Bsnita

BONITA Workflow Cooperative System

Application Programming Interface
(Version 3.2)

Christophe Loridan
Miguel Valdés Faura
Anne Géron

BULL R&D
ObjectWeb ==

neurca Middlessre |

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06
CHANGES TRACK
REFERENCES DATE CHANGE

1.1 Document creation

2.0 30/06/04 User Registration API documentation
Integration of all API methods

2.1 16/07/04 Explanations & schema
Samples integration

22 11/08/04 Sub Process — Sub Process activities — roles

2.3 19/08/04 Added a paragraph about transitions in activity general description
Documented syntax of conditions in the description of the API
Project Session Access Control paragraph was updated.

2.4 27/08/04 Process terminology was updated. Processes examples were
reviewed. Projects attributes and new methods were added.

2.5 19/10/04 Added explanations about iterations in chapter 1

2.6 5/11/04 Added explanations about hooks, mappers and performers in
chapters 1 and 5.

2.7 21/01/05 New chapter User Management was included

2.8 22/03/05 Hooks types were updated. Process status types modification

2.9 11/05/2005 | Global document revision. User management paragraph was
updated. Hide and Active status description was also updated.
New features such Relative Deadlines was added.

3.0 23/06/2005 | Project hooks chapter was updated.

3.1 18/12/2005 | Hooks at project level was reviewed. Initiators mappers chapter
was included.

32 22/05/06 Added figures, many comments and changes (R. Perey)

-2/88-

Bull R&D BONITA / Application Programming Interface ;ﬁ)? 106

I CONCOPES . ..coeeeeiie ettt a e 10
1.1 Terminology 10
1.2 Process 10
0 O & (oo TSl o T USSR 10
| 01 £ O o] (<SSR 10
1.2.3 COOPETALIVE PIOCESSES ...vveuvenreureneentinseaseeeesesseeseansasseaseaseessensenseeseeseessesseassensansessesnsanssensessesseessessenns 11
1.2.4 MOdEIS & INSANCES.....eveuiiiiriieiiriireeirieetee ettt eb ettt b sttt eb e bbb e eneene 11
L.2.5 ClONE PIOCESSESeuveutientientietientienutesttesiteeateeeeeuteesteesteesteen bt enseenstenseesstenseesatesmbesmeeenneeneeeseenseanseens 12
1.2.6 CONCEPL OF HOOKS ... eoiiiiiiiieiieeite ettt ettt ettt ettt et et e sbestaesabesssesnbeennesnseenseeseenseens 12
L.2.7 SUDPIOCESSES ..c.ueiuventitietterteste ettt ettt et bttt s bt ettt bt eb e et s bt eb e st es b e ebe et eat e b e bt sbeeseennenae 13
1.2.8 RelationShip t0 USETS ...c.eerieiiiieieiieiiieetiete ettt ettt ettt e sae s e et e s enseete et et e tenseeneeseenseens 14
1.3 Activities 14
D301 ACHVILY DASICS ..iiutiiiiieiieiieiiecite et et ee e et e et ettt etae et e esbeesbeassee s aesssessbensaesabesssesnsessneanseenseeseesenns 14
1.3.2 Transition DEtWEEN ACHIVILIEScuervirtietieieieitietieieeie ettt ettt e sae et e s entesteeseeneetesseeneeseenseees 16
1.3.3 THETALINE ACTIVILICS .eutietieeierieeteeeietiet ittt e et et et et e ete et este st e et eseeseesaesaeeseensensesteeneaneensenseeneessenseens 16
1.3.4 CONCEPL OF HOOKSeoiiiiiiiieiiiesite ettt ettt ettt ettt e e st e sbessaesabessseenbeenaeenseenseeseenseens 21
1.3.5 Activity/hooks and tranSaACIONSc.ceeueeriierieeriieiieieeieeteesieesseesstestestaesebessbeeneesaeeseenseesseenseens 22
1.3.6 Practical Steps t0 USE NOOKScciiiiiiiiiieeie ettt ettt st et eeaeeneeebeebeeeseens 23
14 User 24
1.4.1 RelationShip t0 PrOCESSES ..ouvveruieriieriieeieiieeteeie et ettt ettt eteesteeseesaessessbessaesasesssesnsesssesnseeseesseessenns 24
1.4.2 AUthentiCation SCEMATIO......ccutiutrutetiteeteetete ettt ettt et eete ettt ebtesaeshe bt eabesbesbesae et e be bt sbeeseennenae 25
1.5 Roles 25
L.5.1 J2ZEE ROLES ittt sttt ettt 25
152 BONIta ROIESeiiiiiiiitiiietere sttt b sttt b e st 26
1.5.3 AppPlication ACCESS CONMLIOLeiuiiiiiietieieie ittt eie ettt ettt et e e sae et ensensesteeseeneesesseeneessensees 27
1.6 Mappers feature: automatic filling in of the Bonita groups 29
T S 0315 (o1& 11T ()3 USSR 29
1.6.2 LDAP, Custom and PropertieS MaAPPETLScccueurierieiieietineirieeiieste e eeteeesesteeeeeseessessesseessesseees 29
1.7 Performer Assignment 31
171 IEEOQUCHION ..ottt ettt bttt b st be bbbt st ebe e b et ene 31
1.7.2 Description of these performer assignmentscoecveeeeruerierireeiere e eieeeee et seeeeee e 31
1.8 Initiator Mapper 33
T O 315 (0 Ta 11T [)3 USSR 33
1.8.2 Description Of these INILIALOTSccueruietierieieiiet ettt st et et eee e et eneeseeeae e 33

2 USEE MANGZEMENL...........ccceeiiiiiie ettt e e 35
2.1.1 Bonita User Management basic CONfIGUIAtionNceeceevueriiriieieienie ettt 35
2.1.2 Changing the basic CONTIGUIALION...........cceeriieriieiieii ettt st aesteebeeeeeaeeaeebeesaeenseens 35

3 User RegiStration INEIACE.cccouiiiiiii ittt 37
3.1 Principle 37
3.2 Creating the UserRegistrationBean 37
33 Managing Users 38
3301 CrEALING USETS ..cueiiutieiiieiieiieiteetiesiteetteseteetteesbeesbeeseeeseeseebeesseenseasseensaenseansaanssassensaesnsesssesssesssennns 38
3.3.2 DEfINING USEIS ..veeuviiiiieiieiieitetiesiteeiiesteeteeteeteeteeteeteesbeesseenseanseessaenseassaensaasssensaesnsesssesssenssennns 38
3.3.3 DRLEtiNG USEIS..cuuieuiieuiieiieiieiteeiiesiteeiiesteeteeteebeesteeteeaeebeesseesseasseensaenssassaanssasssensaesnsesssesssenssennns 38
34 Roles 38
341 Creating ROIES.....oocviiiieiieiee e ettt ettt et e ab et e et e s e e st e saensaesabeesbeenbeenneenes 38

-3/88-

Bull R&D BONITA / Application Programming Interface ;ﬁé 106
3.5 Code sample 39
4 PFOJECE TNICTTACE ..ottt ettt e et e et e e eaeeaeeas 40
4.1 Principle 40
4.2 Creating the ProjectSessionBean 40
4.3 Initiating the ProjectSessionBean 41
4.3.1 Initiating the Session Bean (Cooperative projects & iNStances).........coeeeeeervereeeeerierieseserseeeennenns 41
4.3.2 Initiating the Session Bean (MOdELS)ccceeviiiiiiiiiiiiiieiieieiieeteee ettt ere e svee s
4.3.3 Initiating using the clone project creation option
4.3.4 Initiating using the instantiate project Creation OPtIONc.ecvereerieriieriieesieeieeeeereeereeesseeseeenseens 41
4.3.5 COAE SAMPLE.....eeiiiiieiieiieeiie ettt ettt et e e st e et e bt e be e st e s ssesaeesbessbesabeenbeeateenseenseebeeeseenseeeseensee s 42
4.4 Managing project
44,1 PrOJECt AttrIDULES....cuiieiieiieeie ettt ettt ettt ettt et et et e te et e e abessbessbeeabeesteenseenseenseesseenseesseenseeas
442 Active/Hide @ WOTKIIOW PrOCESSeovieeieriesieiiieiieieie et ettt sttt eee e e te st s eneesae e
443 Getting the name of a project or an instance .
4.4.4 Getting the name of the Parent PrOJECEccvervieciieiiiesiieiiierieiteeteeie e etesbeeaeebe e e eeeebeesaeenseens
4.4.5 Getting the name Of @ ProJECt™S CIEALOTccviervieriieiieitieiieriteitertesieesresaesbeebeenbeeaeeseeseesseenseens
44,6 PTOPETLIES .oveeueeieteitieiieteete et etete bttt et e testesaeeseestense et e eneensenseseeneessesesaeeseensensesseeneaneansens
44.7 Project details..... .
4.4.8 COAC SAMPIEcueeiiiieiieie ettt ettt ettt sttt ettt et e ettt ese e s e et e et st ettt ete st et e te st eneeneeeneens
4.5 Defining and Getting Information about activities 46
4.5.1 TYPES OF ACHIVITIES ..uveveeueieeieieeieies it ette e se st et et ete et eae bttt eseeseeesesaeeseensenseeseenteneessesseeneeneenseens 46
4.5.2 ACHIVITIES SATES «..eviuetirteieieetisteetete sttt ettt ettt ettt r e bbbt sttt ettt e bbbt bt bbbt s bt ebeebenbennene 46
4.5.3 Creating an activityc.cce.c... AT
4.5.4 Creating SubProcess activity .47
4.5.5 Configuring an activity.............. .47
I N 7 ¢ 191 Fa o1 A4 3 Ut TSR TRS 48
4.5.7 Getting information about N0des 1N the PrOJECt..........ccveriierieriirierie ettt erees 49
4.5.8 Getting information about a specific node .
TR B Te) 11 1 Tl T A 1 USRS
4.6 Managing Edges 50
4.6.1 Adding an €dge t0 an ACHIVILY.....cceevieeriieriieeii ettt ettt ettt eesaeeaesbeebeeneeeaeeeeebeesaeenreens 50
4.6.2 DEIeting AN ©AEE.......eeouieiiiieieiieeie ettt ettt et ettt s abeetaeeabeenbeenteenbeeteebeeeaeenreans 50
4.6.3 Getting connected activities from an €dZecccvevvieriieriieniiiieeieee et 50
4.6.4 Setting a condition on an edge
4.6.5 Getting the condition 0N AN €AEE........ccueeriieriieriieiieiieteei ettt sae e sbeebeseeebeeeeebeesseenseens 51
4.6.6 Getting all existing €dges 1N @ PrOJECTecveeriieriieiieiieieeieerte et stesiee e eaesbeebeesbeeaeeseeseesseenseens 51
4.6.7 Getting all existing edges for an activity .51
4.6.8 Reading an edge as a Java Object .51
4.6.9 Changing the state 0f an EdZe........cccoevuiiriiiiiiiiieiicieeeeeee ettt eree s 51
4.7 Managing Hooks 51
4.7.1 HoOK at the ProjeCt IVc.eoiieieiieiieeieee ettt sttt s st s e eae e 53
4.7.2 Hooks associated t0 @ SPECITIC ACHIVILY ...ccueervieriieiieiieiieiierie ettt see st aesbeebesbeeaeeeeebeesaeenseens 53
4.7.3 COAE SAMPIE.....eiiieiieiieeiieeiie et ete et ete et et e et esbeesbeess e e seasssessaesaesabeessesaseensesnseenseenseeseenseenseans 55
4.8 Managing users 56
4.8.1 Getting the list of all bonita regiStered USEISc.eevvieriieriieriiriieiieeie e eteete et eeeeee e ebeeseeesreens 56
4.8.2 Getting the list of users which are part of @ project.........cecceeeveeieieniiceeieeeee e .56
4.8.3 Adding & USET t0 @ PIOJECL .eoveeueeueetirtietieiesieeieetienteteete et estetes st eseeseesaeseeeseensensesseeneeneensens .56
4.8.4 Checking whether a user is part 0f @ PrOJECtccuevueeierierieriririeiere et56
4.8.5 €O SAMPIEcueeeieiiieie ettt et sttt ettt et e ettt et e s e et e et st ettt eteete et e te st eneenee e ens 57
4.9 Managing roles in a Project
4.9.1 Declaring a new role in the PrOJECTc.everiiieieiiiiiete ettt ettt sse s nee e e
4.9.2 Allocating a 101€ 10 @ USET......ccceevuieriieriieiiieeiieetie ettt bt e eteesteeieesaeesieesneesaeeees
4.9.3 Getting the list of roles that an user can assume

-4/88 -

Bull R&D BONITA / Application Programming Interface ;ﬁ)? 106
4.9.4 Getting the list of roles that an user can assume in the scope of @ project........c..ceceeverererveeennnn 58
4.9.5 Associating an activity With @ T01€ccceeviiiriiiiiiiiiieiiciiee ettt e sre e 58
I I O T4 ST 411 o) (USRS 59

410 Mappers 60
4.10.1 COA@ SAMPIL ...ttt ettt et e et e et e et e esteeabeesseesseanseenseanssanssenssesssenssesnsennsennns 60
411 Performer assignment 61
4.11.1 Addition of a performer assignment t0 @ NOAEcc.eevviriiierieriienienie et eee e enee e 61
4.11.2 COA@ SAMPIL ...ttt e et e e ee et e e beesbeeabeesseenseasseenbeanssanssensaesssenssesasennsennns 61
4.12 Checking model definition 62
4.12.1 Verifications done by checkModelDefinition method............ccceeverierieiiieniiiiieeiceeee e 62
4.12.2 COAE SAMPIL ...ttt et e e e e et e et e esbeeabeeabeenbeasseenbeanssanssensaesssenssesasennsennns 64

S5 USer SESSION TNICTTACE ...ttt ettt eianaaeen 66
51 Principle 66
5.2 Creating the UserSessionBean 66
53 User Properties 67
5.3.1 Setting USEI PIOPEITIEScuveiuiieeieiiieeiieiieeieeieeteeteesteeste bt esteesteesseesbeesseessaeseesssesaesssesssesssesnseenns 67
5.3.2 Getting User INFOrmMAationccueiiirieiiiieii ettt ettt ettt saessaessbesnaessseenseenns 67
54 User and Projects 68
5.4.1 Getting the list of projects for the USETccoeciiriiiiiiiniieciieeeeeeeee e e 68
5.4.2 Getting the list of instances for the USETcccccuivviiiiiiniieiieiecieeieeee e e e 68
5.4.3 Managing the project for the USET..........ccoeviiiiiiiiiiiiieieee ettt s 69
5.5 User and Activities 69
5.5.1 Getting the list of activities fOr the USETcccciveiiiiiiiniieciieiecieieeeee e s 69
5.5.2 Getting Information 0n USET QCHIVILYcueruiruieieierieeeeteieie et etesie et eeeee e ste et seseereeeeeenes 69
5.5.3 Getting the ToDO list fOr the USET........cccieiiiiiieiiieieeie ettt s 69
5.54 Managing activities fOr the USETc.covuieiiiiiiiiiiieieeie ettt s 69
5.6 Code sample 71
O BONIIA ENLITIES ...ttt e 72
Entities d 73
iagrams 73

6.1 73
6.1.1 GLODAL IAGLAIMN.......eiiiieiieiieieeeet ettt ettt et e e b e et e esbeen b e enseesseesseassbessesnsenssesnsesnseenns 73
6.1.2 Diagram focused on Project entity relationsccceevieeriieriieiiieniieniieiieneee e 74
6.1.3 Diagram focused on Node entity relationsccceevueerireriieriienieiieieeiienieeee e seae e 75
6.1.4 Diagram focused on User-Role entities relations..............cceeruieeiieriieniieniienienieniesee e sve e 76
6.2 Entities Attributes 77
6.2.1 BnAUhROIEVAIUEeoiiiiiiiiie ettt sttt sbe e 77
6.2.2 BNEAZEVAIUEooouiiiiiiiicieeee ettt ettt ettt ettt ettt e aa e taesabeenaeenbeenneenns 77
6.2.3 BINSANCEVALUE ..c..eviiiiiiiiiieeect ettt sttt sttt 77
6.2.4 BNIEratioN VAUccueeiiiieieiieiieieie ettt ettt ettt et e te sttt eneesaeeseeneensensenseeneeneeneeneen 78
6.2.5 BNNOAEHOOKVAIUEceiiuieiieiiiiieit ettt ettt ettt sttt enaesaeeteeneente s enseeseeneenseneas 78
6.2.6 BnNodeInterHOOKVAIUE........c.eoiiiiiriiiiiieiiiccc ettt sttt et 79
6.2.7 BnNodePerformerAsSigNValUe........ccc.cocuiriiiiieiiiieie ettt ettt ettt s sebesnbe e e 79
6.2.8 BnNOAEPTOPEITYVAIUEocuiiiiiieii ettt ettt sttt saeete et te b eseeneeneeneeneas 80
6.2.9 BINOGEVAIUC ..ottt ettt ettt s e e et et e ae bttt eneesaeeseeneensensenseeseeneenseneen 80
6.2.10 BNProjeCtHOOKVAIUC.......coiiiiiiieeieieeetee ettt sttt sttt seene e e eeenes 81
6.2.11 BnProjectInterHOOKVAIUEc.oouieieieiiieiee ettt 81
6.2.12 BNProjectPrOPertyValleccueivieeieieieiiriieiiere ettt ettt sttt sttt ne e e e e naas 82
6.2.13 BIPTOJECEVAIUE ...ttt ettt sttt s ee et ene e s s e ene e e eseneas 82
6.2.14 BNROIEMAPPETVAIUE ...ttt ettt sttt este et enee s seese e e esenes 83

-5/88-

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06
6.2.15 BIROIEVAIUEeiiiiiieiiee ettt sttt st ettt ebe e e e 83
6.2.16 BnUSEIPIOPertyValUe.c.covieiiiiieiieiiecieeee ettt et ettt ettt e saae e sabeensesnbeenseenns 84
6.2.17 BIUSEIVAIUE ...ttt ettt ettt et et et es e neeseeeseeneeneensenseeneeneensenees 84

-6/88-

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

-7/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Introduction

BONITA is a workflow system featuring innovative features like activities that can start in
anticipation, awareness infrastructure allowing user notification of any events occurring
during the execution in a given process , or automatic activation of user’s code according to a
defined activity life cycle. Traditional workflow features like dynamic user/roles resolution,
activity performer and sequential execution are also included in Bonita to support both
cooperative and administrative workflow processes.

