession.addNode("Activity 1",Constants.Nd.AND_JOIN_NODE);
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong
 try {
 prjSession.addNode("Activity 2",Constants.Nd.AND_JOIN_NODE);
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong
 try {
 prjSession.addNode("Activity 3",Constants.Nd.AND_JOIN_NODE);
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Activity 3 definition ... ");
 try {
 Date dateLim = new Date(2005,05,02) ;
 prjSession.setNodeDeadline("Activity 3",dateLim.getTime()) ;
 prjSession.setNodeDescription("Activity 3","Activity 3 Description") ;
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Setting Activities types");
 try {
 prjSession.setNodeTraditional("Activity 1");
 prjSession.setNodeAutomatic("Activity 2");
 prjSession.setNodeTraditional("Activity 3");
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Setting node properties which will not be propagated to other nodes");
 try {
 prjSession.setNodeProperty("Activity 1","color","blue",false);
 System.out.println("Setting node properties which will be propagated to other nodes");
 prjSession.setNodeProperty("Activity 1","price","expensive",true);
 prjSession.setNodeProperty("Activity 1","shape","square");
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Adding edges between activities");
 try {
 prjSession.addEdge("Activity 1","Activity 2");
 prjSession.addEdge("Activity 2","Activity 3");
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Getting names of all the nodes in the project");
 Collection nodesNames = prjSession.getNodesNames() ;
 j = nodesNames.iterator();
 while (j.hasNext())
 {
 String nodeName = (String)j.next();
 System.out.println("Node : " + nodeName + " (anticipable : " + prjSession.getNodeAnticipable(nodeName) + ")");
 Collection nodeProperties = prjSession.getNodeProperties(nodeName) ;
 Iterator k = nodeProperties.iterator() ;
 while (k.hasNext())
 {
 hero.interfaces.BnNodePropertyValue nodeProperty = (hero.interfaces.BnNodePropertyValue)k.next();
 try {
 String nodePropertyKeyName = nodeProperty.getTheKey();
 String nodePropertyValue = nodeProperty.getTheValue();
 System.out.println(" --> Property (Key, Value) : " + nodePropertyKeyName + "/" + nodePropertyValue);
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 }

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 52 / 70 -

 System.out.println("Node deletion");
 try {

 prjSession.deleteNode("Activity 3") ;
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("Node deletion verification");

 try {
 nodesNames = prjSession.getNodesNames() ;
 j = nodesNames.iterator();
 while (j.hasNext())
 {

 String nodeName = (String)j.next();
 System.out.println("Node : " + nodeName); }
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

To see activity, edges and hooks definition, refer to Sample1xxx examples in the Bonita
samples directory.

4.8 Managing users

4.8.1 Getting the list of all bonita registered users
Collection getAllUsers() (String Collection)

Return all registered users names registered in Bonita System.

4.8.2 Getting the list of users which are part of a project

Collection getUsers() (String Collection)

Returns all users of the project.

4.8.3 Adding a user to a project

void addUser(String username);

Add a user to this project (This user must exist at bonita database)

4.8.4 Checking whether a user is part of a project

boolean containsUser(String username);

Test if the project contains this user

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 53 / 70 -

4.8.5 Code sample

 /***/
 /************** API Documentation - Sample 4 *******************/
 //************** Users in Project *****************/
 /***/

 System.out.println(" Getting users names of the project ");
 try {
 Collection usersNames = prjSession.getUsers() ;
 j = usersNames.iterator();
 while (j.hasNext())
 {
 String userName = (String)j.next();
 System.out.println("User : " + userName); }
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" Adding John in the project ");
 try {
 prjSession.addUser("john") ;
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 processName = prjSession.getName() ;
 System.out.println("Current Process : " + processName + " contains john :" + prjSession.containsUser("john")) ;

4.9 Managing roles in a Project

Role is the mean by which User can be associated to activities. A role has a name and a string
description.

Roles must be first declared in a project. Then role can be associated to Users and to
Activities.

