OpenFusione
CORBA Services

Version 4.1

Naming Service

& PRISMTECH

OpenFusione®
CORBA Services

NAMING SERVICE GUIDE

& PRISMTECH

Part Number: OFCOR-NAMG-41 Doc Issue 14, 13 July 2004

Notices

Copyright Notice

& PRISMTECH

© 2004 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

All Trademarks mentioned herein belong to their respective owners.

OMG, CORBA, 110P, and ORB are trademarks or registered trademarks of Object
Management Group, Inc. in the U.S. and other countries.

Java, Enterprise JavaBeans, and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

VisiBroker is atrademark or registered trademark of Inprise Corporation in the U.S. and
other countries.

OrbixWeb, Orbix, and ORBacus are trademarks or registered trademarks of lona
Technologies PLC in the U.S. and other countries.

UNIX isaregistered trademark in the U.S. and other countries, licensed exclusively through
X/Open Company Ltd.

Microsoft Windows and NT are trademarks or registered trademarks of Microsoft
Corporation in the U.S. and other countries.

iii
Naming Service Guide

Preface

About the Naming Service Guide

The Naming Service Guide is included with the OpenFusion CORBA Services
Documentation Set. The Naming Service Guide explains how to use the OpenFusion
Naming Service.

The Naming Service Guide is intended to be used with the System Guide and other
OpenFusion CORBA Services documents included with the product distribution;
refer to the Product Guide for a complete list of documents.

Intended Audience

The Naming Service Guide is intended to be used by users and devel opers who wish
to integrate the OpenFusion CORBA Services into products which comply with
OMG or J2EE standards for object services. Readers who use this guide should have
a good understanding of the relevant programming languages (e.g. Java, IDL) and
of the relevant underlying technologies (e.g. J2EE, CORBA).

Organisation

The Naming Service Guide is organised into three main sections. The first two
sections describe the OpenFusion Naming Service and JNDI, respectively. These
sections provide

* ahigh level description and list of main features

« explanation of the architecture and concepts

 how to use specific features

« detailed explanations of the main interfaces and how to use them
« other information which is needed to use the component

The last section of the Naming Service Guide, Configuration and Management,
providesinformation on configuring and managing the OpenFusion Naming Service
using the OpenFusion Graphical Tools. This section includes detailed descriptions
of properties specific to the service, plus instructions on how to use the OpenFusion
Graphical Tools' Browsers and Managers for it. It isintended that this section be
read in conjunction with the System Guide.

Conventions

The conventions listed below are used to guide and assist the reader in
understanding the Naming Service Guide.

v
Naming Service Guide

& PRISMTECH

Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.

Information applies to Windows (e.g. NT, 2000) only.

C
S| -
fE-=

Information applies to Unix based systems (e.g. Solaris) only.

Hypertext links to WWW and other internet services are shown as blue italic
underlined.

On-Line (PDF) versions of this document: Items shown as cross references to other
parts of the document, e.g., Contacts on page vii, behave as hypertext links: readers
can jump to that section of the document by clicking on the cross reference.

% Conmmands or input which the user enters on the
command |ine of their conmputer term nal

Couri er fontsindicate programming code and file names.

Extended code fragments are shown in shaded, full width boxes (to allow for
standard 80 column wide text), as shown below:

NaneConponent newNane[] = new NaneConponent|[1];

/] set id field to “exanple” and kind field to an enpty string
newNane[0] = new NaneConponent (“exanple”, ““);

root Cont ext . bi nd (newNanme, denoObj ect);
Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold isused to indicate user related actions, e.g. File | Save from amenu.

Step 1: Indicates that thisitem is a step or stage of completing atask by a user.

v . . . & PRISMTECH
Naming Service Guide

Contacts

& PRISMTECH

PrismTech can be contacted at the following address, phone number, fax and e-mail
contact points for information and technical support. Users of the on-line version of
this manual can click the e-mail addresses below to launch their e-mail client or Web
browser to send e-mail direct to PrismTech.

Corporate Headquarters European Head Office
PrismTech Corporation PrismTech Limited
6 Lincoln Knoll Lane PrismTech House
Suite 100 5th Avenue Business Park
Burlington, MA Gateshead
01803 NE11 ONG
USA UK
Tel: +1 781 270 1177 Tel: +44 (0)191 497 9900
Fax: +1 781 238 1700 Fax: +44 (0)191 497 9901
Web: http: //www.prismtechnol ogies.com
General Enquiries: info@prismtechnol ogies.com
Support Enquiries: http: //www. prismtechnol ogies.com/Contacts

vii
Naming Service Guide

http://www.prismtechnologies.com
mailto: info@prismtechnologies.com
http://www.prismtechnologies.com/Contacts

viii
Naming Service Guide

& PRISMTECH

Contents .

Table of Contents

Notices

Preface

About the Naming ServiceGuide

CoNtactsS ...

List of Figures

List of Tables

I ntroduction

Naming Service

& PRISMTECH

Description

Conceptsand Architecture.
OMGStandard.
NamingContexts.,
Federation..............
NameComponents,
Interoperable Naming Service (INS)
StringifiedNames
OpenFusion Enhancements.

Java Naming and Directory Interface (JNDI)

Multiple Forms of Persistence
Caching . ..o
Purging and Memory Management.
Load BalancingConcepts.covvont.
Load Balancing in OpenFusion.
Instrumentation.
Fall-over
Replicationo,

Xi
Naming Service Guide

Table of Contents

Using Specific Features 21
Obtainingthe Root Contextttt 21
Naming Context Creation and Destruction.o.u.... 22
Binding and Unbinding Operations.ot 23
Accessing Naming Context Contents.ciiiiiiinnnnnn.. 24
Bindinglterator Operationsc.vi it e e e e 25
Naming Context Extension Operations.c.couiiiniineennan.. 26
UsingtheLoadBalancingFactory.ouuiiin i 28
Manipulating ObjectsintheLoadBalancer 29
Using the LoadBalancer with the Naming Service....................... 29
CustomizingtheLoadBalancerc.ciiiiiiiiiiiiiann, 30
Worked Example 33
Example Client. e e 33
API Definitions 35
OMG Standard API Definitions. oo 35
NamingContext Interface i i i i 35
NamingContextExt Interface. 36
Bindinglterator Interface. 37
OpenFusion APl EXTENSIONS.ttt e 38
LoadBalancingFactory Interface.o 38
LoadBalancer Interface. 38
LoadBalancer Standard Policies 40
LoadBalancerPlugininterface.o 41
INDIObject Interface. 41
Supplemental Information 43
Administration Propertiesand Instrumentation 43
Java Naming & Directory Interface (UNDI) ...t 43
Lightweight Directory AccessProtocol (LDAP)......................... 44
PUrgiNg OpPLioNS. e e e e 44
X! & PRISMTECH

Naming Service Guide

Memory Managementcoovuniin...
XML Exportand Import

Exceptions. ...

Java Naming and Directory Interface

&4 PRISMTECH

Description

OVEIVIBW . . oo e e e e e e
Sun’'sJINDI Standard Features.coo o
OpenFusion Enhancements.

Conceptsand Architecture.
Standard INDI
Thelnitial Context.,
NamingSystemst
Referencesand Addresses.

OpenFusion SPI Implementation

Details. ...
Names e
JavaObjeCtS. . ..ot
Supplied Factories.

To Store CORBA Objects.

To Store RMI-IIOPObjects
Federation i

Using Specific Features

JDBC-based Persistenceco i

AccessingData ...

Supplemental Information

Configuration Propertiesooun.n.
Standard Properties
Provider-specific Properties.
General
Persistence.

Table of Contents

xiii
Naming Service Guide

Table of Contents

EXCEPtIONS. . .ot e e 67
Configuration and M anagement 69
Naming Service Configuration 71
OV VI B . o et 71
CommoON Properties.o 71
NameSingleton Configuration i 72
CORBA Properties ..o oot e e e e 72
Lightweight Directory Access Protocol (LDAP), 73
PersiStence OptioNS oot 76
Instrumentation Properties.ttt 79
General Properties. e 80
LoadBalancingFactorySingleton Configuration. 85
Naming Service M anager 89
OV VI B . . . o e 89
Runningthe Naming ServiceManager oiiiiiian... 89
UsingtheNaming ServiceManager. 89
ObJECE ICONS. . . oot 91
Tool Bar BULONS oottt 91
AddingaNaming Context.t i e e e 92
Binding OpenFusSion SErVICES.ot e 92
Binding Objects.ot e 93
Deleting a Naming Context or Object Binding. 93
EXPOrting XML . . .o 94
IMPOrting XML . . .o e 94
Launching Managersand Browsers i e 95
CORBA ObjeCt BrOWSEr.o e e et e 95
Naming Service Managerot e e 95
Purgable Interface 97
ThePurgablelnterface. i e 97
PurgeClass PIugin 97
Using The PurgableInterface. 97

XV & PRISMTECH

Naming Service Guide

Table of Contents

Appendices 99

A Command Line M anagement T ool 101

FeatUreS . .o 101

ConfigUuIation oot 102

Usingthe file protocol 102

Using the http protocolt 103

RUNNING . .. 104

I ndex 107

& PRISMTECH xv

Naming Service Guide

Table of Contents

XVi

& PRISMTECH
Naming Service Guide

List of Figures

Figurel SimpleNaming Graph i e e e 9
Figure2 Load BalanCingcviti ittt et et ettt et et e e 18
Figure3 LoadBalancerPluginInterface i i i e e 41
Figure4 Naming Hierarchy Export andre-lmport i, 48
Figure5 INDI ArChiteCtureot e e e e 54
Figure 6 OFNamingConverter Interface 58
Figure 7 Naming Service Managerci i e et et et et et et et e e e 90
Figure 8: Example Domains Hierarchy and Directories vt 101
& PRISMTECH xvil

Naming Service Guide

List of Figures

xviii

&4 PRISMT
Naming Service Guide RISMTECH

List of Tables

Tablel NameComponent Fieldso it e e 10
Table2 Binding and Unbinding Operationscciiiiiiii i, 35
Table 3 Naming Context Creationand Destruction i 36
Table4 Accessing Naming Context CoNtentsttt 36
Table5 NamingContexXtEXt Operations v it e e 36
Table6 Bindinglterator Operationsottt e e e 37
Table 7 LoadBalancingFactory Operationsttt ittt e 38
Table8 LoadBalancer Operationsottt e e 39
Table9 LoadBalancer Standard Policies i e 40
Table 10 LoadBalancerPIugin Operationsttt et 41
Table 11 Naming Service EXCEPLIONSottt e e i 49
Table 12 Load Balancer EXCEPtiONSttt e e e e 49
Table 13 Naming Service ObJeCt ICONS oo ot it e e e 91
Table 14 Naming ServiceManager Tool Bar i i 92
Table 15 Command Line Management Tool Commandscciiiiiinan.. 104
& PRISMTECH XX

Naming Service Guide

List of Tables

XX

&4 PRISMT
Naming Service Guide RISMTECH

3
Introduction I
P 4

M
¥

& PRISMTECH

Introduction

The OpenFusion Naming Service and OpenFusion JNDI are part of a range of
services and interfaces included with the OpenFusion CORBA Services product:
can be used stand-alone or with other OpenFusion CORBA Services' interfaces and
services.

The OpenFusion Naming Service and OpenFusion JNDI are standards based and
fully compliant with recognised industry standards and specifications, supporting
portability and interoperability.

3
Naming Service Guide

Introduction

4
Naming Service Guide

& PRISMTECH

Naming Service

Description

Oveviaw

The OpenFusion Naming Service provides a straightforward way of finding and
using objects, by associating meaningful names with them. The Naming Service can
then be used like a white pages telephone directory to find an object and obtain its
Object Reference, without complex programming or using proprietary ORB
mechanisms.

The Naming Service can also be used in any CORBA-compliant distributed-object
system to create and maintain a directory of other services.

OMG Sandard Features

The OpenFusion Naming Service is wholly compliant with the OMG specification.
The basic features of the OMG specification include the ability to:

« give meaningful names to objects (name bindings)

« find names which have been bound to objects (resolve)
 group namesin logical hierarchies (naming contexts)

« group distributed naming hierarchies (federation)

* retrieve lists of names and step through them (iteration)

The OMG also specifies an Interoperable Naming Service (INS), which extends the
Naming Service to add interoperability and portability across ORBs and
applications. Features of the INS include:

« away to find and use a common initial naming context

« support for URL-style names

OpenFusion Enhancements

& PRISMTECH

The OpenFusion implementation of the Naming Service includes several
enhancements. This extended serviceislayered on top of the OM G-defined Naming
Service and INS, and does not affect the use of these standard services.

Enhancements include:
« multiple forms of persistence
« caching

* purging and memory management

7
Naming Service

1.2 Concepts and Architecture Description

* load balancing

» additional instrumentation (service monitoring functions)

Conceptsand Architecture
OMG Sandard

The basic idea behind the Naming Service is the ability to associate meaningful
names with objects. An association between a name and an object is known as a
binding. A name binding is a mapping between a name and an object reference as a
name-value pair.

Name bindings are grouped in hierarchies called naming contexts. A naming context
is an object containing zero or more name bindings. Each name binding within a
naming context refers to either another naming context or a CORBA object.

There is no limit to the number of different names that can be bound to the same
object or naming context, or to the number of bindings that a naming context can
contain.

Resolving a name is the process of locating an object or naming context by reading a
name binding and retrieving the associated object reference.

Iteration is the process of retrieving a list of bindings from a naming context, and
looking at each binding in turn.

Naming Contexts

8
Naming Service

A naming context is a set of name bindings where each name is unique within that
context; the same name may, however, appear in other naming contexts. Naming
contexts can be bound to other naming contexts to create naming hierarchies.

A very simple hierarchy of naming contexts is shown in Figure 1. It illustrates the
fact that a given binding within a naming context can point to either an object or
another naming context, and that a single object can be referenced by more than one
name. These hierarchies are known as naming graphs.

& PRISMTECH

Description

&4 PRISMTECH

1.2 Concepts and Architecture

Root
Naming

Context /
name 1

name 2

name 3 \

name n Naming
Context 4
name 1
name 2
name 3
name n
Naming
Context 2
name 1l
name 2
name 3
: Naming
name n Context 3
name 1
name 2
name 3
name n

Figure 1 Simple Naming Graph

An object is referenced using an initial naming context, which is also referred to as
the root context. Thisis followed by a sequence of one or more name components.
Such a sequence is known as a compound name. Each name component resolves to
the next naming context in a chain until the last name component resolves to the
required object. In Figure 1, objects A, B and D are bound directly to the root
context, so their names have only one component (these are simple names); objects
C and E have names with three components. The full compound name for object C
can be represented like this:

Nam ngCont ext 2/ Nam ngCont ext 4/ (bj ect C
Object E can be accessed via two different names.

The service specification also permits a naming context to contain a binding which
refers to a parent or grandparent further up the graph. For example, in Figure 1
Naming Context 4 could contain a binding to Naming Context 2. This kind of
reference is sometimes referred to as cyclic.

9
Naming Service

1.2 Concepts and Architecture Description

The root context is always implicit in a compound name; a special operation,
resol ve_initial _references,isperformed once to obtain the root context,
and all subsequent r esol ve operations depend on that.

Although it is not a requirement of the service specification, it is convenient and
customary to have a single root naming context.

Federation

The OpenFusion Naming Service has the ability to link many distributed naming
systems in a naming graph so that they appear as a single namespace. Thisis known
as federation, and it enables large heterogeneous systems of names and naming
contexts to be implemented. Clients using the Naming Service do not need to be
aware of the physical location of a server, or of the way in which it isimplemented,;
the link from a naming context to an object can cross several different ORBs
running on different systems.

Name Components

10
Naming Service

Each name component has id and kind fields (sometimes referred to as attributes),
represented by IDL strings. These strings are composed of SO Latin-1 characters
(excluding the ASCII NUL, 00h) and the combined length can be up to 255
characters.

The Naming Service always matches names using both fields, so it is acceptable for
either field to be zero-length or to contain an empty string provided that uniqueness
within a naming context is maintained. Table 1 shows valid combinations of id and
kind values.

Table 1 Name Component Fields

Id Kind
namel <empty>
name2 kindl
<empty> <empty>
<empty> kind2

Note that although it istechnically possible for both fields to contain empty strings,
thisis not normally recommended, as it can be confusing to resolve to an empty
name.

& PRISMTECH

Description

1.2 Concepts and Architecture

I nteroper able Naming Service (INS)

The Interoperable Naming Service extends the basic Naming Service. It implements
the Nami ngCont ext Ext interface, which is derived from the standard
Nani ngCont ext interface. This interface introduces an interoperable stringified
form of the CosNami ng: : Nane and other URL formats in order to facilitate the
interpretation of object references.

Sringified Names

&4 PRISMTECH

Names are sequences of name components, which are not human-readable and can
be difficult for applications to deal conveniently with. A syntax for stringified
names is therefore defined, and operations are provided to convert a name in
sequence form to its equivalent stringified form and vice versa.

A stringified name has components separated by forward slashes; the id and kind
fields within each component are separated by dots. The dot is omitted when the
kind field is empty unless the id field is also empty, in which case the name
component is comprised of asingle dot. Similarly, if there is no dot in a stringified
name component, then that component is taken to be an id field only (the associated
kind field is empty).

For example, the stringified name’ nanmel/ name2. ki nd1/./. ki nd2’ contains
al the valid field combinations shown in Table 1, Name Component Fields.

A backslash must be used as an escape character if it is necessary for a name to
contain a slash, backslash or dot.

I nteroper able Object Reference (IOR)

A CORBA object is uniquely identified by its Interoperable Object Reference
(IOR). The IOR isthe CORBA 2.x compliant format for a standard representation of
an object reference for all ORB vendors.

URLSs

The exchange of |0ORs through non-electronic means is difficult because of their
length and the way that binary information is encoded. The cor bal oc URL scheme
provides URLSs that are familiar to people and are similar to FTPor HTTP URLs. A
cor bananme URL issimilar to acor bal oc URL except that acor baname URL
also contains a stringified name that identifies a binding in a naming context. The
cor bal oc and cor banane schemes allow service addresses to be exchanged more
easily throughout organizations. These schemes are also used to allow arbitrary
object references to be specified for an initial service, athough some ORBs do not

1
Naming Service

1.2 Concepts and Architecture Description

currently support these bootstrapping mechanisms. For example, the following line
of code shows the OpenFusion Notification Service being referenced with a
cor bal oc URL:

-ORBI ni t Ref NotificationService=corbal oc::server.prisntechnol ogi es. com Notificati onService

12
Naming Service

The available URL formats are: IOR, Corbaloc, Corbaname, file, FTPand HTTP.

IOR

The string form of an IOR (I OR: <hex_oct et s>) isavalid URL. The IOR URL is
robust and insulates the client from the encapsulated transport information and
object key used to reference the object. This URL format is independent of the
Naming Service.