BONITA is a fully conformant J2EE application, taking advantage of the power and
robustness of the J2EE platform. The BONITA API is accessible either thru EJB’s or Web
Services calls.

Processes are created using a graphical definition tool or by using the Project interface API. A
process is defined as a set of activities and an associated execution model. The enactment
engine takes care of scheduling the activities according to the defined execution model. The
User API provides full control over the execution of the process, for example allowing
starting or stopping of an activity. BONITA also supports dynamic modification of an
existing process, that is, the Project interface API can be applied to a running process.

Bonita Java Web Start
Instant Messaging Or YOUR APPLICATION Bonita Manager Application
Mailer [rrep——

|User Registration APIl | Project API | | User API Bonita API

: Bean Container
Message Driven Bean

Listens

v Bonita
Hooks

JMS
. xecute . . [Exccute
Topics | User Session Bean H Engine Session Bean xeeute

| Project Session Bean | l

J
A
et & Quer: R
2 Aif|nentication & User Registrati CMP Entity Beans
S Adfes Control ser Aeglstrauon
Session Bean

v v v v
Existing System Business Partner or
DA ERP System other system

Figure 1 Bonita Workflow

e The User Registration Session bean provides the interface for :

-8/88-

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

- User creation and management
- Group creation
e The Project Session Bean provides the interface for:
- Creation of the process
- Definition of nodes and edges
- Listing and Modification of properties
e The User Session Bean implements commands and queries related to:
- Projects of a user
- Todo Lists
- Executing activities
- Start/terminate/Cancel commands

e The Engine Bean is a special session bean implementing the state machine and
controlling Process execution. The Engine Bean is not part of the API.

e FEach method call in the Bonita API involving a state modification of the workflow
system is registered into a JMS Topic. Depending on user preferences (defined in user
creation), the Message Driven Bean notifies the user using Instant Messaging
services, or a Traditional Mailer.

Bonita Hooks can access existing systems in the SI (ERP or other), or Business partner
systems using JCA or Web services.

Both User and project APIs are available as Session Bean, or as web services.

-9/88-

Bull R&D BONITA / Application Programming Interface

V2.2
31/05/06

1 CONCEPTS

1.1 Terminology

A process is a set of activities. In BONITA, the term project is also used.

An activity is an atomic unit of work. In BONITA, activities are also termed Nodes.

A transition is a dependency expressing an order constraint between two activities. In
BONITA, transitions are also termed Edges.

A property is a workflow unit of data, commonly known as workflow relevant data.
A hook is user defined logic adding automatic behavior to activities/nodes and
workflow processes

A mapper is a unit of work allowing dynamic role resolution at workflow
instantiation.

A performer assignment is a unit of work adding additional activity assignment rules
at run time.

1.2 Process

1.2.1 Process basics

Bonita supports both cooperative and administrative workflow processes. These processes are
mapped to three Bonita types:

Cooperative: flexible workflow process allowing definition and execution operations
just after the process is created

Model: workflow process containing the workflow definition logic. These projects
can be instantiated by users.
Instance: workflow process representing a specific execution of a workflow model.

The status of a workflow process is controlled by definition or at runtime by the workflow
process administrator/s. Two possible statuses are allowed for a workflow process:

Active: the workflow process can be modified or executed. This is the default status
for a cooperative, model, or instance process.

Hidden: the process is not yet available. Operations like execution, cancel, or
termination of cooperatives and instances projects as well as model instantiation are
not allowed. This is the status mode allowing model modifications after instantiation.

1.2.2 Life Cycle

BONITA has a very simple process life cycle

A process is in initial state once it has been created. As soon as the process is in this
state, it can be controlled using both User API & Project API requests. The User API
allows monitoring execution of the process. Whenever the first activity is started using
the User API, the process enters the started state. The execution of the process is

-10/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

performed by the BONITA enactment engine, under control of applications using the
User APL

e A process is started as soon as the first activity starts. While executing, the process
definition can be modified using the Project API. When all activities terminate, the
process remains in state started. The process still can be modified. For example, new
activities can be added.

e A process is terminated once it has been explicitly terminated by an application thru
the User API. In terminated state, the process definition cannot be modified.

1.2.3 Cooperative processes

Bonita has simple view of cooperative process enactment: once a process is defined, it is
enacted! For example, just after the creation of a process with a single activity using the
Project API, you would be able to run it using the User API and be able to add new activities
to the process definition. This brings flexibility to workflow participants, and is particularly
convenient for so-called cooperative (ad hoc) processes.

You would typically set up a specific process to perform a given job between several
colleagues. To allow some level of reuse of process definition, we introduced the concept of
process clone (see 1.2.5 clone processes).

1.2.4 Models & Instances

There are usage scenarios where the reuse of process definition is of key importance; in these
scenarios, a long-time is spent carefully defining a generic process model that instantiates in
the same way many times. These processes are called administrative processes (process
models).

A process model is a specific definition of a process that may be instantiated many times.
They are based on a model-instance workflow paradigm. In this kind of workflow, the Project
API is used to define the workflow model. When the process definition is complete, the
workflow users are able to instantiate the workflow model via Project API. Once the model
instance(s) are created, workflow participants can access the User API to obtain their todolist,
to execute assigned activities, or other workflow user functions.

A process model keeps track of all its instances. That is, all instances of this process could be
retrieved through the User APIL.

So, either cooperative or administrative workflows use the same component definition API
that is the Project API. Depending on the type of the process created/initialized, this API must
be initialized for.

There are also differences between those workflow types concerning process execution.
Cooperative workflows are ready for execution and modification from their creation. On the
other hand, administrative workflows must be instantiated before. The term process model
refers to Bonita projects defined in the context of administrative workflow use.

-11/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

In future releases of BONITA, the concept of the Process model will be extended with
implementation of a Process Model Repository. This allows importing of process definitions
in a variety of formats.

Bonita Instantiation mechanism:

Previous versions of the Bonita workflow engine were “duplicating”, in a new process

instance, the whole process model (activities, properties, edges, hooks...) as a new clone of
the project. This took a long time even for medium workflow processes, and it was a problem
for users at instantiation.
Newer Bonita versions (1.4 and later), have been revamped to improve performance. Only the
Ready state activities (properties, roles and users if existing) are copied at the creation of the
new instance. Once an activity is started, hooks are executed under the Model Hooks (no
longer copied). Then, after activity termination, edges and Ready or Executable following
activities are copied as well.

Note:
- An instantiated process model can still be modified, but be aware that the
modifications may cause errors in the instance execution,

- An instance can still be modified, but be aware that modifications may be
conflicting with the model definition applied at execution time.

1.2.5 Clone processes

A process clone is a duplicate of an existing process. Once the cloning operation is
completed, the two processes execute independently.

After the cloning operation:

e The process instance has the same set of activities as the process model, with each
activity allocated to the same role as in the model. All activities are in initial state, and
have the same properties as in the model, with the same associated value. All activities
have the same hooks and the same transition conditions as those defined in the original
process.

e The process properties are the same as the process model, with the same initial value.

e The users associated to the process are the same as those defined in the first process,
and have the same associated roles.

e The process instance can be controlled without restrictions through the User and
Project APIs.

e [terations between activities are the same as in the process model.

Process cloning is available for both cooperative and administrative workflow processes.

1.2.6 Concept of Hooks

-12/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Hooks are user defined logic that can be triggered at some defined point in the process life
cycle. Hook definitions:

¢ Onlnstantiate hook must be called before the workflow instance is created. The
Onlnstantiate hook is not considered to be in the same transaction as the process
instantiation action. In fact, this hook is not called directly by the workflow engine. To
use Onlnstantiate, you must invoke the “executeProcessHook” before the
“instantiateProject” operation.

¢ OnTerminate hook is called after workflow instance termination ends. This hook is
not yet implemented.

1.2.7 SubProcesses

Sometimes, an independently existing business process can take part in another more
sophisticated process. Instead redefining the activities, edges, properties, hooks, in the parent
process, it could be included as a “SubProcess” of a specific kind of node.

As execution logic is inside the subProcess, subProcess activities are started and terminated
automatically by the engine according to the subProcess state.

Creating a subProcess activity:

- When a SubProcess activity is defined in the process model, the sub process is
automatically cloned by Bonita as a new process and given the name of the
subProcess activity defined in the parent process. Links are maintained
between the sub process and the parent Process.

Instantiating a Process with a SubProcess activity:

- When instantiating a Process with a subProcess activity, new instances of the
two processes are created (Parent process and Subprocess). The Bonita engine
assumes the SubProcess node and equivalent Subprocess instance to have the
same name, so it automatically gives the Subprocess instance name to the
subProcess activity in the parent process.

As with any other activity, the SubProcess activity can be iterated as well.
Constraints:
- As in a normal process, activities, properties, and hooks, in the sub-process
must not have the same name as another activity existing in the whole process.
Properties propagation

The properties of the SubProcess Activity in the global Process are propagated as Process
properties in the SubProcess, as shown below:

-13/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Process

Project Property : Prop

Activity 1 Sub Process
- Act. Property P1 (Propagate True)
- Act. Property P2 (Propagate False)

Project Property P1
Project Property SP.P1

/L\ Activity A1

i

SubProcess Activity SP - (own properties)
- Act. Property SP.P1 (Propagate = True)
- Act. Property P1

-~

Y Activity A2
(own properties)

A 4

Activity 2
- Act. Property P1
- Act . Property SP.P1

Property : Project Property
Property : Activity Property wich has to be propagated

Figure 2 Properties Propagation for SubProcess

1.2.8 Relationship to Users

A process has an associated set of Users. A user has access to the corresponding process,
meaning:

e The User knows about the existence of the process.

e The User can take over roles that exist in the scope of the process.

e The User can be notified of various events occurring in the process.

e The User can control the execution of the process.

Users assuming the Admin role can modify the definition of the process. The Admin role is
specific to a process. This means the Admin role for “processl” is different from the Admin
role for “process2”.

The User on behalf of whom the project has been created is automatically assigned the Admin
role. This User is responsible for the creation of other users in the process, and to allocate
roles to other users (including the Admin role that could be allocated to several users).

1.3 Activities

1.3.1 Activity basics

The activity is the basic unit of work within a process.
Execution of an activity can either be automatic, or manual:
e Automatic: The BONITA enactment engine starts the activity when applicable
transitions from preceding activities are successfully evaluated.
¢ Manual: the BONITA enactment engine will not start a manual activity until some
application has explicitly started it thru the User API.

-14/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06
The life cycle of an activity is as follows:
3::}"2'3 ;;i::ﬁ: Ready Start Executing ferminate Terminated

A Cancel

Parents completed &
Transitions Conditions OK
(Traditional activities) (Automatic activities)
-~

™~

Anticipating

Cancel or

Transitions Conditions NOK
Parents completed &

Transitions Conditions OK

Parents completed &
Transitions Conditions OK

(Traditional activities)

T

Start
]
ﬁ)cr:ilveiged toa Initial » Anticipable Dead
parent Parents executing
or anticipating
|Only for activities that can be anticipated
Figure 3 Activity life cycle

e Ready: This is the state of an activity ready to be started. There are two possible
situations for this state to occur. In the first, an activity has no parent activity (this is
the first activity of the workflow process). In the second, a normal activity has parent
activities that have all terminated successfully, and whose transition condition to the
activity has been successfully evaluated.

e [Initial: This is the state of an activity waiting for some processing to complete before
being ready to run. In the case of normal activities, at least one of the parent activities
is still executing. In the case of an activity that can be anticipated, at least one of the
parent activities has not started.

e Anticipable: This is the state of an activity that can be started without waiting for its
parents activity to complete. All of the parents activities must be started however.

e Anticipating: A previously anticipable activity that has been started. Automatic
activities are automatically transitioned from anticipable to anticipating. Manual
activities must be explicitly started. An anticipating activity cannot be terminated until
all parent activities have terminated, and the transition conditions have been
successfully evaluated.

e Executing: An activity in execution.

e Dead: An cancelled activity. All dependant activities are automatically cancelled.
Cancellation occurs in two cases: explicit cancellation, or unsuccessful evaluation of
an inner transition condition.

[]

Terminated: An activity that has terminated successfully.

For automatic activities, BONITA automatically causes:

(For non anticipable activities) - Transition the state from ready to terminated ,

(For anticipable activities) - Transition the state from anticipable to anticipating ,

(For anticipable activities) - Transition the state from anticipating to terminated
whenever all the parents complete.

Execute any hooks

-15/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

e Terminate the activity when the executing hooks complete

For activities involving a sub process, the life cycle is shown in Figure 4:

Father Process Father Process
SupP_Act SupP_Act
State : Initial o Ready State : EXecuting
\ 4 \ 4
Sub Process Sub Process
SubAct 1 SubAct 1
State : Initial
SubAct 2 State : Ready SubAct 2
State : Initial State : Initial

Figure 4 Activity life cycle with sub-process

An activity is associated with a role. All the users allocated that role in the scope of the
process have the possibility to control the activity.

An activity is enclosed in a Transaction, and every call to a method of the Bonita API
changing the state of an activity is considered part of that transaction (except those beginning
with “getxxx” which only retrieve information).

1.3.2 Transition between activities

Most of the usual transition patterns can be achieved using BONITA. There is no special node
to achieve these patterns; rather any activity can act as a routing node.

The transition pattern is determined according to the type of the activity, which can be AND-
JOIN (also known as "synchronize join"), or OR-JOIN (also known as "asynchronous join").

The transition pattern is also determined from the number of outgoing edges in an activity;
this is the SPLIT construct (this allows several activities to execute in parallel). This is not a
specific type of activity; if there are several outgoing nodes from a given activity, it is a
SPLIT construct.

The usual patterns are summed up below, where the activity controlling the pattern is figured
in blue, with the type of the activity shown beside.

SplitAct P1Act P2Act P1Act P2Act

P1Act P2Act AndJoin | SyncAct| AsJoinAct| o oin

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

The SplitAct (split
activity) allows two
parallel activities to start.
This is achieved by
having two outgoing
edges, one to PlAct
activity, and one to P2Act
Activity.

The SyncAct
(synchronous activity) is
type AND-JOIN. It will
execute only when both
P1Act and P2Act are in
the terminated state. If
one of those activities is
cancelled, then SyncAct is
also cancelled.

Figure 5 Activity Transitions

The AslJoinAct
(asynchronous activity) is
of type OR-JOIN. It will
execute whenever either
PlAct or P2Act are
terminated. If both of
these activities are
cancelled, then AsJoinAct
is also cancelled.

The transition patterns can be refined by defining conditions on edges between activities. A
condition operates on the value of a property of the activities, and is expressed in Java. Any
string that can be the operand of an “if”” statement is valid. Assuming that the property “Prop”
is defined for a given activity, any of the following constructs is a valid condition:

Prop.equals (“SomeString”)
(Prop.indexOf (“SomePart”) == 2)

(Prop.lenght() = 9)

(orderType.equals("PO")) && (new Integer(Qte).intValue() > 100)

-17/88 -

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

1.3.3 Iterating activities

Bonita supports arbitrary cycles within a process, which means that one or more activities can
be executed repetitively.

For this example, attach a single iteration to the last activity of the cycle. This iteration bears
the name of the first activity of the cycle and the loop condition: while the condition evaluates
to true, the Bonita execution engine will loop to the first activity while executing the

termination algorithm for the last activity.

Here is an example of a simple loop:

> | first

=777

second

Iteration specification:
From: second to: first

While : someProp.equals("goon")

The following example is more complex:

The condition is related to the value of
the property “someProp”. This property
is bound to the activity second, either
directly (it is an activity property), or
because it has been defined at the level
of the process (it is project property).