4.9.1 Declaring a new role in the project

void addRole (String roleName, String description);

Add a role to the project. Creates a role within this project. The role is specific of this
project.

4.9.2 Allocating a role to a User

Roles are allocated to users in the scope of given project. That is, a user may assume different
roles in different project. Also, in the scope of a project, an user can assume several roles.

void setUserRole (String userName, String roleName);

void unsetUserRole (String userName, String roleName);

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 54 / 70 -

4.9.3 Getting the list of roles that an user can assume

Collection getUserRoles (String userName) (BnRoleLOcal Collection)

Returns all the roles available for this user (independently of any project).

4.9.4 Getting the list of roles that an user can assume in the scope of a

project

Collection getRoles() (BnRoleLocal Collection)

Returns all roles of the current project. These roles have been associated with the
nodes included in the project.

Collection getRolesNames() (String Collection)

Returns the names of all the roles of the current project as a collection of String
objects.

Collection getUserRolesInProject(String userName) (BnRoleValue

Collection)

Returns the roles of this user in the current project.

Collection getUserRolesInProjectNames(String userName)(String Collection)

Returns the role names of the user in the current project.

4.9.5 Associating an activity with a role

Only a single role can take over a given activity.

String getNodeRoleName(String nodeName)

Returns node role name. Obtains the role name of this node.

void setNodeRole(String name, String role)

Sets or changes if already exists the role of an activity.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 55 / 70 -

4.9.6 Code sample

 /***/

 /************** API Documentation - Sample 5 *******************/
 //************** Roles in Project *****************/

 /***/

 System.out.println("Adding a Custumer role for john in the current project ");
 try {
 prjSession.setUserRole("john","Customer") ;
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" Getting role names of the project ");
 try {
 Collection rolesNames = prjSession.getRolesNames() ;
 j = rolesNames.iterator();

 while (j.hasNext())
 {
 String roleName = (String)j.next();
 System.out.println("Role : " + roleName); }
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" Getting role names for john user in this project ");

 try {
 Collection johnRolesNames = prjSession.getRolesNames() ;
 j = johnRolesNames.iterator();
 while (j.hasNext())

 {
 String johnRoleName = (String)j.next();
 System.out.println("John role : " + johnRoleName);
 }

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" Setting role names for an activites of this project ");

 try {
 System.out.println(" --> Getting the actuel role names for Activities ");
 try {
 System.out.println(" --> Activity 1 role : " + prjSession.getNodeRoleName("Activity 1"));

 System.out.println(" --> Activity 2 role : " + prjSession.getNodeRoleName("Activity 2"));
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" --> Setting activities new roles ");

 try {
 prjSession.setNodeRole("Activity 1","admin") ;
 prjSession.setNodeRole("Activity 2","Customer") ;

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println(" --> Getting the new role names for Activities ");
 try {
 System.out.println(" Activity 1 role : " + prjSession.getNodeRoleName("Activity 1"));
 System.out.println(" Activity 2 role : " + prjSession.getNodeRoleName("Activity 2"));
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 56 / 70 -

4.10 Mappers

void addRoleMapper(String roleName, String mapperName, int mapperType)

 Add an existing mapper to the role « roleName ». This type of mapper use a Java file
loaded at run time.
mapperType can be one of the following :

- Constants.Mapper.LDAP for a LDAP Mapper

- Constants.Mapper.PROPERTIES for a Properties Mapper

- Constants.Mapper.CUSTOM for a custom Mapper

void deleteRoleMapper(String roleName)

 Delete a role mapper.

Collection getRoleMappers() (BnRoleMapperValue Collection)

 Returns all the role mappers of the project..

4.10.1 Code sample

.../....

 ProjectSessionHome projectSessionh=ProjectSessionUtil.getHome();

 ProjectSession pss=projectSessionh.create();

 String role1="Admintoto";

 pss.addRole(role1, "role added for activity 1");

 String role2="Admintiti";

 pss.addRole(role2, "role added for activity 2");

 // NODE 1

 pss.addNode("h1",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h1",role1);

 // NODE 2

 pss.addNode("h2",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h2",role2);

 // add MAPPERS

 pss.addRoleMapper(role1,"hero.mapper.mapper1",Constants.Mapper.LDAP);

pss.addRoleMapper(role2,"hero.mapper.mapper2",Constants.Mapper.PROPERTIES);

// Custom mapper : Constants.Mapper.CUSTOM

 pss.instantiateProject(projectName);

..../....

