
OpenFusion® TAO
Version 1.5

Services & Utilities Guide
�������	

OpenFusion
TAO
SERVICES & UTILITIES GUIDE
Part Number: OFTAO15-SERVG Doc Issue 15, 1 December 2006
PRISMTECH

Not ices

Copyright Notice

© 2006 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without
notice and is made available in good faith without liability on the part of
PrismTech Limited or PrismTech Corporation.

All trademarks acknowledged.
ii
Services & Utilities Guide

�������	

Pre face
About the Services & Utilities Guide

The Services & Utilities Guide is included with OpenFusion TAO. The guide
describes how to use the command line tools, services, and utilities,
including the IDL compiler, provided with OpenFusion TAO.

Intended Audience
The Services & Utilities Guide is intended to be used by developers or those
who need to use the services and utilities provided with OpenFusion TAO.

Organisation
The Services & Utilities Guide is divided into the following sections:

• Section 1, TAO IDL Compiler, describes how to use the OpenFusion TAO
IDL compiler

• Section 2, Interface Repository Service, describes the Interface
Respository

• Section 3, Naming Service, describes how to run the Naming Service from
the command line, as well as describing utilities which can be used to
manage the service

• Section 4, Event Service, describes how to run the Event Service from the
command line, as well as describing how to manage the service

• Section 5, Utilities, describes useful command line tools

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Services & Utilities Guide.

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows (e.g. NT, 2000) only.

Information applies to Unix based systems (e.g. Solaris) only.

Hypertext links to WWW and other internet services are shown as blue italic
underlined.

i
WIN

UNIX
iii
Services & Utilities Guide

�������	

On-Line (PDF) versions of this document: Items shown as cross references
to other parts of the document, e.g. Contacts on page iv, are hypertext links:
users can jump to the page by clicking on the cross reference.

Courier, Courier Bold, or Courier Italic fonts indicate programming
code. The Courier font also indicates file names.

Extended code fragments are shown as small Courier font in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.

Arial Bold is indicates user related actions, eg. File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be contacted at the following address, phone number, fax
and e-mail contact points for information and technical support. Users of the
On-line version of this manual can click the e-mail addresses below to
launch their e-mail client or Web browser to send e-mail direct to PrismTech.

Web: http://www.prismtechnologies.com
General Enquiries: info@prismtechnologies.com
Support Enquiries: http://www.prismtechnologies.com/Contacts

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

 rootContext.bind (newName, demoObject);

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
iv
Services & Utilities Guide

�������	

http://www.prismtechnologies.com
mailto: info@prismtechnologies.com
http://www.prismtechnologies.com/Contacts

Contents

Ta b le o f Con ten ts
Notices ii

Preface iii
About the Services & Utilities Guide . iii
Contacts . iv

List of Tables ix

Services & Utilities 1
1 TAO IDL Compiler 3
1.1 Introduction .3

Running. .3

1.2 Generated Files .3
1.3 Environment Variables .4
1.4 Operation Demuxing Strategies. .5
1.5 Collocation Strategies .5
1.6 Compiler Options .6

2 Interface Repository Service 15
2.1 Running the Service .15

IFR_Service. .15

2.2 Administration. .16
tao_ifr .16

3 Naming Service 19
3.1 Introduction .19

OMG Standard .19
Naming Contexts. .19
Name Components .21

TAO Naming Service and Persistence .21

3.2 Running the Service .22
vii
Services & Utilities Guide

�������	

Table of Contents
Environment Variables . 25
Persistence Options . 26

The -f Option . 26
Implementation Policies . 26

Destroying Binding Iterators. 26
Orphaned Naming Contexts. 27

Bootstrapping the Naming Service from Clients . 27

3.3 Administration . 28
nslist . 28
nsadd . 29
nsdel. 29

3.4 Running as a Windows NT Service . 29

4 Event Service 33
4.1 Introduction . 33
4.2 Running the Service . 33
4.3 Event Channel Configuration . 34

Run-time Configuration . 34
The Configuration File . 34
Options. 35
The Constructor . 37

5 Utilities 41
5.1 Descriptions and Usage . 41

catior . 41
ior-parser . 43
gperf . 43

Index 45
viii
Services & Utilities Guide �������	

L i s t o f Ta b les
Table 1 Environment Variable Descriptions .4
Table 2 Compiler Options .7
Table 3 Interface Repository Command Line Options .15
Table 4 Legal tao_ifr Command Line Options .17
Table 5 Name Component Fields .21
Table 6 Naming_Service Command Line Options .22
Table 7 NT_Naming_Service Command Line Options .31
Table 8 CosEvent_Service Command-line Options .33
Table 9 Event Channel Configuration Options .35
Table 10 Proxy Collection Flags .36
Table 11 Constructor Attributes .38
ix
Services & Utilities Guide�������	

List of Tables
x
Services & Utilities Guide �������	

Services & Utilities

1 TA O IDL Compi le r

1.1 Introduction

This section describes the TAO IDL compiler’s options and features. Users
should be familiar with standard OMG IDL before reading this section or
using the TAO IDL compiler. For information on the OMG IDL please refer to
the IDL documenta t ion p rov ided on the OMG’s web s i te
(http://www.omg.org/).

Running
The TAO IDL compiler is run from the command line using:

where [options] are zero or more of the command line options described
under Section 1.6, Compiler Options, on page 6.

1.2 Generated Files
The IDL compiler generates a number of files from each .idl file. The
generated file names are obtained by taking the IDL basename and
appending a letter to the basename which signifies if the file is for a stub,
skeleton, or skeleton template, then appending an extension for its file type
(interface (.i), header (.h), or definition (.cpp). The complier provides options
which enable different suffixes to be generated if required:

• client stubs - *C.i, *C.h, and *C.cpp

• server skeletons - *S.i, *S.h, and *S.cpp

• server skeleton templates - *S_T.i, *S_T.h, and *S_T.cpp

TAO's IDL compiler creates separate *.i and *S_T.* files to improve the
performance of the generated code. Note that only the client stubs declared
in the *C.h file and the skeletons in the *S.h file need to be #included in
your code.

% tao_idl [options]

i

 3
 Services & Utilities

�������	

http://www.omg.org

 1.3 Environment Variables
1.3 Environment Variables

Because the TAO IDL compiler does not contain code to implement a
preprocessor, it must use an external one. For convenience, it uses a built-in
name for an external preprocessor to call. During compilation, this is how
that default is set:

1. If the macro TAO_IDL_PREPROCESSOR is defined, then it will use that.
2. Else if the macro ACE_CC_PREPROCESSOR is defined, then it will use that.
3. Otherwise, it will use "cc"
The same behaviour occurs for the TAO_IDL_PREPROCESSOR_ARGS and
ACE_CC_PREPROCESSOR_ARGS macros.

Case 1 is used by the Makefile on most machines to specify the
preprocessor.

Case 2 is used on Windows and platforms that need special arguments
passed to the preprocessor (MVS, HPUX, etc.).

