
2SHQ)XVLRQ��7$2
9HUVLRQ����

6HUYLFHV�	�8WLOLWLHV�*XLGH
PRISMTECH

2SHQ)XVLRQ®

7$2
6(59,&(6�	�87,/,7,(6�*8,'(
3DUW�1XPEHU��2)7$2���6(59* Doc Issue 05, 29 June 2004

PRISMTECH

1RW LFHV

Copyright Notice

© 2004 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
LLL

All Trademarks mentioned herein belong to their respective owners.

OMG, CORBA, IIOP, and ORB are trademarks or registered trademarks of Object
Management Group, Inc. in the U.S. and other countries.

Java, Enterprise JavaBeans, and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

VisiBroker is a trademark or registered trademark of Borland Corporation in the U.S. and
other countries.

OrbixWeb and Orbix are trademarks or registered trademarks of Iona Technologies PLC in
the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, licensed exclusively through
X/Open Company Ltd.

Microsoft Windows and NT are trademarks or registered trademarks of Microsoft
Corporation in the U.S. and other countries.
6HUYLFHV�	�8WLOLWLHV�*XLGH
PRISMTECH

L

he
e the

er in
3UH IDFH
About the Services & Utilities Guide

The Services & Utilities Guide is included with OpenFusion TAO. The Services &
Utilities Guide describes how to use the command line tools, services, and utilities,
including the IDL compiler, provided with OpenFusion TAO.

Intended Audience

The Services & Utilities Guide is intended to be used by developers, administrators,
or others who need to use the services and utilites provided with OpenFusion TAO.

Organisation

The Services & Utilities Guide is divided into the following sections:

• Section 1, TAO IDL Compiler, describes how to use the OpenFusion TAO ID
compiler

• Section 2, Interface Repository Service, describes the Interface Respository

• Section 3, Naming Service, describes how to run the Naming Service from t
command line, as well as describing utilities which can be used to manag
service

• Section 5, Utilities, describes useful command line tools

Conventions

The conventions listed below are used to guide and assist the read
understanding the Services & Utilities Guide.

Item Under Construction and subject to change.

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows (e.g. NT, 2000) only.

Information applies to Unix based systems (e.g. Solaris) only.

Hypertext links to WWW and other internet services are shown as blue italic
underlined.

i
WIN

UNIX
Y
6HUYLFHV�	�8WLOLWLHV�*XLGH

PRISMTECH

On-Line (PDF) versions of this document: Items shown as cross references to other
parts of the document, e.g. Contacts on page vii, behave as hypertext links: users
can jump to that section of the document by clicking on the cross reference.

Courier, Courier Bold, or Courier Italic fonts are used to indicate
programming code. The Courier font can also be used to indicate file names (in
order to distinguish the file name from the standard text).

Extended code fragments are shown as small Courier font contained in shaded, full
width boxes (to allow for standard 80 column wide text), as shown below:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.

Arial Bold is used to indicate user related actions, e.g. File | Save from a menu.

6WHS��� One of several steps required to complete a task.

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

 rootContext.bind (newName, demoObject);
YL
6HUYLFHV�	�8WLOLWLHV�*XLGH

PRISMTECH

�

Contacts
PrismTech can be contacted at the following address, phone number, fax and e-mail
contact points for information and technical support. Users of the On-line version of
this manual can click the e-mail addresses below to launch their e-mail client or Web
browser to send e-mail direct to PrismTech.

Web: http://www.prismtechnologies.com
General Enquiries: info@prismtechnologies.com
Support Enquiries: http://www.prismtechnologies.com/Contacts

Corporate Headquarters European Head Office

PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
YLL
6HUYLFHV�	�8WLOLWLHV�*XLGH

PRISMTECH

http://www.prismtechnologies.com
mailto: info@prismtechnologies.com
http://www.prismtechnologies.com/Contacts

YLLL
6HUYLFHV�	�8WLOLWLHV�*XLGH

PRISMTECH

&RQWHQWV

[L

7DE OH �R I �&RQWHQ WV
Notices iii

Preface v

About the Services & Utilities Guide . v

Contacts .vii

List of Tables xiii

Services & Utilities 15

� TAO IDL Compiler 17

��� Introduction . 17
Running . 17

��� Generated Files . 17

��� Environment Variables . 18

��� Operation Demuxing Strategies . 19

��� Collocation Strategies . 19

��� Compiler Options. 19

� Interface Repository Service 27

��� Running the Service. 27
IFR_Service . 27

��� Administration . 27
tao_ifr. 27

� Naming Service 29

��� Running the Service. 29
Environment Variables . 30
Persistence . 30
Implementation Policies . 31

Destroying Binding Iterators. 31
Orphaned Naming Contexts . 31
6HUYLFHV�	�8WLOLWLHV�*XLGH
PRISMTECH

7DEOH�RI�&RQWHQWV
[LL

Bootstrapping the Naming Service from Clients. 31

��� Administration . 32
nslist . 32
nsadd . 33
nsdel . 33

� Event Service 35

��� Introduction . 35

��� Running the Service. 35

��� Event Channel Configuration. 36
Run-time Configuration. 36
The Configuration File . 36
Options. 36
The Constructor . 39

� Utilities 41

��� Descriptions and Usage . 41
catior . 41
ior-parser . 43
gperf. 43

Index 45
6HUYLFHV�	�8WLOLWLHV�*XLGH
PRISMTECH

/ LV W �R I �7DE OHV
Table 1 Environment Variable Descriptions .18
Table 2 Compiler Options . 20
Table 3 Interface Repository Command Line Options . 27
Table 4 Legal tao_ifr Command Line Options . 28
Table 5 Naming_Service Command Line Options . 29
Table 6 CosEvent_Service Command-line Options . 35
Table 7 Event Channel Configuration Options . 36
Table 8 Proxy Collection Flags . 38
Table 9 Constructor Attributes . 39
[LLL
6HUYLFHV�	�8WLOLWLHV�*XLGH

PRISMTECH

/LVW�RI�7DEOHV
[LY
6HUYLFHV�	�8WLOLWLHV�*XLGH

PRISMTECH

6HUYLFHV�	�8WLOLWLHV

�

� 7$2� ,'/ �&RPSL OH U
ould
AO
L

der

, then
tion
 be

in the
���

��� Introduction
This section describes the TAO IDL compiler’s options and features. Users sh
be familiar with standard OMG IDL before reading this section or using the T
IDL compiler. For information on the OMG IDL please refer to the ID
documentation provided on the OMG’s web site (http://www.omg.org/).

