December, 11th 2009

CLIFv2 user manual

!

http:/ /clif.ow2.0org/

Copyright © 2006-2009 France Telecom SA

http://clif.ow2.org/

CLIF user manual guide

Table of contents

L. INEFOAUCHION. occueiiiiiinniiniesntisssncssnissiessnesssssssnssstsssnesssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssnses 4
2. Key concepts 5
3 REEISIIY ccueeecrrnecssanecssrncssssnessssnessssnsssssssssssssssssssssssssssasssssasesssassssssssssssssssssssssssssssssssssssesssssessssssssssansss 7
31 RAHONAIE. ...ttt et ettt et e e e e 7
3.2. RUNNING @ REGISITY..eiiiiiiiiiieeiiie ettt e et e et e e e be e e sabeeesabeeessseeennsaeeeeeeennssnneeeeeannns 7

4. CLIF servers w8
o B A 11 10) 1 (USSR PPPPP 8
4.2. Configuring @ CLIF SEIVET.....cc.eiiiiiiiiiiieieeeeee ettt et e 8
4.3. RUNNING @ CLIF SEIVET.....couiiiiiiiiiiiiieeieeeee ettt ettt e s e e 9

S PrODES.ueeciicnirnniinnecnnestissnissnnnssiessnisssissssssssesssssssssssssssssassssssssssssasssssesssssssssssassesssssessssssasssssans 10
5.1 RAHONALE. ...ttt ettt st e b e ettt e et e e e eas 10
5.2, AVAILADIE PIODES.viiiiiiiiiie ettt ettt e et e et e e e et a e e e e e nnnrraeas 10
S5.2.1. CPU PFOD ...t e ettt e e tae e et e e st e e e beeessbeeeesbee e e eannbanaaeeeennens 10
5.2.2. AISK PTODE.......c....eeeeeeeeeee ettt e e e et e e e atae e e annes 11
5.2.3. EIOTY PFODE. ..ottt e et e e e st e e eabbe e e s sanesabsesateeeeeees 11
5.2.4. NEIWOTK PFODE.........c..eeeeeeeeeeeeeeeee et et e et e e s tae e et eesasaeessssaeaeeeeennnnsees 11
5.2.5. JUIML PFOD ...ttt et e et e e et e e e e e e e e nbae e e e e nabaeaaaeeeanens 11
5.2.0. FID PTODE.c....ooeeeeeeee ettt ettt e et e e e e et e e e et e e e e e e ennnnees 12

6. Load injectors and ISAC........cicineicnseicnsnicssnicssaniossasssssasssssasssssasssssasssssasssssnssssssssssssssssssssssnns 13
6.1, RAIONAIE....ccuiiiiiiiiiiiiie ettt ettt e st e s bt e e s bt e e e e e e sabbaeeee s 13
6.2. ISAC is a Scenario Architecture for CLIF...........cccoooiiiiiiiiieeeeee e e 13
0.2. 1. DERAVIOTS.c....eoeieiiieeieeee ettt ettt e ettt e s e e st e e abee s it e e sabeesbteesanaees 13
0.2.2. LOAA PTOSILES....ueoeeeeeieeeeeee ettt e et e et e e et e e e et e e e e s abe e e e e sbaaeaaaaaaaeaeans 13
0.2.3. ISAC PIUGTTS.c.....eveeeeeieeee et e ettt e e e et e e e et e e e e ae e e e e saaeaeesasaeeeesssseeeeennsaaaaaaaeens 13
6.2.4. WFiIting AN ISAC SCEONATIO..........uveeeeeereeeeeecieeeeeeieeeeeeieeeeeeaeeeesraeesesaaeeesssbaaaaaaaaaaeens 14
6.2.5. Recording an ISAC SCeNAriO fOT HIIP..........ccoccueiiieeciiieeeeiieee et vaaa e 14
6.2.6. Deploying and executing an ISAC SCENATTO...............cccecuereeeeceereeeciieeeeeciiiirrereeeeeeaeaaens 15

7. Eclipse-based graphical user iNterface........ccceveicevicsseissarcssansssiossesssssossssssssossssssssssssssssssssssssssnans 16
7.1 INETOAUCTION. ...ttt ettt et ettt e sab e et e s bt e et e e saeeenbeeeanee 16
7.2, RUN CLIF TEZISIIY teeittieiiiieeiiieeiteeeiteeeitee sttt e siteesteeeetteessabeesssteesnseesseeeensaeesnsaeesnsaeessnnnssnees 16
7.3, TeSt Plan €AItION....cccviiiiiieiiiie ettt ee et e et e e tbeeesstee e sbeeensaeeesaeeensaeeasseeennneas 17
7.4, ISAC SCENATIO ©AILION. ...u.eeiuiiiiiiiiieeiie ettt ettt ettt st e bt e et eenbae e e eaeeees 18
7.5. test deployment and EXECULION.ccuiiiiiiriiieiieeiieie ettt 19

8. Java Swing-based graphical user interface.........c..ccceecvrisccnrincsnrcsssnrcsssnncsssnncsssscssssscsssssssssssssens 20
oI O 13 40 e LT 6 (03 3 PSR PSPRR 20
8.2. RUN CLIF TEISITY ...eeiiuiiiiiiiiiieiieeitie ettt ettt te et ee st e et e e s tte e e bt eesnbaeessbbeesnbaeesnbaaennsnneeeeeens 20
8.3. Test plan €dition tADIE.c..eiiiiiiiiiiiie ettt et et e e s 21
8.4. Performance and resource usage MONILOTING.eevruveerrureeriureeriireerireesieeesseeesseeesenreeeeeannns 22
8.5, FIIE MBI ...ttt sttt et ettt et ettt e r e e ees 22
8.6. TSt PLAN IMENUL....eeiiiieiiiieiiiie ettt ettt et e et e e st eeesateessbeeesbeeeabeeensseesnsaeesnsseesnssaeeeeens 22
8.7 TOOIS TNEMIU.eiiiiiiiiiteee ettt ettt et st e bt et e sb e sttt e e ettt e e ssneeesannaeeens 22
8.7.1. BASIC QRALYZOT ..ottt et 23
8.7.2. Quick Graphical ANALYZET.............c.coouiiuiiiiiiiiiiiieieeeee ettt 23

December, 11th 2009

8.8 HEIP MENU...coniiiiiiiiiiee ettt ettt 27
9. Command line user interface 28
0.1, INErOAUCTION. ...ttt ettt ettt st e s e et e st et eesaeeeaneesanee 28
9.2, RUN CLIF REZISIIY ..uuviiiiiieiiiieeiieeeiteeeiteesteeesitteesateeesateeetaeessseesssaeessseeeesseeensseeensseesnssesssnes 28
9.3. Test plan deployment: dePlOyY........ceevuieiiiiiriiiieiiieeeie ettt ettt e s 28
9.4, Test INTtHAlIZAtION: TN, ..coiuiiiiiiiitiiiie ettt ettt e st e et e sbee et eesbbeebeeeseanee 28
9.5. TeSt @XECULION STATT: STATT.....couveetiiriiieiieriteeie ettt ettt ettt et e et e bt e b st e e e eabeeeesneeees 29
9.6. Suspend test XeCUtiON: SUSPENA.......cevuiieuiiriiriieiieeieerite ettt ettt e e et e e 29
9.7. Resume test XECULION: TESUIMIC.c...eeuveerrrerieeriteeteeniteeteeniteesseesstesbeesueeeneesseesabeesuaeensneesanneee 29
9.8. STOP LESt EXECULION: STOP....veeuvrieurieiriiieeiee ettt ettt ettt e sae e e et e e saneeesannes 29
9.9. Wait for a test execution tO termMINAte: JOIM.......errueerieeruierieriieenieeiee e et e site e e seeeeeeesiee e 29
9.10. Collect test results (measurements): COLLECE...........ueiriiiiiiiiciiiiiiieee e 29
9.11. Shortcut for full test eXECUtiON PrOCESS: TUN.....ccueerueirtieriierieeniieeieesiteebeesieeesieeeesiaeeesaanees 29
9.12. Shortcut for full deployment and execution process: launch...........cocceevveeiiininiiennecnnne. 30
9.13. Get specific runtime parameters of a probe Or INJECtOr: PATAIMS.cccvervveereeerreeernureeennenne 30
9.14. Change a runtime parameter of a probe or Injector: Change..........ccccceeeverveeniieeneeernneeeennnee. 30
10. Test results and MEASUTEIMENLS.......cccceerveiiseissencssncssrnsssnssssnsssnsssassssassssssssasssssesssssssssssssssssssssasss 31
11. Licenses w32
Appendix A: SYSEEIN PrOPEILICS.....cciceerseeessersssecssnessanessansssesssassssssssassssessssssssssssassssssssssssssssassssssasssnss 33
Appendix A: Class and resource files (remote) loading...........cccceeeveeevuecssercsnissnnsseecssnncsancsssnnneenn 36
Appendix A: ISAC eXeCUtiOn ENEGINE.......ccovierrissricssncssancsssesssnsssssssssssssssssssssssssssossssssssssssssssssssssssns 37