Corbaloc

The cor bal oc URL scheme provides stringified object references that are more
easily manipulated than IORs. This URL format is independent of the Naming
Service.

A cor bal oc URL contains:
 one or more protocol identifiers
* protocol-specific components

There are currently two protocols defined: Internet Inter-ORB protocol (I10P) and
resol ve_initial _references (RIR). The RIR scheme allows for access to the
ORB'’s configured initial references. The I1OP scheme is defined for use in TCP/IP
and DNS centric environments such as the Internet. This protocol contains:

» one or more address(es) with an optiona I1OP version number and an optional
port

* an object key

For example:

corbal oc::10. 1. 1. 123: 14005/ ¥%90PMCYO0%00%00%04%00%00%00%252cb9b780- 7803- 11d3
- a8ae-f ef 54d18874b%00%00%O0YO0YO0YO0YO0%1 0- ¥OEr 0x %O 3% 1 %3 %A8 YAEYEFEYE5 M/ 8%
87K

This means that at host 10. 1. 1. 123, on port 14005, it is possible to resolve the
object reference denoted by the key. The key has been escaped to map away from
octet values that cannot be directly part of aURL.

corbal oc: : 1. 1i@erver. pri snt echnol ogi es. com 10. 1. 1. 123: 14005/ %90PMC¥©0%900%00
04%00%00%00%252cb9b780- 7803- 11d3- a8ae- f ef 54d18874b%00%00%00%0O0%00%O0%O0%4 0
- YO Er 0x%03% 1 YD3%A8YAEY-EYS-5MA 898 7K

& PRISMTECH

Description

1.2 Concepts and Architecture

This means that, at host ser ver. pri snt echnol ogi es. com(using [IOP version
1.1) or, at the host denoted by the IP address 10. 1. 1. 123 on port 14005 the key
can be resolved as described above.

Port 2809 is used if aport is not specified.

Corbaname

A cor bananme URL issimilar to acor bal oc URL. However, acor bananme URL
also contains a stringified name that identifies a binding in a naming context. For
example:

cor banane: : server. pri snt echnol ogi es. conl YQ0PMC%06%00%04%00%0#a/ st ri ng/ pat h
t o/ obj
cor banane: rir: #al/ string/ path/t o/ obj

The first URL specifies that an object (of type Nami ngCont ext) can be found at
host server.prismtechnol ogies.com using the object key
00PMCY06%00%049%900%00. The second URL uses the resolve initial references
syntax to return a reference to a Nam ngCont ext . The stringified name
al/ string/ path/to/ obj isthen used asthe argument to ar esol ve operation on
that Nami ngCont ext . The URL denotes the object reference that results from that
lookup.

file
Thefileformat (fi | e: //) should specify afile containing either aURL or an IOR.

FTP

The FTP format (ft p: / /) should, as above, specify a file containing a URL or an
IOR. However, in this case, the file should be accessible via ftp.

HTTP

Thisformat (ht t p: / /) should specify an HTTP URL that returns an object URL or
an IOR.

OpenFusion Enhancements

&4 PRISMTECH

The OpenFusion Naming Service is implemented in Java for platform
independence.

13
Naming Service

1.2 Concepts and Architecture Description

Java Naming and Directory Interface (JNDI)

The Java Naming and Directory Interface (JNDI) is a generic API for accessing
naming and directory services; the OpenFusion Naming Serviceis layered on top of
JNDI. This enables it to access the OpenFusion service provider and aso the Sun
Lightweight Directory Access Protocol (LDAP) provider. Clients may access either
transparently, or use the OpenFusion JNDI SPI independently of the CORBA
service.

The OpenFusion INDI implementation is described in the JNDI Guide.

Please refer to the relevant Sun Microsystems documentation for details of JNDI
and LDAP standard functionality.

Multiple Forms of Persistence

The OpenFusion Naming Service has been layered on top of the Java Naming and
Directory Interface (JNDI). This enables it to store its persistent data in memory or
databases. It can also utilize Sun’s JINDI Lightweight Directory Access Protocol
(LDAP) provider, using standard L DA P authentication mechanisms.

Persistent datain memory is provided by configured the JIDBC hsgldb data source to
perform memory based persistence.

Database persistence is implemented using Java Database Connectivity (JDBC).
OpenFusion currently supports Oracle, Sybase and Informix on both Unix and
Windows NT, plus Microsoft SQL Server on Windows NT only. Because the
OpenFusion Naming Service supports persistence on enterprise quality,
high-availability database systems, it isfully scalable.

The Naming Service can view non-CORBA aobjects found in INDI and standard
JNDI clients can access a persistent Naming Service hierarchy.

The persistence mechanism must be configured before the Naming Service is
started; this is normally done with the Administration Manager. The OpenFusion
Naming Service can create ajndi.properties file whenever it starts, which contains
the minimum information required to allow another JNDI client to access the
Naming Service hierarchy. INDI properties can be configured by application
resource files, environment parameters passed via a hashtable, system properties or
applet parametersin JNDI, with those specified in the hashtable taking priority.

The OpenFusion JNDI implementation is described in the INDI Guide.

Caching

Several tunable caching policies are supported by the OpenFusion Naming Service,
to help optimise performance. Available policies are:

14
Naming Service

& PRISMTECH

Description

A

1.2 Concepts and Architecture

No cache (Read through and Write through)
» Read cache and Write through

» Read cache and Timed write

» Read cache and Batched write

» Read cache and Timed Batched write

plus

e minimum, maximum and interval

The read cacheis purged as necessary using a least-recently-used algorithm when it
reaches a user-defined size limit.

The minimum policy sets the minimum number of objects which will be left in the
cachewhen it iscleared. The default value is zero (0).

The maximum policy sets the maximum number of objects which a cache will be
alowed to hold. The default valueis five hundred (500)

The interval policy sets the length of time, in seconds, that the cache is cleared,
subject to the minimum policy described above. The default value is zero, which
disables the interval policy.

The caching options are dynamic, so they can be changed whilst the service is
running. Thisis normally done with the Administration Manager. Purging and
Memory Management options are also described in Supplemental Information on

page 43.

Care must be taken when specifying caching properties to avoid values which could
result in thrashing (objects being rapidly loaded, removed from memory, and
rel oaded).

Purging and Memory M anagement

&4 PRISMTECH

It is important to be aware of the differences between purging and memory
management. Memory management is related to caching, and is performed without
reference to the status of an object. The purging mechanism is part of the
OpenFusion Naming Service and its handling of objects depends explicitly on their
status.

These features can be enabled and controlled with properties specified in the
Administration Manager. Please refer to Supplemental Information on page 43 for
more information.

15
Naming Service

1.2 Concepts and Architecture Description

L

16
Naming Service

Purging
Purging is the deletion of invalid object references and purgable objects from a
service. Object references are regarded as invalid when they are not active and not
persistent. The OpenFusion Naming Service can most easily determine whether an
object is purgable if thecom pri snt . openf usi on. pl ugi n. Pur gabl e interface
isimplemented.

Memory Management

Memory Management is the removal of objects from memory. The objects can be
naming contexts as well as client and server objects. They are re-loaded on demand.

The purging and memory management options must be configured through the
Administration Manager before the Naming Serviceis started.

Note:

» Care must be taken when specifying memory management properties to avoid
values which could result in thrashing (objects being rapidly loaded, removed
from memory, and reloaded).

* When the Naming Service is being used with purging enabled, clients must
aways perform operations such as resol ve from the root context, to avoid
problems arising from attempts to resolve naming contexts which have been
removed from memory.

Details of purging and memory management options are given in Supplemental
Information on page 43.

oad Balancing Concepts

The purpose of load balancing is to optimise the use of available resources in order
to minimise the time between the issue of a request for a service and the
performance of that service.

Frequent requests from many clients for a particular kind of service can be satisfied
by any one of several servers which are capable of providing that service, without
any client needing to know at the time of the request which servers are available to
fulfil the request.

An example illustrates the principle: a printing service distributing print jobs to
multiple printers. In order to provide the best service to users, the service alocates
print jobs to the available printers according to predefined algorithms or palicies.

The policies used may be simple or sophisticated. In the simplest case, where the
available printers have identical capabilities, print jobs are allocated to each printer
in turn as they are received (a round robin policy); the total number of printing

& PRISMTECH

Description

1.2 Concepts and Architecture

requests is divided equally amongst the available printers. A sophisticated system
would implement different policies to take account of the capabilities of individual
printers and the characteristics of specific printing requests. It could, for example,
allocate a print job based on the size of the job and the speeds of the available
printers.

L oad Balancing in OpenFusion

&4 PRISMTECH

This section describes a proprietary load balancing solution which is specific to the
OpenFusion Naming Service. As an alternative solution, OpenFusion also offers an
implementation of the proposed OMG specification for Load Balancing. Thisis
described in the Load Balancing Service Guide.

Load balancing isimplemented in OpenFusion as a Quality of Service option which
enables the service to bind multiple objects to the same name. It uses a delegate
style, which means that the application interface can be separated from the control
or management interface. The alias provides the application interface; it then makes
local calls to methods on the load balancer object instead of implementing the
interface itself.

When a new load balancer is required, the OpenFusion LoadBal anci ngFact ory
is used to create it. The LoadBal anci ngFact ory is normally co-located with the
OpenFusion Naming Service, and starts automatically with it. A policy is specified
when the load balancer is created, but it can be changed dynamically if required.

The serverswhich are to be managed by the load balancer are then registered with it.

The load balancer and the alias are both bound into the Naming Service. These
bindings refer to the same object, but the Naming Service recognises the difference
between them.

Details of the LoadBal anci ngFact ory and LoadBal ancer interfaces are
described in API Definitions on page 35.

A load balancer can be applied to implementation of the printing service example
mentioned earlier.

A client sends a print job requiring alaser printer to the printing service, and the
printing service queries the laser printer load balancer viaits alias. The load
balancer uses its current policy to determine which printer the job should be sent to,
and returns that printer to the printing service. The printing service then sends the
job to the selected printer. Thisisillustrated in Figure 2.

17
Naming Service

1.2 Concepts and Architecture Description

18
Naming Service

Naming Service

— Load
Balancer
) PrintService
Print daemon Laser_1
Job | ad

get Laser_;pyrinter Laser_
printer

(alias)

— —>»| Laser_2

Laser_n
=/

- Laser_n

Figure 2 Load Balancing

OpenFusion load balancing is supplied with a number of standard policies for
allocating requests to servers. These are designed to suit many common situations,
but user-defined algorithms can be developed and plugged in if none of those is
appropriate in a specific case. There is a complete list of the standard policies,
together with details of the LoadBal ancer Pl ugi n interface, in API Definitions on

page 35.

The policy used by aload balancer can also be changed through the Administration
Manager.

It is easy to add objects to and remove them from aload balancer. In the example, a
printer can be excluded if it goes off-line (when it runs out of toner, for example)
and then reinstated (when the toner cartridge is replaced) or another printer can be
added to the pool, without having to stop and re-start or otherwise affect the printing
service.

& PRISMTECH

Description

1.2 Concepts and Architecture

| nstrumentation

OpenFusion provides both general and service-specific instrumentation features
which can be used for system monitoring, which in turn aids in problem
identification, performance tuning, and so on. OpenFusion instrumentation consists
of aset of properties that can be monitored either using the Administration Manager
or remotely using SNMP.

In addition to properties that are read-only at runtime, OpenFusion provides some
properties that can be set and reset at runtime as required, such as when a particular
threshold value is reached or atime period has elapsed. Note that there is virtually
no performance overhead involved in using any of the OpenFusion instrumentation
features.

Fail-over

Fail-over is the ability of the OpenFusion Naming Service to activate a backup
server if the master server fails, to improve reliability. Note that this functionality is
currently only available when OpenFusion is running with the VisiBroker ORB
from Inprise.

To implement fail-over, the following Service configuration is required:
« Two Naming Services, each registered with the same process ID.
» Each Naming Service must be configured to see the same data.

» One Naming Service must be marked as the System Master (by setting the System
Master property for the NamingSingleton in the Administration Manager).

The fail-over options must be configured through the Administration Manager
before the Naming Service is started.

Replication

&4 PRISMTECH

Replication is the duplication of data across two or more databases. The duplication
and synchronisation is normally performed by the database itself, and is therefore
transparent to the Naming Service. This enables two or more Naming Services to
use the same data, but from physically distinct databases, which may help improve
performance.

19
Naming Service

1.2 Concepts and Architecture Description

20
Naming Service

& PRISMTECH

i mport
i mport
i mport
i mport

i mport
i mport

org.
org.
org.
org.

Using Specific Features

This section describes how to use the Naming Service with illustrative examplesin
Java.

It first shows how to create and destroy naming contexts and name bindings, how to
retrieve the contents of a naming context, and how to resolve a binding to an object.
The load balancing features of the OpenFusion Naming Service are demonstrated
|ater.

The available operations are listed in API Definitions on page 35, which includes
additional information which is useful in developing applications for the
OpenFusion Naming Service.

The exceptions raised by the OpenFusion Naming Service and Load Balancer are
listed in Supplemental Information on page 43.

An example application using the service, complete with source code and a
description of how to compile and run it, is supplied elsewhere as part of the product
distribution.

Note

» No CORBA system exceptions are caught in any of these examples; code to deal
with them has been omitted for the sake of clarity and brevity. These exceptions
must of course be properly caught and handled in a working system.

e The following libraries must be imported into any application using the
OpenFusion Naming Service:

ong. CosNani ng. *;

ong. CosNami ng. Nam ngCont ext Package. *;
ong. CosNami ng. Nam ngCont ext Ext . *;

ong. CosNanmi ng. Nami ngCont ext Ext Package. *;

» The following import statements should also be added when load balancing is
enabled:

com prisnt.cos. CosNam ng. Nam ngExt ensi ons. *;
com prismt.cos. CosNam ng. Nam ngExt ensi ons. LoadBal ancer Package. *;

Obtaining the Root Context

Before any objects or naming contexts can be added to (bound) or found (resolved)
in the Naming Service, the root or initial context must be obtained. Thisis achieved
by usingresol ve_initial _references:

org. ong. CORBA. Obj ect obj = null;
org.ong. CORBA. ORB orb = null;
Nam ngCont ext Ext root Context = null;

& PRISMTECH

21
Naming Service

2.2 Naming Context Creation and Destruction Using Specific Features

orb = Obj ect Adapter.init (args);
try

obj = orb.resolve_initial _references (“NameService”);
root Cont ext = Nam ngCont ext Ext Hel per. narrow (obj);

}
catch (org. ong. CORBA. ORBPackage. | nval i dNanme ex)
{

Systemerr.println (“Failed to resol ve NameService”);
Systemexit (1);

Naming Context Creation and Destruction

The Nani ngCont ext interface provides two Nani ngCont ext creation operations
and a single destroy operation, defined in IDL as:

Nam ngCont ext new_cont ext ();

Nam ngCont ext bi nd_new _context (in Nane n)
rai ses (Not Found, Cannot Proceed, InvalidNanme, AlreadyBound);

voi d destroy () raises (NotEnpty);

The new_cont ext operation creates a new Nami ngCont ext object which is not
bound to any other Naming Context:

Nam ngCont ext newCont ext = root Cont ext.new_context ();

The bi nd_new_cont ext operation creates a new Naming Context and binds it
using the supplied name.

The dest r oy operation requests the destruction of a Nani ngCont ext . The
Naming Context must be empty. After dest r oy isinvoked, no further operations
can be invoked on the object reference of the Naming Context.

newCont ext . destroy ();

& Bindings to a destroyed context are not removed. To do so would require a context
to know about all of its parents as well as its children. An attempt to resolve a
binding to a destroyed context will throw the CORBA. | NV_OBJREF exception.
Accordingly, bindings to a naming context should be removed before it is destroyed.

22

. . & PriSMTECH
Naming Service

Using Specific Features 2.3 Binding and Unbinding Operations

Binding and Unbinding Oper ations

The Nani ngCont ext interface provides five bind operations and a single unbind
operation, defined in IDL as:

void bind (in Nane n, in Qbject obj)
rai ses (Not Found, Cannot Proceed, |nvalidName, AlreadyBound);

void rebind (in Name n, in Object obj)
rai ses (Not Found, Cannot Proceed, |nvalidNanme);

voi d bind_context (in Name n, in Nam ngContext nc)
rai ses (Not Found, Cannot Proceed, |nvalidNane, AlreadyBound);

voi d rebind_context (in Name n, in Nam ngContext nc)
rai ses (Not Found, Cannot Proceed, |nvalidNane);

Nami ngCont ext bi nd_new_context (in Name n)
rai ses (Not Found, Cannot Proceed, |nvalidNanme, AlreadyBound);

voi d unbind (in Name n)
rai ses (Not Found, Cannot Proceed, |nvalidNane);

The bind operations allow binding to occur between a name and either a generic
CORBA object or aNaming Context. In order to bind a CORBA object, the name to
bind against must be correctly constructed. Given a name with n components, the
first n - 1 components must resolve to a bound Nani ngCont ext . However, the
simplest case involves a name with only one component. The following code creates
anew name with a single component and usesiit to bind an object:

NaneConponent newNane[] = new NaneConponent[1];

/] set id field to “exanple” and kind field to an errpty string
newNane[0] = new NaneConponent (“exanple name”, “

root Cont ext . bi nd (newNanme, denoObj ect);

The r ebi nd operation isidentical to the bi nd operation except that the
Al r eadyBound exception is not thrown; an existing binding with the same name is
replaced by the new binding.

The bi nd_cont ext operation adds a Nani ngCont ext object so that it becomes
part of the graph of Naming Contexts used for resolving compound names. Note
that aNami ngCont ext can be also be added using the bi nd operation but that the
Nam ngCont ext will not become part of the graph of Naming Contexts and will
not be used for resolving compound names.

NameConponent newNane[] = new NameCorrponent[l]
newNane[0] = new NameCor'rponent (“exanpl e2”, “),

root Cont ext . bi nd_cont ext (newNane, nam ngCont ext Obj ect);

23
Naming Service

&4 PRISMTECH

2.4 Accessing Naming Context Contents Using Specific Features

Therebi nd_cont ext operation isidentical to the bi nd_cont ext operation
except that the Al r eadyBound exception is not thrown; an existing binding with
the same name is replaced by the new binding.

The bi nd_new_cont ext operation is equivalent to creating a new
Nami ngCont ext and then adding it using bi nd_cont ext :
NameCor'rponent newNane[] = new NameOon'ponent[HZ]

newNane[0] = new NaneConponent (“exanpl e2”
newNane[1] = new NaneConponent (“exanpl e3” “cont ext ")

Nam ngCont ext newCont ext = root Cont ext. bi nd_new_cont ext (newNane);

The above examples use a compound name. The first component resolves to a
Nami ngCont ext added with bi nd_cont ext .