Case 3 is not normally used, but is included as a default case.

Since the default preprocessor may not always work when tao_idl is
moved to another machine or used in cross-compilation, it can be
over r idden a t run t ime by se t t i ng the env i ronment var iab les
TAO_IDL_PREPROCESSOR and TAO_IDL_PREPROCESSOR_ARGS.

Table 1 Environment Variable Descriptions
Variable Usage

TAO_IDL_PREPROCESSOR Used to override the program name of the
preprocessor that the TAO IDL compiler
(tao_idl) uses.

TAO_IDL_PREPROCESSOR_ARGS Used to override the flags passed to the
preprocessor that tao_idl uses. This can be
used to alter the default options for the
preprocessor and specify things like include
directories and how the preprocessor is
invoked. Two flags that will always be passed
to the preprocessor are -DIDL and -I.

TAO_ROOT Used to determine where orb.idl is located.
ACE_ROOT Used to determine where orb.idl is located.
4
 Services & Utilities

�������	

 1.4 Operation Demuxing Strategies
In previous versions, the environment variables CPP_LOCATION and
TAO_IDL_DEFAULT_CPP_FLAGS were used for this purpose. Both will still
work, but tao_idl will display a deprecation warning if it detects them. It is
possible that support for these variables will be removed in a future version
of TAO.

I f TAO_ROOT is def ined, then tao_idl wi l l use i t to inc lude the
$(TAO_ROOT)/tao directory. This is to allow tao_idl to automatically find
<orb.idl> when it is included in an IDL file. tao_idl will display a warning
message when neither is defined.

1.4 Operation Demuxing Strategies
The server skeleton can use different demuxing strategies to match the
incoming operation with the correct operation at the servant. TAO's IDL
compiler supports perfect hashing, binary search, and dynamic hashing
demuxing strategies. By default, TAO's IDL compiler tries to generate
perfect hash functions, which is generally the most efficient and predictable
operation demuxing technique. To generate perfect hash functions, TAO's
IDL compiler uses gperf, a general-purpose perfect hash function
generator.

If you cannot use perfect hashing, then the next best operation demuxing
strategy is using binary search, which can be configured using TAO's IDL
compiler options (see Section 1.6, Compiler Options, below).

1.5 Collocation Strategies
tao_idl can generate collocated stubs using two different collocation
strategies. It also allows you to suppress and enable the generation of the
stubs of a particular strategy. You can generate stubs for both collocation
strategies (using both -Gp and -Gd flags at the same time) and defer the
determination of collocation strategy until run time. However, if you want to
minimize the footpr int of your program, then you might want to
pre-determine the collocation strategy you want and only generate the right
collocated stubs (or not generate any at all using both -Sp and -Sd flags at
the same time, provided it's a pure client.)

i

 5
 Services & Utilities

�������	

 1.6 Compiler Options
1.6 Compiler Options
TAO's IDL compiler invokes your C or C++ preprocessor to resolve included
IDL files. It takes the common options for preprocessors (such as -D or -I).
The compiler also takes other options that are specific to it. Table 2,
Compiler Options, shown following, describes each compiler option.
6
 Services & Utilities

�������	

7
 Services

 1.6 Com

�������	

marks
-u

-V

-Wb,op

ro_name right after each class
nerated skeleton code (S files,)
 that requires special directives
Ls, usually the definition is just

enera te code to inc lude
 of the generated server header,
 to define the server side export

ro_name right after each class
e generated stub code: this is
t requires special directives to
, usually the definition is just a

enera te code to inc lude
p of the client header, this is

fine the export macro.
& Utilities

piler Options

Table 2 Compiler Options
Option Description Re

The compiler prints out the options that are
given below and exits clean

The compiler printouts its version and exits
tion_list Pass options to the TAO IDL compiler, as

follows:

skel_export_macro=macro_name The compiler will emit mac
or extern keyword in the ge
this is needed for Windows
to export symbols from DL
a space on unix platforms.

skel_export_include=include_path The compi le r w i l l g
include_path at the top
this is usually a good place
macro on Windows.

stub_export_macro=macro_name The compiler will emit mac
or extern keyword in th
needed for Windows tha
export symbols from DLLs
space on unix platforms.

stub_export_include=include_path The compi le r w i l l g
include_path at the to
usually a good place to de

8
 Services

 1.6 Com

�������	

ffect as issuing
o=macro_name -Wb,
macro_name. This option is
LL containing both stubs and

-Wb,op
(continu

e effect as specifying -Wb,
=include_path. This option
ion to build DLL containing both

enera te code to inc lude
top of all TAO IDL compiler
 be used with a pre-compiled
 as those provided by Borland

rate code to optimise access to
ypes.
enera te code to inc lude
 of the each header file, before
nts. For example, ace/pre.h,
 options for the Borland C++

pilers, is included in this manner
 the TAO libraries and CORBA

marks
& Utilities

piler Options

export_macro=macro_name This option has the same e
-Wb, skel_export_macr
stub_export_macro=
useful when building a D
skeletons.

tion_list
ed)

export_include=include_path This option has the sam
stub_export_include
goes with the previous opt
stubs and skeletons.

pch_include=include_path The compi le r w i l l g
include_path at the
generated files. This can
header mechanism, such
C++ Builder or MSVC++.

obv_opt_accessor The IDL compiler will gene
base class data for value t

pre_include=include_path The compi le r w i l l g
include_path at the top
any other include stateme
which declares compiler
Builder and MSVC++ com
in all IDL-generated files in
services.

Table 2 Compiler Options (Continued)
Option Description Re

9
 Services

 1.6 Com

�������	

enera te code to inc lude
tom of the each header file. For
hich restores compiler options
er and MSVC++ compilers, is

n all IDL-generated files in the
 services.

-E

-d

-Dmacr

-Umacr

-Iincl

-Aasse

-Yp, p

marks
& Utilities

piler Options

post_include=include_path The compi le r w i l l g
include_path at the bot
example, ace/post.h, w
for the Borland C++ Build
included in this manner i
TAO libraries and CORBA

Only invoke the preprocessor
Causes output of a dump of the AST

o_definition Passed to the preprocessor
o_name Passed to the preprocessor
ude_path Passed to the preprocessor
rtion Passed to the preprocessor
ath Specifies the path for the C preprocessor

Table 2 Compiler Options (Continued)
Option Description Re

10
 Services

 1.6 Com

�������	

-H, op

e that uses perfect hashed
gy, which is the default strategy.
perf program, to generate

 that uses dynamic hashed
gy.
that uses binary search based
gy.
that uses linear search based
gy. Note that this option is for

and should not be used for
nefficient.

