OpenFusione
CORBA Services

Version 4.1

Notification Service

& PRISMTECH

OpenFusione®
CORBA Services

NOTIFICATION SERVICE GUIDE

& PRISMTECH

Part Number; OFCOR-NOTG-41 Doc Issue 19, 13 July 2004

Notices

Copyright Notice

& PRISMTECH

© 2004 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

All Trademarks mentioned herein belong to their respective owners.

OMG, CORBA, 110P, and ORB are trademarks or registered trademarks of Object
Management Group, Inc. in the U.S. and other countries.

Java, Enterprise JavaBeans, and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

VisiBroker is atrademark or registered trademark of Inprise Corporation in the U.S. and
other countries.

OrbixWeb, Orbix, and ORBacus are trademarks or registered trademarks of lona
Technologies PLC in the U.S. and other countries.

UNIX isaregistered trademark in the U.S. and other countries, licensed exclusively through
X/Open Company Ltd.

Microsoft Windows and NT are trademarks or registered trademarks of Microsoft
Corporation in the U.S. and other countries.

iii
Notification Service Guide

Preface

About the Natification Service Guide

The Notification Service Guide is included with the OpenFusion CORBA Services
Documentation Set. The Notification Service Guide explains how to use the
OpenFusion Notification Service, as well as associated extensions to the service,
including the OpenFusion Typed Natification Service, OpenFusion Event Domains,
and the Event Type Repository.

The Notification Service Guide is intended to be used with the System Guide and
other OpenFusion CORBA Services documents included with the product
distribution: refer to the Product Guide for a complete list of documents.

Intended Audience

The Notification Service Guide is intended to be used by users and devel opers who
wish to integrate the OpenFusion CORBA Services into products which comply
with OMG or J2EE standards for object services. Readers who use this guide should
have a good understanding of the relevant programming languages (e.g. Java, IDL)
and of the relevant underlying technologies (e.g. J2EE, CORBA).

Organisation

& PRISMTECH

The Notification Service Guide is organised into five main sections. The first three
sections describe each of the OpenFusion Notification Service components in order
(Notification Service, Event Type Repository, and the Event Domain Service). Each
of these sections provides

« ahigh level description and list of main features

« explanation of the component’s architecture and concepts

* how to use specific features

« detailed explanations of the main interfaces and how to use them
» other information which is needed to use the component

The last section of the Notification Service Guide, Configuration and Management
provides information on configuring and managing the OpenFusion Notification
Service's components using the OpenFusion Administration Manager. Detailed
descriptions of properties specific to the component are included. It is intended that
this section be read in conjunction with the System Guide.

\'}
Notification Service Guide

Conventions

C
S| .
g8

The conventions listed below are used to guide and assist the reader in
understanding the Notification Service Guide.

Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.

Information applies to Windows (e.g. NT, 2000) only.
Information appliesto Unix based systems (e.g. Solaris) only.

Hypertext links to WWW and other internet services are shown as blue italic
underlined.

On-Line (PDF) versions of this document: Items shown as cross references to other
parts of the document, e.g., Contacts on page vii, behave as hypertext links. readers
can jump to that section of the document by clicking on the cross reference.

% Commands or input which the user enters on the
command |ine of their conputer term nal

Couri er fontsindicate programming code and file names.

Extended code fragments are shown in shaded, full width boxes (to allow for
standard 80 column wide text), as shown below:

NameConponent newNane[] = new NaneConponent|[1];

// set id field to “exanple” and kind field to an enpty string
newNane[0] = new NaneConponent (“exanple”, ““);

root Cont ext . bi nd (newNane, denmpObj ect);

Step 1:

vi

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold is used to indicate user related actions, e.g. File | Save from amenu.

Indicates that this item is a step or stage of completing atask by a user.

& PRISMTECH

Notification Service Guide

Contacts

& PRISMTECH

PrismTech can be contacted at the following address, phone number, fax and e-mail
contact points for information and technical support. Users of the on-line version of
this manual can click the e-mail addresses below to launch their e-mail client or Web
browser to send e-mail direct to PrismTech.

Corporate Headquarters European Head Office
PrismTech Corporation PrismTech Limited
6 Lincoln Knoll Lane PrismTech House
Suite 100 5th Avenue Business Park
Burlington, MA Gateshead
01803 NE11 ONG
USA UK
Tel: +1 781 270 1177 Tel: +44 (0)191 497 9900
Fax: +1 781 238 1700 Fax: +44 (0)191 497 9901
Web: http: //www.prismtechnol ogies.com
General Enquiries: info@prismtechnol ogies.com
Support Enquiries: http: //www. prismtechnol ogies.com/Contacts

vii
Notification Service Guide

http://www.prismtechnologies.com
mailto: info@prismtechnologies.com
http://www.prismtechnologies.com/Contacts

viii
Notification Service Guide

& PRISMTECH

Contents -

Table of Contents

I ntroduction

Notices ii
Preface \Y
About the Notification ServiceGuidet Y
@)] -0 K= P Vii
List of Figures XVii
List of Tables XX
1

Notification Service 5
Description 7
OV VB .« o et e e e e e e 7
OMG Standard FEAtUIESottt e e e e e 7
OpenFusion Enhancements.o it 8
Conceptsand Architecture. ... i e e 9
Dependencieson Other SErviCeS.ot i i e e e 9
TheBasiC CoNCEPL. . ..ottt e e et e e e e 9
The ArchiteCtureo e 10
TheDetails.o 14
Structured EVENLS 14
Event TYPE REPOSIONYot e e 16
Event Communication ModelSot 16
Event Channel 16
AdmiNnOBJECESo 17
PrOXIES. . . oot 18
QUEBLIES. . et 19
Quality Of SErVIiCE . ..o e 21
FIEriNg. . oo e 22
SEgUENCING .« v vttt e 23
PErSIStENCE. . . . 25
Federation 27

xi

& PRISMTECH

Notification Service Guide

Table of Contents

Xii

Using the Service 31
INErodUCHION . ..o e 31
IMPOrt StatEMENTS o 32
Compilingand Running Clients. 32
Compiling Client Applicationsot 32
Running Client Applications. i i 32
Initialisingthe ORB e 33
Starting the Notification Service. 33
Configuring the Natification Serviceot 33
Starting Clientso 34
Creating Clients. e e e e 34
Creating aSupplier 34
Connectingtothe Server. 34
Creating EVENtS.ot 39
SeNdiNg EVENES oo 40
Creating @ CONSUMEY . . .ottt et e e 41
ConnectingtotheServer. i e e e 41
RecaElVING EVENtS. i e 45
Suspending and Resuming Connections.oiii e ... 46
Removing INaCtive ProXiesot e 47
Proxy Push Consumers and Proxy Pull Suppliers 47
Proxy Push Suppliers 47
AlternativeMethod. 48
Using Quality of Service Properties. 48
Creating an Event Channel with QoS o i 48
Managing QOS. oot 50
Adding New QoStoaChannel. 50
AcCessiNgthe QoS e 50
Vaidating Event QO0S. 51
USING FIErS. ..o e e e e e e e e 51
Filter ObJeCtS. . . oot 51
Creating aFilter Object. e 52
Adding aFilter Objecttoan AdminObject 52
Listing Filter Objects i e e e e e 53
Removing Filter Objects. e e e 53
Bvent Filters. 53
Constructing ConStraiNts.o vt e 54
Managing ConStraiNtS.o v e e 55
Writing Constraint EXPressions.o v e et 56
& PRISMTECH

Notification Service Guide

Extended TCL Grammar..............
BasicElements
Opegrators.
Constraint Examples.

UsingPersistence......................

API Definitions

OMG Standard API Definitions
Event Channel Factory Interface
Event Channel Interface
Administration Interfaces
Filter Interfaces.

Supplemental Information

Quality of Service Properties

Standard OMG Properties..
OpenFusion QoS Extensions.
Administrative Properties

Errorsand Exceptions.
Errors. . ..o
Exceptions................. il

Implementation Limit Exception

Event Type Repository

&4 PRISMTECH

Description

OVEIVIBW. . o oo e

Conceptsand Architecture..............
EventTypes.o,
Inheritance. o i,
Importing..........ciii i
Contains.ooie
Interfaces. i

Using Specific Features

Import Statements

AddinganEvent Type.

Table of Contents

xiii
Notification Service Guide

Table of Contents

Event Domain Service

Xiv

Properties.........................

Event Types

Composition

Inheritance.

API Definitions

Supplemental Information

Exceptions. L,

Description

OVEIVIBW. . .ot
Service Features

Architecture and Concepts
Federating Channels
Domain Topology

Using Specific Features
Import Statements

Setting up a Domain
Creating an Event Domain

Connecting a Push Supplier
Connecting a Push Consumer

Managing Untyped Event Domains
Using a Domain Factory
Listing the Quality of Service Properties
Destroying aDomain
Managing Channels
Managing Connections

Notification Service Guide

&4 PRISMTECH

ConnectingClients.o,
Topology Management
Cycles .o
Diamonds,
Channels............ it
Disabling Event Type Propagation

Managing Typed Event Domains.
Using a Typed Event Domain Factory
Managing TypedChannels
Managing Typed Connections.
Connecting Typed Clients.

LogDomains.cvviiiii s

API Definitions

Interfaces ...
EventDomain.
EventDomainFactory
EventLogDomain
EventLogDomainFactory
TypedEventDomain
TypedEventDomainFactory

Supplemental Information

Quality of ServiceProperties.................
Administration Properties

Exceptions. ...

Configuration and M anagement

&4 PRISMTECH

Notification Service Configuration

OVENVIeW. . .o
Common Properties.coven..

NotificationSingleton Configuration
Persistence Properties
CORBA Propertiescovviiiiiann...

MessagingLoggerso oo
Instrumentation Properties.

Table of Contents

XV
Notification Service Guide

Table of Contents

Xvi

Notification Service Guide

General Properties
Messaging
ProcessSingleton Configuration

Notification Service M anager

Using the Notification Service M anager
The Notification Service Manager
Notification Service Hierarchy
Notification Service Details
Setting up an Event Channel
Creating an Event Channel
Setting Properties on an Event Channel
Admin Property Settings
QoS Property Settings
Setting up a Supplier or Consumer Admin
QoS Settings
Admin Filters
Filter Settings
Setting Proxy Instances
QoS Settings
Creating a New Proxy Object
Proxy Filters
Testing Event Delivery
Creating the Test Clients
Configuring the Test Clients
Destroying Proxy Objects

ChannelConfigurator Tool
Overview

ChannelConfigurator Object Configuration

Using the ChannelConfigurator Tooal
Saving a Channel Configuration

Running from the Command Line

| ndex

&4 PRISMTECH

List of Figures

Figure1l Basic OpenFusionv.4 Implementation, 11
Figure2 Main ComPONENtSottt et e et et ettt e e 13
Figure3 Structured EVENto e e e e 14
FIQUrE 4 ProXY SEaleSottt et e e e e e e e e e e 19
FigureS EVent QUEUES oottt et e e e e e e e e e 20
Figure6 Sequencing ArchiteCturet e 24
Figure 7 Passivating Persistent Clients i i 27
Figure 8 Federation of Channels Architecture i i e 28
Figure9 Local HOStot e e 29
Figure 10 Event Type Repository Model e 86
Figure 11 AnEvent DOMaiNttt e e e e 123
Figure 12 Federated Notification ServiceExample i 124
Figure 13 Different Typesof EventDOMaiNSst iii i e e 126
Figure 14 Event Domainand Connected Clients.ottt 130
Figure 15 Domain Containing Three Cycles i i e 143
Figure 16 Domain Containing ThreeDiamondsottt 144
Figure 17 CosEventDomainAdmin ModuleInterfaces it 152
Figure 18 CosTypedEventDomainAdmin ModuleInterfaces 152
Figure 19 DsLogDomainAdmin ModulelInterfaces 153
Figure 20 Notification Service Managerttt e et 198
Figure 21 Supplier and Consumer AdmiNSttt it e it et i et 202
FigUre 22 FierS . .o e 204
Figure 23 Add Filtero 205
Figure24 Filter Details oo 206
Figure25 Add Constraint ottt e e e e e e e e e 207
Figure 26 ProXy ObJECIS . ..o ittt it e e e e 209
Figure 27 Structured Supplier Managert e e e ettt 212
Figure 28 Structured Consumer Managerttt e 212
Figure29 Configure EventsDialog BOXt i 214
Figure 30 Configure Event Diadlog BOXottt 215
Figure 31 Saving Channel Configurationco ittt 221
& PRISMTECH xvil

Notification Service Guide

List of Figures

xviii

Notification Service Guide & PRISMTECH

List of Tables

Tablel CosNatification Interfaces i e 61
Table2 CosNotifyComm Interfacest e e e 62
Table 3 CosNotifyFilter Interfaces e e 63
Table4 CosNotifyChannelAdmin Interfaces.t i 63
Table5 Standard Quality of Service Properties. 69
Table 6 Extended Quality of Service Properties 73
Table 7 Notification Service EXCEptioNS oot e e e e 80
Table8 Event Type Repository Classes ovii it 115
Table 9 Event Type Repository AQgregationsttt et e i i e e 116
Table 10 Event Type Repository EXCEptionSo ot 117
Table 11 MOF Exceptions used by the Event Type Repositoryo, 117
Table12 Connection DataStruCturet e e et 140
Table 13 TypedConnection DataStruCturet et e e 147
Table14 Event Domain Servicelnterfaces i 151
Table 15 Event Domain Service QOS Propertiest e 165
Table 16 Event Domain Service Administration Setting 166
Table 17 Event Domain ServicCe EXCEPLIONSo v it e e 166
Table 18 Notification Service NOUES oot e e e 198
& PRISMTECH XX

Notification Service Guide

List of Tables

XX

Notification Service Guide & PRISMTECH

3
Introduction I
P 4

M
¥

& PRISMTECH

Introduction

The OpenFusion Notification Service is one of a range of services and interfaces
included with the OpenFusion CORBA Services product range.

The Notification Service component of the OpenFusion Notification Service
product can be used stand-alone or with other OpenFusion CORBA Services
interfaces and services. It is standards based, compliant with recognised industry
standards and specifications, and supports portability and interoperability.

3
Notification Service Guide

Introduction

4
Notification Service Guide

& PRISMTECH

Notification Service

Description

Oveviaw

The OMG Noatification Service is a greatly enhanced extension of the OMG Event
Service and is backwards compatible with it. Both of these services enable data,
referred to as events, to be sent and received between distributed software objects in
a decoupled fashion via an event channel. This decoupling enables events to be
transmitted more efficiently and flexibly than when events are sent directly between
objects (i.e., tightly coupled).

Some of the benefits of using these services include:

« ease of maintenance when adding or removing suppliers and consumers of events
inasystem

» more efficient use of network bandwidth between the suppliers and consumers

 performance increasingly improves over tight coupling as the number of suppliers
and consumers increases (through the use of concurrency)

The OMG Noatification Service provides additional benefits, including:
« the ability to control the flow of eventsin order to maximise performance
* the provision of and ability to control, event reliability within the service

« the management of the events and how their flow through the service is buffered
or gueued

The OpenFusion version 4 implementation of the Notification Service provides the
majority of the features and benefits provided in the OMG Notification Service
Specification, which includes those features which are most used. The OpenFusion
Notification Service also provides additional benefits for improved administration
of the service plus improved flexibility and control over the flow, buffering and
reliability of events sent through the service.

The OpenFusion Notification Service is widely used in the telecommunications,
finance, transport/travel and energy industries for applications ranging from
propagating alarms on equipment, providing share dealing services, to booking
hotels and planes.

OMG Sandard Features

The OpenFusion Natification Service includes the standard OM G features, such as:

7
Notification Service

& PRISMTECH

1.1 Overview Description

* decoupling the event transmission from suppliers to consumers by using event
channels and proxies. The events may be structured (containing details about the
event), or sequences of events (events sent in batches for improved performance)

 avoidance of poor performance due to polling by using the push style event
transmission model for event naotification

* enabling clients to receive only those events they are specifically interested in by
using filters attached to the client’s proxy

* the provision of filters and the Extended Trader Constraint Language for
controlling or limiting events being sent through the service in order to improve
performance, flexibility and manageability of event transmission

 enabling reliability, e.g. guaranteed event delivery, queues (event flow buffers)
and events to be managed at the channel, proxy or event level through the use of
Quality of Service (Qo0S) settings

« facilitating the creation of filtering constraints by end-users through the provision
of an event type repository, thus enabling information about the structure of events
to be readily accessible

* enabling certain types of events to be transmitted in batches in order to increase
performance

» additional administrative operations

OpenFusion Enhancements

The OpenFusion Notification Service provides many enhancements over the
standard OMG specification. These enhancements include:

» provision of external graphical user interfaces, as part of the OpenFusion
Graphical Tools, for run-time administration of the service

* rich administrative interface

* an extensive Quality of Service framework incorporating additional settings for
improved controlability, performance tuning and flexibility

» provisions for improved performance and scal ability, such as
- multi-threading
- ability to federate channels (connect event channels together)

- provision of persistence for events, channels and connections to commercial
databases through the use of optimized stored procedures

- automatic service activation on demand

8
Notification Service

& PRISMTECH

Description 1.2 Concepts and Architecture
« support for custom Java filters which may perform substantially better than the
standard OMG constraint filter
« ahility to federate channels across multiple platforms and interoperate with native
notification services
Conceptsand Architecture

Although the OpenFusion Notification Service is generally compliant with the
OMG Notification Service specification, it has many additional features and
enhancements.

The OMG Notification Service is an extension of the OMG Event Service and is
backwards compatible with it. However, this release of the OpenFusion Notification
Service only supports the semantics specified for Notification Service clients, since
avast majority of users only use this client type.

Dependencieson Other Services

The Notification Service does not require other services in order to run. However,
the Notification Service IDL includes IDL from these services:

 Notification Service inherits from the Event Service.
» Time Service definitions are used to support start time and timeout values.

The Time Service can be used to provide a central source of time within a
distributed system when a client wishes to time-stamp events. The Timer Event
Service can be used to generate events at timed intervals.

TheBasic Concept

&4 PRISMTECH

There are many situations when an object needs to receive notification that an event
has been generated or produced by another object, such as when an alarm control
panel of a security system needs to know if a remote alarm has been activated. The
object may also need to know details about the event itself so that it can take
appropriate action. Using the security system example, the alarm panel may need to
know which alarm was activated, its location, the reason for the alarm (break-in,
fire, etc.) in order to provide appropriate information to security officers.

Obviously, the abjects producing and using the event need to be connected to each
other in some fashion so that communication of the event can occur. A simple
solution would be to connect the objects together directly: notification of an event
occurrence and information about it being communicated directly between the two

9
Notification Service

1.2 Concepts and Architecture Description

objects. Importantly, these objects would then be tightly coupled to each other:
changes effecting the communication of the event by one object will directly affect
the other object.

Tight coupling performs well when one object is connected to only one other object.
If, however, many objects are connected to many others, especially when the
number of objects changes, then maintainability, performance and scalability
become serious issues. For example, each time an event producer object (e.g. a new
alarm) is added, then all event user, or consumer, objects (e.g. the alarm panelsin the
building, at the security firm, in the police or fire stations) will need to be changed,
too. In software terms, code for all consumer objects, i.e. the consumers, will need
to be atered, re-compiled, tested, etc., whenever supplier objects, i.e. the suppliers,
are added.

Also, communication between tightly coupled objects is synchronous, that is before
the supplier can send an event, the consumer must be ready to receive it. If a
supplier is connected to several consumers, then it must wait for the slowest
consumer to receive (or consume) the event before it can proceed.

Decoupling suppliers and consumers through an intermediary can overcome these
issues. If new suppliers or consumers are added to the system, then only the
intermediary needs to be altered, not each consumer or supplier, respectively.
Further, the intermediary can provide event buffers, or queues and multi-threading
capabilities in order to enabl e asynchronous communication: events can be sent and
received without waiting for the slowest “member of the pack”.

An intermediary can therefore take over the task of communicating events between
suppliers and consumers: it can provide a service for them, who become its clients.

The Event Service was the first service that the OMG specified for the decoupled,
asynchronous communication of events between event producer and consumer
client objects. By decoupling the objects, through the use of an event channel and
proxies, the Event Service provided improved maintainability, performance and
scalability over systemswhich rely on tightly coupled objects.

Like the Event Service, the Notification Service provides decoupled, asynchronous
communication between supplier and consumer client objects. However, the
Notification Service provides additional features, such as Quality of Service and
filtering, to dramatically improve reliability and help control event transmission.

The Architecture
The Notification Service can be looked at from two perspectives.

1. from the journey that an event takes from supplier to consumer, i.e. its
transmission path

10
Notification Service

& PRISMTECH

Description

2.

1.2 Concepts and Architecture

how the Notification Service components are conceptualy connected and
created

Event Transmisson
A supplier generates events.

1

The supplier sends the events to a proxy representing the consumer, the
consumer proxy. If needed, the event can be translated to atype that is expected
by the consumer.

Unwanted events can be filtered out before transmission to the next stage of the
journey, the supplier admin object.

Numerous consumer proxies can be connected to a single supplier admin object:
filtering and quality of service settings can be applied by the admin object to all
of the events being supplied by the proxies, as a group, before they are sent to
the event channel.

The event channd transmits the events, which have not been filtered out, to a
consumer admin object. The consumer admin object then forwards those events
to itsindividual supplier proxies: additional filtering and quality of service
adjustments can be by defined the admin object prior to forwarding.

Each supplier proxy sends their events to their respective event consumers (one
proxy per consumer). Final filtering and quality of service settings can be
applied at the proxy for each event before it is sent on to the consumer.

Figure 1, Basic OpenFusion v.4 Implementation, shows that only the push model of
event transmission is used in the OpenFusion v.4 implementation of the basic
architecture.

&4 PRISMTECH

Supplier

Supplier
Admin
Object

Push Proxy Push
Supplier Consumer
Supplier
Proxy

\ Direction of Event Flow >

Figure 1 Basic OpenFusion v.4 Implementation

11
Notification Service

1.2 Concepts and Architecture Description

12

Component Connection and Creation

The components of the service are organised hierarchically. The main component is
the event channel. Event channels are created by the service's event channel factory:
multiple event channels can be created by the event channel factory for operation
within the service.

Admin objects are created by event channels; proxies are created from the admin
objects. Finally, each proxy is connected to a client supplier object or client
consumer object.

Each object within the hierarchy is given a unique identifier when it is created. The
combination of the hierarchical organisation and the unique identifiers enables all
components to be found or referenced from any other component in the hierarchy.

Main Componentsand Features
The main components of the OpenFusion Notification Service are:

» event channels, admin objects, proxies, filter objects, queues and an Event Type
Repository

The types of event are:

* structured events (the OpenFusion Notification Service does not support Event
Syle events or typed events, although they may be supported in future releases)

The transmission mode! is the push model (note that the OM G-defined pull model is
rarely used and was removed from the OpenFusion Notification Service in order to
reduce size and complexity and improve performance).

Figure 2, Main Components, shows the service’s main components, including
filters, queues, tranglation and the Event Type Repository.

& PRISMTECH

Notification Service

Description 1.2 Concepts and Architecture

Supplier
Proxy
Supplier
Proxy
——

| |
I |
: I Event Type| I
-4 _____ Repository— — — — — — — — — — — — — — — — — — f— — J—
Direction of Event Flow >

Figure 2 Main Components

Proxy
Filters

Proxy
Filters

Consumer
Proxy
Proxy

Filters
n |

Admin
Filters

onsume
Admin
Object

Proxy
Filters

Consumer
Proxy

Features

The Notification Service provides various management, reliability and performance
enhancing operations and features, including:

» standard OMG features

- Quality of Service (QoS), for providing and controlling reliability, queue
management and event management

- sequencing, enabling events to be sent in batches in order to enhance
performance

» OpenFusion enhancements.

- Quality of Service extensions, additiona QoS properties for improving
controllability and flexibility of event transmission

- federation, where event channels can be connected or federated together for
performance, reliability and flexibility

- transparent fail-over, which takes advantage of ORB vendor features (when
provided) for keeping the service operating when a server host fails; enables
another host to transparently, without loss of events, support the service

- persistence, which enables events and connections to be made persistent

13

&4 PRISMTECH ey .
Notification Service

1.2 Concepts and Architecture Description

- event storage plugins, enables database storage of persistent events, including
the use of JDBC and stored procedures

- administration tools, including Graphica User Interfaces (as part of the
OpenFusion product) and additional programming interfaces (as part of the
service itself)

These components, event types, transmission models, methods and features will be
described in detail below.

TheDetalls

Structured Events

Untyped events encapsul ate basic data types transmitted and received by client
objects. Structured events are untyped events with attached headers containing id,
QoS and filtering information.

A structured event consists of two main parts:
» an event header containing identification and Quality of Service information and

* an event body containing information used to filter the event, plus the event itself,
an Any

domain_name

type_name — Fixed header

event_name

Event header — name, value,

name, value,

— Variable header

name, value,

name, value,

name, value,

— Filterable body
Event body —

name, value,

|| remainder_of_body | _}— Remaining body

Figure 3 Structured Event

14
Notification Service

& PRISMTECH

Description

&4 PRISMTECH

1.2 Concepts and Architecture

Event Header
The event header contains a fixed header and variable header.

The fixed header holds information identifying the particular event and includes:

e an event domain (domai n_nane) - the domain of a particular vertical industry
where the event type is defined, such as telecommunications, finance,
transportation, etc.

 an event type (t ype_nane) - the type of particular event within the domain, for
example SockQuote within the finance domain

 an event name (event _nane) - a unique name for the particular event instance
being transmitted

The event domain and event type can be used in combination as an index into the
Event Type Repository (see Event Type Repository below).

The variable header contains QoS property settings for a specific event. These
settings consist of a sequence of zero or more name-value pairs. The name
component of the pair isastring variable which identifies a particular QoS property;
the value component is an Any which contains the value of the QoS property.

For example, a name could be set to the QoS property EventReliability with its
corresponding value set to 1 (ashort defined as persistent). Refer to Quality of
Service on page 21 for alist of available QoS properties.

Event Body
The event body contains afilterable body and a remaining body.

The filterable body contains another sequence of zero or more name-value pairs.
These pairs, predictably, are used for filtering the event. Each name-value pair
consists of the name of aproperty (ast ri ng variable) and its value (an Any).

The filterable body is intended to be used for filterable properties which have been
defined within an application domain. In order to filter the event, a client constructs
filter constraints which are applied, using the Notification Service's filters, to the
properties contained in the structured event’s filterable body. (See Filtering on page
22))

The remaining body (r emai nder _of _body) contains the actual event data, which
isan Any. As with the original Event Service, this part of the structured event can
contain any data that a user wants to send along with the event.

15
Notification Service

1.2 Concepts and Architecture Description

16

Event Type Repository

The OMG specifies that the Event Type Repository is an optional feature of the
Notification Service; this feature is provided in the OpenFusion implementation of
the service.

The Event Type Repository is afacility for making it easier for clients to create
event filters by making information about the structure of events availableto clients.

The Event Type Repository stores information about the kinds of filterable data that
specified events can provide to consumers. The repository only contains
information about the properties contained in the filterable body of a structured
event (see Sructured Events on page 14).

The repository can be queried by event suppliers to discover the names and types of
the properties that an event of a certain type contains. The supplier can use this
information to send events which conform to that type.

The repository can also be used by event consumers in order to determine which
properties are expected by events of a certain type; the consumer must create the
expression to match the event they are interested in.

Importantly, the Event Type Repository has the ability to modify event types and the
relationship between event types at run time. This allows applicationsto evolve over
time. For example, an application can create a new event type, with additional
properties, that inherits from an existing event type. New applications can take
advantage of the additional information, while existing applications can process the
event according to the old set of properties.

Event Communication Models

The OpenFusion Notification Service uses the push communication model, whereby
suppliers actively send or push events to the event channel and consumers passively
receive them

Event Channel

The event channel (also referred to as the notification channel in the Notification
Service) is the component which provides the loosely-coupled communication
between client objects. It is the event channel which handles supplier registration
and the broadcasting of eventsto consumers.

The Notification Service allows any number of event channels to be active
concurrently.

& PRISMTECH

Notification Service

Description

1.2 Concepts and Architecture

Notification Service event channels, unlike those of the Event Service, possess
Quality of Service (QoS) properties and event filtering. QoS and filters set on a
channel affect all relevant events which pass through it. Further, QoS and filter
settings are inherited by any admin object created by the event channel.

Client objects can set various QoS and administrative properties on the event
channel when it is created. For example, some of the properties that can be set
include the maximum number of events the channel will buffer at atime, aswell as
the maximum number of consumers and suppliers that can connect to the channel.

Event channels are created by an event channel factory. The channels, in turn, create
admin objects, which in turn create proxies. This creation process forms a channel -
admin - proxy hierarchy.

Note that when a new channel is created, indeed when any object in the hierarchy is
created, it is given aunique numeric identifier. Thisidentifier enables objects within
the hierarchy to find (i.e. find a reference to) their ‘parent’ or ‘child’ objects. This
ability enables objects to administer other objects within their hierarchy. Clients are
therefore able to discover all objects that comprise the hierarchy, starting from any
object within the channel.

Admin Objects

&4 PRISMTECH

Admin objects perform various administrative and management functions, such as
creating proxies and acting as a mechanism for separating proxies into controllable
groups

Admin objects are associated with either suppliers or consumers (supplier admin
objects or consumer admin objects).

Note that supplier admin objects create consumer proxies and vice versa
(remembering that suppliers connect to consumer proxies, consumers connect to
supplier proxies). The Notification Service's admin objects can create, in addition to
Notification Style proxies, Event Service style proxies.

Event channels may have multiple admin objects. This enables proxies to be
logically grouped and to optimise the handling of clients which have identical
requirements.

Admin objects manage or administer the proxies that they have created (as a group):

» QoS properties are assigned to an admin object’s proxies at the time the proxy is
created, although the QoS properties for these proxies can be changed for each
individual proxy as required

17
Notification Service

1.2 Concepts and Architecture Description

18

 an admin object’s filter properties (by assigning afilter object to it) affect al the
proxies connected to it, even though each proxy may have its own, additional
filter objects

Proxies

Proxies connect supplier and consumer client objects to the event channel of the
Notification Service. Importantly, proxies represent or stand-in for a client. For
example, asupplier behaves asif it is connected to an actual consumer, however itis
actually connected to a proxy for the consumer, i.e. a consumer proxy: suppliers
connect to consumer proxies, consumers connect to supplier proxies.

Individual proxy types are specific to:
« the type of event being transmitted

» whether the events are being sent singly or in batches when used with structured
events (referred to as sequenced structured events)

For example, astructured push supplier proxy connects a structured event consumer
to the event channel and uses the push model to receive events.

Each proxy hasits own QoS object plus zero or more filter objects: this enables QoS
properties and filter properties to be set at theindividual proxy level. Note, however,
that the QoS and filter object settings for the proxy’s admin object also affect the
events that the proxy receives or transmits. For example, a proxy consumer
(connected to a suppler) may allow Event A to be sent, but its admin object may till
filter it out.

Suspension, Resumption and Disconnection

Push-model event suppliers can temporarily suspend event communication. The
event channel buffers the events while a consumer connection is suspended: these
events are transmitted when the client resumes its connection (subject to the QoS
discard policy when the maximum number of events per consumer QoS policy is
exceeded).

Figure 4 illustrates the four states a proxy can have during creation, suspension,
resumption and disconnection.

1. Also cdled proxy consumer: both forms are used in the OMG specification

& PRISMTECH

Notification Service

Description

&4 PRISMTECH

1.2 Concepts and Architecture

disconnect
destroyed

disce

connect gbnnected

connected
disconnect

suspend

resume

Figure 4 Proxy States

For proxy push suppliers, the suspended state indicates that the Notification Service
will suspend the pushing of events onto the consumer. While suspended, events will
be queued at the proxy for later delivery.

A proxy is a communication end point and disconnecting it implies that the proxy
object is destroyed. After being disconnected, the proxy can no longer be used to
send or receive events.

A push consumer can also disconnect a proxy by raising the Di sconnect ed
exception in the push operation.

It isthe client’s responsibility to disconnect (and destroy) the proxy when the client
terminates since the service has no means of knowing that the client no longer
exists. Accordingly, the client should call its associated proxy’s disconnect method.
For example, if the client is a push supplier connected to a Pr oxyPushConsurrer
(suppliers connect to consumer proxies, consumers connect to supplier proxies),
then the di sconnect _push_consumer () method for its Pr oxyPushConsuner
object should be called prior to termination.

Queues

Queues are buffers for storing events until consumers are ready to receive the
events. Queues free suppliers from the need to wait for consumers to consume their
events before continuing.

19
Notification Service

1.2 Concepts and Architecture Description

20

Each event channel has a master event queue and each supplier proxy has a proxy
gueue, one proxy queue per consumer object (see Figure 5).

Incoming events enter the master event queue: if event reliability is set to persistent,
the event will be written to persistent storage before the event is sent on. The
behaviour of the master event queue is affected by the event channel’s order and
discard QoS policies. The queue's maximum length is set by the MaxQueuelLengt h
property.

Events are then dispatched into proxy queues. Each proxy queue has its own order
and discard policies for the proxy object it is connected to, i.e. each proxy queue
may have different policies than the others. The maximum queue size for a proxy
queueislimited by the MaxEvent sPer Consumer QoS property.

The proxy queues potentially contain very different sets of events, depending on
filtering, ordering, queue size and the “speed” of the consumer. When an event is
delivered, it is removed from the master queue.

The proxy queue keeps track of the events which have been delivered. If the
Notification Service fails for any reason (e.g. host crash, lost connection, etc.), then
the contents of the master queue will be recovered, provided that the events have
been set as persistent beforehand. Note that when recovery takes place only those
events which have not yet been delivered to a consumer will be allowed to re-enter
the proxy queue.

Proxy
Consumer
Proxy
Consumer

Supplier
Admin
Object

Direction of Event Flow >

Figure 5 Event Queues

& PRISMTECH

Notification Service

Description

1.2 Concepts and Architecture

OpenFusion Queue Extensions

The OpenFusion implementation of the Notification Service provides a number of
gqueue management extensions in addition to the standard OMG interfaces. These
additional extensions can be used to access useful information or functionality that
is not provided otherwise.

Quality of Service

&4 PRISMTECH

Thereis no direct communication between suppliers and consumers when using the
Notification Service (a decoupled communication model). Consequently, when an
event is sent from a supplier to a consumer, there are three points where the event is
(conceptually) transmitted:

1. when the event is delivered by the supplier to the event channel
2. whenitisforwarded by the channel
3. whenthe event is delivered by the channel to the consumer

An application may wish to set QoS at each of these points. Accordingly, the
Notification Service enables each channel, connection and message (the
transmission points) to possess relevant, configurable QoS settings. These settings
cover the delivery guarantee, aging characteristics and prioritisation for the
transmitted events.

Sandard OMG Properties

Quality of Service settings are defined as properties; each property has an
associated value. A particular property may have a range of values that indicate
different requirements or delivery characteristics to support a wide variety of
application needs: precise QoS requirements, at any particular level, can be
expressed as a set of properties.

Quality of Service properties cover three main areas: reliability, queue management
and event management. Note that not all QoS properties can be applied at all levels
of the Notification Service.

Detailed descriptions of these properties are given under Supplemental Information,
Sandard OMG Properties. on page 69.

OpenFusion QoS Extensions

The OpenFusion Notification Service supports the QoS properties described in the
OMG specification which are listed above. Further, the OpenFusion Notification
Service supports a comprehensive, extensible QoS framework that allows clients to
configure the run-time behaviour of event channels, admin and proxy objects: in
other words, their QoS properties can be set at run-time.

21
Notification Service

1.2 Concepts and Architecture Description

22

The OpenFusion Notification Service’'s QoS also:

« enforces portability, especially with regard to reliability
* supports ORB vendor features

* addresses the Event Service's deficiencies

* provides additional queuing policies

The extended OpenFusion Notification Service QoS properties are listed and
described under Supplemental Information, OpenFusion QoS Extensions on page
73.

The QoS framework supports logical grouping, whereby a channel treats its admin
objects as a group and an admin object treats its proxies as a group.

A group is a collection of objects that have been created by a particular factory, the
group object. For example, a channel, the group object (or group for short) groups
the admin objects it has created; an admin object is the group object for its proxies.

Thevalue of a QoS property that has been applied to a group automatically becomes
the default value for all new objects created by that group. Note that existing
objects, those previously created by the group object, are not affected. Also note that
aclient may override existing QoS group properties for any object within the group.

Filtering

Filtering allows the transmission of events to be selectively stopped or filtered out.
Filtering is performed using filter objects which are attached to admin and proxy
objects (see Figure 2, Main Components on page 13). A single filter object can be
added to more than one of these objects at atime: for example a single filter can be
used by several proxies, or by a proxy and an admin. However, this can lead to
unmanageabl e depl oyment situations (see warning note shown immediately below).

Filter objects should be destroyed when the objects that use them are destroyed,
otherwise they will become a source of |eakage. However, care must be taken when
destroying filter objects that are used by multiple objects in order to avoid
inadvertently destroying afilter whichisstill in use.

Filter objects use a constraint language to describe which events should be filtered,
i.e. they constrain which events are allowed and may be referred to as forward filters
since they forward filtered events. Also, all constraints added to afilter are assighed
aunique identifier which enables constraints to be modified or deleted at run-time.

& PRISMTECH

Notification Service

Description

1.2 Concepts and Architecture

Condraint Language

Any conformant implementation of the Notification Service specification must
support the Extended Trader Constraint Language (Extended TCL), an extension of
the constraint language used for the Trading Service.

The Extended TCL grammar fixes a few problems with the basic Trader Constraint
Language, while adding suitable constructs for filtering events.

This grammar isintuitive for programmers because it mimics how data structures
are normally accessed and is based on the Java style dot notation.

For example, asimple query string could be:
$type_nane == 'Alarmi and $Priority > 4
which forwards events of type Al ar mwhich have a priority greater than four.

A description of the Extended TCL grammar and how to use filter constraints with
the Notification Service is given under Writing Constraint Expressions on page 56.

Sequencing

&4 PRISMTECH

The Notification Service supports the transmission of sequences of Sructured
Events (event sequencing for short). Event sequencing is a process or technique
whereby one or more events are transmitted at a time as a single 11OP package.
Event sequencing boosts the event transmission performance of the service: sending
an |10OP package with one event and sending an 11OP package with 100 events takes
approximately the same amount of time.

There are separate sequence clients and proxies which are used for transmitting
sequences of Structured Events (see Figure 6).