Example of Mapper code are available under $BONITA_HOME/src/resources/mappers/hero/mapper.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 57 / 70 -

4.11 Performer assignment

4.11.1 Addition of a performer assignment to a node

void addNodePerformerAssign(String nodeName,

String performerAssignName,int performerAssignType, String propertyName)

Add an existing performerAssign to the node. This type of performerAssign use a Java
file loaded at run time.

PerformerAssignType can be one of the following :

- Constants.Performer.CALLBACK for a Callback Performer

Assignment

- Constants.Performer.PROPERTIES for a Properties Callback

Assignment

4.11.2 Code sample

..../....

 // NODE 1

 pss.addNode("h1",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h1",role1);

 // NODE 2

 pss.addNode("h2",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h2",role2);

 // NODE 3

 pss.addNode("h3",Constants.Nd.AND_JOIN_NODE);

 pss.setNodeRole("h3",role3);

.../....

 // activity property

 pss.setNodeProperty("h3","acteurH3","gaillarr");

..../....

 // PERFORMER ASSIGN

 pss.addNodePerformerAssign("h2",

"hero.performerAssign.CallbackSelectActors" ,

Constants.Performer.CALLBACK,"");

pss.addNodePerformerAssign("h3",

"hero.performerAssign.PropertySelectActors" ,

Constants.Performer.PROPERTIES ,"acteurH3");

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 58 / 70 -

5 USER SESSION INTERFACE

5.1 Principle

The User interface provides access to process execution control functions. The interface is
initiated for a given user. Only the processes where the User are declared can be accessed.

In case of EJB Session access, the User interface will automatically retrieve the identity of
the calling user in the J2EE security context. Hence, calling the User interface from an
unidentified context will fail.

Much of the User interface methods are taking the Project name as parameter. This name may
be known directly from the application logic. Alternatively, the application may retrieve the
project name according to various search criteria. At the moment, the corresponding search
methods are not implemented.

The User Session Bean, is an stateful session bean that provides the user API to get
information on Todo list and started activities and to produce events on activities (start,
terminate, cancel).
This Session Bean is based on Engine Session Bean: a recursive implementation that manage
the previous execution operations and propagates the activity state changes to the activities
that are connected to this one.

The User Session Bean API provides information about user projects and activites (project
list, todo list and activity list) and also useful information about project instances or user
preferences. With this API users can performs his task/activities by using start, terminate and
cancel methods and also terminates workflow processes.

You will find below examples of code using this interface.
These are extracts of the SampleUserApi.java example proposed in the “samples” directory of
Bonita. You can run this example by using then ant tasks “sample-user-api” .
You can also refer to the sample1xxx classes, which implement the user guide workflow
example (Order Processing and Customer Service).
You can run them by using then ant tasks “sample1-create-process-model” (Model creation),
“sample1-admin-wf” (user administration and project instantiation), “sample1-running-
session” (Process execution).

5.2 Creating the UserSessionBean

The UserSessionBean can be seen as an handle to the connection with the BONITA workflow
System. After an user authentication, this handle has to be created, and it is then created
under his identity.

Every call to further User Session API function is related to this identity.