Running
The TAO IDL compiler is run from the command line using:

where [options] are zero or more of the command line options described un
Section 1.6, Compiler Options, on page 19.

��� Generated Files
The IDL compiler generates a number of files from each .idl file. The generated
file names are obtained by taking the IDL basename and appending a letter to the
basename which signifies if the file is for a stub, skeleton, or skeleton template
appending an extension for its file type (interface (.i), header (.h), or defini
(.cpp). The complier provides options which enable different suffixes to
generated if required:

• client stubs - *C.i, *C.h, and *C.cpp

• server skeletons - *S.i, *S.h, and *S.cpp

• server skeleton templates - *S_T.i, *S_T.h, and *S_T.cpp

TAO's IDL compiler creates separate *.i and *S_T.* files to improve the
performance of the generated code. Note that only the client stubs declared
*C.h file and the skeletons in the *S.h file need to be #included in your code.

% tao_idl [options]

i

�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

http://www.omg.org

������(QYLURQPHQW�9DULDEOHV���� �
��� Environment Variables

Because the TAO IDL compiler does not contain code to implement a preprocessor,
it must use an external one. For convenience, it uses a built-in name for an external
preprocessor to call. During compilation, this is how that default is set:

1. If the macro TAO_IDL_PREPROCESSOR is defined, then it will use that.

2. Else if the macro ACE_CC_PREPROCESSOR is defined, then it will use that.

3. Otherwise, it will use "cc"

The same behaviour occurs for the TAO_IDL_PREPROCESSOR_ARGS and
ACE_CC_PREPROCESSOR_ARGS macros.

Case 1 is used by the Makefile on most machines to specify the preprocessor.

Case 2 is used on Windows and platforms that need special arguments passed to the
preprocessor (MVS, HPUX, etc.).

Case 3 is not normally used, but is included as a default case.

Since the default preprocessor may not always work when tao_idl is moved to
another machine or used in cross-compilation, it can be overridden at runtime by
s e t t i n g t h e e n v i r o n me n t v a r i a b l e s TAO_IDL_PREPROCESSOR a n d
TAO_IDL_PREPROCESSOR_ARGS.

7DEOH���(QYLURQPHQW�9DULDEOH�'HVFULSWLRQV�

Variable Usage

TAO_IDL_PREPROCESSOR Used to override the program name of the
preprocessor that the TAO IDL compi ler
(tao_idl) uses.

TAO_IDL_PREPROCESSOR_ARGS Used to over r ide the f lags passed to the
preprocessor that tao_idl uses. This can be
used to a l te r t he de fau l t op t io ns fo r t he
preprocessor and specify things like include
directories and how the preprocessor is invoked.
Two flags that will always be passed to the
preprocessor are -DIDL and -I.

TAO_ROOT Used to determine where orb.idl is located.

ACE_ROOT Used to determine where orb.idl is located.
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� ������2SHUDWLRQ�'HPX[LQJ�6WUDWHJLHV����
���

In previous versions, the environment variables CPP_LOCATION and
TAO_IDL_DEFAULT_CPP_FLAGS were used for this purpose. Both will still work,
but tao_idl will display a deprecation warning if it detects them. It is possible that
support for these variables will be removed in a future version of TAO.

I f TAO_ROOT i s d e f i n e d , t h e n tao_idl w i l l u s e i t t o i n c l u d e t h e
$(TAO_ROOT)/tao directory. This is to allow tao_idl to automatically find
<orb.idl> when it is included in an IDL file. tao_idl will display a warning
message when neither is defined.

��� Operation Demuxing Strategies
The server skeleton can use different demuxing strategies to match the incoming
operation with the correct operation at the servant. TAO’s IDL compiler supports
perfect hashing, binary search, and dynamic hashing demuxing strategies. By
default, TAO’s IDL compiler tries to generate perfect hash functions, which is
generally the most efficient and predictable operation demuxing technique. To
generate perfect hash functions, TAO’s IDL compiler uses gperf, a general-purpose
perfect hash function generator.

If you cannot use perfect hashing, then the next best operation demuxing strategy is
using binary search, which can be configured using TAO’s IDL compiler options
(see Section 1.6, Compiler Options, below).

��� Collocation Strategies
tao_idl can generate collocated stubs using two different collocation strategies. It
also allows you to suppress and enable the generation of the stubs of a particular
strategy. You can generate stubs for both collocation strategies (using both -Gp and
-Gd flags at the same time) and defer the determination of collocation strategy until
run time. However, if you want to minimize the footprint of your program, then you
might want to pre-determine the collocation strategy you want and only generate the
right collocated stubs (or not generate any at all using both -Sp and -Sd flags at the
same time, provided it’s a pure client.)