Event sequencing uses the Maxi munBat chSi ze and Paci ngl nt erval QoS
properties. These properties can only be applied on the consumer side:

* Maxi munBat chSi ze - The maximum number of events that a consumer wishes
to receive at atime. Consumers should always set this QoS since the default value
isone.

* Paci ngl nt erval - The maximum time the consumer is willing to wait for the
batch to fill. At the end of the pacing interface, the Notification Service will
deliver whatever eventsit has. The default value is zero (indefinite wait).

The Notification Service will wait at least until one event is available before
delivering any events to the consumer. If no events are available, the Notification
Service will therefore wait longer than the pacing interval.

23
Notification Service

1.2 Concepts and Architecture Description

24

Structured
Push
Consumer

Structured
Proxy Push
Supplier

Consumer
Admin
Object

Sequence
Proxy Push
Consumer

ad,eb,c,f

{ab
Sequence
Push
Supplier
Sequence
Push
Supplier

Sequence
Proxy Push
Supplier

Supplier
Admin
Object

Consumer
Admin
Object

Sequence
Proxy Push
Consumer

db

Sequence
Proxy Push
Supplier

Push
Consumer

{ade}
\ Direction of Event Flow > {b.c/f}

Figure 6 Sequencing Architecture

All events delivered by all connected suppliers will be included in the event
sequences arriving on the consumer side.

Event sequencing does not influence the order of events transmitted through the
channel (notice the order of the events as received by the consumers in Figure 6).
However, ordering can be controlled by using QoS properties and filters.

Auto-sequencing

Auto-sequencing provides a significant performance improvement for structured
proxies without changing how the proxies function externally. When
auto-sequencing is used, a proxy uses internal batching to send multiple structured
events in one CORBA call: this provides the performance increase usually
associated with a sequence proxy. Externally, however, a structured proxy push
supplier still sends structured events individually to the consumer and a structured
proxy push consumer still receives structured events individually from the supplier.

Auto-sequence functionality is used exclusively by structured proxies, not by the
sequence proxies described in the previous section.

There are characteristics of auto-sequencing which make it unsuitable for some
situations:

» A failure of the service can result in a loss of a number of events up to the
maximum batch size.

& PRISMTECH

Notification Service

Description

A

&4 PRISMTECH

1.2 Concepts and Architecture

« |f asupplier process terminates (by invoking Syst em exi t () or returning from
its mai n() method, for example), events up to the maximum batch size may be
lost. To avoid this situation in a controlled shutdown, suppliers shuld call
di sconnect () beforethe process ends. Thiswill cause any pending eventsto be
delivered to the channel.

 Exceptions cannot be sent back to a caller. For example, a structured proxy push
supplier will not be able to report to the event channel when it has failed to push
events onto a structured consumer.

Auto-sequencing should not be used if persistence or error detection are important
issues.

Two QoS properties, Aut oSequenceBat chSi ze and Aut oSequenceTi neout ,
are used to control auto-sequence functionality.

By default, auto-sequence functionality is switched on in an OpenFusion
installation. If it is not required, it should be switched off using the appropriate QoS
settings (as described on page 75).

Per sistence

The OpenFusion implementation of the Notification Service provides the ability to
make events and connections persistent.

The OpenFusion Framework and by association the OpenFusion Notification
Service, provides the facility to add components as plugin modules for supporting
different application requirements. The event persistence is enabled and managed
through:

« event database plugins which connect the service to a selected database, such as
Oracle and

« additional QoS properties which are provided in the Notification Service

Features

The persistence feature of the OpenFusion Notification Service provides improved
reliability by enabling the use of arecovery strategy

Requirements
There are a number of factorsto be aware of when using persistence:

 event reliability can only be set to persistent if the connection reliability is also set
to persistent

« the client must be a persistent CORBA object

25
Notification Service

1.2 Concepts and Architecture Description

26

its proxy must only be connected once

* the proxy is disconnected when the OBJECT_NOT_EXI ST ORB system exception
isthrown

» the proxy must be suspended when the client object is passivated
* QoS properties must be set for:

- maximum queue size(s)

- reconnect interval

A persistent client is a persistent CORBA object. A persistent object can be
activated and passivated several times, but in terms of the ORB (and thus the
Notification Service) it is the same object.

When a server with persistent client objects is re-started (or the object is otherwise
activated), the client must not create a new proxy since it will continue to use the
proxy that was used prior to passivation.

The Notification Service will retry persistent clients until it encounters an
OBJECT_NOT_EXI ST system exception. This exception is normally raised when the
object is de-registered from the BOA or POA.

Persistent clients should use a number of QoS properties to control resources. The
discard policy and maximum queue size should be used for consumers to limit the
number of eventsthat are queued on their behalf.

The reconnect interval can be set to reduce the frequency at which the Notification
Service retries an unavailable object.

Push consumers can al so suspend these proxies prior to passivation in order to avoid
interaction while the object is unavailable.

Passvating Persistent Clients

Persistent clients are automatically re-connected when they re-register with the
ORB. A persistent client would normally save the proxy | ORwhen it connectsto the
Notification Service the first time.

When a persistent client is passivated, the ORB will raise standard NO_| MPLEMENT
system exceptions when the Notification Service attempts to deliver or retrieve
events, or do event type callbacks.

& PRISMTECH

Notification Service

Description

1.2 Concepts and Architecture

Passivated
- i 1 Persstent | ! 1" pro ! [Persstent) |
e b client] i 4 - client h
o Bl s

ORB > ORB > 8

b
/ /\ ORB rebind
b

Figure 7 Passivating Persistent Clients

When the persistent client is later activated, the ORB will rebind the connection
between the Notification Service and the client. This happens automatically and the
client should not connect to anew proxy.

The client normally loads the proxy I OR from file or, for example, the Naming
Service upon restart. The proxy is needed for later connection manipulation
(suspend, resume), filter administration and ultimately disconnecting.

If aclient de-registers from the ORB, the ORB will raise an OBJECT_NOT_EXI ST
exception when the Notification Service tries to interact with the client. This will
disconnect the client.

Federation

&4 PRISMTECH

Federation is a method of connecting separate Notification Service instances and
their event channels together (see Figure 8, Federation of Channels Architecture).

Federation effectively creates a composite system partitioned into any number of
subsystems. Partitioning an event system into multiple “event subsystems’ can have
anumber of advantages:

* Performance:
- enabling multiple hosts to be used for utilising increased CPU resources
- providing fan-out to consumers on the local machine

Sending events to a channel that in turn forwards them to a number of
consumers can result in great performance improvements. As an example, if the
consumers are al on the same machine the events can be sent using one network
invocation and a series of local invocations.

27
Notification Service

1.2 Concepts and Architecture Description

* Reliability:
- avoiding single points of failure

By having multiple event channelsit is possible to avoid single points of failure.
Although parts of the system may no longer receive events if an event channel
fails, this does not necessarily have to affect other consumers.

* Flexibility:
- makes it easy to move event subsystems
- can use filtering to control fan-in and fan-out

Grouping suppliers and consumers into logical units can simplify system
configuration and improve flexibility. For instance, instead of changing all
consumers in a group to use a new channel, only the suppliers that provide
events to the group would need to be altered.

Referring to Figure 8, the fact that a consumer proxy is a supplier and a proxy
supplier is a consumer allows channels to be federated without using special clients
that forward events from one channel to another. The inheritance structure described
allows a proxy supplier to be connected directly to a proxy consumer.

Notification Service 2

Proxy
Consumer,

Proxy
Supplier

Notification Service 1

Proxy
Supplier

Proxy
Supplier

Proxy
Supplier

Consumer

Proxy
Supplier

Proxy
Supplier

Proxy
Consumer,

Proxy
Supplier

Notification Service 3

Direction of event flow i

Figure 8 Federation of Channels Architecture

28

& PRISMTECH
Notification Service

Description

A

&4 PRISMTECH

1.2 Concepts and Architecture

Local Channd

The local channel concept (Figure 9) provides failure support for dumb clients
which assume that the Notification Service is always available.

Local channel protection is only intended to recover from node failures and not
process failures.

Suppliers and consumers may always create a proxy, connect and just start sending
or receiving events: connection reliability would be set to best effort on the client
side of the channel.

The federation connections would be persistent to ensure they are re-established
after a node crash. It is possible to use a separate Notification Service as the
intermediator, or use direct connections.

Referring to Figure 9, if Host C becomes unavailable, the proxy supplier on Host A
(or Host B) will queue all incoming events until the receiving Notification Service
becomes available again.

In order to be certain that the consumer doesn’t lose events, it may be necessary to
make the consumer persistent. This would avoid a situation where the proxy
consumer starts receiving persistent events before the consumer has connected.

Host B

o cation Service

Host A Xost C

Local Notification Service

L LI
]

L LI LI
]

Figure 9 Local Host

29
Notification Service

1.2 Concepts and Architecture Description

30
Notification Service

& PRISMTECH

Using the Service
| ntroduction

& PRISMTECH

The main tasks which are performed when using the Notification Service include:
initialising the ORB and the Notification Service

* creating event suppliers, which requires
- connecting to the Notification Service event channel
- creating events
- sending events
* creating event consumers, which requires
- connecting to the Natification Service event channel

- receiving events

setting QoS properties
« creating and applying event filters
This section describes how the specific features of the Notification Service can be

used to achieve the tasks listed above. The section is organised into a sequence of
topics which

* give general instructions for compiling and running Notification Service clients

« describe basic aspects of creating Notification Service clients

« describe advanced features of Naotification Service clients such as QoS and event
filtering

Each topic uses examples to illustrate how the tasks can be accomplished.
Additional examples, complete with source code and descriptions of how to compile
and run them, are supplied separately as part of the OpenFusion product
distribution.

Note
« All of the example code used in this section requires that the OpenFusion
Notification Serviceisinstalled and running.

» Thereislittle or no error-checking in the examples shown here. Code to deal with
exceptions has generally been omitted for the sake of clarity and brevity. These
exceptions must of course be properly caught and handled in aworking system.

3
Notification Service

2.2 Compiling and Running Clients Using the Service

Import Satements

The following packages are required to be imported into classes which are
Notification Service clients. Thislist is not exhaustive: additional packages may be
required depending on the specific features of the client.

Sandard Notification Service Features
The following packages support OMG standard Notification Service features

org. ong. CosNotification.*

org. ong. CosNot i f yComm *

org. ong. CosNotifyFilter.*

or g. ong. CosNot i f yChannel Admi n. *

or g. ong. CosTypedNot i f yComm *

or g. ong. CosTypedNot i f yChannel Adni n. *

OpenFusion Extensions

The following package is needed when using the OpenFusion Notification Service
extensions:

comprisnt.cos. CosNotification.NotificationExtensions.*

Compiling and Running Clients

This section describes the general principles to follow when compiling and running
Notification Service clients.

Compiling Client Applications

Clients written for the OpenFusion Notification Service must be compiled with a
supported Java compiler. See the OpenFusion release notes for supported Java
versions.

For further instructions, consult the documentation supplied with your Java
compiler. The are no specific compiler options needed in order to compile
Notification Service clients.

Running Client Applications

Before running any Notification Service client applications, the Notification Service
must be running on one of the supported ORBSs.

32
Notification Service

& PRISMTECH

Using the Service

2.2 Compiling and Running Clients

Initialising the ORB

The appropriate ORB daemon should be running before the Notification Service is
started. Full instructions for how to run your ORB will be given in your ORB
documentation. For example, when running JacORB use the following command:

% inr

The OpenFusion Product Guide lists supported ORBs and their start-up/run
commands.

Sarting the Notification Service

Step 1:

Step 2:
Step 3:

Ensure your PATH contains the bi n directory of the JDK and the bi n directory of
the OpenFusion distribution. The UNIX scripts (or Windows . bat files) that start
the Notification Service are located in the bi n directory.

Ensure the appropriate ORB daemon is running (see above).

Start the Notification Service from a command prompt using the following
command:

% server -start NotificationService

The same command can be used at either a UNIX or Windows command prompt.

Alternatively, start the OpenFusion Administration Manager and use the GUI tools
to start and configure the Notification Service. The System Guide gives details of
using the Administration Manager and other options for running OpenFusion
services.

Configuring the Notification Service

&4 PRISMTECH

The OpenFusion Natification Service can be installed and run “out of the box” with
no additional configuration. It is strongly recommended, however, that you
configure the service to optimise performance and reliability for your specific
environment. Section 13, Notification Service Configuration, on page 171 describes
every configurable service property. All properties can be set programatically, or see
the System Guide for details of how to set properties through the GUI
Administration Manager.

All of the example code given in this section can be run using the default (out of the
box) Natification Service configuration.

33
Notification Service

2.3 Creating Clients Using the Service

Sarting Clients

Once the Notification service is running and suitably configured, client applications
can be started.

The Notification Service must be running before any clients are started, otherwise
clients will be unable to create or resolve event channels and thus unable to
function.

Also note that in most cases consumers should be started before suppliers are
started, otherwise events may be lost as suppliers begin pushing them onto the event
channel before thereis a consumer available to receive them.

Creating Clients

Notification Service clients include both suppliers and consumers. This section
provides a simple example of each, showing how the key features that every client
must possess can be implemented. Advanced client features, such as filtering and
setting QOS, are covered in subsequent sections.

Creating a Supplier

The first task a Notification Service supplier must perform is to locate the
Notification Service server instance and connect to it. Connections are made to an
event channel, via proxy and admin objects.

Connecting to the Server

Step 1:

Obtain an object reference to the event channel factory.

Event channels are created by the Notification Service’s event channel factory.
Before an event channel can be created, an object reference to the factory must be
obtained. The ORB’sresol ve_i niti al _ref erences method is passed the
name Not i fi cati onServi ce and thisis used to resolve initial references to
locate the object

or g. ong. CORBA. Obj ect object = null;
org.ong. CORBA. ORB orb = nul|;

try

object = orb.resolve_initial _references (“NotificationService”);

}
catch (org. ong. CORBA. ORBPackage. | nval i dNanme ex)
{

34

Systemerr.println (“Failed to resolve Notification Service”);
Systemexit (1);

& PRISMTECH

Notification Service

Using the Service 2.3 Creating Clients

At this point, the type of the object referenced by obj ect is an undefined of type
org. omg. CORBA. Object. The narrow method of the
Event Channel Fact or yHel per helper classis used to narrow the returned object
reference to a specific Event Channel Fact or y object.

Event Channel Factory factory = null;

factory = Event Channel Fact or yHel per. narrow (obj ect);

Step 2: Create an event channel or obtain areference to an existing channel .

New event channels can be created once the reference to the factory has been
obtained (step 1). The example below uses the f act ory object’s
creat e_channel method to create a new channel with default Quality of Service
settings.

Property[] qos = new Property[O0];

Property[] adm = new Property[0];

org. ong. CORBA. | nt Hol der 1d = new org. ong. CORBA. | nt Hol der ();
Event Channel channel = null;

try
channel = factory.create_channel (qos, adm id);

}
catch (UnsupportedQsS ex) {}
catch (UnsupportedAdm n ex) {}

Further details of setting QoS properties when the channel is created are given in
Creating an Event Channel with QoS on page 48.

Managing Event Channels
Once the event channel has been created, the supplier may need to perform other
actions upon it. To this end, the following example shows how the supplier might
obtain areference to a specific event channel.
First, theget _al I _channel s operation returns a sequence of channel identifiers:

int ids[] = factory.get_all_channels ();

Next, the get _event _channel operation is used to obtain an Event Channel
object from an identifier:

Vector vector = new Vector ();
for (int i =0; i <ids.length; i++)
try
! vect or. addEl enent (factory.get_event_channel (ids[i]));

}
catch (Channel Not Found ex) {} // ignore

Event Channel all[] = new Event Channel [vector.size ()];
for (int i =0; I < all.length; i++)

35
& PRISMTECH

Notification Service

2.3 Creating Clients Using the Service

all[i] = (EventChannel) vector.elenmentAt (i);

The event channel objects are collected in a vector in order to account for the
situation when other interactions are happening with the event channel factory at the
same time. This strategy illustrates general practice when dealing with distributed
systems.

Destroying an Event Channd

The supplier might also be responsible for destroying the event channel onceitisno
longer needed.

Event channels are destroyed using the dest r oy operation:

channel . destroy ();

Step 3:

All administration objects and all proxy objects created by the administration
objects are destroyed along with the channel. Also, all suppliers and consumers
connected to this channel are disconnected and any events which have yet to be
delivered are discarded. Note that the object reference to a channel is invalidated
when it is destroyed

Get the Suppl i er Adni n object reference.

Supplier administration objects in the Notification Service are created using the
new_f or _suppl i ers operation. This operation takes a filter operator i n
parameter and a unique identifier out parameter and returns a newly created
administration object:

InterFilterGoupQperator sop = InterFilterG oupOperator. AND OP;

org. ong. CORBA. | nt Hol der sid = new org. ong. CORBA. | nt Hol der ();

Suppl i er Admi n sadm = channel . new _for_suppliers (sop, sid);

36

ThelnterFilter G oupOperator object specifies how filters attached to an
administration object are combined with filters attached to the proxies created by the
administration object. The Notification Service supports the following settings for
the filter operator:

» AND: Both an administration filter and a proxy filter must pass an event in order
for the event to be forwarded.

* OR The event is forwarded when either an administration filter or a proxy filter
passes an event.

& PRISMTECH

Notification Service

Using the Service 2.3 Creating Clients

Managing Administration Objects
Administration objects are managed via an array in a similar manner to the event
channels described in Step 2. The following code shows how to create a list of all
Suppl i er Adni n objectsin an event channel:

int ids[] = channel.get_all_supplieradm ns ();
Vector vector = new Vector ();

for (int i =0; i <ids.length; i++)
try
{
vect or. addEl enent (channel . get_supplieradmn (ids[i]));

}
catch (Adm nNot Found ex) {} // ignore

SupplierAdmin all[] = new SupplierAdm n [vector.size ()];
for (int i =0; i <all.length; i++)

all[i] = (SupplierAdm n) vector.elenentAt (i);

Step 4: Obtain astructured push consumer proxy object.

The supplier admin object supports operations for creating proxy consumers. In the
example code below, the SupplierAdmin object adni n, obtained in Step 3, is used
to produce proxy consumers (in other words, proxies which represent consumers).
The example shows the creation of three types of consumer.

First, create holders which will hold the IDs of the proxies for each of the three
types:

org. ong. CORBA. | nt Hol der anyl D = new org. ong. CORBA. | nt Hol der ();
org. ong. CORBA. | nt Hol der strl D = new org. ong. CORBA. | nt Hol der ();
org. ong. CORBA. | nt Hol der seql D = new org. ong. CORBA. | nt Hol der ();

The client types which will be used are then specified and saved to Cl i ent Type
variables:
ent Type anyType Cl i ent Type. ANY_EVENT;

ai =
Client Type strType = dient Type. STRUCTURED EVENT;
Cient Type seqType = dient Type. SEQUENCE EVENT;

The Pr oxyPushConsuner variables for each of the three types are declared. This
is followed by the declaration of three Pr oxyConsuner variables:

Pr oxyPushConsuner anyProxy;
St ruct ur edPr oxyPushConsuner str Proxy;
SequencePr oxyPushConsumer seqProxy;

nul | ;
nul | ;
nul | ;

Pr oxyConsuner pcl
Pr oxyConsuner pc2
Pr oxyConsumner pc3

37

&4 PRISMTECH ey .
Notification Service

2.3 Creating Clients Using the Service

The supplier admin object’'sobt ai n_noti fi cati on_push_consunmer methodis
called to obtain areference to the correct proxy object. For each proxy, the identity
and type parameters are passed. The return for this call is always a
Pr oxyConsurer :

try

{
pcl = admi n.obtain_notificati on_push_consuner (anyType, anylD);
pc2 = admi n.obtain_notificati on_push_consuner (strType, strlD);
pc3 = admi n.obtain_notification_push_consuner (seqType, seqlD);

}
catch (Admi nLi m t Exceeded ex)
{

Systemerr.println (“Admin limt exceeded!”);
Systemexit (1);

The final stage uses helper classes to cast the objects into their correctly typed
proxies:
anyPr oxy Pr oxyPushConsuner Hel per. narrow (pcl);

strProxy = StructuredProxyPushConsuner Hel per. narrow (pc2);
seqProxy = SequenceProxyPushConsumer Hel per. narrow (pc3);

Managing Proxies
The administration interfaces support a number of operations for managing the
created proxies. The following code:

1. Obtains the unique identifier, the channel and the filter operation
2. Liststhetotal number of proxies

3. Examines whether or not the proxy with identifier 42 exists for a
Suppl i er Admi n object called admi n

int[] pushProxies = admi n.push_consuners ();

int total = pushProxies.|ength;
Systemout.println (“Total proxies: “ + total);
try

ProxyConsuner proxy = admi n.get_proxy_consuner (42);
Systemout.println (“Proxy wth id 42 exists!”);

}
catch (ProxyNot Found ex)
{

Systemout.println (“Proxy with id 42 doesn’'t exist!”);

Step 5: Connect to the proxy.

To connect to aproxy usethe connect _struct ured_push_suppl i er method.

38
Notification Service

& PRISMTECH

Using the Service 2.3 Creating Clients

In the following code, st r Pr oxy is the reference to the structured push consumer
proxy obtained in step 4. The connect _st ruct ured_push_suppl i er method is
used to connect a structured push supplier object toit.
try
strProxy. connect _structured_push_supplier
(Struct uredPushSuppl i er Hel per. narr ow
(oj ect Adapt er. get Obj ect (this)));
zzat ch (org. ong. CosEvent Channel Admi n. Al r eadyConnect ed ex)
! Systemerr.println (“Already connected!”);

/] Handl e exception
return;

Step 6: Disconnect from the proxy.

To disconnect the supplier from the proxy consumer, use the
di sconnect _structured_push_consumer method:

strProxy. di sconnect _structured_push_consuner ();

The proxy object isinvalidated and cannot be used when it has been disconnected.

i Further options for proxy management can be found in Removing Inactive Proxies
on page 47.

Creating Events

Structured events consist of header and body components. The header consists of
properties added to the event as an array. The body consists of datain the form of a
CORBA Any. These components are created using the methods illustrated in the
following example:

StructuredEvent event = new StructuredEvent ();

Propert
var i abl

ariable[] = new Property [2];
= new Property ();
.name = Priority.val ue;
.value = orb.create_any ();
.val ue.insert_short ((short) 4);
= new Property ();
.name = Ti nmeout . val ue;
.value = orb.create_any ();
.val ue.insert_ulonglong ((long) 4*10*1000*1000); // 4 seconds

PRPRPPRPOOOO<

Property filterable[] = new Property [2];
filterable[0] = new Property ();

| terabl e[0] . nane = “packets”;

Iterabl e[0].value = orb.create_any ();

I terabl e[0] .val ue.insert_long (2000);
ilterable[1] = new Property ();

| terabl e[1] . name = “usernane”;

Iterabl e[1].value = orb.create_any ();
Iterabl e[1].value.insert_string (“client 1");

—h —h —h —h —h —h —h

39

&4 PRISMTECH ey .
Notification Service

2.3 Creating Clients Using the Service

Event Type type = new Event Type (“Tel econi, “Info”);
Fi xedEvent Header fixed = new Fi xedEvent Header (type, “event”);

org. ong. CORBA. Any data = orb.create_any ();
data.insert_long (42);

event . header = new Event Header (fixed, variable);
event.filterable data = filterable;
event . remai nder _of _body = dat a;

This example creates a structured event with the following components:

- QoS settings priority (short) and ti neout (unsigned long) in the variable
header

- filterable properties packet s (long) and user name (string) in the filterable
body

- domain name Tel ecom(string)
- type name | nf o (string)

- some data (long)

Sending Events

Events in the Notification Service are transmitted by client objects implementing
one of the following Supplier interfaces:

e PushSuppli er
e StructuredPushSuppli er
* SequencePushSuppl i er

A supplier can begin sending events as soon as it has obtained a proxy of the
corresponding type and has connected to it. The event supplier typically obtainsits
events from some external source or produces events when some external event has
occurred. See Creating Events on page 39 for an example of how to create a
structured event.

A typical event supplier must perform each of the steps listed below.

Step 1: Resolve an event channel factory. Code for thisis given in Connecting to the Server,
step 1 on page 34.

Step 2: Obtain a reference to an event channel. Code for this is given in Connecting to the
Server, step 2 on page 35.

Step 3: Obtain a reference to a supplier admin object. Code for this is given in Connecting
to the Server, step 3 on page 36.

40
Notification Service

& PRISMTECH

Using the Service 2.3 Creating Clients

Step 4: Obtain areference to a proxy consumer object. Code for thisis given in Connecting
to the Server, step 4 on page 37.

Step 5: Connect to the proxy consumer. Code for this operation is given in Connecting to
the Server, step 5 on page 38.

Step 6: After the supplier has established a connection to the proxy consumer, it can begin
pushing events onto the event channel.

The following code uses an infinite loop to send a continuous stream of simple
events. (Thisis suitable for test purposes; in reality, events would normally be sent
when created by some triggering mechanism.)

\{/\hi le (true)

org.ong. CORBA. Any data = orb.create_any ();
obtai n_data (data); // obtain data from external source

StructuredEvent event = new StructuredEvent ();

Event Type etype = new Event Type (“exanple”, “test”);
Fi xedEvent Header fixed = new Fi xedEvent Header (etype, “event”);

Property variable[] = new Property[0];
event . header = new Event Header (fixed, variable);

event.filterabl e_data = new Property[0];
event . renmi nder _of _body = dat a;

try
{
proxy. push_structured_event (event);

catch (org.ong. CosEvent Comm Di sconnected ex) {}

In this example, the data of the structured event is obtained by invoking the
obt ai n_dat a method, which gets the data from an external source. The proxy’s
push_structured_event method is used to push the event onto the event
channel.

Creating a Consumer

The first task a Notification Service consumer must perform is locate the
Notification Service and connect to it. Connections are made to an event channel,
via proxy and admin objects.

Connecting to the Server
Step 1: Obtain an object reference to the event channel factory. The method is identical to
that used in suppliers, as described in Creating a Supplier on page 34:

org. ong. CORBA. Obj ect object = null;
org.ong. CORBA. ORB orb = null;

41

&4 PRISMTECH ey .
Notification Service

2.3 Creating Clients Using the Service

try
object = orb.resolve_initial _references (“NotificationService");
}
catch (org. ong. CORBA. ORBPackage. | nval i dNanme ex)
{

Systemerr.println (“Failed to resolve Notification Service”);
Systemexit (1);

Event Channel Factory factory = null;

factory = Event Channel Fact or yHel per. narrow (object);

Step 2: Create an event channel or obtain a reference to an existing channel. The method is
identical to that used in suppliers, as described in Creating a Supplier on page 34

org. ong. CORBA. | nt Hol der cid = ne
Property[] qos = new Property][0]
Property[] adm = new Property[0]
Event Channel channel = null;

try

w or g. ong. CORBA. | nt Hol der ();

channel = factory.create_channel (gos, adm cid);

}
catch (UnsupportedQsS ex) {}
catch (UnsupportedAdm n ex) {}

Step 3: Get the Consuner Adni n object reference.

Consumer administration objects in the Notification Service are created using the
new_f or _consumer s operation. This operation takes a filter operator i n
parameter and a unique identifier out 3. . . == parameter and returns a newly
created administration object:

InterFilterGoupQperator cop = InterFilterG oupOperator. AND OP;
org. ong. CORBA. | nt Hol der cid = new org. ong. CORBA. | nt Hol der ();

Consuner Adm n cadm = channel . new_for_consuners (cop, cid);

ThelnterFilter GoupOperator object specifies how filters attached to an
administration object are combined with filters attached to the proxies created by the
administration object. The Notification Service supports the following settings for
the filter operator:

* AND: Both an adminigtration filter and a proxy filter must pass an event in order
for the event to be forwarded.

* OR: The event is forwarded when either an administration filter or a proxy filter
passes an event.

42

& PRISMTECH
Notification Service

Using the Service 2.3 Creating Clients

Managing Administration Objects
Administration objects are managed via an array in the same manner as suppliers
manage admin objects. The following code shows how to create a list of all
Consuner Adni n objectsin an event channel;

int ids[] = channel.get_all_consunmeradm ns ();
Vector vector = new Vector ();

for (int i =0; i <ids.length; i++)
try
{
vect or. addEl enent (channel . get_consunmeradmn (ids[i]));

}
catch (Adm nNot Found ex) {} // ignore

Consunmer Adnmin all[] = new Consunmer Admi n [vector.size ()];
for (int i =0; i <all.length; i++)

all[i] = (Consunmer Adm n) vector.elenentAt (i);

Step 4: Obtain astructured push supplier proxy object.

The consumer admin object supports operations for creating proxy suppliers. In the
example code below, the ConsumerAdmin object adni n, obtained in step 3, is used
to produce proxy suppliers (in other words, proxies which represent suppliers). The
example shows the creation of three types of supplier.

First, create holders which will hold the IDs of the proxies for each of the three
types:

org. ong. CORBA. | nt Hol der anyl D = new org. ong. CORBA. | nt Hol der ();
org. ong. CORBA. | nt Hol der strl D = new org. ong. CORBA. | nt Hol der ();
org. ong. CORBA. | nt Hol der seql D = new org. ong. CORBA. | nt Hol der ();

The client types which will be used are then specified and saved to Cl i ent Type
variables:

Client Type anyType = Cient Type. ANY_EVENT;
Client Type strType = dient Type. STRUCTURED EVENT;
Cient Type seqType = dient Type. SEQUENCE EVENT;

The Pr oxyPushSuppl i er variables for each of the three types are declared. This
is followed by the declaration of three Pr oxySuppl i er variables:

ProxyPushSuppl i er anyProxy;
Struct ur edPr oxyPushSuppl i er strProxy;
SequencePr oxyPushSuppl | er seqProxy;

nul | ;
nul | ;
nul | ;

ProxySupplier psil
Pr oxySuppl i er ps2
ProxySuppl i er ps3

43

&4 PRISMTECH ey .
Notification Service

2.3 Creating Clients Using the Service

To initially obtain a reference to the correct proxy object, the call
obtain_notification_push_supplier is made on the consumer admin
object. For each proxy, the parameters for identity and type are passed. The return
for thiscall isawaysaPr oxySuppl i er:

try

{
psl = admi n.obtain_notification_push_supplier (anyType, anylD);
ps2 = admi n.obtain_notification_push_supplier (strType, strlD);
ps3 = admi n.obtain_notification_push_supplier (seqType, seqlD);

}
catch (Admi nLi m t Exceeded ex)
{

Systemerr.println (“Admin limt exceeded!”);
Systemexit (1);

The final stage uses helper classes to cast the objects into their correctly typed
proxies:
anyPr oxy Pr oxyPushSuppl i er Hel per. narrow (psl);

strProxy = StructuredProxyPushSuppl i erHel per.nnarrow (ps2);
seqProxy = SequenceProxyPushSuppl i er Hel per. narrow (ps3);

Managing Proxies
The administration interfaces support a number of operations for managing the
created proxies. The following code:

1. Obtains the unique identifier, the channel and the filter operation.
2. Liststhetotal number of proxies.

3. Examines whether or not the proxy with identifier 42 exists for a
Consuner Adm n object called adni n.

int[] pushProxies = admi n.push_suppliers ();

int total = pushProxies.|ength;
Systemout.println (“Total proxies: “ + total);
try

ProxySuppl i er proxy = admi n.get_proxy_supplier (42);
Systemout.println (“Proxy wth id 42 exists!”);

}
catch (ProxyNot Found ex)
{

Systemout.println (“Proxy with id 42 doesn’'t exist!”);

Step 5: Connect to the proxy.

Usetheconnect _struct ured_push_consunmer method to connect to a proxy.

44
Notification Service

& PRISMTECH

Using the Service 2.3 Creating Clients

In the following code, pr oxy is the reference to structured push consumer proxy
obtained in Step 4. The connect _struct ured_push_consunmer method is used
to connect a structured push consumer object to it.
try
strProxy. connect _structured_push_consuner
(Struct uredPushConsuner Hel per . narr ow
(nj ect Adapt er. get Obj ect (this)));
}
catch (org. ong. CosEvent Channel Adm n. Al r eadyConnect ed ex)
{
Systemerr.println (“Already connected!”);
/] Handl e exception
return;
catch (org. ong. CosEvent Channel Adm n. TypeError ex)
{
Systemerr.println (“Type error!”);

/] Handl e exception
return;

Step 6: Disconnect from the proxy.

To disconnect the consumer from the proxy supplier, use the
di sconnect _structured_push_suppl i er method, asfollows:

strProxy. di sconnect _structured_push_supplier ();

The proxy object isinvalidated and cannot be used when it has been disconnected.

i Further options for proxy management can be found in Removing Inactive Proxies
on page 47.

Receiving Events
Events in the Notification Service can be received by client objects implementing
one of the following Consumer interfaces.
e PushConsurmer
e StructuredPushConsuner

* SequencePushConsuner

Push consumers receive events by implementing a push operation that corresponds
to the consumer type. Note that responsive push consumers should return from the
push operation as quickly as possible. One way to achieve this would be to provide
event processing within a separate thread.

The following code shows a simple implementation of the push operation used by
structured push consumers:

public void push_structured_event (StructuredEvent event)
45

&4 PRISMTECH ey .
Notification Service

2.3 Creating Clients Using the Service

{

try

org. ong. CORBA. Any data = event.remi nder _of _body;
int value = data.extract_long ();
System out. println (“Received event: “ + value);

The extract _| ong method extracts the data from the incoming event. In this
example, we assume that the data is an integer value. If the supplier had formed the
event in adifferent way, putting a string in the event body, for example, a different
extraction method would be required.

Suspending and Resuming Connections

Event consumers of the push type can temporarily suspend event communication.
To prevent event loss when a consumer connection is suspended, the event channel
buffers the events sent by the supplier. When the connection is re-established, event
transmission to the consumer resumes with potentially no loss of events.

In practice, the event loss on reconnection is controlled by Quality of Service
properties. The MaxEvent sPer Consumer QoS property determines how many
events will be held for a disconnected consumer. See Section 4.1, Quality of Service
Properties on page 69 for a description of the MaxEvent sPer Consuner property.

To suspend a connection, the client should call the proxy’s suspend_connecti on
operation as shown in the following example:

strProxy. suspend_connection ();

}
catch (Connecti onAl readyl nactive ex)

Systemerr.println (“Already suspended!”);
/'l handl e exception

}
catch (Not Connected ex)
{

}

try

Systemerr.println (“Not connected!”);
/1 handl e exception

To resume a suspended connection, the client should call the proxy’s
resume_connect i on method as shown in the following example:

strProxy.resunme_connection ();

}
catch (ConnectionAl readyActive ex)

Systemerr.println (“Already resuned!”);
/'l handl e exception

}
catch (Not Connected ex)
{

46

Systemerr.println (“Not connected!”);
/1 handl e exception

& PRISMTECH

Notification Service

Using the Service 2.3 Creating Clients
}

Removing I nactive Proxies

A common requirement in the Notification Service is to remove inactive supplier
and consumer proxies when they are no longer needed (because they are connected
to suppliers or consumers that no longer exist).

This section gives guidance on how thisis handled for different types of proxy.

Proxy Push Consumersand Proxy Pull Suppliers

When the proxy has been idle for a specified period of time, the proxy is
disconnected. The amount of idle time required before disconnection should be
specified with the Maxl nacti vityl nterval Quality of Service property,
described on page 75.

Proxy Push Suppliers
The way that proxy push suppliers are handled depends on the setting of the
Connecti onRel i abi i ty Quality of Service property.

With Connection Rdliability set to Best Effort

If the Connecti onRel i ability QoS on the proxy is set to Best Ef f ort, the
Notification Service will always destroy a proxy push supplier when it fails to
deliver an event to its attached consumer.

With Connection Reliability set to Persstent

If the ConnectionReliability QoSissetto Persistent,the Notification
Service will keep resending events until an OBJECT_NOT_EXI ST system exception
is encountered. The conditions that raise this exception are ORB-specific. Most
ORBs raise the exception only when the object no longer exists; in this case, the
proxy can be safely removed. The following ORBs throw OBJECT_NOT_EXI ST
correctly:

* VisiBroker 3.4
VisiBroker 5.0
OrbixWeb 3.2
Orbix 2000 v1.2
Orbix 2000 v2.0
JacORB 1.3
JacORB 1.4

47
Notification Service

&4 PRISMTECH

2.4 Using Quality of Service Properties Using the Service

However, a number of ORBSs raise the exception if the object is merely inactive, in
which caseit is not always safe to remove the proxy. The following ORBs have this
behaviour:

* VisiBroker 4.1
* VisiBroker 4.5
* Orbacus4.0
* Orbacus4.1

When OBJECT_NOT_EXI ST cannot be used reliably, the MaxReconnect At t enpt s
and Reconnect I nt er val QoS properties can be used. MaxReconnect At t enpt s
defines the maximum number of times the Notification Service will attempt to
reconnect to a failed pull supplier or push consumer. The Notification Service
disconnects the client (as though the disconnect operation had been invoked on the
proxy) if the client is still unavailable after the maximum number of attempts have
been made. Reconnect | nt er val determines the interval the Notification Service
will wait between reconnect attempts.

Alternative M ethod

To determine whether a given proxies (of any type) is inactive, the
Connect edCl i ent QoS property can be used. This property is set on all proxies
and gives the object reference of the connected client. Useget _gos() on the proxy
to obtain the property array and loop through the array to locate the
Connect edd i ent property (see Accessing the QoS on page 50 for an example of
this). The value of the Connect edd i ent property contains the object reference of
the client associated with that proxy. From this, it is possible to determine if the
client exists and whether the proxy can therefore be safely destroyed.

Using Quality of Service Properties

Quality of Service settings may be applied to event channels, admin objects and
proxy objects on either the supplier or the consumer side. The following example
demonstrates how to apply QoS to an event channel.

Creating an Event Channd with QoS

QoS properties and administrative properties are applied to an event channel when it
is created by passing an array of properties as a parameter of thecr eat e_channel
operation. The following example illustrates this. The example code given here can
be part of aeither a supplier or a consumer.

48
Notification Service

& PRISMTECH

Using the Service 2.4 Using Quality of Service Properties

Step 1: Create an array to hold the QoS properties. In this example, the array is sized to hold
two properties.
Property[] qos = new Property[2];

Step 2: Add the QoS properties to the array. Each array element holds a property name and

aproperty vaue. The following code adds the Event Rel i abi | i ty property to the
array and setsits value to persistent.

qos[0] = new Property ();

qos[0] . nane = EventReliability. val ue;

qos[0] . value = orb.create_any ();

qos[0] . val ue.insert_short (Persistent.value);
Similarly, the following code adds the Connect i onRel i abi | i t y property to the
array and setsits value to persistent.

qos| = new Property ();

1]
gos[1] . name = ConnectionReliability.val ue;
qos[1] .value = orb.create_any ();

gos[1] . val ue.insert_short (Persistent.value);

Step 3: Repeat the above steps to create an array of administrative properties. Although the
procedure is the same as for QoS properties, a separate array is required as the
creat e_channel method takestwo separate array parameters. The following code
creates an array of one element and populates it with the MaxQueuelLengt h
property, setting the property’s value to 100.

