December, 11th 2009

CLIFv2 programmer's guide

H

http:/ /clif.ow2.0org/

Copyright © 2006-2009 France Telecom SA

http://clif.ow2.org/

CLIF programmer's guide

Table of contents

1. Compile from SOUICES......cieviiiseicsniissrisssnessnisssnessisssnessssssssssssssssesssssssssssssssssssssssssssssssssssssssessassssnss 3
2. Probes . cesssnneesessnnns 5
2.1. Defining yOUTr OWIN PIODES.cc.eiiiiiiiiiiiienieeieeeite ettt ettt sttt e et e e s e e e eennee s 5
2.1.1. Relying on the provided probe framework................cccccueeeevuieeeciiieeeeiiiiiiiiiieieeeeaeaaaaaeenn 5

3. Load injectors and ISAC........ciicnvricssnicssnicsssnsssssnesssssssssssssssssssssssssssssssssssssasssssssssssssssssssssanssss 6
3.1. Defining your OWn 10ad 1NJECTOTS.uvieruiieeiiieeiieeeiieeeteeeeieeeeireeeeteeeaaeesetaeeeeeeennnareeeeesennnns 6
3.1.1. Using MTSCenario ULIITEY CLASS..........cccueeevueeeiieieeiieeeiie ettt aee e setaa e 6
3.1.2. Writing your OWR ISAC PIUG-ITS..........cccuueeicueieiiieeiieeeiee et eeieeesiee e veeesveessiaeeeasee e 6

I R o 1 Yo)7 PP UUR PP 6
3.1.4. The ISAC plug-in creation Wizard for EClIPSe............c.coccvuueeiuieeieieniiieniieenieeeeeeeianens 6
3.1.5. XML A@SCTIPIOT fIl@S....ccueeeeeiiiaiieeiieeeeeete ettt et ettt e st ee e e e e nnnssaeeas 7
3.1.6. SeSSION ODJECt INSIANTIATION.cccuveeeeeeeeiieeeiieesieeesteeesieeesiteeeaeesstaeesastaeeeesesnsasaeeaeens 8
3.1.7. LOAA INJECTION PIIMILIVES.cc.eeeeeeeeeeieeeeiieesiee et e esiteeeiteesteeesteeesssaeaaseesaneeesesnnassaeeeens 8
3.1.8. TiIM@T PTIMILIVES.ceeeueeeeiieeeieeeiteeeeteeeite e e tteeetteesteeesabeeeaaeeesbeesssaeesnseeesnseeesnseeennsaeaeens 9
3.1.9. CONAILION PFIMITIVES.......eeeeeieeiiieeeiieeeiee et e e ite e st e esteessiteessateessaeesseeesasssaaeeeseansssaeeeens 9
3.1.10. CONITOL PTIMILIVES..c...eeeeveeeieeeeieeeeieeeeitee et eit e e tte e steeesteeesabeeenateeesseeesseeensseesansssees 9
3.1.11. External datQ PrOVISTIONING.cccueeeeueeeiieeeiieeeieeeeieeesteeesaeessreeseaveessessaaeeessennnnns 10
Appendix A: injector and probe (aka blade)'s life cycle 11
Appendix B: Class and resource files (remote) 10ading.........ccceeeeeesvnrcssnccssanccssancsssssessssssnsssscssnns 12
Appendix C: ISAC eXeCution ENGINe........cccieveisseicsnessrncssresssnssnssssissssessssessssssssosssssssssssssssssssssssns 13

December, 11th 2009

1. Compile from sources

You may want to recompile CLIF and generate your own runtime environment. This task is quite
easy using the ant utility.

You have to get a variable number of modules from CLIF's repository, according to your needs.
Each module is actually a distinct Eclipse project, providing its own .project and .classpath files.

+ clif-core contains the core code of CLIF (mandatory).

« dist contains the resources and build chain to generate the CLIF binary distributions
(mandatory).

« clif-swingGui contains the code for the Java/Swing based console GUI, which is a
simplified console that is system-independent, but does not contain the ISAC scenario editor.

« clif-web contains the resources and build chain to generate CLIF's public web site.