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 59 / 70 -

Code sample :

im p o r t j a v a x .s e c u r i t y .a u th . lo g in .L o g in C o n te x t ;
im p o r t h e r o .c l ie n t . t e s t .S im p le C a l lb a c k H a n d le r ;

im p o r t h e r o . in t e r fa c e s .U s e rS e s s io n ;
im p o r t h e r o . in t e r fa c e s .U s e rS e s s io n H o m e ;
im p o r t h e r o . in t e r fa c e s .U s e rS e s s io n U t i l ;

im p o r t h e r o . in t e r fa c e s .C o n s t a n ts ;

im p o r t j a v a .u t i l .* ;

p u b l ic c l a s s S am p le U s e rA p i {

 s t a t ic p u b l ic v o id m a in (S t r i n g [] a r g s) th r o w s E x c e p t io n {

 / / U s e r A d m in lo g in
 c h a r [] p a s sw o rd = { 't ', 'o ', 't ', 'o '} ;
 S im p le C a l lb a c k H a n d le r h a n d l e r = n e w S im p le C a l lb a c k H a n d le r (" a d m in " ,p a s sw o rd) ;
 L o g in C o n te x t lc = n e w L o g in C o n te x t (" T e s tC l i e n t " , h a n d le r) ;
 l c . l o g in () ;

 / / U s e r S e s s io n B e a n C r e a t io n u s in g R e m o te I n te r f a c e
 U s e rS e s s io nH om e u s rH o m e = (U s e r S e s s io n H o m e) U s e rS e s s io n U ti l .g e tH o m e () ;
 U s e rS e s s io n u s rS e s s io n = u s rH o m e .c r e a te () ;

5.3 User Properties

5.3.1 Setting User Properties

Void setUserProperty (String key, String value)

 Set the property whose name is key to the value value.
If the property already exists, the current value is overridden. If the properties does not
exist, it is created and its value is set to value.

void setUserMail(String userName, String mail)

Set the mail of this user into Bonita database.

5.3.2 Getting User Information

String getUser()

Returns the name of the current authentified User.

String getUserPassword()

Returns the user password

String getUserMail(String userName)

Returns the mail of this user from Bonita database.

Collection getUserProperties() (BnUserPropertyValue Collection)

Returns the properties defined for the current authentified User.

5.4 User and Projects
5.4.1 Getting the list of projects for the User

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 60 / 70 -

Collection getProjectList() (BnProjectLightValue Collection)

Returns Workflow processes associated to this user.

Collection getProjectListNames() (String Collection)

Returns project list names for this user.

Collection getProjectsByProperty(String key, String value)

 (BnProjectValue Collection)

Returns Workflow projects from a property.

Collection getProjectsByPropertyNames(String key, String value)

 (String Collection)

Returns Workflow projects from a property.

5.4.2 Getting the list of instances for the User

Collection getInstancesList() (BnProjectLightValue Collection)

Returns user instances list. This method is equivalent to getProjectList but it only
returns the current instances of the user.

Collection getInstancesListNames() (String Collection)

Get instances list names for this user. This method is equivalent to
getProjectListNames but it only returns the current instances of the user.

Collection getProjectInstances(String projectName) (BnProjectValue

Collection)

Returns Workflow instances of this project.

Collection getProjectInstancesNames(String projectName) (String

Collection)

Returns workflow instances names of this project.

Collection getInstancesByProperty(String key, String value)

 (BnProjectValue Collection)

Returns Workflow instances from a property.

Collection getInstancesByPropertyNames(String key, String value)

 (String Collection)

Returns a list of project instances from a property.

5.4.3 Managing the project for the User

void removeProject(String projectName)

Delete a Workflow project
Tries to terminate a project (only when all project activities are terminated)

void terminate(String projectName)

Tries to terminate a project (only when all project activities are terminated)

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 61 / 70 -

5.5 User and Activities
5.5.1 Getting the list of activities for the User

Collection getActivityList(String projectName) (String Collection)

Obtains all user activities for a specific project in executing and anticipating state. See
also the getToDoList for activities in ready state.

Collection getActivityListAllInstances() (BnNodeValue Collection)

Obtains a list of executing user activities for all instances (ready and anticipable state).

Collection getActivityListByProperty(String key, String value)

 (BnNodeValue Collection)

Obtains executing user activities matching with property value (executing and
anticipating state activities).

5.5.2 Getting Information on User activity

BnNodeValue getNode(String projectName,String nodeName)

Returns Node Value from a specific project .