-in

-ic

-g

marks
& Utilities

piler Options

tion_list Pass options to the TAO IDL compiler, as
follows:
perfect_hash Generate skeleton cod

operation demuxing strate
Perfect hashing uses g
demuxing methods.

dynamic_hash Generate skeleton code
operation demuxing strate

binary_search Generate skeleton code
operation demuxing strate

linear_search Generate skeleton code
operation demuxing strate
testing purposes only
production code since it's i

To generate #include statements with <>'s
fo r the s tandard inc lude f i l es (e .g .
tao/corba.h) i nd i ca t ing them as
non-changing files

To generate #include statements with ""s
for changing standard include files,
(e.g. tao/corba.h).

To specify the path for the perfect hashing
program (gperf). The default is
$TAO_ROOT/bin/gperf.

Table 2 Compiler Options (Continued)
Option Description Re

11
 Services

 1.6 Com

�������	

-o

-hc

-hs

-hT

-cs

-ci

-ss

-sT

-si

-st

marks
& Utilities

piler Options

To specify the output directory to IDL compiler
as to where all the IDL-compiler-generated
files are to be put. By default, all the files are
put in the current directory from where is
called.

Client's header file name ending. Default is
"C.h".

Server's header file name ending. Default is
"S.h".

Server's template header file name ending.
Default is "S_T.h".

Client stub's file name ending. Default is
"C.cpp".

Client inline file name ending. Default is "C.i".
Server skeleton file name ending. Default is
"S.cpp".

Server template skeleton file name ending.
Default is "S_T.cpp".

Server inline skeleton file name ending.
Default is "S.i".

Server's template inline file name ending.
Default is "S_T.i".

Table 2 Compiler Options (Continued)
Option Description Re

12
 Services

 1.6 Com

�������	

-t nvironment variable if defined,

MP environment variables, if
ows directory.

-Cw ed as a nicety for dealing with
hen the CORBA rules for name
gent.

-Ce

-GC

-Ge fl

-Gp

-Gd

marks
& Utilities

piler Options

Temporary directory to be used by the IDL
compiler.

UNIX: use the TEMPDIR e
else use /tmp/.

Windows: use TMP or TE
defined, else use the Wind

Output a warning if two identifiers in the same
scope differ in spelling only by case (default is
the output of error message).

This option has been add
legacy IDL files, written w
resolution were not as strin

Output an error if two indentifiers in the same
scope differ in spelling only by case (default).

Generate AMI stubs ("sendc_" methods, reply
handler stubs, etc)

ag If the value of the flag is 0, tao_idl will
generate code that wi l l use nat ive C++
exceptions. If the value of the flag is 1,
tao_idl will generate code that will use the
CORBA::Environment variable for passing
exceptions.

If the value of the flag is 2, the C++ throw
keyword w i l l be used in p lace o f
ACE_THROW_SPEC , ACE_THROW, and
ACE_RETRHOW (ACE_THROW_RETURN and
TAO_INTERCEPTOR_THROW will still be used).

Genera ted co l loca ted s tubs tha t use
Thru_POA collocation strategy (default)

Generated collocated stubs that use Direct
collocation strategy

Table 2 Compiler Options (Continued)
Option Description Re

13
 Services

 1.6 Com

�������	

-Gsp

-Gt

-Gv

-GI

-GIh a

-GIs a

-GIb a

-GIe a

-GIc

-GIa

-Sa

-Sp

-Sd

marks
& Utilities

piler Options

Generate client smart proxies
Generate optimised TypeCodes
Generate code that supports Object-by-Value
Generate templates fi les for the servant
implementation

rg Servant implementation header file name
ending

rg Servant implementation skeleton file name
ending

rg Prefix to the implementation class names
rg Suffix to the implementation class names

Generate copy constructors in the servant
implementation template files

Generate assignment operators in the servant
implementation template files

Suppress generation of the Any operators
Suppress generation of collocated stubs that
use Thru_POA collocation strategy

Suppress generation of collocated stubs that
use Direct collocation strategy (default)

Table 2 Compiler Options (Continued)
Option Description Re

14
 Services

 1.6 Com

�������	

-St eration of the Any operators,
rator needs the associated

-Sc

-Sv

marks
& Utilities

piler Options

Suppress generation of the TypeCodes Also suppresses the gen
since the Any >>= ope
typecode.

Suppress generation of the tie classes, and
the *S_T.* files that contain them.

Suppress value type support (default).

Table 2 Compiler Options (Continued)
Option Description Re

2 I n te r face Repos i to ry
Serv ice
2.1 Running the Service
The Interface Repository makes all IDL declarations available.

IFR_Service
To run the Interface Repository you need to use the executable
IFR_Service. This is found in the bin directory of the OpenFusion TAO
distribution.

Table 3 Interface Repository Command Line Options
Option Description

-a <base_address> This option only works when you also specify the -p option. The -a
option gives the base address for memory mapped persistence and may
be specified in decimal, octal (with a leading zero) or hexadecimal (with a
leading 0x). If this value is not specified and the Interface Repository is
made persistent by using the -p option, then this base address defaults
on most platforms to 0x80000000.

When a persistence file is reloaded, the same base address must be
specified as when the persistence file was first created. A base address
of zero may be specified. This allows the computer to allocate the actual
address, which it then displays. This base address must then be used
when the database is reloaded. This option should be used along with the
-s option to specify a reasonable excess of free space.

-b <filename> Overrides the default fi lename used for persistent storage with
filename. The default filename is ifr_default_backing_store.

-f Use flat file persistence as an alternative to the memory mapped file
persistence (use this option instead of '-p'. For example,

IFR_Service -f -b my_flat_file.dat

If the -f option is used in the absence of the -b option, then the
IFR_Serv ice w i l l c rea te and s tore i ts da ta in a f i l e ca l led
ifr_default_backing_store.
 15
 Services & Utilities

�������	

 2.2 Administration
2.2 Administration
tao_ifr

This is the executable that administers the IFR. Call ing tao_ifr
<filename> will add the contents of the IDL file to the repository.

Calling tao_ifr -r <filename> removes the contents of the IDL file from
the repository.

tao_ifr requires all the libraries that are required by the IFR service, plus
the IFR_Service executable itself.

tao_ifr can also handle the -ORBxxx parameters, where the xxx
represents a particular ORB parameter, for example:

-ORBInitRefInterfaceRepository=file://<filename>

ORBInitRefInterfaceRepository enables the IFR service to be resolved
by getting its IOR from <filename>.

By default, the IFR service stores its IOR in the file if_repo.ior, but that
can be modified by starting the IFR service using the -o option (see above).

-m Enables read-write locking of IFR calls. If the IFR is started up with
multi-threading enabled, for example if a service configuration file is used
that specifies thread-per-connection, then this option should be used.
Note that if ACE_HAS_THREADS is not defined, then this option will be
ignored.

-o <filename> Overrides the default filename used for storing the Interface Repository
IOR. The default filename is if_repo.ior.

-p Makes the Interface Repository persistent.
-r Uses the Win32 registry for the database. Not available with persistence.

The -r option is ignored if the -p option is used. If the platform is not
Win32, an error message is output.