+ isac-commons provides a number of common features for CLIF's ISAC scenario
environment: timers, random generators, data set providers, etc. It is almost mandatory when
using ISAC (which should be typically the case).

« xxxInjector projects contain the source code and build chain to generate load injectors for a
variety of protocols, within the ISAC scenario environment.

+ org.ow2.clif.console.plugin provides the Eclipse-RCP-based CLIF console as an
Eclipse plug-in. This module is mandatory to build the Eclipse console, as well as the 3 other
Eclipse plug-ins provided by CLIF (see below).

+ org.ow2.clif.isac provides the Eclipse plug-in featuring the ISAC scenario editor and the
wizard for extending the ISAC scenario environment.

+ org.ow2.clif.analyze.lib.oda and org.ow2.clif.analyze.lib.oda.ui provide
Eclipse plug-ins to support report generation based on the Eclipse-BIRT plug-ins.

Apache's ant utility is used to generate anything in this list, thanks to the build.xml file located
in the dist project. Main targets are:

+ ant clif-console
compiles CLIF and generates CLIF standalone Eclipse™ RCP based full-fledged runtime
environment for the current operating system, available as .zip files in output subdirectory.

« ant clif-plugins
compiles CLIF, generates CLIF plugins for Eclipse (console and isac) for the current
operating system, available as .zip files in output subdirectory

+ ant clif-server
compiles CLIF and generates a minimal runtime environment to run a CLIF server, zipped in
output subdirectory

« ant clif-swingGui
compiles CLIF and generates a runtime environment with a Swing GUI available in
output/dist subdirectory

+ ant isac-plugins
compiles CLIF and generates a runtime environment with a Swing GUI available in
output/dist subdirectory

+ ant dev-env
compiles and copies needed files into each project to be able to develop with your Eclipse
environment.

CLIF programmer's guide

e« ant clean-all

destroys output directories in all the different CLIF projects
* ant products

generates everything
Then, subsequent operations are given in the following sections.

The source code is available through a SVN repository at OW2's forge. You may obtain the source
code using SVN utility or by downloading a nightly-built snapshot of CLIF's SVN repository as a
single zipped file.

see practical information at http://forge.objectweb.org/plugins/scmsvn/index.php?group id=57

http://forge.objectweb.org/plugins/scmsvn/index.php?group_id=57

December, 11th 2009

2. Probes

2.1. Defining your own probes

2.1.1. Relying on the provided probe framework

You may define your custom probes very easily by using the probe framework used by the provided
probes. To do so, you must define a sub-package of package org.ow2.clif.probe, and create
three classes:

+ aDataCollector class extending class, whose role is basically to provide statistical values
for monitoring;

« an event class implementing interface BladeEvent to hold the set of values produced by each
measure;

- an Insert class implementing the method that actually performs the measures and produces the
events of the class defined below.

For example, let's assume you want to define a weather probe sensing temperature and pressure.
Then you will define the following classes:
+ org.ow2.clif.probe.weather.DataCollector

* org.ow2.clif.probe.weather.MyWeatherEvent
* org.ow2.clif.probe.weather.Insert

Note that the package path construction is mandatory, as well as the DataCollector and Insert
class names, in order the deployment system to find your probe. The event class name is up to you.
Once you have compiled your probe, build a jar file with the classes and copy it to CLIF's 1ib/ext
directory. Then start a CLIF console and set your probe in the test plan by typing “weather” for the
so-called “class name” field.

CLIF programmer's guide

3. Load injectors and ISAC

3.1. Defining your own load injectors

3.1.1. Using MTScenario utility class

MTScenario is an abstract Java class dedicated to programmers, although the webtest example,
based on MTScenario, may be used by non-programmers for simple web testing. MTScenario
makes it easy to define a test scenario as a set of concurrent threads ("sessions") looping on arbitrary
actions, with an initial ramp-up time and during a given test duration. The programmer just has to
define the session objects and actions.