5.5.3 Getting the ToDo list for the User
Collection getToDoList(String projectName) (String Collection)

Obtains all user activities from specific project (ready and anticipable state).

Collection getToDoListAllInstances() (BnNodeValue Collection)

Obtains the list of todo activities of the user for all instances (ready and anticipable
state).

Collection getToDoListByProperty(String key, String value) (BnNodeValue

Collection)

Obtains the list of todo activities for the user matching to property value (ready and
anticipable state activities).

5.5.4 Managing activities for the User
void startActivity(String projectName, String nodeName)

Tries to start an activity (when activity state is ready or anticipable)

void terminateActivity(String projectName, String nodeName)

Tries to terminate an activity (when activity state is executing or anticipating)

void cancelActivity(String projectName, String nodeName)

Tries to cancel an activity (when activity is executing or anticipating)

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 62 / 70 -

5.6 Code sample

 //***/
 //************** API Documentation - Sample 6 ***************/
 //************** Users and Activities *****************/
 //***/
 System.out.println("Current User Name/Passwd : " + usrSession.getUser() + "/" + usrSession.getUserPassword());

 usrSession.setUserProperty("Language","Spanish");

 System.out.println("Getting Current User properties values");
 Collection properties = usrSession.getUserProperties() ;
 Iterator i = properties.iterator();
 while (i.hasNext())
 {
 hero.interfaces.BnUserPropertyValue property = (hero.interfaces.BnUserPropertyValue)i.next();
 try {
 String propertyKeyName = property.getTheKey();
 String propertyValue = (String)property.getTheValue();
 System.out.println("Property (Key, Value) : " + propertyKeyName + "/" + propertyValue);
 } catch(Exception e) {System.out.println(e);} //Maybe there is a problem
 }

 System.out.println("\n Getting project names for this user");
 try {
 Collection prjNames = usrSession.getProjectListNames() ;
 Iterator j = prjNames.iterator();
 while (j.hasNext())
 {
 String prjName = (String)j.next();
 System.out.println(" --> Project : " + prjName); }
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

 System.out.println("\n Starting & terminating Activities available for this user");
 try {
 Collection instNames = usrSession.getInstancesListNames() ;
 Iterator j = instNames.iterator();
 while (j.hasNext())
 {
 String instName = (String)j.next();
 System.out.println("--> INSTANCE : " + instName);

System.out.println("Getting ToDo list for this instance");
 Collection activityNames = usrSession.getToDoList(instName) ;
 Iterator k = activityNames.iterator();
 while (k.hasNext())
 {
 String activityName = (String)k.next();
 System.out.println(" --> activity : " + activityName);
 try {
 usrSession.startActivity(instName,activityName) ;
 System.out.println(" --> activity started");
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong
 } // End ToDo list

 System.out.println("Getting the activity List (executing aor anticipating) for yhe user");
 activityNames = usrSession.getActivityList(instName) ;
 k = activityNames.iterator();
 while (k.hasNext())
 {
 String activityName = (String)k.next();
 System.out.println(" --> activity : " + activityName);
 try {
 usrSession.terminateActivity(instName,activityName) ;
 System.out.println(" --> activity terminated");
 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong
 } // End ToDo list

 } // End Intances List

 } catch(Exception e) {System.out.println(" --> " + e);} //Maybe something is wrong

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 63 / 70 -

6 BONITA ENTITIES

A lot of entry points of the API allow to retrieve data about the process entities, such as the
information relevant for a given activity. Although Bonita currently makes use of the
Enterprise Java Beans entities to store data, the corresponding information has been made
available at the API level as plain old java beans.

The following is a first level of description of those java beans. For further information, refer
to the code in the bonita/build/generate/hero/interfaces directory.

The following naming convention applies for all the entities managed at the API level.

If Entity is the name of the internally used Enterprise Java Bean, EntityValue is the name of
the corresponding plain old java object, EntityLightValue is the name of a simpler java object
(very often, EntityLightValue will have only fields that have simple type).

Would you like to use directly the internal EJB thru their remote or local interfaces (This is a
choice that we do not recommend) , each of these entities can be accessed using its name
suffixed by hero.interfaces.