Figure 6 Simple Activity Iteration loop

first

Intermediate1

Intermediate?2

L second

Note that all the execution paths going
from activity first to activity second are
included in the cycle, just like in the
example to the side, where
intermediate]l and intermediate? are
iterated several times.

Figure 7 Complex Iteration loop

16/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Iteration’s behavior has been modified in Bonita v2.
Old behavior: (Bonita v1 series)

r—————>| first
When the iteration is entered, the outgoing
transitions from activity “second” to oneExitPoint
and from activity “Intermediate?” to
Intermediate1 Intermediate2 anOtherExitPoint were frozen, meaning they were

not evaluated during the course of the iteration.

\ New behavior: (Bonita v2)

L second Frozen mode is removed.
Now, when the iteration is entered, it’s possible to
/ l exit at any time.
o . Example: it is possible to exit from Intermediate?
oneExitPoint anGtherExitPoint to anOtherExitPoint or to exit from second to
oneEXxitPoint.

Figure 8 Iteration behavior

Note that with this new behavior we could iterate and leave the iteration at the same and
arrive to a point after iterating where it could try to execute an activity that is already
terminated.

The following Guidelines explain how to design iterations in our model:

6emise: it is not possible to continue execution inside iterations and exit at the same time. \

5. Only one iteration is allowed between two connecting nodes

6. It is possible to have more than one iteration starting in the same node

7. All transitions exiting from a node starting the iteration must meet a condition. If
there is more than one transition for exiting from that node, all transitions must meet
a condition.

8. If there are multiple exit points within the iteration it is strictly necessary to have
conditions on all the transitions exiting from that node. The Conditions must be

mutually exclusive for those conditions to take a path to either continue iterating or
\ to exit from the iteration.

NOTE: If guide lines 3 and 4 are not followed it may cause errors during the process
execution.

To guarantee that a model is correctly defined and to avoid the problems mentioned above, a
new API method has been added:
¢ ProjectSessionBean.checkModelDefinition(): The above guide lines are validated
using this method.

This method should be called at the end of a process definition class. For more information
see chapter 4.12: Checking model definition.

17/ 88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Below there is a comparison between the old iteration model and the new one:

Old model: (Bonita v1) __—» Mandatory

iteration condition

Tt T -

A 4 |
Initial > Middle > Iterator > Final
. i Mandatory
New model: moile_l._ (_B_o_n_ltfl_vgz ______________ iteration condition//v' Y
i : edge
condition)
Initial > Middle > Iterator > Final
Figure 9 Iteration Model old and new
Guidelines applied:

(Premise: it is not possible to continue execution inside iterations and exit at the same time.
4. Only one iteration is allowed between two connected nodes
5. It is possible to have more than one iteration started in the same node

~

6. All transitions exiting from a node starting the iteration must meet a condition. If there is
more than one transition for exiting from that node, all transitions must meet a condition.

\

J

To guarantee this premise, the iteration condition and edge condition must be exclusive. This

means that when one is true the other is false.

Only iterations from lterator to Initial are possible. Conditions can be a group of conditions

like: (((...) && (...)) || (...)). (Remember: only a single iteration between nodes is allowed.)

We can have another iteration starting in the lferator activity going to Middle or to Iterator

itself.

Iterations from lterator to Final activity are not allowed because a cycle does not exist.

An edge condition from lterator to Final activity is strictly necessary and must be the
opposite of the iteration condition. If there are multiple edges outgoing from lterator to other
activities, all of them must meet a condition not equal to the iteration condition (this is

necessary to accomplish the premise).

18/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Below there is a comparison between the old iteration model and the new model with multiple
exit points within the iteration:

Old model:) _ ... __——> Mandatory
iteration condition
Rt
I
\ 4 1
Initial > Middle > Iterator > Final
> Parallel
. Mandatory
New model: iteration condition//v' .
e gt -
v edge : edge
.) condition2 condition] i
Initial > Middle \j Iterator > Final
Mandatory
edge _~»
condition3
> Parallel
Figure 10 Iteration model with multiple exit points
Guidelines applied:

4. If there are multiple exit points within the iteration, it is strictly necessary to have conditions on all
transitions exiting from that node. Conditions must be mutually exclusive for those conditions
taking a path to either continue iterating or to exit from the iteration.

The main concept of these new constraints is to guarantee that the execution path does not
arrive at an activity whose state is “Terminated” or indeterminate while executing the
iteration.

Remember, edge condition2 and edge condition3 must be exclusive.

It is also possible to have multiple entry points into iterations, as shown in the following
example:

Assume that the iteration is declared between

second and first as in the example to the left:
,— 4 first anotherEntryPoint
| Because second is an AND activity, it starts
: only when activity “anotherEntryPoint” has
I
I
H 19/ 88 -
| Second
(AND activity)

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Figure 11 Iteration entry points

terminated. This is only true for the first occurrence of second: for subsequent executions of
this iteration, the incoming transitions from anotherEntryPoint are ignored.

20/88 -

Bull R&D BONITA / Application Programming Interface

V2.2
31/05/06

1.3.4 Hook Concepts

Hooks are user defined logic that can be triggered at defined points in the life of an activity.
Those defined points are:

Before Start hook is called just before the activity starts. The Before Start hook is not
considered to be in the same transaction as the activity. The Before Start hook is not
triggered for automatic activities.

After Start hook is called just after an activity starts. It is considered to be in the
same transaction as the activity. The After Start hook is not triggered for automatic
activities that cannot be anticipated.

Cancel hook is called before canceling an activity and it’s considered to be in the
same transaction as the activity.

Before Terminate hook is called just before an activity terminates. The Before
Terminate hook is considered to be in the same transaction as the activity.

After Terminate hook is called just after the activity has terminated. It is not
considered to be in the same transaction as the activity.

Anticipating hook is called when an automatic activity is started if the activity is
anticipable. It is considered to be in the same transaction as the activity.

OnReady hook is called when an activity becomes ready, so it would be very useful
to notify the user responsible for executing it. It is not considered to be in the same
transaction as the activity.

OnDeadline hook is called when the activity deadline expires. It is not considered to
be in the same transaction as the activity.

Hook Fault management

If an exception occurs during the execution of a hook, the error is propagated to the
application having triggered the execution of the hook.

Consider the following simple scenario:

An application calls the terminate Activity statement in “Activityl”; this triggers the
execution of a before Terminate hook which raises an exception; the exception is
caught by the application.

Things may be a little bit trickier if you use automatic activities:

Imagine that the terminate Activity statement in “Activity 1” completes normally, and
“Activity 1 has an outgoing edge defined for automatic activity “Activity 2”.
“Activity 2” is started and terminated automatically in the context of the first call
related to “Activity 1.

Therefore if “Activity 2” has a Before Terminate Activity hook that raises an
exception, it will interrupt the call related to “Activity 1.

This means “Activityl” does not terminate (the activity stays in the executing state)
and the system throws an exception due to the “Activity2” execution error.

21/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

The above examples show two error scenarios related to transactional hooks execution. Be
aware that Hooks can be executed in a transactional or in a non-transactional context,
depending on their types (i.e. before start, after start, ...)

Transactional hooks are executed in the same transactional context as the activity for which
they are executed. Available transactional hooks in Bonita are: After Start, Before Terminate,
Anticipate, and On Cancel hooks (see activities and transactions below).

®* Any changes performed on a transactional resource are included in the existing
transactional context.

® Any exception raised by the Hook aborts the existing transaction, so the activity is re-
executed later. Furthermore, all operations executed by the hook before the exception
was raised are rolled-back.

Bonita also has the capability to create hooks for executing outside a transactional context. In
that case, Before Start and After Terminate hooks are executed outside the activity
transactional context.

e It is extremely recommended not to use these hooks (Before Start and After
Terminate), to access Bonita APIs or other transactional APIs.

e If one of these hooks fails during its execution, the system throws an exception
but the activity starts/terminates without roll-back on the operation.

Consider the last sample scenario described previously and change Before Terminate hook by
After Terminate hook. Let’s go over the execution:
e Imagine that the terminate Activity statement on “Activity 1” completes normally,
and that “Activity 1” has a defined outgoing edge to automatic activity “Activity 2”.
e “Activity 2” will be started and terminated automatically in the context of the first
call related to “Activity 1”.
e Therefore if “Activity 2” has an After Terminate Activity hook that raises an
exception, the hook does not interrupt the call related to “Activity 1”.
e This means, “Activityl” terminates without problem, but the system throws an
exception due to “Activity2” execution error.

1.3.5 Activity/hooks and transactions

Any change of state (startActivity, terminateActivity, cancelActivity statements) performed
against an activity is part of a transaction.

Such a transaction typically involves more than one activity: for example, a terminate Activity
statement performed on a father activity triggers a change of state in all daughter activities.

BONITA keeps transactional consistency across activities.

BONITA aborts the transaction in two cases:
e A failure at system level (e.g. impossible to access the BONITA database)
® An exception was not caught by a transactional Hook.

When Hooks are executed in a transactional context:

22/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

e Any changes performed on a transactional resource are included in this existing
transactional context.

® Any exception raised by the Hook aborts the existing transaction.

1.3.6 Practical steps in hook usage:

Loading Hooks

Hooks code can be stored in the Bonita database as beanshell programs. This type of hook is
called an Interactive Hook, or "InterHook". To use an Interactive hook,store the hook
programs in the Bonita database, either through the graphical tool grapheditor (just right click
on an activity, select add Hook, and use the editor to enter beanshell code), or thru the project
API (see addInterHook, setinterHookValue, setNodelnterHookValue). At execution time, the
Bonita executive takes care of importing the code from the Bonita database.

Hooks code can also be stored on the file system as standard java classes. In that case, you
need to load the code into the application server. The way to do this is as follows:
e C(Create your source .java file, (i.e. MyHook.java). The code must be within the package
hero.hook.

e Copy your java source file to the directory
SBONITA_HOME/src/resources/hooks/hero/hook

¢ Go to the SBONITA HOME directory and type: ant deployHook -DhookClass=<name of
your java source file>. For example: ant deployHook —DhookClass=MyHook

Hooks Interface

All hooks must implement the hook interface (hero.hook. NodeHookl). This interface is quite
simple, with a single method having two parameters: an object EngineBean which is a session
bean allowing access to the Bonita executive, and a BnNodeLocal object, which is a local
interface to the entity bean representing the activity whose execution has triggered the
execution of the Hook.

¢ Direct use of the EngineBean object is not recommended.

e The BnNodeLocal object can be used to retrieve information about the currently
executing activity.

23 /88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

1.4 User Interface

BONITA makes the distinction between Users and Participants:
- Users are people who make use of the workflow system (whatever process
they are part of).
- Participants are all the users that are allowed to play some role in a given
process.

First, a user must be registered in the Bonita System for authentication (using the Bonita
User Registration API). Then, the user must be declared as a participant in each project
they are involved in (using Bonita Project API). The user is then able to take part in the
process.

Users are managed in a BONITA specific database (or thru a LDAP repository). This
database allows storing of properties (also called preferences) for a given user. Properties are
(key, value) pairs where both key and value are String variables. The application can set and
retrieve properties using the User interface. BONITA makes use of specific user properties in
order to store the User preferences.

| USERPROFILE |
User Registration
(Mandatory) Properties Creation &Modification User Registration API
Name —_—
Mail /
- Passwd

=& (Optional)
Jabber —_—

ser Specific,
(© pPr(J):))1 Getting Information about user — User Session API
Prop 2 Properties
participate

D3 BEX 484 BB
o-

Declaring user as participant

Project API

Process

Figure 12 Bonita User Database

1.4.1 User relationship to processes

24/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Users must be explicitly associated to processes in order to participate and to have visibility
of events occurring in those processes.

Two scenarios allow associating a User with a process (making a User a Participant of this
process)

e Whenever a process is created, it is created on behalf of the User that initiated the
Project Interface. This user is automatically associated to the newly created process,
and assumes the Admin role in the scope of the process.

e The users assuming the admin role for a given process have permission to associate
new users to the process, and to allocate any role to them.

1.4.2 User authentication scenario

BONITA performs User Authentication using either a specific database (i.e. mySql, Postgres,
...), or a Ldap repository. Following is an example of code running authentication of the
admin user. It uses the “TestClient” login context implemented in Bonita.

All other users are authenticated the same way.

Code sample:

import javax.security.auth.login.LoginContext;
import hero.client.test.Sim pleC allbackH andler;

public class M yW orkFlow Class {

static public void main(String[] args) throws Exception {
// User Adm in authentication

char[] password={'"t",'o",'t",)'0o '} ;

SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);
LoginContextlc = new LoginContext("TestClient", handler);

le.login();

Figure 13 User authentication example

1.5 User Roles

1.5.1 J2EE Roles

The User Registration Interface, which allows creation of users in the Bonita database, is
accessible without role restrictions. This means anyone can call its methods, with no need for
authentication.

Other Bonita Java Beans deal with the J2EE roles: “Admin” and “users”. After
authentication, only users having J2EE roles are able to access the Project and User Session
Interface.

25/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

When created with the User Registration Interface, a Bonita user is automatically assigned the
“Admin” J2EE role. Those users can access the User Registration interface and create Bonita
users.

Once created, and after J2EE authentication, each Bonita user can access the Project Interface
and create a new process, clone a process, or instantiate an existing process.

This J2EE security policy can be modified to enforce access control to Bonita Java beans
methods, but in that case, be aware that Bonita beans source code has to be adapted to your
policy (especially if you modify role names). If you use this security option, migration to
newer Bonita versions is more difficult.

It is strongly recommended to leave the Bonita way of running as it stands, and to implement
any user access restrictions using Project or User Interface methods at an application level.
See the Application Access control paragraph below for more details.

1.5.2 Bonita Roles

BONITA roles are related to activities access within processes. Each Process has its specific
role management. This permits differing semantics to associate to the same role name in the
scope of two different processes.

Activities are associated with roles. A user, assuming a given role, administers an activity.
There is a single role associated with each activity.

Users participate in a project, and within the scope of this project, a user can assume one or
several roles.

Process 2

2 > Participate in this Project with this Role

Figure 14 Bonita Roles

User2 and Userl have to execute Process] alternatively. Userl can also execute all process2
activities due to Userl accreditation in roles for Process1 and Process2.

26/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Note:
Despite that User 3 has no role to play in any process, Bonita User3 would be able to clone or
instantiate (but not modify), any process. User3 only needs to know the name of a process to
be able to call the Project interface methods to do this.
However:
- No Project or User session Interface API methods return the name of an
existing process User3 is not involved in
- After instantiation, User3 is not able to start any activity due to standard Bonita
role access control.

Default Bonita roles:

Bonita handles two pre-existing roles: “admin” and “InitialRole”. When created, an activity is
automatically associated with the “InitialRole”. This role is modified to suit application
functional requirements.

The InitialRole may be left as is for the first activity of the Workflow Process. This role could
be granted to a participant of the process in charge of starting the workflow. This may be done
independently of other functional roles that this activity may have in the process.

Additionally, this role could be left in place for automatic activities not required by other
users.

1.5.3 Application Access control

As mentioned previously, standard Bonita access control is open and allows adaptation to
organizational needs.

The Bonita access control mechanism has a basic authentication scenario based on workflow
projects roles:

- A User creating the project becomes the admin of the project (user is assigned
admin role).

- Only this admin user can add other participants/users to this project.

- Only admin users can modify the project (set, add and delete entities).

- Users taking part in the project are authorized to obtain project information
(get entities data).

- Project hooks and mappers may contain confidential information, so get data
methods are available to admin users only.

- Participants of the project can set/update properties of activities in which they
have a corresponding role.

The Bonita Graph Editor application follows these constraints:

e Only the creator of a process and the users assigned the Bonita “admin” role can
modify the process.

e Even if assigned a role to play in this process, another user cannot add, delete, or
modify, any node within the process. That user though is able to visualize the
evolution of the process.

For example, a typical workflow application distinguishes three categories of users:

27/88 -

Bull R&D BONITA / Application Programming Interface X%?/%

¢ Conceptor

e Operator
e User
0
.
—a pa— —a v
-
Conceptors Operator (s) it
Users
(different Bonita groups for
each category of users)
Role : Role : Role :
- To create or modify - To manage users - To play process they are involved
process models - To instantiate model according its in
- Totest the models own site requirement
- To do user/group association

Figure 15 User catagories

The application interface (specifically the graphical interface), implements methods to
restrain users actions.

Application restrictions could implement stronger access control than Bonita. It is advised not
to implement lesser access control than the Bonita standard access control based on points
mentioned previously.

- In this project, this node is associated to this role

- In this project, these users are participant

- In this project, this user can assume these roles

- Can this user access this node?

28 /88 -

Bull R&D BONITA / Application Programming Interface

V2.2
31/05/06

1.6 Mappers feature: automatic filling in of
the Bonita groups

1.6.1 Introduction

The Mappers feature permits automatic definition of the Bonita roles as defined in the
project model when the project is instantiated.

Three methods are available (3 types of mappers), depending on the method used to
retrieve users in the system

¢ using an LDAP server to obtain groups/roles (LDAP mapper)
o calling a java class to request a database (custom mapper)

o getting the initiator of the project instance (properties mapper)

As with other definitions of process elements, access to this functionality is performed
through the Bonita API (See the ProjectSessionBean API). Access is also available using
the graphEditor (ProEd) application.