The unbi nd operation removes a name binding. It does not matter which of the
bind operations was used to create the binding. The following example destroys
bindings created with the previous example:

NanmeConponent conp[] = new NameOonponent [“2]

conp[0] = new NarreOonponent (“exanpl e2”
conp[1] new NanmeConponent (“exanpl e3” “cont ext ");

r oot Cont ext . unbi nd (conp);

Accessng Naming Context Contents

Two operations are available for accessing the contents of Naming Contexts,
defined in IDL as:

bj ect resolve (in Nanme n)

rai ses (Not Found, Cannot Proceed, InvalidNane);
void list (i1n unsigned | ong how many, out BindingList bl,

out Bindinglterator bi);

Ther esol ve operation takes a name and returns the object, if any, bound to that
name.
NameCor'rponent conp[] = new NanEOon'ponent[l]

cor'rp[O] = new NanmeConponent (“exanple”,
obj = rootContext.resolve (conp);

Thel i st operation provides a means of accessing the entire content of a Naming
Context. Thel i st operation is the only means of determining the name bindings
held by an arbitrary context. This operation returns results using two mechanisms. a
Bi ndi ngLi st, which is a sequence of bindings, and a Bi ndi ngl t er at or which
provides an iterator object to access the bindings.

24
Naming Service

& PRISMTECH

Using Specific Features 2.5 Bindinglterator Operations

The following example has two parts. The first part retrieves only the first five
objects in a naming context using Bi ndi ngLi st ; the second part continues
retrieving objects until the end of the list is reached using Bi ndi ngl t er at or:

Bi ndi nglteratorHol der iter = new BindinglteratorHolder ();

Bi ndi ngLi st Hol der |ist = new Bi ndi ngLi st Hol der ();
root Context.list (5, list, iter);

for (int i =0; i <list.value.length; i++)

Systemout.println (“list entry “ + i);
System out . pri nt (“ name length: “);

Systemout.println (list.value[i].binding_nane.!|ength);
System out . pri nt (“ name id: “);

Systemout.println (list.value[i].binding_nane[O0].id);

System out . print (“ nanme kind: “);

Systemout.println (list.value[i].binding_nane[0].kind);

System out . print (“ bind type: ;
Systemout.println (list.value[i].binding_type);

}

Bi ndi ngHol der bi ndi ng = new Bi ndi ngHol der ();

while (iter.value !'= null && iter.val ue.next_one (binding))
obj = root Context.resolve (binding.val ue. bi ndi ng_nane);

}

Bindinglterator Operations

The Bi ndi ngl t er at or interface provides two operations to access bindings and
one destroy operation, defined in IDL as:

bool ean next _one (out Bi ndi ng b);
bool ean next _n (in unsigned | ong how_nany, out BindingList bl);

voi d destroy ();

The previous example showed the use of the next _one operation. This operation
returnst r ue when the binding argument contains a valid binding.

The next _n operation returns the number of bindings specified by the how_many
variable in aBi ndi ngLi st sequence. The sequence is then accessed in the same
way asthe Bi ndi ngLi st returned from aNani ngCont ext | i st operation.
The following code fragment repeats the example of the | i st operation using the
next _one operation to iterate through the contents:

Bi ndi nglteratorHol der iter = new BindinglteratorHolder ();

Bi ndi ngLi st Hol der 1ist = new Bi ndi ngLi st Hol der ();

rootContext.list (5, list, iter);

for (int i =0; i < list.value.length; i++)

Systemout.println (“list entry “ + i);
System out . pri nt (* name length: “);

25
Naming Service

&4 PRISMTECH

2.6 Naming Context Extension Operations Using Specific Features

Systemout.println (list.value[i].binding_nane.l|ength);
System out. pri nt (“ nanme id: “);

Systemout.printlin (list.value[i]. b| ndi ng_nanme[0] .id);
System out . pri nt (“ nanme kind: “

Systemout.println (list.value[i]. bi ndi ng_nane[0] . ki nd) ;
System out. print (“ bind type: “);

Systemout.println (list.val ue[l] bi ndi ng_type);

}

Bi ndi ngHol der bi ndi ng = new Bi ndi ngHol der ();

while (iter.value != null && iter.val ue.next_one (binding))
obj = rootContext.resol ve (binding.val ue.bi ndi ng_nane) ;

}

Naming Context Extension Oper ations

The following examples show the use of the Interoperable Naming Service
extension.

In asimilar manner to the above, theinitial Nanmi ngCont ext Ext object is obtained
by using ther esol ve_i ni ti al _r ef er ences operation.
Nam ngCont ext Ext root Ext Cont ext = nul | ;
try
L obj = orb. resol ve_initial _references (“NaneService”);
r oot Ext Cont ext = Nani ngCont ext Ext Hel per . narrow (obj);
%at ch (org. ong. CORBA. ORBPackage. | nval i dNane ex)

Systemerr.println (“Failed to resol ve NaneService”);
Systemexit (1);

The name component is transformed into a stringified name. The extension provides
the convenience operation r esol ve_st r to resolve the stringified object.

org. ong. CORBA. Obj ect res;
NameConponent newNane[] = new NameOonponent[Z]

newNane[0] = new NanEOon'ponent (“exanpl e2”),
newNane[1] = new NaneConponent (“exanple2”, ““);
String stringified = new String (rootExtContext.to_string (newNane));
Systemout.println (“Stringified nanme is: “ + stringified);
try
{

res = root Ext Context.resolve_str (stringified);

if (res !'=null)

Systemout.println (“Qbject: “ + res.toString ());

}
catch (org. ong. CORBA. User Excepti on ex)

Systemout.println (“Resol ve Exception: “ + ex);

26
Naming Service

& PRISMTECH

Using Specific Features 2.6 Naming Context Extension Operations

It is also possible to convert back to a CORBA NameConponent and use that to
resolve the object.

NameConponent copy[] = root Ext Context.to_nanme (stringified);
org. ong. CORBA. Obj ect copyobj = root Ext Context.resol ve (copy);

It is also possible to form a URL with a stringified name as shown below. Thisisan
aid to portability and allows access to CosNani ng via a standard URL naming
scheme.

/1 The resulting URL address can then be used to resolve wthin

/'l a nam ng servi ce.
System out. println

“to_url:
+ root Ext Context.to_url (“rir:”, stringified)
) ;

The following example shows how acor bal oc string isgenerated. The IOR key is
then used in a narrow operation to resolve the service.

/1 The Corbal oc string that is generated can be used to resolve the
/'l service.
Systemout.println (“Root IOR “ + orb.object_to_string (rootContext));

/] These operations are OpenFusion specific.

Nani ngCont ext Ext newCtx = nul | ;
| ORDecoder decoder = new | ORDecoder (root Context);
StringBuffer locstr = new StringBuffer (“corbaloc::");

| ocstr. append (decoder.get Host ());
| ocstr.append (“:");
| ocstr. append (decoder.getPort ());
| ocstr.append (“/");
| ocstr. append
(StringUtil.encode (StringUtil.byteToString (decoder.getKey ())));

// StringBuffer |ocstr now contains the address. Attenpt to resol ve
/1l to check.
/1 Cannot use orb.string_to_object as no hooks are available to
/1 add support for |INS extensions.
newCt x = Nami ngCont ext Ext Hel per. narr ow
(ORBAdapt er. stringToObj ect (locstr.toString ()));
if (newCtx !'= null)
System out.println

“Successfully resol ved context: “ +
ORBAdapt er . obj ect ToStri ng (newCt x)
IE

el se

Systemerr.println (“Failed to resol ve NaneService”);

The following example shows how acor banane string may be used, e.g.

cor banane: rir: #name/ i n/ nane. servi ce

27
Naming Service

&4 PRISMTECH

2.7 Using the LoadBalancingFactory Using Specific Features

or

cor banane:iiop: server. prisntechnol ogi es. com 14005/
escaped_oct al _key_stri ng#nane/ i n/ nane. servi ce

The URL denotes an object bound into the Name Service at host
server. prisnt echnol ogi es. comon port 14005. The key string would be used
to resolve to the Nani ngCont ext and then the stringified name is resolved against
that to yield an object reference.

/| The Corbananme string that is generated can be used to resolve the

/] service.
Systemout.println (“Root 1OR: “ + orb.object_to_string (rootContext));

/'l These operations are OpenFusion specific.

Nam ngCont ext Ext newCtx = nul | ;
| ORDecoder decoder = new | ORDecoder (root Context);
StringBuffer corbananme = new StringBuffer (“corbananme:iiop:”);

cor banane. append (decoder. get Host ());
cor banane. append (“:");
cor banane. append (decoder.getPort ());
cor banane. append (“/");
cor banane. append
(StringUil.encode (StringUtil.byteToString (decoder.getKey ())));
cor banane. append (“#exanpl e nane”);

/] StringBuffer corbanane now contains the Nam ngContext. Attenpt to
Il resolve to check.
// Cannot use orb.string_to_object as no hooks are available to
// add support for |NS extensions.
newCt x = Nami ngCont ext Ext Hel per. nar r ow
(ORBAdapt er . stri ngToObj ect (corbananme.toString ()));
if (newCtx != null)
{

Systemout.println
(“Context IOR “ + ORBAdapter.objectToString (newCtx));

el se

Systemerr.println (“Failed to resol ve NameService”);

Using the L cadBalancingFactory

The initial LoadBal anci ngFactory is retrieved using the
resol ve_initial _references operation:

obj = orb.resolve_initial _references (“LoadBal anci ngFactory”);
| bf actory = LoadBal anci ngFact or yHel per. narrow (obj);

28
Naming Service

& PRISMTECH

Using Specific Features 2.8 Manipulating Objects in the LoadBalancer

It is used to create the LoadBal ancer as shown below. The policy that the load
balancer will use initially is specified when it is created, but this can be changed
dynamically if required. The objects that are being added to the LoadBal ancer are
CORBA Nani ngCont ext abjects.

= | bfactory. creat eLoadBal ancer (“Roundrobin”);
add (ctxl);
.add (ctx2);
add (ctx3);

Manipulating Objectsin the L cadBalancer

Objects may be added as shown above, or they can be directly retrieved viathe get
operation of the LoadBal ancer interface.

Systemout.println (“LoadBal ancer retrieved: “ + Ib.get ());

Thel i st operation displays al objects currently bound into the LoadBal ancer.
Objects may be also be removed from the LoadBal ancer.

org. ong. CORBA. Obj ect elenents[] = Ib.list ();

Ther emove operation allows objects to be removed from the LoadBal ancer. The
required parameter is the CORBA object that is to be removed. For instance, the
client may usethel i st operation and then iterate over those results to remove all
the elements from the LoadBal ancer.

I b. renpbve (anobject);

Using the L cadBalancer with the Naming Service

Remember that the client must perform two binds: one for the LoadBal ancer and
one for the LoadBal ancer Al i as. They refer to the same object but this separation
allows the Load Balancing object to be dynamically changed even after it has been
bound into the Naming Service because the Naming Service can distinguish
between them.

/1 1bobj and |balias are NaneConponents.
root Cont ext. bi nd (I bobj, Ib);
root Context.bind (lbalias, Ib.getAlias ());

Then, the client may either resolve the | bobj to get the LoadBal ancer, or the
| bal i as to perform the actual load balancing. For example, the alias below is
retrieved. This code simply prints the objects it resolves. Contexts 1, 2, and 3 are
returned when Round Robi n has been selected. It then loops and returns context 1

again.
for (int i=0; i<4; i++)
obj = rootContext.resolve (lbalias);
29

& PRISMTECH . .
Naming Service

2.10 Customizing the LoadBalancer Using Specific Features

Systemout.println (“Resolved: “ + obj);

try

{
Nam ngCont ext Ext ctx = Nami ngCont ext Ext Hel per. narrow (obj);
Systemout.println (“Resol ved name context: “ + ctx);

catch (org. ong. CORBA. BAD_PARAM e)
{
Systemerr.println

“Unable to narrow the object. Muybe LoadBal anci ng “ +
“is not enabled in the nane service?”

b’reak;

In contrast, in the following code LoadBal ancer isretrieved and the objects bound
into it are listed.

org. ong. CORBA. Obj ect newl b = root Cont ext.resolve (Ibobj);

I b = LoadBal ancer Hel per. narrow (new b);
/1 List
org.ong. CORBA. Ohj ect initiallist[] =1Ib.list ();

Customizing the L oadBalancer

The LoadBal ancer enables the client to use different algorithms (policies) when
returning objects. A standard set of policiesis supplied and automatically loaded. It
is possible to design further plugins and either add these dynamically or configure
them to be loaded at runtime. The alternative is to pass the classname to the
addPl ugi n method. The plugin should implement the LoadBal ancer Pl ugi n
interface as the example below shows.

public class LoadBal anci ngTest Pl ugi n i npl ements LoadBal ancer Pl ugi n

30

/1 Must have a public no-args constructor.
publ i c LoadBal anci ngTestPlugin () throws PluginFailure

}

publ i c org. ong. CORBA. Obj ect get
LoadBal ancer reference,
org. ong. CORBA. Obj ect[] objects,
java.lang. String policy
throws Pl uginFailure

/1 A ways return second object bound
if (objects.length < 2)

// Not enough objects bound to get the second object
t hrow new Pl ugi nFailure ();

el se

return objects[1];

& PRISMTECH

Naming Service

Using Specific Features 2.10 Customizing the LoadBalancer

}
public java.lang. String[] getSupportedPolicies ()
{

return new String [] { “TEST_PCLICY" };

The plugin may be added dynamically to the LoadBal ancer. The policies of that
plugin are then available for use, and can be selected dynamically.

Systemout.println (“Adding the TestPlugin”);
try

| b. addPI ugi n
(“com prisnt.cos. CosNanm ng. exanpl es. LoadBal anci ngTest Pl ugi n”) ;

}
catch (I nvalidPlugin e)

Systemout.println (“Caught exception: “ + e);
Systemexit (1);

I/l Set the policy to that of the new plugin.
Systemout.println (“Setting a new policy”);
try

I b.setPolicy (“TEST_POLICY");

31
Naming Service

&4 PRISMTECH

2.10 Customizing the LoadBalancer Using Specific Features

32
Naming Service

& PRISMTECH

Worked Example

This section contains a simple example application which demonstrates the way in
which various features of the OpenFusion Naming Service are used together.

i Note that no CORBA system exceptions are caught in any of the following
examples; code to deal with exceptions has been omitted for the sake of clarity and
brevity. These exceptions must of course be properly caught and handled in a
working system.

The exceptions raised by the OpenFusion Naming Service and Load Balancer are
listed in Supplemental Information on page 43.

Example Client

Step 1: Obtaining the Naming Service Root Context

The initial Naming Context object is obtained by using the
resol ve_i ni tial _references operation:

org. ong. CORBA. Obj ect obj = null;

org.ong. CORBA. ORB orb = nul|;

Nam ngCont ext Ext root Context = null;

orb = bj ect Adapter.init (args);

try

obj = orb.resolve_initial _references (“NanmeService”);
r oot Cont ext = Nam ngCont ext Ext Hel per. narrow (obj);

catch (org. ong. CORBA. ORBPackage. | nval i dName ex)
{

Systemerr.println (“Failed to resol ve NaneService”);
Systemexit (1);

Step 2: Adding aNew Binding

The addition of a new binding requires a name to identify the binding. In this
example, there is only one name context, so the name consists of only one
component. The following code allocates a name with a maximum sequence length
of one:

NaneConponent newNane[] = new NaneConponent|[1];

Thefirst component of the name sequence must now be set:

/] set id field to “exanple” and kind field to an enpty string
newNane[0] = new NaneConponent (“exanple”, ““);

33
Naming Service

& PRISMTECH

3.1 Example Client Worked Example

Note that both thei d and ki nd fields are always used when matching names. The
ki nd field has no defined meaning within the Naming Service, so it is available for
use by applications running on top of the Naming Service.

Assuming the existence of an object reference, denobj ect , the object can now be
bound:

// obtain denoCbject reference ...

root Cont ext . bi nd (newNarme, denmpCbject);

Step 3: Listing the Contents of a Naming Context

Thel i st operation allows the contents of a Naming Context to be examined, with
resulting name bindings returned via either aBi ndi ngLi st CORBA sequence or a
Bi ndi ngl t er at or object. In the following example, the Bi ndi ngLi st is not
used and all of the contents are returned using the iterator. Note that even though a
zero length list is specified in the first argument of thel i st command, avalid
(empty) sequenceis still returned.

Once a name binding is obtained, the r esol ve operation returns the object
associated with the binding. The resulting object may be a Narmi ngCont ext which,
if it was bound using bi nd_cont ext or bi nd_new_cont ext, will have a
bi nd_t ype of ncont ext .

Bi ndi nglt erat or Hol der bi = new Bi ndi nglteratorHol der ();

Bi ndi ngLi st Hol der bl = new Bi ndi ngLi st Hol der ();

Nam ngCont ext Ext chil dContext = null;

root Context.list (0, bl, bi);

Bi ndi ngHol der bi ndi ng = new Bi ndi ngHol der ();
while (bi.value !'= null && bi.val ue. next_one (binding))
try
{
obj = root Context.resol ve (binding.val ue. bi ndi ng_nane) ;
i f (bindi ng. val ue. bi ndi ng_type == Bi ndi ngType. ncont ext)

chi | dCont ext = Nami ngCont ext Ext Hel per. narrow (obj);
// do sonething with chil dContext

el se

// do sonething wth obj

}
catch (org. ong. CORBA. User Excepti on ex)

Systemerr.println (“resolve exception “ + ex);

34
Naming Service

& PRISMTECH

APl Definitions

This section describes selected interfaces and related aspects of the service. The
complete IDL API is provided el sewhere as part of the product distribution.

The OpenFusion Naming Service provides most of its functionality through asingle
interface called Nami ngCont ext . A second interface, Bi ndi ngl t er at or,
provides support for enumerating the contents of Naming Contexts.

OMG Sandard API Definitions

NamingContext I nterface

The Nami ngCont ext interface provides operations to create, modify and examine
name bindings within a naming context. The interface also provides operations to
create and destroy naming contexts.

A compound name can be supplied when Nari ngCont ext operations take a name
as a parameter. When a compound name is supplied, the operation is applied to the
Naming Context identified by the compound name’'s components, excluding the last
component. The last component identifies the binding within the selected Naming

Context.
Table 2 Binding and Unbinding Operations
Operation Description
bind Creates a binding between a name and an object.
rebind Creates a binding between a name and an object,
replacing any existing binding with the same name.
bind_context Creates a binding between a name and a Naming Context.
rebind_context Creates a binding between a name and a Naming Context,
replacing any existing binding with the same name.
bind_new_context Creates and binds a new Naming Context.
unbind Removes a name binding from a context.