��� Compiler Options
TAO’s IDL compiler invokes your C or C++ preprocessor to resolve included IDL
files. It takes the common options for preprocessors (such as -D or -I). The
compiler also takes other options that are specific to it. Table 2, Compiler Options,
shown following, describes each compiler option.

i

�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

��
�6HUYLFHV�

������&RP �

PRISMTECH

marks

-u

-V

-Wb,op

ro_name right after each class or
ated skeleton code (S files,) this is
quires special directives to export
y the definition is just a space on

ode to include include_path at
ver header, this is usually a good
 export macro on Windows.

ro_name right after each class or
erated stub code: this is needed for
l directives to export symbols from
is just a space on unix platforms.

ode to include include_path at
is is usually a good place to define

ct as issuing
o=macro_name -Wb,
cro_name. This option is useful
ing both stubs and skeletons.
	�8WLOLWLHV

SLOHU�2SWLRQV����

7DEOH���&RPSLOHU�2SWLRQV�

Option Description Re

The compiler prints out the options that are given
below and exits clean

The compiler printouts its version and exits

tion_list Pass options to the TAO IDL compiler, as follows:

skel_export_macro=macro_name The compiler will emit mac
extern keyword in the gener
needed for Windows that re
symbols from DLLs, usuall
unix platforms.

skel_export_include=include_path The compiler will generate c
the top of the generated ser
place to define the server side

stub_export_macro=macro_name The compiler will emit mac
extern keyword in the gen
Windows that requires specia
DLLs, usually the definition

stub_export_include=include_path The compiler will generate c
the top of the client header, th
the export macro.

export_macro=macro_name This option has the same effe
-Wb, skel_export_macr
stub_export_macro=ma
when building a DLL contain

��
�6HUYLFHV�

������&RP �

PRISMTECH

-Wb,op
(continu

e effec t as spec i fy ing -Wb ,
=include_path. This option

on to build DLL containing both

ode to include include_path at
piler generated files. This can be
eader mechanism, such as those
ilder or MSVC++.

ate code to optimise access to base

ode to include include_path at
r file, before any other include
 ace/pre.h, which declares
rland C++ Builder and MSVC++
 manner in all IDL-generated files
BA services.

ode to include include_path at
 file. For example, ace/post.h,
ions for the Borland C++ Builder
s included in this manner in all
O libraries and CORBA services.

-E

-d

-Dmacr

-Umacr

-Iincl

marks
	�8WLOLWLHV

SLOHU�2SWLRQV����

tion_list
ed)

export_include=include_path This opt ion has the sam
stub_export_include
goes with the previous opti
stubs and skeletons.

pch_include=include_path The compiler will generate c
the top of all TAO IDL com
used with a pre-compiled h
provided by Borland C++ Bu

obv_opt_accessor The IDL compiler will gener
class data for value types.

pre_include=include_path The compiler will generate c
the top of the each heade
statements. For example,
compiler options for the Bo
compilers, is included in this
in the TAO libraries and COR

post_include=include_path The compiler will generate c
the bottom of the each header
which restores compiler opt
and MSVC++ compilers, i
IDL-generated files in the TA

Only invoke the preprocessor

Causes output of a dump of the AST

o_definition Passed to the preprocessor

o_name Passed to the preprocessor

ude_path Passed to the preprocessor

7DEOH���&RPSLOHU�2SWLRQV��&RQWLQXHG�

Option Description Re

��
�6HUYLFHV�

������&RP �

PRISMTECH

-Aasse

-Yp, p

-H, op

t uses perfect hashed operation
he default strategy. Perfect hashing
erate demuxing methods.

t uses dynamic hashed operation

uses binary search based operation

uses linear search based operation
t this option is for testing purposes
d for production code since it’s

-in

-ic

-g

marks
	�8WLOLWLHV

SLOHU�2SWLRQV����

rtion Passed to the preprocessor

ath Specifies the path for the C preprocessor

tion_list Pass options to the TAO IDL compiler, as follows:

perfect_hash Generate skeleton code tha
demuxing strategy, which is t
uses gperf program, to gen

dynamic_hash Generate skeleton code tha
demuxing strategy.

binary_search Generate skeleton code that
demuxing strategy.

linear_search Generate skeleton code that
demuxing strategy. Note tha
only and should not be use
inefficient.

To generate #include statements with <>’s for
the standard include files (e.g. tao/corba.h)
indicating them as non-changing files

To generate #include statements with ""s for
changing standard include files,
(e.g. tao/corba.h).

To specify the path for the perfect hashing program
(gperf). The default is
$TAO_ROOT/bin/gperf.

7DEOH���&RPSLOHU�2SWLRQV��&RQWLQXHG�

Option Description Re

��
�6HUYLFHV�

������&RP �

PRISMTECH

-o

-hc

-hs

-hT

-cs

-ci

-ss

-sT

-si

-st

-t vironment variable if defined, else

 environment variables, if defined,
ry.

-Cw as a nicety for dealing with legacy
CORBA rules for name resolution

marks
	�8WLOLWLHV

SLOHU�2SWLRQV����

To specify the output directory to IDL compiler as
to where all the IDL-compiler-generated files are to
be put. By default, all the files are put in the current
directory from where is called.

Client’s header file name ending. Default is "C.h".

Server’s header file name ending. Default is "S.h".

Server’s template header file name ending. Default
is "S_T.h".

Client stub’s file name ending. Default is "C.cpp".

Client inline file name ending. Default is "C.i".

Server skeleton file name ending. Default is
"S.cpp".

Server template skeleton file name ending. Default
is "S_T.cpp".

Server inline skeleton file name ending. Default is
"S.i".

Server’s template inline file name ending. Default
is "S_T.i".

Temporary directory to be used by the IDL
compiler.

UNIX: use the TEMPDIR en
use /tmp/.

Windows: use TMP or TEMP
else use the Windows directo

Output a warning if two identifiers in the same
scope differ in spelling only by case (default is the
output of error message).

This option has been added
IDL files, written when the
were not as stringent.