The Mapper function is particularly interesting for process instantiation usage of the
Bonita workflow System. The automatic filling in of groups/roles happens at the first
instantiation of the project model (for both the project model and the first instance).
Thereafter it happens with each instance creation.

1.6.2 LDAP, Custom, and Properties Mappers

LDAP mapper:

This mapper uses an LDAP directory to retrieve users corresponding with a specific
role defined for a Bonita Workflow project. Please refer to the documentation (Bonita
LDAP configuration for JOnAS) for use of this type of mapper.

e LDAP mapper specifics:

= The location of the LDAP groups. This depends on the attributes: roleDN and
roleNameAttribute.

= There is no mapping between roles/groups defined in LDAP and roles defined
in the Bonita database (same name for both bases).

= The attribute name: uid is used to provide mapping between the actor identifier
in the LDAP base and the userName in the Bonita database.

= [f the group does not exist in the LDAP an exception is thrown.

= Users found in the groups must be deployed before usage of the mapper
function. Otherwise an exception is thrown.

* The name of the mapper may be any name.

29/88 -

Bull R&D

V2.2

BONITA / Application Programming Interface 31/05/06

Limitations within this version of Bonita Workflow:

Groups cannot be recursive. Group’s inclusions are ignored.

There is no verification that the distinguished names (dn) for users found in the
LDAP groups are compatible with the LDAP tree containing users defined in
the JOnAS LDAP realm configuration.

Custom mapper

This mapper provides process developers use of their own user’s storage base. When
this type of mapper is utilized, a call to a java class is performed. The name of this
mapper is the name of the called java class (i.e.: hero.mapper.CustomSeachGroup),
located under BONITA HOME\src\resources\mappers\hero\mapper. After retrieving
user information, it must be added to the project instance and also to the targeted role.
The Bonita workflow engine loads and executes these mapper classes at runtime. If
you add a custom mapper, please follow the next steps:

Look at the sample class above and implement the custom mapper logic in a
new java file.

Create a source .java file, i.e. MyMapper.java. It must be within the package
hero.mapper.

Copy the java source file created above into the directory
S8BONITA_HOME/src/resources/mappers/hero/mapper

Go to 8BONITA HOME directory and type: ant deployMapper

DmapperClass=<name of java source file>. For example, : ant deployMapper —
DmapperClass=MyMapper

Properties mapper

Presently, this type of mapper fills in the role with the user name of the creator of the
instance (based on the authenticated user that initiates the instance). This mapper is useful
for administrative workflow processes to assign the role specified in the property to the
user instantiating the process.

Examples of Mapper code are available under
SBONITA HOME/src/resources/mappers/hero/mapper.

30/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

1.7 Performer Assignment

Performer Assignment increases Bonita functionality by providing a means to modify
standard assignment rules for activities.

1.7.1 Introduction

This feature permits additional assignment rules other than those defined in the standard
Bonita model.

In the standard model (which is oriented toward cooperative workflow), all users defined in
the group associated to the activity can see and execute (the toDeo List) within this group.
By adding Performer functionality, a specified user can:

o Assign the activity to a user of a group by calling a java class in charge to do the
user selection into the user group (callback performer assignment)

¢ Dynamically assign the activity to a user by using an activity property (properties
performer assignment)

Under Performer Assignment functionality, the user is notified (via mail notification), that the
activity is ready to start.

The users of the groups, (called roles in Bonita), associated to the activity see the activity but
cannot start or terminate it.

Performer assignment functionality is accessible within the Bonita API (see
ProjectSessionBean API), and within the Bonita graphEditor application.

Furthermore, an activity can be assigned to the initiator of the instance. This requires the use
of a properties mapper as described above.

1.7.2 Description of performer assignments

Callback performer assignment

Callback performer assignment allows the process developer to code a request with its
own algorithm of user selection. When callback performer assignment is used, a call
to a java class is performed.

The name of this callback performer assignment is the name of the called java
class (i.e.: hero.performerAssign.CallbackSelectActors) located under
$BONITA_HOME!\src\resources\performerAssigns\hero\performerAssign. As
mappers, callbacks are loaded and executed by the Bonita workflow engine. To add
your own callback, follow these steps:

o Look at the sample class specified above and implement the performer
assignment logic in a new java file.

o Create a source .java file, i.e. MyPerformer.java. It must be within the
package hero.performer.

o Copy the java source file into the directory
S8BONITA_HOME/src/resources/performers/hero/performer

31/88-

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

o Go to $BONITA HOME directory and type: ant deployPerformer -
DperformerClass=<name of you java source file>. For example: ant
deployPerformer —DperformerClass=MyPerformer

Properties performer assignment
This allows the process developer to provide, at properties performer assignment
creation, the activity property used by the workflow engine to assign the activity. This
activity property must be defined either within a previously started activity, with the
property propagation, or within the targeted activity about to be assigned.

32/88-

Bull R&D BONITA / Application Programming Interface

V2.2
31/05/06

1.8 Initiator Mapper

This feature implements restrictions to the workflow models in Bonita.

1.8.1 Introduction

The Initiator Mapper feature adds additional security constraints to the workflow instantiation
operation.

Through use of Initiator Mapper, the definition of users with permission to instantiate a
particular workflow models is restricted (normally all users by default may instantiate).

Initiator Mapper functionality permits:

Access to the LDAP directory to dynamically resolve the list of users permitted to
instantiate a workflow process. This depends on the LDAP logic organization
using the default LDAP Initiator.

Dynamic resolution of the list of users allowed to instantiate the workflow model.
This depends on logic implementing a Custom Initiator

Initiator Mapper functionality is implemented in the Bonita API (see ProjectSessionBean
API). The resolution of this entity is done at getModels execution time.

1.8.2 Initiator description

Custom Initiator

The Custom Initiator permits the process developer to code a request with its own
algorithm of user selection. When this type of custom initiator mapper is added, a
call to a java class is performed.

The name of this Custom Initiator is the name of the called java class (i.e:
hero.initiatorMapper. CustomGroupMembers.java) located under
$BONITA_HOME)\src\resources\iniitatorMappers\hero\initiatorMapper. As mappers
and performer assignments, your custom initiators are loaded and executed by the
Bonita workflow engine. If adding a custom initiator, follow the these steps:

o Look at the sample class above and implement initiator logic within a
new java file.

o Create a source .java file, i.e. Mylnitiator.java. It must be within the
package hero.initiatorMapper.

o Copy the java source file into the directory $BONITA HOME/
src\resources\iniitatorMappers\hero\initiatorMapper

o Go to 8BONITA HOME directory and type: ant deployinitiator -

DinitiatorClass=<name of you java source file>. For example, : ant
deploylnitiatorMapper —DinitiatorMapperClass=Mylnitiator

33/88-

Bull R&D

V2.2

BONITA / Application Programming Interface 31/05/06

LDAP Initiator:

The LDAP Initiator uses the LDAP directory to retrieve users corresponding to a
specific role defined in a Bonita Workflow project. Please refer to the documentation
(Bonita LDAP configuration for JOnAS) to implement this type of initiator.

The LDAP initiator specifies:

The location of the LDAP groups. This depends on the attributes: »oleDN and
roleNameAttribute

There is no mapping between roles/groups in the LDAP directory and roles
specified in the Bonita database (same name may exist in both bases).

The attribute name: uid is used to provide the mapping between the actor
identifier in the LDAP base and the userName specified in the Bonita base.

If the specified LDAP group does not exist an exception is thrown.

Users found in the LDAP groups must be deployed before using the mapper
function. Otherwise an exception is thrown.

The name of the initiator may be any name

Limitations within this version of Bonita Workflow:

Groups cannot be recursive. Group inclusions are ignored.
There is no verification that the distinguished names (dn) specified for users

found in the LDAP groups are compatible with the LDAP tree containing users
defined in the JOnAS LDAP realm configuration.

34/88 -

V2.2
31/05/06

Bull R&D BONITA / Application Programming Interface

2 USER MANAGEMENT

2.1.1 Bonita User Management basic configuration

After Bonita installation and configuration, user specific data is stored in the Bonita database
chosen during the configuration phase. This consists of tables created in the Bonita database
providing security control and user management as shown below.

Realm : dsrlm_1
DSName : bonita
DSUrl : bonita
Mapper : hsql (default)

J2EE Authentication |

User, with the following J2EE roles:
Admin (for Bonita Authentication)

Datasource

Y\ | Bonita User Management

Bonita Process roles
User Specific Profile

Figure 16 User Management basic configuration

This basic configuration could be changed by user preference. For example, the configuration
is modified to utilize an existing user defined database or to use an enterprise LDAP
Directory.

2.1.2 Changing the basic configuration

User Management may move to the following schema to make an application fully integrate
an enterprise Information System. Bonita takes advantage of User Management defined at
upper levels to interface with the workflow application.

J2EE Authentication |

User, with the following J2EE roles:
Admin (for Bonita Authentication)

| Bonita User Management

Bonita Process roles
gine User Specific Profile
-~ ource
Bonita
Datasource

35/88-

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Figure 17 User management with J2EE authentication

2.1.2.1 J2EE Authentication

Bonita uses the security realm defined in the global context for Jonas (jonas-realm.xml file in
$JONAS BASE/conf directory). To change the basic configuration:

To use another Datasource Security Realm:
- Modify the existing datasource (called dsrlm_1) with selected user and roles queries.

To use an LDAP Security Realm
- Uncomment the <jonas-ldaprealm> sample file and reconfigure it. For an example
look at http://jonas.objectweb.org/current/doc/Config.html#Config-Security (look for
Configure LDAP resource in the jonas-realm.xml file)

2.1.2.2 Bonita User Management

By default, Bonita uses the hero.user. DefaultUserBase implementation class to manage users.
To add a User management class:

- Implement the hero.user. UserBase interface that provides users required information
dealing with the specified user’s management system (database, LDAP directory, User
Interface...). This class must be located within the kero.user package.

- Copy the java source file into SBONITA HOME/src/resources/users/hero/user
directory.

- Go to SBONITA HOME/src directory and type: ant deployUserBase -
DhookClass=<name of you java source file>. For example: ant deployUser -

DuserClass=MyUserClass

- Update the value of the user.base attribute with the class name implementation (in the
$BONITA_ HOME/.ant.properties file).

36/88-

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

3 USER REGISTRATION INTERFACE
3.1 Principle

The User Registration interface provides access to the J2EE users and roles definition.

For EJB Session access, the User Registration interface automatically retrieves the identity of
the calling user in the J2EE security context. Because of this, calling the User Registration
interface from an unidentified context fails.

Also, the Bonita source now permits only users with “Admin” or “users” J2EE roles to
access Project and User Session Interfaces.

* Important Note: UserRegistration API should only be used when the User

Management configuration is the Bonita default configuration!! If you are using your
own User Management implementation do not use the UserRegistration API.

3.2 Creating the UserRegistrationBean

The UserRegistrationBean may be seen as a handle for adding a new user or role in the J2EE
Application Server security context. First create the handle, and then call the UserRegistration
interface methods. This API is a stateless session bean.

Code sample:

import javax.security.auth.login.LoginContext;
import hero.client.test.SimpleCallbackHandler;

import hero.interfaces.ProjectSession;
import hero.interfaces.ProjectSessionHome;

import hero.interfaces.ProjectSessionU til;

public class MyW orkFlow Class {

static public void main(String[] args) throws Exception {
User Admin authentication
char[] password={'t,'o','t",'0'};
SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);
LoginContextlc = new LoginContext("TestClient", handler);
lc.login();

// User Registration Bean Creation using Remote Interface
UserRegistrationHome userRHome= (UserRegistrationHome) UserRegistrationU til.getHome();
UserRegistration urSession = userRHome.create();

Figure 18 Code sample creating UserRegistrationBean API

37/88-

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

3.3 Managing Users

3.3.1 Creating Users

void userCreate(String name, String password, String email)
This creates a user account. The user is automatically assigned to the “Admin” group.

void userCreate (String name, String password, String email, String jabber)
This creates a user account with an instant messaging or mail address. The user is
automatically assigned to the “Admin” group.

3.3.2 Defining Users

void setUserProperty(String userName, String key, String value)
Set a new property for the specified user “username”. User properties define user
preferences. User properties are a key/value pair.

void setUserRole(String userName, String roleName)
Set a new authorization role for the user.

3.3.3 Delete User

void deleteUser (String userName)
Delete a user from the Bonita database. If the specified user (“username”) is included
in active projects this method throws an exception.

3.4 Roles

3.4.1 Creating Roles
void roleCreate(String name, String roleGroup)

This creates a new authorization role in the system for “name”. This role is used to
control the user access to different APIs. Remember that the User Registration API
deals with J2EE identities. These roles must not be confused with Bonita roles
associated with projects.

This function is useful for changing the defaults roles of Bonita and allows more
precise control over access rights.

38/88-

Bull R&D

V2.2

BONITA / Application Programming Interface 31/05/06

3.5

Code sample

import
import
import

import javax.security.auth.login.LoginContext;
import hero.client.test.SimpleCallbackHandler;

hero.interfaces.ProjectSession;
hero.interfaces.ProjectSessionHome;
hero.interfaces.ProjectSessionUtil;

public class MyW orkFlow Class {

static public void main(String[] args) throws Exception {
// User Admin authentication
char[] password={'t",'o",'t',')o"'};
SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);
LoginContext lc = new LoginContext("TestClient", handler);
lc.login();

// User Registration Bean Creation using Remote Interface
UserRegistrationHome userRHome= (UserRegistrationHome) UserRegistrationUtil.getHome();
UserRegistration usrReg = userRHome.create();

// User "jack" (customer) creation in Bonita database
try {

userReg.userCreate("jack","jack","miguel.valdes-faura@ ext.bull.net");
tcatch(Exception e){System.out.println(e) ;} // Maybe user exists

// User "john" (service customer) creation in Bonita database

try {
userReg.userCreate("john","john","miguel.valdes-faura@ ext.bull.net");
tcatch(Exception e){System.out.println(e) ;} // Maybe user exists

userReg.remove();

Figure 19 Code sample creating Roles

39/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

4 PROJECT INTERFACE
4.1 Principle

The Project interface provides access to functions, permitting modification of execution for a
given process.

In the case of EJB Session access, the Project interface automatically retrieves the identity of
the calling user in the J2EE security context. In this case, calling the Project interface from an
unidentified context fails. Therefore, this interface is initiated for a given user. Only the
processes where Users are declared can be accessed.

Once the Project interface is created, it must be initiated. Initiating the Project interface
specifies which project is going to be managed thru the Interface.

An example of code using this interface is shown in Figure 20 below.

The code is from extracts of the SampleProjectApi.java example contained in the “samples”
directory of Bonita. This example may be executed by entering “ant sample-project-api”.
Also, refer to the samplelxxx classes, which implement the user guide workflow example
(Order Processing and Customer Service).

Execute the examples by entering “ant samplel-create-process-model” (Model creation), “ant
samplel-admin-wf” (user administration and project instantiation), “ant samplel-running-
session” (Process execution).

4.2 Creating the ProjectSessionBean

The ProjetSessionBean provides a handle into the BONITA workflow System. First, create
the handle and then associate a given project to this handle to modify it.

Code sample:

import javax.security.auth.login.LoginContext;
import hero.client.test.SimpleCallbackHandler;

import hero.interfaces.ProjectSessionHome;
import hero.interfaces.ProjectSession;
import hero.interfaces.ProjectSessionU til;

import hero.interfaces.Constants;
import java.util.*;
public class SampleProjectApi {
static public void main(String[] args) throws Exception {
User Admin login
char[] password={'t,'o",'"t")'0o"} ;
SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);

LoginContextlc = new LoginContext("TestClient", handler);
Ic.login();

/ Project Session Bean Creation using Remote Interface
ProjectSessionHome priHome= (ProjectSessionHome) ProjectSessionUtil.getHome();
ProjectSession prjSession = prjHome.create();

40/ 88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Figure 20 Code Sample creating ProjectSessionBean

4.3 Initiating the ProjectSessionBean

4.3.1 Initiating the Session Bean (Cooperative projects & instances)
Void initProject (String projectName)

Creates or initializes a cooperative workflow project. This method may be used to
initialize workflow instances.

The Project interface is initialized with the parameter name “projectName”.

If “projectName” does not exist, a new empty project is created and given this name.
By default, the user is assigned the Bonita “admin” role for this project. There are no
restrictions on the number of characters in the process/project name.

4.3.2 Initiating the Session Bean (Models)

Void initModel (String modelName)
Creates or initializes workflow models.

The Project interface is initialized with the given string “modelName”. If modelName
does not exist, a new empty model is created and given this name. By default, the user
is assigned the Bonita “admin” role for this project. There are no restrictions on the
number of characters in the process/project name.

4.3.3 Initiating a project using the clone project creation option

Void initProject (String oldProject, String newProject)
The Project interface is initialized after existing project with the name “oldProject” is
cloned. This interface is initialized with the given newProject project name.
See Figure 21 below for an exaple.

NOTE: After using the initProject method, all subsequent interface methods deal
with the corresponding project.