35
Naming Service

& PRISMTECH

4.1 OMG Standard API Definitions API Definitions

Three operations support the creation and destruction of Naming Contexts:

Table 3 Naming Context Creation and Destruction

Operation Description
new_context Creates anew Nani ngCont ext object. This context is
not bound to any other context.
bind_new_context Createsanew Nami ngCont ext object and bindsit using
the supplied name.
destroy Requests the destruction of the Nami ngCont ext .

Two operations access the contents of a Naming Context:

Table 4 Accessing Naming Context Contents

Operation Description
resolve Retrieves the object bound to a particular name.
list Returns alist of name bindings associated with the Naming
Context in the form of a sequence and a
Bi ndi nglt erator.

NamingContextExt I nterface
The Nam ngCont ext Ext interface provides operationsto use URLs and stringified

names.
Table 5 NamingContextExt Operations
Operation Description

to_string Accepts acompound name and returns a stringified
name.

to_name Accepts astringified name and returns acompound
name.

to_url AcceptsaURL address component and astringified
name and returnsa URL.

36

. . & PriSMTECH
Naming Service

API Definitions

4.1 OMG Standard API Definitions

Table 5 NamingContextExt Operations (Continued)

Operation Description
resolve_str A convenience operation that accepts a stringified
name and performs ar esol ve in the same manner
asNam ngCont ext : : resol ve.
insToComponent Converts an INS stringified name to a CORBA

Name Component array.

componentTolns

Converts a CORBA Name Component array to an
INS stringified name.

Conversions from URLs in the cor bal oc and cor banane formats to objects are
handled by CORBA: : ORB: : st ri ng_t o_obj ect but most ORBs currently do not

support this

functionality. However, the OpenFusion

ORBAdapt er: : stringToObj ect operation does support this, and may be used
instead. It is part of thecom pri snt . or b package.

Bindinglterator Interface
TheBi ndi ngl t er at or interface provides two operations to access name bindings,

and one destroy operation.

Table 6 Bindinglterator Operations

Operation Description
next_one This operation returns the next binding. If there are no more
bindings, f al se isreturned.
next_n This operation returns at most the requested number of bindings.
destroy This operation destroys the iterator.

&4 PRISMTECH

37
Naming Service

4.2 OpenFusion API Extensions API Definitions

OpenFusion API Extensions

L oadBalancingFactory Interface

The LoadBal anci ngFact ory is co-located with the Naming Service and is
therefore automatically started with the Naming Service. One operation creates a
LoadBal ancer object.

Table 7 LoadBalancingFactory Operations

Operation Description

createLoadBalancer Creates and returnsanew LoadBal ancer object. The
policy parameter is used to choose theinitia policy for
the LoadBal ancer.

L oadBalancer | nterface

A LoadBal ancer isan object that may be bound into the Naming Service. This
may have zero or more CORBA Objects placed inside it. The LoadBal ancer is
defined in IDL by:

i nterface LoadBal ancer

{

SR

* This operation allows the LoadBal ancer to retrieve
* the alias object

*/

LoadBal ancer Ali as getAlias ();

i ht erface LoadBal ancerAlias : LoadBal ancer

{

b

The LoadBal ancer implementation is known as delegate style.

The LoadBal ancer should be bound when the client wishes to bind a
LoadBal ancer object that may be directly retrieved from the NameSer vi ce. The
LoadBal ancer interfaceis used for control operations (such as adding objects or
changing policies within the load balancer itself).

This applies whether or not Load Balancing has been enabled in the service.

38
Naming Service

& PRISMTECH

API Definitions 4.2 OpenFusion APl Extensions

Alternatively, the OpenFusion Naming Service will attempt to return an object
bound into the LoadBal ancer when aLoadBal ancer Al i as is bound and Load
Balancing is enabled. The alias may be retrieved by the get Al i as function shown
above. The LoadBal ancer Al i as interface is used by applications to retrieve an
object to perform a specific task.

The client therefore performs two binds: one for the LoadBal ancer Al i as and one
for the LoadBal ancer. Both refer to the same object but the Naming Service can
distinguish between them. This separation allows the LoadBal ancer object to be
dynamically changed even after it has been bound into the Naming Service. For
instance, LoadBal ancer objects may be removed, added or their policy changed
without the need for creating new LoadBal ancer Al i as objects.

Table 8 LoadBalancer Operations

Operation Description

add Adds an object to the LoadBal ancer.

get Retrieves an object from the LoadBal ancer according to
the specified policy.

remove Removes the matching object from the LoadBal ancer.

list Returnsalist of al the objects within the LoadBal ancer.

setPolicy Resets the current policy.

addPlugin Adds a new plugin. The parameter should be afully
specified Java classname.

getAlias Returnsthe delegate LoadBal ancer Al i as.

39
Naming Service

&4 PRISMTECH

4.2 OpenFusion API Extensions API Definitions

L oadBalancer Sandard Policies

The Load Balancing interfaces have been exposed as configurable plugins, thereby
allowing developers to write their own load balancing mechanisms should the
default policies not be sufficient. The standard OpenFusion plugin contains the

following policies:

Table 9 LoadBalancer Standard Policies

Policy Name Description
Random Returns the object references in arandom
order.
RoundRobin Returns the object references in a sequential
loop.
FirstBound Returns the object reference that was first

bound to the name.

Random_Active

Returns a random active object.

RoundRobin_Active

Returns only active objects sequentially.

FirstBound_Active

Returns the first bound active object.

Random_RemoveCurrent

Returns objects in arandom order removing
each as it does so.

FirstBound_RemoveCurrent

Returns the first bound object and removes
it.

Random_Active_RemoveCurrent

Returns arandom active object and removes
it.

FirstBound_Active_RemoveCurrent

Returns afirst bound active object and

removes it.

RemoveCurrent

The RemoveCur r ent version of each policy unbinds each object from the load
balancer after it has been returned. This means that the load balancer contains a
diminishing number of objects; calls made after the last object has been returned
cause the NoneBound exception to be thrown.

These policies are useful when resources (objects to return) cannot be re-used once
allocated or committed (returned by the load balancer), or require specia processing
before being re-used (triggered by the NoneBound exception).

Combining RoundRobi n with RenoveCur r ent has the same effect as combining
Fi r st Bound with RenpveCur r ent and therefore has not been included.

40
Naming Service

& PRISMTECH

API Definitions 4.2 OpenFusion APl Extensions

Note that the name in the first column of the table is the name that should be passed
| toset Pol i cy in order to select one of the default policies. These default names are
defined in Nani ngExt ensi ons. i dl asconst strings.

L oadBalancer Plugin Interface

The LoadBal ancer Pl ugi n Interfaceisillustrated in Figure 3.

<<Interface>>
LoadBalancerPlugin

et()
etSupportedPolicies()

Figure 3 LoadBalancerPlugin Interface

Plugins must implement the LoadBal ancer Pl ugi n interface in the
com prisnt. cos. CosNani ng package. The LoadBal ancer instantiates plugins
listed in the property Load Bal anci ng Pl ugi n in the Administration Manager.
This property is a comma-separated list of fully qualified classnames. Each class
must have a public, no argument constructor so that it can be instantiated by the
LoadBal ancer.

Table 10 LoadBalancerPlugin Operations

Operation Description

get Returns the appropriate object to the LoadBal ancer
implementation. There are two parameters: first, an
array of CORBA objects denoting the avail able objects
intheLoadBal ancer, andsecondly, aStri ng policy.
The policy parameter allows one policy to be chosen
when the plugin supports multiple policies. The plugin
throws aPl ugi nFai | ur e exception when an error
OCCurs.

getSupportedPolicies Returns an array of St ri ngs containing the names of
the policies that the plugin will support. These names
directly correspond to the name that is used by the client
when choosing a policy for use.

JNDIObject Interface

The Naming Service can display non-CORBA objectsit findsin the INDI hierarchy.
In this situation, a CORBA JNDI Cbj ect will be created in order to display the
object. The INDI Obj ect contains two read-only attributes:

41

& PRISMTECH . .
Naming Service

4.2 OpenFusion API Extensions API Definitions

42
Naming Service

e readonly attribute string stringifiedObject;
e readonly attribute string cl assNamne;

For example, the attributes of a String stored in INDI would contain the stringified
value of the object and the classnamej ava. | ang. Stri ng.

The OpenFusion INDI implementation is described in the INDI Guide. Full details
of the specification and descriptions of the standard features of the INDI APl and
SPI are available from Sun Microsystems.

& PRISMTECH

Supplemental

Information

This section includes additional information which is necessary or useful for
developing applications which use the Naming Service.

Administration properties and instrumentation are described first, then how to
access them. There is a brief description of the relationship between the Naming
Service and JNDI, followed by notes about using LDAP with the Naming Service.
Purging and memory management features are described next, then XML import
and export; finally there are lists of the exceptions that may be thrown.

Administration Propertiesand Instrumentation

Behaviour and performance of the Naming and Load Balancing Services can be
controlled both programmatically and from the Administration Manager.

Please refer to Configuration and Management for details of controls and
parameters for administering the OpenFusion Naming Service and Load Balancing.
These properties can all be accessed using (SNMP).

JavaNaming & Directory Interface (JNDI)

& PRISMTECH

The Java Naming and Directory Interface (INDI) API isageneric API for accessing
naming and directory services. The OpenFusion Naming Service is layered on top
of JNDI. This alowsit to access the OpenFusion service provider (which supports
JDBC and Memory persistence) and also the Sun LDAP provider. Clients may
access either transparently or use the OpenFusion JINDI SPI independently of the
CORBA service.

Whenever the OpenFusion Naming Service starts, it automatically creates a basic
jndi.properties file, which contains only the minimum information necessary to run
the service. These settings can be overridden and additional properties specified by
means of a Java hashtable.

The OpenFusion JNDI implementation is described in the JNDI Guide.

Please refer to the relevant Sun Microsystems documentation for details of JNDI
standard functionality.

43
Naming Service

5.3 Lightweight Directory Access Protocol (LDAP) Supplemental Information

Lightweight Directory Access Protocol (L DAP)

A

The OpenFusion Naming Service is implemented in Java for platform
independence. It is layered on top of JNDI, and can therefore utilise Sun
Microsystems’ JNDI LDAP service provider. This makes it useful for those
organisations which use LDAP as their enterpise directory service; it can use
standard L DA P authenti cation mechanisms.

It is assumed that the LDAP Server schemas are up to date. For details of LDAP
configuration and functionality, please refer to the relevant Sun Microsystems
documentation at this location:

http: //java.sun.com/products/jndi/tutorial/basi cs/prepare/content.html .

Purging Options

44
Naming Service

It is important to be aware of the differences between purging and memory
management. Memory management is related to caching, and is performed without
reference to the status of an object. The purging mechanism is part of the
OpenFusion Naming Service and its handling of objects depends explicitly on their
status.

Purging is the deletion of invalid object references and purgable objects from a
service. Object references are regarded as invalid when they are not active and not
persistent.

These features can be enabled and controlled with properties specified in the
Administration Manager.

Purgeon L oad

When this option is selected, invalid object references are removed when contexts
arefirst accessed after a server has been restarted.

PurgeonList

When this option is selected, invalid object references are removed from a naming
context when the list operation is performed on the context.

If either Purge option is enabled, a List operation which encounters an invalid
context will automatically unbind the context and then re-try. A warning message is
printed in the log file when a binding to an invalid context is removed in this way.

& PRISMTECH

http://java.sun.com/products/jndi/tutorial/basics/prepare/content.html

Supplemental Information 5.5 Memory Management

Purge Class Plugin

If used, this property must contain the name of a publicly instantiable Java class that
implements the com pri snt . openf usi on. pl ugi n. Pur gabl e interface. This
interface has one operation:

public bool ean isPurgabl e (org.ong. CORBA. Obj ect obj)

This class is used to determine whether or not to purge objects from the Naming
Service. Typically aclient will implement this operation to determine whether its
object is persistent or transient and hence may be purged. This service will also
check the active/inactive state.

If no classis specified for this property, the ORBAdapt er . i sVal i d method isused.
Thiswill successfully determine the state of objects created using the OpenFusion
framework, but it will not work reliably for foreign objects (objects created in
non-OpenFusion environments or on other ORBS).

Memory M anagement

Memory Management is the removal of objects from memory. The objects can be
naming contexts as well as client and server objects. They are re-loaded on demand.

Memory Management is a caching option that can be enabled in the OpenFusion
Naming Service. When enabled, cache purging can be performed either at regular
intervals, or when the number of bound objects reaches a specified limit.

Object Purging
Object cache properties cannot be specified unless this option is enabled. When it is

enabled, then the properties Cbj ect Cache M ni mum Si ze, Obj ect Cache
Maxi num Si ze, and Cbj ect Cache Purgi ng | nterval can be specified.

Object CacheMinimum Size

Thisis an integer value which specifies the minimum number of objects to keep in
the cache. The default value is 0, which means that the cache is always completely
flushed.

Object Cache Maximum Size

Thisis an integer value which specifies the maximum number of objects to hold in
the cache; if not 0, it must be greater than the value specified for Cbj ect Cache
M ni mum Si ze. The default value is 0, which means that no object caching is
performed.

45
Naming Service

&4 PRISMTECH

5.6 XML Export and Import Supplemental Information

When the cache is full, objects are removed using a least-recently-used algorithm
until the value amount specified in Cbj ect Cache M ni num Si ze isreached.

Object CachePurging Interval

Thisis an integer value which specifies the time interval in seconds between cache
flushing operations. The default value is 0, which means that periodic flushing does
not occur; the cache is only flushed when full. For any other value, cache flushing
occurs at the specified intervals whether or not the maximum cache size has been
reached.

When the cache is purged, objects are removed using a least-recently-used
algorithm until the value amount specified in Gbj ect Cache M ni mum Si ze is
reached.

Note:

» Care must be taken when specifying memory management properties to avoid
values which could result in thrashing (objects being rapidly loaded, removed
from memory, and reloaded).

* When the Naming Service is being used with purging enabled, clients must
aways perform operations such as resol ve from the root context, to avoid
problems arising from attempts to resolve naming contexts which have been
removed from memory.

XML Export and Import

46
Naming Service

The OpenFusion Naming Service can both export and import XML files containing
a representation of a naming hierarchy. Thisis performed at the command line; a
specific naming hierarchy of a single Naming Service instance is handled with a
single command.

To export a naming hierarchy to an XML file, use this command:
run com prismnt.cos. CosNam ng. xm . Export XML <opti ons>
To import a naming hierarchy from an XML file, use this command:
run com prismnt.cos. CosNam ng. xm . | nport XML <opti ons>
The options for both commands are described in the tables.
The options can occur in any order.

The - n parameter specifying the XML file to use must be present.

& PRISMTECH

Supplemental Information 5.6 XML Exportand Import

&4 PRISMTECH

The - ¢ parameter specifies the name of the naming context that will be the root of
the exported or imported naming hierarchy. This must be a valid INS name. If this
parameter is not specified then the root of the naming hierarchy is used.

The Naming Service to use is determined in one of four ways. The resolve name of
the service can be given, or its IOR can be given directly (with the -i option) or
indirectly (with the - f option). If none of these is given, then the resolve name
"NameService" is used.

Option Description
-n nami ngHi er ar chyFi | e | name of XML file to export naming hierarchy into

r esol veNane the resolve name of the Naming Service

-c target Nam ngCont ext |the name of the naming context that isto be the root
of the exported naming hierarchy

-f namingl ORFi l e the name of afile containing the IOR of the Naming
Service
-i nam ngl OR the IOR of the Naming Service
Option Description
-n nami ngHi er ar chyFi | e name of XML file to import naming hierarchy from
resol veNanme the resolve name of the Naming Service

-c target Nam ngCont ext |the name of the naming context that isto be the root
of the imported naming hierarchy

-f namingl ORFi |l e the name of afile containing the IOR of the Naming
Service
-i nami ngl OR the IOR of the Naming Service

Naming hierarchies can also be exported and imported using the OpenFusion
Naming Service Manager as described on page 94.

Exporting and Importing Cyclics

This section shows how the OpenFusion Naming Service handles cyclics (bindings
which refer to a parent or grandparent context) when they occur in naming
hierarchiesincluded in XML exports and imports.

Figure 4 illustrates the principles of exporting and importing hierarchies with a
straightforward example within a single Naming Service instance. The shaded
hierarchy is exported (the context labelled B is the hierarchy root nominated with
47

Naming Service

5.6 XML Export and Import Supplemental Information

the - ¢ option on the export command), and then re-imported and attached to B (with
the - ¢ option on the import command). Naming contexts are transient CORBA
objects, so when the hierarchy is imported new contexts B1, C1 and D1 are created.
Note that the imported hierarchy cannot be attached to A because the new context
B1 will of course have the same name as the existing context B (each reference
within a context must be to a unique name; we assume that B doesn't already
contain a reference to another context or object with the same name as itself). The
cyclic reference is created as intended and the integrity of the naming graph is
maintained. Note that the new cyclic reference isto B1 and not to B.

Naming Naming
Service Service
Root A Root

B
(cyclic) (cyclic)
C
D

Step 1. Export

(cyclic)
C1
D1
Figure 4 Naming Hierarchy Export and re-import
43 & PRISMTECH

Naming Service

Supplemental Information

Exceptions

The exceptions raised by the Naming Service arelisted in Table 11.

&4 PRISMTECH

5.7 Exceptions

Table 11 Naming Service Exceptions

Name Purpose

AlreadyBound Indicates an object is already bound to the specified
name. Only one object can be bound to a particular
name in a context.

CannotProceed Indicates that the implementation has given up for some
reason. The client, however, may be ableto continue the
operation at the returned naming context.

One possible reason for this exception is that a Name
Server holding one or more of the name bindingswithin
acompound nameis currently unavailable.

InvalidName Indicates that the nameisinvalid. Thisimplementation
disallows zero length names only.

NotEmpty Indicates that a naming context has bindings.

NotFound Indicates that the name does not identify abinding or

that the binding is not of the type required for the
requested operations.

The exceptions raised by the Load Balancer are listed in Table 12.

Table 12 Load Balancer Exceptions

Name Purpose
NoneBound No objects are bound into the LoadBal ancer.
InvalidPolicy The specified policy isinvalid.
InvalidPlugin The specified classname isinvalid.
ObjectNotFound The object does not exist inthe LoadBal ancer.
PluginFailure The plugin has failed for some reason.

This exception is returned when a custom plugin has
itself determined that it has failed.

49
Naming Service

5.7 Exceptions Supplemental Information

50
Naming Service

& PRISMTECH

Directory Interface

i
Java Naming and i
?

Description

Oveviaw

The Java Naming and Directory Interface (JNDI) is an Application Programming
Interface (API) and Service Provider Interface (SPI), defined by Sun Microsystems,
that provides naming and directory functionality to Java applications whilst
remaining independent of any specific directory implementation.

This guide describes the OpenFusion implementation of the INDI specification
rather than the standard functionality defined by Sun Microsystems.