CLIF user manual guide

1. Introduction

CLIF is a component-oriented software framework written in Java, designed for load testing
purposes of any kind of target system. By load testing, we mean generating traffic on a System
Under Test in order to measure its performance, typically in terms of request response time or
throughput, and assess its scalability and limits, while observing the computing resources usage.

Basically, CLIF offers the following features:

+ deployment, remote control and monitoring of distributed load injectors;
+ deployment, remote control and monitoring of distributed probes;
- final collection of measurements produced by these distributed probes and load injectors.

irjatas and resource resource
probes, probes
resource
probes
Load injectors :
* send requests, wait for reglies, measure response tines
* according to a given scerarno

* forexanple, emuating the load of a nuber of real users

Analysis tools for these measurements will be provided as soon as possible. For the time being, all
measurements are available as CSV (comma separated values)-formated text files.

Thanks to its component-based framework approach, CLIF is easily customizable and extensible to
particular needs, for example, in terms of specific injectors and probes, definition of load generation
scenarios, storage of measurements, user (tester) skills, integration to a test management platform,
etc. For instance, user interfaces are available as command-line tools, Java Swing-based GUI and
Eclipse-based GUI.

See installation manual for CLIF installation.

December, 11th 2009

2. Key concepts

blade

an active component that can be deployed within a CLIF application, under control of the
supervisor component, that provides statistical information about its execution (for monitoring
purpose), and produce results stored by the storage component. Blades exist either as load
injectors or probes.

CLIF application

set of deployed components making it possible to run a test. A CLIF application is a
distributed component holding as sub-components: one supervisor, one storage, and an
arbitrary number of probes and load injectors (aka blades).

CLIF server

a JVM with a bootstrap component that will locally handle blade deployment requests from
the supervisor. In other words, one must run a CLIF server on a given computer in order to be
able to deploy load injectors and probes. CLIF server have a name. They register themselves in
the Registry with this name in order to be found by the deployment process.

code server

the code server is responsible for delivering Java byte-code and resource files on demand
during the deployment process. This is achieved through a socket server with a specific
protocol. As of current version, files greater then 2GB cannot be transfered.

collect, collection

action of getting all measurements, possibly disseminated through the blades by the storage
proxy feature, into the storage component. Collection should not occur before a test is
terminated.

deployment

local or remote instantiation of load injectors and probes (aka blades). During this process,
Java byte-code and resource files may be loaded from the code server, through the network,
and to the target JVM of the blade being deployed.

load injector

a component that conforms to the blade component type, whose activity consists in generating
traffic on an arbitrary SUT, using arbitrary protocols, according to an arbitrary scenario.

probe

a component that conforms to the blade component type, whose activity consists in measuring
the usage of an arbitrary computing resource. Probes may be deployed at the SUT's side, in
order to better analyze and understand its performance, as well as at the load injectors' side, to
check that they are performing all right (since saturating injectors may result in unreliable
measurements or violated load scenarios).

(load) scenario

optional concept referring to the way a single load injector generates traffic, for instance by
emulating the load of a variable number of users performing a variety of requests on the SUT.
In other words, a scenario defines both shape and content of the traffic generated by a load
injector.

Storage

centralized component for storing measurements produced by load injectors and probes (aka
blades). The storage component is typically associated to a storage proxy feature supported by
each blade.

CLIF user manual guide

- Storage proxy
local buffering of measurements feature provided by blades in order to avoid flooding the
network and the storage component, which could also disturb the test and spoil measurements.

« Supervisor or supervision console
component responsible for controlling and monitoring of a test execution.

« System under test (SUT)
an arbitrary system one wants to assess the performance of. It is typically composed of one or
several computers, networks, etc. It has to be reachable, either directly or indirectly via some
gateway, native library or any wrapping mechanism, from the Java Virtual Machine where
CLIF servers are running.

+ Registry
a distributed naming service used by the deployment process to lookup CLIF servers and
deploy load injectors and probes.

« Test (execution)
execution (shot) of an already deployed test plan. A test ends under 3 possible conditions:
completed, manually stopped or self-aborted.

« Test plan
specifies a set of distributed load injectors and probes, including their instantiation arguments
and the name of the CLIF servers where they must be deployed.

December, 11th 2009

3. Registry

3.1. Rationale

CLIF servers are necessary to deploy any test plan, since they host load injectors and probes. CLIF
servers are designated by a name, which is registered in a Registry. In order to run, CLIF servers
must be able to find this Registry, which implies:

1. that the Registry must be running before a CLIF server can be launched;

2. that parameters must be given to tell the CLIF servers where to find the Registry and register
themselves.

3.2. Running a Registry

There are three ways of starting a Registry: running the Java Swing console GUI (section 8), using
the Eclipse-based console GUI (section 7), or using the appropriate command (section 9).

CLIF user manual guide

4. CLIF servers

4.1. Rationale

CLIF servers are necessary to deploy any test plan, since they host load injectors and probes.
CLIF servers are designated by a name, which is registered in a Registry. In order to run, CLIF
servers must be able to find this Registry, which implies that:

1. the Registry must be running before a CLIF server can be launched;

2. parameters must be given to tell the CLIF servers where to find the Registry and register
themselves.

4.2. Configuring a CLIF server

You may configure CLIF either by editing file clif.props in the etc/ subdirectory, or by using
command "ant config". In the latter case, the following questions will be asked:

e® please enter the host where the console will be run:
enter the IP address or name of the computer where you will run the Registry,
either embedded in the Swing or Eclipse GUI, or launched by command line.
e please enter the port number for the console embedded code server:
enter the port number used by the code server, for example 1357.

This configuration operation must be done everywhere you want to run a CLIF server or a console.
You may also make this configuration step only once, and copy the resulting file etc/clif.props
wherever needed.

December, 11th 2009

[zlif[d 10.0.0.1p Clif-1.2.2
Buildfile: build.xml

ask-console-confi
[input] ples: 1t he host where the console will be run:
10.0.0.10

port hunber for the console embedded code

config:
[copy] Copying file to fhome/clif/clif-1
[echo] 2fetefelif.props ¥ been generated.

L
1 minut

4.3. Running a CLIF server

CLIF must be configured on each host you plan to run a CLIF server, accordingly to where your
Registry is running. Your Registry must be running to be able to launch Clif server. Then, run a
CLIF server with command:

e ant server to create a CLIF server that registers with the local host name as CLIF server
name
e ant -Dserver.name=myFirstServer server to create a CLIF server that registers with the

provided name
The second solution is a good practice for defining test plans regardless of the actual execution
computers you will have, since the CLIF servers' names are not computer names. You may even
first locally try a distributed test plan by running as many CLIF servers as needed on a single
computer, with different CLIF server names.

2P clif 10.0.0.1 ~/clif-1.2.2 =]

[2lifid 10.0.0.1 clif-1.2.21% ant -Dse
Buildfile: build.xml

10.0.,0.1 is ready.