4.3.4 Initiating using the instantiate project creation option

Void instantiateProject (String modelName)
The Project interface is initialized after new project instance is created. This interface
is initialized with the new project instance name given by Bonita automatically.
Bonita derives the instance name from the model name as follows:
<instance-name> = <model-name>_instance<sequence-number>
All subsequent interface methods deal with the corresponding project instance.

41/88 -

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

After this instantiation, users have to be added to the new instance if they were not
defined in the process model (if a RoleMapper entity was not defined). Also, users

must be assigned roles to start/stop activities in this new project.

NOTE: Only workflow models can be instantiated. Cooperative projects are ready-
to-define, ready-to-execute just after creation.

4.3.5 Code sample

/ stk skok /
JpEEEEEEx AP] Documentation - Sample 1 (adapted version) **#ikiioisk)
// skeskoskoskokok /

//Process creation by user admin
prjSession.initProject("Original Process");
// if "Original Process" does not exists, it is created.
// Process definition see following sections
// adding activities, edges, ...
/

/[Process "Original Process" Cloning into "Clone Process"
try {
prjSession.initModel("Original Process", "Clone Process");
} catch(Exception e) {System.out.println(e);} //Maybe project does not exists

// "Original Process" instantiation
try {
prjSession.instantiateProject("Original Process");
} catch(Exception e) {System.out.println(e);} /Maybe project does not exists
// The new instance becomes the current project

Figure 21 Code sample Instantiating project

4.4 Managing project

With BONITA, there is a single API dealing with projects. This API is used to control

processes, no matter which kind of process they are:

Processes may exist by themselves without a relationship to a process model. In this

category processes are created from scratch, or cloned from parent processes.

A process may be a process model, from which process instances could be derived.
Presently, a process model may be executed as well, but this behavior will be removed

in the near future.

Process instances are specific executable processes whose definitions are contained in
a process model. At creation time, the specific context of this instance is taken into

account to make the instance unique.

4.4.1 Project attributes

A project has a name, assigned at creation time thru the Project API.

The names of process instances are constrained. BONITA automatically allocates a name

using following pattern:

<Project Model Name>_instance<Project Instance Number>.

42 /88 -

Bull R&D BONITA / Application Programming Interface

V2.2
31/05/06

The <Project Instance Number> is automatically assigned and managed by BONITA.

A project has properties, which are string key/value pairs. Enumeration String types are also

permitted.

A project records the name of the user creating the project and the project creation date.

The constant values associated with process states are:

CONSTANT VALUE
hero.interfaces.Constants.Pj.INITAL 0
hero.interfaces.Constants.Pj.STARTED 1
hero.interfaces.Constants.P). TERMINATED 2

Figure 22 Process State constant values
The constant values associated with process types are:

CONSTANT VALUE
hero.interfaces.Constants.Pj. COOPERATIVE Cooperative
hero.interfaces.Constants.Pj. MODEL Model
hero.interfaces.Constants.Pj.INSTANCE Instance

Figure 23 Process Types constant values
The constant values associated with process status are:

CONSTANT VALUE
hero.interfaces.Constants.Pj.ACTIVE Active
hero.interfaces.Constants.Pj. HIDDEN Hidden

Figure 24 Process Status constant values

4.4.2 Active/Hide a workflow process

public void activeProcess()
This sets the process status to Active (model/cooperative/instance).
Workflow processes can only be executed or instantiated if status equals active (see
Figure 24.)

public void hideProcess()
This sets the process status to Hidden (model/cooperative/instance).
Hide this workflow process. This state allows workflow model modifications once
they are instantiated.

4.4.3 Getting the name of a project or an instance
public String getName() ;

Returns the name of the project being managed by the current instance of the
ProjectSessionBean interface

43 /88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

public String getProjectNameOfInstance (String instanceName)
Return the project name for the instance “instanceName”.

4.4.4 Getting the name of the parent project
public String getParent ()

If the current project is a subProcess, returns the name of its parent project.

4.4.5 Getting the name of a project’s creator

String getCreator();
Return a string with the name of the user creating the current Project. The projects
creator name is retrieved automatically by the BONITA executive after a project is
created thru the ProjectSessionBean Interface.

4.4.6 Properties

void setProperty (String key, String value)
Creates a new property key named “key” and assigns the value “value” if the named
“key” does not exist. .If the name “key” already exists, this function overrides the
value of the existing property with the new value.

Collection getProperties() (BnProjectPropertyValue Collection)
Return a collection of all properties existing for this project.

Collection getPropertiesKey () (String Collection)
Return a collection of all the properties keys for the current project. The property is a
pair key/value representing workflow relevant data.

BnProjectPropertyValue getProperty(String key)
Return the property value of the project for the specified key. The property is from a
key/value pair associated to this project.

void deleteProperty(String key);
Deletes a property of an existing project based on the specified key. The key/value
property is removed.

4.4.7 Project details

public BnProjectValue getDetails()
Returns project information: project attributes, nodes, edges, hooks, properties...

44/ 88 -

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

4.4.8

Code sample

stttk AP] Documentation - Sample 2 ikttt

String processName = prjSession.getName() ;
System.out.println("Current Process : " + processName) ;

try {

String parentName = prjSession.getParent();
System.out.println("Parent Process : " + parentName) ;
} catch(Exception e) {System.out.println(e);} //Maybe there is no parent

try {

String creatorName = prjSession.getCreator();
System.out.println("Process Creator : " + creatorName) ;
} catch(Exception e) {System.out.println(e);} //Maybe there is a problem

try {

priSession.setProperty("userld","user1");
prjSession.setProperty("recordld","1111");
prjSession.setProperty("orderld","0001");

} catch(Exception e) {System.out.println(e);} //Maybe there is a problem

// First way to get properties values
System.out.println("First way to access proprerty values : ");

Collection properties = prjSession.getProperties() ;

Iterator i = properties.iterator();
while (i.hasNext())
f
1
hero.interfaces.BnProjectPropertyValue property = (hero.interfaces.BnProjectPropertyValue)i.next();
try {
String propertyKeyName = property.getTheKey();
String propertyValue = (String)property.getTheValue();
System.out.println("Property (Key, Value) : " + propertyKeyName + "/" + propertyValue);
} catch(Exception e) {System.out.println(e);} //Maybe there is a problem

// Second way to get properties values
System.out.println("Second way to access proprerty values : ");
properties = prjSession.getPropertiesKey() ;

i = properties.iterator();

while (i.hasNext())

{
1

String propertyKey = (String)i.next();
try {
hero.interfaces.BnProjectPropertyValue propertyValue = prjSession.getProperty(propertyKey);
System.out.println("Property (Key, Value) : " + i+ "/" + propertyValue);
} catch(Exception e) {System.out.println(e);} //Maybe there is a problem
1
s

//Deleting Property
try {

prjSession.deleteProperty("orderld");

} catch(Exception e) {System.out.println(e);} //Maybe there is a problem

//Verification

System.out.println("Properties after one deletion : ");
Collection propertiesLeft = prjSession.getPropertiesKey() ;
Iterator j = properties.iterator();
while (j.hasNext())
f
1
String propertyLeftKey = (String)j.next();
try {
hero.interfaces.BnProjectPropertyValue propertyValue = prjSession.getProperty(propertyLeftKey);
System.out.println("Property (Key, Value) : " + i+ "/" + propertyValue);

} catch(Exception e) {System.out.println(e);} //Maybe there is a problem

45/ 88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Figure 25 Code sample Project Properties

4.5 Defining and Getting Information about
activities
4.5.1 Types of activities

An Activity type can be one of the following as defined in the Constant values in
Figure 27 below:

Activity |

Activity 3 Activity 3

Activity 2 Traditional Traditional
(Manual) or (Manual) or
Automatic Automatic
AND JOIN_NOD OR_JOIN_NOD
AND_JOIN_AUTOMATIC_NOD OR_JOIN_AUTOMATIC_NOD
Figure 26 Activity Types

Another possibility is SUB_PROCESS NODE: this node is itself a complete process
included in the current process as a sub-process.

Here are the constant values associated with the types:

CONSTANT VALUE
hero.interfaces.Constants. Nd.AND JOIN NODE 1
hero.interfaces.Constants.Nd.OR_JOIN NODE
hero.interfaces.Constants. Nd.AND JOIN AUTOMATIC NODE
hero.interfaces.Constants. Nd.OR_JOIN AUTOMATIC NODE
hero.interfaces.Constants. Nd.SUB_PROCESS NODE

(O) EN RS S

Figure 27 Activity Types constant values

4.5.2 Activities states
See the “Activities basics “section of this document.

The constant values associated with the main activities states are:

46/ 88 -

Bull R&D BONITA / Application Programming Interface ;ﬁ)? 106
CONSTANT VALUE
hero.interfaces.Constants. Nd.INITIAL 0
hero.interfaces.Constants. Nd.READY 1
hero.interfaces.Constants. Nd.DEAD 2
hero.interfaces.Constants. Nd. ANTICIPABLE 3
hero.interfaces.Constants. Nd.ANTICIPATING 5
hero.interfaces.Constants. Nd.EXECUTING 6
hero.interfaces.Constants. Nd. TERMINATED 10

Figure 28 Activity State constant values

4.5.3 Creating an activity

void addNode (String name, int nodeType)
Adds a node called “name” to the project. This method creates a node with the
corresponding node type (Figure 27) and assigns to it a role equal to InitialRole. This
role is not assigned to any user at creation time, so this activity isn’t eligible for use
until the setNodeRole method is called.

4.5.4 Creating SubProcess activity

void addNodeSubProcess (String name, String projectName)
Add subProcess node called “name” to the current project. This method creates the
subProject from an existing project and creates the node associated to it. The type of
created node is hero.interfaces.Constants.Nd.SUB_ PROCESS NODE.

4.5.5 Configuring an activity
void setEditNode (String node, String role, String description,
long deadline)
Sets the information on node changes (including role, description, deadline). This is

especially useful for a graphical client application

void setNodeAnticipable (String name)
Set the node in anticipable mode.

void setNodeAutomatic (String name)
Set the node in automatic mode. The responsibility of activity execution is now with
the Bonita engine.

void setNodeDeadline (String name, long date)
Set an absolute node deadline (ex 11-05-2005). Activity deadline is the latest date
when the activity must be finished. Deprecated. Replaced by
setNodeDeadlines(String name, Collection co) see below

void setNodeRelativeDeadline (String name, long date)
Set a relative node deadline (ex: 2 hours). Activity deadline is the latest date or time in
when the activity must be finished. Deprecated. Replaced by
setRelativeDeadlines(String name, Collection co) see below

47/ 88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

void setNodeDeadlines (String name, Collection co)
Set one or more deadlines for the node. Activity deadline is the latest date the activity
must be completed.

void setNodeRelativeDeadlines (String name, Collection co)
Set one or more deadlines for the node. Activity deadline is the latest date the activity
must be completed.

void setNodeDescription (String name, String description)
Set the node description. Node description represents explicit execution related
information for this task.

void setNodeProperty (String nodeName, String key, String value)
Set a property of a node for “nodeName”. A property is a pair key/value representing
workflow relevant data. This method propagates the property is to other nodes
automatically.

void setNodeProperty(String nodeName, String key, String value,
boolean propagate)

Set a property of a node. A property is a pair key/value representing workflow
relevant data. The use of the propagate argument specifies whether to propagate this

property.

void setNodePropertyPossibleValues (String nodeName, String key, Collection
values)

Set property possible values for a specific node. The values argument represents
acceptable values as possible property values. Key/value must be enumerated type.

void setNodeTraditional (String name)
Set the node in traditional mode. When a node is traditional the anticipable attribute is
false. This method must be used if you want to execute this activity in a traditional
model.

void setNodeType (String name, int type)
Set the node type. Change the current type of the node (if node is not executing).

4.5.6 Iterating activities

void addIteration(String from, String to, String condition)
Add a new iteration between two nodes. The intent is to iterate “from” node B “to”
node A. The “from” parameter is the name of the first node (node testing a value), the
“to” parameter is the name of the node to execute based on the value.

Note: The iteration must be added to the node executing last (“from” or Activity B
below). .In the example (Figure 29), activity A is executed, then some activities
between A and B take place, and then B is executed. After the processing of B, control
goes back to A if the iteration condition set in B evaluates to true.

48 /88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Edge Edge

Iteration from B to A

Activity A (To) Activity B (From)

Figure 29 Activity Iteration

The condition may be something like “lastNodeProperty.equals(\’value\”)”, while the
value of the property is evaluated depending on the execution of the process.

Code sample: To see activity iteration, refer to the SamplelCreateProcessModel example in
the Bonita samples directory. SamplelRunningSession executes the first iteration of the
process. To terminate execution after a second iteration, modify the value “once_more” in the
Receive Order activity within the Order Processing Instance running.

4.5.7 Getting information about nodes in the project

Object getNodes ()
Returns project nodes data as an array of StrutsNodeValue. This is especially useful
for Struts based IHM, but can be used also in any kind of application.

Collection getNodesNames () (String Collection)
Return the names of all nodes in the project.

4.5.8 Getting information about a specific node

BnNodeValue getNode (String projectName, String nodeName)
Get Node Value from a specific project (for values see Figure 27).

String getNodeDeadline (String nodeName)
Return a node deadline. Activity deadline is the latest date or time by which the
activity must complete.

String getNodeDescription (String name)
Return the node description. Node description represents explicit execution related
information of this task.

String getNodeExecutor (String name)
Return the node executor. Return the name of the user executing the activity.

Collection getNodeProperties (String nodeName) (BnNodePropertyValue
Collection)

Returns Node properties as a list of pair key/value properties assigned to the node.

BnNodePropertyValue getNodeProperty (String nodeName, String key)
Return Node property value. Get the pair key/value properties associated to the node.

int getNodeState (String name)

49/ 88 -

V2.2
31/05/06

Bull R&D BONITA / Application Programming Interface

Return the state of the node. (See Figure 28 for node states.)

int getNodeType (String name)
Return the type of the node. (See Figure 27.)

BnNodeValue getNodeValue (String name)
Return the node Value. See Figure 27 for node values.

boolean getNodeAnticipable (String name)
Return true if the node is ready for execution in anticipated mode.

4.5.9 Deleting activity

void deleteNode (String name)
Delete a node from the project. If this node is in execution, terminated, or cancelled
state, the method throws an exception

void deleteNodeProperty (String nodeName, String key)
Delete a property of a node. Deletes the node property associated with this key

4.6 Managing Edges

4.6.1 Adding an edge to an activity
An edge is a way to establish a dependency between two activities.

Edges have unique names in the scope of the project. The name of the edge can be assigned
by the application, or automatically generated by BONITA.

String addEdge (String in, String out);
The two activities, named in and out, are connected by a new edge. The method
returns the name of the newly created edge. In this case the name is assigned by
BONITA.

4.6.2 Deleting an edge

Void deleteEdge (String name);
The edge named with the parameter name is deleted.

4.6.3 Getting connected activities from an edge

String getEdgeInNode (String edgeName) ;
Retrieve the node name of the inbound node of the parameter “edgeName”.

String getEdgeOutNode (String edgeName) ;
Retrieve the node name of the outbound node of the given edgeName.

50/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

4.6.4 Setting a condition on an edge

Void setEdgeCondition(String edge, String condition);

A condition operates on the value of a property of the activities and is expressed in Java. Any
string that can be the operand of an “if”” statement is valid. Assuming that the property “Prop”
is defined for a given activity, any of the following examples of constructs is a valid
condition:

Condition = “Prop.equals (\“SomeString\”)

Condition = “(Prop.indexOf (\““SomePart\”’) == 2)”
Condition = “(Prop.lenght() == 9)”

4.6.5 Getting the condition on an edge

String getEdgeCondition (String edge);

4.6.6 Get all existing edges in a project

Collection getEdgesNames () (String Collection)
Returns all existing edges in the project

4.6.7 Get all existing edges for an activity

Collection getNodeInEdges() (String Collection)
Returns all existing inbound edges for a given node

Collection getNodeOutEdges () (String Collection)
Returns all existing outbound edges for a given node

4.6.8 Reading an edge as a Java Object

hero.interfaces.BnEdgeValue getEdgeValue (String name);
Get the edge value.

4.6.9 Changing the state of an Edge

void setEdgeState(hero.interfaces.BnEdgeLocal edge, int state);
Set the edge state

4.7 Managing Hooks

Hooks are code executed at specific points during an activity life cycle.

51/88-

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Must document in a central place the different possible scripting strategies
Hooks may be coded in a scripting language (i.e. Beanshell), or as a java library (java code).

Hooks may be defined at the project level. These hooks are activated when a project is
instantiated or when the project finishes.

Hooks may also be defined at the activity level. These hooks are activated only in the context
of the related activity.

The hook interface is divided in two sets (Hooks and InterHooks).

Interactive Hooks/(InterHooks):

Script hooks are called interactive Hooks. Calls relative to interhooks contain “Inter” in their
name. Their hook type is hero.hook.Hook. BSINTERACTIVE (See Figure 32.)