7DEOH���&RPSLOHU�2SWLRQV��&RQWLQXHG�

Option Description Re

��
�6HUYLFHV�

������&RP �

PRISMTECH

-Ce

-GC

-Ge fl

-Gp

-Gd

-Gsp

-Gt

-Gv

-GI

-GIh a

-GIs a

marks
	�8WLOLWLHV

SLOHU�2SWLRQV����

Output an error if two indentifiers in the same
scope differ in spelling only by case (default).

Generate AMI stubs ("sendc_" methods, reply
handler stubs, etc)

ag If the value of the flag is 0, tao_idl will generate
code that will use native C++ exceptions. If the
value of the flag is 1, tao_idl will generate code
that wil l use the CORBA::Environment
variable for passing exceptions.

If the value of the flag is 2, the C++ throw
k e y w o r d w i l l b e u s e d in p l a c e o f
ACE_THROW_SPEC , ACE_THROW, a n d
ACE_RETRHOW (ACE_THROW_RETURN and
TAO_INTERCEPTOR_THROW will still be used).

Generated collocated stubs that use Thru_POA
collocation strategy (default)

Generated collocated stubs that use Direct
collocation strategy

Generate client smart proxies

Generate optimized TypeCodes

Generate code that supports Object-by-Value

Gene ra t e t e mpl a t e s f i l e s f o r t he s e rvan t
implementation

rg Servant implementation header file name ending

rg Servant implementation skeleton file name ending

7DEOH���&RPSLOHU�2SWLRQV��&RQWLQXHG�

Option Description Re

��
�6HUYLFHV�

������&RP �

PRISMTECH

-GIb a

-GIe a

-GIc

-GIa

-Sa

-Sp

-Sd

-St on of the Any operators, since the
 associated typecode.

-Sc

-Sv

marks
	�8WLOLWLHV

SLOHU�2SWLRQV����

rg Prefix to the implementation class names

rg Suffix to the implementation class names

Generate copy construc tors in the servant
implementation template files

Generate assignment operators in the servant
implementation template files

Suppress generation of the Any operators

Suppress generation of collocated stubs that use
Thru_POA collocation strategy

Suppress generation of collocated stubs that use
Direct collocation strategy (default)

Suppress generation of the TypeCodes Also suppresses the generati
Any >>= operator needs the

Suppress generation of the tie classes, and the
S_T. files that contain them.

Suppress value type support (default).

7DEOH���&RPSLOHU�2SWLRQV��&RQWLQXHG�

Option Description Re

������&RPSLOHU�2SWLRQV���� �
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� , Q WH U IDFH �5HSRV L WRU\ �
6H UY LFH
���

��� Running the Service
The Interface Repository makes all IDL declarations available.

IFR_Service
To run the Interface Repository you need to use the executable IFR_Service. This is
found in the bin directory of the OpenFusion TAO distribution.

��� Administration

tao_ifr
This is the executable that administers the IFR. Calling tao_ifr <filename> will
add the contents of the IDL file to the repository.

Calling tao_ifr -r <filename> removes the contents of the IDL file from the
repository.

tao_ifr requires all the libraries that are required by the IFR service, plus the
IFR_Service executable itself.

7DEOH���,QWHUIDFH�5HSRVLWRU\�&RPPDQG�/LQH�2SWLRQV

Option Description

-p Makes the Interface Repository persistent.

-b <filename> Overrides the default filename used for persistent storage with filename.
The default filename is ifr_default_backing_store.

-m Enables read-write locking of IFR calls. If the IFR is started up with
multi-threading enabled, for example if a service configuration file is used that
specifies thread-per-connection, then this option should be used. Note that if
ACE_HAS_THREADS is not defined, then this option will be ignored.

-r Uses the Win32 registry for the database. Not available with persistence. The
-r option is ignored if the -p option is used. If the platform is not Win32, an
error message is output.

-o <filename> Overrides the default filename used for storing the Interface Repository IOR.
The default filename is if_repo.ior.
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������$GPLQLVWUDWLRQ���� �
tao_ifr can also handle the -ORBxxx parameters, where the xxx represents a
particular ORB parameter, for example:

-ORBInitRefInterfaceRepository=file://<filename>

ORBInitRefInterfaceRepository enables the IFR service to be resolved by
getting its IOR from <filename>.

By default, the IFR service stores its IOR in the file if_repo.ior, but that can be
modified by starting the IFR service using the -o option (see above).

All -ORBxxx options appear in the command line before any other options.

tao_ifr can process multiple IDL files in one execution. As long as the file names
come after any -ORB options that may be present, they may come mixed in any
order with the other command line options. The tao_ifr command line parser will
treat any option (or option pair) that doesn’t begin with a hyphen (-) as a filename.

7DEOH���/HJDO�WDRBLIU�&RPPDQG�/LQH�2SWLRQV

Option Description

-Cw Warning if identifier spellings differ only in case (default is error).

-Ce Error if identifier spellings differ only in case (default).

-d Outputs (to stdout) a dump of the AST.

-Dname[=value] Defines name for preprocessor.

-E Runs preprocessor only, prints on stdout.

-Idir Includes dir in search path for preprocessor.

-L Enables locking at the IDL file level.

-r Removes contents of IDL file(s) from repository.

-Si Suppresses processing of included IDL files.

-t Temporary directory to be used by the IDL compiler.

-Uname Undefines name for preprocessor.

-A... Local implementation-specific escape.

-u Prints usage message and exits.

-v Traces compilation stages.

-w Suppresses IDL compiler warning messages.

-Yp, path Defines the location of the preprocessor.
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� 1DPLQJ �6HUY LFH
xt
se

t

 of
is

e
y
.e.,

ct
h

���

��� Running the Service
The Naming Service is started with the Naming_Service command, optionally
followed by any of the options listed in Table 5, Naming_Service Command Line
Options. The Naming_Service command is located in the bin directory of the
OpenFusion TAO distribution.