Property[] adm = new Property[1];
adn{ 0] = new Property ();

adn{ 0] . nane = MaxQueuelengt h. val ue;
adn{ 0] . val ue = orb.create_any ();
adn{ 0] . val ue.insert_l ong (100);

Step 4: Use the event channel factory’s cr eat e_channel operation to create the channel,
passing the Qos and administrative property arrays as parameters, as illustrated by
the following code:

org. ong. CORBA. | nt Hol der id = new org. ong. CORBA. | nt Hol der ();
Event Channel channel = null;

try
channel = factory.create_channel (qos, adm id);

}
catch (UnsupportedQsS ex) {}
catch (UnsupportedAdm n ex) {}

i The Notification Service throws exceptions with detailed information when the code
attempts to set illegal QoS or administrative properties.

49
Notification Service

&4 PRISMTECH

2.4 Using Quality of Service Properties Using the Service

Managing QoS

QoS and administrative properties do not have to be set when the event channel is
created. Properties can be altered programatically at any time and new properties
can be added to the channel.

Adding New QoSto a Channel

Adding a new QoS or administrative property to an existing channel requires the
channel’s set _qos or set _admi n operations. These operations take an array of
properties as a parameter. The array of properties is constructed exactly asin
Creating an Event Channel with QoS on page 48.
Thefollowing codeillustrates how to use set _qos to add the Maxi nunBat chSi ze
QoS property:

Property newQS[] = new Property[1];

newQpS[0] = new Property ();

newQS[0] . nane = Maxi mnunBat chSi ze. val ue;

newQS[0] . val ue = orb.create_any ();
newQS[0] . val ue. i nsert_l ong (100);

try

channel . set _qos (newQoS);
}
catch (UnsupportedQsS ex) {}

The following code illustrates how to use set_admin to add the MaxQueueLengt h
administrative property:

Property newAdn{] = new Property[1];

newAdnf 0] = new Property ();

newAdni 0] . nane = MaxQueuelLengt h. val ue;

newAdni 0] . val ue = orb.create_any ();

newAdni 0] . val ue. i nsert_| ong (10);

try

channel . set _adm n (newAdn) ;

}
catch (UnsupportedAdm n ex) {}

Accessing the QoS

The QoS and administrative settings for a channel can be accessed using the
channel’s get _qos and get _admni n operations. The following code illustrates a
way of simply listing the current value of each property:

Property gos[] = channel.get_qos ();
Property adn{] = channel .get_admn ();

for (int i =0; i < qosP.length; i++)

Systemout.println (“Name : “ + qos[i].nane);

50
Notification Service

& PRISMTECH

Using the Service 2.5 UsingFilters

for (int i =0; i < adnP.length; i++)

Systemout.println (“Nane : “ + adnfi].nane);

Validating Event QoS

Supplier and consumer proxies provide an operation for validating the QoS setting
of an event. The operation isval i dat e_event _qos and is defined in the
Pr oxyConsumer and Pr oxySuppl i er interfaces.

Itisgood practice for all suppliersthat use QoS settingsin the header of a structured
event to use this operation to validate the settings before sending an event.

Property[] qos = new Property[2];
NamedPr oper t yRangeSeqHol der avai |l abl e;

qos[0] = new Property ();

qos[0] .nane = Priority.val ue;

qos[0] .value = orb.create_any ();

qos[0] . val ue.insert_short ((short) 4);

gos[1] = new Property ();

gos[1] . nane = Ti neout . val ue;

gos[1] .value = orb.create_any ();

gos[1] . val ue.insert_ul ongl ong ((!long) 4*10*1000*1000); // 4 seconds

avai |l abl e = new NanedPr opertyRangeSeqHol der ();

try

{ . .
proxy.val i date_event _gos (qos, avail able);

catch (UnsupportedQsS ex)

Systemerr.println (“Unsupported QoS settings!”);
/] Handl e excepti on.

}

Using Filters

Filters can be attached to both admin objects and proxies on both the supplier and
the consumer side. Filters that are attached to admin objects apply to all the proxies
created by that admin object.

An object with attached filters will only forward an event when one or more of the
filters passes the event.

Filter Objects

Filters are objects in their own right and must be treated as distinct from the admin
or proxy objectsthey are attached to. An individual filter object can be used by more
than one admin or proxy object.

51

&4 PRISMTECH ey .
Notification Service

2.5 Using Filters

Using the Service

There are two important points to keep in mind when managing filters:

* A filter existsindependently of the proxies that is associated with: if an associated
proxy is destroyed or the proxy’s reference to the filter is removed, then the filter
will still exist. Accordingly, it is recommended that the filter’s reference is stored
so that it can still be referenced or destroyed after its associated proxies are
removed.

» A filter should be destroyed only after all proxies referencing the filter have
removed their references to it, otherwise the proxies may contain hanging
references (which may subsequently throw an exception).

Take care to avoid leaving references to non-existent filters or creating orphaned
filter objects which have no references to them.

Creating a Filter Object

Step 1:

The recommended way to create afilter is by using the event channel’sfilter factory,
as this creates the filter in the same process as the admin and proxy objects which
will useit.

Obtain a reference to a filter factory by invoking the channd’s
default _filter_factory object, asin the following code:

FilterFactory filterFactory = channel .default _filter_factory ();

Step 2:

Usethefactory’'screate_fil t er operation to create the filter object.

Thecreate_filter operation takes the name of the filter grammar as a
parameter. Currently, the only grammar supported by the Notification Service is
Extended TCL, so the string EXTENDED_TCL must be passed to the
create_filter operation. Thefollowing codeillustrates this.

Filter filter = null;

String grammar

try

= “EXTENDED TCL";

filter = filterFactory.create filter (granmmar);

}
catch (InvalidG amar ex)

Systemerr.println (“Granmar “ + grammar + “ is invalidl”);
// Handl e exception

}

Adding a Filter Object to an Admin Object

Use the admin object’'s add_fi | t er operation to add a filter to the object, as
follows:

int id = admn.add_filter (filter);

52

& PRISMTECH

Notification Service

Using the Service 2.5 UsingFilters

Listing Filter Objects

The following example shows how to obtain alist of filters attached to an admin
object and then use that list to perform management operations on each item in the
list (in this case, to verify that the correct filter grammar is being used).

int[] all = admin.get_all _filters ();
Vector vector = new Vector ();

for (int

try

i =0; i <all.length; i++)

Filter f = admn.get_filter (all[i]);
vect or. addEl enent (f);

}
catch (FilterNot Found ex) {}

for (int

=

Filter ;
(! f.constraint_grammar().equals (“EXTENDED TCL"))

i =0; i < vector.size(); i++)

f = (Filter) vector.elenmentAt (i);

Systemerr.println (“Filter has unknown grammar!”);

/1

}
}

try
{

Handl e exception

Removing Filter Objects
To remove a single, specified filter from an admin object, use the following:

admin. renmove_filter (id);

}
catch (FilterNot Found ex) {} // sonebody el se renpved it!

To remove al filters from an admin object, use the following:

admin.renmove_al |l _filters ();

&4 PRISMTECH

Note that neither of these operations destroys the filter object, they simply remove
references to the object.

Event Filters

The filter object itself will not carry out any filtering activities. To create a working
event filter, filter constraints must be added to the object. A filter can be composed
of one or more constraints.

OR semantics are applied between multiple constraints and between multiple filters.
If any one constraint in any filter matches the event, the proxy or administration
object will forward the event.

53
Notification Service

2.5 Using Filters Using the Service

Either AND or OR semantics may be applied between administration object filters
and proxy object filters. For OR semantics, an event will be forwarded if it matches
either the administration object filters or the proxy object filters. For AND
semantics, both must match.

A constraint must be explicitly associated with one or more event types. A
constraint will only be evaluated if the event type matches one or more of the event
types associated with the constraint. To optimise performance, if no constraints
attached to a particular filter match an event’s event type the filter will not be
invoked at al.

Certain constraints are only applicable to certain types of event. For example,
“alarm” events may have “Origin” and “ Category” fieldsin the filterable body while
other event types may not. Constraints which filter on Origin and Category fields
will only be applicableto “alarm” events.

Constructing Constraints
The following example creates afilter constraint which will pass only events of type
Alarm from the Telecom domain which have a priority greater than 5.
Step 1: Create an Event Type array and add the type and domain which will be filtered:

Event Type types[] = new Event Type[1] ;
types[0] = new Event Type (“Tel econt, “Alarnf);

The wildcard character, *, can be used in the domain or event type fields if the
constraint is to match all event types or domains, as shown in the following code:

Event Type typesl[] = new Event Type[1] ;
typesl[0] = new Event Type (“* ")

Step 2: The expression which will filter on priority greater than 5 is a string written using
Extended TCL grammar:

String expr = “$Priority > 5";
Extended TCL isdescribed in Extended TCL Grammar on page 56.
Step 3: Create aConst rai nt Exp array to hold the filter constraints created in Steps 1 and
2
Constraint Exp exp[] = new Constraint Exp[1];
exp[0] = new ConstraintExp (types, expr);

Step 4: Use the filter object’'s add_const r ai nt s operation to attach the constraint to the
filter. Each filter object can consist of multiple constraint expressions.
try

Constraintinfo info[] = filter.add_constraints (exp);
int id = info[0].constraint_id;

54 & PRISMTECH
Notification Service

Using the Service

2.5 UsingFilters

Systemout.println (“Added constraint has id “ + id);

}
catch (InvalidConstraint ex)

Systemerr.print (“The constraint with the expression “);
Systemerr.print (ex.constr.constraint_expr);
Systemerr.println (“ is invalid!");

/] Handl e excepti on.

}

Managing Constraints

int del _list[]

Each constraint added to afilter is assigned a unique identifier (unique within the
scope of that filter object). This provides a means to access specific constraints at
run time, allowing them to be modified or deleted.

A filter’snodi fy_constrai nt s operation is used to both modify and delete
constraints. The following code demonstrates this. In the example, constraints with
identifiers 1, 2, 3, and 5 are deleted and the constraints with identifiers 4 and 6 are
modified.

={ 1 2 3, 5},

Event Type etypesl[] = new Event Type[1];
Constral nt Exp cexp[] = new Constrai nt Exp[2] ;

Constraintlnfo

modi fy_list[] = new Constraintlnfo[2];

etypesl[0] = new Event Type (“Tel econi, “Powerfailure”);
cexp[0] = new ConstraintExp (etypesl, “$.voltage < 210");

modi fy_Iist[O]

= new Constraintinfo (cexp[0], 4);

Event Type etypes2[] = new Event Type[1];
etypes2[0] = new Event Type (“Tel econt, “Alarni);
cexp[1] = new ConstraintExp (etypes2, “$Priority == 3");

modi fy_list[1]
try

= new Constraintinfo (cexp[0], 6);

filter.nodify_constraints (del list, nodify list);

}
catch (InvalidConstraint ex)

Systemerr.print (“The constraint with the expression “);
Systemerr.print (ex.constr.constraint_expr);
Systemerr.println (“ is invalid!");

/] Handl e excepti on.

}
catch (Constraint Not Found ex)

Systemerr.println (“Constraint with id “ + ex.id + “ not found!"”);
/] Handl e excepti on.

}

&4 PRISMTECH

The modi fy_constrai nts operation can throw an | nval i dConst r ai nt
exception when one of the modified constraints contains invalid syntax. Also, the
Const r ai nt Not Found exception is thrown when any of the unique identifiers
specified in either of the input sequences cannot be found.

Filters also have ar enove_al | _const rai nt s operation, which removes every
constraint added to the filter.

55
Notification Service

2.5 Using Filters Using the Service

Writing Congtraint Expressions

This section describes the syntax and conventions of Extended TCL grammar,
which isused for creating filtering constraint expressions.

The following points should be noted if filter performance is an issue:
* Filtering simple data types is faster than filtering complex data types.

» Thefilter parser uses the DynAny interface to process complex data types: thisis
relatively slow and should be avoided if possible.

» More complex constraint expressions take longer to process.

Extended TCL Grammar

Extended TCL is based on Java-style ‘dot’ notation and syntax. A typical constraint
is constructed as follows:

$. header. fi xed_header. event _type.type nane == '|Info’
& Keywords are case sensitivein TCL.

The elements used in this expression are individually explained in the following
sections.

Basic Elements

$ Token

The $ token is used to denote the current event. For example, the expression
$domai n_nane refersto the value of the current event’sdonmai n_nane variable, as
in the following constraint expression:

$domai n_nane == ' Tel ecom

The $ token may refer to either a variable of type Any or a variable of type
Struct ur edEvent , depending on whether Event Service style or Notification
Service style event communication is used.

‘dot’ Operator

The dot operator is used to access an element within a structure. For example, the
expression event _t ype.type_namne refersto the value of thet ype_name
element within the event _type structure. The expression
$. remai nder _of _body refersto afield called r emai nder _of _body within the
current event.

A full example of a constraint using this operator is:

56
Notification Service

& PRISMTECH

Using the Service 2.5 UsingFilters

$. header . fi xed_header . event _type. type_name == 'Info’

Literals
Thefollowing literal expressions are alowed within a constraint.
* Integers: sequences of digits with optional leading + or -
$. header. vari abl e_header (Priority) == 3
 Floats: sequences of digits with adecimal point and optional exponent notation
$. remai nder _of _body == 10.5

« Srings. strings of one or more characters enclosed by single quotation marks: ’
' . To include a single quotation mark in a string, prefix it with a backslash
character: \’ . To include a backslash, use a double backslash: \ \ .

$.filterabl e _data(usernane) == 'joe’

Runtime Variables

Runtime variables are used as shorthand for common components within a
structured event. For example, the expression
$. header. fi xed_header. event _type.type_name can be shortened to
$t ype_nane. Note that there is no dot between the $ and the variable namein a
shortened runtime variable expression.

Runtime variables can be used for any component in the fixed header, variable
header, or filterable body of an event. If the runtime variable cannot be found, the
expression which uses it defaultsto $. r unt i ne. This allows generic filters, which
can be used for different types of event, to be written.

There is a specia runtime variable, $curti me, which refers to the current time. Its
typeis Ut cT from the Ti meBase module.

Operators

Compar ative Functions
The following comparative operations can be used:

== |equality
I'= linequality
> | greater than
>= | greater than or equal
< |lessthan

57

&4 PRISMTECH ey .
Notification Service

2.5 Using Filters Using the Service

<= |lessthan or equal
~ | substring match

in | elementin sequence

The result of applying a comparative function is aboolean value (t r ue or f al se).

Example 1
$.Cost < 5

If the value of the Cost property islessthan 5, the expression evaluatestort r ue.

Example 2
‘UK in $. Country_Nane

If the Count ry_Name property, which consists of a sequence of strings,
includes the string “UK”, then the expression evaluatestot r ue.

Boolean Operators

TCL supports the standard boolean operators and, or, and not . Boolean
expressions evaluate to a weakly-typed | ong. This allows complex expressions
which evaluate whether a number of boolean expressions are satisfied. For example:

$type_nane == ‘COUNTRY’ and ((‘UK in $. Country Nane) +
(*France’ in $. Country Nane) +

(*Germany’ in $. Country_ Nanme) +

(“ltaly’ $. Country_Nanme) +

(* Spain’ $. Country_Name)) > 2

35 O

Special Operators

» The bracket operator, [], is used when the component is an array. For example,
$[3] refersto the fourth element in an event which contains an array.

* A member called _| ength is available when the component is an array or
sequence. For example, theexpression$. _| ength > 3 evaluatestot r ue for all
events that are either arrays or sequences of length four or more.

» The parenthesis operator, (), is used to reference, by name, a particular value
within a component that is a list of namevaue pairs. For example,
$. header. vari abl e_header (Priority) == 3 evauatestotrue if the
Priority QoSinthevariable header of a structured event equals 3.

* The _type_i d member which refers to the unscoped IDL type name. For
example, when a component is an IDL struct called MyEvent, the _type_id
fidldisMyEvent .

58

& PRISMTECH
Notification Service

Using the Service 2.5 UsingFilters

* The _repos_i d member which refers to the Repositoryld. For example, when a
component is an IDL struct caled MyEvent, the _repos_id field is
| DL: modul e/ MyEvent : 1. 0.

» Thedef aul t operator is used when a component is a union, in order to examine
whether the union has an active default member or not. For example, the
expression def ault $ evauates to t r ue when the event is a union with an
active default member.

» The exists operator is used to determine whether afield exists within a component
or not. For example, exi sts $. packets evaluates to t r ue if the event has a
field called packet s.

Mathematical Operators
TCL supports the following mathematical operators:

+ - *

Operator Precedence

TCL has the following operator precedence (highest to lowest):
() exist unary-m nus
not
*
+ - -~
in
== 1= < <= > >=
and
or

Parentheses, (), can be used to over-ride operator precedence.

Constraint Examples

The following examples show constraints that can be used to filter out events based
on the values of the event’s properties.

These examples assume that structured events of the type created in the examplein
Creating Events on page 39 are being sent.

In each case, the example will pass events for which the constraint expression
evaluatestotr ue.

 eventsthat have a priority equal to 3:
$. header. vari abl e_header (Priority) == 3
* eventsthat have adatavalue of 42:

59

&4 PRISMTECH ey .
Notification Service

2.6 Using Persistence Using the Service

$. remai nder _of _body == 42
events that have exactly three QoS settings.

$. header. vari abl e_header. |l ength == 3

events with data type long:
$. remai nder _of _body. type id == "long’
 eventsthat time out in less than or equal to three seconds:

$. header . vari abl e_header (ti meout) <=
$curtinme + (3*10*1000*1000)

* events which are in the Telecom domain and have the Info event type:

$. header. fi xed_header. event _type. domai n_nane == ' Tel ecom
and $. header.fixed _header.event type.type_na == "Info’

The expression can be simplified using runtime variables (page 57) to give:

$domai n_nane == ’'Tel ecom and $type_nane == 'Info’

al eventsthat do not belong to the Telecom domain:

not $domai n_nane == ' Tel ecom

events that have more than 200 packets or a username called joe:

$.filterabl e_data(packets) > 200 or
$.filterabl e_data(username) == 'joe’

Using Persistence

The Notification Service supports persistent storage via JDBC accessto arelational
database. Oracle, Sybase, Informix, and hsgldb are supported on both Unix and
Windows platforms. Microsoft SQL Server is supported on Windows.

For detailed information on how to configure persistent storage, see the OpenFusion
CORBA ervices System Guide.

60
Notification Service

& PRISMTECH

A

APl Definitions

This section describes selected interfaces and related aspects of the service: the
complete IDL API is provided el sewhere as part of the product distribution.

The OMG IDL for version 4 of the OpenFusion Notification Service isthe samein
as in previous versions, however features which are not supported in version 4
throw aNO_| MPLEMENT system exception.

OMG Sandard API Definitions

& PRISMTECH

The CosNot i fi cati on module contains common data types and interfaces used
throughout the Notification Service. The interfaces in this module are summarized
in Table 1.

Table 1 CosNotification Interfaces

Interface Purpose

Admi nPropertiesAdni n |A baseinterface for the Event Channel interface
which supports operations for setting and getting
various administrative properties on an event
channel object.

QoSAdm n A base interface for the Event Channel interface,
both administration interfaces, and al of the
different proxy interfaces. It supports operations for
setting and getting various QoS properties on an
event channel and proxy objects. Thereisaso an
operation for negotiating the QoS supported by the
Notification Service.

The CosNot i f yCommmodule contains the client interfaces for the Notification
Service. These are the interfaces from which different types of suppliers and
consumers need to inherit in order to connect to and communicate with the
Notification Service. Note that clients that support interfaces from the
CosEvent Commmodule can also be connected to the Notification Service. The
Notification Service client interfaces are summarized in Table 2.

61
Notification Service

3.1 OMG Standard API Definitions

API Definitions

Table 2 CosNotifyComm Interfaces

Interface

Purpose

PushConsuner

An interface for untyped push consumers. The
Notification Service version of thisinterface
supportsthe PushConsuner interface from the
Event Service aswell asthe Not i f yPubl i sh
interface.

PushSuppl i er

An interface for untyped push suppliers. The
Notification Service version of thisinterface
supportsthe PushSuppl i er interface from the
Event Service aswell asthe Not i f ySubscri be
interface.

SequencePushConsuner

An interface for sequence style push consumers.

SequencePushSuppl i er

Aninterface for sequence style push suppliers. It
supports operations for receiving batches of
structured events.

St ruct ur edPushConsuner

Aninterface for structured push consumers.

Struct uredPushSuppl i er

Aninterface for structured push suppliers. It
supports an operation for receiving a structured
event.

The CosNot i f yFi | t er module contains data types and interfaces used for
filtering. The Notification Service supports normal forward filters and so-called
mapping filters that can manipulate the priority or timeout values associated with
events. The filter interfaces are summarized in Table 3.

62
Notification Service

& PRISMTECH

API Definitions

&4 PRISMTECH

3.1 OMG Standard API Definitions

Table 3 CosNotifyFilter Interfaces

Interface Purpose

Filter Interface for afilter. The filter supports match
operationsfor the three different event types aswell
as operations for managing filter constraints.

FilterAdmin Interface for filter administrators. Thisis abase
interface for the administration interface and all the
proxy interfaces. It supports operations for the
management of filter objects.

FilterFactory Interface for afilter factory. Thisinterface supports
operations for creating filter and mapping filter
objects.

The CosNot i f yChannel Adm n module contains the server interfaces for the
Notification Service. In particular, there are interfaces for the channel,
administration objects and proxy objects. Most of these interfaces extend the
corresponding interfaces from the CosEvent Channel Admi n module in order to
make the Notification Service backwards compatible with the Event Service. The
interfaces in this module are summarized in Table 4.

Table 4 CosNotifyChannelAdmin Interfaces

Interface Purpose

Consuner Admi n An interface for consumer administration
objects. The Notification Service version of
this interface supports the Consuner Adni n
interface from the Event Service aswell as
the QoSAdni n, Not i f ySubscri be and

Fi | t er Admi n interfaces.

Event Channel An interface for the event channel. The
Notification Service version of thisinterface
supports the Event Channel interface from
the Event Service aswell as the QoSAdni n
and Admi nPr oper ti esAdmi n interfaces.

Event Channel Fact ory An interface for the event channel factory.
The factory supports creation and collection
management of event channel objects.

63
Notification Service

3.1 OMG Standard API Definitions

API Definitions

Table 4 CosNotifyChannelAdmin Interfaces (Continued)

Interface

Purpose

Pr oxyConsumer

A common base interface for proxy
consumers. It extends the Qo SAdni n and
Fi | t er Admi n interfaces to ensure that all
proxy consumers support QoS and filter
management.

Pr oxyPushConsuner

An interface for untyped proxy push
consumers. The Natification Service version
of thisinterface is derived from the Event
Service Pr oxyPushConsuner and

Pr oxyConsumer interfaces.

Pr oxyPushSuppl i er

An interface for untyped proxy push
suppliers. The Notification Service version
of thisinterface is derived from the Event
Service Pr oxyPushSuppl i er and

Pr oxySuppl i er interfaces.

Pr oxySuppl i er

A common base interface for proxy
suppliers. It extends the QoSAdni n and

Fi | t er Admi n interfaces to ensure that all
proxy suppliers support QoS and filter
management.

SequencePr oxyPushConsumner

An interface for sequence proxy push
consumers. It supports operations for
retrieving sequences of structured events.

SequencePr oxyPushSuppl i er

An interface for sequence proxy push
suppliers.

St ruct ur edPr oxyPushConsuner

Aninterface for structured proxy push
consumers. It supports an operation for
sending a structured event.

St ruct ur edPr oxyPushSuppl i er

Aninterface for structured proxy push
suppliers.

Suppl i er Adni n

An interface for supplier administration
objects. The Notification Service version of
this interface supports the Suppl i er Adni n
interface from the Event Service aswell as
the QoSAdni n, Not i f yPubl i sh and

Fi | t er Admi n interfaces.

64
Notification Service

& PRISMTECH

API Definitions

3.1 OMG Standard API Definitions

Event Channel Factory Interface

The CosNoti fyChannel Adm n:: Event Channel Fact ory provides
functionality for creating new event channels and for getting and listing channels
already created by means of the following operations:

e creat e_channel - Createsanew event channel with default Quality of Service
and administrative settings. The new channel has a unique identifier.

e get _all _channel s - Returns an array of unique identifiers for all channels
created by the factory.

e get _event _channel - Obtainsan Event Channel object for agiven identifier.

Event Channel Interface

&4 PRISMTECH

The CosNoti f yChannel Admi n: : Event Channel interface extends the
corresponding interface from the Event Service as well as the QoSAdmin and
AdminPropertiesAdmin interfaces. In summary, the event channel provides the
following operations:

e defaul t _consuner _admi n - This operation returns the default consumer
administration object. This object has the unique identification number zero.

e« default_filter_factory - Thisoperation returns the default filter factory.

e default_supplier_adnmin - This operation returns the default supplier
administration object. This object has the unique identification number zero.

* MyFactory - This operation returns the factory object that created this event
channel object.

e« for_consuners - Event Service style operation for obtaining a
Consuner Adm n object. This operation provides backward compatibility with
the Event Service and the administration object obtained with this operation does
not have a unique identifier.

e« for_suppliers - Event Service style operation for obtaining a
Suppl i er Admi n object. This operation provides backward compatibility with
the Event Service and the administration object obtained with this operation does
not have a unique identifier.

e new_f or _consuner s - Preferred way to obtain a Consuner Adni n object with a
unique identifier assigned to it.

* new_for_suppliers - Preferred way to obtain aSuppl i er Admi n object with a
unique identifier assigned to it.

65
Notification Service

3.1 OMG Standard API Definitions API Definitions

66

» get _consuner adm n - Obtains a Consuner Adni n object for a given identifier.
Note that administration objects created with for_consuners cannot be
retrieved with this operation.

e get _suppl i eradnm n - Obtainsa Suppl i er Admi n object for a given identifier.
Note that administration objects created with for_suppliers cannot be
retrieved with this operation.

e get _all _consuneradm ns - Returns a list of unique identifiers for all
Consuner Adni n objects created by this event channel, i.e. by using the
new_f or _consuner s operation.

e get_all _supplieradmns - Returns a list of unique identifiers for all
Suppl i er Adnmi n objects created by this event channel, i.e. by using the
new_f or _suppl i er s operation.

* dest r oy - Destroys an event channel.

» set _gos - Modifies the quality of service settings of an event channel.
» get _qos - Returnsthe quality of service settings of an event channel.
» set _adni n - Modifies the administrative settings of an event channel.
» get _adni n - Returns the administrative settings of an event channel.

Thefirst six of these operations are not described further in this guide as they are
either simple get operations or else part of the Event Service.

Administration I nterfaces

The administration objects, CosNot i f yChannel Admi n: : Consuner Adni n and
CosNot i f yChannel Admi n: : Suppl i er Admi n, are used by both event suppliers
and event consumers and serve two distinct purposes.

1. Creating and managing the various proxy objects.

2. Grouping proxies. Both QoS settings and filters set on an administration object
are shared by all proxies created by that administration object.

The Consuner Admi n interface supports additional mapping filter objects that can
be used by a client to supersede the priority and timeout QoS settings that an event
supplier has defined. Thisis a useful feature since consumers may have a different
view of the relative importance of an event’s timeout value from that of the supplier.

The most important functionality of administration objectsisto create proxies. Both
of the administration interfaces support equivalent operations for creating proxies.

& PRISMTECH

Notification Service

API Definitions

3.1 OMG Standard API Definitions

The Consumer Adm n interface operations are listed below. Note that the
Suppl i er Adni n interface operations are the same, except that consumer proxies
are created instead of supplier proxies:

e obtai n_push_suppl i er - Event Service style operation for creating a push
proxy. Proxies created with this operation are not assigned a unique identifier.

e obtain_notification_push_supplier - Preferred way to create a push
proxy. This operation can create Any type, st r uct ur ed type or sequence type
proxies, al of which are assigned a unique identifier.

Filter Interfaces

&4 PRISMTECH

Filters are objects which can be attached to administration objects and proxy
objects. The preferred way to create afilter is by using the filter factory because
filters created in this manner are then in the same process as the administration and
proxy objects using them. Filter interfaces are defined in the
CosNotifyFilter::Filter.

The operations for defining filters are located in the Fi | t er Admi n interface. These
operations are summarised below:

e add_filter - Attaches afilter to an administration or proxy object. This newly
added filter enters the list of filters which are evaluated when the object decides
whether or not to forward an event.

*renpve_filter - Removes a filter, with a given identifier, from an
administration or proxy object.

« get _filter - Obtainsafilter object for agiven identifier.

e get_all _filters -Returnsalist of theuniqueidentifiersfor all filters attached
to this administration or proxy object.

« remove_all _filters: Removes all filters attached to this administration or
proxy object.

67
Notification Service

3.1 OMG Standard API Definitions API Definitions

68
Notification Service

& PRISMTECH

4 Supplemental

Information

4.7 Quality of Service Properties

The standard OM G, OpenFusion extended QoS properties, and Administrative

Properties are described in detail below.

Sandard OMG Properties.

Table 5 lists each of the standard OMG QoS properties, including their associated
data types or possible values The four right-hand columns indicate the level (of the
channel hierarchy) to which the QoS property may be applied. For example, the
Event Rel i abi |l i ty QoS may be applied only at the event channel level or to
(structured) events, but not to admin or proxy objects.

& PRISMTECH

Table 5 Standard Quality of Service Properties

Property

Channel

Admin

Proxy

Event

EventReliability
(Best Ef fort/ Persistent)

X

ConnectionReliability
(Best Ef fort/ Persistent)

Priority (short)

Ti meout (TinmeT)

MaxEvent sPer Consumer - (1 ong)

OrderPolicy (Any, FIFO
Priority, Deadline)

Maxi munBat chSi ze* (1 ong)

Paci ngl nt er val ‘ (Ti neT)

Di scardPol i cy~ (Any, FIFO,

Priority, Deadline, LIFO

Lhis QoS property has no meaning when set per supplier admin or per proxy consumer.
At the proxy level, this property only appliesto sequence style proxies.

Detailed descriptions of these properties are given below.

69

Notification Service

4.1 Quality of Service Properties Supplemental Information

70

EventReliability

TheEvent Rel i abi | i t y QoS property controls whether events are delivered using
a persistent or a best effort strategy. Setting this property to Per si st ent means
that the channel will store events persistently and events are guaranteed to be
delivered even when the Notification Service or any of its clients crashes. The
default value is Best Ef f or t , which means that the Notification Service may lose
events during a crash. However, persistent events will be re-delivered to their proxy
gueues after the crash (proxy queues ignore events that have already been delivered
to the connected consumer).

The persistence of events is managed by the event database plugin. The Notification
Service supports different plugin modules to support different application
requirements. Please consult the System Guide for details on configuring the
persistent plugin.

ConnectionReliability

The Connecti onRel i abi | ity QoS property controls whether connections are
handled using a persistent or a best effort strategy.

Note that setting event reliability to persistent and connection reliability to best
effort is a combination that has no meaning and is not supported. The default value
isBest Ef f ort , which means that connections will be lost when the Notification
Service failsto deliver or receive events from aclient.

All clients should also be implemented as persistent objects when the
ConnectionRel i abi |l ity QoS property isto be set to Per si st ent . The reason
for thisisthat client objects need to assume the same identity when recovered after a
crash. Thisisthe only way that the Notification Service can logically reconnect to
the client. The Notification Service will never be able to reconnect to a transient
client object.

The Notification Service will keep retrying persistent client objects until an
OBJECT_NOT_EXI ST system exception is encountered. This exception is raised by
an object activator when the client object no longer exists. The
MaxReconnect At t enpt s QOS property, described later, may be used to limit the
durability of persistent clients.

Priority

ThePriority QoS property defines the relative priority of an event: the higher the
number, the higher the priority. It is normally set in the variable header of a
structured event. The priority may also be set on a per-channel, per-admin or
per-proxy basis. Applying the priority to an event channel object means that all
events that pass through the channel will receive that priority unless another valueis

& PRISMTECH

Notification Service

Supplemental Information 4.1 Quality of Service Properties

&4 PRISMTECH

set in the variable header. The default priority of an event is zer o. The event
priority QoS applies only when the Or der Pol i cy and Di scar dPol i cy QoS
propertieshave avalueof Pri orityQrder.

Timeout

The Ti meout QoS property defines a relative timeout for an event. It is normally
set in the variable header of a structured event. The Notification Service deletes this
event from all queues when this timeout occurs. A consumer views an expired event
in the same way as it does an event that was never delivered to the Notification
Service.

The unit for the Ti meout QoS is 100 nanoseconds and the default valueis zer o,
which means that no timeout is applied. A value in the range of 1-9999 is not
supported, i.e. the smallest value for the event timeout is one millisecond. The
lowest value is used when both the Ti meout and the St opTi nme QoS are defined
for an event.

The event timeout QoS is always applicable. It can be used further when the
Order Policy and Di scardPol i cy QoS properties have a value of
Deadl i neOr der.

The timeout may also be set on a per-channel, per-admin or per-proxy basis.
Applying the timeout to an event channel object means that all events that pass
through the channel will receive the said timeout value unless avalue is set in the
variable header.

MaxEventsPer Consumer

The MaxEvent sPer Consumer QoS property defines the maximum number of
events that a proxy will queue on behalf of the connected consumer. This setting can
be used to prevent a single consumer from exhausting the master queue. The default
gueue size for MaxEvent sPer Consumer isunlimited (itspr operty valueisset to
ZEro).

The MaxEvent sPer Consumer QoS property applies to the proxy queues. QoS
properties may be fine grained or coarse grained so each proxy queue may have
different maximum queue length, or all proxies that are created by one consumer
administration object may have the same maximum queue lengths.

The MaxEvent sPer Consumer QoS property is typically used when the incoming
event rate exceeds the capabilities of the Notification Service for extended periods
of time. It is also used when the proxy queue represents periodic updates that will be
available in the shape of a new event at alater time. Limiting the queue size also
reduces the resources required by the Notification Service.

7
Notification Service

4.1 Quality of Service Properties Supplemental Information

72

OrderPolicy

The Or der Pol i cy QoS property defines the order in which events are delivered.
The default value is Pri ori t yOr der, which means that events are delivered
according to their priority. The Notification Service appliesaFi f oOr der policy for
delivering events with the same priority. The other settings for this QoS are
Deadl i neOr der and AnyOr der. The Deadl i neOr der policy means that events
with the shortest timeout value will be delivered first.

Or der Pol i cy has no meaning when applied to supplier admins or proxy
consumers. Attempting to set this QoS on a supplier admin or proxy consumer will
have no effect (but will produce awarning in the service log).

MaximumBatchSize

The Maxi munBat chSi ze QoS property controls the maximum number of events a
sequenced event consumer will receive for each event delivery. The default valueis
one, i.e. a sequence type consumer will receive one event at atime. A sequence
consumer would normally always increase this value since having a batch size of
one defeats the performance advantage of using sequencing.

Pacingl nterval

The Paci ngl nt er val QoS property defines the maximum time a sequence type
client will wait between subsequent event deliveries. A value set to zero means that
the consumer is willing to wait until such time as Maxi munBat chSi ze events are
available. The unit for this QoS is 100 nanoseconds and the default value is zero. A
value in the range 1-9999 is not supported, i.e. the smallest value for the pacing
interval is one millisecond. Note that the consumer will always wait until at least
one event is available.

DiscardPolicy

TheDi scar dPol i cy QoS property defines the order in which events are discarded
from event queues. The following values determine the order that events are
discarded.

* AnyOr der - any event may be discarded when the queue becomes full.
* Fi foOrder - thefirst event received will be the first discarded.

e PriorityOrder - eventswill be discarded in priority order such that the lower
priority events will be discarded before the higher priority events. The order in
which events of the same priority are discarded is determined by the
PriorityDi scardPol i cy setting.

» Deadl i neOrder - events will be discarded in the order of the shortest expiry
deadline will be discarded first.

& PRISMTECH

Notification Service

Supplemental Information 4.1 Quality of Service Properties

The default value for Di scar dPol i cy iSAnyOr der.

The discard policy is not used by the master queue when the Rej ect NewEvent s
administrative property is set to TRUE.

Events are discarded from the master queue when the value of the
MaxQueueLengt h administrative property is reached. An event that is discarded
from the master queue will never reach any consumer and appears to the consumer
as though the event was never delivered to the event channel.

Events are discarded from proxy queues once the value of the
MaxEvent sPer Consuner QoS isreached. The other settings for this QoS are
PriorityOrder,Deadl i neOrder,FifoOrder,andLifoOrder.

The Notification Service is able to optimise queues when they:
* use the same order and discard policies
» when the order policy is the same and the discard policy is set to AnyOr der

The service must maintain separate orderings when different order and discard
policies are used.

OpenFusion QoS Extensions

&4 PRISMTECH

Table 6 lists the QoS properties provided in the OpenFusion Notification Service to
extend the OMG Notification Service standard QoS properties.

Table 6 Extended Quality of Service Properties

Property Channel | Admin | Proxy Event
MaxReconnect At t enpt sl(l ong) X X X
Reconnect | nt erval “ (Ti meT) X X X
Connect edd i ent © (bj ect) X
Max| nacti vityl nterval ‘5(Ti meT) X X X
Aut oSequenceBat chSi ze (1 ong) X X X
Aut oSequenceTi neout X X X
(ul ongl ong)

Di sconnect Cal | back X X X
MaxMenor yUsage X

MaxMenor yUsagePol i cy X

Pr opagat eQoS x X

Lrhis QoS property applies only to proxy push suppliers.
73
Notification Service

4.1 Quality of Service Properties Supplemental Information

74

2This QoS property isread only.
his QoS property applies only to proxy pull suppliers and proxy push consumers.

Detailed descriptions of these properties are given below.

MaxReconnectAttempts

The MaxReconnect At t enpt s QoS property defines the maximum number of
times the Notification Service will attempt to reconnect to afailed pull supplier or
push consumer. The Notification Service disconnects the client as though the
disconnect operation had been invoked on the proxy when the client is still
unavailable after the maximum number of attempts have been made.