Full details of the specification and descriptions of the standard features of the JINDI
API and SPI are available from Sun Microsystems. Although this guide contains
brief descriptions of the basic features of JINDI and its underlying concepts, it
assumes that readers are familiar with Sun’s standard documents and have copies
available for reference.

This guide demonstrates how to use the OpenFusion SPI independently of the
OpenFusion CORBA Naming Service, but accessing data written by the Naming
Service. The OpenFusion SPI supports persistence in memory and JDBC databases.

Sun’s JNDI Sandard Features
The basic features of the INDI specification include the ability to:
« give meaningful names to objects (name bindings)
« find names which have been bound to objects (resolve)
 group namesin logical hierarchies (naming contexts)
« group distributed naming hierarchies (federation)

« access data through different directory services using a standard interface

OpenFusion Enhancements
Advantages of OpenFusion JNDI over the basic Sun specification include:
* improved, more robust multi-user access

* speed improvements, including write caching

53
Java Naming and Directory Interface

& PRISMTECH

6.2 Concepts and Architecture Description

54

Conceptsand Architecture
Sandard JNDI

The purpose of JNDI isto provide the ability to associate meaningful names with
objectsto make it easy to access those objects. A hame binding is an association of a
name with an object reference as a name-value pair.

Name bindings are grouped in hierarchies called naming contexts. A naming context
is an object containing zero or more name bindings. Each name binding within a
naming context refers to either another naming context (a subcontext) or an object.
An hierarchy of contexts, subcontexts and objects is known as a graph. A context
allows a client to perform various operations upon the objects bound within it.

A naming system is a set of many contexts of the same type. JINDI enables different
naming systems to be connected together (federation).

The process of finding a name and retrieving the associated object reference is
called resolving the name.

The JNDI architecture is illustrated in Figure 5, which shows the relationships
between JNDI, Java applications, and object directory services.

JAVA APPLICATION

JNDI API

JNDI NAMING MANAGER

JNDI SPI

3 i3 e e e

Figure 5 JNDI Architecture

JNDI-compliant applications can use generic calls on different directory services,
such as Lightweight Directory Access Protocol (LDAP) servers, which plug in to
the SPI. A Java client uses the API specifying the appropriate service provider in
order to interact with the directory service.

& PRISMTECH

Java Naming and Directory Interface

Description

6.2 Concepts and Architecture

OpenFusion CORBA Naming Service clients can access either the OpenFusion
service provider or the Sun LDAP provider transparently. It is also possible to use
the OpenFusion JNDI SPI independently of the CORBA service.

Thelnitial Context

initialctx =

In the INDI, al naming and directory operations are performed relative to a context.
Unlike the CosNaming Service, there is no absolute root. Therefore, the INDI
defines an initial context, | ni ti al Cont ext, which provides a starting point for
naming and directory operations. This is retrieved through the Nani ngManager
interface as shown below:

Nami ngManager . getl ni ti al Context (env);

A service provider must be specified in order to use the JNDI. Thisis part of the
standard JNDI configuration. However, further configuration information may need
to be supplied depending upon the service provider.

JNDI properties can be configured by application resource files, environment
parameters passed via a hashtabl e (as above), system properties or applet parameters
in JNDI, with those specified in the hashtable taking priority. See aso Supplemental
Information on page 63.

Naming Systems

A naming system maps names to objects within a directory service. The underlying
directory service determines the syntax the JINDI client must use in the name, as a
naming context represents a node within that directory service. For example, the
OpenFusi onSPI follows a left-to-right naming convention while the LDAP SPI
uses a right-to-left notation.

The APl methods that accept a name have two overloads. one that accepts a Nanme
argument and one that accepts a string hame. Narre is an interface that represents a
generic name; that is, an ordered sequence of zero or more components.

References and Addresses

&4 PRISMTECH

Different SPIs may restrict what they can store directly, whereas the INDI API does
not carry any restrictions on what sort of objects may be stored. For instance, the
CosNaming SPI only accepts or g. ong. CORBA. Obj ect (or its subclasses). JINDI
defines a Reference for use when the serialized form of an object cannot be directly
stored in the directory. A reference to an object contains one or more addresses, or
communication end points, and information on how to construct a copy of this

55
Java Naming and Directory Interface

6.2 Concepts and Architecture Description

object. The INDI will attempt to turn references looked up from the directory into
the Java objects they represent. INDI clientstherefore present theillusion of directly
storing Java objects in the directory.

56
Java Naming and Directory Interface

& PRISMTECH

OpenFusion SPI
Implementation

Overview

The OpenFusion SPI implements the j avax. nami ng. Cont ext and
j avax. nam ng. Ref er ence interfaces as described in the specification published
by Sun Microsystems, except for one operation: the j avax. nam ng. Cont ext
interface does not implement the operation get Namel nNameSpace. Thisis
because the OpenFusion SPI supports cyclic references in the name hierarchy, and a
distinct fully qualified name does not make sensein this case. (A cyclic referenceis
one where a context contains a binding which refers back to a parent or grandparent
context, which may be in a different naming system.) This feature was included in
order to support the OpenFusion CORBA Naming Service.

Details

Names

The naming scheme of the provider is very similar to that of the CosNaming
interoperable Naming Service (INS) specification and the Sun CosNaming SPI.

The naming scheme is |eft-to-right, dlash-separated, case sensitive and hierarchical.
String names accepted by the SPI should be INDI composite names in which each
component is the stringified JNDI escaped form of a
CosNani ng: : NameConponent . The stringified form of a CosNami ng: : Nane is
defined in the INS specification. Quoting problems may arise when the INDI syntax
defines meta-characters and the underlying provider has its own syntax. These can
lead to many levels of escaping.

Two options are available;

« a Name may be returned by nanePar ser. par se(), where nanePar ser is a
value obtained from the service provider

e theclasscom pri snt. cos. CosNani ng. OFNani ngConvert er may be used

The name parser will return acompound name as the example below shows.

String strname = “A\\.\\/B";
NanmePar ser parser = rootctx. get NaneParser (““);
Narme j ndi nane = parser.parse (strname);

subct x = (Context)rootctx.|ookup (jndinane);
57
Java Naming and Directory Interface

& PRISMTECH

7.2 Details

OpenFusion SPI Implementation

Theclasscom pri snt. cos. CosNani ng. OFNani ngConvert er implementsthe
interface shown in Figure 6. Note that this class carries out validity checks on the

datapassed to it.

<<Interface>>

NamingConverter
(from CosNaming)

®convertCOStoIJNDI(name : String) : Name

®|convertCOStoJNDI(n : NameComponent[]) : Name
®|convertJNDItoCOS(n : Name) : NameComponent[]
®|convertJNDItoCOS(n : String) : NameComponent]]

TX
N
/

OFNamingConverter
(from CosNaming)

®OFNamingConverter()
®|convertCOStoJNDI(name : String) : Name
®convertCOStoJNDI(n : NameComponent[]) : Name
®|convertJNDItoCOS(n : Name) : NameComponent[]

| ®|convertJNDItoCOS(name : String) : NameComponent][]

N

N

LDAPNamingConverter
(from CosNaming)

®_DAPNamingConverter()
®makeNewD N()
[®prependBase()
[f¥setCurrentUUID()
=convertCOStoINDI)
®convertCOStoINDI)
#convertINDItoCOS()
#convertINDItoCOS()

E¥escapeString()

Figure 6 OFNamingConverter Interface

Java Objects

The OpenFusion SPI supports storage of the following types of Java objects using

JDBC to store to disk or memory:
* serializable
* referenceable

* references

Note that any type of Java object may be stored when the provider is configured to
use memory-based persistence and St or eAnyObj ect issettotr ue.

58
Java Naming and Directory Interface

& PRISMTECH

OpenFusion SPI Implementation 7.2 Details

Supplied Factories

To Store CORBA Objects

The OpenFusion CORBA Naming Service stores CORBA objects in the
OpenFusion SPI using the following factories, which implement Di r St at e and
Di r Obj ect :

com prisnt.cos. CosNam ng. CORBASt at eFact ory

com prisnt.cos. CosNam ng. CORBAOhj ect Fact ory

To Sore RMI-110P Objects

To store RMI-110OP abjects in the OpenFusion JNDI, an additional StateFactory is
required. This works in conjunction with the CORBASt at eFact ory and
CORBAODj ect Fact ory factories. The client must set the properties either
programmatically or as system properties, as follows.

Programmatically:

env. put (j avax. nam ng. Cont ext . OBJECT_FACTORI ES,
"com prisnt.cos. CosNam ng. CORBAObj ect Factory");
env. put (j avax. nam ng. Cont ext . STATE_FACTORI ES, "com prisnt.j 2ee. jndi . RM St at eFactory");

As System Properties:

-Dj ava. nami ng. factory. state=com prisnt.j2ee.jndi.RM StateFactory
- D ava. nami ng. f act ory. obj ect =com pri snt . cos. CosNan ng. CORBAObj ect Fact ory

Federation

The OpenFusion SPI supports federation. The JNDI specification defines the
method of "hooking' together naming systems so that the aggregate system can
process composite hames (names that span the naming systems).

The federation method uses:

» Weak separation. The context does not necessarily treat the separator as a naming
system boundary. When processing a composite name, it consumes as many
leading components as appropriate for the underlying naming system.

» Next Naming System pointers (junctions). The OpenFusion SPI supports dynamic
implicit NNS pointers.

Note that the naming system is non-terminal: components from the naming system
can appear anywhere in the composite name. Also the OpenFusion SPI cannot
determine the naming system boundary syntactically but it can determine it
dynamically.

59
Java Naming and Directory Interface

&4 PRISMTECH

7.2 Details OpenFusion SPI Implementation

60
Java Naming and Directory Interface

& PRISMTECH

A

Using Specific Features

This section provides some example Java code which demonstrates the use of the
OpenFusi onSPI .

Further source code examples are supplied elsewhere as part of the product
distribution.

Detailed instructions for using JINDI can be found in the INDI Tutorial published by
Sun Microsystems.

It is possible to use the SPI to access data written by the Naming Service (assuming
that the Naming Service has been configured to use the OpenFusi onSPI). The
following describes how to configure JINDI for access to Naming Service data
written under JDBC.

We recommend that cl ose always be called in order to clean up and free resources
used by the OpenFusi onSPI .

JDBC-based Persgtence

The OpenFusion Naming Service uses the JNDI root UUID (Universally Unigque
Identifier) and a SID (Service ID) value to establish access to the data in the
database. These values must be set in order to access the data. It is possible for a
stand-alone JNDI client to just set the root UUID. In this case, the SID valueis set
internally to be the same as the UUID.

When logging is enabled for the Naming Service and the level is set to | NFO, these
values are output to the log file, and can be retrieved from there if required. Typical
log file entries are shown below:

I NFO - Process | D: Oba57cb0- 4dae- 11d4- ada7- ce8c9f a68378
I NFO - Server |D: 0Oba57chO-4dae-11d4-ada7-ce8c9f a68378
I NFO - Common: database = com prisnt.jdbc. Dat abase@6304c8
INFO - initSID: database = comprisnt.jdbc. Dat abase@6304c8
I NFO - Nami ngService UUID is

0d68b080- 4dae- 11d4- ada7- ce8c9f a68378

The second and fifth lines are the ones containing the necessary information. These
values can then be passed into the INDI environment using a hashtable:

/1 Set the UUID.
env. put (“comprisnt.j2ee.jndi.OpenFusionSPl.UU D',

args[0]);

/'l Set the SID.
env. put (“comprisnt.j2ee.jndi.OpenFusionSPI.SID",

args[1]);

& PRISMTECH

61
Java Naming and Directory Interface

8.2 Accessing Data Using Specific Features

Accessing Data

The hierarchy can be browsed and modified once the root context is located.

initialctx = Nami ngManager.getlnitial Context (env);

A INDI client may bind a non-CORBA object into the Naming Service hierarchy.
Enurmeration e = initialctx.list (“*);
whil e (e. hasMoreEl enents ())

NanmeCl assPair np = (NameC assPair)e. next El ement ();
Systemout.println

“\t Found nane “ + np.getName () +
“ of class “ + np.getCl assNane ()

Si/stemout.println
(“\VtResolve: “ + initialctx.l|lookup (np.getNane ()));

}
The Naming Service detects that thisis not a CORBA object when a CORBA client
attempts to look it up. The service will display the INDI object when it has been
configured to view them. Otherwise, the service will log the following warning
messages:
WARN - Unabl e to process non-corba object. Object is a
java.lang. String
WARN - | gnoring element with name StringQbject because
it is a non-corba object
62

. . & PRISMTECH
Java Naming and Directory Interface

Supplemental
Information

Please refer to the Sun Microsystems documentation for details of the JNDI
specification.

Configuration Properties

JNDI properties can be configured by means of a Java hashtable. Properties
specified by this means are merged with any properties specified in the
jndi.propertiesfile, with those specified in the hashtable taking priority.

The location of the jndi.propertiesfileis specified by
com prisnt.j2ee.jndi.QpenFusi onSPI.JNDI PropertiesFile
If thisis not specified, then the jndi.properties file is not written.

Extra configuration information on top of the standard JNDI environment may be
needed, depending upon the naming/directory service and the SPI. Default values
are used when the environment has not been configured; for example, JDBC. URL is
et storing to the user’s home directory.

When the OpenFusion CORBA Naming Service starts, it can automatically create a
jndi.propertiesfilein the location specified. Thisfile contains only the JINDI settings
relevant to the current Naming Service configuration (normally specified using the
OpenFusion Administration Manager) to ensure that INDI clients are configured to
access the OpenFusion CORBA Naming Service hierarchy. Any existing
jndi.propertiesfilein the specified location is overwritten.

Sandard Properties

& PRISMTECH

The OpenFusion service provider supports these standard INDI properties.

INITIAL_CONTEXT_FACTORY

This isthe fully qualified class name of the factory class that creates the initial
context for the provider, for example:

env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"com prisnt.cos. CosNam ng. j ndi . OQpenFusi onCt xFact ory")

63
Java Naming and Directory Interface

9.1 Configuration Properties Supplemental Information

64

OBJECT_FACTORIES

Thisisa colon-separated list of fully qualified class names of object factory classes.
The factories are responsible for creating objects from the information returned by
the provider.

STATE_FACTORIES

Thisis a colon-separated list of fully qualified class names of state factory classes.
The factories are responsible for creating and transforming an object into an
acceptable form for storage.

Provider-specific Properties

The following properties are specific to the OpenFusion SPI.

Thefollowing prefix must be included with al of these properties:
com prisnt.j2ee.jndi.QpenFusi onSPI

For example, the fully-qualified JDBC. User optionis:
comprisnt.j2ee.jndi.QpenFusi onSPl.JDBC. User ="nyUser Nane”

General

JndiPropetiesFile
The location of the j ndi . properties file. If thisis left blank, the
j ndi . properti es filewill not be created. The default is blank.

Thejndi. properties fileisuseful for INDI client applications that need to
connect to the Naming Service hierarchy.

The OpenFusion JIMS Manager requires avalid j ndi . properti es file. See the
Java Message Service Guide for details.

When more than one Naming Service is used, each one must be configured to use a
differentj ndi . properti es file.

JndiOFPropetieskile

The location that the of . j ndi . properti es file will be written to. If thisisleft
blank, the file will not be created. The default is blank.

Theof . j ndi . properties file can be used by JBoss (and other application
servers) to access the OpenFusion JNDI properties. As an alternative to using this
file, properties could be hard coded or passed to an application as command-line
parameters.

& PRISMTECH

Java Naming and Directory Interface

Supplemental Information 9.1 Configuration Properties

Per sistence

&4 PRISMTECH

JDBC.User
Thisisthe name of the database user with create rights on the database.

JDBC.Password
Thisisthe password of the database user named in JDBC. User.

JDBC.URL
Thisisthe URL for the JIDBC Connection to the database.

For memory-based persistence the URL string to should be:
JDBC: hsql db: .

noting hsgldb is used for memory-based persistence and that a“.” must follow the
last colon of the URL string.

JDBC.Type
The choicesfor the JDBC Type are Or acl e, Sybase, SQL Server and | nf or mi x.

JDBC.Driver
This is the name of the JDBC Driver used to connect to the database. Thisis given
in the form:

jdbc:oracle:thin: @ltra2: 1526: EXPL

whereul t ra2: 1526 isthe server name and port number (for example).

JDBC.AutoCreate

If the tables for the chosen database (selected using JDBC. Type) do not exist, then
they are automatically created. The default value for hsgldb is Tr ue and for all other
databases the default value is Fal se, where Tr ue sets automatic table creation on.

Caching

The following properties are relevant to caching. Note that if write caching is
required then read caching must also be enabled. To disable write caching, both
Ti medW it e and Bat chedW i t e must be set to 0. To disable read caching, both
ReadCache. M n and ReadCache. Max must be set to 0.

TimedWrite
Thisis an integer value which specifies the time interval in seconds between cached
writes. The default value is 0, which means that writes are not cached.

65
Java Naming and Directory Interface

9.1 Configuration Properties Supplemental Information

BatchedWrite

Thisis an integer value which specifies the time interval in milliseconds between
batched writes. The default value is 0, which means that writes are not batched.

ReadCacheMin

Thisis an integer value which specifies the minimum number of objects to keep in
the read cache. The default value is 0, which means that the cache is always
completely flushed.

ReadCache Max

Thisis an integer value which specifies the maximum number of objects to hold in
the read cache; if not 0, it must be greater than the value specified for
ReadCache. M n. The default value is 0, which means that no read caching is
performed.

ReadCachelInt

Thisis an integer value which specifies the time interval in seconds between read
cache flushing operations. The default value is 0, which means that periodic
flushing does not occur; the cache is only flushed when full. For any other value,
cache flushing occurs at the specified intervals whether or not the maximum cache
size has been reached.

UUID and SID

uulibD

This is the context identifier. It must be specified in order for data to remain
persistent across sessions when persistence is set to Fi | e and JDBC. By default a
new UUI Dis generated for each instance.

SD

Thisisthe Service ID. It isa UUID used internally by the OpenFusion Naming
Service. It isrequired when access to the Naming hierarchy is desired.

I/l Create a hashtable for the environnent
Hasht abl e env = new Hashtable ();

// Use file based persistence

env. put

(“com prisnt.j2ee.jndi.OpenFusionSPl.JDBC. URL", “jdbc: hsqldb:/tnp”);
// Use a read cache.

env. put

(“comprisnt.j2ee.jndi.OpenFusi onSPl . ReadCache”, “100");

/1 Set the UU D

env. put

“com prisnt.j2ee.jndi.QpenFusi onSPl.UU D",
“8e82d2c0- 1d04- 11d4- 844f - aOb231700aae”

DB
66

& PRISMTECH

Java Naming and Directory Interface

Supplemental Information 9.2 Exceptions

/1 Set inital context

env. put

j avax. nam ng. Cont ext . | NI TI AL_CONTEXT_FACTORY,
“com prisnt.j2ee.jndi.OpenFusi onCt xFact ory”

try

/'l Get the root context
rootctx = Nam ngManager.getlnitial Context (env);

A\

The provider generates a new UUID when the UUI D option is not specified.
However, this represents the starting point for the hierarchy, much like an LDAP
server URL. Note that the data cannot be retrieved when thisis not specified in
future sessions.