CLIF user manual guide

5. Probes

5.1. Rationale

When load testing, it is often a good idea to check the usage of computing resources, both at the
SUT side and the injectors' side. For instance, one may imagine system probes measuring CPU
usage percentage, memory consumption, network bandwidth, etc. But other probes may be
imagined that measure the size of a request queue length, a cache usage, or any activity data of any
kind of middleware/software element involved in the SUT.

With CLIF, you may include probes in a test plan, as a complement to load injectors. Probes are
supposed to have their own activity, typically (but not necessarily) consisting in polling a resource
to measure its usage. All measurements are available from the Storage component once the test
execution is over and the collection process has completed, while statistical values may be retrieved
by the supervision console for monitoring purpose during test execution, directly from the probe.
These statistical values are moving statistics computing on the period between two consecutive
retrievals.

5.2. Available probes

Probes delivered with CLIF all consist in a periodic measure of the resource. They all take two
arguments that must be specified in the test plan: the polling period (in milliseconds) and the
execution duration (in seconds). Although probes start measuring once initialized for convenience,
this execution time is counted once actually running (i.e. started and not suspended). When
terminated, no measure is performed anymore.

To set a probe in a test plan:

+ enter its family name as the “class name” information field;

+ select the “probe” type;

« select the CLIF server where to deploy this probe, making sure that the target CLIF
server actually runs on a computing environment (hardware, operating system or
whatever) that is compatible with the probe family (see table below);

 enter the specific argument line, as explained hereafter.

5.2.1. cpu probe

family/class name cpu

measurements global used CPU %, user used CPU %, kernel/privileged used CPU %

alarms none
arguments polling period (ms), execution duration (s)
compatibility Linux 2.4/2.6, MacOS.X 10.4, Windows XP

10

December, 11th 2009

5.2.2. disk probe

family/class name

disk

measurements # issued read operations, # of sectors read, # issued write operations, # of
sectors written, time spent for I/O (ms), time spent for read operations (ms),
time spent for write operations (ms).

alarms none

arguments polling period (ms), execution duration (s), disk name (e.g. hda or sda for
Linux, diskO for MacOS.X, C: for Windows XP)

compatibility Linux 2.4/2.6, MacOS.X 10.4, Windows XP

5.2.3. memory probe

family/class name

measurements

alarms
arguments

compatibility

memory

used RAM %, used RAM (MB), cached memory (MB), buffers size (MB),
used swap %, used swap (MB)

none
polling period (ms), execution duration (s)
Linux 2.4/2.6, MacOS.X 10.4, Windows XP

5.2.4. network probe

family/class name
measurements
alarms

arguments

compatibility

5.2.5. jvm probe

network
received KB, # of packets received, sent KB, # of packets sent
none

polling period (ms), execution duration (s), network adapter name (e.g. ethO
for Linux, en0 for MacOS.X, Broadcom NetXtreme 57xx Gigabit Controller
for Windows XP)

Linux 2.4/2.6, MacOS.X 10.4, Windows XP

family/class name jvm

measurements

alarms

arguments

compatibility

free memory in currently allocated heap (MB), used memory % with regard to
currently allocated heap, free % of maximum allocatable memory heap

An alarm with severity level “Info” is generated at each JVM garbage
collection.

polling period (ms), execution duration (s)

system independent

11

CLIF user manual guide

5.2.6. rtp probe

family/class name

measurements

alarms

arguments

compatibility

Itp

number of packets per second,
cumulative number of packets lost,
minimum time jitter (ms),

maximum time jitter (ms),

average time jitter (ms),

standard deviation of time jitter (ms),
number of jumps per second,
number of inversions per second.

none

polling period (ms), execution duration (s), port to listen.
Examples for port argument:

e 40000-40002 to listen on ports 40000 to 40002

e 40000 to listen on port 40000

e 40000-40004/2 to listen on ports 40000, 40002, 40004

system independent

12

December, 11th 2009

6. Load injectors and ISAC

6.1. Rationale

Load injectors are set in a CLIF test plan in order to generate traffic on the SUT. With CLIF, you
may use and imagine any kind of way to define and execute your load scenarios, on any kind of
SUT. You may even mix a variety of load injectors in the same test plan. This is the reason why you
must set a class name for each load injector you define in a test plan, and set an arbitrary line of
arguments, specifically to the actual load injector you use. Fortunately for non-programmers, CLIF
comes with the ISAC extension in order to provide an easy, powerful and user-friendly way to
define load scenarios. Luckily for Java programmers, they may also define their own load injectors.

6.2. ISAC is a Scenario Architecture for CLIF
With ISAC, testers are given a way to define load scenarios by combining:

definitions of elementary behaviors, typically representing users;
optional definitions of load profiles setting the population (i.e. the number of active
instances) of each behavior as a function of time.

6.2.1. behaviors

An ISAC behavior basically consists in a sequence of actions (requests) on the SUT interlaced with
delays (think times). It may be enriched with the following constructs:

conditional loop: while <condition>

conditional branches: if <condition> then <true_branch> else <false_branch>

probabilist branches: nchoice <weight_1, branch_1> <weight_2, branch_2>,
<weight_n, branch_n>

where weight_i is an integer representing the chance of executing branch_i (in other
words, probability of executing branch_i equals weight_i divided by > weight_j)
preemptive condition: preemptive <condition, branch>

program branch will exit as soon as condition is true (this condition is actually evaluated
before executing each instruction of branch)

6.2.2. load profiles

Load profiles enables predefining how the population of each behavior will evolve, by setting the
number of active instances according to time. A load profile is a sequence of lines or squares. For
each load profile, a flag states if active instances shall be stopped to enforce a decrease of the
population, or if the extra behaviors shall complete in a kind of a “lazy” approach.

6.2.3. ISAC plug-ins

A behavior can be understood as a logic definition, a kind of a skeleton. In order to actually
generate traffic on the SUT, this skeleton must be associated to one or more ISAC plug-ins. Plug-
ins are external Java libraries, that are responsible for:

13

CLIF user manual guide

- performing actions (i.e. generating requests) on the SUT, whose response times will be
measured, using and managing specific protocols (e.g. HTTP, DNS, JDBC, TCP/IP, DHCP,
SIP, LDAP or whatever);

« providing conditions used by the behaviors' conditional statements (if-then-else, while,
preemptive);

« providing timers to implement delays (think time), for example with specific random
distributions or computed in some arbitrary way;

« providing ad hoc controls for the plug-in itself (e.g. to change some settings);

- providing support for external data provisioning (e.g. a database of product references or a file
containing identifier-password pairs for some user accounts), used as parameters by the
behaviors.

6.2.4. Writing an ISAC scenario

ISAC scenarios are stored in and read from XML files, with extension ".xis" (standing for XML
Isac Scenario). An ISAC scenario holds three main sections:

1. a section for plug-in imports, where default/initialization parameters can be set. A plug-in may
be imported more than once if necessary: for each imported plug-in, each instance of each
behavior will hold a sort of private context (called session object). Each imported plug-in is
designated via a unique identifier.

2. a section for behaviors definition. All actions (aka samples), conditions (aka tests), controls and
delays (aka timers) must refer to an imported plug-in using its identifier. For each call to the
plug-in, specific parameter strings may be set. Those strings may hold variables: when the
pattern ${plugin-identifier:key} is found, it is replaced at runtime by a value that the
designated plug-in associates with the provided key string. The designated plug-in must be a
"data provider" type plug-in, and the interpretation of the key depends on it (refer to the
documentation of the data provider plug-in).

3. an optional section for load profiles, with (at most) one profile per behavior.

The most user-friendly way to edit a scenario is to use the Eclipse-based ISAC graphical editor (see
section 7). The alternative is to use an XML or text editor (the DTD of ISAC scenarios is given in
appendix page).

6.2.5. Recording an ISAC scenario for Http

In order to make realistic scenarios corresponding to real users behaviors, session web can be
recorded in ISAC scenario. It consists on using a proxy called MaxQ, available here:
http://maxq.tigris.org/, which will capture user sessions.