Hooks execute upon detection of one of the events in Figure 30. If the hook does not include
that method, an exception is raised. This means a “hook” routine may contain multiple

methods dealing with the listed events but the hook must specify which event is acted upon.

Node Hooks events:

EVENT VALUE METHOD
hero.interfaces.Constants. Nd.BEFORESTART "beforeStart" beforeStart
hero.interfaces.Constants.Nd. AFTERSTART "afterStart" afterStart

hero.interfaces.Constants. Nd.BEFORETERMINATE | "beforeTerminate"; | beforeTerminate

hero.interfaces.Constants. Nd.AFTERTERMINATE "afterTerminate"; afterTerminate

hero.interfaces.Constants. Nd.ONCANCEL "onCancel" onCancel
hero.interfaces.Constants. Nd. ANTICIPATE "anticipate"; anticipate
hero.interfaces.Constants. Nd.ONREADY "onReady"; onReady
hero.interfaces.Constants. Nd.ONDEADLINE “onDeadLine”; onDeadline

Figure 30 Node Hook Event constants

Project Hooks events:

EVENT VALUE METHOD
hero.interfaces.Constants.Pj.ONINSTANTIATE "onInstantiate" onlnstantiate
hero.interfaces.Constants.Pj. ONTERMINATE "onTerminated" onTerminated

Figure 31 Project Hook Event constants

Different hooks types taken in to account by the Bonita engine:

HOOK TYPE VALUE
hero.interfaces.Constants. Hook. JAVA 0
hero.interfaces.Constants.Hook. BSINTERACTIVE 6

52/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Figure 32 Hook Type constants
4.7.1 Hook at the project level

Creating

Void addHook (String hookName, String eventName, int hookType)

Add an existing hook file to the project. This hook type, JAVA, (see Figure 30)
references a Java class file loaded at run time. The parameter “hookName” represents
the java class file to load by the system at run time. These class files must be located
in the application server classpath definition to execute correctly.

Deleting

Void deleteHook (String hookName)
Deletes the hook specified by hookName in current project

Void deleteInterHook (String hookName)
The hook / interHook specified by “hookName” is deleted from all project nodes.

Managing

Collection getHooks () (ProjectHooksValue Collection)
Returns all the hook names assigned to the project.

4.7.2 Hooks associated to a specific activity

Creating Hooks

Void addNodeHook (String nodeName, String hookName, String eventName,

int hookType)
Add an existing hook file to the node (activity). This type of hook uses a Java or TCL
file loaded at run time. The parameter “hookName” represents the java class or TCL
file loaded by the system at run time. These classes must exist in the application server
classpath definition for correct hook execution. Place the hooks classes in
$BONITA HOME!\src\resources\hooks and redeploy bonita.ear (ant task).

Void addNodeInterHook (String nodeName, String hookName,

String eventName, int hookType, String value)
The hook name “hookName” is added to the node. The hook activation is triggered
whenever the event “eventName” occurs for this activity. Please see events defined in
Figure 30.

Deleting Hooks

53/88-

Bull R&D BONITA / Application Programming Interface ;ﬁ;;%

Void deleteNodeHook (String hookName)
Delete a node hook. Deletes a hook defined for this activity. If the hook does not
exist, an exception is returned.

Void deleteNodeInterHook (String hookName)
Delete a node interHook. The hook or the interHook with name hookName is deleted
from the node. If the hook does not exist, an exception is returned.

Managing Hooks

Collection getNodeHooks (String nodeName) (NodeHookValue Collection)
Return all the Node hooks for the project.

Collection getNodeInterHooks (String nodeName) (NodeInterHookValue
Collection)

Return all of the Interactive Node hooks for the project.

BnNodeInterHookValue getNodeInterHook (String nodeName, String interHook)
Return all the node inter hook data associated to the hook of name « interHook » for
the node « nodeName).

String getNodeInterHookValue (String node, String hook)

This method returns the hook script associated with the hook name « hook » of this
node

54/ 88 -

Bull R&D BONITA / Application Programming Interface

V2.2
31/05/06

4.7.3 Code sample

System.out.println("Activities creation ... ");
try {
prjSession.addNode("Activity 1",Constants.Nd.AND_JOIN_ NODE);
} catch(Exception €) {Systemout.println(" --=>"+¢);} /Maybe something is wrong
try {
prjSession.addNode(" Activity 2",Constants.Nd. AND JOIN_NODE);
} catch(Exception €) {System.out.printin(" -->"+e¢);} /Maybe something is wrong
try {
prjSession.addNode(" Activity 3",Constants.Nd. AND JOIN_NODE);
} catch(Exception €) {System.out.printin(" -->"+e¢);} /Maybe something is wrong

System.out.println("Activity 3 definition ... ");

try {
Date dateLim= new Date(2005,05,02) ;
prjSession.setNodeDeadline("Activity 3",datelim get Time()) ;
prjSession.setNodeDescription("Activity 3", "Activity 3 Description”) ;

} catch(Exception €) {System.out.printin(" -->"+e¢);} /Maybe something is wrong

Systemout.println("Setting Activities types'");

try {
prjSession.setNodeTraditional("Activity 1");
prjSession.setNodeAutomatic("Activity 2");
prjSession.setNodeTraditional(" Activity 3'");

} catch(Exception €) {Systemout.println(" -->"+¢);} /Maybe something is wrong

Systemout.println("Setting node properties which will not be propagated to other nodes");

try {
prjSession.setNodeProperty("Activity 1","color", "blue", false);
System.out.println("Setting node properties which will be propagated to other nodes");
prjSession.setNodeProperty(" Activity 1","price”,"expensive" true);
prjSession.setNodeProperty(" Activity 1","shape","square'");

} catch(Exception €) {Systemout.println(" --=>"+¢);} /Maybe something is wrong

System.out.printIn("' Adding edges between activities');
try {
prjSession.addEdge("Activity 1","Activity 2");
prjSession.addEdge("Activity 2","Activity 3");
} catch(Exception €) {Systemout.println(" --=>"+¢);} /Maybe something is wrong

System.out.printIn("Getting names of all the nodes in the project");
Collection nodesNames = prjSession. getNodesNames() ;
j=nodesNares.iterator();

while (j.hasNext())

String nodeName = (String)j.next();
Systemout.println("Node : " +nodeName +" (anticipable : " + prjSession.getNodeAnticipable(nodeName) + ")'");
Collection nodeProperties = prjSession.getNodeProperties(nodeName) ;
Iterator k = nodeProperties.iterator() ;
while (k-hasNext())
{
hero.interfaces.BnNodeProperty Value nodeProperty = (hero.interfaces. BnNodeProperty Value)k.next();
try {
String nodePropertyKeyName = nodeProperty.get TheKey();
String nodePropertyValue = nodeProperty.get TheValue();

System out.printIn(" —> Property (Key, Value) : " +nodePropertyKeyName + "/ +nodePropertyValue);

} catch(Exception €) {System.out.println(" —>" +e);} /Maybe something is wrong

55/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

System.out.printIn("Node deletion");
try {
prjSession.deleteNode(" Activity 3") ;
} catch(Exception e) {System.out.println(" -->" + ¢);} //Maybe something is wrong

System.out.printIn("Node deletion verification");
try {
nodesNames = prjSession.getNodesNames() ;
j = nodesNames.iterator();
while (j.hasNext())
{
String nodeName = (String)j.next();
System.out.println("Node : " +nodeName); }
} catch(Exception e) {System.out.println(" -->" + ¢);} //Maybe something is wrong

Figure 33 Code sample Managing Hooks

To see activity, edges, and hooks definitions, refer to Samplelxxx examples in the Bonita
samples directory.

4.8 Managing users

4.8.1 Getting the list of all Bonita registered users
Collection getAllUsers () (String Collection)

Return the names of all registered users in the Bonita System.

4.8.2 Getting the list of users which are part of a project

Collection getUsers /() (String Collection)
Return all users of the project.

4.8.3 Adding a user to a project

void addUser (String username) ;
Add a user to this project (The user must exist in the Bonita database)

4.8.4 Checking whether a user is part of a project

boolean containsUser (String username);
Test if the “username” is associated to this project

56/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

4.8.5 Code sample

[RERssRek AP] Documentation - Sample 4 /
//************** USerS in PrOjeCt *****************/
/ /

System.out.println(" Getting users names of the project ");
try {

Collection usersNames = prjSession.getUsers() ;

j = usersNames.iterator();

while (j.hasNext())

String userName = (String)j.next();
System.out.printIn("User : "+ userName); }
} catch(Exception e) {System.out.println(" -->" + ¢);} //Maybe something is wrong

System.out.println(" Adding John in the project ");

try {
prjSession.addUser("john") ;

} catch(Exception e) {System.out.println(" -->" + ¢);} //Maybe something is wrong

processName = prjSession.getName() ;
System.out.printIn(""Current Process : " + processName + " contains john :" + prjSession.containsUser("john")) ;

Figure 34 Code sample Managing Users

4.9 Managing Project roles

A role is the means by which a User is associated to an activity. A role has a name and a
description.

First, roles must be declared in a project. Then the role can be associated to Users and
Activities.

4.9.1 Declaring a new role in the project

void addRole (String roleName, String description);
Add /creates a role within this project. The role is specific to this project.

4.9.2 Allocating a role to a User

Roles are assigned to users in the scope of given project. That is, a user may assume different
roles for a different project. Also, in the scope of a project, a user can assume several roles.

void setUserRole (String userName, String roleName) ;

Assigns *“username” the role specified in “roleName”. If the user is
not registered or if role name does not exist an exception is thrown.

57/ 88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

void unsetUserRole (String userName, String roleName);
Remove the role specified by “roleName” from the user specified by
“username”. If user name or role name does not exist, an exception is
thrown.

4.9.3 Getting a list of roles that an user can assume

Collection getUserRoles (String userName) (BnRoleLOcal Collection)
Return all the roles available for this user (independently of any project). If no roles exist
“NULL” is returned.

4.9.4 Getting a list of roles that an user can assume in the scope of a
project

Collection getRoles () (BnRoleLocal Collection)
Return all roles of the current project. These roles are associated with the nodes
included in the project. If no roles exist, “NULL” is returned.

Collection getRolesNames () (String Collection)
Return the names of all roles for the current project as a collection of String objects.

Collection getUserRolesInProject (String userName) (BnRoleValue
Collection)
Return the roles of this user in the current project. If no roles are assigned for the user
NULL is returned.

Collection getUserRolesInProjectNames (String userName) (String Collection)
Return the role names of the user in the current project. If no roles are assigned
“NULL” is returned.

4.9.5 Associating an activity with a role

Only a single role can take over a given activity.

String getNodeRoleName (String nodeName)
Obtain the role name of the specified node. If “nodeName” does not exist or has
terminated “NULL” is returned.

void setNodeRole(String name, String role)

Sets or changes the role of an activity if the role name already exists. If the role name
does not exist..... is returned.....

58/88 -

Bull R&D

BONITA / Application Programming Interface

4.9.6 Code sample

/************** API DOCUInentatiOn - Sample 5 *******************/
//************** ROleS in PrOjeCt *****************/

/

System.out.printIn("" Adding a Custumer role for john in the current project ");
try {
prjSession.setUserRole("john","Customer") ;
} catch(Exception e) {System.out.println(" -->" +e);} //Maybe something is wrong

System.out.printIn(" Getting role names of the project ");
try {

Collection rolesNames = prjSession.getRolesNames() ;

j = rolesNames.iterator();

while (j.hasNext())

{

String roleName = (String)j.next();
System.out.println("Role : " + roleName); }
} catch(Exception e) {System.out.println(" -->" +¢);} //Maybe something is wrong

System.out.printIn(" Getting role names for john user in this project ");
try {

Collection johnRolesNames = prjSession.getRolesNames() ;

j =johnRolesNames.iterator();

while (j.hasNext())

{

String johnRoleName = (String)j.next();
System.out.println("John role : " + johnRoleName);

} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong

System.out.printIn(" Setting role names for an activites of this project ");
try {
System.out.println(" --> Getting the actuel role names for Activities ");
try {
System.out.println(" --> Activity 1 role : " + prjSession.getNodeRoleName("Activity 1"));
System.out.println(" --> Activity 2 role : " + prjSession.getNodeRoleName("Activity 2"));
} catch(Exception e) {System.out.println(" -->" +¢);} /Maybe something is wrong

System.out.println(" --> Setting activities new roles ");

try {
prjSession.setNodeRole("Activity 1","admin") ;
prjSession.setNodeRole("Activity 2","Customer") ;

} catch(Exception e) {System.out.println(" -->" +e);} //Maybe something is wrong

System.out.println(" --> Getting the new role names for Activities ");
try {
System.out.println(" Activity 1 role : " + prjSession.getNodeRoleName(" Activity 1"));
System.out.println(" Activity 2 role : " + prjSession.getNodeRoleName(" Activity 2"));
} catch(Exception e) {System.out.println(" --> " +e);} //Maybe something is wrong

} catch(Exception e) {System.out.println(" -->" +¢);} //Maybe something is wrong

Figure 35 Code sample Roles

59/88 -

V2.2
31/05/06

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

4.10 Mappers

void addRoleMapper (String roleName, String mapperName, int mapperType)
Add an existing mapper to the role « roleName ». This type of mapper uses a Java file
loaded at run time. If “mapperName” does not exist an exception is thrown.
mapperType can be one of the following :

Constants.Mapper .LDAP for a LDAP Mapper
Constants.Mapper .PROPERTIES for a Properties Mapper
Constants.Mapper .CUSTOM for a custom Mapper

Figure 36 Mapper Constants

void deleteRoleMapper (String roleName)
Delete a role mapper. If “roleName” does not exist an exception is thrown.

Collection getRoleMappers () (BnRoleMapperValue Collection)
Return all the role mappers of the project. If “roleMapper “ does not exist, XXXXX is
returned.

4.10.1 Code sample

RV

ProjectSessionHome projectSessionh=ProjectSessionUtil.getHome (),
ProjectSession pss=projectSessionh.create();

String rolel="Admintoto";
pss.addRole (rolel, "role added for activity 1");
String role2="Admintiti";
pss.addRole (role2, "role added for activity 2");

// NODE 1
pss.addNode ("h1",Constants.Nd.AND_JOIN_NODE) ;
pss.setNodeRole ("hl",rolel);

// NODE 2
pss.addNode ("h2",Constants.Nd.AND_JOIN_NODE) ;
pss.setNodeRole ("h2",role2);

// add MAPPERS
pss.addRoleMapper (rolel, "hero.mapper.mapperl"”,Constants.Mapper.LDAP) ;
pss.addRoleMapper (role2, "hero.mapper.mapper2",Constants.Mapper.PROPERTIES) ;

// Custom mapper : Constants.Mapper.CUSTOM

pss.instantiateProject (projectName) ;

e

Figure 37 Code sample Mappers
Examples of Mapper code are available under $BONITA_HOME/src/resources/mappers/hero/mapper.

60/ 88 -

Bull R&D BONITA / Application Programming Interface ;ﬁ(ﬁ/%

4.11 Performer assignment

4.11.1 Addition of a performer assignment to a node

void addNodePerformerAssign(String nodeName,
String performerAssignName, int performerAssignType, String propertyName)

Add an existing performerAssign to the node. This type of performerAssign uses a
Java file loaded at run time. If “performerAssignName” does not exist an exception is

thrown.

PerformerAssignType can be one of the following:

Constants.Performer.CALLBACK for a Callback Performer
Assignment

Constants.Performer .PROPERTIES for a Properties Callback
Assignment

Figure 38 Performer Assign Types

4.11.2 Code sample

oS

// NODE 1

pss.addNode ("h1l",Constants.Nd.AND_JOIN_NODE) ;
pss.setNodeRole ("hl1",rolel);

// NODE 2
pss.addNode ("h2",Constants.Nd.AND_JOIN_NODE) ;
pss.setNodeRole ("h2", role2);

// NODE 3
pss.addNode ("h3",Constants.Nd.AND_JOIN_NODE) ;
pss.setNodeRole ("h3",role3);

S

// activity property
pss.setNodeProperty ("h3", "acteurH3", "gaillarr");
S

// PERFORMER ASSIGN

pss.addNodePerformerAssign ("h2",
"hero.performerAssign.CallbackSelectActors" ,
Constants.Performer.CALLBACK,"");
pss.addNodePerformerAssign ("h3",
"hero.performerAssign.PropertySelectActors" ,
Constants.Performer.PROPERTIES , "acteurH3");

Figure 39 Code sample Performer

61/88-

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

4.12 Model definition ccheck

void checkModelDefinition()

This functionality was added in Bonita v2. This method checks that the model is
defined correctly. It must be called at the end of process model definition.

Presently only iteration guidelines (explained in chapter 1.3.3 ‘Iterating activities’) are

verified, but in future versions this method may include other model definition
verification.

4.12.1 checkModelDefinition method Verification

The next two examples/figures explain the checkModelDefitinion() method
verification.verification.

Examplel C cond
J B
I
A s B s C s D condlr E cond3# F
A T
]
cond2 _I_te_ra_tign_

Example2 _____pathl
- 1

v |

th
A » B » C | D [E
7y |
]
path2 _ lteration

Figure 41 Check Model example 2

- checklteration method:

» Checks that the iteration's conditions are not empty
In Figure 40 it is not possible to have a null value: i.e. cond2.equals("")). In that
case a HeroException is thrown.
NOTE:the value "true" is NOT allowed as this creates a condition producing an
infinite loop.