Theoretically, the absolute timeout value for pull suppliers and push consumersis
the product of the MaxReconnect Att empt s property value and the
Reconnect | nt er val property value. However, the actual time taken for the entire
timeout period can take longer than the absolute timeout value:

1. The Reconnect | nt erval property is the interval of time the Notification
Service will wait before making another connection attempt. Thisinterval is
measured from the time that it becomes aware that a connection attempt failed
(e.g. by receiving an exception from the ORB).

2. The absolute timeout value cannot account for the length of time taken from
when a client disconnection occurs until the time that the Notification Service
becomes aware of the disconnection. Normally, thisis not an issue, but under
certain circumstances (such as when the orb daemon is not running on particular
ORBs) the effect of this delay can be dramatic.

For example, if an ORB takes 20 seconds to pass an exception indicating client
disconnection, then the Reconnect | nt er val will effectively be increased by
20 seconds. Assuming that the Reconnect | nt er val issetto 1 second and the
number MaxReconnect At t enpt s is set to 120, then the actual absolute
timeout will be 120 * (20+1) = 2520 seconds = 42 minutes, instead of the
expected 120 seconds (2 minutes).

Reconnectl nterval

The Reconnect | nt er val QoS property defines the interval of time that the
Notification Service will wait before retrying persistent pull suppliers and push
consumers that are unavailable. This interval is measured from the time that it
determines that a connection attempt failed (see MaxReconnectAttempts above).

This QoS property has no meaning when Connecti onRel i ability issetto
Best Ef f ort . Also note that this QoS has no meaning for push suppliers and pull
consumers.

& PRISMTECH

Notification Service

Supplemental Information 4.1 Quality of Service Properties

&4 PRISMTECH

The Notification Service waits for the reconnect interval before resuming event
reception or delivery after event communication has failed. The unit for this QoS is
100 nanoseconds and the default value is one second, i.e. 10,000,000 nanoseconds.
A value in the range 1-9999 is not supported, i.e. the smallest value for the
reconnect interval is one millisecond.

The Notification Service considers an event consumer or supplier to be unavailable
when the operation that retrieves or delivers events raises a system exception. The
only system exception is the OBJECT_NOT_EXI ST exception and thisis handled
differently to other system exceptions by the Notification Service, i.e. the proxy
object is disconnected when a client raises this exception.

ConnectedClient

The Connect edCl i ent QoS property is aread-only property that applies only to
proxy objects. The value associated with this QoS is the object reference of the
client associated with the proxy. For example, the Connect edCl i ent QoS
property contains a structured push consumer object for structured push supplier
proxies.

MaxI nactivityl nterval

The Max| nacti vityl nterval QoS property is the connection timeout for push
suppliers. Thisis arelative timeout value and is reset whenever a supplier calls
push on its consumer regardless of whether the operator is successful or not; in
other words, the timeout is reset when the proxy detects any activity from its client.

When the proxy has been idle for the maximum inactivity interval, then the
Noatification Service disconnects the client as though the disconnect operation had
been invoked on the proxy.

The unit for MaxI nacti vi tyl nt er val is100 nanoseconds. The default valueisO
(zero), which disables this QoS and allows idle push suppliers and pull consumersto
never timeout. The minimum supported timeout value (other than the zero default
value) isone millisecond, i.e. values of 10000 or greater.

AutoSequenceBatchSize

The maximum batch size that will be sent by a structured proxy (consumer or
supplier) when auto-sequencing is being used. When the proxy has received this
number of events, they will be sent as a single batch. The default value is 200
events. If the Aut oSequenceTi meout interval is exceeded while the proxy is
waiting for sufficient events to complete a batch, the batch will be sent even if it is
incomplete.

To disable auto-sequencing, set this QoSto 0 or 1, or set Aut oSequenceTi meout
to avalue less than 10.

75
Notification Service

4.1 Quality of Service Properties Supplemental Information

76

See Auto-sequencing on page 24 for more information about auto-sequencing.

AutoSequenceTimeout

This is the maximum amount of time that will be allowed to elapse before an
auto-sequence batch is sent. If this interval elapses before the batch reaches the
required size (specified by the Aut oSequenceBat chSi ze property), the
incomplete batch is sent regardless.

The unit for this property is milliseconds. The default value is 200 milliseconds.

To disable auto-sequencing, set this QoS to a value less than 10 or set
Aut oSequenceBat chSi zetoOor 1.

See Auto-seguencing on page 24 for more information about auto-sequencing.

DisconnectCallback

This property affects all proxies. If set to true (the default) then when a proxy’s
disconnect method is called, then the disconnect method on its connected client will
also be called. This behaviour isin accordance with the behaviour specified in the
OMG Notification Service Specification v1.3.

If set to false, then a proxy’s connected client will not have its disconnect operation
invoked when that of the proxy isinvoked. This behaviour isin accordance with the
behaviour specified in the OMG Notification Service Specification v1.0.

MaxMemoryUsage

Affects the memory size of event channels. MaxMenor yUsage issimilar in purpose
to the property MaxQueuelLengt h, except that the size of memory is controlled,
rather than the number of events. MaxMemor yUsage takes a value of type
ul ongl ong. The unitsfor this property are bytes. When this value is exceeded then
attempts will be made to limit memory usage according to the current usage policy.
The current usage policy is controlled using the MaxMenor yUsagePol i cy

property.

MaxMemoryUsagePolicy

Affects event channels. MaxMenor yUsagePol i cy isthe policy by which memory
usage is controlled when MaxMemoryUsage is exceeded. It can take one of three
values.

* PurgeEvent s - If this value is set, then MaxMenor yUsage is treated as a soft
limit. Whenever an event is received that pushes memory usage above the
MaxMenor yUsage level, that event will be added to the internal queue of the
appropriate event channel as normal. Then, in a manner that mirrors discard
behaviour, the event at the back of the queue will have its data purged from

& PRISMTECH

Notification Service

Supplemental Information 4.1 Quality of Service Properties

&4 PRISMTECH

memory. If the event is set to best effort delivery, then it is effectively discarded
and the memory it used will be available for recovery by the garbage collector.
However, in the case of a persistent event a place holder will remain in memory so
that the data can be reloaded from its persistent store, when required. Therefore, in
the case of a persistent event, not all of the memory used will freed and the total
memory usage will continue to increase. Nonethel ess, the rate of increase will be
greatly reduced making this an appropriate policy for dealing with bursts of event
delivery.

Notethat if events contain very small amounts of datathen very little memory will
be recovered by purging them, asit is the event data that is purged from memory.
Pur geEvent s will produce better results with larger event sizes.

» Di scardEvents - If this value is set, then MaxMenor yUsage is treated as a
limit. Whenever an event is received that takes memory usage above
MaxMenor yUsage, an event is discarded according to the current discard policy.
Note that since events vary in size, the memory usage may still grow since the
new event may be larger than that which is discarded.

* Rej ect Event s - If thisvalue is set, then MaxMenor yUsage is treated as a hard
limit. Whenever an event is received that takes memory usage above
MaxMenor yUsage, anor g. ong. CORBA. | MP_LI M T exception is thrown.

The default value of this property is Pur geEvent s.

PropagateQoS
Controls how changes to a QoS on an event channel are propagated to admins and
proxies.

When Pr opagat eQoSisset tof al se (the default), changes made to a QoS after it
has been set on a channel will not affect the QoS settings on an admin or proxy.
When itisset tot r ue, changes made to the QoS on the channel will carry through
to the admins and proxies, even over-riding any QoS that has been set individually
on the admin or proxy.

For example, the Ti meout QoSissetto 10000 on the event channel. This setting is
applied to all admins and proxies created on that channel. If Ti meout isthen
changed to 20000 on the channel while Pr opagat eQoS is set to false, the admins
and proxies retain their setting of 10000. Any new admins and proxies, however,
will take on the new value of 20000.

If Ti meout ischanged to 20000 on the channel while Propagat eQoS is set to
t r ue, the admins and proxies also take on the new setting of 20000.

77
Notification Service

4.1 Quality of Service Properties Supplemental Information

78

Adminigrative Properties

Administrative properties refer to property settings that may be applied only to event
channel objects. These properties are usually set when an event channel is first
created. These settings are typically static in nature although they may be changed
during the lifetime of the channel object. The standard administrative properties are
described below.

MaxQueuelength

The MaxQueuelLengt h administrative property defines the maximum size of the
master queue for an event channel. The value of the MaxQueuelLengt h property
should normally be greater than any value of a MaxEvent sPer Consunmer Qo0S

property.

This prevents any badly-behaved consumer (for example a consumer that consumes
events very slowly or a consumer that remains suspended for an extended period of
time) from causing events to be rejected from the master queue. The maximum
possible size of the master queue is the accumulative size of al proxy queues.

Normally, the size of the master queue is smaller than the accumulative size of all
proxy queues because there is typically an overlap in the events received by
different consumers.

MaxConsumers

The MaxConsuner s administrative property defines the maximum number of
consumers that can be concurrently connected to an event channel. The consumers
are counted as all the proxy suppliers of all the consumer administration objects
managed by the event channel.

MaxSuppliers

The MaxSuppl i er s administrative property defines the maximum number of
suppliers that can be connected concurrently to an event channel. The suppliers are
counted as all the proxy consumers of all the supplier administration objects
managed by the event channel.

ReectNewEvents

The Rej ect NewEvent s administrative property indicates whether events should
be rejected or discarded, according to the Di scar dPol i cy setting, when the
MaxQueuelLengt h for the master queue is exceeded. The Rej ect NewEvent s
property can have the following values:

& PRISMTECH

Notification Service

Supplemental Information 4.2 Errors and Exceptions

« TRUE: New events received by the event channel are rejected when the
MaxQueuelLengt h is exceeded. A push supplier encounters an IMP_LIMT
system exception when it attempts to deliver an event to the channel. Also, the
event channel will not issue any pull operations on pull suppliers until the queue
size has been reduced.

» FALSE: New events received by the event channel are discarded according to the
Di scardPol i cy QoS setting when the maximum queue length is exhausted.
Both push and pull suppliers can keep delivering events to the channel, but this
may cause some events to be discarded.

The Rej ect NewEvent s administrative property, when set to t r ue, guarantees that
the Notification Service will never drop any events.

Errorsand Exceptions

Errors

&4 PRISMTECH

The Notification Service improves on the Event Service by providing QoS settings
that define how to deal with most runtime errors. Events are stored persistently
when the Event Rel i abi | i t y QoS setting is set to persistent and the service fails.
All persistent events are recovered and re-delivered to al registered clients once the
Notification Service is restarted after the service has crashed.

Also, the Notification Service keeps trying its connections when the
Connecti onRel i ability QoS setting is set to persistent until it encounters an
OBJECT_NOT_EXI STS exception. The Notification Service just starts delivering all
queued events when a client crashes but is later restored with the same object
reference as it had when first connecting to the Notification Service.

How events are removed from the internal queues of the Notification Serviceis
defined by the Di scar dPol i cy QoS setting. Events are discarded when either the
MaxQueuelLengt h or MaxEvent sPer Consunmer values are exceeded. Note that
the service keeps storing un-delivered events until the system resources are
exhausted when there is no limit on the queue length.

79
Notification Service

4.2 Errors and Exceptions

Exceptions

Supplemental Information

The Notification Service supports a number of exceptions which are summarised in

Table 7.

Table 7 Notification Service Exceptions

Exception

Description

Adm nLi m t Exceeded

Indicates that the limit for the number of
concurrently connected proxies has been
exceeded.

Adm nNot Found

I ndi cates that the administration object with
the specified unique identifier was not found
in an event channel.

Al r eadyConnect ed

Indicates that a consumer or supplier was
already connected.

Cal | backNot Found

Indicates that a callback object with the
specified unique identifier was not found in a
filter.

Channel Not Found

Indicates that the channel with the specified
unique identifier was not found in an event
channel factory.

Connecti onAl r eadyActi ve

Indicates that a connection was already active
and an attempt was made to resumeit.

Connecti onAl r eadyl nacti ve

Indicates that a connection was already
inactive when an attempt was made to suspend
it.

Const r ai nt Not Found

Indicates that a constraint with the specified
unique identifier was not found in afilter.

Di sconnect ed

Indicates that adisconnected client istrying to
send or receive the event.

Dupl i cateConstrai nt1D

Indicates that a sequence of constraints contain
duplicate unique constraint identifiers.

Fi | t er Not Found

Indicates that the filter object with the
specified unique identifier was not found in an
administration or proxy object.

| nval i dConstrai nt

Indicates that a constraint set on afilter object
wasinvalid.

80
Notification Service

& PRISMTECH

Supplemental Information 4.2 Errors and Exceptions

Table 7 Notification Service Exceptions (Continued)

Exception Description

I nval i dEvent Type Indicates that an event typeis not supported or
isinvalid.This exception is not thrown by the
OpenFusion Natification Service.

I nval i dG anmar The grammar specified was not
EXTENDED_TCL, SQL92, or the name of a
valid Filter class name.

I nval i dval ue Indicates that a constraint valueisinvalid, e.g.
when a priority value is not of typeshort or
when atimeout value is not of type Ti neT.

Pr oxyNot Found Indicates that the proxy object with the
specified unique identifier was not found in an
administration object.

TypeErr or Indicates atype error.

Unsuppor t edAdni n Indicates that an administrative setting on an
event channel was not supported.

Unsupport edFi | t er abl eDat a |Indicatesthat an event contains data which
could not be processed by afilter object. This
exception is normally not propagated back to
clients.

Unsuppor t edQS Indicates that a quality of service setting on an
event channel, administration or proxy object
was not supported.

| mplementation Limit Exception

&4 PRISMTECH

The CORBA specification provides a general exception,
org. ong. CORBA. | MP_LI M T, for indicating when a limit has been reached or
exceeded. This exception is raised by the Notification Service, specifically, when an
event is pushed to a proxy push consumer and either:

1. thevalue of the QoS property MaxQueuelLengt h has been reached and the QoS
property Rej ect NewEvent s isset to true

2. any resource, such as threads or memory, which is insufficient, exhausted, or
unavailable

Theorg. ong. CORBA. | MP_LI M T exception includes important information in its
exception message. For example, in the case of sequence proxy push consumers, the
exception message contains the number of events that were accepted by the

81
Notification Service

4.2 Errors and Exceptions Supplemental Information

82

Notification Service (from the sequence) before the exception was raised. This
information is important, since it can be used to ensure that the same events are not
unnecessarily supplied more than once to the Notification Service. In addition to the
number of events accepted, the message also contains other information, such asthe
limit exceeded and the length of the supplied sequence.

Theorg. ong. CORBA. | MP_LI M T exception stores the number of accepted events
in the last three hexadecimal digits of its minor code provided that the length of the
supplied sequence is less than or equal to OXFFF (4096): the number may be
extracted from the minor code by subtracting the base PrismTech minor code of
0x50540000 from its value.

This feature can be used to avoid the overhead of string manipulation which is
otherwise needed to obtain the information from the exception message.

& PRISMTECH

Notification Service

Event Type
Repository

Description

Oveviaw

& PRISMTECH

The OpenFusion implementation of the Notification Services includes the Event
Type Repository, which is an optional feature specified by the OMG,

The Event Type Repository contains meta-data about event types. The repository
contains information about the properties of an event for each event type. The
repository contains information only about the properties in the filterable body of a
structured event because it was specifically designed to fulfil the requirement of
verifying filter constraints.

An important property of the Event Type Repository is the ability to modify the
event types and the relationship between event types at runtime. This allows
applications to evolve over time, e.g. an application can create a new event type,
with additional properties, that inherits from an existing event type. New
applications can take advantage of the additional information, while existing
applications process the event according to the old set of properties.

85
Event Type Repository

5.2 Concepts and Architecture

Conceptsand Architecture

Figure 10 shows the UML model for the Event Type Repository. The repository isa
singleton that supports a number of event domains and contains a number of event
types. An event typein turn has a domain, a name and a number of properties. Event

types can inherit or import other event types.

EventTypeRepository

wxDomainNameSeq : supported_domains

®lookup(name : string, domain : string) : EventType
®events_in_domain(domain : string) : EventTypeSeq

!

contains

Description

Property

composes

D
0.*

inherits 0..*
11 EventType
" gxdomain : string
£name : string
<// 0..* ®ull_name() : string

Lname : string
witype : TypeCode

The Event Type Repository model shown in Figure 10 is mapped to IDL using the
guidelines set out in the Meta Object Facility (MOF). The most important thing to
realise about the mapping is that links are transformed into interfaces rather than
operations. In addition to this, each class has a meta class with some standard
operations. Finally, the mapping automatically adds a package class and ametaclass

impons\/j 0.*

Figure 10 Event Type Repository Model

for the package class.

Event Types

An event typeis defined by three components (refer to Figure 10):

» adomain name - a high level categorisation of the event, for example Telecom and

Transport are domain names

* atype name - categorises events within a domain

86
Event Type Repository

& PRISMTECH

Description 5.2 Concepts and Architecture

 a sequence of properties - a sequence of name-value pairs where name states the
property’s name, and value states the type of property it is when associated with
an event type

Inheritance

An event type can inherit the properties of another event type. This means that all
the properties in the super type will also be present in the sub type. Also, the
creation of inheritance cyclesis not allowed.

|mporting
One event type can be imported into another in addition to inheritance. This does
not create an inheritance relationship but all the properties of the imported type will
be present in the importer type. Property names may overlap but only when the type
associated with the property is the same in both the imported and importer event
types.

Contains

The Event Type Repository is populated with event types using the Cont ai ns
interface. It is possible for clients to look up event types and investigate what
properties are available for filtering once populated. Thus, clients can use the
repository to create meaningful constraint expressions for event filtering.

| nterfaces

The Event Type Repository consists of twelve interfaces. Section 7, API Definitions,
on page 115. The operations from these interfaces provide a generic way to reflect
on an object or association.

87

& PRISMTECH .
Event Type Repository

5.2 Concepts and Architecture Description

88
Event Type Repository

& PRISMTECH

Using Specific Features

This section describes how to use the following specific features of the Event Type
Repository:

« Adding an Event Type: describes how to add a new event to the repository.
 Properties. demonstrates the management of event type properties.
« Event Types. demonstrates the management of event types.

» Composition: demonstrates how to associate and disassociate properties
with/from event types.

* Inheritance: demonstrates how to create inheritance relationships between event
types.

 Import: demonstrates how to create import relationships between event types.

» Event Type Repository description: explains how to use the event type repository.

» Containment: demonstrates how to add and remove event types from the event
type repository.
* Repository package: explains how to use the package interfaces.

Note:

* All interfacesin the Event Type Repository inherit other interfaces from the Meta
Object Facility (MOF). This section is not intended to a reference to MOF
operations. Accordingly, the MOF Ref Cbj ect and Ref Associ ati on interface
operations are not described here.

» Most operationsin the Event Type Repository do not accept arguments containing
a null value. The OpenFusion implementation checks the input arguments and
raises a BAD_PARAM exception when a null argument is encountered. The
examples used below assume that input values are not null, and therefore, this
exception is not checked.

|mport Satements

& PRISMTECH

The following packages must be imported into any application which use the Event
Type Repository:

org.ong. Refl ective.*
org.ong. NotificationTypes.*

The Refl ective and Noti ficati onTypes packages include exception

definitions from the MOF plus al of the interfaces and data types from the Event
Type Repository.

89

Event Type Repository

6.1 Adding an Event Type Using Specific Features

Adding an Event Type

This topic briefly introduces some of the Event Type Repository interfaces.
Common tasks when using the repository are to create an event type, add some
properties to it and then add the event type to the repository. The first task in using
the repository isto resolve and create it. Thistask is shown in thelisting below:

or g. ong. CORBA. Obj ect object = null;
Ref BaseObj ect ref = null;
_Notificati onTypesPackage pack = null;
Event TypeRepository repos = null;
try
object = orb.resolve_initial_references (“NotificationTypes”);
}
catch (org. ong. CORBA. ORBPackage. | nval i dName ex)

Systemerr.println (“Failed to resol ve Event Type Repository”);
ex. printStackTrace ();
Systemexit (1);

repos = Event TypeRepositoryHel per.narrow (object);
ref = repos.repository_container ();
pack = _NotificationTypesPackageHel per.narrow (ref);

The Event Type Repository in this code is resolved and used to obtain a specific
package object. The package object has a reference to the following objects:

* An object that implements the Event TypeReposi t oryd ass interface. This
can be used to create a new event type repository.

» An object that implements the Event TypeCd ass interface. This object can be
used to create new Event Type objects.

» Anobject that implementsthe Pr oper t yCl ass interface. This object can be used
to create new Pr oper t y objects.

* Four objects that can be used to manipulate the different aggregationsin the event
type repository model. The objects implement the Cont ai ns, Inherits,
I npor t s, and Conposes interfaces, respectively.

The variables pack and r epos are class variables that are used in the following to
obtain the link interfaces and manipulate the repository. The listing below shows
how to create a property and an event type. Once these have been created, the
property is added to the event type and the event type is finally added to the event

type repository.

/Il Get relevant object references.

PropertyCl ass property pack. property_class_ref ();
Event TypeCl ass event Type pack. event _type_class_ref ();
Conposes conposes pack. composes_ref ();

Cont ai ns contains pack. contains_ref ();

90
Event Type Repository

& PRISMTECH

Using Specific Features 6.1 Adding an Event Type
Property pl = null;

Event Type type = null;

org. ong. CORBA. TypeCode tc;

/] Create a property.

try
{
tc = orb.get_primtive_tc (org.ong. CORBA. TCKi nd. tk_string);
pl = property.create_property (“Operator”, tc);
}
catch (Semanti cError ex)
Systemerr.println (“Failed to create property!”);
ex. printStackTrace ();
Systemexit (1);
}

/] Create a new event type.
try

type = event Type.create_event _type (“tel econt, “alarn);
catch (SenmanticError ex)

Systemerr.println (“Failed to create event type!”);

ex. printStackTrace ();
Systemexit (1);

/1 Add property to event type.

try

{
conposes. add (type, pl);

}

catch (Structural Error ex)
Systemerr.println (“Can’t add property to event type!”);
ex. printStackTrace ();
Systemexit (1);

}

catch (SenmanticError ex)
Systemerr.println (“Never raised!”);

ex. printStackTrace ();
Systemexit (1);

// Add event type to repository.

try

{ :
contai ns. add (repos, type);

}

catch (Structural Error ex)
Systemerr.println (“Can’t add event type to repository!”);
ex. printStackTrace ();
Systemexit (1);

}

catch (Semanti cError ex)
Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

91

& PRISMTECH .
Event Type Repository

6.2 Properties

}

Using Specific Features

The above code is relatively straightforward. Relevant objects are first obtained
from the package object. The code then performs the following steps:

Step 1: Creates aproperty using an object that implements the Pr oper t yd ass interface.
Step 2: Creates an event typein the t el ecomdomain with type al ar musing an object that
implements the Event Typed ass interface.
Step 3: Adds the property to the event type using the Conposes interface.
Step 4: Adds the event type to the repository using the Cont ai ns interface.
Properties

A property is an object that encapsulates a name and a type code. The name of a
property is linked to the name of a property in the filterable body of a structured
event and the type code determines the value type (but not the actual value) of the
property.

Properties are created using the factory meta class Pr oper t yCl ass. See Adding an
Event Type on page 90 for obtaining a reference to an object that implements the
Proper t yd ass interface by means of the package object.

The Propert yd ass interface has two additional operations besides the factory
operation for creating property objects. These are aresult of the MOF mapping from
the metamodel to IDL:

e al |l _of _kind_property: This operation returns all properties, excluding any
subtypes of the Property class. This operation returns just the properties that
have been created by the factory as the repository meta model does not have any
subtypes of the Pr operty class.

e all _of type_property: This operation returns all properties, including any
subtypes of the Property class. This operation returns all the properties that have
been created by the factory in asimilar manner to theal | _of ki nd_property
operation.

The example below shows how to usethe cr eat e_pr oper t y operation to create a
new property:

PropertyCl ass factory = pack. property_class_ref ();
Property pl = null;
or g. ong. CORBA. TypeCode type;

try
{

type = orb.get _primtive_ tc (org.ong. CORBA TCKi nd.tk_string);
pl = factory.create_property (“User”, type);

92

& PRISMTECH

Event Type Repository

Using Specific Features 6.2 Properties

catch (Semanti cError ex)

try
{

Systemerr.println (“Failed to create property!”);
ex. printStackTrace ();
Systemexit (1);

The name and type code of a property can be obtained and set once created. Note
that any property can be used as a factory for creating other properties since the
Property interface inherits from the Pr opert yCl ass interface. The example
below shows how to print the name and type code of a property:

String name = pl.nane ();
org. ong. CORBA. TypeCode tc = pl.type_code ();
Systemout.println (“nane=" + name + “, type=" + tc);

}
catch (Exception ex)

try

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

Note that the get operations on the Pr oper t y interface are allowed to raise both the
Structural Error and Semanti cError exceptions. The OpenFusion
implementation of the Event Type Repository does not raise any exceptions on the
get operations.

It is also possible to set a new name for a property and to change the type code.
However, afew restrictions apply:

» The new property hame must not be used by an existing property for the event
type or any super type of the event type when the property has already been added
to an event type.

» The new property name must only be present in the import graph of the event type
when the type code is the same when the property is added to an event type.
Import graph means the event type itself or any event type imported by the event
type. Note that the super types of that event type are also part of the import graph
when an event typeisimported.

The example below shows how to set the name and type code of a property:

pl.set _nanme (“Data”);

catch (SenmanticError ex)

try

&4 PRISMTECH

Systemerr.println (“Nane al ready used!”);
ex. printStackTrace ();
Systemexit (1);

93
Event Type Repository

6.3 Event Types

{

Using Specific Features

or g. ong. CORBA. TypeCode tc;
tc = orb.get_primtive_tc (org.ong. CORBA. TCKi nd.tk_| ong);
pl.set _type_code (tc);

}
catch (Semanti cError ex)

Systemerr.println (“lIllegal type code!”);
ex. printStackTrace ();
Systemexit (1);

The Semant i cError exception is raised when the new name or the new type code
conflicts with another property in the event type inheritance and import hierarchy.
This exception is not raised when the property has yet to be added to an event type.

Event Types

An event typeis an object that can be added to the event type repository. It describes
the expected contents of the filterable body field of a structured event. This
description is divided into three components:

» The properties of the event type itself.

» The properties in the super types of the event type. This includes al the event
types imported by any super type.

» The propertiesin any type imported by the event type. This includes all the event
types in any super types of an imported event type.

Theinheritance and import hierarchies defined above are referred to as the complete
graph. The complete graph for an event type defines all the properties that are
expected in the filterable body of a structured event of that event type.

Event types are created using the Event Typed ass. See Adding an Event Type on
page 90 for obtaining a reference to an object that implements the
Event Typed ass interface. The event type factory contains two operations to list
all objects created as does the Pr oper t yC ass interface. These are not described
any further here.

An Event Type object can be created as follows:

Event TypeCl ass factory = pack.event_type class_ref ();
Event Type type = null;

try
{

type = factory.create_event_type (“telecont, “ring”);

catch (Semanti cError ex)

Systemerr.println (“lIllegal type nane!”);
ex. printStackTrace ();
Systemexit (1);

94

& PRISMTECH

Event Type Repository

Using Specific Features 6.3 Event Types

}

try
{

System out.println
System out.println (“Nane
System out.println

Note that the factory operation raises a Semant i cEr r or exception when the event
type name has a length of zer o. The Event Type interface inherits the
Event Typed ass interface in a similar manner to the Pr oper t y interface. This
means that all event type objects can be used as factories as well.

The Event Type interface has five operations. There are three get operations to
obtain the domain name, the type name, and the full name. The full name of an
event type is composed of the names of all super types and the usual name separated
by dots. In addition, there are two set operations to set the domain and type. An
example of using the get operations is shown below:

(“ Donmai n “ + type.domain ());
“ + type.nane ());

“ + type. get_fully_nama 0));

(“Full name

}
catch (Exception ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

try

The get operations are all allowed to raise Structural Error and
Semant i cError exceptions according to the interface, but these exceptions are
never raised by the OpenFusion implementation.

Asfor the Pr oper t y interface, there are a few restrictions related to using the set
operations:

» TheSemanti cError exceptionisraised by theset _domai n operation when the
repository does not support the new domain and the event type has been added to
an event type repository.

* Theset _nane operation raisesa Semant i cErr or exception when an event type
with that name already exists and the event type has aready been added to a
repository.

The example below shows how to use the set operations of the Event Type
interface:

type. set _domain (“transport”);

catch (SenmanticError ex)

Systemerr.println (“Domain not allowed in repository!”);
ex. printStackTrace ();
Systemexit (1);

&4 PRISMTECH

95
Event Type Repository

6.4 Composition Using Specific Features

try
{

type. set _name (“al arni);

catch (Semanti cError ex)

Systemerr.println (“Event type already exists!”);
ex. printStackTrace ();
Systemexit (1);

Compostion

Creating properties or event types in isolation is not very useful. This section
describes how to create associations between event types and properties using the
Conposes interface. An object that implements the Conposes interface can be
obtained by means of the package interface.

The Conposes interface has a number of operations for adding, removing and
modifying the properties associated with an event type. The interface also has
operations for obtaining information about which properties and event types are
associated with the event type. The query operations are summarised below:

» al | _Conposes_l i nks: This operation returns al the links that are currently
established between properties and event types. Two elements in the sequence are
returned by this operation: a property and an event type.

 exi st s: This operation simply checks that an association between an event type
and a property exists.

* wi t h_conposition: This operation returns al the properties that have been
associated with a particular event type.

* wi t h_conponent : This operation returns the event type that is associated with a
particular property.

Note that these operations are present in all the link interfaces (with slightly
different names) due to the MOF mapping. The following example code listings
illustrate how to use these operations. Code examples are provided for only the
Composes interface since these operations are similar for al the link interfaces.

Conposes conposes = pack.conposes_ref ();
ConposesLink[] cl = conposes. al | _Conposes_links ();
Event Type type = null;

Property prop = null;

try

96

for (int i =0; i <cl.length; i++)
type = cl[i].conposition;
prop = cl[i].conmponent;
Systemout.println (“Link # + i + “:");

& PRISMTECH

Event Type Repository

Using Specific Features 6.4 Composition

System out. prin
System out. prin
System out. prin
System out. prin

}

catch (Exception ex)

type. domain ());
type. nane ());
prop.nanme ());
prop.type_code ());

“Event dommin :”
“Event name i
“Property name:”
“Property type:”

=) =i =) =
~———
++ + +

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

Theal | _Conposes_| i nks operation is more likely to be used by a browser tool
than by an application, but it may be useful, for example, for getting a full listing of
all the associations of a Conposes object. Using the exi st s operation is very
straightforward:

if (conmposes.exists (type, prop))
Systemout.println (“Property is added to event type”);
el se

Systemout.println (“Property isn't added to event type”);

In the above exampleg, it is assumed that the variablest ype and pr op are event type
and property objects created elsewhere in the code. Next, thewi t h_conposi ti on
operation is called to get all the properties associated with an event type:

Property[] props = conposes.w th_conposition (type);

try
{
Systemout.println (“Event donmain :” + type.domain ());
Systemout.println (“Event name ;" + type.nane ());
Systemout.println (“Properties:”);
i

for (int i = 0; < props.length; i++)

Systemout.println (“Property name:” + props[i].nanme ());
Systemout.println (“Property type:” + props[i].type_ code 0));
} .
catch (Exception ex)
Systemerr.println (“Never raised!");

ex. printStackTrace ();
Systemexit (1);

Again, thet ype variable is assumed to be an event type defined elsewhere in the
code. Finally, thewi t h_conponent operation can be used to find the event type
that has a particular property associated with it:

Event Type et = conposes.w t h_conmponent (prop);
try
{

Systemout.println (“Property name:” + prop.nane ());
Systemout.println (“Property type:” + prop.type_code ());

97
Event Type Repository

&4 PRISMTECH

6.4 Composition Using Specific Features

Systemout.println (“lIs associated with the event type:”);
Systemout.println (“Event domain :” + type.domain ());
System out.println (“Event nane ;" + type.nanme ());

}
catch (Exception ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

The remaining operations of the Conposes interface deal with associations between
properties and event types and are summarised below:

» add: Adds a property to an event type.

» add_bef ore_conponent: Adds a property to an event type at a particular

position.

* nodi fy_conposi ti on: Moves a property from one event type to another event
type.

* nodi fy_conponent : Replaces one property in an event type with another
property.

* renove: Removes a property from an event type.
The following shows an example of using the add operation:
try
{
conposes. add (type, prop);
}
catch (Structural Error ex)
Systemerr.println (“Failed to add property to event type!”);
ex. printStackTrace ();
Systemexit (1);
catch (Semanti cError ex)
Systemerr.println (“Never raised!”);

ex. printStackTrace ();
Systemexit (1);

The add operation adds the property at the end of the list of properties of an event
type since properties are ordered. The St r uct ur al Er r or exceptionisraised in the
following circumstances:

» when the property is already added to this event type,
» when any super type has a property with this name added, and

» when the property has a different type code in any event type in the import graph.

98
Event Type Repository

& PRISMTECH

Using Specific Features 6.4 Composition

The add_bef or e_conponent operation is used when you wish to place a new
property at a particular position in the ordered list of properties. An example is
given below:

try
{
conposes. add_bef ore_conponent (type, prop, before);
}
catch (Not Found ex)

Systemerr.println (“Could’t find before property!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (Structural Error ex)

Systemerr.println (“Failed to add property to event type!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (Semanti cError ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

This code is very similar to the plain add example. Note that the Not Found
exception is raised when the bef or e property is not associated witht ype. Aswith
the previous examples, it is assumed that the t ype variable is an event type,
whereas pr op and bef or e are properties that have been created or obtained
previoudly in the program.

Thenodi fy_conposi ti on operation is used to move a property from one event
type to another event type. This operation essentially deletes the property from one
event type and adds it to another. Here is an example of how the operation is used:

try

d conposes. nodi fy_conposition (type, prop, new_type);

zzatch (Not Found ex)

Systemerr.println (“Property was not added to event type!”);
ex. printStackTrace ();
Systemexit (1);

catch (Structural Error ex)
Systemerr.println (“Failed to add property to new event type!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (SenmanticError ex)
Systemerr.println (“Never raised!");

ex. printStackTrace ();
Systemexit (1);

& PRISMTECH . %
Event Type Repository

6.4 Composition

try
{

Using Specific Features

The Not Found exception is raised when the property is not associated with the
event type in a similar manner to the add_bef or e_conponent operation. The
St ruct ural Error exceptionisraised in the following circumstances.

» when the property is aready added to the new event type,
» when any super type of the new event type has the property added, or

» when the property has adifferent type in any event type in the import graph of the
new event type.

A property can also be replaced with another using the modi f y_conponent
operation rather than by moving a property from one event type to another. This

operation remaoves one property from an event type and adds another as shown
below:

conposes. nodi fy_conponent (type, prop, new_prop);

catch (Not Foun

Systemerr.

d ex)

println (“Property was not added to event type!”);

ex. printStackTrace ();

System exit
}
catch (Structu

Systemerr.

(1)
ral Error ex)

println (“Failed to add property to event type!”);

ex. printStackTrace ();

System exit

(1);

}
catch (Semanti cError ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();

System exi t

try
{

(1);

Again, Not Found is raised when the property is not associated with the event type.
The usual causesfor the St r uct ur al Er r or exception apply:

» the new property is already added to the event type
* any super type of the event type has this property added

» the property has adifferent type in any event type in the import graph of the event
type

Finally, the r enpve operation can be used to delete, i.e. disassociate, a property
from an event type. The use of this operation is fairly straightforward as with most
operationsin the Conposes interface:

conposes. renove (type, prop);

}
catch (Not Found ex)

100

& PRISMTECH

Event Type Repository

Using Specific Features 6.5 Inheritance

Systemerr.println (“Property was not added to event type!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (Structural Error ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (SenmanticError ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

A

Note that thisimplementation of the Conposes interface never checks that an event
type has subtypes or that any other event types import the event type. This means
that the property is also deleted from any subtype of the event type, and from any
importer type when a property is deleted from an event type.

Adding a property to an event type automatically adds the property to any subtype
and any importer type of the event type in a similar manner to the above. The
operations in the Conposes interface should therefore be used with caution when
modifying the propertiesin an existing event type hierarchy.

Inheritance

&4 PRISMTECH

This section describes how to usethe operationsinthel nheri t s interface to create
or modify inheritance hierarchies of event types.

The l nheri t s interface contains the same query operations as the Conposes
interface because it represents an aggregation (or alink) in the repository meta
model:

e all _Inherits_links - This operation returns al the inheritance relationships
that are currently established between event types. The elements in the sequence
that are returned by this operation contain two elements. a subtype and a
supertype.

» exi sts - This operation simply checks whether one event type inherits from
another.

e wi t h_sub_t ype - Thisoperation returns the event type with a particular subtype.

e wi th_super _type - Thisoperation returns all the event types that inherit from a
particular supertype.

These query type operations are not described any further here because code
examples have previously been provided.

101
Event Type Repository

6.5 Inheritance

Using Specific Features

The remainder of this section provides examples using the rest of the operationsin
thel nheri t s interface. Note that the operations themselves are rather similar to
those in the Conposes interface. The reason for thisis that they are both links
mapped to IDL using the MOF.

This section therefore emphasises the circumstances that cause an exception to be
raised, rather than the operations themselves. Below is a summary of the operations
for manipulating inheritance hierarchies between event types:

* add - Creates an inheritance relationship between two event types.

» nodi fy_sub_t ype - Replaces one subtype with another.

» nodi fy_super _t ype - Replaces one supertype with another.

* renove - Deletes an inheritance relationship between two event types.

There is no operation for adding one object before another since the inheritance
between event typesis not ordered. Note that only single inheritance between event
typesis allowed in the Event Type Repository.