To record an ISAC scenario:

1. You have to edit the maxq.properties file and to choose which timer will be used during the
injection (ConstantTimer and RamdomTimer are available). You can also specify on which
port starts MaxQ. By default, it starts on the port 8090.

2. You have to configure your web browser to go through a proxy for Http requests.

3. Then you have to click on "File" -> "New" -> "ISAC scenario". At this point, the proxy is
started but doesn't record ISAC scenario yet: it works as a transparent proxy.

14

http://maxq.tigris.org/

December, 11th 2009

4. Click on "Test" -> "Start Recording". Now, all requests going from the web browser to a
server will be stored in the ISAC scenario.

5. At the end of the web session, click on "Test" -> "Stop Recording". A pop-up appears to
select a name and a destination to save the file. Give a name with the extension ".xis". Then
save.

Now you have a scenario corresponding to a user behavior. You can import it in your Clif Console
to edit the load profile in order to replay it on a large scale.

6.2.6. Deploying and executing an ISAC scenario

Remember that a scenario is local to each load injector. When editing your test plan, the key idea is
to use the ISAC execution engine as a load injector, and to set the test plan file as argument:

+ class name: IsacRunner
« arguments: myScenario.xis

Your code server path should include the directory where your scenario file is, in order to benefit
from the automatic remote loading of the scenario file by every remote ISAC execution engine you
may have defined in your test plan (see appendix in Developer Manual).

A number of the execution engine's parameters may be modified, including at runtime:

- about the engine itself (size of the thread pool, polling period for load profile management,
tolerance on deadlines);
- about the active scenario, in particular the number of active instances (population) of each
behavior.
ISAC scenarios end on completion (load profiles time have elapsed), failure (abort), or manual stop.
As soon as at least one behavior population has been manually set, or when no load profile is
defined for any behavior, the scenario must be manually stopped.

15

CLIF user manual guide
7. Eclipse-based graphical user interface

7.1. Introduction
CLIF comes with an Eclipse-based Graphical User Interface. This GUI has 3 functions:

« a CLIF console for test deployment, execution and monitoring, including a test plan editor;
- a graphical editor for ISAC scenarios;
- aprogramming environment for ISAC plug-ins.

To install and run the Eclipse-based Graphical user interface, see the Install Manual.

7.2. Run CLIF registry

The GUI try to connect when necessary on the registry configured in clif.props. If it can't connect, it
will create and connect on a local registry.

16

7.3. Test plan edition

CLIF RCP Console

December, 11th 2009

- a =

P A LY

T Mavigator 52 =0
2 B&g~

[= 1= MyTestPlan

(= report

(= stats

%] .project

|=| clif.props

by rew_test_plan.ckp

by ClifTreeview &2 =0
= i local host

@T jumn 2

L, memory 1

e cpu

File Edit CLIF Search Window Help

G

s riew_test_plan.ctp 53

Test Plan Editor

Injectors and probes

All injectors and probes in the kest plan

Cpu | memory | jvm

Id | Server Rale Class Can
2 localhost probe jvm Remove
< 2
Edit
b Monitor E2

= Properties

Manage injector and probe properties

Id* ; [z

Servert: [local host | [Refresh |
Raole*: |probe v
Class*: [jvm |
Arguments : | 500 100 |
Comment | |

=0

17

CLIF user manual guide

7.4. ISAC scenario edition

../ CLIF RCP Console

File Edit CLIF - Search ‘Window Help
iHi&iEH-5-i%

5 Navigator I3 1 = 0| iy new_test_plan.ctp

& v)
< = Behavior Page :

= = MyTestPlan an tor beavior descriot
= report Edition page for behavior description

Add a new action for behavior BO
(& stats ies

@ project
clif props
Ao NEW_SCENArio, xis
|y new_test_plan.ctp

Behavior id : | BO sample : HetpInjector.get

“PRandom,_0
- “J=Httplnjector_0

~ Load profile : @if
R — while N v
Remave prafile =& nchoice
3 preemptive armple

~ Behavior tree :

| http:f{a0610431 . &gl fr:608 1 fnexus/index. html |

Randam_0.setUniform
(0] Randam_0.sleep
G HttpInjector_0.get

ic redirection (optional)

eaders:

ndd entry i Remove entry]

value

eters (scheme | 'name=value')optional) @

fudd field i Remove ficld]

iy may be stored in a variable (optional)

! 1 o
I | =
Design | Source | Import | Behavior BO L Fiih J [= J
(@) Load profiles 51 | =
Profiles : Time: : 0 Walue 0
& 100
80
40

10 20 30 40 50

18

7.5. test deployment and execution

December, 11th 2009

File Edit CLIF - Search Window Help

=R RS RS
B Mawigator &2 =0 lia new_test_plan.ctp 52 I gnew_scenarm.xis =0
& =
® E= 7| Test Commands
B 2 MyTest
(= report Injectors and probes
B[stats Allinjectors and probes in the test plan
] .projsct injectar | jvm | memary | cpu]
clif. props
d Server Role Class Arguments Com... = State
48 new_scenario.xis
local host injeckor IsacRunner new_scenario.xis running
iy mew_test _plan.ctp
Global state:
running
Iritialize Start Callect
Edit | Test
1y Monitor 23 I =4d
new_test_plan £7
injector | jvm | memory | cpu | Alarms |
Display | Collect | Elade Time I\me:-\u‘alue:-
= %] 1] 3 25"
Ty CiFTresview 2
= P local host !
. G injector 3
E--i aDA10431
@ jumn 2 i
T
I —
@,c cpu 1
action thraughput (actionsis) w
= og" g 15" 20" 25" 2 "
[store manitoring data ¢ i | 5
Drawing kime frame (s} Polling period {s}

19

CLIF user manual guide

8. Java Swing-based graphical user interface

8.1. Introduction

CLIF comes with a Java/Swing-based Graphical User Interface. This GUI consists of a console for
test deployment, execution and monitoring, including a test plan editor. It also provides an analysis
tool to help produce test reports.

Compared to the Eclipse RCP-based console (see section 7), the Swing-based console has the
advantage of light-weight, simplicity and operating-system independence. On the negative side, its
simplicity springs from a reduced set of features. In particular, it does not provide an ISAC scenario
editor nor an ISAC plug-ins creation wizard. As far as the test results analysis is concerned, the
consoles provide different tools that suit different needs. The one provided by the Swing console is
probably more straightforward to use, and rapidly gives graphical views, while the one provided by
the Eclipse console is suited to the creation of long reports based on well-structured report
templates. Of course, once a test has been run, any analysis tool may be used regardlessly of the
user interface that has been used to run the test.

Note that the Swing console is actually embedded in the CLIF Eclipse-RCP distribution, since it
provides the so-called CLIF runtime environment directory, located in the console plug-in path, i.e.
something like plugins/org.ow2.clif.console.plugin_x.x.x/.

To install and run the Java Swing-based graphical user interface, see the Install Manual.

8.2. Run CLIF registry

The GUI try to connect when necessary on the registry configured in clif.props. If it can't connect, it
will create and connect on a local registry.

20

December, 11th 2009

File

Testplan Tools 7

& probeTP.prop

Blade id] Server Role Blade class Blade argurnent Cormment State |

3 g-smithp2.rd francetelecorn ™ probe sy sterm 1000140 sonde systerne completed
g-smithp2.rd francetelecorn ™ probe cpu 1000140 sonde CPU completed

0 g-smithp2.rd francetelecomn. T injector Autotest 10010050100 injecteur completed

1 g-smithp2.rd francetelecorn ™ probe mernory 1000140 sonde memoire completed

rmemury |/cpu rsystem |/iniec"tu-r |

Dizplay | Collect | Blade [94]924
v L '
ez L o _______
ee2 Ll _________
T I
. : o
action throughput {actions/... i 230

Drawing timeframe: 507 SeC. Polling period:|1 SeC. SetiDraw Reset

opped - ellapsed time 0:2:40

8.3. Test plan edition table

A test plan defines the probes and the injectors to be used, with their parameters, and where to
deploy them. Remember that injectors and probes are uniformly designated as "blades". The table in
the upper part is the test plan editor. Note that the bottom part (monitoring) is hidden as long as the
test is not initialized. Note also that the test plan is not editable when the monitoring area is shown.