62/88 -

Bull R&D

V2.2

BONITA / Application Programming Interface 31/05/06

Checks if a path between from —> to activities exists and is defined in the
iteration. This process repeated to guarantee that the model is well defined
(some transitions could have been removed).

If multiple iterations exist in the same node, then a check verifies that the
iteration conditions are different.
In Figure 41: pathl condition must be different from path2 condition.

- checkMandatorylterationConditions():

Verifies thatthat mandatory conditions on the out edges of nodes
creatingcreatingan exit point from the iteration

In Figure 40: cond1 and cond3 have to be set.

- throws a HeroException if these edges don't specify a condition

- throws a HeroException if the condition is empty (NULL): cond1.equals("")

- throws a HeroException if the condition value is "true": cond1.equals("true")

Verifies that mandatory conditions on the out edges for the node starting the
iteration differ from the iteration's condition.

In Figure 40: cond]l must be different from cond2 and cond3 must be different
from cond4.

‘Throws a HeroException if the iteration's starting condition and out edge's
condition are equal.

63 /88 -

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

4.12.2 Code sample

R

try {

ProjectSessionHore prjHare = (ProjectSessionHore) ProjectSessionUtil.getHore();
ProjectSession prjSession = prjHare.create();
prjSession.initModel ("DoubleTteration") ;

// Activities creation

prijSession.addNode ("A", hero.interfaces.Constants.Nd.AND JOIN NCDE) ;
prijSession.addNode ("B", hero.interfaces.Constants.Nd.AND JOIN AUTCMATIC NCDE) ;
prijSession.addNode ("C", hero.interfaces.Constants.Nd.AND JOIN AUTCMATIC NCDE) ;
prijSession.addNede ("D", hero.interfaces.Constants.Nd.AND JOIN AUTOVATIC NCDE) ;
prijSession.addNede ("E", hero.interfaces.Constants.Nd.AND JOIN AUTOVATIC NCDE) ;
prijSession.addNode ("E", hero.interfaces.Constants.Nd.AND JOIN AUTCMATIC NCDE) ;

// Setting Activities types
prijSession. setNodeTraditional ("A")
prijSession. setNodeTraditional ("B") ;
prijSession. setNodeTraditional ("C");
("D") ;
("E")
("F")

4

prijSession.setNodeTraditional ("D") ;
prijSession.setNodeTraditional ("E") ;
prijSession. setNodeTraditional ("F"

4

// Adding project properties

prijSession.setProperty ("conditionl", "50"); // % to do lst iteration

prijSession.setProperty ("condition2", "50"); // % to do 2nd iteration

prijSession.setProperty ("rand ", "O"); // random numcer who decides
// if we iterate or not

// Bdding edges between activities

prijSession.addedge ("A", "B");

prijSession.addedge ("B", "C");

prijSession.addEdge ("C", "D");

String frawDtoE = prijSession.addEdge("D", "E"); // Exit conditions fram iterations

String franEtoF = prijSession.addEdge ("E", "E");

// Bdding 'D' & 'E' edge conditions
prijSession. setkdgeCondition (fromDECE,

"(new Integer (randondum) . intValue() >= new Integer (conditionl) .intValue())");
prijSession. setkdgeCondition (fromEtcE,

"(new Integer (randomNum) .intValue() >= new Integer (condition2).intValue())");

// Bdding D & E hooks (that generate random values saved in randomNum property)
e/

// Bdding iterations: between D——>B and E——>C
prijSession.addIteration("D", "B",

"(new Integer (randondum) . intValue() < new Integer (conditionl).intValue())");
prijSession.addIteration("E", "C",

" (new Integer (randomNum) .intValue() < new Integer (condition?).intValue())");

// Check model definition
prijSession.checkModelDefinition() ;

64 /88 -

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

Figure 42 Code sample Check Model Definition

65/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

S USER SESSION INTERFACE
5.1 Principle

The User Session interface provides access to process execution control functions. The
Session interface is initiated for a given user. Only the processes where the User is declared
are accessible.

In cases of the EJB Session access, the User interface automatically retrieves the identity of
the calling user in the J2EE security context. Therefore, calling the User interface from an
unidentified user context fails.

Many of the User interface methods require the Project name as a parameter. This name may
be retrieved by the application logic. Alternatively, the application may retrieve the project
name using various search criteria.

NOTE: At this time, the corresponding search methods are not implemented.

The UserSessionBean, is an stateful session bean providing user API methods for obtaining
information on user Todo lists and started activities. Also, the UserSessionBean may be used
to produce activity events (i.e. start, terminate, cancel).

The UserSessionBean is based on the Bonita Engine Session Bean: that is, a recursive
implementation that manages previous execution operations and propagates the activity state
changes to activities connected to this one.

The UserSessionBean API provides information about user projects and activities (i.e. project
list, todo list, and activity list). The UserSessionBean may also be used to obtain useful
information about project instances or user preferences. With this API users can perform
task/activities using start, terminate, and cancel methods. The user may also terminate
workflow processes.

Coding examples using the User Session interface API are shown below in Figure 43.

These below examples are extracts from the SampleUserApi.java file located in the “samples”
directory of Bonita. This example may be executed by using “ant sample-user-api” in the
$BONITA _HOME directory.

Also refer to the samplelxxx classes implementing the user guide workflow example (Order
Processing and Customer Service).

Execute the samplelxxx examples by using “ant samplel-create-process-model” (Model
creation), “ant samplel-admin-wf” (user administration and project instantiation), “ant
samplel-running-session” (Process execution).

5.2 Creating the UserSessionBean

66/ 88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

The UserSessionBean is seen as a connection handle into the BONITA workflow System.
After user authentication, this handle must be created with the user identity.
Every subsequent call to the User Session API functions are related to this identity.

Code sample:

import javax.security.auth.login.LoginContext;
import hero.client.test.SimpleCallbackHandler;

import hero.interfaces.UserSession;
import hero.interfaces.UserSessionHome;
import hero.interfaces.UserSessionU til;

import hero.interfaces.Constants;
import java.util.*;
public class SampleUserApi {
static public void main(String[] args) throws Exception {
/User Admin login
char[] password={'t",'o",'t",'o "} ;
SimpleCallbackHandler handler = new SimpleCallbackHandler("admin",password);
LoginContext lc = new LoginContext("TestClient", handler);
Ic.login();
// User Session Bean Creation using Remote Interface

UserSessionHome usrHome= (UserSessionHome) UserSessionUtil.getHome();
UserSession usrSession = usrHome.create();

Figure 43 Code sample creating UserSession
5.3 User Properties
5.3.1 Setting User Properties

Void setUserProperty (String key, String value)
Set the property using key name to the value value.
If the property already exists, the current value is overridden. If the property does not
exist, it is created and its value is set to value.

void setUserMail (String userName, String mail)
Set the mail of this user into the Bonita database.

5.3.2 Getting User Information

String getUser ()
Return the name of the current authenticated User.

String getUserPassword ()
Return the user password

String getUserMail (String userName)
Return the mail address for this user from Bonita database. If “username” does not
exist, an exception is thrown.

Collection getUserProperties () (BnUserPropertyValue Collection)

67/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Return the properties defined for the current authenticated User. If no properties exist,
null is returned.

5.4 User and Projects

5.4.1 Getting the list of projects for the User

Collection getProjectList () (BnProjectLightValue Collection)
Return the Workflow processes associated to this user.

Collection getProjectListNames () (String Collection)
Return project list names for this user.

Collection getProjectsByProperty(String key, String value)
(BnProjectValue Collection)

Return Workflow projects associated with a property.

Collection getProjectsByPropertyNames (String key, String value)
(String Collection)

Return Workflow projects associated with a property.

5.4.2 Getting the list of instances for the User

Collection getInstancesList () (BnProjectLightValue Collection)
Return user instances list. This method is equivalent to getProjectList but returns only
the current instances of the user.

Collection getInstancesListNames () (String Collection)
Get instances list names for this user. This method is equivalent to
getProjectListNames but returns only the current instances of the user.

Collection getProjectInstances(String projectName) (BnProjectValue
Collection)
Return Workflow instances of this project. If projectName does not exist, an exception
is thrown.
Collection getProjectInstancesNames (String projectName) (String
Collection)

Returns workflow instances names of this project.
Collection getInstancesByProperty (String key, String wvalue)
(BnProjectValue Collection)

Return Workflow instances from a property.

Collection getInstancesByPropertyNames (String key, String value)
(String Collection)

68/88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

Return a list of project instances from a property.

5.4.3 Managing the project for the User

void removeProject (String projectName)

Delete a Workflow project

void terminate(String projectName)
Attempts to terminate a project (termination occurs when all project activities are
terminated)

5.5 User and Activities

5.5.1 Getting the list of activities for the User

Collection getActivityList (String projectName) (String Collection)
Obtain all user activities for a specific project in the executing and anticipating state.
See also the getToDoList for activities in ready state.

Collection getActivityListAllInstances () (BnNodeValue Collection)
Obtain a list of executing user activities for all instances (ready and anticipable state).

Collection getActivityListByProperty (String key, String value)
(BnNodeValue Collection)

Obtain executing user activities matching the property value (executing and
anticipating state activities).

5.5.2 Getting Information on User activity

BnNodeValue getNode (String projectName, String nodeName)
Return Node Value for a specific project.

5.5.3 Getting the ToDo list for the User

Collection getToDoList (String projectName) (String Collection)
Obtain all user activities from specific project (ready and anticipable state).

Collection getToDoListAllInstances () (BnNodeValue Collection)
Obtain the list of todo activities for the user for all instances (ready and anticipable
state).

Collection getToDolListByProperty(String key, String value) (BnNodeValue
Collection)

Obtain the list of todo activities for the user matching the property value (ready and
anticipable state activities).

5.5.4 Managing activities for the User

void startActivity(String projectName, String nodeName)
Attempts to start an activity (when activity state is ready or anticipable)

69/88 -

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

void terminateActivity (String projectName, String nodeName)
Attempts to terminate an activity (when activity state is executing or anticipating)

void cancelActivity(String projectName, String nodeName)

Attempts to cancel an activity (when activity is executing or anticipating)

70/ 88 -

Bull R&D BONITA / Application Programming Interface

V2.2
31/05/06

5.6 Code sample

/ /
Jsssskssrisskrk. AP] Documentation - Sample O ekl
sk Users and Activities skl ok
/ /

System.out.printIn("Current User Name/Passwd : " + usrSession.getUser() + "/" + usrSession. getUserPassword());
usrSession.setUserProperty("Language","Spanish");

System.out.printIn("Getting Current User properties values");
Collection properties = usrSession.getUserProperties() ;
Tterator i = properties.iterator();
while (i.hasNext())

hero.interfaces.BnUserPropertyValue property = (hero.interfaces. BnUserPropertyValue)i.next();
try {

String propertyKeyName = property.getTheKey();

String propertyValue = (String)property.get TheValue();

System.out.printIn("Property (Key, Value) : " + propertyKeyName + "/" + propertyValue);
} catch(Exception e) {System.out.println(e);} //Maybe there is a problem

}

System.out.printIn("\n Getting project names for this user");
try {
Collection prjNames = usrSession.getProjectListNames() ;
Iterator j = prjNames.iterator();
while (j.hasNext())
{
String prjName = (String)j.next();
System.out.printIn(" --> Project : " + prjName); }
} catch(Exception e) {System.out.println(" --> "+ e);} /Maybe something is wrong

System.out.printIn("\n Starting & terminating Activities available for this user");
try {
Collection instNames = usrSession.getInstancesListNames() ;
Iterator j = instNames.iterator();
while (j.hasNext())
{
String instName = (String)j.next();
System.out.printIn("--> INSTANCE : " + instName);

System.out.printin("Getting ToDo list for this instance");
Collection activityNames = usrSession.getToDoList(instName) ;
Iterator k = activityNames.iterator();
while (k.hasNext())

f

1

String activityName = (String)k.next();

System.out.println(" -->activity : " + activityName);
try {

usrSession.startActivity(instName,activityName) ;
System.out.printin(" --> activity started");
} catch(Exception e) {System.out.println(" -->" + e);} /Maybe something is wrong
} // End ToDo list

System.out.println("Getting the activity List (executing aor anticipating) for yhe user");
activityNames = usrSession.getActivityList(instName) ;
k = activityNames.iterator();
while (k.hasNext())
f

1
String activityName = (String)k.next();
System.out.println(" -->activity : "+ activityName);
try {
usrSession.terminateActivity(instName,activityName) ;
System.out.println(" --> activity terminated");
} catch(Exception e) {System.out.println(" -->" + e);} /Maybe something is wrong
} // End ToDo list

} // End Intances List

} catch(Exception e) {System.out.println(" -->" + ¢);} /Maybe something is wrong

Figure 44 Code sample Managing User Activities

71/ 88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06

6 BONITA ENTITIES

Many entry points in the API allow retrieving data about the process entities, such as the
relevant information for a given activity. Although Bonita currently makes use of the
Enterprise Java Beans entities to store data, the corresponding information has been made
available at the API level as java beans.

The following is a first level of description of those java beans. For further information, refer
to the code in the Bonita/build/generate/hero/interfaces directory.

The following naming convention applies for all entities managed at the API level.

If Entity is the name of the internally used Enterprise Java Bean, EntityValue is the name of
the corresponding plain old java object, EntityLightValue is the name of a simpler java object
(very often, EntityLightValue has only fields that have a simple type).

If you want to directly use the internal EJB thru the remote or local interfaces (We do not

recommend this choice), each of these entities may be accessed using its name suffixed by
hero.interfaces.

72/ 88 -

V2.2
31/05/06

BONITA / Application Programming Interface

Bull R&D

6.1.1 Global diagram

6.1 Entities diagrams

Figure 45 Entity Global Diagram

[Tl

1]

i m3§mﬁ_ \
v
Broorouune B “on [E—
ALYIJOUHISNIN - e
FIFONOLLF GO J10dNA"HISONG
TR I FLFANOILYIHD 4
al A=
Qi TTOUHLNYNE S| wagavl |
HISNING TTOUHLNYNG TN A prmy
T¥iuT 123 OHdNE
GHOMSSYd * NOLLAHISTA
ai HISANG 4 H3asnma (N HIdI YT TOHNE
ai LI OHING IIVANOILYIHD a g
193M0¥dNI ¥ASNING | NNV J104NE
TN
mz%,_ 4 : SLVLS
aarL E i 2ivaraivan
S VSR A Ivaani NOLLIGNOJ3DGT
& HOLYIHD ai g
INTYATHL G HTdd VIO LYLLINING Tw
al i al i H iViS
AIMIHL 103(0ddNg r/nﬁﬂmﬁml
i L3 OHdN G N ai 113
SINTFATTAISSOL ar g IAONNI N
AL¥3d 04 10I[0HdANA TrN / I003ng
iNIAT
a s aiLI3(0udNg
Qi 123(0udNG Adita5
IGONOL wn;h L FANOILYIY
L {GNOONOLLVHAL MOOHYILNILIATOHINE gy
IAONIWONS ai g Jivis
NOILYHILING EIe NOLLHI ST
FIY:TE - 5 41 Qi LI3(0HdNG
ai 113 0HdNgE ara
FdAL QI HISNG
MOOHL1DI[0¥dNE INID¥NA

al &
TiwN
ara HIFWNNXFI
TN YITWANIXANNG
dAL
¥3ddvIWITOUNS
FLVANOILYIH]
T arg
NOLLYALLDY TN
S arIqonNg
NOLLAHI 530 m{ﬁn AL UId Ol
HOLYIHD FdAd
SINTEYIaIA I NDISSYHIWY 0 4HIJIAONNS
saniavaa INTYATHL
HTWHOAHTAA LIMLIY al g
NOILISNVHL LY IVIONd
FdAL ATHTHL
Ivaand aIaonNNg
TV INY & | SINTwATTEISSOd
HO1NJ3X3 ALYIdOHdIAONNE
uvamvis || ang
QU LI OUINE 1
a g 4 TN
ai T108NE ﬂN_ I ar3qonng
J00ONNE] S
1dIIS
Fivanoi vl Jatl
TN NOOHYILNIZAONNE
ETIST: al g
arinaovng PR s *\ 2 TN
arIqoNNg aQr3qoNNg
ai g INTAT
QU LIIOUINE IdAL
3003INIDYNE MOOHIAONNE

aply’ anjy Ialypily

elitoq/s006 -1soyeaol/fibsyqpbsyaqpl - 2L SUbUg 3seqeled 1OSH - 20U215isiad

73/88 -

V2.2
31/05/06

BONITA / Application Programming Interface

Bull R&D

6.1.2 Diagram focused on Project entity relations

Figure 46 Entity relations

... g

ar g
FIPN
HIFHWNNATIW
HIFWNNIAINNE

ai HISNNE
Qi 133{0HdNS
123[0ddNa™d3SNNG

ar g
FNwN
1NIAT
ai 133foddng
A4S
FdAL
HOOHYALNILIINOHdNE

FivanNoL vIIHIGON
FIVANOH YN
NOILIANODIIDAT
ai a
ETN
FiViS
arIaonng *
arLIfoudNg q a
FAONNINE
I0aIng ﬁ)
FivanoiivInd
TN
VLS
Qi INIDYNG
FIvANOILYIHD . argonng 2|
N argl & I E R
ivis Qi LITOHANS jEthﬂEﬂl
NOHANISIA IDAINIIVNG |,)k ETN Y
ai LI OHdNG * SNEVLS
ai 4 VLS
Qi HISNNg FdAL
A1MIDYNE ILVEaNT
HOL YT
G UV IHO L VLLINGN
ai a
123l0udNg
aia
wﬂﬂu L~ INTFATHL al i
Qi LI ONdNG IVN Exmh mu_m\m a huwmuomhuw
FdAL M 1IHOHING
MO0H1I3M0UdNE SINTHATISISSOd 2e‘tmzowﬂﬂﬂﬂﬂmﬁ
Al¥3dOHd123M0HdN NOLLYYALING