The add operation creates an inheritance relationship between two event types. An
example is shown below:

Event TypeCl ass factory = pack.event_type_class_ref ();
Event Type sub_type = null;
Event Type super_type = null;

try

sub_type = factory.create_event_type (“tel econt, “alarni);
super_type = factory.create_event_type (“tel econf, “location”);

catch (Semanti cError ex)

Systemerr.println (“lIllegal type nane!”);
ex. printStackTrace ();
Systemexit (1);

Inherits inherits = pack.inherits _ref ();

try

i nherits.add (sub_type, super_type);

}
catch (Structural Error ex)

Systemerr.println (“Couldn’t add subtype to supertype!”);
ex. printStackTrace ();
Systemexit (1);

catch (Semanti cError ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

102

& PRISMTECH

Event Type Repository

Using Specific Features 6.5 Inheritance

In the above, two event types are created in the usual fashion. An object that
implements the | nheri t s interface is resolved using the package as described
earlier. An inheritance relationship is created between the two event types using this
interface. The St r uct ur al Error exception israised in these circumstances:

» When the subtype is already added to another supertype. This is due to the fact
that the Event Type Repository supports only single inheritance between event
types when:

 any property in the subtype is defined in the supertype event type

e any property type in the subtype is defined in any type in the import graph of
supertype

« adding this event type creates a cycle in the inheritance hierarchy

Thenodi fy_sub_t ype operation is used to replace one subtype with another. It is
a shorthand for first deleting one event type from a supertype and then adding
another event type to the supertype. An example is shown below:

try
inherits. modify_sub_type (sub_type, super_type, new _sub_type);
}
catch (Not Found ex)
{

Systemerr.println (“Subtype wasn't added to supertype!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (Structural Error ex)

Systemerr.println (“Couldn’t replace subtype!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (SenmanticError ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

The St ruct ur al Error exception is raised in the same circumstances as noted
above because the nodi fy_sub_t ype operation creates an inheritance relationship
between two event types, i.e. adds an event type to another. The Not Found
exception is raised when the subtype has not been added to the supertype.

The supertype can also be modified using the nodi fy_super _t ype operation.
Again, thisis a shorthand method for first removing an inheritance relationship
between two event types and then creating another. Thisisillustrated below:

try
i nherits. nmodi fy_super_type (sub_type, super_type, new_super_type);

E:atch (Not Found ex)
103
Event Type Repository

&4 PRISMTECH

6.5 Inheritance Using Specific Features

Systemerr.println (“Subtype wasn't added to supertype!”);
ex. printStackTrace ();
Systemexit (1);

}

catch (Structural Error ex)

Systemerr.println (“Couldn’t replace supertype!”);
ex. printStackTrace ();
Systemexit (1);

}

catch (Semanti cError ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

The Not Found exception is raised when an inheritance relationship does not exist
between the subtype and supertype. The St ruct ur al Err or exceptionisraised in
the following circumstances:

» when a subtype has any properties that are defined in the new super type or any of
its supertypes

» when a subtype has any properties that are defined in the import graph of the new
supertype

» when adding this event type creates a cycle in the inheritance hierarchy

Finally, the r enove operation is used to delete an inheritance relationship between
two event types. Its useis straightforward:
try
inherits.remove (sub_type, super_type);
}
catch (Not Found ex)
{
Systemerr.println (“Subtype wasn't added to supertype!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Structural Error ex)
Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Semanti cError ex)
Systemerr.println (“Never raised!”);

ex. printStackTrace ();
Systemexit (1);

The Not Found exception is again raised when the subtype does not inherit from the
supertype. Both the St ruct ur al Error and Semant i cErr or exceptions are not
raised by thisimplementation of the | nheri t s interface.

104
Event Type Repository

& PRISMTECH

Using Specific Features 6.6 Import

The same note of caution stated for composition applies to inheritance. The

& implementation of the | nheri t s interface does not check for existing relationships
when the inheritance hierarchy is modified. As an example, an entire branch of the
tree may be moved by invoking the modi fy_sub_t ype operation.

| mport

Event types can import rather than inherit properties from other event types. An
import relationship between two event types just means that one event type obtains
the properties of another event type. There is no semantic relationship. This section
shows how to use the operationsin the | npor t s interface.

The query operations of the | nport s interface are summarised as follows:

e all _I'mports_links - This operation returns al the import relationships that
are currently established between event types. The elements in the sequence that
are returned by this operation contain two el ements. importer type and imported

type.
» exi st's - This operation simply checks whether one event type imports another.

e with_inporter - This operation returns al the event types that import a
particular event type.

e wi t h_i nport ed - Thisoperation returns all the event types that are imported by
aparticular event type.

The remaining operations of the | npor t s interface are summarised below:
* add - Creates an import relationship between two event types.

» nodi fy_i nporter - Moves an imported event type from one importer event
type to another.

» nodi fy_i nport ed - Replaces an imported event type with another.
* renove - Deletes an import relationship between two event types.

The add operation is used to create an import relationship. The two sides of the
relationship are called the importer event type and the imported event type
respectively. An imported event type may have overlapping property names as long
as the type codes of the properties are the same, unlike with inheritance.

Event TypeCl ass factory = pack. event _type class_ref ();
Event Type inmporter = null;
Event Type inported = null;

try

t
inmporter = factory.create_event_type (“tel econt, “alarni);
imported = factory.create_event _type (“tel econf, “location”);

105

& PRISMTECH .
Event Type Repository

6.6 Import Using Specific Features

}

catch (Semanti cError ex)
Systemerr.printin (“lllegal type nane!”);
ex. printStackTrace ();
Systemexit (1);

Imports inports = pack.inmports_ref ();

try

. : :
i mports.add (inporter, inported);

}

catch (Structural Error ex)
Systemerr.println (“Failed to i mport event typel”);
ex. printStackTrace ();
Systemexit (1);

}

catch (Semanti cError ex)
Systemerr.println (“Never raised!”);

ex. printStackTrace ();
Systemexit (1);

The | nport s object reference is resolved from the package object in the usual
manner. The Struct ural Error exception is raised in the following
circumstances:

 any property in the event type graph of the imported event type has a different
type code than the corresponding property in the importer event type

» the addition of the event type creates a cycle in the import graph.

An example of using the nodi fy_i nport er isshown below. This operation is a
shorthand method for first removing the imported type from one event type and
subsequently adding it to another event type.

try

L imports.modify_inporter (inporter, inported, new._.inporter);

catch (Not Found ex)

Systemerr.println (“Event type wasn't inported!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (Structural Error ex)
Systemerr.println (“Failed to i nport event type!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Semanti cError ex)
Systemerr.printlin (“Never raised!”);

ex. printStackTrace ();
Systemexit (1);

106

. & PRISMTECH
Event Type Repository

Using Specific Features 6.6 Import

The Not Found operation is raised when an import relationship between the two
event types does not exist as has been the case for many of the previous link
manipulating operations. The St ruct ur al Err or exception israised in the same
circumstance as stated above because the imported event type is added to a new
importer.

The nodi fy_i nmpor t ed operation replaces an imported event type with another.
The operation is a shorthand method for first removing an event type from an
importer and then adding a new event type to the same importer. An example is
shown below:
try
{
imports. nodify_ inported (inporter, inported, new_inported);
}
catch (Not Found ex)
Systemerr.println (“Event type wasn’t inported!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Structural Error ex)
Systemerr.println (“Failed to inport event type!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Semanti cError ex)
Systemerr.println (“Never raised!”);

ex. printStackTrace ();
Systemexit (1);

The Not Found and Structural Error exceptions are raised in the same
circumstances as for the nodi f y_i npor t er operation.

Finally, the r enove operation destroys an import relationship between two event
types. Again, the Not Found exception is raised when no import relationship exists
between the two types:
try
! i mports.renove (inporter, inported);
catch (Not Found ex)
Systemerr.println (“Event type wasn't inported!”);
ex. printStackTrace ();
Systemexit (1);
iatch (Structural Error ex)
Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);
iatch (SemanticError ex)
Systemerr.println (“Never raised!”);
107
Event Type Repository

&4 PRISMTECH

6.7 Event Type Repository Description Using Specific Features

ex. printStackTrace ();
Systemexit (1);

Event Type Repository Description

An Event Type Repository is an object that contains a number of event type objects.
The repository supports a number of domains that constrain the domain names of
the events that are added to the repository.

An Event Type Repository is a singleton object within each server. The repository
object istypically created by the OpenFusion server process but can alternatively be
created using the factory meta class Event TypeReposit oryCl ass. The
Event TypeReposi t or yd ass interface has two additional operations besides the
factory operation for creating property objects:

e all _of kind_event _type_repository - This operation returns either the
event type repository singleton or a sequence of length zer o since only one
repository is allowed within each package.

e all _of type_event type_repository - As above, this operation returns
one or zero event type repositories.
The example below shows how to use the cr eat e_event _type_repository
operation to create a new repository:
Event TypeReposi t oryd ass etc;
Event TypeRepository repos = nul | ;
String donains[] = { “oil”, “banking”, ““, “finance” };
etc = pack.event_type repository class_ref ();
try
{
repos = etc.create_event_type_repository (domains);
}
catch (Al readyCreated ex)
Systemerr.println (“Repository already created!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Semanti cError ex)
Systemerr.println (“Failed to create repository!”);

ex. printStackTrace ();
Systemexit (1);

The Al r eadyCr eat ed exception is raised when an attempt is made to create
multiple repositories within the same server. The Event TypeReposi tory
interface has two additional operations to those inherited from the
Event TypeReposi t or yC ass interface:

108
Event Type Repository

& PRISMTECH

Using Specific Features 6.8 Containment

» supported_donmai ns - Thisreturns alist of strings describing the domains that
are supported by the repository.

| ookup - This operation locates an event type with a particular type name and
domain.
Asthe support ed_donmai ns operation is very simple, this section includes
example code for only thel ookup operation:
Event Type type = null;
try
{
type = repos. | ookup (“alarm, “tel econt);
catch (Invali dNanme ex)
Systemerr.println (“Invalid type nanme!”);
ex. printStackTrace ();
Systemexit (1);
catch (TypeNot Found ex)
Systemerr.println (“Event type not found!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (UnknownDomai n ex)
Systemerr.println (“Domain not supported by repository!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Semanti cError ex)
Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);
try
Systemout.println (“Full name = “ + type.get_full _name());
}
catch (Exception ex)
Systemerr.println (“Never raised!”);

ex. printStackTrace ();
Systemexit (1);

Containment

The last step in configuring the Event Type Repository isthe Cont ai ns interface. It
allows event types to be added to and removed from the repository. As with the
other link interfaces, there are four query operations.

109
Event Type Repository

&4 PRISMTECH

6.8 Containment Using Specific Features

e al | _Cont ai ns_I i nks - This operation returns all the containment relationships
that are currently established between the event type repository and the event
types. The elements in the sequence returned by this operation contain two
elements: the repository and an event type.

* exi sts - This operation simply checks that an event type has been added to the
repository.
* wi t h_cont ai ner - This operation returns all the event types in the repository.

* wi t h_cont ai ned - This operation returns the repository where an event type is
defined. Thiswill always be the singleton event type repository of the package.

The Cont ai ns interface also has the following additional operations for
mani pul ating relationships between event types and the repository:

» add: Adds an event type to the repository.

* nodi fy_cont ai ner - Moves an event type from one repository to another.
» nodi fy_cont ai ned - Replaces an event type in the repository with another.
* r enpve - Removes an event type from the repository.

An example of using add is shown below:
Cont ai ns contains = pack.contains_ref ();
try
{ :
contains. add (repos, type);
}
catch (Structural Error ex)
Systemerr.println (“Can’t add event type to repository!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Semanti cError ex)
Systemerr.println (“Never raised!”);

ex. printStackTrace ();
Systemexit (1);

In the above example, it is assumed that t ype is an event type created or obtained
previously in the program. The St r uct ur al Er r or exception is raised when the
event type has already been added to the repository or when the domain of the event
is not supported. The Semant i cErr or isnot raised by this implementation of the
event type repository.

110
Event Type Repository

& PRISMTECH

Using Specific Features 6.8 Containment

It is possible to have multiple repositories by creating multiple packages although
the event type repository is a singleton within each package. The
modi fy_cont ai ner operation is not needed when your application uses only a
single repository. However, below is an example of how to move an event type from
one repository to another:

try

! cont ai ns. nodi fy_cont ai ner (repos, type, new_repos);

}
catch (Not Found ex)

Systemerr.println (“Event type wasn't in repository!”);
ex. printStackTrace ();
Systemexit (1);

catch (Structural Error ex)
Systemerr.println (“Failed to add event type to repository!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Semanti cError ex)
Systemerr.println (“Never raised!");

ex. printStackTrace ();
Systemexit (1);

The Not Found exception is raised when the event type is not added to the
repository. The St ruct ur al Err or exception is raised when the event type could
not be added to the new repository, i.e. when the domain is not supported or when it
is already added.

The nmodi f y_cont ai ned operation replaces one event type in the repository with
another. It is a shorthand method for first deleting one event type and subsequently
adding another. An example of usageis listed below:
try
{
contai ns. nodi fy_cont ai ned (repos, type, new_type);
}
catch (Not Found ex)
Systemerr.println (“Event type wasn’t in repository!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Structural Error ex)
Systemerr.println (“Failed to add new event type to repository!”);
ex. printStackTrace ();
Systemexit (1);
}
catch (Semanti cError ex)
Systemerr.println (“Never raised!"”);

ex. printStackTrace ();
Systemexit (1);

1M1
Event Type Repository

&4 PRISMTECH

6.9 Repository Package Using Specific Features

Finaly, the r enove operation deletes an event type from the repository. The code
below is straightforward:

try

L contai ns.renove (repos, type);

}cat ch (Not Found ex)

Systemerr.println (“Event type wasn’'t in repository!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (Structural Error ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (Semanti cError ex)

Systemerr.println (“Never raised!”);
ex. printStackTrace ();
Systemexit (1);

Ther enove operation raises only the Not Found exception when no containment
relationship exists between the event type and the event type repository.

Repostory Package

The Package interfaces section provides only abrief overview of the operations for
similar reasons as before.

ThereisaNot i fi cati onTypesPackageFact ory interface for creating package
instances. The package factory is used to create a local instance of an event type
repository. Note that there can still be only a single repository per server even when
used in this way:

_Notificati onTypesPackage pack;

Event TypeReposi t oryd ass etc;

Event TypeRepository repos;

Not i fi cati onTypesPackageFactoryl npl i npl;

Noti fi cati onTypesPackageFactory factory;
or g. ong. CORBA. Obj ect obj ect;

String[] domains = { “Teleconf, “Transport”, “News” };

impl = new NotificationTypesPackageFactoryl mpl ();

obj ect = Cbj ect Adapter. get Obj ect (inpl);

factory = Notificati onTypesPackageFact oryHel per. narrow (object);

try
pack = factory.create_notification_types_package ();
etc = pack.event_type_repository_class_ref ();
repos = etc.create_event_type_repository (domains);

catch (org.ong. Refl ecti ve. Semanti cError ex)

12
Event Type Repository

& PRISMTECH

Using Specific Features 6.9 Repository Package

Systemerr.println (“Semantic error occurred!”);
ex. printStackTrace ();
Systemexit (1);

}
catch (org.ong. Refl ective. Al readyCreated ex)

Systemerr.println (“Local repository already created!"”);
ex. printStackTrace ();
Systemexit (1);

The factory interface has just a single operation for creating packages:
create_notification_types_package. A package is an object that
implements the Not i fi cati onTypesPackage interface. This interface has
operations to obtain references to all the objects described previoudly:

property_class_ref - Returns a Propertyd ass factory object for this
package.

event _type_cl ass_ref - Returnsan Event Typed ass factory object for this
package.

event _type_repository_class_ref - Returns a factory object of type
Event TypeReposi t or yCl ass for this package.

cont ai ns_r ef - Returnsthe Cont ai ns object.
i nherits_ref - Returnsthel nherit s objects.
i nports_ref - Returnsthel nport s object.

conposes_r e -: Returnsthe Conposes object.

Previous topic have already describe how to use these smple get operations.

&4 PRISMTECH

13
Event Type Repository

6.9 Repository Package Using Specific Features

14
Event Type Repository

& PRISMTECH

APl Definitions

The Event Type Repository consists of the 12 interfaces, described in this section.
The operations from these interfaces provide a generic way to reflect on an object or
association.

The Event Type Repository interfaces provide specific operationsin order to access
the functionality of the repository so the generic, reflective operations are not
needed. As an example, the Conposes interface has an add operation that adds a
property to an event type. Thereis also an add_I i nk operation that is inherited
from the Ref Associ at i on interface. These operations perform the same action,
one in a domain-specific way and one in a generic way.

Classes in the UML model inherit operations from the Ref Obj ect interface. Table
8 shows the Event Type Repository interfaces that deal with classes.

Table 8 Event Type Repository Classes

Interface Pur pose

Noti fi cati onTypesPackaged ass |A package level interface that can be
used to create event type repository
packages.

Noti fi cati onTypesPackage Instances of the event type repository
package that are created by the factory
class.

Event TypeReposi t oryd ass A meta class and factory for objects that
implement theEvent TypeReposi t ory
interface.

Event TypeReposi tory Aninterface for event type repositories.

Event Typed ass A meta class and factory for objects that
implement the Event Type interface.

Event Type An interface for the event type objects
contained in the repository.

Propertyd ass A meta class and factory for objects that
implement the Pr oper t y interface.

Property Aninterface for property objects. Event
type objects are composed of property
objects.

115
Event Type Repository

& PRISMTECH

API Definitions

Links (aggregations in the UML model) inherit operations from the
Ref Associ at i on interface. Table 9 shows the Event Type Repository interfaces
that deal with links.

Table 9 Event Type Repository Aggregations

I nterface Purpose

Cont ai ns An interface for manipulating the
contents of an event type repository. The
interface represents the aggregation
between the repository and the event
type classesin Figure 10.

I nherits Aninterface for manipulating
inheritance between event types. The
interface represents the self-aggregation
on the event type classin Figure 10.

| mports An interface for manipulating imports
between event types. The interface
represents the self-aggregation on the
event type classin Figure 10.

Conposes An interface for manipulating
compositions between event types and
properties. The interface represents the
aggregation between the event type and
property classesin Figure 10.

116
Event Type Repository

& PRISMTECH

Supplemental
Information

Exceptions
The Event Type Repository supports a number of exceptions as summarised in
Table 10 below:
Table 10 Event Type Repository Exceptions
Exception Description

I nval i dNane Indicates that an event name was invalid.

UnknownDonai n Indicates that the event type repository does not
know a domain.

TypeNot Found This exception is only raised by thel ookup
operation of the Event TypeReposi t ory classto
indicate that an event type could not be found.

A number of exceptions from the MOF are used in addition to the Event Type
Repository exceptions. These are summarised in Table 11 below:

Table 11 MOF Exceptions used by the Event Type Repository

Exception Description

Structural Error Raised when an operation could not complete
because it would result in a structural error, e.g. the
repository would be inconsistent.

Semanti cError Indicates a semantic error. Thisisraised when a
check of the input parameters shows that the
operation cannot be performed.

Not Found Indicates that an object could not be found in a
container.
Al readyCr eat ed Indicatesthat an Event Type Repository has a ready

been created. This exception is raised because the
repository is asingleton.

17

& PRISMTECH .
Event Type Repository

8.1 Exceptions Supplemental Information

118
Event Type Repository

& PRISMTECH

Event Domain
Service

Description

Oveviaw

The Event Domain Service simplifies the federation and management of
Notification Service event channels.

The Management of Event Domains specification was developed by the OMG
Telecom Task Force. It describes standard interfaces for federating and managing a
set of Notification Service Event Channel objects, or a set of Log Service Log
objects. The OpenFusion implementation of the Event Domain Service is wholly
compliant with the OMG specification.

The federation of event channels using the Natification Service can be cumbersome
and involve severa steps. The same operation using the Event Domain Service can
be performed in a single step.

The Event Domain Service can manage the following types of objects:
 Notification-style event channels

« Notification-style typed event channels

* Log Servicelogs

 Log Servicetyped logs

Although the Event Domain Service can manage notification channelsand logs, it is
independent of these other services. It is a stand-alone service that can be used to
manage objects from any OM G-compliant Notification or Log Service.

Service Features
The Event Domain Service provides the following features:
» Networking of event channels:
- facilitates channel federation

-no need for an intermediary client to forward events from one channel to
another

- also supports typed events and log domains
» Simplified programming:
- federate channels in one operation

- connect aclient in one operation

121
Event Domain Service

& PRISMTECH

9.2 Architecture and Concepts Description

122

* Ability to detect and (if necessary) prevent the creation of cycles and diamonds —
which helps in topology management.

Architecture and Concepts

An event domain is agroup of one or more channels. (The term channel is used here
to denote any managed object, including Notification Service event channels and
Log Service logs.) The channels within a domain may or may not be connected to
one another (federated).

Note that the channels need not belong to the same Notification Service instance.
Channels from different Notification Services can be federated into a single domain.
Similarly, logs from different Log Service instances can be federated into a single
log domain.

Event suppliers and consumers can connect to any channel in the event domain,
using the operations provided by the Event Domain Service interfaces. Events flow
through the domain, from supplier to consumer, and may pass through any number
of federated channels in the process.

Each event domain may optionally have default supplier and consumer channels
specified. An event supplier will connect to the default supplier channel unless a
specific target channel is identified when the connection is established. An event
consumer will connect to the default consumer channel unless a specific target
channel isidentified when the connection is established.

Figure 11 illustrates events flowing through one possible configuration of an event
domain with four event channels.

& PRISMTECH

Event Domain Service

Description

9.2 Architecture and Concepts

Event Domain

Event
Channel
2

Event
Channel
3

Event
Channel
4

Figure 11 An Event Domain

The Event Domain Service does not interfere with the events that flow inside a
domain. It is merely a management service that facilitates the administrative tasks
associated with federating and managing channels.

It is possible to have any mixture of connection types and event propagation models
within a single domain. For example, the connection between one set of channels
may be st ruct ur ed using the pull model, while the connection between another
set of channels may be unt yped using the push model.

Federating Channels

&4 PRISMTECH

A powerful feature of the Event Domain Service is the ability to federate channels
without the use of an intermediary. In other words, it is possible to connect two
channels without creating a special client that forwards events from one channel to
the other.

An example of federated Notification Servicesis shown in Figure 12. The ability to
federate event channels in this manner provides improved flexibility (alternative
paths can be made available), scalability (the system can be easily extended), and
better performance.

123
Event Domain Service

9.2 Architecture and Concepts Description

Notification Service 2

Proxy
Supplier
Proxy
Supplier

Notification Service 3

Proxy

Notification Service 1 Consumer

Proxy
Consumer,
Proxy
Consumer,

Proxy
Supplier

Proxy
Supplier

. Proxy
Supplier

Proxy
Supplier
Proxy
Consumer,
Proxy
Supplier

Direction of event flow i

Figure 12 Federated Notification Service Example

The Event Domains Service provides interfaces and operations that allow the
federation of an event channel in a single operation. Consider the connection
between Notification Service 1 and Notification Service 2 in Figure 12. When using
the interfaces of the Natification Service, the following steps are needed to establish
this connection:

Get areference to the source event channel in Notification Service 1.
Get or create a consumer admin object for this channel.

Obtain a proxy supplier from the consumer admin object.

Get areference to the target event channel in Notification Service 2.
Get or create a supplier admin object for this channel.

Obtain a proxy consumer from the supplier admin object.

Connect the proxy supplier by passing in the proxy consumer object.
Connect the proxy consumer by passing in the proxy supplier object.

© N o U~ wDdPRE

Using the interfaces of the Event Domain Service, this procedure can be replaced by
asingle operation.

124
Event Domain Service

& PRISMTECH

Description

9.2 Architecture and Concepts

Event Type Propagation

The OpenFusion implementation of the Event Domain Service supports a QoS
setting for enabling or disabling event type propagation in a domain. An event type
change can cause a large number of callbacks in a network of many channels, so
some applications may want to disable event type propagation for performance
reasons.

Domain Topology

&4 PRISMTECH

The topology of an event domain describes the way in which event channels are
connected together within the domain. These connections can be illustrated as a
channel graph (see Figure 11 on page 123 and Figure 13 on page 126 for examples
of channel graphs).

The nature of the Notification Service implies that a connection is always directed.
Thus, for any channel in the domain, it is possible to define upstream and
downstream directions of event flow. For example, in Figure 11 on page 123 event
channel 1 is upsteam from event channel 3, while event channel 3 is downstream
from event channel 1.

The Event Domain Service does not enforce any restrictions on how channels
should be connected. Channels may be connected to multiple other channelsin the
domain. Some channels may be part of an event domain and yet not be connected to
any other channel in the domain.

Figure 13 shows four different types of event domain that can be created:
1. adomain where the channels are connected as a directed acyclic graph
2. adomain that contains a diamond

3. adomain that containsacycle

4. adomain where only some of the channels are connected

125
Event Domain Service

9.2 Architecture and Concepts Description

126

Event Domain #1 Event Domain #2

Figure 13 Different Types of Event Domains

Elaborate domain topologies can be constructed which contain combinations of
these features. For example, a domain could contain both a cycle and a diamond, or
diamonds with multiple paths. Such complex topologies might be required to
provide redundancy in the case of a channel failure, for example. But the presence
of diamonds and cycles can cause effects which the developer must be aware of and
possibly take stepsto avoid when the event domain is designed:

» A cycle may cause an event to propagate endlessly within the domain. To avoid
this, appropriate filters can be set up in the Notification Service or an event
timeout can be set.

* A diamond may cause an event to be delivered more than once to an end
consumer (the number of times being equal to the number of alternative paths by
which the event may arrive at the consumer). To avoid redundant event deliveries,
appropriate filters can be set up in the Notification Service.

The Event Domain Service supports two standard Quality of Service (QoS)
properties which can be used to prevent the creation of diamonds or cycles:

& PRISMTECH

Event Domain Service

Description 9.2 Architecture and Concepts

» Cycle detection rejects any attempt to create a connection between two channels
when the resulting channel graph would contain a cycle.

« Diamond detection rejects any attempt to create a connection between two
channels when the resulting channel graph would contain a diamond.

Gathering Topology I nformation

The Event Domain Service supports two operations for obtaining information about
cycles and diamonds that may exist in adomain:

 get_cycles returns a sequence of cyclesin a specified domain.
» get_diamonds returns a sequence of diamondsin a specified domain.

Two additional operations can be used to obtain information about the topology of
an event domain:

» get_offer_channels returns an array of channel identifiers for all channels
upstream from a specified channel.

* get_subscription_channels returns an array of channel identifiers for all channels
downstream from a specified channel.

127
Event Domain Service

&4 PRISMTECH

9.2 Architecture and Concepts Description

128
Event Domain Service

& PRISMTECH

Using Specific Features

This section uses simple examples that work through the interfaces and describe
how to use the individual operations of the Event Domain. Related operations are
grouped together for clarity. Additional examples for using the service, complete
with source code and descriptions of how to compile and run them, are supplied
elsewhere as part of the product distribution.

Section 10.1 is a simple end-to-end example which sets up an event domain and
connects it to an event supplier and an event consumer. Sections 10.2 and 10.3
expand on this and describe domain management operations for untyped and typed
event domains, respectively. Section 10.4 describes how these features can be
applied to log domains.

Notes

» Thereislittle or no error-checking in the examples shown here. Code to deal with
exceptions has generally been omitted for the sake of clarity and brevity. These
exceptions must be properly caught and handled in aworking system.

» These examples use features of the OpenFusion Naming Service to register and
resolve object names. Thisis purely for convenience: it is not necessary to use the
Naming Service with the Event Domain Service.

|mport Satements

The examples provided below use the following packages:

org. ong. CosNot i f yComm *

org.ong. CosNoti fication.*

org. ong. CosNot i f yChannel Admi n. *

or g. ong. CosEvent Domai nAdmi n. *

or g. ong. CosTypedEvent Domai nAdmi n. *

Setting up a Domain

& PRISMTECH

The following examples will set up the event domain shown in Figure 14. This
simple domain consists of three Notification Service event channels, labelled A, B,
and Cin the diagram.

The setup client is responsible for creating the domain, creating the channels and
adding them to the domain, and creating the connections between the channels.
References to all created objects will be placed in the root context of the
OpenFusion Naming Service.

129
Event Domain Service

10.1 Setting up a Domain Using Specific Features

Event Domain

Push

supplier

Figure 14 Event Domain and Connected Clients

Creating an Event Domain
Step 1: Create anew (empty) event domain. This requires the following operations:

1. Obtain areference to the event domain factory. The factory is registered in the
Naming Service with the name Event Domai nFact ory.

2. Use the factory’s create_event _domai n method to create the domain.
Quality of Service (QoS) and Administrative properties can be specified at this
time. (Note, however, that this example does not specify any QoS or Admin
property values. See Using a Domain Factory on page 138 for an example
which sets QoS properties for the domain.)

public Event Domain create ()

org. ong. CORBA. Obj ect obj = null;

try

t N :
obj = orb.resolve_initial _references (“EventDomai nFactory”);

}

catch (org.ong. CORBA. ORBPackage. | nval i dNanme ex)

{
Systemerr.println (“Failed to resol ve Event Domain Factory”);
Systemexit (1);

Event Domai nFactory factory = Event Domai nFact or yHel per. narrow (obj);

Property[] qos = new Property[O0];

Property[] adm = new Property[O0];

org. ong. CORBA. | nt Hol der id = new org. ong. CORBA. | nt Hol der ();
Event Domai n donain = nul | ;

try
domain = factory.create_event_domain (qos, adm id);
}
catch (UnsupportedQsS ex)
{

Systemerr.println (“UnsupportedQsS’);
Systemexit (1);

}

catch (UnsupportedAdm n ex)
Systemerr.println (“UnsupportedAdnin”);
Systemexit (1);

130
Event Domain Service

& PRISMTECH

Using Specific Features 10.1 Setting up aDomain

Step 2: Register the newly-created domain in the root context of the Naming Service. This
requires the following operations:
1. Obtain areference to the Naming Service.
2. Bind the domain into the root context of the Naming Service.

Note that ther egi st er function is used at several points in the domain creation
procedure. It takes an object and the name that the object isto be registered under as
parameters. To register the domain, we will passin the domai n object (created in
Step 1) and the name MyDomain.

public static void register (org.ong. CORBA. Cbj ect object, String nane)
org. ong. CORBA. Obj ect obj = null;
try
! obj = orb.resolve_initial _references (“NanmeService”);
zzat ch (org.ong. CORBA. ORBPackage. | nval i dNanme ex)
d Systemerr.println (“Failed to resol ve Name Service”);
Systemexit (1);
Nam ngCont ext root = Nam ngCont ext Hel per. narrow (obj);

NaneConponent nc[] = new NaneConponent[1];
nc[0] = new NanmeConponent (nanme, “Object”);

try
{ : :
root.rebind (nc, object);
Systemout.println (“Placed “ + name + “ in nam ng context”);

}
catch (Exception ex)

Systemerr.println (“Failed to bind domain: “ + ex);
Systemexit (1);

Step 3: Create three Notification Service event channels and add them to the domain. To do
this, we use the set up function, which performs the following operations:

1. Obtain areference to the Notification Service event channel factory.
2. Create three new event channels using the factory’scr eat e_channel method.

3. Register the event channelsin the root context of the Naming Service, using the
register function described in Step 2. In this example, we will register the
channels under the names ChannelA, ChannelB, and ChannelC.

4. Add the channels to the domain, using the domain’sadd_channel method.
public void setup (Event Domai n domai n)
org. ong. CORBA. Obj ect obj = null;
try
{
131

&4 PRISMTECH . .
Event Domain Service

10.1

cai
Not

Con
Con

try
{

132
Eve

Setting up a Domain Using Specific Features

obj = orb.resolve_initial _references (“NotificationService");
}
catch (org.ong. CORBA. ORBPackage. | nval i dNarme ex)
{
Systemerr.println (“Failed to resolve Notification Service”);
Systemexit (1);

Event Channel Factory factory = Event Channel Fact oryHel per. narrow (obj);
Event Channel a = null, b = null, ¢ = null;

try
{
Property[] qos = new Property[O0];

Property[] adm = new Property[O0];
org. ong. CORBA. | nt Hol der id = new org. ong. CORBA. | nt Hol der ();

factory. create_channel (qos, adm i
factory. create_channel (qgos, adm i
factory. create_channel (qos, adm i

a
b
c

[eNe N}
———

regi ster (a, “Channel A");
regi ster (b, “ChannelB");
register (c, “ChannelC);

}
catch (UnsupportedQS ex)
{

Systemerr.println (“UnsupportedQsS’);
Systemexit (1);

}
catch (UnsupportedAdn n ex)

Systemerr.println (“UnsupportedAdm n”);
Systemexit (1);

i dA = domai n. add_channel (a);
int idB = donmi n. add_channel (b);
int idC = donmi n. add_channel (c);

Step 4: Set up connections in the new domain, connecting ChannelA to ChannelB and
ChannelB to ChannelC as shown in Figure 14 on page 130. This involves two
operations.

1. Create the connections. Two individual connections are required, as each
connection links two specific channels. Note that the order in which the
channels are specified in the creation operation is significant, as connections are
directed from thefirst identified channel to the second. The type and style of the
connection must also be specified. In this example, the connections are for
structured event channels using the push model.

2. Add the new connections to the domain, using the domain’sadd_connect i on
method.

ent Type type = dient Type. STRUCTURED_ EVENT;
ificationStyle style = NotificationStyle. Push;

nection c

1 ew Connection (idA, idB, type, styl
nection c2

n e);
new Connection (idB, idC, type, style);

donmi n. add_connection (cl);
donmi n. add_connection (c2);

& PRISMTECH
nt Domain Service

Using Specific Features 10.1 Setting up aDomain

}
catch (Exception ex)

Systemerr.println (“Failed to created connection: “ + ex);
Systemexit (1);

Step 5: Set ChannelA as the default supplier channel and ChannelC as the default consumer
channel. This ensures that suppliers, by default, will be connected to ChannelA
whilst consumers, by default, will be connected to ChannelC.

try
. domai n. set _def aul t _suppl i er_channel (idA);
donmi n. set _def aul t _consuner_channel (idC);

}
catch (Exception ex)

Systemerr.println (“Failed to set default channel: “ + ex);
Systemexit (1);

Step 6: Print out some information about the channels, connections, and QoS properties of
the newly-created domain. (For further examples of these operations, see page 138 -
page 140.) Thisstep is not required, but it allows us to verify that our setup example
has worked correctly.

nyDonai n. get _al | _channel s ();
nmyDomai n. get _al | _connections ();

O
Inn

Systemout.printin (“MDomain has “ + chlD.length + “ channel s");
System out.println (“Connection information:");
for (int i =0; i < colD. length; i++)
try
Connection ¢ = nyDonmi n. get_connection (colD[i]);
System out.print (“ between channel #" + c.supplier_id);
Systemout.println (“ and channel #" + c.consuner_id);

}
catch (ConnectionNot Found ex) { }

Systemout.println (“M/Domain QoS:");
Property[] gos = nyDomain.get_gos ();

for (int i =0; i < gos.length; i++)
Systemout.println (“ nane = *“ + qos[i].nane);
Systemout.println (“ value = “ + qos[i].value);

Connecting a Push Supplier

The following example creates a push supplier and connects it to a channel in the

event domain, as shown on the left of Figure 14 on page 130. Using the Event

Domain Service interfaces, the supplier can connect to any of the channels in the
domain with a single operation.

133

Event Domain Service

&4 PRISMTECH

10.1 Setting up a Domain Using Specific Features

The supplier in this example contains methods for publishing events and for
disconnecting from the domain. The publ i sh method will send 10 events to verify
that the domain connections are working correctly.

Step 1: Obtain a reference to the domain, which was registered in the root context of the
OpenFusion Naming Service under the name MyDomain (see Creating an Event
Domain on page 130). To do this:
1. Obtain areference to the root context of the Naming Service.

2. Resolve the name MyDomain, which is the name we used to register the domain
in the Naming Service (as described previously).

public static Event Domain resolve ()
or g. ong. CORBA. Obj ect obj = null;
try
¢ obj = orb.resolve_initial _references (“NanmeService”);
z:at ch (org. onmg. CORBA. ORBPackage. | nval i dNane ex)
! Systemerr.println (“Failed to resol ve Name Service”);
Systemexit (1);
Nam ngCont ext root = Nam ngCont ext Hel per. narrow (obj);

NaneConponent nane[] = new NaneConponent[1];
nane[0] = new NaneConponent (“MyDonmain”, “Object”);

try

t
obj = root.resolve (nane);

}

catch (Not Found ex)

{
return null;

}

catch (Exception ex)
Systemerr.println (“Failed to resol ve MyDonmai n: “ + ex);
Systemexit (1);

return Event Domai nHel per. narrow (obj);

Step 2: Connect the supplier to the domain. The supplier’s constructor connects the supplier
using the domain’s connect _structured_push_supplier method. In this
example, we will connect to the domain’s default supplier channel.

public class Supplier inplenments StructuredPushSupplierOperations
public static void main (String[] args)
//1n order to make exanples easier to run, for Orbacus-40 set a POANanme
i f (com prisnt.openfusion. Version.get ORB() .
t oUpper Case().startsWth(“ORBACUS-4"))

bj ect Adapt er . set POANane(“ OpenFusi on. Event Domai nSupplier”);

134
Event Domain Service

& PRISMTECH

Using Specific Features 10.1 Setting up aDomain

}

orb = bj ect Adapter.init (args);
Setup.orb = orb;

Systemout.println (“Connecting”);
Supplier supplier = new Supplier ();

Systemout.println (“Supplying”);
supplier.publish ();

Systemout.println (“Di sconnecting”);
suppl i er. di sconnect ();

Systemout.println (“Success”);

bj ect Adapt er . shut down() ;
}

public Supplier ()
{

org. ong. CORBA. Obj ect ref = bject Adapter.createTransient (this);
Event Donai n domai n = Setup.resolve ();

if (domain == null)
Systemerr.println (“MyDomai n not found”);
Systemexit (1);

try
St ruct ur edPushSuppl i er supplier;
supplier = StructuredPushSupplierHel per.narrow (ref);
proxy = domai n. connect _structured_push_supplier (supplier);
bj ect Adapter. ready (false);

}

cat ch (Channel Not Found ex)

{

Systemerr.println (“Channel Not Found”);
Systemexit (1);

}
public void di sconnect_structured_push_supplier ()
}

public void subscription_change (Event Type[] added, EventType[] renpved)
throws Invali dEvent Type
{

Systemout.println (“Added types:”);
for (int i = 0; i < added.length; | ++)

Systemout.println (added[i]);

}
Systemout.println (“Renmoved types:”);
for (int i = 0; i < renmoved.length; i++)

Systemout.println (renoved[i]);
}
public void publish ()
StructuredEvent event = new StructuredEvent ();

event . header = new Event Header ();
event . header. fi xed_header = new Fi xedEvent Header ();

& PRISMTECH . 1_35
Event Domain Service

10.1 Setting up a Domain

event . header. fi xed_header. event _type = new Event Type (““,

event . header . f i xed_header . event _name =
event . header . vari abl e_header = new Property[O]
event.filterable _data = new Property[O]
for (int i =0; i < 10; i++)
{
try
{ .
event . remai nder_of _body = orb.create_any ();
event . remai nder _of _body. insert_long (i);
proxy. push_structured_event (event);
catch (org.ong. CosEvent Conm Di sconnect ed ex)

Systemout.println (“Di sconnected”);
Systemexit (0);

}
}

public void di sconnect ()

proxy. di sconnect _structured_push_consuner ();

private static org.ong. CORBA. ORB orb = nul | ;
private StructuredProxyPushConsuner proxy = null;

Connecting a Push Consumer

Using Specific Features

The following example creates a push consumer and connects it to a channel in the
event domain, as shown on the right of Figure 14 on page 130. Using the Event
Domain Service interfaces, the consumer can connect to any of the channelsin the

domain with a single operation.