7DEOH���1DPLQJB6HUYLFH�&RPPDQG�/LQH�2SWLRQV�

Option Description

-ORBNameServicePort <nsport> Multicast port for listening for requests from clients
bootstrapping to a naming service using multicast. Only used
when multicast responding is enabled via -m 1

-m <0|1> 1=enable multicast responses, 0=disable (default).

TAO offers a simple, non-standard method for clients to
discover the initial reference for the Naming Service.
However, it can be inadequate and cause unexpected results
if, for example, there are multiple naming services running on
the network, the default behaviour is for the Naming Service
to not respond to such mul t icas t quer ies (use the
Interoperable Naming Service bootstrap options instead).

-d Provide debug information.

-o <ior_file> Stores the root context’s IOR to ior_file.

-p <pid_file> Stores Naming Service server’s process id to pid_file.

-s <context_size> Size of the hash table allocated for the root Naming Conte
(if one is created). All contexts created under the root will u
the same size for their hash tables. The default is 1024.

-t <time> How long (in seconds) the server should listen for clien
requests before terminating.

-f <persistence_file_name> Name of the file to use to store or retrieve persistent state
the Naming Service. Without this option, Naming Service
started in non-persistent mode.

-b <base_address> Address used for memory mapping the file specified with th
-f option above. The value supplied with this option is onl
used when the Naming Service runs in persistent mode, i
-f option is present.

-u <directory> Use a flat file persistence mechanism which stores obje
reference information in a file per naming context: eac
context file is placed in the directory specified.
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������5XQQLQJ�WKH�6HUYLFH���� �
Example

This example starts the Naming Service, enables multicasting using port 1122 for
listening, and saves its IOR to a file called name.ior

Environment Variables
The NameServicePort environment variable is set to the multicast port used by
clients who want to bootstrap to a Naming Service using multicast. This
environment variable is used only when multicast responding is enabled (using the
command line option -m 1).

Persistence
The Naming Service has an optional persistence capability. By default, the Naming
Service is started in a non-persistent mode. Supplying -f command-line option to
the server

Causes a persistent version of the Naming Service to run.

The file specified with the -f option is used to store the persistent state of the
Naming Service, i.e., all Naming Contexts and their bindings. The following apply
when -f option is specified:

1. If the specified file does not exist, it is created and used to store the state of the
Naming Service. An initial (root) Naming Context is also created.

2. If the specified file exists, then the state stored becomes the current state of the
Naming Service. A consistency check is performed before the state is loaded.

Internally, TAO uses memory mapped file to implement persistence feature of the
Naming Service. A default memory address (ACE_DEFAULT_BASE_ADDR) is used
for mapping the file. Alternate mapping address can be specified at compile-time by
redefining TAO_NAMING_BASE_ADDR in tao/orbconf.h. Alternate mapping
address can also be specified at run-time with the -b command-line option, which
takes precedence over TAO_NAMING_BASE_ADDR definition.

-v <directory> Use a flat directory persistence mechanism which stores
object reference information in a directory per naming
context, as specified by <directory>.

7DEOH���1DPLQJB6HUYLFH�&RPPDQG�/LQH�2SWLRQV��&RQWLQXHG�

Option Description

% Naming_Service -m 1 -ORBNameServicePort 1122 -o name.ior
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� ������5XQQLQJ�WKH�6HUYLFH����
���

The Naming Service stores absolute pointers in its memory-mapped file. Therefore,
it is important to use the same mapping address on each run for the same persistence
file.

Implementation Policies

Destroying Binding Iterators
A binding iterator is destroyed when client invokes the destroy operation either on
the iterator itself or on the naming context it is iterating over. In both cases,
subsequent calls on the binding iterator object will cause OBJECT_NOT_EXIST
exception.

Orphaned Naming Contexts
This implementation of the Naming Service does not include any form of garbage
collection for orphaned naming contexts. It is the clients responsibility to clean up
and remove naming context and thus avoid leaking server resources. All resources,
including orphaned contexts, are released when the Naming Server is shutdown.

Bootstrapping the Naming Service from Clients
There are several methods which a client can use to bootstrap to a Naming Service,
i.e., there are several mechanisms which resolve_initial_references can
use when asked for "NameService". In order of predictable behaviour, they are:

1. Using command-line options

The -ORBInitRef NameService=IOR:... or environment variable
NameServiceIOR can be used on the client side to specify the object that the
call to should return to the client. (On the server side, -o option can be used to
get the IOR).

Example (UNIX, same host):

On the first line, we start the Naming Service, and output its IOR to ior_file.
O n th e s ec o nd l in e , w e s t a r t s o m e c l i e n t , a n d sp e c i fy t he I O R
resolve_initial_references should return for the Naming Service in a
file format.

2. Using Multicast

% TAO_ROOT/orbsvcs/Naming_Service -o ior_file
% my_client -ORBInitRef NameService=file://ior_file
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������$GPLQLVWUDWLRQ���� �
When started with the respond to multicast queries option turned on (-m 1),
clients can use IP multicast to query for a naming service, and this instance will
respond. The Naming Server is listening for client multicast requests on a
specified port. On the client side, sends out a multicast request on the network,
trying to locate a Naming Service. When a Naming Server receives a multicast
request from a client, it replies to the sender with the IOR of its root naming
context.

The port used for this bootstrapping process, i.e., the multicast port, has nothing
to do with the ORB port used for CORBA communication. Other points worth
mentioning include:

 - A client and a server can communicate using the multicast protocol if they are
using the same multicast port. For both client and server
-ORBnameserviceport command-line option and NameServicePort
environment variable can be used to specify the multicast port to use. If none is
specified, the default port is used. (The ability to specify multicast ports can be
used to match certain clients with certain Naming Servers, when there are more
than one Naming Server running on the network).