-s <initial_size> This option only works when you also specify the -p option. The -s
option allocates the amount of free space for the memory mapped
persistent database to grow in to. May be specified in decimal, octal (with
a leading zero) or hexadecimal (with a leading 0x). Only affects the initial
size of the persistent database files when this file is first created. When
the free space already allocated is exhausted, and attempt is made to
allocate more space. This attempt is not guaranteed to succeed.

Table 3 Interface Repository Command Line Options
Option Description
16
 Services & Utilities

�������	

 2.2 Administration
All -ORBxxx options appear in the command line before any other options.

tao_ifr can process multiple IDL files in one execution. As long as the file
names come after any -ORB options that may be present, they may come
mixed in any order with the other command line options. The tao_ifr
command line parser will treat any option (or option pair) that doesn't begin
with a hyphen (-) as a filename.

Table 4 Legal tao_ifr Command Line Options
Option Description

-Cw Warning if identifier spellings differ only in case (default is
error).

-Ce Error if identifier spellings differ only in case (default).
-d Outputs (to stdout) a dump of the AST.
-Dname[=value] Defines name for preprocessor.
-E Runs preprocessor only, prints on stdout.
-Idir Includes dir in search path for preprocessor.
-L Enables locking at the IDL file level.
-r Removes contents of IDL file(s) from repository.
-Si Suppresses processing of included IDL files.
-t Temporary directory to be used by the IDL compiler.
-Uname Undefines name for preprocessor.
-A... Local implementation-specific escape.
-u Prints usage message and exits.
-v Traces compilation stages.
-w Suppresses IDL compiler warning messages.
-Yp, path Defines the location of the preprocessor.
 17
 Services & Utilities

�������	

 2.2 Administration
18
 Services & Utilities

�������	

3 Naming Serv ice

3.1 Introduction

The Naming Service provides a straightforward way for application
components to find and using objects by associating meaningful names with
them. The Naming Service can then be used like a white pages telephone
directory to find an object and obtain its Object Reference, without complex
programming or using proprietary ORB mechanisms.

OMG Standard
The Naming Service associates meaningful names with objects. An
association between a name and an object’s Interoperable Object
Reference (IOR) is called a binding or name binding.

Name bindings are grouped in hierarchies called naming contexts. A naming
context is an object containing zero or more name bindings. Each name
binding within a naming context refers to either another naming context or a
CORBA object.

There is no limit to the number of different names that can be bound to the
same object or naming context, or to the number of bindings that a naming
context can contain.

Resolving a name is the process of locating an object or naming context by
reading a name binding and retrieving the associated object reference.

Iteration is the process of retrieving a list of bindings from a naming context,
and looking at each binding in turn.

Naming Contexts
A naming context is a set of name bindings where each name is unique
within that context; the same name may, however, appear in other naming
contexts. Naming contexts can be bound to other naming contexts to create
naming hierarchies.

A very simple hierarchy of naming contexts is shown in Figure 1. It illustrates
the fact that a given binding within a naming context can point to either an
object or another naming context, and that a single object can be referenced
by more than one name. These hierarchies are known as naming graphs.
 19
 Services & Utilities

�������	

 3.1 Introduction

Figure 1 Simple Naming Graph

An object is referenced using an initial naming context, which is also referred
to as the root context. This is followed by a sequence of one or more name
components. Such a sequence is known as a compound name. Each name
component resolves to the next naming context in a chain until the last name
component resolves to the required object. In Figure 1, objects A, B and D
are bound directly to the root context, so their names have only one
component (these are simple names); objects C and E have names with
three components. The full compound name for object C can be represented
like this:

NamingContext2/NamingContext4/ObjectC

Object E can be accessed via two different names.

The service specification also permits a naming context to contain a binding
which refers to a parent or grandparent further up the graph. For example, in
Figure 1 Naming Context 4 could contain a binding to Naming Context 2.
This kind of reference is sometimes referred to as cyclic.

Root
Naming
Context

Naming
Context 2

Naming
Context 3

Naming
Context 4

CORBA
object

B

CORBA
object

A

CORBA
object

C

CORBA
object

D CORBA
object

E

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3

.

.
name
20
 Services & Utilities

�������	

 3.1 Introduction
The root context is always implicit in a compound name; a special operation,
resolve_initial_references, is performed once to obtain the root
context, and all subsequent resolve operations depend on that.

Although it is not a requirement of the service specification, it is convenient
and customary to have a single root naming context.

Name Components
Each name component has id and kind fields (sometimes referred to as
attributes), represented by IDL strings. These strings are composed of ISO
Latin-1 characters (excluding the ASCII NUL, 00h) and the combined length
can be up to 255 characters.

The Naming Service always matches names using both fields, so it is
acceptable for either field to be zero-length or to contain an empty string
provided that uniqueness within a naming context is maintained. Table 5
shows valid combinations of id and kind values.

Note that although it is technically possible for both fields to contain empty
strings, this is not normally recommended, as it can be confusing to resolve
to an empty name.

TAO Naming Service and Persistence
The TAO Naming Service instance can be run in either a non-persistent or
persistent mode. The service runs in non-persistent mode by default.

When the service is run in the non-persistent mode, the data which the
instance uses to associate names to objects is only retained in volatile
memory: if the service instance stops for any reason, then this data is lost.
Applications which are using the service instance’s name bindings for object
resolution will then be unable to locate the objects, with the expected
unfortunate consequences.

Table 5 Name Component Fields
Id Kind

name1 <empty>
name2 kind1
<empty> <empty>
<empty> kind2
 21
 Services & Utilities

�������	

 3.2 Running the Service
When the service is run in persistent mode, the data which the service uses
to associate names to objects is saved to persistent storage. The service
then is able to re-establish the instance’s name bindings after the service
been has stopped and restarted. Applications which are using the service
instance’s name bindings for object resolution will continue to be able to
locate objects using the existing name bindings.

3.2 Running the Service
The Naming Service can be started by running the Naming_Service
program from the command line. The Naming_Service’s command line
options are listed in Table 6, Naming_Service Command Line Options. The
Naming_Service program is located in the bin directory of the OpenFusion
TAO distribution.

The Naming Service can also be run as an Windows NT service (see
Section 3.4, Running as a Windows NT Service, on page 29).

WIN

Table 6 Naming_Service Command Line Options
Option Description

-b <base_address> This option should only be used with the -f option.

The -b option specifies a non-default virtual memory
address which is used to map the shared memory mapped
file into memory and This enables multiple name servers
to be run on the same machine, each using different
shared memory mapped file base addresses.

This option should be used consistently for any given
persistent store since it is not possible to relocate an
existing persistent store.

The base addresses should be sufficiently far apart in
order to provide adequate memory for size of mapped files
which might be use.

The -u, -r or -v options are greatly preferred persistence
mode alternatives which should be considered instead of
the -f and -b option combination due to its complexity of
usage and being error prone.
22
 Services & Utilities

�������	

 3.2 Running the Service
-d Enables printing debug information to stdout.

This option is the equivalent using
-ORBDebugLevel 1.