3.1.2. Writing your own ISAC plug-ins
3.1.3. Principle

Writing your own ISAC plug-in is a simple way to customize the injection capabilities of ISAC,
still relying on the generic language for defining behaviors and load profiles. Writing an ISAC plug-
in basically consists in defining a Java class that encapsulates (a part of) the state of each behavior
instance, and provides specific methods for:

- instantiating new session objects for new behavior instances;

+ implementing load injection primitives;

- implementing timer primitives (e.g. to implement think times);

- implementing external data provisioning;

 implementing condition primitives;

+ session object control primitives.
The primitives offered by an ISAC plug-in, as well as a GUI-oriented description for its parameters,
are declared through 3 descriptor files:

+ plugin.properties file specifies Java properties plugin.name, plugin.xmlFile and
plugin.guiFile to respectively set the ISAC plug-in name, the name of the XML file
describing the list of primitives and parameters, and the name of the XML file describing the
GUI concerns. Usual values for these file names respectively are plugin.xml and gui .xml.

« plugin.xml file (or any other name as specified in plugin.properties file)

+ gui.xmnl file (or any other name as specified in plugin.properties file)

To add a new ISAC plug-in, you must create a directory in subdirectory isac/plugins of CLIF
execution environment. You may also create a local build.xml file that will be called by CLIF's
main build.xml file (at the root of CLIF runtime environment) through targets isac-plugins
and isac-clean, respectively for compiling and cleaning all ISAC plug-ins.

3.1.4. The ISAC plug-in creation Wizard for Eclipse

CLIF's Eclipse-based GUI comes with a wizard for creating ISAC plug-ins. It consists in creating a
new ISAC plug-in project which combines a classical Eclipse Java project wizard with specific GUI
pages dedicated to the declaration of ISAC primitives and parameters. The wizard generates the
three descriptor files as well as a Java class skeleton accordingly to specific code design patterns.
This skeleton is supposed to be completed with your specific code, preferably keeping the same
design patterns if you want to keep an optimal support from the wizard when modifying your plug-

December, 11th 2009

in. In case of consistence troubles between the descriptor files and the Java code, the XML
descriptors are regarded as the reference.

L... CLIF RCP Console

File Edit CLIF - Search ‘Window Help

A .
T Mavigator £ = O
B

B8 154C Flug-in Project

= Project...

lyy CCLIF Test Plan
|

- -]

iy Import...

The following sections give some explanations about the construction of ISAC plug-ins.
3.1.5. XML descriptor files
The plug-in descriptor file specifies:

« the plug-in name, which must match the plug-in's directory name,
- the associated session object class and the initial settings parameters, with some help
- the samples, controls, conditions and timers with their parameters and help.

<?xml version="1.0" encoding="1S0-8859-1" 7>
<!DOCTYPE plugin SYSTEM "org/ow2/clif/scenario/isac/dtd/plugin.dtd">
<plugin name="Dnslnjector">
<object class="org.ow?2.clif.isac.plugins.Dnslnjector">
<params>
<param name="server_arg" type="String" />
</params>
<help>
This plugin sends UDP-based type A DNS queries to the specified server
</help>
</object>
<sample name="query" number="0" >
<params>
<param name="name_arg" type="String" />
</params>
<help>
Resolves a name
</help>
</sample>
</plugin>

The user interface descriptor file adds explicit labels to primitives and parameters, and associates
each parameter to GUI-related information. Possible graphical widgets are available through the
following tags : radiobutton, field, checkbox, nfield (variable number of fields), combo.
Parameters may also be visually grouped together with the group tag. The parameter value

CLIF programmer's guide

resulting from a nfield widget is the concatenation of the variable number of fields separated by
one ;' character.

<gui>
<object name="DnslInjector" >
<params>
<param name="server_arg" label="IP address or name of DNS server"
type="String" >
<field/>
</param>
</params>
</object>
<sample name="query" number="0" label="query" >
<params>
<param name="name_arg" label="DNS name to resolve" type="String"

<field/>
</param>
</params>
</sample>
</gui>

3.1.6. Session object instantiation

When writing an ISAC scenario, each imported plug-in will result in a session object associated to
each behavior instance. If a plug-in is imported several times by a single scenario, each behavior
instance will be associated to as many session objects as plug-in imports. For each import, different
settings may be entered. So, for each import, the ISAC execution engine instantiates and initializes
with these settings a specimen session object. For that purpose, your plug-in class must implement a
public constructor taking a Map as a single argument. This map will hold the specimen settings with
the parameters names as keys, as specified in the plug-in XML descriptor file. The specimen objects
will be used just for replication, according to the load profiles, but will never be associated to
behavior instances.