Exceptions

&4 PRISMTECH

JNDI has an hierarchy of exceptions that may be thrown. Clients may catch
Nani ngExcepti on or any of itsderived classes.

Full details of the standard exceptions are available in the INDI APl documentation
available from Sun Microsystems.

67
Java Naming and Directory Interface

9.2 Exceptions Supplemental Information

68
Java Naming and Directory Interface

& PRISMTECH

i

Configuration and
Management
:

70 Naming Service
Configuration

70.7 Overview

The configuration of Singleton properties specific to the Naming Service is
described in this section. These properties appear in the Administration Manager, a
graphical user interface (GUI) based administration tool included with the
OpenFusion Graphical Tools.

The Administration Manager can be used to set the Singleton properties. These
properties can also be set programatically, generally as described in the service
description sections.

Details for configuring Persistence, Logging, CORBA, Java and System properties
for the Naming Service are described in the System Guide.

Common Properties

& PRISMTECH

Instances of some common properties are used by anumber of different OpenFusion
CORBA Services' interfaces and services. Settings for these property instances
appear in the Administration Manager’s Object Hierarchy for the service's
Singleton node. This small group of properties are included in this section in order
to facilitate configuration of the service while using the Administration Manager.
These properties include:

IOR Name Service Entry
IOR URL

IOR File Name

» Resolve Name

IOR Name Service

71
Configuration and Management

10.2 NameSingleton Configuration Naming Service Configuration

NameSingleton Configuration

CORBA Properties

IOR Name Service Entry
The Naming Service entry for the Singleton.

Property Name oj ect . Nane
Property Type FI XED
Data Type STRI NG
Accessibility READ VRI TE
Mandatory NO

IOR URL

The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Some examples are:

file:/usr/users/openfusion/servers/ NaneService.ior
http://ww. prismech. com of / servers/ NaneServi ce. i or
corbal oc: : server. pri snt echnol ogi es. conf NaneSer vi ce

The Naming Service supports URLs in Corbaloc, Corbaname, file, FTP and HTTP
URL formats, although some ORBs do not support all of these mechanisms. Consult
your ORB documentation for specific details.

Property Name | OR URL
Property Type FI XED
Data Type URL
Accessibility READ/ VRI TE
Mandatory NO

IOR FileName

The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:

<I NSTALL>/ domai ns/ <domai n>/ <node>/ <ser vi ce>/ <si ngl et on>/ <si ngl eton>. i or

72
Configuration and Management

& PRISMTECH

Naming Service Configuration

10.2 NameSingleton Configuration

where <I NSTALL> is the OpenFusion installation path. See the System Guide for
details of the domai ns directory structure.

Property Name IOR File
Property Type FI XED
Data Type FI LE
Accessibility READ/ WRI TE
Mandatory NO

Resolve Name

The ORB Service resolution name used to resolve calls to the Singleton

Property Name Resol veNane
Property Type FI XED
Data Type STRI NG
Accessibility READ/ WRI TE
Mandatory YES

IOR Name Service

The name of the Naming Service which will be used to resolve the Singleton object.

Property Name I OR Server
Property Type FI XED

Data Type STRI NG
Accessibility READ/ VWRI TE
Mandatory NO

Lightweight Directory Access Protocol (L DAP)

&4 PRISMTECH

The Naming Service uses Sun Microsystems' JNDI (Java Naming and Directory
Interface) LDAP provider. This allows the Naming Service to be stored in a
standard LDAP server. Caching is not supported under the LDAP persistence
option.

73
Configuration and Management

10.2 NameSingleton Configuration

LDAP User

Naming Service Configuration

The administrator of the LDAP server may want each user to have their own login
name and password. This property specifiesthe user name. The user name should be
in the fully qualified LDAP format, for example:

ui d=RNCr oss, ou=Peopl e, o=pri smt echnol ogi es. com

Property Name DB. LDAP. User
Property Type STATIC
Data Type STRI NG
Accessibility READ/ V\RI TE
Mandatory YES

L DAP Password

The administrator of the LDAP server may want each user to have their own login
name and password. This property specifies the password.

Property Name DB. LDAP. Passwor d
Property Type STATIC
Data Type PASSWORD
Accessibility READ/ V\RI TE
Mandatory YES

LDAP URL

The URL specifies the location within the LDAP server where the Naming Service
should store its persistent data. The data will not appear in the traditional
hierarchical format due to limitations of the LDAP storage mechanism.

An example URL is:

| dap: // excal i bur. pri snt echnol ogi es. com 2809/ ou=CpenFusi on
Nam ng Servi ce, o=pri snt echnol ogi es. com

Property Name DB. LDAP. URL
Property Type STATI C

Data Type STRI NG
Accessibility READ/ VRI TE
Mandatory YES

74
Configuration and Management

& PRISMTECH

Naming Service Configuration 10.2 NameSingleton Configuration

&4 PRISMTECH

LDAP Trace

Output hexadecimal dump of the incoming and outgoing LDAP ASN.1 BER
packets from the LDAP server.

Property Name DB. LDAP. Tr ace
Property Type FI XED
Data Type BOOLEAN
Accessibility READ/ VRl TE
Mandatory YES

L DAP Security

LDAP Authentication Mechanism. The security method may be:

« None: anonymous bind.

 Simple: clear-text password.

* SASL: Simple Authentication and Security Layer, defined in RFC2222.

The administrator must enable all privileges upon the target location in the LDAP
hierarchy when anonymous bind is selected. The LDAP v3 protocol uses the SASL
to support pluggable authentication. This means that the LDAP client and server can
be configured to negotiate and use possibly non-standard and/or customized
mechanisms for authentication, depending on the level of protection desired by the
client and the server. The LDAP v2 protocol does not support the SASL.

Property Name DB. LDAP. Security
Property Type STATIC

Data Type ENUM

Accessibility READ/ WRI TE
Mandatory YES

LDAP SASL Mechanism Names
A list of mechanisms should be entered in the configuration tool when the SASL
option is chosen, for example:

DI GEST- MD5 CRAM MD5

This specifies that DI GEST- MD5 authentication is to be used, or that CRAM MD5
authentication is to be used when the SASL mechanism is unavailable. An
Aut henti cati onNot Support edExcepti on will be thrown when neither is
available.

75
Configuration and Management

10.2 NameSingleton Configuration

Naming Service Configuration

Property Name DB. LDAP. SASL
Property Type STATIC

Data Type STRI NG
Accessibility READ/ V\RI TE
Mandatory YES

Persstence Options

The Naming Service provides two extra persistence options and a read cache for the

caching of naming contexts.

The different kinds of caching available to the Naming Service are:
* No Cache, i.e. Read Through / Write Through. This is automatically used for

failover.

Read Cache Flush Interval

Read Cache / Write Through.
Read Cache / Timed Writes with the value in seconds.
Read Cache / Batched Writes.

Read Cache / Batched and Timed Writes.

Theinterval, in seconds, between read cache flush operations. A least-recently-used
algorithm is employed to reduce the size of the cache to the level of the Read Cache

Minimum Size.

The default valueis 0 (zer o), which indicates no timed cache flush will be

performed.

Property Name DB. ReadCache. I nt
Property Type DYNAM C

Data Type | NTEGER
Accessibility READ/ VRI TE
Mandatory YES

76
Configuration and Management

& PRISMTECH

Naming Service Configuration 10.2 NameSingleton Configuration

&4 PRISMTECH

Read Cache Maximum Size

The maximum number of objects that the read cache will be allowed to hold. A
value of zer o means that there is no read cache. When the cache reaches the read
limit size, aleast-recently-used algorithm is employed to reduce the size of the
cacheto the level of the Read Cache Minimum Size.

The default valueis 500.

TheRead Cache Maxi mum Si ze must be set greater than zer o if awrite cacheis
required, asit is not possible to have a write cache without aread cache.

Property Name DB. ReadCache. Max
Property Type DYNAM C

Data Type | NTEGER
Accessibility READ/ VRl TE
Mandatory YES

Read Cache Minimum Size

The minumum number of objects which will be left in the cache when it is cleared.
The default valueis0 (zero).

Property Name DB. ReadCache. M n
Property Type DYNAM C

Data Type | NTEGER
Accessibility READ/ VRl TE
Mandatory YES

Write Cache WriteInterval

Thewriteinterval option refersto the delay (in seconds) between saving object state
changes within a server, and writing this information to persistent store. This option
is a performance optimization feature asit can be used to prevent the service making
alot of small updates to the persistent store.

A value of zer o indicates no delay. Changes are written immediately to the
persistent store if both the Write Cache Write Interval and Write Cache Batch Size
aresetto zer o.

The default value for this property iszer o. Increasing the write interval value may
improve performance when the data held by a service is changing rapidly.

77
Configuration and Management

10.2 NameSingleton Configuration Naming Service Configuration

Property Name DB. Wi telnterval
Property Type DYNAM C

Data Type | NTEGER
Accessibility READ/ V\RI TE
Mandatory YES

Write CacheBatch Size

The Write Batch Sze option specifies the maximum number of updates that will be
buffered before the data is written to persistent storage. Just as for the write interval
option, the write batch size option is also a performance optimization feature.

A value of zer o indicates that the updates are not buffered but are written
immediately to the datastore. Increasing this property value may improve
performance when the data held by a service is changing rapidly.

TheRead Cache Maxi mum Si ze must be set greater than zer o if awrite cacheis
required, asit is not possible to have a write cache without aread cache.

The effect of setting both the Write Interval and Write Batch Sze to values greater
than zero is that of batched timed writes.

Property Name DB. WiteBatch
Property Type DYNAM C

Data Type | NTEGER
Accessibility READ/ V\RI TE
Mandatory YES

Naming Data Sorage Type
This property sets the persistent storage type. The type can be:

e Default
« LDAP

If Default is selected, the data store will default to the location of the service data
(using JDBC). See the System Guide for details.

Property Name DB. NaneDat aPer si st ence
Property Type STATIC

78
Configuration and Management

& PRISMTECH

Naming Service Configuration 10.2 NameSingleton Configuration

Data Type ENUM
Accessibility READ/ VRl TE
Mandatory YES

| nstrumentation Properties

The interfaces for setting the instrumentation properties are given below. For
information on managing instrumentation, refer to the System Guide.

Count of resolve operations
The number of resolve operations since the Service started or was last reset.

Property Name Resol veCount
Property Type DYNAM C

Data Type COUNTER
Accessibility READ/ VWRI TE
Mandatory NO

Count of rebind context in service

The number of rebind contexts in service since the Service started or was last reset.

Property Name ReBi ndCont ext Count
Property Type DYNAM C

Data Type COUNTER

Accessibility READ/ VWRI TE
Mandatory NO

Count of context bind operations

The number of context binds in service since the Service started or was last reset.

Property Name Bi ndCont ext Count
Property Type DYNAM C

Data Type COUNTER
Accessibility READ/ V\RI TE
Mandatory NO

&4 PRISMTECH

Configuration and Management

10.2 NameSingleton Configuration

Count of unbind operations
The number of unbindsin service since the Service started or was last reset.

Property Name UnBi ndCount
Property Type DYNAM C
Data Type COUNTER
Accessibility READ/ VRI TE
Mandatory NO

Count of rebind operations

The number of rebindsin service since the Service started or was last reset.

Property Name ReBi ndCount
Property Type DYNAM C
Data Type COUNTER
Accessibility READ/ VRI TE
Mandatory NO

Count of bind operations

The number of bindsin service since the Service started or was | ast reset.

Property Name Bi ndCount
Property Type DYNAM C
Data Type COUNTER
Accessibility READ/ V\RI TE
Mandatory NO

General Properties

Naming Service Configuration

JNDI ContextFactory Cache Flush Interval

The internal ContextFactory cache can be purged to prevent the possibility of
memory leaks. This property specifies the interval, in seconds, between
ContextFactory cache flush operations. A value of zer o indicates that no timed
cache flush will take place.

80
Configuration and Management

& PRISMTECH

Naming Service Configuration 10.2 NameSingleton Configuration

JNDI ContextFactory Cache Flush Interval is used in conjunction with the JNDI
ContextFactory Cache Maximum Size and JNDI ContextFactory Cache Minimum
Size properties to determine the purging behaviour.

Property Name j ndi Ct xCachel nt
Property Type STATI C

Data Type | NTEGER
Accessibility READ/ WRI TE
Mandatory YES

JNDI ContextFactory Cache Maximum Size

The maximum number of contexts allowed in the ContextFactory cache. When the
cache exceeds this size, contexts are purged according to a least-recently-used

algorithm

Property Name j ndi Ct xCacheMax
Property Type STATI C

Data Type | NTEGER
Accessibility READ/ VRl TE
Mandatory YES

JNDI ContextFactory Cache Minimum Size

The size that the ContextFactory cache will be reduced to following a cache flush.

For example, if this property is set to 10 then all but 10 contexts will be purged
during aflush operation.

&4 PRISMTECH

Property Name j ndi &t xCacheM n
Property Type STATI C

Data Type | NTEGER
Accessibility READ/ V\RI TE
Mandatory YES

JNDI PropertiesFile

The location of the j ndi . properties file. If thisis left blank, t he
j ndi . properti es filewill not be created.

Thej ndi . properties fileisuseful for INDI client applications that need to
connect to the Naming Service hierarchy.

81
Configuration and Management

10.2 NameSingleton Configuration

A

Naming Service Configuration
The OpenFusion IMS Manager requires avalid j ndi . properti es file. Seethe
Java Message Service Guide for details.

When more than one Naming Service is used, each one must be configured to use a
differentj ndi . properti es file.

Property Name jndi PropertiesFile
Property Type STATIC

Data Type STRI NG

Accessibility READ/ VRl TE
Mandatory NO

JNDI OF PropertiesFile

The location that the of . j ndi . properti es file will be written to. If thisisleft
blank, the file will not be created.

The of . j ndi . properti es file can be used by JBoss (and other application
servers) to access the OpenFusion JNDI properties. As an alternative to using this
file, properties could be hard coded or passed to an application as command-line

parameters.
Property Name j ndi OFPropertiesFile
Property Type STATIC
Data Type STRI NG
Accessibility READ/ V\RI TE
Mandatory NO
JNDI Root ID

82

This option allows the root ID used by the JNDI hierarchy to be manually
configured. Thisis useful when used in conjunction with the Server Persistent ID
(SI D) property (see the System Guide) as these are then known values that may be
passed to JNDI client programs. These clients can then access the Naming Service
persistent data.

Property Name JNDI | D

Property Type STATIC

& PRISMTECH

Configuration and Management

Naming Service Configuration

10.2 NameSingleton Configuration

Data Type uul D
Accessibility READ/ VRl TE
Mandatory NO

Enable L oad Balancing

This alows load balancing to be performed by the Naming Service.

Property Name LoadBal anci ng
Property Type DYNAM C

Data Type BOOLEAN
Accessibility READ/ VRl TE
Mandatory YES

View Non-Corba Objects

This allows the Naming Service to browse a JNDI hierarchy even when
non-CORBA objects (e.g. j ava. | ang. St ri ng) have been stored. The Naming
Service will log and ignore any non-CORBA objects it encounters when this option

is disabled.

Property Name Vi ewNonCor ba

Property Type DYNAM C

Data Type BOOLEAN

Accessibility READ/ VRl TE

Mandatory YES
PurgeonLigt

Invalid object references (that is, those object references which are not active and
not persistent) are removed from a naming context when the list operation is
performed on the context and Purge on List is selected.

Property Name C ean. Li st
Property Type DYNAM C
Data Type BOOLEAN
Accessibility READ/ V\RI TE
Mandatory YES

&4 PRISMTECH

83
Configuration and Management

10.2 NameSingleton Configuration Naming Service Configuration

84

Purgeon L oad

Invalid object references (that is, those object references which are not active and
not persistent) are removed when contexts are first accessed after a server has been
restarted and Purge on Load is selected.

Property Name Cl ean. Load
Property Type DYNAM C
Data Type BOOLEAN
Accessibility READ/ V\RI TE
Mandatory YES

Purge Class Plugin

This should be a publicly instantiable Java class that implements the
com pri snt. openf usi on. pl ugi n. Pur gabl e interface. This interface has one
operation:

public bool ean i sPurgabl e (org.ong. CORBA. Cbj ect obj)

This class is used to determine whether or not to purge objects from the Naming
Service. Typically, aclient will code this operation to determine whether their object
is persistent or transient and hence may be purged. This service will also check the
active/inactive state. The Obj ect Adapt er. i sTr ansi ent method is the default
used when a class is not specified. This will successfully determine the persistent
state for objects created using the OpenFusion framework, but it will not work for
foreign objects.

Purging is the deletion of invalid object references and purgable objects from a
service. Object references are regarded as invalid when they are not active and not
persistent. The OpenFusion Naming Service can most easily determine whether an
object is purgable if thecom pri snt . openf usi on. pl ugi n. Pur gabl e interface
isimplemented. See the OpenFusion Naming Service Guide for further details.

Property Name Cl ean. Pur ged ass
Property Type DYNAM C

Data Type STRI NG
Accessibility READ/ V\RI TE
Mandatory NO

& PRISMTECH

Configuration and Management

Naming Service Configuration 10.3 LoadBalancingFactorySingleton Configuration

System Mager

This property should be set to t r ue (checked) if thisis the master naming service
for a system. There can be only one master naming service.

Property Name Resol ver
Property Type STATI C
Data Type BOOLEAN
Accessibility READ/ VRl TE
Mandatory YES

70,3 L oadBalancingFactorySingleton Configuration

IOR Name Service Entry
The Naming Service entry for the Singleton.

Property Name hj ect . Nane
Property Type FI XED
Data Type STRI NG
Accessibility READ/ VRl TE
Mandatory NO

IOR URL

The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Currently only http and file URL s are supported, for example:

file:/usr/users/openfusion/servers/ NaneService.ior
http://ww. prisntech. com openfusi on/ servers/ NameServi ce. i or

Property Name I OR URL
Property Type FI XED

Data Type URL
Accessibility READ/ VRl TE
Mandatory NO

85
Configuration and Management

&4 PRISMTECH

10.3 LoadBalancingFactorySingleton Configuration Naming Service Configuration

IOR FileName
The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:

<I NSTALL>/ domai ns/ <domai n>/ <node>/ <ser vi ce>/ <si ngl et on>/ <si ngl eton>. i or
where <I NSTALL> is the OpenFusion installation path. See the System Guide for
details of the domai ns directory structure.