The consumer prints out the 10 events sent by the supplier created in Connecting a
Push Supplier on page 133. The events have passed through channels A, B, and C as
shown in Figure 14, Event Domain and Connected Clients on page 130.

Step 1: Obtain a reference to the domain. This is as described in Step 1 of Connecting a

Push Supplier on page 133.

Step 2: Connect the consumer to the domain. The consumer’s constructor connects the
consumer using the domain’s connect _st ruct ured_push_consuner method.
In this example, we will connect to the domain’s default consumer channel.

public class Consuner inplenents StructuredPushConsumer Oper ati ons

public static void main (String[] args)
throws java.io.| OException

{

[/1n order to make exanples easier to run, for Orbacus-40 set a POANane

if (comprisnt.openfusion. Version. get O?B()
t oUpper Case().startsWth(“ORBACUS-4"))

bj ect Adapt er . set POANane(“ OpenFusi on. Event Domai nConsuner ") ;

orb = ObjectAdapter.init (args);
136
Event Domain Service

& PRISMTECH

Using Specific Features 10.1 Setting up aDomain

Setup.orb = orb;

Consuner consumer = new Consuner ();

com prismt.orb. Cbj ect Adapter.ready (false);

System out.println (“Consunmer Ready. Press Return to quit”);
System in.read();

bj ect Adapt er . shut down() ;
}

public Consuner ()
{

org. ong. CORBA. Obj ect ref = Object Adapter.createTransient (this);
Event Domai n domai n = Setup.resolve ();

if (domain == null)
Systemerr.println (“MyDomai n not found”);
Systemexit (1);
try
St ruct ur edPushConsuner consuner;
consunmer = StructuredPushConsuner Hel per. narrow (ref);
proxy = domai n. connect _structured_push_consuner (consuner);

cat ch (Channel Not Found ex)
{

Systemerr.println (“Channel Not Found”);
Systemexit (1);

}

public void di sconnect_structured_push_consuner ()
Systemout.println (“di sconnect_structured_push_consuner”);
Systemexit (0); // stop

public void offer_change (Event Type[] added, EventType[] renoved)
throws Invali dEvent Type

{

Systemout.println (“Added types:”);
for (int i = 0; i < added.length; | ++)

Systemout.println (added[i]);

}
Systemout.println (“Renmoved types:”);
for (int i =0; i < renoved.length; i++)

Systemout.println (renmoved[i]);
}
public void push_structured_event (StructuredEvent event)
Systemout.println (event.remai nder_of _body);

private static org.ong. CORBA.ORB orb = null;
private StructuredProxyPushSupplier proxy = null;

137
Event Domain Service

&4 PRISMTECH

10.2 Managing Untyped Event Domains Using Specific Features

Managing Untyped Event Domains

An event domainis a collection manager for the channels and connections that make
up the domain. The untyped event domain interfaces are defined in the
org. ong. CosEvent Domai nAdmi n package. These interfaces can be used to
manage untyped event channels, as shown in the following examples. See Section
10.3, Managing Typed Event Domains on page 146, for examples of managing
typed event channels.

Using a Domain Factory

A domain factory is used to create new event domains. Each domain created by a
domain factory is identified by an integer, which is unique within the scope of that
factory. The factory can manage the collection of the domainsit has created.

The example below shows how to create an event domain with QoS properties set,
asfollows:
1. Create an array of properties and populate it with any required QoS properties.

2. Usethecreate_event _donmai n method of the event domain factory to create
the domain.

Property[] qos = new Property[2];
gos[0] = new Property (CycleDetection.value, orb.create_any ());
gos[1] = new Property (D anpbndDetection.value, orb.create_any ());
gos[0] . val ue. i nsert_short (ForbidCycles. val ue);
gos[1] . val ue.insert_short (ForbidD anponds. val ue) ;
Property[] adm = new Property[0];
org. ong. CORBA. | nt Hol der id = new org. ong. CORBA. | nt Hol der ();
Event Donmai n donmai n = nul | ;
try
{
domain = factory.create_event_domain (qos, adm id);
}
catch (UnsupportedQS ex)
{

Systemerr.println (“UnsupportedQsS’);
Systemexit (1);

}
catch (UnsupportedAdm n ex)
{

Systemerr.println (“UnsupportedAdnin”);
Systemexit (1);

Listing the Quality of Service Properties

This example below prints the QoS properties of all domains that have been created
by afactory, asfollows:

138

& PRISMTECH
Event Domain Service

Using Specific Features 10.2 Managing Untyped Event Domains

1. Thedomain factory’s get _al | _domai ns method returns the identifiers of the
domainsin the collection.

2. Thefactory’sget _event _donmai n method returns a specific domain from the

collection.
3. Thedomain'sget _gos method returns the collection of QoS properties for the
domain.
int[] ids = factory.get_all_donmains ();
for (int i =0; i <ids.length; i++)
try

{
Event Donai n domai n = factory.get_event _domain (ids[i]);
Property[] gos = donmin.get_qos ();
Systemout.println (“QS for domain # + ids[i]);

for (int j =0; j < gos.length; j++)

{
Systemout.println (“ name = “ + qgos[j].nane);
Systemout.println (“ value = “ + gos[]].val ue);

}
catch (Donmmi nNot Found ex) { } // ignore

Destroying a Domain

Thedest r oy operation removes adomain from afactory collection. In addition, all
existing connections between the channels in the domain are also removed.
Destroying a domain has the same effect as invoking the r enove_connecti on
operation on each individua connection in the domain.

Managing Channels
The following channel-management operations are provided:
* add_channel
e get _all _channel s
e get _channel
* renmove_channel

The add_channel operation isillustrated in Step 3 of Creating an Event Domain
on page 131. The other three operations are illustrated in the following example.
This example removes al channelsin adomain that have event reliability set to best
effort. Note that removing a channel automatically removes all existing connections

toit.
int[] ids = domai n.get_all_channels ();
for (int i =0; i <ids.length ; i++)
try
Event Channel channel = donmin.get_channel (ids[i]);
& PRISMTECH 139

Event Domain Service

10.2 Managing Untyped Event Domains Using Specific Features

Property[] qos = channel.get_qos ()
for (int j = 0; j < qos.length; j++)

if (qos[j].nane.equal s(EventReliability.value))
if (qos[j].value.extract_short() == BestEffort.val ue)

donmi n. renpve_channel (ids[i]);

}
}

}
catch (Channel Not Found ex) { } // ignore

Managing Connections
The following operations are provided to allow connection management:
* add_connection
* get _all _connections
e get _connection
* renpve_connecti on

The Event Domain Service uses the Connect i on data structure shown in Table 12
to describe the connections in an event domain.

Table 12 Connection Data Structure

Suppl i er Channel

Consuner Channel

ClientType
NotificationStyle

A connection is directed so that the Suppl i er Channel isthe source of events
while the Consumer Channel isthetarget. The Cl i ent Type may be unt yped
(ANY_EVENT), structured (STRUCTURED_EVENT), or a sequence
(SEQUENCE_EVENT). TheNot i fi cati onSt yl e can be either push or pull.

The add_connect i on operation isillustrated in Step 4 of Creating an Event
Domain on page 132. The other three operations are illustrated in the following
example. This example removes all connections with a client type of sequence
from the domain.

int[] ids = donmmin.get_all _connections ();
for (int i =0; i <ids.length ; i++)

try

Connection ¢ = dommi n. get_connection (ids[i]);

140
Event Domain Service

& PRISMTECH

Using Specific Features 10.2 Managing Untyped Event Domains

if (c.ctype == O ient Type. SEQUENCE_EVENT)
{

donmi n. renpve_connection (ids[i]);

}
catch (Connecti onNot Found ex) { } // ignore

A

The following situations can cause problems in domain management and should be
avoided:

» Connections may be made between channels without using the
add_connect i on operation of the Event Domain Service. Applications could
manually add such connections using the standard operations of the Natification
Service. Such connections will not be visible to the Event Domain Service.

* |t is possible to add the same event channel to a domain more than once. Event
channels are identified only by number, since it is not generaly possible to
reliably compare CORBA object references.

Connecting Clients

&4 PRISMTECH

An untyped event domain supports operations for connecting consumers and
suppliersto event channels. These operations can connect to the default supplier and
consumer channels, or to a specific channel by explicitly specifying the channel’s
unigue identifier in the connect operation.

The default supplier channel is defined with the domain’s
set _defaul t _supplier_channel operation. The default consumer channel is
defined with the set _default_consumer _channel operation. Step 5 of
Creating an Event Domain on page 133 has an example of using these methods.

Note that if a default supplier or consumer channel is not defined, then the first
channel added to the domainis used as the default.

There are different operations for connecting suppliers and consumers for each
client type (unt yped, st ruct ur ed, and sequence) and each communication
model (push and pul |). For example:

e connect _push_supplier

e connect _push_consuner

e connect _structured_push_supplier

e connect _structured_push_consuner

Thefull list of operationsisgiven in Section 11.1, Interfaces, on page 151.

Each connect operation performs the following steps:

141
Event Domain Service

10.2 Managing Untyped Event Domains Using Specific Features

142

Step 1:

Step 2:

Step 3:

Obtains the supplier or consumer admin object from the target channel. A
Channel Not Found exception israised if the target channel does not exist.

Obtains a proxy from the admin object according to the client type (unt yped,
structured or sequence) and communication model (push or pull). An
IMP_LIMT system exception is raised if the admin object raises an
Adnmi nLi i t Exceeded exception.

Connects the client to the newly created proxy object. An | NTERNAL system
exception is raised when the proxy raises an Al r eadyConnect ed or aTypeEr r or
exception, since thisis not supposed to happen.

All of thisis accomplished by asingle line of code, asillustrated by the examplesin
Connecting a Push Supplier on page 133 and Connecting a Push Consumer on page
136.

Topology M anagement

The Event Domain Service supports several operations for topology management.
The key operations provide information about two key topographical features which
may occur in the domain: cycles and diamonds.

Cycles

If the Cycl eDet ect i on QoS property has a value of Aut hori zeCycl es, a
domain may contain cycles.

Consider the event domain shown in Figure 15. This domain has three cycles. The
get _cycl es operation returns a sequence, which in turn contains a sequence of
channel identifiers. The return value is therefore an array of arrays as illustrated to
the right of Figure 15.

& PRISMTECH

Event Domain Service

Using Specific Features 10.2 Managing Untyped Event Domains

Event Domain

__

Figure 15 Domain Containing Three Cycles

Note that channels 4 and 9 are not part of any cycles, and therefore do not appear in

the returned sequence.
Thefollowing example usestheget _cycl es operation to print out all the cyclesin
adomain:
int[][] cycles = domain.get_cycles ();
for (int i =0; i < cycles.length; i++)
d Systemout.print (“Cycle: “);
for (int j =0; j <cycles[i].length; j++)

Systemout.print (cycles[i][j] + “ “);

}
Systemout.println ();

The output from running this example on the domain shown in Figure 15 is:

Cycle: 01 2
Cycle: 356
Cycle: 7 8 10 11 12

i The order of channel identifiersin the return sequences may not be precisely as
indicated in the above graph for the get _cycl es operation. Although the sequence
will be ordered correctly, it may start with any channel in the cycle.

Diamonds
If the Di anondDet ect i on QOS property has a value of Aut hori zeDi anponds, a
domain may contain diamonds.

& PRISMTECH . 1_43
Event Domain Service

10.2 Managing Untyped Event Domains Using Specific Features

Consider the event domain shown in Figure 16. This domain has three diamonds,
where one of the diamonds has three edges. The get _di anonds operation returns a
sequence of diamonds. Each diamond is a sequence of routes. A route is a sequence
with the identifiers of all channels that participate in a diamond path. The return
valueisthus an array of integer arrays asillustrated to the right of Figure 16.

Event Domain

__

O @
@*Q'Q @“@ | [o14] [024] [034] |
@ @

[[568] [578]]

@ @ [(10111315] [10121415 |]
oa,_ —m® ! e
; @@

Figure 16 Domain Containing Three Diamonds

Note that channel 9 is not a part of any diamonds, and therefore does not appear in
the returned sequence.

The following example uses the get _di anonds operation to print out all the
diamonds in adomain:

int[]1[][] dianmbnds = donmi n. get _di amonds ();

or (int i = 0;

System out .
for (int j
{

System o
for (int

i < dianonds.|ength; i++)

println (“Paths in dianond #" + i);
= 0; j < dianonds[i].length; j++)

ut.print (“ path #" +j + “: “);
k = 0; k < dianonds[i][j]. Iength k++)

Systemout.print (dianonds[i][j][k] + “ “);

Systemout.println ();

144

& PRISMTECH

Event Domain Service

Using Specific Features 10.2 Managing Untyped Event Domains

The output from running this example on the domain shown in Figure 16 is:

Pat hs i n di anond #O:
path #0: 0 1 4

path #1: 0 2 4
path #2: 0 3 4
Pat hs in di anond #1:
path #0: 5 6 8
path #1: 5 7 8

Pat hs i n di anond #2:
path #0: 10 11 13 15
path #1: 10 12 14 15

Channels

The Event Domain Service supports the following additional operations for
obtaining information about the topology of an event domain:

« get_offer_channels - Returns an array of channel identifiers for all channels
upstream from the specified target channel

* get_subscription_channels - returns an array of channel identifiersfor all channels
downstream from the specified target channel

Disabling Event Type Propagation

The Event Domain Service also supports an additional QoS setting,
Event TypesEnabl ed, to control event type propagation in an event domain. An
event type change can cause a large number of callbacks in a network of many
channels, so applications may disable event type propagation for performance
reasons. The default is for event type propagation to be enabl ed.

Event type subscription changes will affect all channels upstream from the initiating
consumer, and event type offer changes will affect all channels downstream from
theinitiating supplier.

Event type information will propagate through a domain as follows:

1. A consumer connected to an event channel changes its subscribed types, either
by calling the proxy’s subscri pti on_change operation or by manipulating
the event types associated with a Notification Service filter constraint.

2. The proxy notifies the channel about this change.

145
Event Domain Service

&4 PRISMTECH

10.3 Managing Typed Event Domains Using Specific Features

3. The channel informs al connected suppliers (by invoking their
subscri pti on_change operation) when the newly added or removed event
type modifies the event type aggregate at the channel.

4. Theevent typeinformation is propagated back through the event channelsin the
domain.

Event type callbacks will never endlessly propagate through the event system when
there is a cycle, because a channel will only issue event type callbacks when the
aggregate of subscribed or offered types changes.

Managing Typed Event Domains

Typed event domains are collections of typed event channels and connections.
Typed event domain interfaces are defined in the
or g. ong. CosTypedEvent Domai nAdni n package. The basic functionality is the
same as that of the untyped event domain, described in 10.2, Managing Untyped
Event Domains on page 138. Additional operations for connecting typed clients are
described below.

Using a Typed Event Domain Factory

The Typed Event Domain Factory supports the same operations as the untyped
event domain factory. The factory is resolved by using the name
TypedEvent Donmai nFact or y, as shown in the example below:

org. ong. CORBA. Obj ect obj = null;

try
{

obj = orb.resolve_initial _references (“TypedEvent Domai nFactory”);

catch (org. ong. CORBA. ORBPackage. | nval i dNanme ex)
{

Systemerr.println (“Failed to resolve Typed Event Domain Factory”);
Systemexit (1);

TypedEvent Domai nFactory factory;
factory = TypedEvent Donai nFact or yHel per. narrow (obj);

146

Managing Typed Channels

Typed event channels are added to a typed event domain using the
add_t yped_channel operation.

It is possible to add untyped event channels to a typed event domain, since the
TypedEvent Domai n interface inherits from the Event Domai n interface. Untyped
event channels are added using the add_channel operation.

& PRISMTECH

Event Domain Service

Using Specific Features 10.3 Managing Typed Event Domains

Managing Typed Connections

The TypedConnect i on data structure shown in Table 13 describes the connections
in atyped event domain. Compare this structure with Table 12, Connection Data
Sructure: the typed event model does not support client type and instead uses a
repository identifier (the Key field).

Table 13 TypedConnection Data Structure

Suppl i er Channel

Consuner Channel

Key
NotificationStyle

The following example shows how to create a typed connection between two
channels. The channels have the identifiersi dA and i dB (assumed to be initialized
elsewhere in the code).
try
NotificationStyle style = NotificationStyle.Push;
String id = Account Qbserver Hel per.id();
TypedConnecti on ¢ = new TypedConnection (idA, idB, id, style);
) donmi n. add_t yped_connection (c);
cat ch (Channel Not Found ex)
{

System err.println (“Channel Not Found”);
Systemexit (1);

}
catch (org. ong. CosEvent Channel Adm n. TypeError ex)

Systemerr.println (“TypeError”);
Systemexit (1);

}
catch (Al readyExists ex)
{

Systemerr.println (“Al readyExists”);
Systemexit (1);

}
catch (Cycl eCreati onFor bi dden ex)
{

Systemerr.println (“Cycl eCreati onForbi dden”);
Systemexit (1);

}
catch (D anondCreati onFor bi dden ex)

Systemerr.println (“Di anondCreati onFor bi dden”);
Systemexit (1);

Refer to the Typed Notification Service documentation for information about the
Account Qbser ver interface.

147
Event Domain Service

&4 PRISMTECH

10.4 Log Domains Using Specific Features

148

A

The Event Domain Service contains a significant limitation, caused by an error in
the OMG Event and Notification Service specifications. An inheritance flaw in the
specifications makes it impossible to use the Event Domain Service to create a
connection between a typed event channel and an untyped event channel. This also
means that the get _channel operation of the untyped event domain cannot return
atyped event channel. Clients should use the get _t yped_channel operation to
retrieve atyped event channel.

Connecting Typed Clients

A typed event domain supports operations for connecting typed suppliers and
consumers to typed event channels. These operations can connect to the default
supplier and consumer channels, or to a specific channel by explicitly specifying the
channel’s unique identifier in the connect operation.

The default typed supplier event channel is defined with the
set _default_typed_consumer_channel operation. The default typed
consumer channel isdefined withtheset _def aul t _t yped_suppl i er _channel

operation. These operations are used identically to the equivalent operations
provided for untyped domains (see Step 5 of Creating an Event Domain on
page 133 for an example.)

Note that if a default supplier or consumer channel is not defined, then the first
channel added to the domain is used as the defaullt.

There are different operations for connecting suppliers and consumers for each
communication model (push and pul). For example:

e connect _typed_push_supplier
e connect typed pull _supplier
Thefull list of operationsisgiven in Section 11.1, Interfaces on page 151.

The client application must specify the repository identifier of the interface to be
used for typed event communication (in addition to the arguments supplied with the
connect operations as with an untyped event domain). The format of this string is
the same as that used for the Key field in the TypedConnect i on data structure.

L og Domains

A log domain is functionally similar to an event domain, except that it supports the
management of log objects and typed log objects. The Event LogDonai n interface
inherits from the TypedEvent Donmi n interface, so alog domain supports all the
operations described in the previous sections.

& PRISMTECH

Event Domain Service

Using Specific Features 10.4 Log Domains

&4 PRISMTECH

The log domain factory is functionally identical to the event domain factory and
typed event domain factory, previously described. This factory is resolved using the
name Event LogDomai nFact ory. It supports the creation and collection
management of log domains.

L og domains support the type-safe addition and retrieval of logs and typed logs
through the following operations:

e add_| og
e add_typed_| og
* get | og
* get _typed | og.

Note: typed and untyped logs both are handled by the same classes
(Event LogDomai n and Event LogDomai nFact ory). There are no separate
classes for typed logs.

149
Event Domain Service

10.4 Log Domains Using Specific Features

150
Event Domain Service

& PRISMTECH

APl Definitions

This chapter describes the main Event Domain interfaces. The complete IDL API is
provided elsewhere as part of the product distribution.

| nterfaces

The Event Domain Service interfaces are listed in Table 14:

& PRISMTECH

Table 14 Event Domain Service Interfaces

Interface

Description

Event Donai n

An event domain for federating and managing
untyped event channels, and for connecting event
suppliers and consumers to event channels.

Event Domai nFact ory

A factory for creating and managing untyped
event domains.

Event LogDonai n

An event domain for managing logs and typed
logs.

Event LogDonai nFact ory

A factory for managing logs and typed logs.

TypedEvent Donai n

An event domain for managing typed event
channels.

TypedEvent Donai nFact ory

A factory for creating and managing typed event
channels.

The Event Domai n interfaces, as shown in Figure 17, support operations for
managing untyped event channels and connections within a domain, as well as for
connecting consumers and suppliers to an event channel within the domain. In
addition, the interfaces have operations for domain topography management: for
obtaining upstream and downstream channel information, and for listing the cycles

and diamonds within adomain.

151
Event Domain Service

11.1 Interfaces API Definitions

QoSAdmin AdminPropertiesAdmin
(from org.omg.CosNotification) (from org.omg.CosNotification)

EventDomainFactory EventDomain

domains

Figure 17 CosEventDomainAdmin Module Interfaces

The TypedEvent Domai n interfaces, as shown in Figure 18, inherit from the
Event Domai n interfaces and include additional operations for the connection of
typed clients to a typed event channel. These operations have an additional
argument to those of the corresponding untyped operations: the repository identifier
that specifies the interface to be used for typed event communication.

EventDomain
(from org.omg.CosEventDomainAdmin)

TypedEventDomainFactory TypedEventDomain
domains

Figure 18 CosTypedEventDomainAdmin Module Interfaces

152 & PRISMTECH
Event Domain Service

API Definitions

11.1 Interfaces

A log domain is very similar to an event domain, since a log is functionally
equivalent to an event channel. Inheritance means that Log domains require very
few additional operations to support their management. The Event LogDomai n
interfaces are shown in Figure 19. A log domain, like an event domain, supports
only notification style log objects. The only other operations in the
Event LogDomai n interfaces are used for the type-safe addition and retrieval of

typed log objects.

EventLogDomainFactory

EventDomain
(from org.omg.CosEventDomainAdmin)

(from org.omg.CosTypedEventDomainAdmin)

TypedEventDomain

domains

EventLogDomain

Figure 19 DsLogDomainAdmin Module Interfaces

EventDomain

Thisisthe main interface for federating untyped event channels, and for connecting
suppliers and consumers to an event channel.

&4 PRISMTECH

Operations
add channel

Adds an untyped event channel to a domain.

153
Event Domain Service

11.1 Interfaces

154

API Definitions

add_connection
Connects two event channels in a domain. If either channel does not exist, a
Channel Not Found exception israised

If the two channels are already connected, an Al r eadyExi st s exception is raised.
This exception is also raised if a channel is being connected to itself (that is, the
same channel is specified at both ends of the connection).

If the Cycl eDet ect i on QOS property is set to For bi dCycl e, and the creation of
the requested connection would result in a cycle configuration, a
Cycl eCr eat i onFor bi dden exception is raised.

If the Di anondDet ect i on QO0S property is set to For bi dDi anond, and the
creation of the requested connection would result in a diamond configuration, a
Di anondCr eat i onFor bi dden exception is raised.

connect_pull_consumer

Connects a pull consumer to the default consumer channel of atarget domain. If no
channels are found, a Channel Not Found exception will be raised.

connect_pull_consumer_with id
Connects a pull consumer to a specified channel of a target domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_pull_supplier

Connects a pull supplier to the default supplier channel of atarget domain. If no
channels are found, a Channel Not Found exception will be raised.

connect_pull_supplier_with_id

Connects a pull supplier to a specified channel of a target domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_push_consumer

Connects a push consumer to the default consumer channel of atarget domain. If no
channels are found, a Channel Not Found exception will be raised.

connect_push_consumer_with_id

Connects a push consumer to a specified channel of a target domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_push_supplier
Connects a push supplier to the default supplier channel of atarget domain. If no
channels are found, a Channel Not Found exception will be raised.

& PRISMTECH

Event Domain Service

API Definitions

&4 PRISMTECH

11.1 Interfaces

connect_push_supplier_with_id
Connects a push supplier to a specified channel of a target domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_sequence_pull_consumer

Connects a sequence pull consumer to the default consumer channel of atarget
domain. If no channels are found, a Channel Not Found exception will be raised.

connect_sequence pull_consumer_with_id
Connects a sequence pull consumer to a specified channel of atarget domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_sequence pull_supplier

Connects a sequence pull supplier to the default supplier channd of atarget domain.
If no channels are found, a Channel Not Found exception will be raised.

connect_sequence pull_supplier_with_id
Connects a sequence pull supplier to a specified channel of a target domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_sequence_push_consumer

Connects a sequence push consumer to the default consumer channel of a target
domain. If no channels are found, a Channel Not Found exception will be raised.

connect_sequence push_consumer_with id
Connects a sequence push consumer to a specified channel of atarget domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_sequence push_supplier

Connects a sequence push supplier to the default supplier channel of a target
domain. If no channels are found, a Channel Not Found exception will be raised.

connect_sequence push_supplier_with_id
Connects a sequence push supplier to a specified channel of a target domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_structured _pull_consumer

Connects a structured pull consumer to the default consumer channel of a target
domain. If no channels are found, a Channel Not Found exception will be raised.

155
Event Domain Service

11.1 Interfaces

156

API Definitions

connect_structured pull_consumer_with_id

Connects a structured pull consumer to a specified channel of atarget domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_structured _pull_supplier

Connects a structured pull supplier to the default supplier channel of a target
domain. If no channels are found, a Channel Not Found exception will be raised.

connect_structured pull_supplier_with_id

Connects a structured pull supplier to a specified channel of a target domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_structured push_consumer

Connects a structured push consumer to the default consumer channel of atarget
domain. If no channels are found, a Channel Not Found exception will be raised.

connect_structured push_consumer_with_id

Connects a structured push consumer to a specified channel of atarget domain. A
Channel Not Found exception will be raised if the channel does not exist.

connect_structured push_supplier

Connects a structured push supplier to the default supplier channel of atarget
domain. If no channels are found, a Channel Not Found exception will be raised.

connect_structured push_supplier_with_id
Connects a structured push supplier to a specified channel of atarget domain. A
Channel Not Found exception will be raised if the channel does not exist.

destroy

Removes a domain from a factory collection. Thiswill also remove any existing
connections between channelsin the domain.

get_all_channels

Returns a sequence of all the unique identifiers corresponding to all the existing
channelsin adomain.

get_all_connections

Returns a sequence of the unique identifiers corresponding to all the existing
connections in a domain.

& PRISMTECH

Event Domain Service

API Definitions

&4 PRISMTECH

11.1 Interfaces

get_channd

Uses the unique channel identifier to return an object reference to a specific channel
in adomain. A Channel Not Found exception will be raised if no channel
corresponding to the specified identifier exists.

get_connection

Uses a connection’s unique identifier to return the Connect i on data structure for
that connection (described in Managing Connections on page 140). A
Connect i onNot Found exception will be raised if no connection corresponding to
the identifier exists or if the connection is atyped connection.

get_cycles
Returns a sequence of al the cyclesin adomain.

get_diamonds
Returns a sequence of al the diamonds in a domain.

get_offer_channes

Returns alist of all channels that exist upstream of a specified channel in adomain.
A Channel Not Found exception will be raised if the specified channel does not
exist.

get_subscription_channels

Returns alist of all channels that exist downstream of a specified channel in a
domain. A Channel Not Found exception will be raised if the specified channel
does not exist.

remove _channe

Removes a channel from a domain. This also removes all existing connections to the
channel. A Channel Not Found exception will be raised if the specified channel
does not exist.

remove_connection

Removes a connection between two specified channels in a domain. A
Connect i onNot Found exception will be raised if the specified connection does
not exist.

st _default_consumer_channd

Used to define the default consumer channel for adomain. A Channel Not Found
exception will beraised if the specified channel does not exist.

157
Event Domain Service

11.1 Interfaces API Definitions

st default_supplier_channe

Used to define the default supplier channel for a domain. A Channel Not Found
exception will be raised if the specified channel does not exist.

EventDomainFactory
A factory interface for creating and managing event domains.

Operations

create event_domain

Creates a new instance of an event domain. Takes the following parameters:

* A list of name-value pairs that specify the initial QoS properties for the new
domain. If no implementation of the Event Domai n interface exists that can

support al of the requested QoS property settings, an Unsupport edQoS
exception is raised.

* A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the Event Donai n interface exists that can
support the requested administration properties, an Unsupport edAdni n
exception is raised.

get_all_domains

Returns alist of all the domains that have been created by the factory.

get_event_domain
Uses the unique domain identifier to return an object reference to a specific domain

that has been created by this factory. A Domai nNot Found exception will be raised
if no domain corresponding to the specified identifier exists.

EventL ogDomain
An event domain interface for managing logs and typed logs.
Operations
add log
Adds an untyped Notification log channel to the domain.

add _typed log
Adds atyped Natification log channel to the domain.

158
Event Domain Service

& PRISMTECH

API Definitions

11.1 Interfaces

get_log
Uses the unique log channel identifier to return an object reference to a specific

untyped log channel in the domain. A Channel Not Found exception will be raised
if no log corresponding to the specified identifier exists.

get_typed log

Uses the unique log channel identifier to return an object reference to a specific
typed log in the domain. A Channel Not Found exception will be raised if no log
corresponding to the specified identifier exists.

EventL ogDomainFactory

A factory interface for managing logs and typed logs.

Operations

create_event_log_domain
Creates a new instance of an event log domain. Takes the following parameters.

« A list of name-value pairs that specify the initial QoS properties for the new
domain. If no implementation of the Event LogDonai n interface exists that can
support al of the requested QoS property settings, an Unsupport edQS
exception is raised.

« A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the Event LogDomai n interface exists that
can support the requested administration properties, an Unsupport edAdni n
exception is raised.

get_all_event log domains
Returns alist of all the event log domains that have been created by the factory.

get_event log_domain
Uses the unique domain identifier to return an object reference to an event log

domain that has been created by thisfactory. A Domai nNot Found exception will be
raised if no domain corresponding to the specified identifier exists.

TypedEventDomain

&4 PRISMTECH

An interface for managing typed event channels.

159
Event Domain Service

11.1 Interfaces

160

API Definitions

Operations

add _typed_channd
Adds atyped event channel to adomain.

add typed connection

Forms a typed connection between two typed event channelsin the domain. If either
channel does not exist, aChannel Not Found exception is raised.

If the two channels are already connected, an Al r eadyExi st's exception is raised.
This exception is aso raised if a channel is being connected to itself (that is, the
same channel is specified at both ends of the connection).

If either of the two channelsis not atyped event channel, aTypeEr r or exception is
raised.
If the Cycl eDet ect i on QOS property is set to For bi dCycl e, and the creation of

the requested connection would result in a cycle, aCycl eCr eat i onFor bi dden
exception is raised.

If the Di anondDet ect i on QOS property is set to For bi dDi anond, and the
creation of the requested connection would result in a diamond, a
Di anondCr eat i onFor bi dden exception is raised.

connect_typed pull_consumer

Connects a typed pull consumer to the domain’'s default typed consumer channel. If
the target domain contains no typed channels, a Channel Not Found exception is
raised.

If the default channel for typed consumers is not capable of creating a typed proxy

supplier that supports the specified interface, an | nt er f aceNot Support ed
exception is raised.

connect_typed pull_consumer_with_id
Connects atyped pull consumer to a specified channel in the target domain. If the
specified channel does not exist, a Channel Not Found exception is raised.

If the specified channel is not capable of creating a typed proxy supplier that
supports the specified interface, an | nt er f aceNot Suppor t ed exception is raised.

connect_typed pull_supplier
Connects atyped pull supplier to the domain’s default typed supplier channdl. If the

target domain contains no typed channels, a Channel Not Found exception is
raised.

& PRISMTECH

Event Domain Service

API Definitions

&4 PRISMTECH

11.1 Interfaces

If the default channel for typed suppliers does not support the ability to pull typed
events, aNoSuchl npl enent at i on exception israised.

connect_typed pull_supplier_with_id
Connects a typed pull supplier to a specified channel in the target domain. If the
specified channel does not exist, a Channel Not Found exception is raised.

If the specified channel does not support the ability to pull typed events, a
NoSuchl npl enent at i on exception is raised.

If the typed supplier does not support the specified interface, a TypeErr or
exception is raised.

connect_typed push_consumer

Connects atyped push consumer to the domain’s default typed consumer channel. If
the target domain contains no typed channels, a Channel Not Found exception is
raised.

If the default channel for typed consumers does not support the ability to push typed
events, aNoSuchl npl enent at i on exception israised.

connect_typed push_consumer_with_id
Connects a typed push consumer to a specified channel in the target domain. If the
specified channel does not exist, a Channel Not Found exception is raised.

If the specified channel does not support the ability to push typed events, a
NoSuchl npl enent at i on exception is raised.

If the typed consumer does not support the specified interface, then the TypeEr r or
exception is raised.

connect_typed push_supplier

Connects atyped push supplier to the domain’s default typed supplier channel. If the
target domain contains no typed channels, a Channel Not Found exception is
raised.

If the default channel for typed suppliersis not capable of creating a typed proxy
consumer that supports the specified interface, an | nt er f aceNot Support ed
exception is raised.

connect_typed push_supplier_with_id
Connects a typed push supplier to a specified channel in the target domain. If the
specified channel does not exist, a Channel Not Found exception is raised.

161
Event Domain Service

11.1 Interfaces

API Definitions

If the specified channel is not capable of creating a typed proxy consumer that
supports the specified interface, an | nt er f aceNot Suppor t ed exception is raised.

get_typed channe

Usesaunique identifier to return the object reference of atyped channel in the target
domain. A Channel Not Found exception will be raised if no channel
corresponding to the specified identifier exists.

get_typed connection

Uses a unique identifier to return the object reference of atyped connection in the
target domain. A Connect i onNot Found exception will be raised if no connection
corresponding to the specified identifier exists, or if the connection is not a typed
connection.

st default_typed consumer_channe

Used to define the default typed consumer channel for a domain. A
Channel Not Found exception will be raised if the specified channel does not exist.

st default_typed supplier_channe

Used to define the default typed supplier channel for a domain. A
Channel Not Found exception will be raised if the specified channel does not exist.

TypedEventDomainFactory

162

A factory interface for creating and managing typed event domains.

Operations

create_typed event_domain

Creates a new instance of atyped event domain. Takes the following parameters.

* A list of name-value pairs that specify the initial QoS properties for the new
domain. If no implementation of the TypedEvent Domai n interface exists that

can support all of the requested QoS property settings, an Unsupport edQS
exception is raised.

» A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the TypedEvent Domai n interface exists
that can support the requested administration properties, an Unsuppor t edAdni n
exception is raised.

get_all_typed domains
Returns alist of all the typed event domains that have been created by the factory.

& PRISMTECH

Event Domain Service

API Definitions 11.1 Interfaces
get_typed event_domain

Uses a unique identifier to return the object reference to a typed event domain that
has been created by this factory. A Domai nNot Found exception will be raised if no
typed event domain corresponding to the specified identifier exists.

& PRISMTECH . 1_63
Event Domain Service

11.1 Interfaces API Definitions

164
Event Domain Service

& PRISMTECH

77 Supplemental
Information

7Z.7 Quality of Service Properties

The OpenFusion implementation of the Event Domain Service currently supports
three different QoS properties, as described in Table 15.

Table 15 Event Domain Service QoS Properties

Property Description

Cycl eDet ecti on When thisis set to For bi dCycl es, the domain raisesa
Cycl eCr eat i onFor bi dden exception when attempting
to add a connection that will form acycle.

When thisis set to Aut hor i zeCycl es, the creation of
cycles will be allowed and will not be flagged in any way.

The default is Aut hori zeCycl es.

Di anondDet ecti on |When thisis set to For bi dDi anonds, the domain raises
aDi anondCr eat i onFor bi dden exception when
attempting to add a connection that will form a diamond.

When thisis set to Aut hor i zeDi anpnds, the creation of
diamonds will be allowed and will not be flagged in any
way.

The default is Aut hor i zeDi anonds.

Event TypesEnabl ed |When thisissettot r ue, the domain will enable
propagation of event type information. This means that
get _offered_typesandget _subscription_types
operations of the proxiesinvolved in a connection will be
invoked with the NONE_NOW UPDATES_ON obtain mode.

When thisissettof al se, event type callbacks will be
disabled by using the NONE_NOW UPDATES_OFF obtain
mode.

The default valueist r ue.

165
Event Domain Service

& PRISMTECH

12.2 Administration Properties Supplemental Information

Administration Properties

The OpenFusion implementation of the Event Domain Service supports a single
administration property, as described in Table 16.

Table 16 Event Domain Service Administration Setting

Property Description

Domai nNarme | The name of adomain. This name must be unique within the
domain collection of asingle factory. A domain name may be
useful in some applications as an alternative to an integer domain
identifier.

Exceptions
The exceptions raised by the Event Domain Service are described in Table 17.

Table 17 Event Domain Service Exceptions

Exception Description

Al readyExi st's Raised when trying to add a connection that
already existsin the target domain. Also raised
when trying to create a connection where the
source and target channel are the same.

Channel Not Found Raised when specifying a channel identifier
that does not correspond to achannel contained
in the target domain. Also raised when trying
to get atyped channel using theget _channel
operation on an untyped event domain.

Connect i onNot Found Raised when trying to get or remove a
connection that does not exist in the target
domain. Also raised when trying to get atyped
connection using the get _connecti on
operation on an untyped event domain.

Cycl eCr eat i onFor bi dden Raised when the specified connection would
form acyclein the target domain. This
exception can only be raised when the

Cycl eDet ect i on QoS has been set to

For bi dCycl es.

166

& PRISMTECH
Event Domain Service

Supplemental Information

&4 PRISMTECH

12.3 Exceptions

Table 17 Event Domain Service Exceptions (Continued)

Exception

Description

Di anondCr eat i onFor bi dden

Raised when the specified connection would
form adiamond in the target domain. This
exception can only be raised when the

Di anondDet ecti on QoSissetto

For bi dDi anonds.

Domai nNot Found

Raised when specifying a domain identifier
that does not correspond to adomainin a
factory collection.

I nt er f aceNot Support ed

Raised when a typed connection is formed
between two channels and the specified
interface could not be supported by either the
source or target channel.