The debug level is increased for each instance that -d is
given on the command line. For example, using “-d -d
-d” will raise the debug level to 3.

-f <persistent_file> Specifies that the server will run in persistence mode using
a shared memory map s to red in the f i l e
<persistent_file>. The server’s data and state is
persisted to <persistent_file>.

This option is not recommended. The -u, -r and -v
options are the preferred persistence mode alternatives.

This option can be used with the -b option to override the
default memory address which the persistence file is
mapped to.

Note that the service’s internal memory structures are
copied directly to the file and subsequently are dependent
on the platform, software and build versions, and other
critical factors.

-m <0|1> The -m option enables or disables the Naming Service to
respond to multicast requests.

TAO uses a simple, non-standard method for clients to
discover the Naming Service’s initial reference. This can
be inadequate and cause unexpected results if, for
example, there are multiple naming services running on
the network.

The Naming Service’s default behaviour is not to respond
to multicast queries (use the Interoperable Naming
Service bootstrap options instead). The -m option enables
the service to respond to multicast requests.

1 = enable multicast responses, 0 = disable (default).
-ORBDebugLevel <level> Enables printing debug information to stdout. The debug

level is set to the value of <level>.

Using -ORBDebugLevel 1 is the equivalent of using the
-d option.

Table 6 Naming_Service Command Line Options (Continued)
Option Description
 23
 Services & Utilities

�������	

 3.2 Running the Service
-ORBEndPoint <endpoint> Specifies where the Naming Service server will listen for
requests from clients, where <endpoint> is location
specified as iiop://tcp_hostname:port.

-ORBNameServicePort <nsport> Specifies or overrides the Naming Service’s multicast
network port it will listen to for multicast requests.

This option is only used when multicast option is enabled
with -m 1.

-o <ior_file> Enables the root context’s IOR to be stored in the file
<ior_file>. Clients can use the IOR stored in the file to
locate the service’s root context.

-p <pid_file> Enables the service’s server process id (PID) to be stored
in the file <pid_file>. The stored PID can be used (on
UNIX systems) for stopping or killing the naming service
server daemon.

-s <context_size> This option is used to set the size of the hash table
allocated for the root context when a new root context is
created. All contexts created under the root will use the
same size for their hash tables.

This option can be used for basic performance tuning with
the binding name look-up if the number of anticipated root
entries is known. This option does not limit the size of the
persistent store but will effect its size when the store is
created.

The default value is 1024.
-r <directory_path> Specifies that the server should run in persistence mode

using flat file persistence. The server’s data will be stored
in files placed in the directory <directory_path>.

This option allows multiple running name services to share
the same persistent data files in order to achieve simple
service redundancy and replication.

Using this option incurs additional file locking overhead: if
only one name service instance is to be using the data set
then the -u option should be preferred.

This option is an alternative to using the -f, -u or -v
persistence options.

Table 6 Naming_Service Command Line Options (Continued)
Option Description
24
 Services & Utilities

�������	

 3.2 Running the Service
Example
This example starts the Naming Service, enables multicasting using port
1122 for listening, and saves its IOR to a file called name.ior

Environment Variables
The NameServicePort environment variable is set to the multicast port used
by clients who want to bootstrap to a Naming Service using multicast. This
environment variable is used only when multicast responding is enabled
(using the command line option -m 1).

-t <time> Specifies that the service will terminate if a client request
has not been received by it within <time> seconds. If a
request is reviewed with the time interval, then the service
will continue to run.

The default behaviour if for the service to run indefinitely
(i.e. when -t is not used).

-u <directory_path> Specifies that the server should run in persistence mode
using flat directory persistence. The server’s data will be
stored in files placed in the directory <directory_path>.

This option is an alternative to using the -f, -r or -v
persistence options.

-v <directory> Specifies that the server should run in persistence mode
using flat file persistence. Each entity in the naming graph
is repesented by an individual file stored in a directory
tree, where <directory> is the tree’s root directory.

-z <time> Sets the round trip t imeout value (in seconds) for
operations using a federated naming context. If the time
interval is exceeded the “Cannot proceed” exception is
thrown to the client.

The default behaviour if for the service to not timeout (i.e.
when -z is not used).

 This option relies on the use of file system soft links
and is accordingly not available on win32-based systems
such as Windoes NT or XP).

Table 6 Naming_Service Command Line Options (Continued)
Option Description

% Naming_Service -m 1 -ORBNameServicePort 1122 -o name.ior
 25
 Services & Utilities

�������	

 3.2 Running the Service
Persistence Options
The Naming Service’s persistence mode version is set using one, and only
one, of the persistence mode command-line options, -f, -r, -u, or -v, when
starting the server. Each option persists Naming Service’s data and state to
one or more files, where.

• if the file(s) do not exist, the they are created

• if the file(s) exist, then the Naming Service’s state is set to the state stored
in the file(s).

The behaviour of some of these options can be controlled using other
command line options, including using the

• the -b with the -f option to set the based virtual memory address

• and the -s option to set hash table size for any of the persistent mode
alternatives

The -f Option
The -f option maps the service’s internal memory, which contains the
serv ice ’s cu r ren t s ta te , to a f i l e . A de fau l t memory address
(ACE_DEFAULT_BASE_ADDR) is used for mapping the file. Alternate mapping
address can be spec i f i ed a t compi le - t ime by rede f in ing
TAO_NAMING_BASE_ADDR in tao/orbconf.h. Alternate mapping address can
also be specified at run-time with the -b command-line option, which takes
precedence over TAO_NAMING_BASE_ADDR definition.

The Naming Service stores absolute pointers in its memory-mapped file.
Therefore, it is important to use the same mapping address on each run for
the same persistence file.

Implementation Policies

Destroying Binding Iterators
A binding iterator is destroyed when client invokes the destroy operation
either on the iterator itself or on the naming context it is iterating over. In both
cases, subsequent calls on the binding iterator object wil l cause
OBJECT_NOT_EXIST exception.
26
 Services & Utilities

�������	

 3.2 Running the Service
Orphaned Naming Contexts
This implementation of the Naming Service does not remove or free
resources consumed by orphaned naming contexts when the service is
running in an persistent mode: it is the client’s responsibility to clean up and
remove naming contexts and in order to avoid leaking server resources.

However, when the service is running in non-persistent mode then
resources, including orphaned contexts, are released when the Naming
Server is shutdown.

Bootstrapping the Naming Service from Clients
There are several methods which a client can use to connect to a Naming
Service server instance, in other words, there are several mechanisms
which resolve_initial_references can use when asked for
"NameService". In order of predictable behaviour, they are:

1. Using command-line options
The -ORBInitRef NameService=IOR:... or environment variable
NameServiceIOR can be used on the client side to specify the object that
the call to should return to the client. (On the server side, -o option can
be used to get the IOR).

Example (UNIX, same host):

On the first line, we start the Naming Service, and output its IOR to
ior_file. On the second line, we start some client, and specify the IOR
resolve_initial_references should return for the Naming Service in
a file format.