Property Name IOR File
Property Type FI XED
Data Type FI LE
Accessibility READ VRI TE
Mandatory NO

Resolve Name

The ORB Service resolution name used to resolve calls to the Singleton

Property Name Resol veName
Property Type FI XED

Data Type STRI NG
Accessibility READ/ VRI TE
Mandatory YES

IOR Name Service

The name of the Naming Service which will be used to resolve the Singleton object.

Property Name | OR Server
Property Type FI XED

Data Type STRI NG
Accessibility READ/ VRI TE
Mandatory NO

86
Configuration and Management

& PRISMTECH

Naming Service Configuration 10.3 LoadBalancingFactorySingleton Configuration

L oad Balancing Plugin

Plugin class used to implement load balancing. This should be a publicly
instantiable Javaclass.

Property Name C assnanes
Property Type FI XED

Data Type STRI NG
Accessibility READ/ VRl TE
Mandatory NO

L oad Balancing Timeout

This property is used when an Active policy is selected. It controls the length of time
that the ORB will attempt to communicate with an object before regarding it as
inactive. The default valueis zer o.

Property Name Ti meout
Property Type DYNAM C
Data Type | NTEGER
Accessibility READ/ VWRI TE
Mandatory YES
& PRISMTECH 87

Configuration and Management

10.3 LoadBalancingFactorySingleton Configuration Naming Service Configuration

88
Configuration and Management

& PRISMTECH

77T Naming Service Manager
7.7 Overview

Use the Naming Service Manager to:

» Browse the Naming Service hierarchy.

» Add or delete naming contexts.

« Bind CORBA objectsto the Naming Service.
« Launch other managers and browsers.

» Export and import the hierarchy as XML files (this function can also be performed
from the command line).

i Various Naming Service management operations can also be performed using a
command line tool, Nam ngSer vi ceMgr Tool . Thistool and how to use it is
described in the System Guide.

71,7 Running the Naming Service M anager

The Naming Service Manager can only be started if the Naming Service has been
started. To start the Naming Service Manager, right-click on a running
NameSingleton in the Administration Manager’s Object Hierarchy and select
Naming Service Manager from the pop-up menu. See the System Guide for details.

Alternatively, start the Naming Service Manager from the command line with the
following command:

% run
com prisnt.cos.treebrowser. nam ng. Nani ngSer vi ceBr owser
-nane NanmeServi ce

717 Usingthe Naming Service M anager

The Naming Service Manager shows the naming hierarchy as a graphical tree view.
Figure 7 illustrates how OpenFusion CORBA objects might be registered in the
Naming Service Manager.

89

& PRISMTECH . .
Configuration and Management

11.3 Using the Naming Service Manager Naming Service Manager

Administration Manager rNaming Service Manager
i

4k Maming Service Manager y| penerat
9 Ell openFusion 1| Host: 213.48.91.00
? Ell alphaz 1| port: 1303
- Efll (TradingSenvice OF-Senvice) || Tvpe: IDL:omg.org/CosNaming/MNamingContextExt:1.0
@ &l localhost 1| status: Active/Persistent
@ Ell{LogSenice OF-Service) || Mame Component ID: ~ N/A

{8 {BasicLooFactory, OF-Singleton} |

{8 {EventLogFactary, OF-Singleton} |
& Bl ultra2 | HOR:
|| 10R:000000000000002b4944 4c3aGME06T 2667 267 24367 34261 GdAIGER
T2f4eb16d696e67 436607 465787445787 43a3122300000000000010000
Q0000000006c000102000000000d3231332e3438223931223930000005
710000004900504d43000000040000001 821417065624 67573696fGe2ede
61606553657 2T6E96365000000002121e0dec1907a8d11d59a7fhe372h3
6392fe0660r207a8d11d59a7the372b36392f00000000000000

Mame Component Kind: RN/

Figure 7 Naming Service Manager

Each object in the Naming Service is represented by an icon in the tree view. The
object is labelled with its Id and/or Kind (if specified), in one of the following
formats:

« {id, kind}

eid

e {, ki nd}

When an object is selected (highlighted) in the tree view, its details are shown in the
properties pane to the right of the tree view.

An object’s IOR can be selected in the properties pane and copied to the clipboard.

90
Configuration and Management

& PRISMTECH

Naming Service Manager 11.3 Using the Naming Service Manager

Object Icons

Different objects in the Naming Service Manager are identified by different iconsin
the tree view. These icons are shown in Table 13.

Table 13 Naming Service Object Icons

Icon Node

Root Context

Q The Naming Service root node represents the
current instance of the Naming Service.

Naming Context

] Represents an OpenFusion CORBA naming
context.

CORBA Object

Represents a CORBA object binding. This must
always be aleaf node in the hierarchy.
Non-CORBA Object

Represents a non-CORBA object binding. This
must always be aleaf node in the hierarchy.

r_
e

Invalid Naming Context

b Represents a naming context which has been
invalidated as aresult of alinked object being
destroyed.

Tool Bar Buttons

The Naming Service Manager adds new buttons to the tool bar. These buttons are
only available when the Naming Service Manager is active. The new tool bar
buttons are shown in Table 14.

The buttons are disabled if aleaf node or an invalid naming context is selected in the
naming hierarchy.

91
Configuration and Management

&4 PRISMTECH

11.3 Using the Naming Service Manager Naming Service Manager

Table 14 Naming Service Manager Tool Bar

Button Function
Load Naming XML
= Load Naming Service information from an XML
file.
Save Naming XML
Iﬁ Save Naming Service informationin an XML file.

Adding a Naming Context

Step 1:
Step 2:
Step 3:

Step 4:

A new naming context must be added as a child of an existing nhaming context (or
the root context) in the naming hierarchy. A naming context cannot be added as a
child of abound CORBA or non-CORBA aobject.

To add a new naming context to the naming hierarchy:
Right-click on the parent naming context.
Select Add New Context from the pop-up menu.

Enter the Id and Kind of the new naming context in the New Context dialog box.
Both of these fields are optional.

Click the OK button.

The new naming context is added to the naming hierarchy as a child of the selected
parent naming context.

Binding OpenFusion Services

92

When a Service is started in the Administration Manager, each of its Singletons will
attempt to bind to the Naming Serviceif it is configured to do so (see below), and if
the Naming Service is running when the Service starts.

This occurs each time the Service is started. (Persistent objects remain registered
when the Service is stopped, with a Status of | nact i ve/ Per si st ent .) If the bind
is successful, entries for the Singletons are added to the Naming Service Manager
hierarchy. To see any newly-started objects, right-click on the root node of the
Naming Service Manager and select Refresh Node from the pop-up menu.

OpenFusion Singletons that register themselves in this way are bound directly under
the Naming Service root context.

& PRISMTECH

Configuration and Management

Naming Service Manager 11.3 Using the Naming Service Manager

If aSingletonisto register itself with arunning Naming Service when it is started, it
must be configured to do so, as follows:

* The IOR Name Service Entry property of the Singleton must contain avalid INS
name to identify the Singleton.

» The IOR Name Service property must contain the name of the Naming Service it
isto bind to. (This should be NaneSer vi ce for the OpenFusion Naming Service.)

» The Use Xbootclasspath property of the Service containing the Singleton must be
settotrue.

Binding Objects

Step 1:
Step 2:
Step 3:
Step 4:

An object must be added as a child of an existing naming context (or the root
context) in the naming hierarchy. An object cannot be added as a child of a bound
CORBA or non-CORBA object (bound objects are always leaf nodes in the
hierarchy).

An object’s IOR is used to bind the object into the naming hierarchy. The IOR of an
existing object must be copied to the clipboard before the object can be bound into
the naming context. See the System Guide for details of querying objects in the
Object Browser and copying the object’s IOR to the clipboard.

Once the required abject’s IOR is copied, follow these steps to bind the object:
Right-click on the naming context that the object will be bound to.

Select Paste New Binding from the pop-up menu.

Enter an Id and Kind for the bound object. Both of these fields are optional.
Click the OK button.

The new object is added to the naming hierarchy as a child of the selected parent
naming context.

Itis possible to bind a naming context object as either an object or a naming context.
If it is bound as an object, it becomes a leaf node and will not be used for name
resolution.

Ddeting a Naming Context or Object Binding

&4 PRISMTECH

To delete a naming context or object binding from the naming hierarchy, right-click
on the node and select Delete from the pop-up menu. Click the DELETE buttonin
the Warning dialog box.

Deleting an object binding will not remove the underlying object; only its resolution
through the Naming Service will be affected.

93
Configuration and Management

11.3 Using the Naming Service Manager Naming Service Manager

94

When a naming context is deleted, all of its children (naming contexts and object
bindings) are also removed from the hierarchy.

Exporting XML

Step 1:
Step 2:

Step 3:

Any portion of the naming hierarchy can be exported to an XML file.

Select the naming context that is to be exported. Every node under the selected
naming context is exported. To export the entire hierarchy, select the root node.

Right-click on the selected naming context and select Export xml from the pop-up
menu. Alternatively, click the Save Naming XML tool bar button.

Select afilelocation and enter afile namein the Save Naming XML dialog box.

The XML Export will fail if the tree being exported contains any invalid naming
contexts.

The XML export can also be performed from the command line. The command line
method is preferred when dealing with very large naming hierarchies (where the
export operation may take a considerable time).

Importing XM L

Step 1:
Step 2:

Step 3:

An XML file containing a previously-exported section of the naming hierarchy can
be re-imported into the naming hierarchy.

The imported branch of the naming hierarchy must be added to an existing naming
context node.

As an exported branch of the naming hierarchy can be imported into a completely
different location, thisis aconvenient way to move or replicate large sections of the
naming hierarchy

Select the naming context that the imported branch will be added under.

Right-click on the selected naming context and select Import xml from the pop-up
menu. Alternatively, click the Load Naming XML tool bar button.

Use the Load Naming XML dialog box to select a previously exported XML file to
import.

The contents of the imported file are added to the naming hierarchy in the selected
location.

The XML import can also be performed from the command line. The command line
method is preferred when dealing with very large naming hierarchies (where the
import operation may take a considerable time).

& PRISMTECH

Configuration and Management

Naming Service Manager 11.3 Using the Naming Service Manager

L aunching Managersand Browsers

Other OpenFusion graphical tools can be launched from the Naming Service
Manager.

The right-click menu options of each object in the naming hierarchy include options
for launching browsers and managers specific to that object.

For example, a bound NotificationSingleton object has a menu option to launch the
Notification Service Manager.

CORBA Object Browser

All nodes include an option to launch the CORBA Object Browser. See the System
Guide for details. The CORBA Object Browser can be used to view naming
contexts as well as CORBA objects.

Naming Service M anager

Naming contexts include an option to launch a new instance of the Naming Service
Manager. The new instance is rooted at the sel ected naming context.

Thisisnot anew instance of the Naming Service. The new manager issimply anew
view of the selected portion of the Naming Service.

95

& PRISMTECH . .
Configuration and Management

11.3 Using the Naming Service Manager Naming Service Manager

96
Configuration and Management

& PRISMTECH

Purgable Interface
ThePurgable I nterface

Thepur gabl e interface is an OpenFusion plugin intended to be used to assist in the
determination of whether an object is inactive and can be safely removed.

Purge Class Plugin

This is a property of the NameSingleton which can be specified through the
Administration Manager (the System Guide). If used, this property must contain the
name of a publicly instantiable Java class that implements the
com prisnt. openfusi on. pl ugi n. Pur gabl e interface.

Using The Purgable I nterface

& PRISMTECH

Thisinterface has one operation:
public bool ean isPurgabl e (org.ong. CORBA. Obj ect obj)

The class specified as the Purge Class Plugin is used to determine whether or not to
purge objects from the Naming Service. Typically aclient will implement this
operation to determine whether its object is persistent or transient and hence may be
purged. This service will also check the activel/inactive state.

If no classis specified for this property, the ORBAdapt er . i sVal i d method isused
(an object isvalid if it is active or not transient). This will successfully determine
persistent state for objects created using the OpenFusion framework, but it will not
work reliably for foreign objects (objects created in non-OpenFusion environments
or on other ORBS).

The following pseudocode illustrates how the interface is used.

MyPur gabl e i npl enents Purgabl e

{
if 'mne
test & return
el se
return ! ORBAdapter.isValid(obj)
}

Theif ' mne’ isatest which first establishes whether the client object is one that
OpenFusion cannot determine the status of (for example, an abject from a C++ orb).
If it is, then its status is determined by thet est & r et ur n clause; otherwise the
default OpenFusion check of the object’s status is performed. If thei sVval i d()
check is not included, then no checking is performed on OpenFusion created objects
and the Naming Service will only purge the client objects.
97
Configuration and Management

12.1 The Purgable Interface Purgable Interface

98
Configuration and Management

& PRISMTECH

Appendices

-

Appendix A

Command Line Management Tool

The Naming Service Command Line Management Tool, nsMgr Tool , provides
management capabilities which are not available in the GUI-based Administration
Manager, namely the ability to manage Naming Service instances which reside in
diverse OpenFusion installations and domains (refer to the Administration Manager
section of the System Guide for a description of domains and their related directory
hierarchy).

An example of a Domains hierarchy (as it would appear in the Administration
Manager) and its associated directory structure is shown in Figure 8:.

& PRISMTECH

Operations which nsMgr Tool can perform include:

(Fldministr*atinn Manages- rNaming Cervice Manager | EH:' prismtech
. _ 0 InstallationFiles
I . Object Hierarchy {0 OperFusion
']}.nmams F-2 admin
© &3 OpenFusion =2 bin
] % ncalhast w00 classes
&) MameService |:| docs
&= §) EventDomairService =27 domains
& §) LoadBalancing =] OpenFusion
&= '; LogService -] localhast
& § NotificationService =3 PrismTech
(o3 "‘ MotificationTupesService =227 ulkas
€) TineService 2142 MameServiceS
@ &4 TradingService -7 data
© &7 PrisnTech {:l lng
% wltrad 2] MameSingleton
@ MameServiceh [+ ProcessSinglston
4 NaneSingleton 20 TomcatDbject
Tomcatlbject M- ete
ProcessSingleton M- examples
Figure 8: Example Domains Hierarchy and Directories
Features

* viewing and managing running Naming Service instances located in local or

remote installations

* creating and listing the contents of naming contexts for those instances

101
Naming Service Guide

102

* binding and unbinding objects to contexts and name objects
* resolving named objects
* destroying contexts and name objects

The Command Line Management Tool, as its name indicates, can be run directly
from the command line or as part of a shell or batch script.

Configuration

The command line tool must be able to locate and accessthe NaneSi ngl et on. i or
file for the Naming Service instance it is required to manage. The tool uses an
environment variable, NS_| OR_LOCATI ON, to locate thisfile: NS_| OR_LOCATI ON
is set to thefile'slocation using either afi | e or ht t p address (described below).

The NS_I OR_LOCATI ON environment variable must be set before running the
command line tool.

If the ht t p protocol is used, then a Tomcat object must be added to the specific
Naming Service instance to be managed.

A Tomcat object can be added to a Naming Service instance by using the
Administration Manager’s pop-up menu command Add | Java Object |
TomcatObject for the instance - see Tomcat WWeb Server Integration in the System
Guide for details.

Using thefile protocol

WIN

When using thef i | e protocol, set NS_| OR_LOCATI ONto:
file:///<path>
where <pat h> isthe complete pathname to the NarmeSi ngl et on. i or file.

When using Windows to access an OpenFusion installation located on a remote
host, the remote host's file space must be available as a mapped drive in Windows
Explorer (see Example 1, Windows version, below).

Example 1 Setting NS_I OR_LOCATI ON using thefile protocol

Referring to the example installation shown in Figure 8:, NS_| OR_LOCATI ONis set
to manage a Naming Service instance called NameSer vi ce5, located on a host
called ultra5, in the user-defined PrismTech domain (note that a mapped driveis
used for the Windows version):

% export NS | OR LOCATION=file:///var/usr/l|ocal/prisntech/
OpenFusi on/ domai ns/ Pri snifech/ ul t r a5/ NaneSer vi ce5/
NanmeSi ngl et on/ NaneSi ngl et on. i or

& PRISMTECH

Naming Service Guide

WIN > set NS |IOR LOCATION=file:///m/prisntech/ OpenFusi on/
dommi ns/ Pri snifech/ ul t r a5/ NaneSer vi ce5/ NaneSi ngl et on/
NaneSi ngl et on. i or

Using the http protocol
When using the ht t p protocol, set NS_| OR_LOCATI ON to:

http://<host>: <port >/ NanmeSer vi ce/ domai ns/ <domai n>/ <node>/
<servi ce_nanme>/ NaneSi ngl t on/ NaneSi ngl et on. i or

where
<host > is the host or machine name of the OpenFusion installation where the
Naming Service instance resides

<port > isthe port address of the Naming Service instance’s Tomcat object; the
default port address used by Tomcat is 8080,

<domai n> isthe domain defined under the installation’s Domains item,
<node> isthe node name (i.e. the host machine) under the domain,

<servi ce_nane> isthe service name for the Naming Service instance

Example 2 Setting NS_I OR_LOCATI ON using the http protocol

Referring to the example installation shown in Figure 8:, NS_| OR_LOCATI ONis set
to manage a Naming Service instance called NarmeSer vi ce5, located on aremote
host called ultrab, in the user-defined PrismTech domain:

UNI X % export NS | OR LOCATI ON=htt p://ultrab5: 8080/ NaneSer vi ce/
dommi ns/ Pri snifech/ ul t r a5/ NaneSer vi ce5/ NaneSi ngl et on/
NaneSi ngl et on. i or

WIN > SET NS | OR LOCATI ON=ht t p: //ul tra5: 8080/ NaneSer vi ce/
domai ns/ Pri snifech/ ul t r a5/ NaneSer vi ce5/ NaneSi ngl et on/
NaneSi ngl et on. i or

103

& PrisMTECH . . .
Naming Service Guide

Running

After setting the NS_I OR_LOCATI ON environment variable, described above,
nsMgr Tool isrun using the commands listed in Table 15, Command Line
Management Tool Commands, as follows:

% nsMgr Tool <comuands>

nsMgr Tool islocated in the bi n sub-directory where OpenFusion is installed.

& Note:

* The required OpenFusion Naming Service instance must be running in order for
the tool to work.

» The commands must be entered in the order they arelisted in Table 15.

Table 15 Command Line Management Tool Commands

Command Description
-h, -?, -help Displaysthe list of commands (described below)
-1 <path> This lists the contents specified by the path.

If the path resolvesto a context, its contents are displayed.
If the path resolves to an object, then the object is displayed.

If no path is specified, then the contents of the root naming
context are displayed.

The path argument should be in the form of a string.