NoSuchl npl enent at i on

Raised when a typed connection is formed
between two channels and neither channel
could find an implementation to support the
specified interface.

Unsupport edAdni n

Raised when trying to create anew domain and
a specified administration property could not
be supported by the Event Domain Service.

Unsuppor t edQS

Raised when trying to create anew domain and
a specified QoS property could not be
supported by the Event Domain Service.

167
Event Domain Service

12.3 Exceptions Supplemental Information

168
Event Domain Service

& PRISMTECH

i

Configuration and
Management
.

77 Notification Service
Configuration

17.7 Overview

The configuration of Singleton properties specific to the Notification Serviceis
described in this section. These properties appear in the Administration Manager, a
graphical user interface (GUI) based administration tool included with the
OpenFusion Graphical Tools.

The Administration Manager can be used to set the Singleton properties. These
properties can also be set programatically, generally as described in the service
description sections.

Also, the configuration settings enable the Quality of Service and administration
properties to be customised when needed.

Details for configuring Persistence, Logging, CORBA, Java and System properties
for the Notification Service are described in the System Guide.

Some properties which are not implemented in the initial version 4 release of the
Notification Service are shown in the Administration Manager, but are read-only or
locked. These properties are not documented in this guide.

Common Properties

& PRISMTECH

Instances of some common properties are used by a number of different OpenFusion
CORBA Services interfaces and services. Settings for these property instances
appear in the Administration Manager’s Object Hierarchy for the service's
Singleton node. This small group of properties are included in this section in order
to facilitate configuration of the service while using the Administration Manager.
These properties include:

* IOR Name Service Entry
* [OR URL

IOR File Name

* Resolve Name

IOR Name Service

171
Configuration and Management

13.2 NotificationSingleton Configuration Notification Service Configuration

NotificationSngleton Configuration

The Notification Singleton exists as a single object within a given instance of the
Notification Service providing the core service functionality

Persstence Properties

EnableWrite Ahead Log

When the write-ahead log is enabled, information that is normally written to the
underlying database is written to a log file instead. When the log file reaches a
specific size (defined by the Write Ahead Log Maximum Size property), the database
is updated and the log file is reused. The location of the log file is defined by the
Write Ahead Log Directory property.

The write-ahead log may increase performance when persistent events are required,
particularly when events are being delivered quickly (when consumers are available

and responding quickly).

The write-ahead log is enabled when this property is set TRUE (checked).
Property Name DB. WAL

Property Type FI XED

Data Type BOOLEAN

Accessibility READ/ VRI TE

Mandatory NO

Write Ahead L og Directory

The directory used to contain write-ahead log files. This directory must be local to
the host running the service. The default location is:

<| NSTALL>/ domai ns/ <domai n>/ <node>/ Not i fi cati onServi ce/ dat a

where <I NSTALL> is the OpenFusion installation path. See the System Guide for
details of the domai ns directory structure.

Property Name DB. WAL. Di r
Property Type FI XED

Data Type DI RECTORY
Accessibility READ/ V\RI TE
Mandatory YES

172

& PRISMTECH
Configuration and Management

Notification Service Configuration 13.2 NotificationSingleton Configuration

Write Ahead Log Maximum Size

The maximum number of entries that can be stored in the write-ahead log before
flushing (writing to the underlying database) takes place.

Property Name DB. WAL. MaxSi ze
Property Type STATI C
Data Type | NTEGER
Accessibility READ/ VRl TE
Mandatory NO

Database Plugin Class

This property is used when a database plugin is available to OpenFusion to enhance
the event persistence mechanism. Leave this field blank when the plugin is not

available.

Property Name DB. Pl ugi n
Property Type STATI C
Data Type STRI NG
Accessibility READ/ VRl TE
Mandatory NO

CORBA Properties

The General properties are useful for setting the start-up parameters of a
Notification Service Singleton object. These properties are al static and mainly read
-write. All these properties are optional, but can only be set prior to starting the
Notification Service Singleton.

IOR Name Service Entry
The Naming Service entry for the Singleton.
Property Name bj ect . Nane
Property Type FI XED
Data Type STRI NG
Accessibility READ/ VRl TE
Mandatory NO
& PRISMTECH 173

Configuration and Management

13.2 NotificationSingleton Configuration Notification Service Configuration

IOR URL

The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Some examples are:;

file:/usr/users/openfusion/servers/NotificationService.ior
http://ww. prisntech. com of/ servers/ NotificationService.ior
corbal oc: : server. prisntechnol ogi es. conf Noti ficationService

Openkusion supports URLs in Corbaloc, Corbaname, file, FTP and HTTP URL
formats, although some ORBs do not support all of these mechanisms. Consult your
ORB documentation for specific details.

Property Name | OR URL
Property Type FI XED
Data Type URL
Accessibility READ/ VRI TE
Mandatory NO

IOR FileName

The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:

<I NSTALL>/ domai ns/ <domai n>/ <node>/ <ser vi ce>/ <si ngl et on>/ <si ngl eton>. i or

where <I NSTALL> is the OpenFusion installation path. See the System Guide for
details of the domai ns directory structure.

Property Name IOR File
Property Type FI XED

Data Type FI LE
Accessibility READ VRI TE
Mandatory NO

174
Configuration and Management

& PRISMTECH

Notification Service Configuration

IOR Name Service

The name of the Naming Service which will be used to resolve the Singleton object.

13.2 NotificationSingleton Configuration

Property Name | OR Server
Property Type FI XED
Data Type STRI NG
Accessibility READ/ VRl TE
Mandatory NO

Resolve Name

The ORB Service resolution name used to resolve calls to the Singleton.

Property Name Resol veName

Property Type FI XED

Data Type STRI NG

Accessibility READ/ VRl TE

Mandatory YES
Messaging L oggers

Service Log File L ocation

The location of the service log file. Each individual component logger (the
scheduler logger, the transaction manager logger, and so on) writes to the same
service log file. By default, thisis the same log file used at the Service level.

The default location of the servicelog fileis:

<I NSTALL>/ domai ns/ OpenFusi on/ | ocal host/ Noti fi cati onServi ce/
| og/ Noti ficationService.l og

Property Name logkit/targets/filel/filenane
Property Type FI XED

Data Type FI LE

Accessibility READ/ VRl TE

Mandatory NO

Service Log File Format

The format for entriesin the service log file. The default format is:

&4 PRISMTECH

Configuration and Management

13.2 NotificationSingleton Configuration Notification Service Configuration
YW priority} [category}] %Atine:yyyy-Mtdd ' HH nmm ss. SSS}
% message}\ n% t hr onabl e}

The same format is used by each component logger. This format overrides the
format specified in the Log Pattern property at the Service level.

Property Name | ogkit/targets/file/format
Property Type FI XED

Data Type STRI NG

Accessibility READ/ V\RI TE

Mandatory NO

Set All LoggersTo

Each component of the Notification Service (the scheduler, the transaction manager,
and so on) has its own individual logger. For convenience, every component logger
can be set to the same level using this property. Options are:

» Set all to Disable

Set all to Error

Set all to Warning

Set all to Information

Set all to Debug
 Set Individually
The default level is Set Individually.

For fine-grained control over logging, set this property to Set Individually. This
allows each individual logger to be configured using the individual properties on

this tab (described below).

Property Name d obal Setting
Property Type FI XED

Data Type ENUM
Accessibility READ/ V\RI TE
Mandatory NO

Scheduler Logger Leve
The logger level for the scheduler. Options are:

¢ Disable (0)

176
Configuration and Management

& PRISMTECH

Notification Service Configuration 13.2 NotificationSingleton Configuration

e Error (1)

* Warning (2)

« Information (3)

» Debug (4)

The default level is Warning.

Property Name | ogcat egor y/ schedul er
Property Type FI XED

Data Type ENUM

Accessibility READ/ VRl TE

Mandatory NO

Role Manager Logger Leve
The logger level for the role manager. Options are:
 Disable (0)
 Error (1)
« Warning (2)
« Information (3)
» Debug (4)
The default level isWarning.

Property Name | ogcat egor y/ r ol emanager
Property Type FI XED

Data Type ENUM

Accessibility READ/ VRl TE

Mandatory NO

JTO Logger Leve
Thelogger level for JTO. Options are:
* Disable (0)
e Error (1)
* Warning (2)
* Information (3)

177
Configuration and Management

&4 PRISMTECH

13.2 NotificationSingleton Configuration Notification Service Configuration

* Debug (4)
The default level is Warning.

Property Name | ogcat egory/jto
Property Type FI XED

Data Type ENUM

Accessibility READ/ V\RI TE
Mandatory NO

Messenger Logger Leve
Thelogger level for the messenger. Options are:
¢ Disable (0)
e Error (1)
e Warning (2)
¢ Information (3)
e Debug (4)
The default level is Warning.

Property Name | ogcat egor y/ messenger
Property Type FI XED

Data Type ENUM

Accessibility READ/ V\RI TE

Mandatory NO

Task Manager Logger Leve
The logger level for the task manager. Options are:
¢ Disable (0)
e Error (1)
e Warning (2)
Information (3)
Debug (4)
The default level is Warning.

178
Configuration and Management

& PRISMTECH

Notification Service Configuration 13.2 NotificationSingleton Configuration

Property Name | ogcat egor y/ t askmanager
Property Type FI XED

Data Type ENUM

Accessibility READ/ WRI TE

Mandatory NO

ORB Logger Leve
The logger level for the ORB. Options are:
* Disable (0)
* Error (1)
* Warning (2)
« Information (3)
« Debug (4)
The default level isWarning.

Property Name | ogcat egory/orb
Property Type FI XED

Data Type ENUM

Accessibility READ/ VRl TE
Mandatory NO

Transaction Manager Logger Leve
The logger level for the transaction manager. Options are:
« Disable (0)
 Error (1)
* Warning (2)
* Information (3)
» Debug (4)
The default level isWarning.

179
Configuration and Management

&4 PRISMTECH

13.2 NotificationSingleton Configuration Notification Service Configuration

Property Name | ogcat egory/transacti onmanager
Property Type FI XED

Data Type ENUM

Accessibility READ/ V\RI TE

Mandatory NO

Blobstore Logger Leve
Thelogger level for the blobstore. Options are:
¢ Disable (0)
e Error (1)
e Warning (2)
 Information (3)
e Debug (4)
The default level is Warning.

Property Name | ogcat egory/ bl obstore
Property Type FI XED

Data Type ENUM

Accessibility READ/ V\RI TE

Mandatory NO

SateFactory Logger Leve
The logger level for the state factory. Options are:
< Disable (0)
e Error (1)
e Warning (2)
¢ Information (3)
« Debug (4)
The default level is Warning.

180
Configuration and Management

& PRISMTECH

Notification Service Configuration 13.2 NotificationSingleton Configuration

Property Name | ogcat egory/ statefactory
Property Type FI XED

Data Type ENUM

Accessibility READ/ WRI TE

Mandatory NO

Sate MachineFactory Logger Leve
Thelogger level for the state machine factory. Options are:
« Disable (0)
e Error (1)
* Warning (2)
« Information (3)
« Debug (4)
The default level isWarning.

Property Name | ogcat egor y/ st at emachi nef actory
Property Type FI XED

Data Type ENUM

Accessibility READ/ VRl TE

Mandatory NO

Thread Pool Logger Leve
The logger level for the thread pool. Options are:
« Disable (0)
 Error (1)
* Warning (2)
* Information (3)
» Debug (4)
The default level isWarning.

181
Configuration and Management

&4 PRISMTECH

13.2 NotificationSingleton Configuration

Notification Service Configuration

Property Name | ogcat egory/ t hr eadpool
Property Type FI XED

Data Type ENUM

Accessibility READ/ V\RI TE

Mandatory NO

Notification Service Logger Leve

The logger level for the event channel factory (which is the root object of the
Notification Service). Options are:

¢ Disable (0)

e Error (1)

Warning (2)

Information (3)

Debug (4)

The default level is Warning.

Property Name | ogcat egory/ ecfc
Property Type FI XED

Data Type ENUM

Accessibility READ/ VRI TE
Mandatory NO

Component Manager L ogger Leve

The logger level for the component manager. Options are:

« Disable (0)

e Error (1)

e Warning (2)

* Information (3)

* Debug (4)

The default level is Warning.

182
Configuration and Management

& PRISMTECH

Notification Service Configuration

13.2 NotificationSingleton Configuration

Property Name | ogcat egory/ ecm
Property Type FI XED

Data Type ENUM

Accessibility READ/ WRI TE
Mandatory NO

Lock Set Factory Logger Leve
The logger level for the lock set factory. Options are:

« Disable (0)

e Error (1)

* Warning (2)

« Information (3)

« Debug (4)

The default level isWarning.

Property Name | ogcat egory/ | ocksetfactory
Property Type FI XED

Data Type ENUM

Accessibility READ/ VRl TE

Mandatory NO

| nstrumentation Properties

The interfaces for setting the instrumentation properties, as well as the datatypes for
values returned by the Pr ocess. get Val ue() method of the CORBA Process

interface, are given below.

For information on managing instrumentation, including how to obtain the
associated property values using the Pr ocess. get Val ue() method, please refer

to the System Guide.

&4 PRISMTECH

183
Configuration and Management

13.2 NotificationSingleton Configuration

Events Recelved

Notification Service Configuration

This property monitors the total number of all push events received by the
Notification Service during execution of the service. In other words, the count of
events sent by push suppliers via proxy push consumers.

Property Name

Event sRecei ved

Property Type DYNAM C
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

Number of Proxy Push Consumers
This property monitors the current number of structured proxy push consumersin

existence on the service.

Property Name Pr oxyPushConsuner s
Property Type DYNAM C

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

get Val ue() Return Type | ongl ong

Number of Sructured Proxy Push Consumers
This property monitors the current number of structured proxy push consumersin

existence on the service.

Property Name

St ruct ur edPr oxyPushConsuner s

Property Type DYNAM C
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

184
Configuration and Management

& PRISMTECH

Notification Service Configuration 13.2 NotificationSingleton Configuration

Number of Sequence Proxy Push Consumers
This property monitors the current number of sequence proxy push consumers in

existence on the service.

Property Name SequencePr oxyPushConsuner s
Property Type DYNAM C

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

get Val ue() Return Type | ongl ong

Events Ddivered

This property monitors the total number of all push events delivered by the
Notification Service during execution of the service. In other words, the count of
events received by push consumers via proxy push suppliers.

Property Name Event sDel i vered
Property Type DYNAM C

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

Number of Consumer Admins

This property monitors the current number of consumer admins in existence on the

service.

Property Name Consumer Adni ns
Property Type DYNAM C

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

&4 PRISMTECH

185
Configuration and Management

13.2 NotificationSingleton Configuration

Notification Service Configuration

Current Total of Eventsin Channels
This property monitors the total number of eventsin channels.

Property Name

Current Event s

Property Type DYNAM C
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

Current Total of Events Awaiting Delivery

This property monitors the total number of events awaiting delivery. This count
gives the current load on the Service.

Thisfigureis calculated as follows:

Eventsin queues + (Eventsin channel * Number of proxies)

Where;

» Events in queues is the number of events in the queues of all proxy suppliers
(events which the proxy suppliers have yet to send to their consumer clients).

» Eventsin channel isthe number of eventsin the channel (events which are waiting
to be sent to proxy suppliers). This is the count returned by the Current Total of

Events in Channel property.

» Number of Proxies is the number of proxy suppliers.

Property Name Event sAwai ti ngDel i very
Property Type DYNAM C

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

get Val ue() Return Type | ongl ong

186
Configuration and Management

& PRISMTECH

Notification Service Configuration 13.2 NotificationSingleton Configuration

Number of Proxy Push Suppliers
This property monitors the current number of proxy push supplier objects in

existence on the service.

Property Name Pr oxyPushSuppli ers
Property Type DYNAM C

Data Type COUNTER

Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

Number of Sructured Proxy Push Suppliers
This property monitors the current number of structured proxy push supplier objects

in existence on the service.

Property Name

Struct ur edPr oxyPushSuppl i ers

Property Type DYNAM C
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

Number of Sequence Proxy Push Suppliers
This property monitors the current number of sequence proxy push supplier objects

in existence on the service.

Property Name SequencePr oxyPushSuppliers
Property Type DYNAM C

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

get Val ue() Return Type | ongl ong

&4 PRISMTECH

187
Configuration and Management

13.2 NotificationSingleton Configuration

Reconnecting Consumer s

Notification Service Configuration

This property monitors the current number of unavailable push consumer objectsin

existence on the service.

Property Name Reconnect i ngConsurmer s
Property Type DYNAM C

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

get Val ue() Return Type | ongl ong

Number of Supplier Admins

This property monitors the current number of Supplier Admin objects in existence

on the service.

Property Name

Suppl i er Admi ns

Property Type DYNAMC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

Number of Event Channds

This property monitors the current number of Event Channel objectsin existence on

the service.

Property Name Channel s
Property Type DYNAM C
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

get Val ue() Return Type | ongl ong

188
Configuration and Management

& PRISMTECH

Notification Service Configuration 13.2 NotificationSingleton Configuration

General Properties

Maximum Queue Size

The maximum queue size of the event delivery manager. When the maximum queue
size is exceeded, events are removed from the queue, oldest first, if the
EventReliability QoS is set to Best Ef f or t . In the case of Per si st ent , the events
are stored and re-sent when appropriate.

Property Name MaxQueuesSi ze
Property Type STATI C

Data Type | NTEGER
Accessibility READ/ VRl TE
Mandatory NO

M essaging

JMX Ingrumentation: Sart SUN HTML Adapter
Checkbox. If thisis true (checked), then the Sun HTML Adapter will be started
alongside the service. The Adapter runsfor aslong asthe notification service does.

The Sun HTML Adapter is a utility provided by Sun that allows JM X
instrumentation values to be examined via a web browser. It is provided as an
alternative to the Instrumentation panel for the Notification Singleton. To use the
adapter, specify the port on which it will berun (JMX Instrumentation: Port for Sun
HTML Adapter) and ensureit is started with the service (JMX Instrumentation: Start
SUN HTML Adapter). The adapter can be accessed by entering http://server:port in
aweb browser, where

* server isthe server on which the notification service is running and

« port isthe port selected for the adapter.

JM X Ingtrumentation: Port for Sun HTML Adapter
A numeric value which specifies which port the Sun HTML Adapter will run on.

JM X Ingtrumentation: Register Individual Objects

Thisis a checkbox: if set then the IMX instrumentation will be available on
individual objects (channels, admins and proxies). The Instrumentation panel for
the Notification Singleton will always display the total figures for the entire

189
Configuration and Management

&4 PRISMTECH

13.2 NotificationSingleton Configuration Notification Service Configuration

Notification Service. However, these figures are derived from the objects within the
service: this control allows those objects to be registered individually when
examining using the Sun HTML Adapter, for example.

Lock Set Factory: Fairness Policy
The fairness policy for the lock set factory. Options are:
» FIFO
« JUM

i Although JVM is shown as an option, it is not implemented in the initial version 4
release. FIFO will be be used, regardless of which option is selected for this

property.

Property Name conponent s/ LockSet Fact ory/ f ai r ness
Property Type FI XED

Data Type ENUM

Accessibility READ/ V\RI TE

Mandatory NO

Task Manager: Period

The frequency with which the task manager reschedules tasks, expressed in

milliseconds. The default is 1000 milliseconds (1 second).

Property Name conponent s/ TaskManager / peri od
Property Type FI XED

Data Type | NTEGER

Accessibility READ/ VRI TE

Mandatory NO

Task Manager: Maximum Activity

This property specifies the number of tasks that the task manager will attempt to
keep running at any point in time. This acts as a “soft” limit on thread resource
usage. The default number is 10.

Property Name conponent s/ TaskManager/ maxactivity

Property Type FI XED

190

. . & PRISMTECH
Configuration and Management

Notification Service Configuration

13.2 NotificationSingleton Configuration

Data Type | NTEGER
Accessibility READ/ VRl TE
Mandatory NO

Task Manager: Priority

The priority for the task manager’s own thread. This must be in therange 1 - 10.

The default valueis 6.

Property Name conmponent s/ TaskManager/priority
Property Type FI XED

Data Type | NTEGER

Accessibility READ/ WRI TE

Mandatory NO

Thread Pool: Minimum Pool Size
The minimum pool size for the thread pool. The default is 0 (zero).

Property Name conmponent s/ Thr eadPool / pool - mi n
Property Type FI XED

Data Type | NTEGER

Accessibility READ/ WRI TE

Mandatory NO

Thread Pool: Maximum Pool Size
The maximum size of the thread pool. The default is 20.

Property Name conponent s/ Thr eadPool / pool - max
Property Type FI XED

Data Type | NTEGER

Accessibility READ/ VRl TE

Mandatory NO

&4 PRISMTECH

191
Configuration and Management

13.2 NotificationSingleton Configuration Notification Service Configuration

Thread Pool: Initial Pool Size
Theinitial size for the thread pool. The default is 0 (zero).

Property Name component s/ Thr eadPool / pool -i ni ti al
Property Type FI XED

Data Type | NTEGER

Accessibility READ/ VRI TE

Mandatory NO

Thread Pool: Thread Timeout

How long, in milliseconds, an idle thread remains in the pool before being
discarded. This controls how long an The default timeout is 1000 milliseconds (1

second).

Property Name conponent s/ Thr eadPool / t hr ead- t i neout
Property Type FI XED

Data Type | NTEGER

Accessibility READ/ VRI TE

Mandatory NO

Transaction Manager: Domain Timeout

The maximum time allowed before a transaction times out, in milliseconds.

The default timeout is 60000 milliseconds (60 seconds).

Property Name conponent s/ Tr ansact i onManager / domai n/
ti nmeout

Property Type FI XED

Data Type | NTEGER

Accessibility READ/ V\RI TE

Mandatory NO

Event Database: Purge Rate
The threshold for the number of Delete Event records that can be written to the

database before a purge attempt will be initiated. The default valueis 1000.

192
Configuration and Management

& PRISMTECH

Notification Service Configuration

&4 PRISMTECH

13.2 NotificationSingleton Configuration

The purge involves a scan of the database to determine if records are eligible for
deleting. An event will be deleted if it has been received and acknowledged by all
the consumers who were expected to receiveit or if it was discarded by the service.

Property Name conmponent s/ Event Dat abase/ purgerate
Property Type STATIC

Data Type | NTEGER

Accessibility READ/ WRI TE

Mandatory YES

Event Database: M aximum Purge Memory

The maximum amount of memory the purge algorithm is allowed to use for storing
records in memory during processing, expressed in Kb. The default valueis 5000.

The purge algorithm attempts to match Sore records with Delete records for a
specific event and will continue to read records until a match is made or the size of
the temporary collection in memory reaches the size set by this property. When this
memory threshold is reached, al the records currently in memory are processed and
any outstanding records are written to the end of the data files for future processing.

Property Name conponent s/ Event Dat abase/
Maxpur genenory

Property Type STATIC

Data Type | NTEGER

Accessibility READ/ VRl TE

Mandatory YES

Journal: Guaranteed Syncing

If set totrue, this property forces the Journal to synchronize the disk file with the
Journal file stream when event records are written. If f al se, there is no guarantee
that event records will be written to disk (the synchronization will be determined by
the VM).

The default value of this property isf al se.

conmponent s/ Jour nal / guar ant eedsynci ng
STATI C

Property Name

Property Type

193
Configuration and Management

13.3 ProcessSingleton Configuration

Data Type BOOLEAN
Accessibility READ/ V\RI TE
Mandatory YES

77.d ProcessSingleton Configuration

Notification Service Configuration

IOR Name Service Entry
The Naming Service entry for the Singleton.
Property Name Obj ect . Name
Property Type FI XED
Data Type STRI NG
Accessibility READ/ V\RI TE
Mandatory NO

IOR URL

The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Currently only http and file URLs are supported, for example:

file:/usr/users/openfusion/ProcessSingleton.ior
http://ww. prisnt echnol ogi es. com openf usi on/ ProcessSi ngl eton. i or

Property Name | OR URL
Property Type FI XED
Data Type URL
Accessibility READ/ V\RI TE
Mandatory NO

IOR FileName

The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:

<I NSTALL>/ domai ns/ <domai n>/ <node>/ <ser vi ce>/ <si ngl et on>/ <si ngl eton>. i or

194
Configuration and Management

& PRISMTECH

Notification Service Configuration 13.3 ProcessSingleton Configuration

where <I NSTALL> is the OpenFusion installation path. See the System Guide for
details of the domai ns directory structure.

Property Name IOR File
Property Type FI XED

Data Type FI LE
Accessibility READ/ WRI TE
Mandatory NO

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton object.

Property Name | OR Server
Property Type FI XED

Data Type STRI NG
Accessibility READ/ VRl TE
Mandatory NO

195
Configuration and Management

&4 PRISMTECH

13.3 ProcessSingleton Configuration Notification Service Configuration

196
Configuration and Management

& PRISMTECH

74 Notification Service
Manager

747 Overview

The Notification Service browser acts as a window on to the functioning processes
of the service. The Notification Service Manager enables devel opers to create Event
Channels, Admin Objects, and Proxy Objects. A useful feature of the Notification
Service Manager isits use in verifying new Notification-Service-based clients.

The Notification Singleton object acts as the base process for a single instance of the
OpenFusion Notification Service. The Notification Service Manager is invoked by
right-clicking on the Notification Singleton of arunning Notification Service in the
Administration Manager.

74,7 Using the Notification Service M anager

& PRISMTECH

Start the Notification Service Manager from the command line with the following
command:

% run comprisnt.cos.treebrowser.nnotification.
Noti fi cati onServi ceBrowser -nane NotificationService

The Structured Consumer Manager can be started with the following command:

% run comprisnt.cos. CosNotification.util.Consuner
-nanme NotificationService

The Structured Supplier Manager can be started with the following command:

% run com prisnt.cos.CosNotification.util.Supplier
-nane NotificationService

The Notification Service must be running before any of the Managers can be started.

197
Configuration and Management

14.2 Using the Notification Service Manager Notification Service Manager

The Notification Service M anager

The Notification Service Manager displaysinformation about the channels that have
been created by an Event Channel Fact or y object. When the manager isfirst run,
and providing no developers have created Event Channels programmatically, the
manager will display the default service Event Channel Fact or y object, below the
Notification Service icon itself (Figure 20).

If the ChannelConfigurator Object is present, a saved configuration may be loaded.

[Administration Manager | Notification Service Manager |

4l notification Service N
@ [Event Channel Factory
@ ﬁ 0- IDLomg.orgiCoskotifyChannelAdmin/EventChannel: 1.0
&] Supplier Admins
& [#] Consumer Adming

There is no information to display

Figure 20 Notification Service Manager

Notification Service Hierarchy

The left-hand pane of the Notification Service browser displays the Notification
Service object hierarchy. The icons used in the Notification Service object hierarchy
areshownin Table 18.

Table 18 Notification Service Nodes

Icon Object
Event Channel Factory

Ry Theroot node. Also used to show the Default Filter
Factory parent node and for Filter Factory objects.
Channel

@ Shows the unique identification number and the
name of the channel interface.

198

. . & PRISMTECH
Configuration and Management

Notification Service Manager 14.2 Using the Notification Service Manager

Table 18 Notification Service Nodes (Continued)

Icon Object

Supplier Admins
il Parent node for all supplier admins.

Consumer Admins

7] Parent Node for al consumer admins.

Supplier Admin

[Shows the unique identification number and the
name of the supplier admin interface.

Consumer Admin

% Shows the unique identification number and the
name of the consumer admin interface.
Filters

Parent node for event filters.

Proxy Push Suppliers
e Parent Node for Proxy Suppliers.

Proxy Push Consumers

[i5a] Parent node for Proxy Consumers.

Proxy Push Supplier

" Shows the unique identification number and the
name of the proxy interface.

Proxy Push Consumer

k) Shows the unique identification number and the
name of the proxy interface.

Notification Service Details

The right hand pane will display the details of the individual objects in the hierarchy
when they are selected. If no node is selected, or if a node which has no associated
details is selected, this box will be empty and contain the message There is no
information to display.

199
Configuration and Management

&4 PRISMTECH

14.2 Using the Notification Service Manager Notification Service Manager

Setting up an Event Channd

The core component of the Natification Service is the Event Channel. The Event
Channel handles the transmission of events over the distributed network provided
by the ORB implementation being used.

Creating an Event Channel

Step 1: To create an Event channel, right-click on the Event Channel Factory node in the
hierarchy pane of the browser and select Create Channel.

Step 2: A new Event Channel instance will be created. If the Event Channel is selected in
the hierarchy pane, the details about its ID and Class name are displayed at the top,
and a tabbed pane with the current Admin and QoS properties and their values are
shown. Details about Event Channel properties are described next.

Setting Properties on an Event Channel
Default properties can be set for an Event Channel. This enables the user to specify
how the channel will respond to the events it receives. There are two types of
property: Admin properties and QoS properties.

Admin Property Settings

Administrative properties refer to property settings that may be applied only to event
channel objects. These properties are usually set when an event channel is first
created. These settings are typically static in nature although they may be changed
during the lifetime of the channel object. The standard administrative properties
which can be set through the Notification Service Manager are:

* MaxQueuelLength
* MaxConsumers
* MaxSuppliers

* RejectNewEvents

See Administrative Properties on page 126 for a description of these properties.

QoS Property Settings

The QoS properties which can be set on a event channel through the Notification
Service Manager are:

* ConnectionReliability
* EventReliability

200
Configuration and Management

& PRISMTECH

Notification Service Manager 14.2 Using the Notification Service Manager

* MaxEventsPerConsumer
* MaxReconnectAttempts
¢ MaximumBatchSize

* OrderPolicy

* Pacinginterval

* Priority

* Reconnectinterval

» Timeout

» AutoSequenceBatchSize
» AutoSequenceTimeout
¢ PropagateQoS

See Section 5.1, Quality of Service Properties, on page 113 for a description of these
properties.

Setting up a Supplier or Consumer Admin

&4 PRISMTECH

A supplier admin is a representation of a Suppl i er Adni n object created by a
particular event channel. A consumer admin is a representation of a
Consuner Adni n object created by a particular event channel. Every channel is
created with a default Suppl i er Adni n and Consumer Adni n object, which are
given IDsof zer o. To view these, expand the tree in the left pane. You should see a
similar structure to that shown in Figure 21.

201
Configuration and Management

14.2 Using the Notification Service Manager Notification Service Manager

43 rotification Service
@ [Event Channel Factory
o ﬁ 0 - 1DL:omg.argfCostotiffChannelAdmin/BEventChannel: 1.0
o] Supplier Admins
- @‘5 0 - IDL:omg.orgfCaoskatifvChannelAdminfSupplietAdmin:t .0
o] Consumer Adrmins
- ﬁ 0 - IDL:omg.argfCaskatifvChannelAdminfConsumerddmin:t .0

Figure 21 Supplier and Consumer Admins

If the user selects either of the default Supplier or Consumer Admin objectsin the
hierarchy, then the right panel will display details about these. At the top of the pane
there is information about the object selected: its ID, Class, Channel and its default
filter operator OR. Beneath thisis atabbed panel. One tab displays the QoS Settings
associated with the object, and the other tab displays Subscribed Types (for a
Consumer Admin) or Offered Types (for a Supplier Admin).

QoS Settings

The following QoS properties can be set for SupplierAdmin and ConsumerAdmin
objects:

202

ConnectionReliability (Consumer Admin only)
MaxEventsPerConsumer (Consumer Admin only)
MaxReconnectAttempts (Consumer Admin only)
MaximumBatchSize (Consumer Admin only)
OrderPolicy (Consumer Admin only)
Pacinginterval (Consumer Admin only)

Priority

Reconnectinterval (Consumer Admin only)

& PRISMTECH

Configuration and Management

Notification Service Manager 14.2 Using the Notification Service Manager

e Timeout
* AutoSequenceBatchSize
« AutoSequenceTimeout

See Section 5.1, Quality of Service Properties, on page 113 for a description of these
properties.

Admin Filters

Administration objects and all of the proxy objects in the Notification Service
inherit the Fi | t er Adni n interface. This means that all of these objects can have
filters attached. Each object which can have filters attached contains a child node,
Filters. The Filters node contains children that represent the individual filters that
have been created for that object.

Filter Settings

&4 PRISMTECH

One use of filtersisto narrow the sorts of events received by Consumer objects.
This is done by applying constraints to Supplier and Consumer Admin objects.
These constraints can be specified by using the extended Trader Constraint
Language (TCL). To locate the Filter section beneath the Supplier and Consumer
Admin objects, expand the hierarchies bel ow each. The Natification Browser should
look like that in Figure 22.

203
Configuration and Management

14.2 Using the Notification Service Manager

Notification Service Manager

cﬁ Motification Service
@ By Event Channel Factory
9 ﬁ 0 - IDLomg.orgfCosklotifvChannelAdminfEventChannel 1.0
@ Supplier Admins
L% @5 0- IDL:omg.org/CoskotifChannelAdminSupplierfdmin:1.0
Filters
Proxy Push Consumers
& (£ Consumer Admins

L% @ 0 - 1IDLomg. orgfCostotiffChannelddminiConsumerAdmin:t .0
Filters
Proxy Push Suppliers

Figure 22 Filters

Cugom Filters

A custom filter is afilter which is not based on the standard grammar (TCL)
but is created via a custom filter implementation class. This class must
implement the Fi | t er Oper at i ons interface and must be available on the
CLASSPATH. The class must be specified when the filter is created, as

described in the following section.

Creating a New Filter

Step 1: To create a new filter object, right-click on the Filters icon in the hierarchy tree
beneath either the Admin or Proxy object. Select the option Add Filter from the
pop-up menu. The Add Filter dialog is displayed, as shown in Figure 23.

204
Configuration and Management

& PRISMTECH

Notification Service Manager 14.2 Using the Notification Service Manager

Fiter Grammar or Class Name:;

To create g standard filter, select one of the standard grammars from the list,
To create a custorn filter, enter the name of the filter implementation class.

EXTENDED_TCL A4

OK Cancel

Figure 23 Add Filter

Step 2: Sdlect the required filter grammar from the drop-down list (currently,
EXTENDED_TCL isthe only available option). Or, if a custom filter is required, type
the name of the custom filter implementation class into the text box.

Step 3: Click the OK button.

Step 4: A new filter object line will appear in the hierarchy. Select thisline to view the filter
detailsin the right-hand pane. See Figure 24.

205

& PRISMTECH . .
Configuration and Management

14.2 Using the Notification Service Manager Notification Service Manager

Filter:
1D: 1
Class: IDL:omg.org/CosNotifyFitter Filter: 1.0
Grammar: EXTENDED_TCL
Constraints |
rConstraints rConstraint Details:
rGeneral Information
rEvent Types
Domain Mame Type Mame
™
Add
Remove |
Remove All
Save

Figure 24 Filter Details

At the top of thisfilter is a pane containing the filter ID, the IDL Class on which the
filter is based, and the Grammar with which it will be constructed. Below thisis a
split panel. To the left is a pane where any number of filter constraints can be added
and removed. To the right is another pane with the details of the constraint currently
selected in the | eft pane.

i If afilter is based on a custom filter implementation class which does not support
constraints, the constraint-related controls (Add, Remove) will be disabled.

Adding a Congtraint

Step 1: Add anew constraint by clicking the Add button in the |eft pane. This displays the
Add Constraint dialog, as shown in Figure 25.

206
Configuration and Management

& PRISMTECH

Notification Service Manager 14.2 Using the Notification Service Manager

Step 2:
Step 3:

&4 PRISMTECH

E rConstraint Details
rGeneral Information
rEvent Types
Dorain Mame Typs Marme
e
|
| Add H Remowve |
| OK || Cancel ‘

Figure 25 Add Constraint

Each constraint is automatically assigned an ID number. When the constraint is first
added, the ID text box will be blank.

Constraint expressions are added using the Expression field and the Event Types
table. Steps 2, 3, and 4 illustrate this using the following constraint expression as an
example:

(($donmi n_type == ' Tel ecomnmuni cati ons’ and
$t ype_nanme == ' Communi cati onsAl arm) or
$domai n_type == ' Heal thcare’ and
$type_nanme == 'Vital Signs’)) and severity == 3

This expression could be added directly into the Expression text box. However it is
easier to add the domain and type names of the eventsinto the Event Types table.

Enter the expression severity == 3 into the Expression text box.
Click the Add button below the Event Types table. A new row will now appear in

the table. Enter Tel ecommuni cati ons into the Domain Name column and
Conmuni cat i onsAl ar minto the Type Name column.

207
Configuration and Management

14.2 Using the Notification Service Manager Notification Service Manager

Step 4: Click the Add button below the Event Types table and enter Heal t hcare and
Vi t al Si gns into the Domain Name and Type Name columns.

Step 5: Click the OK button once the full constraint expression has been entered.

Step 6: To complete the process of adding a constraint, click the Save button in the
Constraints panel. The constraint will now be stored.

Removing a Filter

To remove afilter object, right-click on the Filters icon in the hierarchy tree beneath
the required Supplier or Consumer Admin object. Select Destroy Filter from the
pop-up menu. A warning dialog will appear to confirm that the filter will now be
destroyed and removed from the hierarchy tree.

Removing a Congtraint
Step 1: To remove a constraint, select the constraint in the Constraints list.

Step 2: Click the Remove button below it. The constraint will now disappear from the list.
Click the Remove All button to remove all constraints from the filter.

Setting Proxy Instances

Supplier and Consumer Proxy objects are shown in the Notification Service
Browser beneath Proxy Nodes in the hierarchy panel. See Figure 26. A Natification
Service may have one or more Proxy instances. These Proxy instances are created
using the Supplier or Consumer Admin interfaces.

Proxy instances are used to connect suppliers and consumers to the Event Channel.
A supplier connects via a Proxy Consumer, which is obtained from a Supplier
Admin. A consumer connects via a Proxy Supplier, which is obtained from a
Consumer Admin.

208
Configuration and Management

& PRISMTECH

Notification Service Manager 14.2 Using the Notification Service Manager

Q Matification Service
@ By Event Channel Factory
L% ﬁ 0 - 1IDLomg.orgfCoskotiffChannelddmin/EventChannel 1.0
c] Supplier Admins
9 @5 0 - IDLomg.orgiCosklotifvChannelAdminfSupplierAdmin: .0
Filters
Proxy Push Consurmers
% [#] Consumer Admins
9 @ 0 - IDL:omg.orgfCosklotifvChannelAdminfConsumerddmin: 1.0
Filters
Proxy Push Suppliers

Figure 26 Proxy Objects
QoS Settings

The QoS properties which can be set on a Proxy object through the Notification
Service Manager are:

» ConnectionReliability

* DisconnectCallback

* MaxEventsPerConsumer
* MaxReconnectAttempts
¢ MaximumBatchSize

* Pacinglnterval

* Priority

* Reconnectinterval

e Timeout

» AutoSequenceBatchSize
« AutoSequenceTimeout
Some of these Qos properties are not available for all types of Proxy object.