6.1 Diagram

BnProperty

key
value
CreationDate
...

BnHook

Name
Event
Type
CreationDate
...

BnInterHook

Name
Event
Type
Script
...

BnRole

Name
Description
CreationDate
...

BnUserProp.

Key
Value
...

BnProject

Name
Creator
State
CreationDate
...

BnNode

Name
Creator
State
CreationDate
...

BnEdge

Name
State
Condition
CreationDate
...

0..* 1 1 0..*

2 0..*

0..*

1

0..*

1

1..* 1 0..* 1

1

0..*

1

1
0..*

0..*

BnUser

Name
Password
Email
Jabber
...

1

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 64 / 70 -

6.2 Entities Attributes

6.2.1 BnAuthRoleValue

TYPE ATTRIBUTE MEANING

int id

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

String bnRoleGroup;

boolean bnRoleGroupHasBeenSet

hero.interfaces.BnAuth
RolePK

pk;

6.2.2 BnEdgeValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

int state;

boolean stateHasBeenSet

String condition;

boolean conditionHasBeenSet

java.sql.Date creationDate;

boolean creationDateHasBeenSet

java.sql.Date modificationDate;

boolean modificationDateHasBeenSet

hero.interfaces.BnNode
Value

InBnNode;

boolean InBnNodeHasBeenSet

hero.interfaces.BnNode
Value

OutBnNode;

boolean OutBnNodeHasBeenSet

hero.interfaces.BnEdgeP
K

pk;

6.2.3 BnInstanceValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

String creator;

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 65 / 70 -

boolean creatorHasBeenSet

String parent;

boolean parentHasBeenSet

int state;

boolean stateHasBeenSet

java.util.Date creationDate;

boolean creationDateHasBeenSet

java.util.Date modificationDate;

boolean modificationDateHasBeenSet

hero.interfaces.BnProjec
tValue

javaTree;

boolean javaTreeHasBeenSet

Collection BnUsers

Collection BnRoles

Collection BnNodes

Collection BnProperties

hero.interfaces.BnInstan
cePK

pk;

6.2.4 BnIterationValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String fromNode;

boolean fromNodeHasBeenSet

String toNode;

boolean toNodeHasBeenSet

String condition;

boolean conditionHasBeenSet

hero.interfaces.BnIterati
onPK

pk;

6.2.5 BnNodeHookValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

String event;

boolean eventHasBeenSet

int type;

boolean typeHasBeenSet

hero.interfaces.BnNode
HookPK

pk

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 66 / 70 -

6.2.6 BnNodeInterHookValue

TYPE ATTRIBUTE MEANING

int id

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

String event

boolean eventHasBeenSet

int type

boolean typeHasBeenSet

String script

boolean scriptHasBeenSet

hero.interfaces.BnNodeI
nterHookPK

pk

6.2.7 BnNodePerformerAssignValue

TYPE ATTRIBUTE MEANING

int id

boolean idHasBeenSet

String name

boolean nameHasBeenSet

int type;

boolean typeHasBeenSet

String propertyName

boolean propertyNameHasBeenSet

hero.interfaces.BnNode
PerformerAssignPK

pk

6.2.8 BnNodePropertyValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String theKey;

boolean theKeyHasBeenSet

String theValue;

boolean theValueHasBeenSet

boolean propagate;

boolean propagateHasBeenSet

hero.interfaces.BnNode
PropertyPK

pk;