Each row of the test plan table defines a blade configuration, through 6 columns:

Blade id is a unique identifier for the injector or probe to be deployed. A default id is

automatically set when adding a new blade, but it may be freely changed by the user as long as

it remains unique within current test plan;

Server offers a choice between available CLIF servers, where the blade is to be deployed. The

list of CLIF servers may be updated using option "Window > Refresh server list";

Role specifies whether the blade is a probe or an injector;

Blade class is where the user sets:

—either the Java class to be instantiated as a load injector (fully qualified name, without
trailing .class extension - see section 6),

—or a family name in case of a probe (see section 5);

Blade argument is an argument line that will be passed to the new blade instance at

deployment time;

Comment is an arbitrary user comment line.

21

CLIF user manual guide

The last column State is not editable. It shows state information about the blade (undeployed,
deploying, deployed, starting, running, stopping, suspending, resuming, completed, aborted...).

Test plans may be saved and restored using options in the File menu.

8.4. Performance and resource usage monitoring

As soon as the test plan is deployed and initialized, the monitoring area pops up in the test plan
window's bottom part. This area holds a set of tabbed panels:

- one for all injectors
- one for each probe family

For each panel, the user may set the monitoring time-frame, the polling period, and start or stop the
monitoring process. Moreover, a check-box table at the left side of each panel makes it possible to
selectively disable or enable the collect and display of monitoring data, for each blade.

8.5. File Menu
From this menu, the user can find options for saving and loading a test plan.

This menu also holds the "Quit" option to exit from CLIF console, which also terminates the
registry where CLIF servers are registered. As a result, whenever you terminate a CLIF console, any
remaining CLIF server will then become unreachable - you may stop these unreachable CLIF
servers manually. Running the CLIF console again will create a new, empty registry, and then you
may launch new CLIF servers. The user may not quit the console while a test is running (other wise,
the behavior is undefined).

8.6. Test plan menu
This menu holds test deployment and control commands. There are 2 subsets of options:

- the first set holds test plan definition and deployment commands

—option Refresh server list updates the list of available CLIF servers,

—option Edit switches to test plan edition mode, when enabled (i.e. when not already in
edition mode, and when no deployed test is currently running),

—option Deploy deploys the probes and injectors defined by current test plan

« the second set holds test control commands

—command initialize initializes all the blades so that they are actually ready to start;

—commands start, suspend, resume and stop respectively start, suspend, resume and stop the
execution of all blades;

—command collect tells the storage system to collect all test data from the blades (the actual
effect of this command fully depends on the Storage component). This option may be used
only after a test run. Collecting more than once after a test run has no effect; collecting is not
mandatory, which means that the user may not collect data if s/he is not interested in the test
results.

8.7. Tools menu

This menu displays on/off additional tools:

22

December, 11th 2009

8.7.1. Basic analyzer

Basic analyzer tool provides an analysis tool/sample of test results (after test run) - this is just a

preview.

8.7.2. Quick graphical analyzer

Graphical analyzer tool provides functions to analyze quickly test results after test run.

Quick Graphical Analyzer

File Preferences Helg

&9 Refresh | ChartConfiguration: Chart Title:
X Axis:
CLIF executions CPU and VM
o T test#0 Label: [Date (rms) | Chart:
= ¥ Axis: 200) 1,00
o lifecycle 17,5 I\
g CPUVC i Event field W label |IRY =
¢ | [pecru %CFU ® g [0,75 &
[diare || |used memaory % used memaory % - 125 | g
Yy scpu E 10,0 A T 0,50 2
A i
[%cPU user 75{ /| A =
i Selected v Axis Properties: \ | 2
[y scpukernal | 50 0,25 3
o [Jtest#l | Laker mcPu | ae
¢ [test#]vm 0.0 0,00
¢ 30 Chart type: |render as line I~ o 250 500 750 1000 1250 1500 1750 2000°
o= lifecycle Data type: BT G
o= [alarm) Raw dat [—%CPU + used memary %]
o3 WM an data Time dispaly {X Axis):
[date : (@) Moving statistic: Start: ! : End:
[free memony (ME 1 mean 1 min ,—0 ms 21665 [2000 e
[used mermory 5 @) standard deviation () max
[free usable mam Chart Comment:
: it's a char for ..
] ‘ M | | ¥ Time Configuration:
@Add TR Maximum number of point: (1000

Chart Statistics:

ICLIF executions [test#0 0 CPUSCPU

rmin:

0.0

rmean:
4.7563025210084032
nariance:

195 1011251495840322
Fria:

550

stol _clewiation:

13 367860437298203

4]

Menu:

By the file menu, the user can export his analyze in various formats (Text, XML or HTML).

H Quick Graphical Analyze

Quick Graphical Analyzer Quick Graphical Analyzer

File | Preferences | Help File| Preferences Help File Preferences 1B
Image Twpoe b ® PHG (Chart Export M To HTML . About :
e Moving Statistic... | O PG X Ax To XML
8] ; [
9 3 test#0 G I tame o S rest T Text File. .
o rAn || L -

The Preferences menu contains export options and moving statistics options.

The help menu holds a single About entry which displays informations about the graphical analyzer.

23

CLIF user manual guide

@p‘b Fefresh

[CLIF executions
o [test#0
0
o= [lifecyrle
¢ CJcCrU
D cate
[scpPu
D BCPU uszer
[el karnal

o=] test#l 'ﬁ' Add to Y axis

o [test#vM ~s3§.‘? Fefresh

L
o= [lifecyrle
o= [alarm
7] M

D cate

D free memary (ME)
D used memory %
D free usable memaory i

| 'f‘f' Ardd 1o Y axis

Chart configuration:

[Execution tree:

The test execution tree lists the available tests under a tree
representation with the following hierarchy: test / blade / event /
|event field

If a test execution doesn't appear in the hierarchy the user can press
the “Refresh” button to update the tree.

The “Add to Y axis” button add the value of the selected leaf to the
chart. The user can also add it by doing a double click on the leaf

A double click on a leaf do the same action. The user can do this
action by doing a “right click” in the tree.

Chant Configuration:
X Axis:

The user can configure the chart using the “chart Label: Date (ms) |
configuration” frame. In this frame he can define the v ayis:

X axis label, modify the curve, and define the Ewent field ¥ lakel
maximum number of point to display.

You can configure the curve by modifying her label,
her color, her appearance (line, dot, area or bar), and scjecren v axis Properties:
the type of data to display (raw or moving statistic).

After modifying a value, this values is colored in
yellow and to apply the modification you validate

them by clicking on the ' button.

X Axis:

#CPU #CPU ®
used memory & used memory % ®

Lakel: [3%CPU |

Chart typoe: ‘render as line |v|

Data type:
0 Raw data

) Moving statistic:

Label: [Date]

| |<}g| i mean i) min

(@ standard deviation) max

To remove an event field from the chart select the Time configuration:
event in the table and click on the red cross. e et e 1 000

24

Chart Title:

[CPU and Jvm

Chart:

20,0
17,5 |
15,0
12,5
10,0
7.5
5,0
2,5

%CFPU

0,0 +
0 1000

Date (ms)

250 500 750

1250

. - 0
1500 1750 2000

|—%CPU — used memory %l

Time dispaly (X Axis):

Start: C}

End:

o Jms

Chart Comment:

71668 2000 ms

2 AdoLawl pasn

It's a chart for ...

Statistics frame:

December, 11th 2009

| Chart panel:
The chart panel displays the chart
generate using the chart
configuration.

At the top of the panel you can add a
title to the chart.

There is a time line under the chart.
Using the cursor, the user can
modify the time window to display.
He can also modify this time
window by modifying the start and
stop values. To validate the
modifications he should click on the
validation button.