2. Using Multicast
When started with the respond to multicast queries option turned on (-m
1), clients can use IP multicast to query for a naming service, and this
instance will respond. The Naming Server is listening for client multicast
requests on a specified port. On the client side, sends out a multicast
request on the network, trying to locate a Naming Service. When a
Naming Server receives a multicast request from a client, it replies to the
sender with the IOR of its root naming context.
The port used for this bootstrapping process, i.e., the multicast port, has
nothing to do with the ORB port used for CORBA communication. Other
points worth mentioning include:

% TAO_ROOT/orbsvcs/Naming_Service -o ior_file
% my_client -ORBInitRef NameService=file://ior_file

i

 27
 Services & Utilities

�������	

 3.3 Administration
 - A client and a server can communicate using the multicast protocol if
they are using the same multicast port. For both client and server
-ORBnameserviceport command-line option and NameServicePort
environment variable can be used to specify the multicast port to use. If
none is specified, the default port is used. (The ability to specify
multicast ports can be used to match certain clients with certain Naming
Servers, when there are more than one Naming Server running on the
network).

 - If there are several naming servers running on the network, each
listening on the same port for multicast requests, each will send a reply
to a client's request. The client's orb will use the first response it
receives, so the Naming Service will, in fact, be selected at random.

Since this mechanism is proprietary to TAO (i.e., non-standard), it only
works when both client and server are written using TAO. There is no
way to turn multicasting off on the client side, but it is used only as a last
resort, i.e., any of the other options will override it.

3.3 Administration
The following command line utilities can be used administer objects which
are, or need to be, registered with the Naming.

nslist
nslist displays a formatted list of current Naming Service entries and is run
from the command line as follows:

where

nslist displays the contents of the default "NameService" (including the
protocol and end point of each object reference) returned by
resolve_initial_references()

--ior is an optional switch which displays the contents of the
NameService, including the IOR of each reference entry and the IOR of
the NameService itself

--nsior is an optional switch which displays only the IOR of the
NameService itself, with no other text. This switch can be used to locate
the TAO NameService for non-TAO applications.

% nslist [--ior | --nsior]
28
 Services & Utilities

�������	

 3.4 Running as a Windows NT Service
nsadd
nsadd can be used to add objects into the Name Service and is run as
follows:

where

--name obj_name adds an object identified by obj_name (required)

--ior ior supplies the object’s IOR contained in the file identified by
ior (required)

--rebind optionally rebinds the object (as per the Naming Service’s
rebind method)

nsdel
nsdel deletes objects from the Name Service. It is run from the command
line using:

where

--name obj_name specifies the object identified by obj_name to be
removed (required)

3.4 Running as a Windows NT Service
The Naming Service can be run as a Windows NT service by running
NT_Naming_Service.exe f rom the DOS command l i ne .
NT_Naming_Service must be run using the command line options described
in Table 7.

The command line options listed in Table 6 can not be used as a command
line option with NT_Naming_Service. The options listed in Table 6 are
specified using Windows Registry Keys, described in Step 2:.

The NT_Naming_Service.exe utility is provided with the OpenFusion TAO
Naming Service distribution.

Step 1: Install the service to NT by running NT_Naming_Service with the -i option:

% nsadd < --name obj_name > < --ior ior > [--rebind]

% nsdel < --name obj_name >

WIN

> NT_Naming_Service -i
 29
 Services & Utilities

�������	

 3.4 Running as a Windows NT Service
Step 2: Add the Naming Service’s start-up options to Windows Registry.

The start-up options that are specified for the standard Naming_Service
command l i ne mus t be se t i n Windows Reg is t ry be fo re the
NT_Naming_Service is started. These command line options take affect
whenever NT_Naming_Service is run, unless the settings are deleted or
modified. Create the registry key described below to set the Naming
Service’s command line options. The Windows Registry is edited using
Windows’ Registry Editor, regedit. regedit can be run by entering
regedit into Windows’ Start | Run dialog or by running it directly from a
Windows command line prompt.

Add the following registry key using the Registry Editor:

Path: My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\ACE\TAO

Key: TaoNamingServiceOptions

Type: REG_SZ (Zero terminated String)

Va lue : -ORBEndPoint iiop://213.48.91.6:10005 -o
c:\temp\name.ior -f c:\temp\naming_service.dat (Note: this is
an example. You should provide the actual values specific to your
installation)

If this key is not in the Registry, then NT_Naming_Service will run as if no
command line options were given.

Step 3: Start the service by running NT_Naming_Service with the -s option. Note
that the service must be started in order to operate.

To stop the service run NT_Naming_Service with the -k option. The service
can be restarted by re-running NT_Naming_Service with the -s option.

All of the available NT_Naming_Service command line options are listed in
Table 7. The service can be controlled using the Windows NT Services
Control Panel after installation (this is the recommended method).

> NT_Naming_Service -s

> NT_Naming_Service -k
30
 Services & Utilities

�������	

 3.4 Running as a Windows NT Service
Table 7 NT_Naming_Service Command Line Options

-i Install the Naming Service as a Windows NT
Service.

-s Starts the service using the standard Naming
Service options as specified in the Windows
Registry. See Step 2: on page 30.

-t [value] Sets the service’s Windows NT start-up type
behaviour (Manual, Automatic or Disabled).

Values are:
 Automatic - 2
 Manual - 3
 Disabled - 4

-r Remove the service. Ensure the service has
been stopped before removing.

-k Stop (or kill) the service (the service remains
installed).
 31
 Services & Utilities

�������	

 3.4 Running as a Windows NT Service
32
 Services & Utilities

�������	

4 Event Serv ice

4.1 Introduction

The OMG Event Service is a service for decoupling the suppliers of events
from the consumers. For many applications, this approach provides a much
more appropriate model than the synchronous invocation mechanism of
CORBA.

4.2 Running the Service
The Event Service is started with the CosEvent_Service command,
optionally followed by any of the options listed in Table 8, CosEvent_Service
Command-line Options.

The CosEvent_Service server supplies the capability to start a single event
channel in its own process. It can bind the created event channel to a
supplied name in the root naming context of the Naming Service. The
Naming Service must be running before the CosEvent_Service server is
started, unless the -x command-line option is used. The created event
channel implements the CosEventChannelAdmin::EventChannel
interface.

Table 8 CosEvent_Service Command-line Options
Option Description Default

-n COS_EC_name Specifies the name with which to
bind the event channel (in the root
naming context of the Naming
Service). Ignored if the -x option
is used.

CosEventService

-r Use the rebind() operation to
bind the event channel in the
Naming Service. If the name is
already bound and this flag is not
passed, the process exits with an
Already Bound exception.
Ignored if the -x option is used.

The bind() operation is
used.

-x Do not use the Naming Service.
This simply creates an event
channel.

Bind the event channel in
the Naming Service.
 33
 Services & Utilities

�������	

 4.3 Event Channel Configuration
When the destroy() operation of the event channel is called, the process
exits and the event channel is unbound from the naming service.