Example: -1 Vi deos/ Fi | s
Items shown in < > are required; items shown in [] are optional; + indicates one or more items

104
Naming Service Guide

& PRISMTECH

Table 15 Command Line Management Tool Commands

Command

Description

-create [path]

This creates a new naming context. If an element of the path
does not exist then it is created automatically, e.g. if the path
entered was Vi deos/ Spor t/ Foot bal | and only the
Vi deos context existed, then a context would be created for
Sport (under Vi deos) and for Foot bal | (under
Vi deos/ Sport). If apath is not supplied an unbound
Naming Context is created and the object reference string is
displayed to the user.

Example: - cr eat e Vi deos/ Sport

-bind <-c | -0> <-p path>
<IOr> |
-bind <-c | -0> <-p path>

<-f filenanme>

This option binds a given | OR as a context or object to the
specified path. The | OR can either be provided directly or can
be read from afile. If the | OR does not resolve to a context,
then it is bound as an object.

Example: -bind -¢c -p Videos/Films/ET -f
[filedir/filenane.ior

-resol ve [path]

Returns the object reference string for the specified path. If a
path is not specified, then the object reference string for the
root context is returned. The object reference string is in the
format:

| OR: 000000000000002B49444C3A6F6D672E67 ...

Example: - resol ve Vi deos/ Fil ns

-destroy [-r] <pat h>

This unbinds and destroys the context or object specified by
the path. If the path refers to a context the context is only
destroyed if it isempty. If it isnot empty and the - r argument
has not been set, then it is not destroyed and a message is
displayed. If the - r argument has been set, then the context
and its contents are unbound and destroyed recursively.

Example: - destroy -r Videos/Filns

-unbi nd <pat h>

This option unbinds the context or object for the path
specified. The unbind will fail if the path relates to a context
and the context is not empty.

Example: - unbi nd Vi deos/ Fi | ms/ ET

Items shown in < > are required; items shown in [] are optional; + indicates one or more items

& PRISMTECH

105
Naming Service Guide

106

Example 3 Managing a Naming Context

The following example shows a naming object called t est , located in a Naming
Service instance called NaneSer vi ce5, being created, bound, resolved, and
destroyed. This example assumes that the NS_I OR_LOCATI ON environment
variable was set as shown in Example 1 or Example 2, above. The example shows
the UNIX command line; the tool works identically in Windows, except that
Windows users should substitute the forward-slashes with back-slashes for file
paths only - context paths should always use forward slashes.

% nsMgrTool -create test

% nsMgrTool -bind -o test/myQoject -f /var/user/
application/client.ior

% nsMgrTool -resolve test/nyQoject > test.ior

% nsMgrTool -destroy test/mhject

The - cr eat e command creates a naming context called t est . An object is then
bound (and automattically created) in this context, using the IOR defined in afile
calledclient.ior.

The - r esol ve command, in this example, is used to retrieve the IOR bound to
myObj ect and saveitto afilecall test.ior. The myObj ect object isthen
destroyed.

& PRISMTECH

Naming Service Guide

Index

IndeXx

Access

Naming ServiceData 53, 66
Adding

Naming Context 92
Address
BindContextCount (property). 79
BindCount (property) 80
Binding

Name............ 53,54
Cache

Disabling.........cooiiiiiiii.. 65

Enabling it 65

Flushing oot 66

Properties i 65
Caching.covviii 14
Classnames (property) ... 87
Clean.List (property) ..., 83
Clean.Load (property) ..., 84
Clean.PurgeClass (property). 84
Client

CORBA. ... 62

CORBA Naming Service................ 55

Java. ... 54

INDI .o 56, 61, 62
Component

Name........... .o i 55
Compositename.cciiiinnnn.. 57
Compoundname.c.coovvunen.. 57
Configuration

INDI . 55

Naming Service. 63

Service provider dependence 55
Context

Identifiero i 66

& PRISMTECH

Object Reference 55
Alias. ..o 17
Applet parameters 55
Applications

JaVA. . 54

Object 62
BindingaCORBA Object 93
Binding OpenFusion Services.............. 92
Bindinglterator Interface 37

Initial. ... 55, 63

Naming...........ccoiiiiiinnn... 53,54

RoOto 62

Sub-. .. 54
Convention

Name. i 55
CORBA

Client ... 62

NamingService 53,57

Objecto 55
CORBA Object

Binding................ i 93
CorbaloC. 12
Corbaname..........o i, 13

file.. oo 13

http .. 13
CosNaming

SPl 55, 57
Count of bindsin service (property) 80

Count of context bindsin service (property) .. .79
Count of rebind context in service (property) . .79

Count of rebindsin service (property) 80
Count of resolve operations (property) 79
Count of unbindsin service (property) 80
Createrights, JDBC database. 65

109

Naming Service Guide

Index

Cyclicreference. 57 Cyclics, exporting and importing 47
D
Data DB.ReadCache.Min (property)
Accessing Naming Service 53 Naming Service.cooo... 77
Databasetypes., 65 DB.WriteBatch (property)
DB.LDAP.Password (property) 74 Naming Service.cooo... 78
DB.LDAP.SASL (property) 76 DB.Writelnterval (property)
DB.LDAP.Security (property) 75 Naming Service. 78
DB.LDAP.Trace (property). ooovvvnnt. 75 Deegate ... 17
DB.LDAP.URL (property) 74 Delete
DB.LDAP.User (property)on... 74 Naming Context 93
DB.NameDataPersistence (property) 78 ObjectBinding 93
DB.ReadCache.Int (property) Directory service (objectswithin)........... 55
Naming Service..............coooun... 76 Directory Services.o 54
DB.ReadCache.Max (property) Driver,JDBC i 65
Naming Service................oovn... 77
E
Enable Load Balancing. 83 Naming Service. 30, 33
Environment Exceptions. i 49, 67
INDIL. .o 61,63 Export
Parameters. ... 55 XML 9%
Escapinginstrings 57 Exporting and Importing Cyclics 47
Examples
|:
Factories State. .. 64
Supplied. ... 59 Fal-over 19
Factory Classes Federation.................... 10, 53, 54, 59
Object. 64 Flushing,cache......................... 66
G
GengratedUUIDt 66,67 Graph (hierarchy) 54
H
Hashtable. 55,61,63 Hierarchy of naming contexts. 53,54
10 & PRISMTECH

Naming Service Guide

Identifier
Contextcoviiii 66
UUID .. 66
Importing XMLo it 94
Initial context 55, 63
INITIAL_CONTEXT_FACTORY 63
INS (Interoperable Naming Service) 57
Instrumentation. 19
Naming Service Properties. 79
Java
Applicationso oo 54
Client......... i 54
Objects 56, 58
Java Naming & Directory Interface (JNDI) .14, 43
javax.naming.Context (interface)............ 57
JOBC
Createrights 65
Databasetype, 65
DatabaseURL................cccvunn.. 65
Databaseuserccoviivnnnn.. 65
DriVer . 65
IMX
Instrumentation Properties 79
JNDI
Client.........ii 61
Configuration 55
Environment 61, 63
Object ... 62
OF PropertiesFile...................... 82
Properties it 55, 63
LDAP .. 43, 44, 73
LDAP (Lightweight Directory Access Protocol)54
SeverURL ... 67
LDAP Password (property) 74
LDAP SASL Mechanism Names (property) .. .75
LDAP Security (property) 75
LDAP Trace (property)ccooon... 75
& PRISMTECH

Index

Interoperable Naming Service (INS) 11
IOR. . 12
IOR File Name (property) 72, 86
IOR Name Service (property) 73, 86
IOR Name Service Entry (property) 72,85
IOR URL (property). 72,85
IOR.File (property).t 73, 86
IOR.URL (property)................... 72,85
PropertiesFile........... 81
RootID.......covi 82
RootIDoptioncoovenian.. 82
Specification. 57
Standard properties. 63
Tutorial (Sun Microsystems) 61
JINDI ContextFactory Cache Flush Interval
(properties) ..., 80
JNDI ContextFactory Cache Maximum Size
(property) ... 81
JNDI ContextFactory Cache Minimum Size
(property) ... 81
jndi.propertiesfile, locationof 63
jndiCtxCachelnt (property) 81
jndiCtxCacheMax (property) 81
jndiCtxCacheMin (property) 81
JINDIID (property)oovviiiii i 82
JINDIObject Interface. 41
jndiOFPropertiesFile (property). 82
jndiPropertieskile (property) 82
LDAPURL (property)..........coovvn.... 74
LDAP User (property)coovvven.... 74
Lightweight Directory Access Protocol 73
Load
Naming XML ...t 92
Load Balancing
Concepts.o 16
1M1

Naming Service Guide

Index

Implementation 17
Palicies.o i 18, 40
Load Balancing Plugin (property). 87
Load Balancing Timeout (property) 87
LoadBalancer Interface. 38
LoadBaancerPlugin Interface. 40, 41
Memory Management 45
Coneceptso 15
Memory-based persistence 58
Name
Binding 53,54
Component.t 55
Composite 57
Compound...........coovuiiiiiinan.. 57
Conventions. 55
Resolving............. 53,54
SHING . o 55
Stringifiedo 57
Syntax 55, 57
Validitychecks 58
Name(interface), 55
Name Components 10
NameService option
PurgeClassName 45
PurgeonList..............oiit 46
PurgeonlLoad 44
NameSingleton Configuration. 72
NamingContextcc.n... 8
Adding. ... 92
Deleting..........cooviiiii 93
Namingcontext...................... 53,54
Naming context hierarchy 53
Naming Data Storage Type. 78
Namingscheme. 57
Naming Service. 62, 63, 66
ACCESSTO . ..ot 66
Bindinglterator Interface. 37
Configuration. 63, 71
Contexts. 8

Naming Service Guide

LoadBalancing (property) 83
LoadBalancingFactory 17
LoadBalancingFactory Interface. 38
L oadBalancingFactorySingleton Configuration 85
Logfile.......oooiiii 61
Messages, warningouuien.nn. 62
Meta-characters. 57
CORBA 53,57
Corbaloc ... 12
Corbaname. it 13
file ... oo 13
http. . ..o 13
Data,accessingcoovviienn.n.. 61
example
Bindinglterator. 25
client. ... 33
LoadBaancer, customizing. 30
LoadBalancer, manipulating objects. 29
LoadBalancer,using 29
LoadBalancingFactory, using 28
naming context contents, accessing. 24
naming context, extension............. 26
Interoperableo 57
IOR .. 12
INDIObject Interface 41
LoadBalancer Interface................. 38
LoadBaancerPlugin Interface. 40, 41
LoadBalancingFactory Interface. 38
Manager.coiiiiii i 89
Namingcontext........................ 8
NamingContext Interface 35
NamingContextExt Interface. 36
URL. ... 11
Naming System...................... 54,55
Federation 54
NamingManager (interface) 55
& PRISMTECH

Object

CORBA. ... 55

Factories........ ... 64

JaVA. . 56, 58

INDI .o 62

Non-CORBAt 62

Reference 58

Referenceable, 58

Seridizable.............., 55, 58

Storedindirectory 56
Parameters

Applet 55

Environment 55
Persistence

ACIOSSSESSIONS. . o v ve e 66

JOBC. .. 61

Memory. ... 58

Multipleformsof 7,14
Persistence Options

NameSingleton 76
Policies. ... 16
Prefix

Propertieso 64
Quotinginstrings. ... 57
Read Cache Flush Interval (property) 76
Read Cache Maximum Size (property) 77
Read Cache Minimum Size (property). 77
ReBindContextCount (property) 79
ReBindCount (property). 80
Reference

Cyclic ... 57

Stored ... 55
Referenceableobject 58
Referencestoobjects 58

& PRISMTECH

Index

ObjectBinding. 93

Deletingcoiiiiiii 93
Object Cache Maximum Sizeoption. 45
Object Cache Minimum Sizeoption 45
Object Cache Purging Interval option 46
Object Purgingoption 45
Object.Name (property) 72,85
OBJECT_FACTORIES. 64
Obtaining the Root Context 21
OMG Standard API Definitions. 35
Properties

INDI .o 55

OpenFusionSPI 64

System ... 55
Purgableinterface., 97
Purge ClassNameoption. 45
PurgeClassPlugin.................... 84, 97
Purgeon List (property). 83
PurgeonListoption...................... 46
Purgeon Load (property). 84
PurgeonLoad option. 44
Purging

Concepts.o 15
Replication. ot 19
Resolveaname....................... 53,54
Resolve Name (property) 73, 86
ResolveCount (property)coo... 79
ResolveName (property) 73, 86
Resolver (property) ..., 85
Restrictions

SPl 55
Rootcontext...................covvvnnn, 62
Root Context, obtaining. 21

113

Naming Service Guide

Index

RootUUID ... 61
Save Restrictions 55
Naming XML......... 92 Starting
Serializableobject. 55, 58 Naming ServiceManager 89
Serviceprovider i 54 STATE_FACTORIES 64
LDAP. . 55 String
OpenFusionooviiiienan.. 55 Escapingwithin....................... 57
Services, directory 54 Name. ... 55
SID (ServicelD) ... 61, 66 Quotinginoovvuiii i 57
Singletons Stringifiedname oL 57
LoadBalancingFactorySingleton. 85 StringifiedNames....................... 11
NameSingleton 72 Subcontext.................iiiiiaa 54
SNMP . 19 Suppliedfactories.................t. 59
Specification Syntax
INDIL. . 57 Name. ... 55, 57
SPI System Master (property) 85
CosNamingcoouuiunnn. 55,57 System,Naming 54
Timeout (property) Tool Bar
Load Balancing Singleton 87 Naming ServiceManager 92
UnBindCount (property) 80 UUID (Universally Unique Identifier) 61, 66
URL. ... e 11 Generated. 66, 67
JDOBCdatabase. 65
Validity checksonnames................. 58 ViewNonCorba (property) 83
View Non-Corba Objects (property)......... 83 VisBroker........... 19
Warningmessages. voveeieinei e 62 Naming Service. 78
Write Cache Batch Size (property) Write Cache Write Interval (property) 77
Xbootclasspath L 93 XML Exportand Import. 46
114 & PRISMTECH

Naming Service Guide

	OpenFusion®
	Notices
	Preface
	About the Naming Service Guide
	Contacts

	Contents
	Table of Contents
	List of Figures
	List of Tables

	Introduction
	Naming Service
	1 Description
	1.1 Overview
	OMG Standard Features
	OpenFusion Enhancements

	1.2 Concepts and Architecture
	OMG Standard
	Naming Contexts
	Federation
	Name Components
	Interoperable Naming Service (INS)
	Stringified Names
	Interoperable Object Reference (IOR)
	URLs

	OpenFusion Enhancements
	Java Naming and Directory Interface (JNDI)
	Multiple Forms of Persistence
	Caching
	Purging and Memory Management
	Purging
	Memory Management

	Load Balancing Concepts
	Load Balancing in OpenFusion
	Instrumentation
	Fail-over
	Replication

	2 Using Specific Features
	2.1 Obtaining the Root Context
	2.2 Naming Context Creation and Destruction
	2.3 Binding and Unbinding Operations
	2.4 Accessing Naming Context Contents
	2.5 BindingIterator Operations
	2.6 Naming Context Extension Operations
	2.7 Using the LoadBalancingFactory
	2.8 Manipulating Objects in the LoadBalancer
	2.9 Using the LoadBalancer with the Naming Service
	2.10 Customizing the LoadBalancer

	3 Worked Example
	3.1 Example Client

	4 API Definitions
	4.1 OMG Standard API Definitions
	NamingContext Interface
	NamingContextExt Interface
	BindingIterator Interface

	4.2 OpenFusion API Extensions
	LoadBalancingFactory Interface
	LoadBalancer Interface
	LoadBalancer Standard Policies
	LoadBalancerPlugin Interface
	JNDIObject Interface

	5 Supplemental Information
	5.1 Administration Properties and Instrumentation
	5.2 Java Naming & Directory Interface (JNDI)
	5.3 Lightweight Directory Access Protocol (LDAP)
	5.4 Purging Options
	Purge on Load
	Purge on List
	Purge Class Plugin

	5.5 Memory Management
	Object Purging
	Object Cache Minimum Size
	Object Cache Maximum Size
	Object Cache Purging Interval

	5.6 XML Export and Import
	Exporting and Importing Cyclics

	5.7 Exceptions

	Java Naming and Directory Interface
	6 Description
	6.1 Overview
	Sun’s JNDI Standard Features
	OpenFusion Enhancements

	6.2 Concepts and Architecture
	Standard JNDI
	The Initial Context
	Naming Systems
	References and Addresses

	7 OpenFusion SPI Implementation
	7.1 Overview
	7.2 Details
	Names
	Java Objects
	Supplied Factories
	To Store CORBA Objects
	To Store RMI-IIOP Objects

	Federation

	8 Using Specific Features
	8.1 JDBC-based Persistence
	8.2 Accessing Data

	9 Supplemental Information
	9.1 Configuration Properties
	Standard Properties
	Provider-specific Properties
	General
	Persistence
	Caching
	UUID and SID

	9.2 Exceptions

	Configuration and Management
	10 Naming Service Configuration
	10.1 Overview
	Common Properties

	10.2 NameSingleton Configuration
	CORBA Properties
	IOR Name Service Entry
	IOR URL
	IOR File Name
	Resolve Name
	IOR Name Service

	Lightweight Directory Access Protocol (LDAP)
	LDAP User
	LDAP Password
	LDAP URL
	LDAP Trace
	LDAP Security
	LDAP SASL Mechanism Names

	Persistence Options
	Read Cache Flush Interval
	Read Cache Maximum Size
	Read Cache Minimum Size
	Write Cache Write Interval
	Write Cache Batch Size
	Naming Data Storage Type

	Instrumentation Properties
	Count of resolve operations
	Count of rebind context in service
	Count of context bind operations
	Count of unbind operations
	Count of rebind operations
	Count of bind operations

	General Properties
	JNDI ContextFactory Cache Flush Interval
	JNDI ContextFactory Cache Maximum Size
	JNDI ContextFactory Cache Minimum Size
	JNDI Properties File
	JNDI OF Properties File
	JNDI Root ID
	Enable Load Balancing
	View Non�Corba Objects
	Purge on List
	Purge on Load
	Purge Class Plugin
	System Master

	10.3 LoadBalancingFactorySingleton Configuration
	IOR Name Service Entry
	IOR URL
	IOR File Name
	Resolve Name
	IOR Name Service
	Load Balancing Plugin
	Load Balancing Timeout

	11 Naming Service Manager
	11.1 Overview
	11.2 Running the Naming Service Manager
	11.3 Using the Naming Service Manager
	Object Icons
	Tool Bar Buttons
	Adding a Naming Context
	Binding OpenFusion Services
	Binding Objects
	Deleting a Naming Context or Object Binding
	Exporting XML
	Importing XML
	Launching Managers and Browsers
	CORBA Object Browser
	Naming Service Manager

	12 Purgable Interface
	12.1 The Purgable Interface
	Purge Class Plugin
	Using The Purgable Interface

	Appendices
	A Command Line Management Tool
	Features
	Configuration
	Using the file protocol
	Using the http protocol
	Running

	Index