 - If there are several naming servers running on the network, each listening on the
same port for multicast requests, each will send a reply to a client’s request. The
client’s orb will use the first response it receives, so the Naming Service will, in
fact, be selected at random.

Since this mechanism is proprietary to TAO (i.e., non-standard), it only works
when both client and server are written using TAO. There is no way to turn
multicasting off on the client side, but it is used only as a last resort, i.e., any of
the other options will override it.

��� Administration
The following command line utilities can be used administer objects which are, or
need to be, registered with the Naming.

nslist
nslist displays a formatted list of current Naming Service entries and is run from
the command line as follows:

where

nslist displays the contents of the default "NameService" (including the
p r o t o c o l a n d e n d p o i n t o f e a c h o b j e c t r e f e r e n c e) r e t u r n e d b y
resolve_initial_references()

i

% nslist [--ior | --nsior]
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� ������$GPLQLVWUDWLRQ����

 line
���

--ior is an optional switch which displays the contents of the NameService,
including the IOR of each reference entry and the IOR of the NameService itself

--nsior is an optional switch which displays only the IOR of the NameService
itself, with no other text. This switch can be used to locate the TAO
NameService for non-TAO applications.

nsadd
nsadd can be used to add objects into the Name Service and is run as follows:

where

--name obj_name adds an object identified by obj_name (required)

--ior ior supplies the object’s IOR contained in the file identified by ior
(required)

--rebind optionally rebinds the object (as per the Naming Service’s rebind
method)

nsdel
nsdel deletes objects from the Name Service. It is run from the command
using:

where

--name obj_name specifies the object identified by obj_name to be removed
(required)

% nsadd < --name obj_name > < --ior ior > [--rebind]

% nsdel < --name obj_name >
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������$GPLQLVWUDWLRQ���� �
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� (YHQW �6HUY LFH
���

��� Introduction
The OMG Event Service is a service for decoupling the suppliers of events from the
consumers. For many applications, this approach provides a much more appropriate
model than the synchronous invocation mechanism of CORBA.

��� Running the Service
The Event Service is started with the CosEvent_Service command, optionally
followed by any of the options listed in Table 6, CosEvent_Service Command-line
Options.

The CosEvent_Service server supplies the capability to start a single event
channel in its own process. It can bind the created event channel to a supplied name
in the root naming context of the Naming Service. The Naming Service must be
running before the CosEvent_Service server is started, unless the -x
command-line option is used. The created event channel implements the
CosEventChannelAdmin::EventChannel interface.

When the destroy() operation of the event channel is called, the process exits and
the event channel is unbound from the naming service.

7DEOH���&RV(YHQWB6HUYLFH�&RPPDQG�OLQH�2SWLRQV

Option Description Default

-n COS_EC_name Specifies the name with which to
bind the event channel (in the root
naming context of the Naming
Service). Ignored if the -x option is
used.

CosEventService

-r Use the rebind() operation to bind
the event channel in the Naming
Service. If the name is already bound
and this flag is not passed, the process
exits with an Already Bound
exception. Ignored if the -x option is
used.

The bind() operation is used.

-x Do not use the Naming Service. This
simply creates an event channel.

Bind the event channel in the
Naming Service.
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������(YHQW�&KDQQHO�&RQILJXUDWLRQ���� �
��� Event Channel Configuration

Run-time Configuration
The new implementation of the COS Event Service uses a factory to build all the
objects and strategies it requires. The factory can be dynamically loaded using ACE
Service Configurator. This is extremely convenient because the factory can also
parse options in the Service Configurator script file.

The current implementation provides a default implementation for this factory This
document describes the options used by this default implementation. Users can
define their own implementation with new ad-hoc strategies or with pre-selected
strategies.

The Configuration File
The COS channel uses the same service configurator file that the ORB uses. The
default name for this file is svc.conf but the ORB option -ORBSvcConf can be
used to override this. The format of the file is described in detail in the service
configurator documentation but the relevant section for the event channel looks like
this:

All the event service factory options start with -CEC

Options

Comments go here...
More comments if you want to...
static CEC_Factory "-CECDispatching reactive"

7DEOH���(YHQW�&KDQQHO�&RQILJXUDWLRQ�2SWLRQV�

Option Description

-CECDispatching
dispatching_strategy

Select the dispatching strategy used by the COS event
service. A reactive strategy will use the same thread that
received the event from the supplier to push the event to all
the consumers. The mt strategy will also use a pool of
threads, but the thread to dispatch is randomly selected.

-CECDispatchingThreads
number_of_threads

Select the number of threads used by the mt dispatching
strategy.

-CECProxyConsumerLock
lock_type

Select the lock type (null, thread or recursive) to
synchronize access to the ProxyPushConsumer state.
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� ������(YHQW�&KDQQHO�&RQILJXUDWLRQ����
���

-CECProxySupplierLock
lock_type

Select the lock type (null, thread or recursive) to
synchronize access to the ProxyPushSupplier state.

-CECUseORBId orbid Set the name of the ORB used by the event service. Only
useful in applications that create multiple ORBs and activate
the event service in one of them.

-CECConsumerControl policy Select the consumer control policy (null or reactive) to
detect and discard broken consumers.

-CECSupplierControl policy Select the supplier control policy (null or reactive) to detect
and discard broken suppliers.

-CECConsumerControlPeriod
period

Set the period (in microseconds) used by the reactive
consumer control policy to poll the state of the consumers.

-CECSupplierControlPeriod
period

Set the period (in microseconds) used by the reactive
supplier control policy to poll the state of the suppliers.

-CECConsumerControlTimeout
timeout

Set the timeout period (in microseconds) used by the
reactive consumer control policy to detect a timeout when
polling the state of the consumers.