At the bottom of the frame, a text
area allows the user to comment the
chart.

The Statistics frame display statistics about each event field for the displayed time window.

AV 00000000000

Chart Statistics:

i

CLF grecutions st 0 CRURCRL

il
00
e
5008848557522 14
lriance:

204 2767067003759
it

B0

ot dmdaton.

14 2925402465884 7

Brspes et

!
U

[iic

Export chart:

The chart export create various file in accordance with the type of export.

Export as text:

When the user export the chart as text three files are created: a picture, a text file that

contains the comments and one that contains statistics.

25

CLIF user manual guide

Export as XML:

If the user choose to export as XML, two files are create the picture of the chart and an XML

file with the following Document Type Definition:

<!ELEMENT
<!ATTLIST
<!ELEMENT
<!ATTLIST
<!ELEMENT
<!IELEMENT
<!ELEMENT
<!ATTLIST
<!ELEMENT
<!ATTLIST

<!IELEMENT

Export as HTML:

At last if the user choose the HTML format, an HTML file and a folder are created.

chart (image, comments,

chart title CDATA #REQUIRED>
image >

image file CDATA #REQUIRED>
comments (#PCDATA)>

statistics (serie)>
serie (measure)>
serie name CDATA #REQUIRED >
measure >
measure name CDATA #REQUIRED
value CDATA #REQUIRED>

generation (#PCDATA)>

26

statistics, generation)>

December, 11th 2009

@ CPU and JVM - Mozilla Firefox g@

Fichier Edition Affichage Historigue Marque-pages Outils 7

@ - - e '@ | L fiIe:,l’,l’,l’C:,fDncuments".-"ozljand".-"o2DSettings,l’jaeh8324,|’Desktnp,|’tt| - | [}] "|cnmme conveny |“k.]
"1 Datatool QM larchitecture & plug-i... [| 1-800-Translate : aut... ™ Math - The Commons ...
iGoogle I Gmail - Boite de réception (3] [[} cPu and 3¥mM (%] |~
CPU and JVM
100 J 7
ao
| (]
a0 |
70 | =
1 g
2 &0 | a %
(&)
z | 2
E]
) | =
=
30) | 2
20 |
\ | 1
10 j | |
o
250 500 750 1000 1250 1500 1750
Date (ms)
| —%CPLU —used memory %l
Comments
acomment for my chart ..
bla bla bla
Statistics
standard deviation min mean variance max

BE.771084337349397 0.E018254837531348 7.0

CLIFRest#0/0/VMused memory % 0.7 75774119027694 2.0
1.6024096385542168 127 75462826917429 1000

CLIFtestZ0/1/CPUMCPU 11.302859296176976 0.0

Generated at 2007-2-20 10:9 A0

Terming

8.8. Help menu

This menu holds a single "About..." option, which displays CLIF version and compilation
information. This information is important to get and mention whenever you report a problem using

CLIF.

27

CLIF user manual guide

9. Command line user interface

9.1. Introduction

Once you have created a test plan file (either using the Eclipse-based or the Java Swing-based GUI,
or editing a text file with the appropriate syntax), you may deploy and run tests using the following
commands. Those commands are packaged as Apache ant targets defined in the build.xml file
available at CLIF runtime environment's root.

Prior to any command, one Registry must be run for the whole test. It will be used by every
command to register or lookup the components of the deployed test plan (aka CLIF application):
injectors, probes, supervisor, storage.

Most of these commands apply either to every probe and injectors from a deployed test plan, or to a
subset of them. To do this, you must specify an extra argument to give the list of the target injectors
and probes identifiers (so-called blade identifier, as defined in the test plan):
-Dblades.id=id1:id2:...idn. Note that separately managing probes and injectors can become tricky in
big test plans... A typical usage of CLIF may not need this feature, and would only make use of the
commands' default global scope.

Note that authorized commands depend on the state of the injectors and probes. Refer to appendix
page Developer Manual for details about the blade life-cycle.

9.2. Run CLIF Registry
ant registry

Runs a Registry on the local host. All CLIF servers that will be involved in the test plan the user is
planning to deploy must then be launched with the right configuration. See Installation Manual and
for details. Only one Registry shall me launched on a given host (further attempts will just fail).

9.3. Test plan deployment: deploy
ant -Dtestplan.name=name -Dtestplan.file=myTestPlan.ctp deploy

Deploys a new test plan (probes and injectors) as defined by a given test plan file. This deployed
test plan is given a name that is further required for all others commands. When successful, this
command does not return, and should not be manually terminated as long as you want to use the
deployed test plan. The resulting process' role is similar to a (graphical) console's role, in that it
contains the Supervisor and Storage components, as well as the code server.

9.4. Test initialization: init
ant -Dtestplan.name=name -Dtestrun.id=testld [-Dblades.id=id1:id2:...idn] init

Initializes all probes and injectors in a deployed test plan, or just a subset of them when mentioned.
The target deployed test plan is designated by its name (as set with deploy command). An identifier
for this new test being initialized must be provided. This identifier will only be used to identify this
test run, for instance when accessing to results.

28

December, 11th 2009

9.5. Test execution start: start
ant -Dtestplan.name=name [-Dblades.id=id1:id2:...idn] start

Starts probes and injectors of the given deployed test plan, or just a subset of them when mentioned.
They must be initialized prior to this command.

9.6. Suspend test execution: suspend
ant -Dtestplan.name=name [-Dblades.id=id1:id2:...idn] suspend

Suspends probes and injectors of the given deployed test plan, or just a subset of them when
mentioned. They must be running (started or resumed) prior to this command.

9.7. Resume test execution: resume
ant -Dtestplan.name=name [-Dblades.id=id1:id2:...idn] resume

Resumes probes and injectors of the given deployed test plan, or just a subset of them when
mentioned. They must be suspended prior to this command.

9.8. Stop test execution: stop
ant -Dtestplan.name=name [-Dblades.id=id1:1d2:...idn] stop

Definitively and immediately (in a best effort sense) stops probes and injectors of the given
deployed test plan, or just a subset of them when mentioned. Stopping is possible for both running
and suspended probes/injectors, as well as right after initialization. Don't forget to use the collect
command to gather all measurements to the local site. Once a test is stopped, the same deployed test
plan may be initialized again to run another test.

9.9. Wait for a test execution to terminate: join
ant -Dtestplan.name=name [-Dblades.id=id1:1d2:...idn] join

Waits until the probes and injectors of the given deployed test plan, or just a subset of them when
mentioned, terminate. Probes and injectors should be running to prevent this command from
blocking forever.

9.10. Collect test results (measurements): collect
ant -Dtestplan.name=name [-Dblades.id=id1:1d2:...idn] collect

Collects results generated by the probes and injectors of the given deployed test plan, or just a
subset of them when mentioned. Collecting is optional, i.e. the user may not collect results s/he is
not interested in. Injectors and probes must be terminated prior to this command.

9.11. Shortcut for full test execution process: run
ant -Dtestplan.name=name -Dtestrun.id=testld [-Dblades.id=id1:...idn] run

Shortcut for init, start, join and collect on the probes and injectors of the given deployed test plan, or
just a subset of them when mentioned.

29

CLIF user manual guide

9.12. Shortcut for full deployment and execution process: launch
ant -Dtestplan.name=name -Dtestrun.id=testld -Dtestplan.file=myTestPlan.ctp launch

Shortcut for deploy, init, start, join and collect on all probes and injectors of the given test plan. The
command exits when the full process is complete. As a major difference with the use of target
deploy that enables several consecutive runs on the same deployed test plan, here the test plan is
deployed and executed only once.

9.13. Get specific runtime parameters of a probe or injector: params
ant -Dtestplan.name=name -Dblade.id=id params

Lists all parameters of a probe or injector that may be changed (including while running). These
parameters and corresponding possible values are specific to the target probe or injector.

9.14. Change a runtime parameter of a probe or injector: change
ant -Dtestplan.name=name -Dblade.id=id -Dparam.name=param -Dparam.value=value change

Changes a parameter's value for a given injector or probe in a given deployed test plan.