FLVANOILLFIHD
JHFN

NOLLFALLIDY

JiIViS

NOMAMI T
HOLFIH]D
EINITAYIAIALYITH
SEHNIAYIa
HIAWHOSHTLA LAY
NOTLISNFHL
IdAL
FVaanN3
ITIvdIIINY
HOLNI3X3
FIVAINVIS
ai"i3foddnNg

Qi ITONNG
donNE

anra

El L)
ai 133foddNg
NOILdH 530
A I Y IWITOUNST
ar g
J10HNE

ar g

JHFN

JdAL
HIdd¥IWHOLYILINING

aply

eliuoq/s006 asoleaoy/fbsy:qpbsyagpl - U2ALq auIbLUg 3seqeled 1OSH - 20U2]151513d

anag eyl

74/ 88 -

V2.2
31/05/06

BONITA / Application Programming Interface

Bull R&D

6.1.3 Diagram focused on Node entity relations

Figure 47 Node entity relations

FONOILLFIHD

al a
ERY
HIFMANXY I al g
YIAWNNLDANNG EY
Fivanoitvaiiaon FUVANOHYIHD | [T a' 300NNE
FLVANOILYTHD N Bk A Sty
NOILIONOI3D T NOWU VALY IdAi
al VIS NDISSYHIWHO4HIdIAONNG
TN NOMLAIHI53A
VLS 0 LE L INTYATHL
ar IqaNng SANITAYIAIALY TIH ana
i 123 OudNg SINCIAYIa VIO
FAONNT ™S HIWHOSHISALIATLI Y ATHTHL
ELTaEE] NOTLISNTHL A IAONNG
FdAL SINTYATISISS0d
ST ALYIdOHdIAONNE
FIAVAIDINY
¥O1n23X3
IvaLbves ||
Qi 123 OHdN ai g
i a o H EI
ai IT0uNE drIqoNNG
I00NNE 1NIAT
mhtmze_ﬁmﬂmm 8 1S
EXTE
ciigds MOOHYILNITAONNE
~ Qi INTIYNE FIFANOILYIYD
afok Gi3AONNE 4 ANIUY
1 ala TN QR
Qi 1J3f0HdNG * SNLPLS VN
HLvaNOLLFIHD 3903ILNIOWNE | o mw”\m A IAONNE
(a0) e TN ANIAT
VLS NOLVTHI 4 ar LI oudNg Fdit
NOHLAMISIT |k (laruzadvinio tviining ,& e Aol ey
Qi £23M0UdNE . o ar sH T (0 HIdd YT TOUNS
ar ar- ai
Qi HISNNG IR I10UN3
INIDYNA

plLIOC/S 00650t e2ol/fibsL:qplbsLaqpl - JaALd SUbuUg aseqeied 1OSH - 20U2151512d

aply’ anj lanpiy

75/ 88 -

V2.2
31/05/06

BONITA / Application Programming Interface

Bull R&D

6.1.4 Diagram focused on User-Role entities relations

Figure 48 User-Role entity relations

ar g
FvEN
HIFWONXE I

HITWNNDANNG

al g
FvN
HNOHITTONHLNY
JTOHHLIYNE

aruasnng
QU ITONHINYNE | 4 *
HASNNI I T10HHLNYNG 3L PN OV IO W
! FLVANOLLYIND
- an a ._.w\u Vv_nl.l @i HISNNG
A uaadvt ﬂcm__ﬂ_,wmmw M:mzm
TN
Tvivg AN
INTFATHL ey Qi LI 0HdNE
a g| ¥ Sl Ao NOLLAIS3a
arHIsNNgG N M INTTOUNS
ATNIHL al
ALAdOUdHISTING J104Ng
*Ya I VANOILLYTHD ara
aruIsnng TN ET
ar 113 oUINg NOLLVALLIY Rl
153MOUANT HISING) |y VLS tddNITOHN
NOLLAIHISTa
HOLYIND
SINITAYIAIALLYT13Y
sanravaa
mhfnzohﬂwﬂw HIWHOATA LIALLIY
sy zoEGMHM
wmwﬂww UYAaNT
=
SHEATIONE,s FAVALHVES
dOLVIHD |, 2 Qi1 I3fOUINS
UV IWHOL Vi INING lrn\l\\\:\lvuﬂl ar ¥
al
10310¥dN S unﬂﬁ.ﬂq% HhA

BlIUOq/S006 soL|eaol/lbsLiqpbsyaqpl- 1=alg aulbLg aseqeied 1OSH - 22U31515124d

aply g 13yl

76/ 88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06
6.2 Entities Attributes
6.2.1 BnAuthRoleValue
TYPE ATTRIBUTE MEANING
int id
boolean idHasBeenSet
String name;
boolean nameHasBeenSet
String bnRoleGroup;
boolean bnRoleGroupHasBeenSet
hero.interfaces.BnAuth | pk;
RolePK
Figure 49 BnAuthRole Values
6.2.2 BnEdgeValue
TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
String name;
boolean nameHasBeenSet
int state;
boolean stateHasBeenSet
String condition;
boolean conditionHasBeenSet
java.sql.Date creationDate;
boolean creationDateHasBeenSet
java.sql.Date modificationDate;
boolean modificationDateHasBeenSet
hero.interfaces.BnNode |InBnNode;
Value
boolean InBnNodeHasBeenSet
hero.interfaces.BnNode |OutBnNode;
Value
boolean OutBnNodeHasBeenSet
hero.interfaces.BnEdgeP | pk;
K
Figure 50 BnEdge Values
6.2.3 BnlnstanceValue
| TYPE | ATTRIBUTE | MEANING

77/ 88 -

Bull R&D BONITA / Application Programming Interface X%Og 106
int id;
boolean idHasBeenSet
String name;
boolean nameHasBeenSet
String creator;
boolean creatorHasBeenSet
String parent;
boolean parentHasBeenSet
int state;
boolean stateHasBeenSet
java.util.Date creationDate;
boolean creationDateHasBeenSet
java.util.Date modificationDate;
boolean modificationDateHasBeenSet
hero.interfaces.BnProjec | javaTree;
tValue
boolean javaTreeHasBeenSet
Collection BnUsers
Collection BnRoles
Collection BnNodes
Collection BnProperties
hero.interfaces.Bnlnstan | pk;
cePK
Figure 51 Bnlnstance values
6.2.4 BnlterationValue
TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
String fromNode;
boolean fromNodeHasBeenSet
String toNode;
boolean toNodeHasBeenSet
String condition;
boolean conditionHasBeenSet
hero.interfaces.Bnlterati | pk;
onPK
Figure 52 Bnlteration values
6.2.5 BnNodeHookValue
TYPE ATTRIBUTE MEANING

int id;
boolean idHasBeenSet

78 /88 -

Bull R&D BONITA / Application Programming Interface X%Og 106
String name;
boolean nameHasBeenSet
String event;
boolean eventHasBeenSet
int type;
boolean typeHasBeenSet
hero.interfaces.BnNode |pk
HookPK
Figure 53 BnNodeHook values
6.2.6 BnNodelnterHookValue
TYPE ATTRIBUTE MEANING
int id
boolean idHasBeenSet
String name;
boolean nameHasBeenSet
String event
boolean eventHasBeenSet
int type
boolean typeHasBeenSet
String script
boolean scriptHasBeenSet
hero.interfaces.BnNodel | pk
nterHookPK
Figure 54 BnNodelnterHook values
6.2.7 BnNodePerformerAssignValue
TYPE ATTRIBUTE MEANING

int id
boolean idHasBeenSet
String name
boolean nameHasBeenSet
int type;
boolean typeHasBeenSet
String propertyName
boolean propertyNameHasBeenSet
hero.interfaces.BnNode |pk
PerformerAssignPK

Figure 55 BnNodePerformer values

79788 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06
6.2.8 BnNodePropertyValue
TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
String theKey;
boolean theKeyHasBeenSet
String theValue;
boolean theValueHasBeenSet
boolean propagate;
boolean propagateHasBeenSet
hero.interfaces.BnNode | pk;
PropertyPK
Figure 56 BnProperty values
6.2.9 BnNodeValue
TYPE ATTRIBUTE MEANING

int id;
boolean idHasBeenSet
int type;
boolean typeHasBeenSet
int state;
boolean stateHasBeenSet
boolean anticipable;
boolean anticipableHasBeenSet
String name;
boolean nameHasBeenSet
String description;
boolean descriptionHasBeenSet
String activityPerformer;
boolean activityPerformerHasBeenSet
hero.entity.NodeState | transition;
boolean transitionHasBeenSet
hero.entity. EdgeState activation;

boolean activationHasBeenSet
java.util.Date startDate;
boolean startDateHasBeenSet
java.util.Date endDate;
boolean endDateHasBeenSet
java.util.Date deadline;
boolean deadlineHasBeenSet
java.util.Date creationDate;
boolean creationDateHasBeenSet
java.util.Date modificationDate;

80/ 88 -

Bull R&D BONITA / Application Programming Interface ;/1%02 106
boolean modificationDateHasBeenSet
hero.interfaces.BnUserL | Creator;
ightValue
boolean CreatorHasBeenSet
hero.interfaces.BnUserL | Executor;
ightValue
boolean ExecutorHasBeenSet
hero.interfaces.BnRole | BnRole;

Value
boolean BnRoleHasBeenSet
hero.interfaces.BnNode | BnNodePerformerAssign;
PerformerAssignValue
boolean BnNodePerformerAssignHas
BeenSet
hero.interfaces.BnProjec | BnProject;
tLightValue
boolean BnProjectHasBeenSet
Collection BnProperties
Collection BnHooks
Collection BnlnterHooks
hero.interfaces.BnNode | pk;
PK
Figure 57 BnNode values
6.2.10 BnProjectHookValue
TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
String name;
boolean nameHasBeenSet
String event;
boolean eventHasBeenSet
int type;
boolean typeHasBeenSet
hero.interfaces.BnProjec | pk;
tHookPK
Figure 58 BnProjectHook values
6.2.11 BnProjectInterHookValue
TYPE ATTRIBUTE MEANING

int id;
boolean idHasBeenSet
String name;

81/88 -

Bull R&D BONITA / Application Programming Interface ;/1%02 106
boolean nameHasBeenSet
String event;
boolean eventHasBeenSet
int type;
boolean typeHasBeenSet
String script;
boolean scriptHasBeenSet
hero.interfaces.BnProjec | pk;
tInterHookPK
Figure 59 BnProjectInterHook values
6.2.12 BnProjectPropertyValue
TYPE ATTRIBUTE MEANING
Int 1d;
Boolean idHasBeenSet
String theKey;
Boolean theKeyHasBeenSet
String theValue;
Boolean theValueHasBeenSet
hero.interfaces.BnProjec | pk;
tPropertyPK
Figure 60 BnProjectProperty values
6.2.13 BnProjectValue
TYPE ATTRIBUTE MEANING
Int id;
boolean idHasBeenSet
int instanceNs;
boolean instanceNsHasBeenSet
String parent;
boolean parentHasBeenSet
String name;
boolean nameHasBeenSet
String creator;
boolean creatorHasBeenSet
int state;
boolean stateHasBeenSet
java.util.Date creationDate;
boolean creationDateHasBeenSet
java.util.Date modificationDate;
boolean modificationDateHasBeenSet
Collection BnUsers

82 /88 -

Bull R&D BONITA / Application Programming Interface X%Og 106
Collection BnRoles
Collection Bnlnstances
Collection BnNodes
Collection BnEdges
Collection BnAgents
Collection BnAgentEdges
Collection BnProperties
Collection Bnlterations
Collection BnHooks
Collection BnInterHooks
hero.interfaces.BnProjec | pk;
tPK
Figure 61 BnProject values
6.2.14 BnRoleMapperValue
TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
String name;
boolean nameHasBeenSet
int type;
boolean typeHasBeenSet
hero.interfaces.BnRole | pk;
MapperPK
Figure 62 BnRoleMapper values
6.2.15 BnRoleValue
TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
String description;
boolean descriptionHasBeenSet
String name;
boolean nameHasBeenSet
hero.interfaces.BnRole | BnRoleMapper;
MapperValue
boolean BnRoleMapperHasBeenSet
hero.interfaces.BnRoleP | pk;
K

Figure 63 BnRole values

83 /88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06
6.2.16 BnUserPropertyValue
TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
String theKey;
boolean theKeyHasBeenSet
String theValue;
boolean theValueHasBeenSet
hero.interfaces.BnUserP | pk;
ropertyPK
Figure 64 BnUserProperty values
6.2.17 BnUserValue
TYPE ATTRIBUTE MEANING
int id;
boolean idHasBeenSet
String name;
boolean nameHasBeenSet
String password;
boolean passwordHasBeenSet
String email;
boolean emailHasBeenSet
String jabber;
boolean jabberHasBeenSet
java.sql.Date creationDate;
boolean creationDateHasBeenSet
java.sql.Date modificationDate;
boolean modificationDateHasBeenSet
Collection BnProjects
Collection Bnlnstances
Collection BnRoles
Collection BnAuthRoles
hero.interfaces.BnUserP | pk;
K

Figure 65 BnUser values

84 /88 -

V2.2

Bull R&D BONITA / Application Programming Interface 31/05/06
Figure 1 Bonita Workflow 8
Figure 2 Properties Propagation for SubProcess 14
Figure 3 Activity life cycle 15
Figure 4 Activity life cycle with sub-process 16
Figure 5 Activity Transitions 17
Figure 6 Simple Activity Iteration loop 16
Figure 7 Complex Iteration loop 16
Figure 8 Iteration behavior 17
Figure 9 Iteration Model old and new 18
Figure 10 Iteration model with multiple exit points 19
Figure 11 Iteration entry points 20
Figure 12 Bonita User Database 24
Figure 13 User authentication example 25
Figure 14 Bonita Roles 26
Figure 15 User catagories 28
Figure 16 User Management basic configuration 35
Figure 17 User management with J2EE authentication 36
Figure 18 Code sample creating UserRegistrationBean API 37
Figure 19 Code sample creating Roles 39
Figure 20 Code Sample creating ProjectSessionBean 41
Figure 21 Code sample Instantiating project 42
Figure 22 Process State constant values 43
Figure 23 Process Types constant values 43
Figure 24 Process Status constant values 43
Figure 25 Code sample Project Properties 46
Figure 26 Activity Types 46
Figure 27 Activity Types constant values 46
Figure 28 Activity State constant values 47
Figure 29 Activity Iteration 49
Figure 30 Node Hook Event constants 52
Figure 31 Project Hook Event constants 52
Figure 32 Hook Type constants 53
Figure 33 Code sample Managing Hooks 56
Figure 34 Code sample Managing Users 57
Figure 35 Code sample Roles 59
Figure 36 Mapper Constants 60
Figure 37 Code sample Mappers 60
Figure 38 Performer Assign Types 61
Figure 39 Code sample Performer 61
Figure 40 Check Model example 1 62
Figure 41 Check Model example 2 62
Figure 42 Code sample Check Model Definition 65
Figure 43 Code sample creating UserSession 67
Figure 44 Code sample Managing User Activities 71
Figure 45 Entity Global Diagram 73
Figure 46 Entity relations 74
Figure 47 Node entity relations 75
Figure 48 User-Role entity relations 76
Figure 49 BnAuthRole Values 77
Figure 50 BnEdge Values 77
Figure 51 BnInstance values 78
Figure 52 Bnlteration values 78
Figure 53 BnNodeHook values 79
Figure 54 BnNodeInterHook values 79
Figure 55 BnNodePerformer values 79
Figure 56 BnProperty values 80
Figure 57 BnNode values 81
Figure 58 BnProjectHook values 81
Figure 59 BnProjectInterHook values 82
Figure 60 BnProjectProperty values 82

85/ 88 -

Bull R&D

BONITA / Application Programming Interface

V2.2
31/05/06

Figure 61 BnProject values

Figure 62 BnRoleMapper values

Figure 63 BnRole values

83

83

83

Figure 64 BnUserProperty values

Figure 65 BnUser values

84

84

86/ 88 -