6.2.9 BnNodeValue

TYPE ATTRIBUTE MEANING

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 67 / 70 -

int id;

boolean idHasBeenSet

int type;

boolean typeHasBeenSet

int state;

boolean stateHasBeenSet

boolean anticipable;

boolean anticipableHasBeenSet

String name;

boolean nameHasBeenSet

String description;

boolean descriptionHasBeenSet

String activityPerformer;

boolean activityPerformerHasBeenSet

hero.entity.NodeState transition;

boolean transitionHasBeenSet

hero.entity.EdgeState activation;

 boolean activationHasBeenSet

java.util.Date startDate;

boolean startDateHasBeenSet

java.util.Date endDate;

boolean endDateHasBeenSet

java.util.Date deadline;

boolean deadlineHasBeenSet

java.util.Date creationDate;

boolean creationDateHasBeenSet

java.util.Date modificationDate;

boolean modificationDateHasBeenSet

hero.interfaces.BnUserL
ightValue

Creator;

boolean CreatorHasBeenSet

hero.interfaces.BnUserL
ightValue

Executor;

boolean ExecutorHasBeenSet

hero.interfaces.BnRole
Value

BnRole;

boolean BnRoleHasBeenSet

hero.interfaces.BnNode
PerformerAssignValue

BnNodePerformerAssign;

boolean BnNodePerformerAssignHas

BeenSet

hero.interfaces.BnProjec
tLightValue

BnProject;

boolean BnProjectHasBeenSet

Collection BnProperties

Collection BnHooks

Collection BnInterHooks

hero.interfaces.BnNode pk;

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 68 / 70 -

PK

6.2.10 BnProjectHookValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

String event;

boolean eventHasBeenSet

int type;

boolean typeHasBeenSet

hero.interfaces.BnProjec
tHookPK

pk;

6.2.11 BnProjectInterHookValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

String event;

boolean eventHasBeenSet

int type;

boolean typeHasBeenSet

String script;

boolean scriptHasBeenSet

hero.interfaces.BnProjec
tInterHookPK

pk;

6.2.12 BnProjectPropertyValue

TYPE ATTRIBUTE MEANING

Int id;

Boolean idHasBeenSet

String theKey;

Boolean theKeyHasBeenSet

String theValue;

Boolean theValueHasBeenSet

hero.interfaces.BnProjec
tPropertyPK

pk;

6.2.13 BnProjectValue

TYPE ATTRIBUTE MEANING

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 69 / 70 -

Int id;

boolean idHasBeenSet

int instanceNs;

boolean instanceNsHasBeenSet

String parent;

boolean parentHasBeenSet

String name;

boolean nameHasBeenSet

String creator;

boolean creatorHasBeenSet

int state;

boolean stateHasBeenSet

java.util.Date creationDate;

boolean creationDateHasBeenSet

java.util.Date modificationDate;

boolean modificationDateHasBeenSet

Collection BnUsers

Collection BnRoles

Collection BnInstances

Collection BnNodes

Collection BnEdges

Collection BnAgents

Collection BnAgentEdges

Collection BnProperties

Collection BnIterations

Collection BnHooks

Collection BnInterHooks

hero.interfaces.BnProjec
tPK

pk;

6.2.14 BnRoleMapperValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

int type;

boolean typeHasBeenSet

hero.interfaces.BnRole
MapperPK

pk;

6.2.15 BnRoleValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String description;

Bull R&D BONITA / Application Programming Interface
V2.2
21/12/05

 70 / 70 -

boolean descriptionHasBeenSet

String name;

boolean nameHasBeenSet

hero.interfaces.BnRole
MapperValue

BnRoleMapper;

boolean BnRoleMapperHasBeenSet

hero.interfaces.BnRoleP
K

pk;

6.2.16 BnUserPropertyValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String theKey;

boolean theKeyHasBeenSet

String theValue;

boolean theValueHasBeenSet

hero.interfaces.BnUserP
ropertyPK

pk;

6.2.17 BnUserValue

TYPE ATTRIBUTE MEANING

int id;

boolean idHasBeenSet

String name;

boolean nameHasBeenSet

String password;

boolean passwordHasBeenSet

String email;

boolean emailHasBeenSet

String jabber;

boolean jabberHasBeenSet

java.sql.Date creationDate;

boolean creationDateHasBeenSet

java.sql.Date modificationDate;

boolean modificationDateHasBeenSet

Collection BnProjects

Collection BnInstances

Collection BnRoles

Collection BnAuthRoles

hero.interfaces.BnUserP
K

pk;