4.3 Event Channel Configuration
Run-time Configuration

The new implementation of the COS Event Service uses a factory to build all
the objects and strategies it requires. The factory can be dynamically loaded
using ACE Service Configurator. This is extremely convenient because the
factory can also parse options in the Service Configurator script file.

The current implementation provides a default implementation for this
factory This document describes the options used by this default
implementation. Users can define their own implementation with new ad-hoc
strategies or with pre-selected strategies.

The Configuration File
The COS channel uses the same service configurator file that the ORB
uses. The default name for this file is svc.conf but the ORB option
-ORBSvcConf can be used to override this. The format of the file is described
in detail in the service configurator documentation but the relevant section
for the event channel looks like this:

All the event service factory options start with -CEC

Comments go here...
More comments if you want to...
static CEC_Factory "-CECDispatching reactive"
34
 Services & Utilities

�������	

 4.3 Event Channel Configuration
Options

Table 9 Event Channel Configuration Options
Option Description

-CECDispatching
dispatching_strategy

Select the dispatching strategy used by the COS event
service. A reactive strategy will use the same thread
that received the event from the supplier to push the
event to all the consumers. The mt strategy will also
use a pool of threads, but the thread to dispatch is
randomly selected.

-CECDispatchingThreads
number_of_threads

Select the number of threads used by the mt
dispatching strategy.

-CECProxyConsumerLock
lock_type

Select the lock type (null, thread or recursive) to
synchronize access to the ProxyPushConsumer state.

-CECProxySupplierLock
lock_type

Select the lock type (null, thread or recursive) to
synchronize access to the ProxyPushSupplier state.

-CECUseORBId orbid Set the name of the ORB used by the event service.
Only useful in applications that create multiple ORBs
and activate the event service in one of them.

-CECConsumerControl policy Select the consumer control policy (null or reactive) to
detect and discard broken consumers.

-CECSupplierControl policy Select the supplier control policy (null or reactive) to
detect and discard broken suppliers.

-CECConsumerControlPeriod
period

Set the period (in microseconds) used by the reactive
consumer control policy to poll the state of the
consumers.

-CECSupplierControlPeriod
period

Set the period (in microseconds) used by the reactive
supplier control policy to poll the state of the suppliers.

-CECConsumerControlTimeout
timeout

Set the timeout period (in microseconds) used by the
reactive consumer control policy to detect a timeout
when polling the state of the consumers.

-CECSupplierControlTimeout
timeout

Set the timeout period (in microseconds) used by the
reactive supplier control policy to detect a timeout
when polling the state of the suppliers.
 35
 Services & Utilities

�������	

 4.3 Event Channel Configuration
-CECReactivePullingPeriod
period

Set the period (in microseconds) used by the reactive
pulling strategy to poll all the PullSuppliers for an
event.

-CECProxyConsumerCollection
flag[:flags]

Configure the data structure and strategies used to
implement collections of ProxyPushConsumers and
ProxyPullConsumers. The argument is a colon
separated list of flags, described in Table 10, Proxy
Collection Flags.

-CECProxySupplierCollection
flag[:flags]

Configure the data structure and strategies used to
implement collections of ProxyPushSupplier and
ProxyPullSupplier objects. The argument is a colon
separated list of flags, described in Table 10, Proxy
Collection Flags.

Table 9 Event Channel Configuration Options (Continued)
Option Description

Table 10 Proxy Collection Flags
Flag Description

MT Use regular mutexes and/or condition variables for
serialization.

ST Use null mutexes and/or condition variables for
serialization.

LIST Implement the collection using an ordered list, fast for
iteration (i.e. during event dispatching), but slow for
insertion and removal (i.e. when clients connect and
disconnect from the EC).

RB_TREE Implement the collection using a Red-Black tree, slow
for iteration (i.e. during event dispatching), but fast for
insertion and removal (i.e. when clients connect and
disconnect from the EC).
36
 Services & Utilities

�������	

 4.3 Event Channel Configuration
The Constructor
The TAO_CEC_EventChannel c lass imp lements the
CosEventChannelAdmin::EventChannel interface. This class takes one
mandatory and two optional parameters in its constructor:

The factory is an optional parameter to override the default strategy factory
used by the event channel. The event channel will destroy the factory if the
own_factory argument is true.

The attributes parameter can be used to fine tune some of the algorithms
and strategies used by the event channel. The default values are probably
OK for most applications. Notice that the attributes include the POA used to
activate the ConsumerAdmin, SupplierAdmin, ProxyPushConsumer,
ProxyPushSupplier, ProxyPullConsumer and the ProxyPullSupplier objects.

IMMEDIATE Threads block until they can execute a change on the
data structure, the system must use other approaches
to guarantee that the iterators are not invalidated during
event dispatching. For example, use a separate
dispatching thread. Using this option with the reactive
values for any of the -CECSupplierControl,
-CECConsumerControl, or -CECDispatching options
may cause deadlocks.

COPY_ON_READ Before initiating an iteration to dispatch events (or
similar tasks) a copy of the complete collection is
performed. This solves most of the synchronization
problems, but introduces a significant source of
overhead and priority inversions on the critical path.

COPY_ON_WRITE Similar to the previous one, but the copy is only
performed when needed.

DELAYED Threads that need to change the collection can detect if
that change will invalidate iterators used by other
threads. If so, the thread posts the change on a queue
that is executed once the collection is no longer in use.

Table 10 Proxy Collection Flags
Flag Description

TAO_CEC_EventChannel (const TAO_CEC_EventChannel_Attributes& attributes,
 TAO_CEC_Factory* factory = 0,
 int own_factory = 0);
 37
 Services & Utilities

�������	

 4.3 Event Channel Configuration
These POAs must have the IMPLICIT_ACTIVATION and the SYSTEM_ID
policies (as the RootPOA does). See Table 11, Constructor Attributes for a
list of allowed attributes.

Table 11 Constructor Attributes
Attribute Description

consumer_reconnect If the attribute is not zero then the same consumer can
call connect_push_consumer on its
ProxyPushSupplier multiple times to change its
subscriptions. This is usually more efficient that
disconnecting and connecting again.

supplier_reconnect If the attribute is not zero then the same supplier can
call connect_push_supplier on its
ProxyPushConsumer multiple times to change its
publications. This is usually more efficient that
disconnecting and connecting again.

disconnect_callbacks It not zero the event channel will send disconnect
callbacks when a disconnect method is called on a
Proxy. In other words, if a consumer calls
disconnect_push_supplier() on its proxy the event
channel will invoke disconnect_push_consumer() on
the consumer. A similar thing is done for suppliers.

busy_hwm When the delayed flag is set on proxy collections, this
flag controls the maximum number of threads that can
simultaneously iterate over the collection before
blocking. It can be used to avoid starvation in delayed
updates on the collection.

max_write_delay When the delayed flag is set on proxy collections, this
flag controls the maximum number of threads that will
initiate dispatching after a change has been posted.
Any thread after that is blocked until the operations are
performed. It can be used to completely stop starvation
of delayed updates on the collection.

supplier_poa The POA used by the event channel to activate
SupplierAdmin and SupplierProxy objects.

consumer_poa The POA used by the event channel to activate
ConsumerAdmin and ConsumerProxy objects.
38
 Services & Utilities

�������	

 4.3 Event Channel Configuration
 39
 Services & Utilities

�������	

 4.3 Event Channel Configuration
40
 Services & Utilities

�������	

5 Ut i l i t i es

5.1 Descriptions and Usage

The following utilities can be used to perform tasks which can help users
manage and use TAO more easily.

catior
catior reads the IOR stored in file (a stringified IOR), decodes it and sends
the contents to stdout using:

where

-f filename reads the file identified by filename (containing the IOR).