-CECSupplierControlTimeout
timeout

Set the timeout period (in microseconds) used by the
reactive supplier control policy to detect a timeout when
polling the state of the suppliers.

-CECReactivePullingPeriod
period

Set the period (in microseconds) used by the reactive pulling
strategy to poll all the PullSuppliers for an event.

-CECProxyConsumerCollection
flag[:flags]

Configure the data structure and strategies used to
implement collections of ProxyPushConsumers and
ProxyPullConsumers. The argument is a colon separated
list of flags, described in Table 8, Proxy Collection Flags.

-CECProxySupplierCollection
flag[:flags]

Configure the data structure and strategies used to
implement collections of ProxyPushSupplier and
ProxyPullSupplier objects. The argument is a colon
separated list of flags, described in Table 8, Proxy
Collection Flags.

7DEOH���(YHQW�&KDQQHO�&RQILJXUDWLRQ�2SWLRQV��&RQWLQXHG�

Option Description
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������(YHQW�&KDQQHO�&RQILJXUDWLRQ���� �
7DEOH���3UR[\�&ROOHFWLRQ�)ODJV

Flag Description

MT Use regular mutexes and/or condition variables for
serialization.

ST Use null mutexes and/or condition variables for serialization.

LIST Implement the collection using an ordered list, fast for
iteration (i.e. during event dispatching), but slow for insertion
and removal (i.e. when clients connect and disconnect from
the EC).

RB_TREE Implement the collection using a Red-Black tree, slow for
iteration (i.e. during event dispatching), but fast for insertion
and removal (i.e. when clients connect and disconnect from
the EC).

IMMEDIATE Threads block until they can execute a change on the data
structure, the system must use other approaches to guarantee
that the iterators are not invalidated during event dispatching.
For example, use a separate dispatching thread. Using this
option with the reactive values for any of the
-CECSupplierControl, -CECConsumerControl, or
-CECDispatching options may cause deadlocks.

COPY_ON_READ Before initiating an iteration to dispatch events (or similar
tasks) a copy of the complete collection is performed. This
solves most of the synchronization problems, but introduces
a significant source of overhead and priority inversions on
the critical path.

COPY_ON_WRITE Similar to the previous one, but the copy is only performed
when needed.

DELAYED Threads that need to change the collection can detect if that
change will invalidate iterators used by other threads. If so,
the thread posts the change on a queue that is executed once
the collection is no longer in use.
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� ������(YHQW�&KDQQHO�&RQILJXUDWLRQ����
���

The Constructor
T h e TAO_CEC_EventChannel c l a s s i m p l e m e n t s t h e
CosEventChannelAdmin::EventChannel interface. This class takes one
mandatory and two optional parameters in its constructor:

The factory is an optional parameter to override the default strategy factory used
by the event channel. The event channel will destroy the factory if the
own_factory argument is true.

The attributes parameter can be used to fine tune some of the algorithms and
strategies used by the event channel. The default values are probably OK for most
applications. Notice that the attributes include the POA used to activate the
ConsumerAdmin, SupplierAdmin, ProxyPushConsumer, ProxyPushSupplier,
ProxyPullConsumer and the ProxyPullSupplier objects. These POAs must have the
IMPLICIT_ACTIVATION and the SYSTEM_ID policies (as the RootPOA does). See
Table 9, Constructor Attributes for a list of allowed attributes.

TAO_CEC_EventChannel (const TAO_CEC_EventChannel_Attributes& attributes,
 TAO_CEC_Factory* factory = 0,
 int own_factory = 0);

7DEOH���&RQVWUXFWRU�$WWULEXWHV

Attribute Description

consumer_reconnect If the attribute is not zero then the same consumer can call
connect_push_consumer on its ProxyPushSupplier
multiple times to change its subscriptions. This is usually
more efficient that disconnecting and connecting again.

supplier_reconnect If the attribute is not zero then the same supplier can call
connect_push_supplier on its ProxyPushConsumer
multiple times to change its publications. This is usually
more efficient that disconnecting and connecting again.

disconnect_callbacks It not zero the event channel will send disconnect callbacks
when a disconnect method is called on a Proxy. In other
words, if a consumer calls
disconnect_push_supplier() on its proxy the event
channel will invoke disconnect_push_consumer() on
the consumer. A similar thing is done for suppliers.

busy_hwm When the delayed flag is set on proxy collections, this flag
controls the maximum number of threads that can
simultaneously iterate over the collection before blocking. It
can be used to avoid starvation in delayed updates on the
collection.
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������(YHQW�&KDQQHO�&RQILJXUDWLRQ���� �
max_write_delay When the delayed flag is set on proxy collections, this flag
controls the maximum number of threads that will initiate
dispatching after a change has been posted. Any thread after
that is blocked until the operations are performed. It can be
used to completely stop starvation of delayed updates on the
collection.

supplier_poa The POA used by the event channel to activate
SupplierAdmin and SupplierProxy objects.

consumer_poa The POA used by the event channel to activate
ConsumerAdmin and ConsumerProxy objects.

7DEOH���&RQVWUXFWRU�$WWULEXWHV

Attribute Description
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� 8W L O L W L HV
���

��� Descriptions and Usage
The following utilities can be used to perform tasks which can help users manage
and use TAO more easily.

catior
catior reads the IOR stored in file (a stringified IOR), decodes it and sends the
contents to stdout using:

where

-f filename reads the file identified by filename (containing the IOR).

Example

This example shows catior being used to display the IOR which is stored in the
NotificationSingleton.ior file of the current directory.

The output IOR is shown below.