209
Configuration and Management

&4 PRISMTECH

14.2 Using the Notification Service Manager Notification Service Manager

See Section 4.1, Quality of Service Properties, on page 69 for a description of these
properties.

Creating a New Proxy Object

Step 1:

Step 2:

Step 3:
Step 4:

Supplier Admin objects are used to create proxy consumer objects for Supplier
clients. Consumer Admin objects are used to create proxy supplier objects for
Consumer clients.

To create a new Proxy Object, select the relevant node in the Notification browser
hierarchy pane:

 Proxy Push Supplier
* Proxy Push Consumer

Right-click on the line in the hierarchy tree and select the Obtain New Proxy option
from the pop-up menu.

Select the Client Type from the list box: Structured, or Sequence.

Click the OK button to create the proxy. A new proxy instance will appear in the tree
below the node.

Proxy Filters

Proxy objects like Admin objects can have filter objects associated with them.
Applying filters to Proxy objects in the Notification Browser is essentially the same
process as applying them to Admin objects. Refer to the section Filter Settings on
page 203 for details.

Upon receipt of each event, the Proxy invokes the appropriate match operation on
each of its associated filter objects. The match operation takes the contents of the
event as input and returns a boolean result. A FALSE value is returned only when
none of the constraints in the filter objects are satisfied by the event, otherwise
TRUE is returned. Where the Proxy has multiple filter objects associated with it, it
will invoke match on each in turn until either one returns TRUE or all have returned
FALSE. Whenever the result of all match operations evaluates FAL SE, then the
event is discarded.

Tegting Event Ddivery

210

The Notification Browser provides facilities for testing the communication between
objectsin the Notification Service. Once Event Channels are available, the user can
configure and create events and send them using built-in Structured Supplier and
Consumer clients.

& PRISMTECH

Configuration and Management

Notification Service Manager 14.2 Using the Notification Service Manager

To use the event delivery test clients, the Notification Service requires the following
objects to be configured and available.

« An Event Channel object. Refer to Creating an Event Channel on page 200.

e Two Event Channel Admin objects. Default Supplier and Consumer Admin
objects will always be available when the Event Channel is created, so thereis no
need to create any more unless the user wishes to do this.

Creating the Test Clients

Once the Notification Service is running and configured correctly, the clients can be
created.

 Right click on the NotificationSingleton in the Administration Manager’s Object
Hierarchy and select Notification Structured Supplier Manager from the pop-up
menu. A new Sructured Supplier Manager will appear as a new tab in the
browser framework.

 Right click on the NotificationSingleton in the Administration Manager’s Object
Hierarchy and select Notification Structured Consumer Manager from the
pop-up menu. A new Sructured Consumer Manager will appear as a new tab in
the browser framework.

Configuring the Test Clients

Configuring the Sructured Supplier

Figure 27 shows the Structured Supplier Manager. The manager is split into two
panes; the Satus pane and the Events pane. The Status pane displays information
about the current status of the supplier connection through its proxy and admin
objects. The Events pane shows the events being transmitted by the supplier.

The Events pane can be cleared by right clicking on the window and selecting the
Clear option from the pop-up menu.

211
Configuration and Management

&4 PRISMTECH

14.2 Using the Notification Service Manager Notification Service Manager

rndministratinn Manager ermcatiun Senice Manager |/Stru-::tured Supplier |
rstatus

Resolved Motification Service. ..

rEvents:

Figure 27 Structured Supplier Manager

Configuring the Sructured Consumer
Figure 28 shows the Structured Consumer Manager. The manager is split into two
panes; the Status pane and the Events pane. The Status pane displays information
about the current status of the consumer connection through its proxy and admin
objects. The Events pane shows the events being received by the consumer.

The Events pane can be cleared by right clicking on the window and selecting the
Clear option from the pop-up menu.

fndministratiun Manager |/Nntil'|catiun Senice Manager rstrumured Consumer
rStatus

Resalved Motification Service...

rEvents

Figure 28 Structured Consumer Manager

Connecting the Sructured Supplier
When the Structured Supplier Manager is invoked, the Structured Supplier client
resolves the Notification Service.

212 & PRISMTECH
Configuration and Management

Notification Service Manager 14.2 Using the Notification Service Manager

Step 1:

Step 2:

Step 1:

Step 2:

Step 1:

&4 PRISMTECH

Connect the Structured Supplier to the Notification Service by clicking on the
Connect Supplier icon in the tool bar. You will then be prompted to select the
identifier of the Event Channel and Supplier Admin. If there is more than one Event
Channel or more than one Supplier Admin available then you can select the
appropriate identifiers from the drop-down lists.

Select a Channel and Admin and click OK. The Structured Supplier client will now
be connected to the Notification Service and will create a proxy automatically.

Connecting the Sructured Consumer

When the Structured Consumer Manager is invoked, the Structured Consumer client
resolves the Notification Service.

Connect the Structured Consumer to the Notification Service by clicking on the
Connect Consumer icon in the tool bar. You will then be prompted to select the
identifier of the Event Channel and Consumer Admin. If there is more than one
Event Channel or more than one Consumer Admin available then you can select the
appropriate identifiers from the drop-down lists.

Select a Channel and Admin and click on OK. The Structured Consumer client will
now be connected to the Notification Service and will create a proxy.

Creating Test Events
The final stage of configuration is to create events to transmit over the Notification
Service.

Click on the Structured Supplier Manager tab in the browser, and click on the
Configure Events tool bar button. The Configure Events dialog box is displayed, as
shown in Figure 29.

213
Configuration and Management

14.2 Using the Notification Service Manager Notification Service Manager

214

Step 2:

Step 3:

Configure Events E
rEvent Sequence
Domain | Type | Mame | Data
Add...

rEvent Communication

Humber of loops: 1]

Event interval {ms): 0

| Load.. | | Save.. | ‘ oK | | Cancel |

Figure 29 Configure Events Dialog Box

The Configure Events dialog is separated into two panes. The Event Sequence
contains alist of the events to be transmitted. The Event Communication alows the
user to configure the event transmission mechanism. The Number of Loops field
expects an integer for the number of times that the batch of events in the Event
Sequence table will be transmitted across the Event Channel. In normal
circumstances events are usually transmitted once only, but for testing purposes this
can be increased. The Event Interval field allows the user to specify, in milliseconds,
the interval between the transmission of the event batches listed in the Event
Sequence table.

Enter the value of 10 into the Number of Loops field and 100 into the Event Interval
field. This will instruct the Notification Service to transmit the event sequence ten
times, at intervals of one every one tenth of a second.

Click the Add button in the Event Sequence pane. This gives a dialog box for
creating structured events, shown in Figure 30.

& PRISMTECH

Configuration and Management

Notification Service Manager

&4 PRISMTECH

¥ Configure Event Ed

14.2 Using the Notification Service Manager

rFixed Header
Domain: |
Twpe:
Hame:
~ariable Header
MHame Yalue
Add... Edit... Remove Validate...
rFilterahle Body:
MHame Yallue
Add... Edit... Remove Repository
rRemaining Body
Twpe: riull
Value:
Set...
OK Cancel

Figure 30 Configure Event Dialog Box

215
Configuration and Management

14.2 Using the Notification Service Manager Notification Service Manager

Step 4:

Step 5:

Step 6:
Step 7:

Step 8:

Step 1:
Step 2:

Step 3:

Step 1:

Step 2:
Step 3:

Step 4:

Step 5:

216

Enter Heal t hcare into the Domain field of the Fixed Header section, and
Vi t al Si gns into the Type field. Enter an identifier for the Event instance (for
example, ny_vital _signs_event _1).

Click the Add button in the Filterable Body section of the dialog. Enter the property
severi ty into the Name field and switch the data type to shor t in the Type field.
Finally set the valueto 3 in the Value field. Click OK. The Filterable Body will now
contain the new property.

Click OK to load the event into the Event Sequence table of the Configure Events
dialog.

Repeat step 3 through step 6 as before, but give this event a different identifier and
set the severity to 4.

To save aconfigured event sequence for use at alater date, click the Save button. To
load events select the Load button and load a previously saved file. For this exercise
click on OK.

Trangmitting Test Events

To begin transmitting the events, click the Send Events button on the tool bar.

If you examine the Structured Supplier Manager you should notice the events being
transmitted in the Events pane.

If you switch to the tab of the Structured Consumer Manager you will notice the
events being received in the Events window.

Filter Events

The next example will demonstrate the use of filters on event transmission.

Select the Notification Service Manager window and create a new Filter object on
the Supplier Admin object.

Create a new constraint.

Add the expression $severity ! = 3, and add the domain Heal t hcar e and type
Vi t al Si gns to the Event Types table. This will create a filter to accept only
Healthcare/Mital Signs events whose severity is not equal (! =) to 3. Property
variablesin constraint expressions must always be preceded by the $ sign.

Clear the Events panes in the Structured Supplier and Consumer Manager windows
and click the Send Events button again.

Examine the Events pane in the Structured Supplier Manager. Both events are
transmitted to the Event Channel.

& PRISMTECH

Configuration and Management

Notification Service Manager 14.2 Using the Notification Service Manager

Step 6: Now examine the Events pane in the Structured Consumer Manager. You should
notice that only the event with severit y==4 is being received by the Consumer
client. The event with severi t y==3 isfiltered out due to the constraint created on

the Supplier Admin in step 3.

Destroying Proxy Objects
Proxy objects are destroyed if the Disconnect button is clicked or if the browser is
closed.

217

& PRISMTECH . .
Configuration and Management

14.2 Using the Notification Service Manager Notification Service Manager

218
Configuration and Management

& PRISMTECH

79 ChannelConfigurator
Tool

79.7 Overview

The Channel Configurator tool is a Java Object which is used with the Notification
Service to help manage channel configurations. The configuration of Notification
Service channels can be saved and used to re-initialise the Notification Service
when it is restarted. The Service can therefore be stopped and started without the
added overhead of recreating al the channels.

The Channel Configurator can perform the following functions:
» Save the Notification Service channel configuration into an XML file.

« Load an existing channel configuration into the Notification Service from an
XML file.

73.Z ChanneConfigurator Object Configuration

The Channel ConfigurationObject Java Object must be added to the Notification
Service before the Channel Configurator tool can be used. Adding Java Objectsto a
Serviceis described in the System Guide.

Once the Channel ConfigurationObject has been added to the Service, the following
properties must be configured before the Notification Service is restarted.
NotificationServiceName

The name of the Notification Service that the Channel Configurator tool will
run on. The default value is NotificationService.

Property Name Noti fi cati onServi ceNane
Property Type DYNAM C
Data Type STRI NG
Accessibility READ/ VWRI TE
Mandatory YES
& PRISMTECH 219

Configuration and Management

15.3 Using the ChannelConfigurator Tool ChannelConfigurator Tool

NameServiceName
The name of the Naming Service that the Channel Configurator tool will bind
objects to.
Property Name NaneSer vi ceNane
Property Type DYNAM C
Data Type STRI NG
Accessibility READ/ VRI TE
Mandatory NO

Channée Configuration URL

The URL of the XML file containing the channel configuration information. This

property is mandatory but does not have a default value, so a value must be entered
before the Notification Service can be started.

Property Name Channel Confi gurati onURL
Property Type DYNAM C

Data Type STRI NG

Accessibility READ/ V\RI TE

Mandatory YES

Using the ChannelConfigurator Tool

When the Notification Service is started, the Channel Configurator tool will
automatically attempt to load channel configurations from the XML file pointed to
by the Channel Configuration URL property. If the file cannot be located, the Service
will start with no channels configured.

The tool will attempt to resolve each object described in the XML file, according to
the following rules:

1. If the XML file contains an ID number (I D element), the tool will load the
object described by the ID.

2. If the XML file contains an IOR string (I OR element), the tool will load the
object described by the string.

3. If the XML filecontainsan IOR URL (I OR_URL element), the tool will load the
object pointed to by the URL.

4. If the XML file contains a Naming Service entry (NS_Ent ry element) and the
object can be resolved in the Naming Service, the tool will load that object.

220

. . & PRISMTECH
Configuration and Management

ChannelConfigurator Tool 15.3 Using the ChannelConfigurator Tool

5. If the XML file contains a Naming Service entry (NS_Ent ry element) but the
object cannot be resolved, the tool will create a new object and register it in the
Naming Service with the name specified by the NS_Ent ry element.

These rules are evaluated in the order given. So if all three elements exist for an
object, the object will be resolved from the IOR string and the other elements will
not be evaluated.

If the tool cannot resolve an object from any of these elements, it will create a new
object.

From version 2.5.3 onwards, only the | D element is used. The other elements (1 OR,
I OR_URL, and NS_Ent ry) are still checked, but thisis only for compatibility with
files created by earlier versions (which did not have the I D element). It is suggested
that older XML files are re-saved in the current version in order to update their
structure.

Saving a Channd Configuration

&4 PRISMTECH

To save the Notification Service’s current channel configuration, open the
Notification Service Manager. Right-click on the root node of the Notification
Service hierarchy and select Save Channel Configuration from the pop-up menu, as
shown in Figure 31.

l& Mlofification Sernvice
§ [Event Channel| Sawe Channel Configuration

@ £ 0- IDLprisn Refresh Current Node hExtensions/Gueue: .0
@ £ 1-1DLprisn i HHE DI nExtensionsiGueus.o
@ £ 2- IDLpris ragnnFieaonmnon hExtensions/Gueue: .0

CORBA Ohject Browser
Motification Service Manager

Figure 31 Saving Channel Configuration

A Save dialog box is displayed. Select the directory and file name for the XML file.
The file should be given an . XM extension.

221
Configuration and Management

15.4 Running from the Command Line ChannelConfigurator Tool

If the specified XML file already exists, it will be overwritten by the new file.

& If the file name and location do not match that specified by the Channel
Configuration URL property, then the Notification Service will not beinitialised with
the saved configuration the next timeit is started.

Running from the Command Line

To load a saved channel configuration into the Notification Service:

% run comprisnt.cos. CosNotification.tools.xm.Channel Confi gurator:
-l oad <URL> <NotificationServi ce> <Nam ngServi ce>

To save the current channel configuration of the Notification Service to an XML
file:

% run comprisnt.cos. CosNotification.tools.xm.Channel Confi gurator:
-save <URL> <Notificati onService>

Where:
<URL> isthe URL of the XML configuration file.
<Not i fi cati onServi ce> isthe Notification Service resolve name.

<Nam ngSer vi ce> isthe Naming Service resolve name.

222
Configuration and Management

& PRISMTECH

Index

IndeXx

Adding
anEventType............, 90
Condraintscovviivnnnnn. 206

AdminObjects 17

AdminProperties............. 200

Administration Interfaces. 66

Administration Properties
DomainName 166

Blobstore Logger Level (property).......... 180

Channel
Configuration 219

Channel Configuration URL (property). 220

Channel graphs. 125

Channel Management
Typed EventDomain 139
Untyped Event Domain 139

Channel ConfigurationURL (property). 220

ChannelConfigurator 198, 219

ChannelNotFound Exception.............. 166

Channels. ..., 198

Channels (property) 188

Client Connection
Typed EventDomain 148
Untyped Event Domain 141

Component
Connectioncovviiiii i 12
Creation.coviiiiiii i 12

Component Manager Logger Level (property) 182

components/EventDatabase/maxpurgememory
(property). . ..o 193

components/Journal/guaranteedsyncing (property)
193

components/L ockSetFactory/fairness (property) . .
190

& PRISMTECH

AlreadyExists Exception 166
API Definitions 151
AuthorizeCycles.t 165
AuthorizeDiamonds. 165

AutoSequenceBatchSize (QoS property). . 75, 201
AutoSequenceTimeout (QoS property) . . . 76, 201
AUtO-SeqUENCING. . . . oo v e 24

components/TaskM anager/maxactivity (property)
190

components/TaskManager/period (property). . 190

components/TaskManager/priority (property) . 191

components/ThreadPool/pool-initial (property). . .
192

components/ThreadPool/pool-max (property) . 191

components/ThreadPool/pool-min (property) . 191

components/ThreadPool/thread-timeout (property)
192

components/TransactionM anager/domai n/timeout

(property) ... 192
Composition. 96
Configuring a Structured Supplier.......... 211
ConnectedClient (QoS property) 75
Connecting

PushConsumers...................... 136
Push Suppliers 133
TypedClients........................ 148
UntypedClients 141
Connection Data Structure
TypedEventDomain.................. 147
Untyped Event Domain 140
Connection Management
TypedEventDomain.................. 147
225

Notification Service Guide

Index

Untyped Event Domain................ 140
ConnectionNotFound Exception. 166
ConnectionReliability (property) 70
ConnectionReliability (QoS property) . . 200,202,

209
CongraintLanguage. 23
Constraints

Adding. ... 206

Removing............. 208
Consumer Admin 199
Consumer Admins. 199

Settingup. ... ooi e 201
ConsumerAdmins (property). 185
Containmentcovivvenn... 109
ContainsiInterface....................... 87
Database Plugin Class (property)

Notification Service. 173
DB.Plugin (property)

Notification Service. 173
DB.WAL (property)ccoovnaon.. 172
DB.WAL.Dir (property) 172
DB.WAL.MaxSize (property). 173
default_consumer_admin Operation. 65
default_filter_factory Operation 65
default_supplier_admin Operation 65
Dependencies (on Other Services) 9
DestroyingaDomain 139
Detecting

Cycles ..o 127

Diamonds., 127
Diamond Detection. 127

QoSProperty ... 165
Enable Write Ahead Log (property) 172
Errors. 79
Event

Body.. ... 15

Communication Models. 16

Headero, 15

Transmission, 11

Notification Service Guide

CosEventDomainAdmin Interfaces 152
CosTypedEventDomainAdmin Interfaces . .. 152
create_channel Operation 65
Creating
aNewkFilter. 204
TestEvents, 213
Current Total of Events Awaiting Delivery
(property)o 186

Current Total of Eventsin Channels (property) . .
186

CurrentEvents (property) 186
CycleDetection. 127
QOSProperty. ..o 165
CycleCreationForbidden Exception 166
Cycles. ... 125, 142
DiamondCreationForbidden Exception 167
Diamondst. 125, 143
Disabling Event Type Propagation. 125, 145
DiscardPolicy (QoS property). 72
DisconnectCallback (QoS property). 76, 209
Domain Factory
oo 149
TypedEvent, 146
UntypedEvent. 138
DomainTopology ovvvvviaen .. 125, 142
DomainName (administration property). 166
DomainNotFound Exception 167
Domains
LOg. oo 148
TypedEvent, 146
Downstream, 125
DsLogDomainAdmin Interfaces. 153
TYPES. . oo 86, 94
EventChannel.......................... 16
Factory........ ..o, 198
Properties. i 200
Settingup. . ..o v 200
Event Channel Factory
create_channel Operation 65
& PRISMTECH

Event Channel Factory Interface 65
Event Channel Interface
default_consumer_admin Operation. 65
default_filter_factory Operation........... 65
default_supplier_admin Operation 65
destroy Operation 66
for_consumersOperation 65
for_suppliersOperation 65
get_admin Operation. 66
get_all_consumeradmins Operation 66
get_all_supplieradmins Operation 66
get_consumeradmin Operation. 66
get_gqosOperation. 66
get_supplieradmin Operation 66
MyFactory Operation 65
new_for_consumers Operation. 65
new_for_suppliers Operation 65
set_ admin Operation. 66
set qosOperation..............oiven... 66
Event Database
Maximum Purge Memory (property) 193
Purge Rate (property) 192
Event Domain Service
Architecture 122
Channel Management. 139
Concepts.oo i 122
Connection Management, Typed 147
Connection Management, Untyped 140
CycleDetection. 142
Diamond Detection. 143
Disabling Event Type Propagation. 125
Domain Factory, Typed 146
Exceptions. i 166
Features. oo 121
Interfaces. 151
LogDomains.covennnn. 148
OVEIVIEW. ..ot 121
Push Consumer Example 136
Push Supplier Example. 133
QoSProperties 165
Supplemental Information 165
Topology Management. 142
Typed Client Connection 148
Typed Event Domains 146
Untyped Client Connection 141
& PRISMTECH

Untyped Domain Factory 138
Using ServiceFeatures. 129
Event Type Propagation
Disabling. ... 125, 145
Event Type Repository
Containsinterface. 87
EventType....... ..ot 86
Import 87
Inheritance.o ... 87
Example
Associations 96
EventTypet 94
Event Type Repository Object 108
Event Type, Adding 90
Event Type, Removing............... 109
Import 105
Inheritance. 101
Properties it 92
Repository Package. 112
Exceptions i 117
Interfaces L. 87
Event Type Repository Description. 108
EventChannelFactory Object. 198
EventDomain Interface 151, 153
EventDomainFactory 158
EventDomainFactory Interface 151, 158
EventLogDomain Interface 158
EventLogDomainFactory Interface 151, 159
EventReliability (QoS property) 70, 200
Events Delivered (property)........... 184, 185
Events, Defined oL 14
Events, Structured 14
EventsAwaitingDelivery (property)......... 186
EventsDelivered (property) 185
EventsReceived (property)................ 184
EventTypesEnabled (QoS property) 165
Examples
Event Type Repository 112
Exceptions 79, 80, 117, 166
AlreadyEXists........................ 166
ChannelNotFound. 166
ConnectionNotFound 166
CycleCreationForbidden. 166
DiamondCreationForbidden. 167
DomainNotFound. 167
227

Notification Service Guide

Index

InterfaceNotSupported.
NoSuchlmplementation.

FederatingChannels
Federation,
Filter

get_admin Operation.
get_all_consumeradmins Operation
get_all_supplieradmins Operation.
get_consumeradmin Operation.

Import
Inheritance.
Instrumentation
Notification Service Properties
InterfaceNotSupported Exception.
Interfaces.t
CosEventDomainAdmin...............
CosTypedEventDomainAdmin..........
EventDomain....................
EventDomainFactory.
EventLogDomain.

JMX (Instrumentation) Properties.
Journal

Local Channel
Lock Set Factory

Fairness Policy (property)
Lock Set Factory Logger Level (property) . . .
LogDomains.c.covuiiiiienann..

228
Notification Service Guide

UnsupportedAdmin. 167
UnsupportedQoS. 167
Filtering. 22
for_consumersOperation 65
for_suppliersOperation. 65
ForbidCycles. 165
ForbidDiamonds. 165
get_gosOperation.ovvenaan.. 66
get_supplieradmin Operation 66
Global Setting (property) 176
EventLogDomainFactory 151, 159
TypedEventDomain. 151, 159
TypedEventDomainFactory 151, 162
IOR File Name (property)............ 174,194
IOR Name Service (property) 175, 195
IOR Name Service Entry (property). ... 173,194
IOR URL (property) 174, 194
IOR.File (property) 174,195
IOR.URL (property) 174,194
IOR_.URLElement..................... 220
Guaranteed Syncing (property) 193
JTO Logger Level (property) 177
logcategory/blobstore (property). 180
logcategory/ecfc (property). 182
logcategory/ecm (property).ot 183
logcategory/jto (property)t 178
logcategory/locksetfactory (property). 183
& PRISMTECH

logcategory/messenger (property) 178
logcategory/orb (property) 179
logcategory/rolemanager (property)......... 177
logcategory/scheduler (property) 177
logcategory/statefactory (property) 181

logcategory/statemachinefactory (property). . . 181

Managing
Channels.......... it 139
ConNNections 140
Proxieso 38, 44
TypedChannels 146
Typed Connections. 147

MaxConsumers (admin property). 78, 200

M axEventsPerConsumer (QoS property). 71,201,

202, e 209

Maximum Queue Size (property)........... 189

MaximumBatchSize (QoS property) 72,201, 202,

NameServiceName (property) 220
new_for_consumers Operation. 65
new_for_suppliers Operation............... 65
NoSuchlmplementation Exception. 167
Notification Service
Configuration 171
Errors 79
Event Channel Factory, create_channel
Operation.covvuiienaan.. 65
Event Channel Interface
default_consumer_admin Operation. 65
default_filter_factory Operation 65
default_supplier_admin Operation 65
destroy Operation 66
for_consumers Operation 65
for_suppliers Operation. 65
get_admin Operation. 66
get_all_consumeradmins Operation 66
get_all_supplieradmins Operation. 66
get_consumeradmin Operation 66
get_gqosOperation.................... 66
get_supplieradmin Operation 66

&4 PRISMTECH

|ogcategory/taskmanager (property)
logcategory/threadpool (property) 182
| ogcategory/transactionmanager (property) . . . 180

logkit/targets/file/filename (property) 175
logkit/targets/file/format (property)......... 176
209
Max|nactivitylnterval (QoS property) 74,75
MaxMemoryUsage (QoS property) 76
MaxMemoryUsagePolicy (QoS property). 76
MaxQueuel ength (admin property). 78, 200
MaxQueueSize (property) 189
M axReconnectAttempts (QoS property) . 74,201,
202, . 209
MaxSuppliers (admin property) 78, 200
Messenger Logger Level (property)......... 178
MyFactory Operation. 65
MyFactory Operation 65
new_for_consumers Operation. 65
new_for_suppliers Operation 65
set_admin Operation. 66
set_ qosOperation 66
Exceptions it 80
Hierarchy 198
Introduction 7,31, 61,69
Managero, 197
Proxy Management. 38, 44
Quiality of Service Property
ConnectedClient 75
ConnectionReliability 70
DiscardPolicy 72
EventReliability 70
MaxEventsPerConsumer. 71
MaximumBatchSize.................. 72
MaxInactivitylnterval 74,75
MaxReconnectAttempts 74
OrderPolicyt 72
Pacinginterval 72
Priority 70
229

Notification Service Guide

Index

Reconnectinterval 74
Timeoutoiiiiiii.. 71
ServiceDependencies 9
Notification Service Logger Level (property). 182
NotificationServiceName (property). 219
NotificationSingleton Configuration. 172
NS Entry Element. 220, 221
Number of Channels (property) 188

Number of Consumer Admins (property). ... 185
Number of Proxy Push Consumers (property) 184

Object.Name (property) 173,194
OMG
Standard API Definitions. 61
Standard Features., 7
OpenFusion

Pacinglnterval (QoS property) . 72, 201, 202, 209

Passivating Persistent Clients 26
Persistence. oo 25
Priority. 70
Priority (QoS property) 70, 201, 202, 209
ProcessSingleton Configuration
Notification Service. 194
PropagateQoS (QoS property) 77,201
Proxy
Definedc i 18
Instances, 208
QoS Properties
CycleDetection...................... 165
Diamond Detection 165
EventTypesEnabled. 165
Listing ..o 138
QOSSEttingso 202
Proxy Objects.t 209
Quiality of Service Property
ConnectedClient 75
ConnectionRdliability 70

Notification Service Guide

Number of Proxy Push Suppliers (property). . 187
Number of Sequence Proxy Push Consumers

(property) 185
Number of Sequence Proxy Push Suppliers
(property) 187
Number of Structured Proxy Push Consumers
(property) 184
Number of Structured Proxy Push Suppliers
(property) 187
Number of Supplier Admins (property) 188
Enhancements......................... 8
QOSEXxtensions. 21,73
QueueExtensions 21
ORB Logger Level (property). 179
OrderPolicy (QoS property) 72,201, 202
Management 38, 44
PushConsumers 199
Push Suppliers. 199
Proxy Objects
Destroying...........coovuiiiiaan... 217
Proxy PushConsumer. 199
Proxy Push Supplier 199
ProxyPushConsumers (property) 184
ProxyPushSuppliers (property). 187
PushConsumer........................ 136
Push Supplier oL, 133
DiscardPolicy 72
EventReligbility. 70
MaxEventsPerConsumer. 71
MaximumBatchSize 72
MaxInactivitylnterval 74,75
MaxReconnectAttempts 74
OrderPolicy 72
Pacinginterval 72
Priority. 70
Reconnectinterval 74
& PRISMTECH

Timeout. ... 71
Reconnecting Consumers (property) 188
ReconnectingConsumers (property). 188

Reconnectinterval (QoS property) . . 74,201, 202,
209

RejectNewEvents (admin property) 200
Notification Service 78
Removing
Congraintsc.oiiiiiannn.. 208

SequenceProxyPushConsumers (property) . ..185
SequenceProxyPushSuppliers (property). 187

SeqUENCING . . .ottt 23
Service Log File Format (property) 175
Service Log File Location (property). 175
Set All Loggers To (property) 176
set_admin Operation. 66
set_ gqosOperation., 66
Singletons

NotificationSingleton 172
Standard

OMG Propertiescoovenn... 21,69

Starting the Notification Service Manager 197

Task Manager
Maximum Activity (property) 190
Period (property). 190
Priority (property). 191
Task Manager Logger Level (property). 178
Thread Pool
Initial Pool Size (property) 192
Maximum Pool Size (property) 191
Minimum Pool Size (property)........... 191
Thread Timeout (property) 192
UnsupportedAdmin Exception. 167
& PRISMTECH

Queues, Defined.l 19

Filterso 208
Repository Package 112
Requirements., 25
Resolve Name (property) 175
ResolveName (property) 175
Resuming Connections. 18
Role Manager Logger Level (property). 177
State Factory Logger Level (property). 180

State Machine Factory Logger Level (property) . .
181

Structured Consumer, Connecting. 213
Structured Events.l 14
Structured Supplier, Configuration 212

StructuredProxyPushConsumers (property). . . 184
StructuredProxyPushSuppliers (property) 187

Supplier Admin 199
Supplier Admins. 199

Settingup ..« o e 201
SupplierAdmins (property) 188
Suspending Connections 18
Thread Pool Logger Level (property) 181
Timeout (QoS property). 71, 201, 203, 209
Topology Management 125, 142
Transaction Manager

Domain Timeout (property) 192
Transaction Manager Logger Level (property) 179
Transmitting Test Events. 216
Typed EventDomain.................... 146
TypedEventDomain Interface 151, 159

TypedEventDomainFactory Interface . . . 151, 162

UnsupportedQoS Exception. 167

231
Notification Service Guide

Index

Untyped Event Domain. 138 DomainFactory. 138
upstream. ..., 125 Typed Event Domain Factory 146
Using

WriteAheadLog. 172 Write Ahead Log Maximum Size (property) . 173
Write Ahead Log Directory (property) 172

232
Notification Service Guide

& PRISMTECH

	OpenFusion®
	Notices
	Preface
	About the Notification Service Guide
	Contacts

	Contents
	Table of Contents
	List of Figures
	List of Tables

	Introduction
	Notification Service
	1 Description
	1.1 Overview
	OMG Standard Features
	OpenFusion Enhancements

	1.2 Concepts and Architecture
	Dependencies on Other Services
	The Basic Concept
	The Architecture
	Event Transmission
	Component Connection and Creation
	Main Components and Features

	The Details
	Structured Events
	Event Type Repository
	Event Communication Models
	Event Channel
	Admin Objects
	Proxies
	Suspension, Resumption and Disconnection

	Queues
	OpenFusion Queue Extensions

	Quality of Service
	Standard OMG Properties
	OpenFusion QoS Extensions

	Filtering
	Constraint Language

	Sequencing
	Auto-sequencing

	Persistence
	Features
	Requirements
	Passivating Persistent Clients

	Federation
	Local Channel

	2 Using the Service
	2.1 Introduction
	Import Statements

	2.2 Compiling and Running Clients
	Compiling Client Applications
	Running Client Applications
	Initialising the ORB
	Starting the Notification Service
	Configuring the Notification Service
	Starting Clients

	2.3 Creating Clients
	Creating a Supplier
	Connecting to the Server
	Managing Event Channels
	Destroying an Event Channel
	Managing Administration Objects
	Managing Proxies

	Creating Events
	Sending Events

	Creating a Consumer
	Connecting to the Server
	Managing Administration Objects
	Managing Proxies

	Receiving Events
	Suspending and Resuming Connections

	Removing Inactive Proxies
	Proxy Push Consumers and Proxy Pull Suppliers
	Proxy Push Suppliers
	With Connection Reliability set to Best Effort
	With Connection Reliability set to Persistent

	Alternative Method

	2.4 Using Quality of Service Properties
	Creating an Event Channel with QoS
	Managing QoS
	Adding New QoS to a Channel
	Accessing the QoS
	Validating Event QoS

	2.5 Using Filters
	Filter Objects
	Creating a Filter Object
	Adding a Filter Object to an Admin Object
	Listing Filter Objects
	Removing Filter Objects

	Event Filters
	Constructing Constraints
	Managing Constraints

	Writing Constraint Expressions
	Extended TCL Grammar
	Basic Elements
	$ Token
	‘dot’ Operator
	Literals
	Runtime Variables

	Operators
	Comparative Functions
	Boolean Operators
	Special Operators
	Mathematical Operators
	Operator Precedence

	Constraint Examples

	2.6 Using Persistence

	3 API Definitions
	3.1 OMG Standard API Definitions
	Event Channel Factory Interface
	Event Channel Interface
	Administration Interfaces
	Filter Interfaces

	4 Supplemental Information
	4.1 Quality of Service Properties
	Standard OMG Properties.
	OpenFusion QoS Extensions
	Administrative Properties

	4.2 Errors and Exceptions
	Errors
	Exceptions
	Implementation Limit Exception

	Event Type Repository
	5 Description
	5.1 Overview
	5.2 Concepts and Architecture
	Event Types
	Inheritance
	Importing
	Contains
	Interfaces

	6 Using Specific Features
	Import Statements
	6.1 Adding an Event Type
	6.2 Properties
	6.3 Event Types
	6.4 Composition
	6.5 Inheritance
	6.6 Import
	6.7 Event Type Repository Description
	6.8 Containment
	6.9 Repository Package

	7 API Definitions
	8 Supplemental Information
	8.1 Exceptions

	Event Domain Service
	9 Description
	9.1 Overview
	Service Features

	9.2 Architecture and Concepts
	Federating Channels
	Event Type Propagation

	Domain Topology
	Gathering Topology Information

	10 Using Specific Features
	Notes
	Import Statements
	10.1 Setting up a Domain
	Creating an Event Domain
	Connecting a Push Supplier
	Connecting a Push Consumer

	10.2 Managing Untyped Event Domains
	Using a Domain Factory
	Listing the Quality of Service Properties
	Destroying a Domain
	Managing Channels
	Managing Connections
	Connecting Clients
	Topology Management
	Cycles
	Diamonds
	Channels

	Disabling Event Type Propagation

	10.3 Managing Typed Event Domains
	Using a Typed Event Domain Factory
	Managing Typed Channels
	Managing Typed Connections
	Connecting Typed Clients

	10.4 Log Domains

	11 API Definitions
	11.1 Interfaces
	EventDomain
	Operations

	EventDomainFactory
	Operations

	EventLogDomain
	Operations

	EventLogDomainFactory
	Operations

	TypedEventDomain
	Operations

	TypedEventDomainFactory
	Operations

	12 Supplemental Information
	12.1 Quality of Service Properties
	12.2 Administration Properties
	12.3 Exceptions

	Configuration and Management
	13 Notification Service Configuration
	13.1 Overview
	Common Properties

	13.2 NotificationSingleton Configuration
	Persistence Properties
	Enable Write Ahead Log
	Write Ahead Log Directory
	Write Ahead Log Maximum Size
	Database Plugin Class

	CORBA Properties
	IOR Name Service Entry
	IOR URL
	IOR File Name
	IOR Name Service
	Resolve Name

	Messaging Loggers
	Service Log File Location
	Service Log File Format
	Set All Loggers To
	Scheduler Logger Level
	Role Manager Logger Level
	JTO Logger Level
	Messenger Logger Level
	Task Manager Logger Level
	ORB Logger Level
	Transaction Manager Logger Level
	Blobstore Logger Level
	State Factory Logger Level
	State Machine Factory Logger Level
	Thread Pool Logger Level
	Notification Service Logger Level
	Component Manager Logger Level
	Lock Set Factory Logger Level

	Instrumentation Properties
	Events Received
	Number of Proxy Push Consumers
	Number of Structured Proxy Push Consumers
	Number of Sequence Proxy Push Consumers
	Events Delivered
	Number of Consumer Admins
	Current Total of Events in Channels
	Current Total of Events Awaiting Delivery
	Number of Proxy Push Suppliers
	Number of Structured Proxy Push Suppliers
	Number of Sequence Proxy Push Suppliers
	Reconnecting Consumers
	Number of Supplier Admins
	Number of Event Channels

	General Properties
	Maximum Queue Size

	Messaging
	JMX Instrumentation: Start SUN HTML Adapter
	JMX Instrumentation: Port for Sun HTML Adapter
	JMX Instrumentation: Register Individual Objects
	Lock Set Factory: Fairness Policy
	Task Manager: Period
	Task Manager: Maximum Activity
	Task Manager: Priority
	Thread Pool: Minimum Pool Size
	Thread Pool: Maximum Pool Size
	Thread Pool: Initial Pool Size
	Thread Pool: Thread Timeout
	Transaction Manager: Domain Timeout
	Event Database: Purge Rate
	Event Database: Maximum Purge Memory
	Journal: Guaranteed Syncing

	13.3 ProcessSingleton Configuration
	IOR Name Service Entry
	IOR URL
	IOR File Name
	IOR Name Service

	14 Notification Service Manager
	14.1 Overview
	14.2 Using the Notification Service Manager
	The Notification Service Manager
	Notification Service Hierarchy
	Notification Service Details

	Setting up an Event Channel
	Creating an Event Channel
	Setting Properties on an Event Channel
	Admin Property Settings
	QoS Property Settings

	Setting up a Supplier or Consumer Admin
	QoS Settings

	Admin Filters
	Filter Settings
	Custom Filters
	Creating a New Filter
	Adding a Constraint
	Removing a Filter
	Removing a Constraint

	Setting Proxy Instances
	QoS Settings
	Creating a New Proxy Object
	Proxy Filters

	Testing Event Delivery
	Creating the Test Clients
	Configuring the Test Clients
	Configuring the Structured Supplier
	Configuring the Structured Consumer
	Connecting the Structured Supplier
	Connecting the Structured Consumer
	Creating Test Events
	Transmitting Test Events
	Filter Events

	Destroying Proxy Objects

	15 ChannelConfigurator Tool
	15.1 Overview
	15.2 ChannelConfiguratorObject Configuration
	NotificationServiceName
	NameServiceName
	Channel Configuration URL

	15.3 Using the ChannelConfigurator Tool
	Saving a Channel Configuration

	15.4 Running from the Command Line

	Index