Example
This example shows catior being used to display the IOR which is stored
in the NotificationSingleton.ior file of the current directory.

The output IOR is shown below.

% catior -f filename

% catior -f NotificationSingleton.ior

IOR:000000000000004B49444C3A707269736D742E636F6D2F636F732F436F734E6
F74696669636174696F6E2F4E6F74696669636174696F6E457874656E73696F6E73
2F51756575654D616E616765723A312E3000000000000200000000000000B400010
2000000000E3231332E34382E39312E3230360004C70000005F4F70656E46757369
6F6E2E4E6F74696669636174696F6E536572766963652F4F70656E467573696F6E2
E4E6F74696669636174696F6E536572766963652F218D4798E0DE1811D7A75ABC57
1A2C16BF8A426F30DE1811D7A75ABC571A2C16BF000000000200000000000000080
00000004A414300000000010000001C000000000501000100000001050100010001
01090000000105010001000000010000002C0000000000000001000000010000001
C00000000050100010000000105010001000101090000000105010001

decoding an IOR:

The Byte Order: Big Endian

The Type Id:
"IDL:prismt.com/cos/CosNotification/NotificationExtensions/Queue
 41
 Services & Utilities

�������	

 5.1 Descriptions and Usage
Manager:1.0"

Number of Profiles in IOR: 2

Profile number: 1

IIOP Version: 1.2

 Host Name: 213.48.91.206

 Port Number: 1223

 Object Key len: 95

 Object Key as hex:

 4f 70 65 6e 46 75 73 69 6f 6e 2e 4e 6f 74 69 66 69 63 61 74 69
6f 6e 53 65 72 76 69 63 65 2f 4f 70 65 6e 46 75 73 69 6f 6e 2e 4e
6f 74 69 66 69 63 61 74 69 6f 6e 53 65 72 76 69 63 65 2f 21 8d 47
98 e0 de 18 11 d7 a7 5a bc 57 1a 2c 16 bf 8a 42 6f 30 de 18 11 d7 a7
5a bc 57 1a 2c 16 bf

 The Object Key as string:

OpenFusion.NotificationService/OpenFusion.NotificationService/!.G..
.....Z.W.,...Bo0.....Z.W.,..

 The component <1> ID is 0 (TAG_ORB_TYPE)

 ORB Type: 1245790976

 The component <2> ID is 1 (TAG_CODE_SETS)

 Component Value len: 28

 Component Value as hex:

 00 00 00 00 05 01 00 01 00 00 00 01 05 01 00 01 00 01 01 09
00 00 00 01 05 01 00 01

 The Component Value as string:

Profile number: 2

 Profile tag = 1 (unknown protocol)
42
 Services & Utilities

�������	

 5.1 Descriptions and Usage
ior-parser
The ior-parser utility parses IORs generated by most ORBs. It has been
tested with Orbix, VisiBroker and TAO. ior-parser is used as follows:

gperf
gperf is a GNU perfect hash function generator which is used by TAO's IDL
compiler to generate perfect hash functions (which is generally the most
efficient and predictable operation demuxing technique).

A complete description of gperf and how to use it, along with its GNU
Licensing Terms & Conditions, is provided in gperf.pdf which is located in
the docs/release/pdf directory of the OpenFusion TAO distribution.

 Profile body len: 44

 Profile body as hex:

 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 1c 00 00 00 00 05 01
00 01 00 00 00 01 05 01 00 01 00 01 01 09 00 00 00 01 05 01 00 01

 The Profile body as string:

 ..

% catior returned true

% ior-parser <IOR filename>
 43
 Services & Utilities

�������	

 5.1 Descriptions and Usage
44
 Services & Utilities

�������	

I ndex

I ndex

A
Adminstration . 16, 28

B
Bootstraping the Naming Service from Clients 27

C
catior. 41
Collocation Strategies 5

Compiler Options .7
CosEvent_Service 33

D
Destroying Binding Iterators 26

E
Environment Variable Descriptions 4
Environment Variables 4, 25
Event Channel Configuration 34

Event Service .33
Event Service Command-line Options 33

G
Generated Files . 3 gperf .43

I
IFR_Service . 15
Implementation Policies 26
Interface Repository Command Line Options

15

Interface Repository Service.15
Introduction .3
ior-parser. .43

L
Legal tao_ifr Command Line Options. 17

N
Name Components 21
Naming Service . 19

Naming_Service Command Line Options. .22
nsadd .29
47
Services & Utilities Guide

�������	

 Index
nsdel . 29 nslist . 28

O
Operation Demuxing Strategies 5 Orphaned Naming Contexts 27

R
Running the Service. 15, 22, 33

T
TAO IDL Compiler . 3 tao_ifr . 16

U
Usage. 4 Utilities . 41

V
Variable . 4
48
Services & Utilities Guide

�������	

	OpenFusion
	Notices
	Preface
	About the Services & Utilities Guide
	Contacts

	Contents
	Table of Contents
	List of Tables

	Services & Utilities
	1 TAO IDL Compiler
	1.1 Introduction
	Running

	1.2 Generated Files
	1.3 Environment Variables
	1.4 Operation Demuxing Strategies
	1.5 Collocation Strategies
	1.6 Compiler Options

	2 Interface Repository Service
	2.1 Running the Service
	IFR_Service

	2.2 Administration
	tao_ifr

	3 Naming Service
	3.1 Introduction
	OMG Standard
	Naming Contexts
	Name Components

	TAO Naming Service and Persistence

	3.2 Running the Service
	Environment Variables
	Persistence Options
	The -f Option

	Implementation Policies
	Destroying Binding Iterators
	Orphaned Naming Contexts

	Bootstrapping the Naming Service from Clients

	3.3 Administration
	nslist
	nsadd
	nsdel

	3.4 Running as a Windows NT Service

	4 Event Service
	4.1 Introduction
	4.2 Running the Service
	4.3 Event Channel Configuration
	Run-time Configuration
	The Configuration File
	Options
	The Constructor

	5 Utilities
	5.1 Descriptions and Usage
	catior
	ior-parser
	gperf

	Index