30

December, 11th 2009

10. Test results and measurements
CLIF tests gather the following data:

- test plan copy,

- Java system properties at test execution time for all probes and injectors,
« measurements from all probes and load injectors,

- life-cycle events for all probes and injectors,

- alarms generated by injectors or probes (if any).

As of current Storage component implementation, all these data are gathered in a hierarchy of CSV-
files in a subdirectory of CLIF's runtime environment named "report" by default. This target
directory may be changed with a system property (see appendix 11).

Both the Eclipse RCP-based console (section 16) and the Java Swing-based console (section 8)
provide graphical and statistical analysis tools.

31

CLIF user manual guide

11. Licenses
CLIF is open source software licensed under the GNU Lesser General Public License (LGPL).

CLIF comes with facilities including the following open source software libraries:

- Jakarta commons Httpclient, from the Apache Software Foundation, released under Apache
License;

+ OpenLDAP from the OpenLDAP Foundation, released under Openl.DAP Public License

- Htmlparser from Source Forge, released under LGPL license;

- Eclipse graphical user interface libraries and Rich Client Platform, released under Common
Public License;

« PostgreSQL JDBC driver, released under BSD license;

« DnsJava for DNS injection support, released under BSD License;

« JDOM for XML parsing in ISAC, released with a specific license.

32

http://clif.objectweb.org/JDOM_LICENSE.txt
http://www.jdom.org/
http://www.xbill.org/dnsjava/
http://jdbc.postgresql.org/license.html
http://jdbc.postgresql.org/
http://www.eclipse.org/legal/cpl-v10.html
http://www.eclipse.org/legal/cpl-v10.html
http://www.eclipse.org/
http://www.gnu.org/copyleft/lesser.html
http://sourceforge.net/projects/htmlparser/
http://www.openldap.org/license.html
http://www.openldap.org/
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/httpclient/
http://www.gnu.org/copyleft/lesser.html

December, 11th 2009

Appendix A: system properties

A number of Java system properties are set in file etc/clif.props of CLIF runtime environment. This
file is used by the helper ant targets provided in file build.xml located at the root of CLIF runtime
environment. Should you need to use CLIF without ant, don't forget to set all these system
properties when launching the appropriate class in your Java Virtual Machine.

System properties used by CLIF are listed in the table hereafter:

system property comment default value in default
file etc/clif.props value in
binary
code
java.security.policy set Java security policy file etc/java.policy none
fractal.provider set Fractal implementation org.objectweb.frac none

tal.julia.Julia

fractal.registry.host set hostname running FractalRMI localhost
registry. The registry is now
integrated to the console (so the
host is the console's host)

fractal.registry.port set port number for the 1234
FractalRMI registry launched by
the console.

julia.config using Julia as Fractal etc/julia.cfg none
implementation, set Julia
configuration file

julia.loader using Julia as Fractal org.objectweb. none
implementation, set class loader fractal.julia.loader
.DynamiclLoader
clif.codeserver.port set port number for class and 1357 none
resource server embedded in the
console
clif.codeserver.host set host name for class and localhost none
resource server embedded in the
console

33

CLIF user manual guide

clif.codeserver.path

clif.datacollector.delay_s

clif.filestorage.dir

clif.isac.threads

clif.isac.groupperiod

clif.isac.schedulerperiod

clif.isac.jobdelay

ordered set of directories where examples/classes/
the codeserver may look for (just to make
classes and resources it is asked examples run)
for, separated by ; character.

Note that, whatever the value of

this property, classes and

resources are first looked for in

the jar files in lib/ext/ directory,

and in the console's current

directory. Absolute paths are

used as is, while relative paths

are interpreted from the root of

CLIF's runtime environment.

Sets the delay (in seconds) before 10
writing an event to the storage
system. Typical value should be
greater than the variation of
response times to get events

stored in chronological order.

Sets the file system directory to none
be created (if necessary) and used

to store the generated measures.

An absolute path is used as is,

while a relative path is

interpreted from the root of

CLIF's runtime environment.

Size of ISAC execution engine's 10
pool of thread. The optimal value
depends on the average requests
throughput and the average

response time.

update period (in ms) of active 100
virtual users populations to
match the specified load profiles

polling period (in ms) for the 1
threads of the thread pool asking
for something to do

When positive, gives the delay -1
threshold (in ms) before an alarm

is generated when a think time is
longer than specified. -1 disables
this feature.

34

none

10

report

10

100

December, 11th 2009

clif.filestorage.host sets a local IP address or a subnet commented out random
number to be elected by the choice
filestorage component when among
collecting events through TCP/IP locally
sockets available

jonathan.connectionfactory.host sets a local IP address or a subnet commented out random

number to be used by the choice

FractalRMI remote object among

references locally
available

Other system properties may be useful for a variety of use cases (they are given in comments in file
etc/clif.props.template):

for remote Java debugging:

—agentlib: jdwp=transport=dt_socket, address=8000, server=y, suspend=n
for SSL certificates (for example for HTTPS support):
-Djavax.net.ssl.trustStore=/path/to/keystore
-Djavax.net.ssl.trustStorePassword=the_keystore_password

35

CLIF user manual guide

Appendix A: Class and resource files (remote) loading
Principle

When components are deployed in a CLIF server (probe, injector), the corresponding classes are
automatically downloaded from the console if they are locally missing. Moreover, those
components may require resource files (see webtest.urls file in webtest example, or
helloworld.xis file in isac-helloworld example), which the user would rather not have to
copy on every CLIF server. The content of these resource files can be remotely read via the console
too.

This feature relies on a specific Java class loader and its associated system property
clif.codeserver.path on the one hand, and on a so-called "code server" embedded in the
console on the other hand.

Where classes and resource files are looked for?

The code server embedded in the console looks for the requested classes and resources successively
in the following places:

« jar files in CLIF distribution's lib/ext/ directory where the console is running. Note: since the
code server indexes the contents of all jar files in lib/ext/ at console start-up, all necessary jar
files must be present before running the console;

- the console's current directory (which should be CLIF's root directory);

- the directories declared by clif.codeserver.path property, relative to the console's
current directory.

See appendix on system properties page on User Manual for details on how to set the
clif.codeserver.path property, and how to set the port number for the code server.

36

December, 11th 2009

Appendix A: ISAC execution engine

The ISAC execution engine is the interpreter class for ISAC scenarios. When editing a test plan,
Just select the “injector” role and type IsacRunner in the “class” field. Then, fill the “arguments”
field with the file name of the ISAC scenario you want to run. As a general advice, don't set the full
path name but simply the file name, and add the directory where the scenario file resides to the code
server path (see appendix p.). When using the Eclipse console, the file typically resides in the
project directory.

The ISAC thread pool

The ISAC execution engine uses a pool of threads to run virtual users (aka behavior instances).
When a virtual user is engaged in a think time, its execution thread is used to activate another
virtual user. This way, the size of the thread pool is typically far smaller than the maximum of
simultaneously running virtual users that is specified by the load profile. This pool has a default size
that may be changed:

« before runtime:

—either by setting system property clif.isac.threads

—or by adding option threads=my_custom_pool_size in the “arguments” field;
- at runtime, by changing the value of parameter “threads”.

Millions of virtual users per execution engine can easily be reached. The issue is that the think times
must be much greater than the response times in order to really support such a number of virtual
users without violating the specified behaviors. The theoretical optimal thread pool size is:

maximum number of virtual users xaverage response time

optimal pool size=
(average think time +average response time)
The actual optimal pool size shall be a little greater to face possible transient variations of the global
activity (when many virtual users simultaneously exit from a think time) and the overhead of
context switching between virtual users. The default size is 10, but should be adjusted to your
particular test case. Of course, setting an over-sized pool of threads will waste computing resources
and result in performance degradation.