% catior -f filename

% catior -f NotificationSingleton.ior

IOR:000000000000004B49444C3A707269736D742E636F6D2F636F732F436F734E6
F74696669636174696F6E2F4E6F74696669636174696F6E457874656E73696F6E73
2F51756575654D616E616765723A312E3000000000000200000000000000B400010
2000000000E3231332E34382E39312E3230360004C70000005F4F70656E46757369
6F6E2E4E6F74696669636174696F6E536572766963652F4F70656E467573696F6E2
E4E6F74696669636174696F6E536572766963652F218D4798E0DE1811D7A75ABC57
1A2C16BF8A426F30DE1811D7A75ABC571A2C16BF000000000200000000000000080
00000004A414300000000010000001C000000000501000100000001050100010001
01090000000105010001000000010000002C0000000000000001000000010000001
C00000000050100010000000105010001000101090000000105010001

decoding an IOR:

The Byte Order: Big Endian

The Type Id:
"IDL:prismt.com/cos/CosNotification/NotificationExtensions/Queue
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������'HVFULSWLRQV�DQG�8VDJH���� �
Manager:1.0"

Number of Profiles in IOR: 2

Profile number: 1

IIOP Version: 1.2

 Host Name: 213.48.91.206

 Port Number: 1223

 Object Key len: 95

 Object Key as hex:

 4f 70 65 6e 46 75 73 69 6f 6e 2e 4e 6f 74 69 66 69 63 61 74 69
6f 6e 53 65 72 76 69 63 65 2f 4f 70 65 6e 46 75 73 69 6f 6e 2e 4e
6f 74 69 66 69 63 61 74 69 6f 6e 53 65 72 76 69 63 65 2f 21 8d 47
98 e0 de 18 11 d7 a7 5a bc 57 1a 2c 16 bf 8a 42 6f 30 de 18 11 d7 a7
5a bc 57 1a 2c 16 bf

 The Object Key as string:

OpenFusion.NotificationService/OpenFusion.NotificationService/!.G..
.....Z.W.,...Bo0.....Z.W.,..

 The component <1> ID is 0 (TAG_ORB_TYPE)

 ORB Type: 1245790976

 The component <2> ID is 1 (TAG_CODE_SETS)

 Component Value len: 28

 Component Value as hex:

 00 00 00 00 05 01 00 01 00 00 00 01 05 01 00 01 00 01 01 09
00 00 00 01 05 01 00 01

 The Component Value as string:

Profile number: 2

 Profile tag = 1 (unknown protocol)
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

� ������'HVFULSWLRQV�DQG�8VDJH����
���

ior-parser
The ior-parser utility parses IORs generated by most ORBs. It has been tested
with Orbix, VisiBroker and TAO. ior-parser is used as follows:

gperf
gperf is a GNU perfect hash function generator which is used by TAO’s IDL
compiler to generate perfect hash functions (which is generally the most efficient
and predictable operation demuxing technique).

A complete description of gperf and how to use it, along with its GNU Licensing
Terms & Conditions, is provided in gperf.pdf which is located in the
docs/release/pdf directory of the OpenFusion TAO distribution.

 Profile body len: 44

 Profile body as hex:

 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 1c 00 00 00 00 05 01
00 01 00 00 00 01 05 01 00 01 00 01 01 09 00 00 00 01 05 01 00 01

 The Profile body as string:

 ..

% catior returned true

% ior-parser <IOR filename>
�6HUYLFHV�	�8WLOLWLHV
PRISMTECH

������'HVFULSWLRQV�DQG�8VDJH���� �
��
�6HUYLFHV�	�8WLOLWLHV

PRISMTECH

, QGH[

, QGH[

A
Adminstration .27, 32

B
Bootstraping the Naming Service from Clients .31

C
catior .41
Collocation Strategies. .19

Compiler Options . 20
CosEvent_Service . 35

D
Destroying Binding Iterators 31

E
Environment Variable Descriptions18
Environment Variables.18, 30
Event Channel Configuration36

Event Service . 35
Event Service Command-line Options. 35

G
Generated Files .17 gperf . 43

I
IFR_Service .27
Implementation Policies31
Interface Repository Command Line Options . .27

Interface Repository Service 27
Introduction . 17
ior-parser . 43

L
Legal tao_ifr Command Line Options28

N
Naming Service .29
Naming_Service Command Line Options29
nsadd. .33

nsdel . 33
nslist . 32
��
6HUYLFHV�	�8WLOLWLHV�*XLGH

PRISMTECH

�,QGH[
��

O
Operation Demuxing Strategies 19 Orphaned Naming Contexts 31

P
Persistence. 30

R
Running the Service 27, 29, 35

T
TAO IDL Compiler . 17 tao_ifr . 27

U
Usage. 18 Utilities . 41

V
Variable . 18
6HUYLFHV�	�8WLOLWLHV�*XLGH
PRISMTECH

	OpenFusion®
	Notices
	Preface
	About the Services & Utilities Guide
	Contacts

	Contents
	Table of Contents
	List of Tables

	Services & Utilities
	1 TAO IDL Compiler
	1.1 Introduction
	Running

	1.2 Generated Files
	1.3 Environment Variables
	1.4 Operation Demuxing Strategies
	1.5 Collocation Strategies
	1.6 Compiler Options

	2 Interface Repository Service
	2.1 Running the Service
	IFR_Service

	2.2 Administration
	tao_ifr

	3 Naming Service
	3.1 Running the Service
	Environment Variables
	Persistence
	Implementation Policies
	Destroying Binding Iterators
	Orphaned Naming Contexts

	Bootstrapping the Naming Service from Clients

	3.2 Administration
	nslist
	nsadd
	nsdel

	4 Event Service
	4.1 Introduction
	4.2 Running the Service
	4.3 Event Channel Configuration
	Run-time Configuration
	The Configuration File
	Options
	The Constructor

	5 Utilities
	5.1 Descriptions and Usage
	catior
	ior-parser
	gperf

	Index