Deadline violation alarms (Job delay)

When the execution engine becomes overloaded, a consequence is that virtual users' think times
become longer than specified. In other words, the deadline for performing the action next to the
think time is violated. It is possible to get an alarm event when a given tolerance threshold is
reached. This feature is enabled as soon as a positive value is set for this threshold, expressed in
milliseconds. To set the threshold:

« before runtime:

—either set system property c1if.isac. jobdelay

—or add option jobdelay=my_custom_threshold_in_ms to the “arguments” field;
- at runtime, by changing the value of parameter “jobdelay”.

Note that enabling this alarm results in a slight overhead in the execution engine functioning.
Moreover, setting a small threshold value may result in a profusion of meaningless alarms: a small
deadline violation from time to time does not necessarily mean the engine is overloaded. The

37

CLIF user manual guide

relevant threshold value depends a lot on your use case, but a 100ms to 1000ms delay is probably a
good order of magnitude. However, when analyzing the meaning of such an alarm, be careful also
about the Java garbage collector that blocks the JVM and may cause deadline violations.

The default value is -1 (disabled).
Group period

The execution engine periodically checks if the current number of virtual users matches the
specified load profile: in case some virtual users are missing, new ones are instantiated; in case
virtual users are too numerous, some of them are stopped once their current action is complete.
Stopping virtual users before the normal completion of their behaviors is performed only if the
“force stop” option has been enabled in the load profile definition. Otherwise, the execution engine
will just wait for the population to naturally decrease as behaviors complete.

The population checking period is set in milliseconds:

+ before runtime:
—by setting system property clif.isac.groupperiod
—or by adding option groupperiod=my_custom_group_period_ms to the “arguments”
field;
« at runtime, by changing the value of parameter “groupperiod”.
The good period value is a trade-off between performance and accuracy of the engine: a short period
will increase the engine overhead but the virtual users' population will be closer to the load profile
specification. The default 100ms period is probably a good order of magnitude for common test
cases.

Scheduler period

When a thread from the pool has just completed an action for a virtual user which is entering a think
time period, it asks the engine for an action to do for another virtual user. If there is nothing to do at
this time, the thread makes a small sleep before asking again, and so on until it gets something to
do. The small sleep duration is given in milliseconds by the scheduler period parameter. This
parameter may be changed:

+ before runtime:
—by setting system property clif.isac.schedulerperiod
—or by adding option groupperiod=my_custom_scheduler_period_ms to the
“arguments” field;
- at runtime, by changing the value of parameter “schedulerperiod”.

The good period value is a trade-off between engine reactiveness and performance. A zero value
should be avoided since the threads waiting for something to do would enter a frenetic polling loop
on interrogating the engine, which typically wastes all processing power. A big value should be
avoided too for the sake of think times accuracy. The formula below gives the possible variation
range of think times:

specified think time<actual think time<specified think time + scheduler period + context switching overhead

38

December, 11th 2009

The default Ims value seems to be a good value for common test cases. In the general case, you
should ensure that: (1) the scheduler period is significantly less than the think times, and (2) the
scheduler period is significantly less than the job delay setting (when positive/enabled).

Storage options
As a CLIF load injector, the ISAC execution engine produces a number of events:

- one life-cycle event is produced each time the engine state changes: initializing, initialized,
starting, running, suspended, etc. (see appendix p. for details about the life-cycle
specification);

- one action event is produced for each request (aka sample) on the SUT;

- one alarm event may be generated each time a think time is actually longer than specified,
according to the given tolerance threshold (see Job delay parameter described above).

These events are stored unless you specify not to do so, through the following parameters:

« store-lifecycle-events
e store—-action-events
e store—-alarm-events

Acceptable enabling values are: on yes true
Acceptable disabling values are: off no false

Disabling storage for an event type has the following advantages: increased ISAC engine power,
reduced time for final data collection, reduced storage space. As a matter of fact, some test cases
may generate gigabytes of data that may be too heavy to analyze. Moreover, high events
throughputs (thousands of events per second) may overwhelm the disk transfer rate. The drawback
of disabling event storage is that you won't keep any data for this event type on this injector.

A possible smart use of this feature is to disable action events storage for some massive load
injectors (heavy background load), but to store and analyze the results from a couple of load
injectors generating a light load. This way, you get a reduced amount of data, and data is quite
accurate because the corresponding load injectors were far from saturating.

Note that disabling storage of life-cycle events and alarm events is possible but not recommended in
common test cases:

- life-cycle events give an interesting and very lightweight trace of the injector's activity steps,
whatever the test duration, with no noticeable impact on the engine performance;

+ the occurrence of alarm events shows that something did wrong during the test, which is key to
the test analysis, while no alarm event is generated when everything goes well.

As a conclusion, storage of life-cycle and alarm events is commonly always useful and never
disturbing.

Dynamic load profile change

In case your scenario defines no load profile, or when you want to dynamically change the
predefined load profile while a test is running, you can change parameter "population" of the ISAC
execution engine. This parameter has the following form: b;=n;;b,=n,,... where b, is the name of a
behavior in the ISAC scenario and #n; is the number of instances (aka virtual users) of this behavior.

39

CLIF user manual guide

When getting the current value of "population” parameter, if the current population is ruled by a
specified load profile, you will get empty values: b,=;b,=,... Since the population may change
accordingly to the load profile, no value is given. Once a population is set for a behavior, the
population for this behavior becomes constant and the load profile for this behavior is definitively
lost. As a result, the test will never complete by itself: you will have to stop it by yourself, at the
moment that seems relevant for you.

Note that increasing a behavior's population through the setting of "population" parameter should be
made carefully: all necessary new virtual users are created at once, and may result in a brutal load
increase on your injector and SUT. Depending on the desired effect, it might be wise to add a
linearly distributed random think time at the beginning of your behavior definition so that virtual
users don't simultaneously start their actual load activity even though their are created at the same
time. Of course, you must anticipate on this when writing the scenario.

40

	1. Introduction
	2. Key concepts
	3. Registry
	3.1. Rationale
	3.2. Running a Registry

	4. CLIF servers
	4.1. Rationale
	4.2. Configuring a CLIF server
	4.3. Running a CLIF server

	5. Probes
	5.1. Rationale
	5.2. Available probes
	5.2.1. cpu probe
	5.2.2. disk probe
	5.2.3. memory probe
	5.2.4. network probe
	5.2.5. jvm probe
	5.2.6. rtp probe

	6. Load injectors and ISAC
	6.1. Rationale
	6.2. ISAC is a Scenario Architecture for CLIF
	6.2.1. behaviors
	6.2.2. load profiles
	6.2.3. ISAC plug-ins
	6.2.4. Writing an ISAC scenario
	6.2.5. Recording an ISAC scenario for Http
	6.2.6. Deploying and executing an ISAC scenario

	7. Eclipse-based graphical user interface
	7.1. Introduction
	7.2. Run CLIF registry
	7.3. Test plan edition
	7.4. ISAC scenario edition
	7.5. test deployment and execution

	8. Java Swing-based graphical user interface
	8.1. Introduction
	8.2. Run CLIF registry
	8.3. Test plan edition table
	8.4. Performance and resource usage monitoring
	8.5. File Menu
	8.6. Test plan menu
	8.7. Tools menu
	8.7.1. Basic analyzer
	8.7.2. Quick graphical analyzer

	8.8. Help menu

	9. Command line user interface
	9.1. Introduction
	9.2. Run CLIF Registry
	9.3. Test plan deployment: deploy
	9.4. Test initialization: init
	9.5. Test execution start: start
	9.6. Suspend test execution: suspend
	9.7. Resume test execution: resume
	9.8. Stop test execution: stop
	9.9. Wait for a test execution to terminate: join
	9.10. Collect test results (measurements): collect
	9.11. Shortcut for full test execution process: run
	9.12. Shortcut for full deployment and execution process: launch
	9.13. Get specific runtime parameters of a probe or injector: params
	9.14. Change a runtime parameter of a probe or injector: change

	10. Test results and measurements
	11. Licenses
	Principle
	Where classes and resource files are looked for?
	The ISAC thread pool
	Deadline violation alarms (Job delay)
	Group period
	Scheduler period
	Storage options
	Dynamic load profile change