Then, your plug-in class must implement the SessionObjectAction interface to handle
replication of specimens for creation of session objects that will be actually associated to behavior
instances (method createNewSessionObject ()). This interface is also used for freeing
resources used by session objects before they are discarded (method close ()), and recycling old
session objects into fresh ones (method reset ()).

public class MyPluginSessionObject implements
org.ow2.clif.scenario.isac.util.SessionObjectAction {

public MyPluginSessionObject(java.util.Map arguments) {...} // mandatory constructor
for session object specimen

public Object () {...} // called on a specimen to instantiate a new session object and
return it

public void reset() {...} // called on a used session object for recycling (i.e. turning it to a
fresh session object)

public void close() {...} // called on a used session object for cleaning before being
discarded

December, 11th 2009

3.1.7. Load injection primitives

Load injection primitives are declared in the XML plug-in descriptor using tag sample, and
identifying each primitive with a unique integer value. All load injection primitives for a given
plug-in are implemented by method doSample (int, Map, ActionEvent), as specified by
interface SampleAction.

« The first argument gives the primitive identifier;

« the second parameter gives the list of parameter values indexed by their names, as set in the
plug-in descriptor file using tag params;

« the third argument gives a report object whose fields will have to be filled before being
returned.

Basically, the dosample () method is supposed to perform a load injection request, wait for some
kind of response, state if this request is a success or a failure, measure its response time and return a
sample report. Returning null is also possible, to make CLIF ignore this sample.

public class MyPluginSessionObject implements
org.ow?2.clif.scenario.isac.plugin.SessionObjectAction,
org.ow2.clif.scenario.isac.plugin.SampleAction {
public ActionEvent doSample(int number, Map params, ActionEvent report) {
switch (number)

3.1.8. Timer primitives

Timer primitives are declared in the XML plug-in descriptor using tag t imer, and identifying each
primitive with a unique integer value. All timer primitives for a given plug-in are implemented by
method doTimer (int, Map), as specified by interface TimerAction.

« The first argument gives the primitive identifier;
- the second parameter gives the list of parameter values indexed by their names, as set in the
plug-in descriptor file using tag params.
The doTimer () method must return a number of milliseconds that will be taken into account by
the execution engine to make the calling behavior instance sleep. This method shall not perform a
sleep period by itself!

public class MyPluginSessionObject implements
org.ow?2.clif.scenario.isac.plugin.SessionObjectAction,
org.ow2.clif.scenario.isac.plugin.TimerAction {
public ActionEvent doTimer(int number, Map params) {
switch (number)

3.1.9. Condition primitives

Condition primitives are used by the conditional constructs of behaviors (while, if,
preemption).Condition primitives are declared in the XML plug-in descriptor using tag test, and
identifying each primitive with a unique integer value. All condition primitives for a given plug-in
are implemented by method doTest (int, Map), as specified by interface TestAction.

« The first argument gives the primitive identifier;

CLIF programmer's guide

« the second parameter gives the list of parameter values indexed by their names, as set in the
plug-in descriptor file using tag params.
The doTest () method must return a boolean according to whether the condition is met or not.

public class MyPluginSessionObject implements
org.ow?2.clif.scenario.isac.util.SessionObjectAction, org.ow2.clif.scenario.isac.plugin.TestAction

{
public ActionEvent doTest(int number, Map params) {
switch (number)

3.1.10. Control primitives

Control primitives are used to perform an arbitrary control action on a session object (e.g. increment
a counter session object). Control primitives are declared in the XML plug-in descriptor using tag
test, and identifying each primitive with a unique integer value. All condition primitives for a
given plug-in are implemented by method doControl (int, Map), as specified by interface
ControlAction.

« The first argument gives the primitive identifier;
« the second parameter gives the list of parameter values indexed by their names, as set in the
plug-in descriptor file using tag params.
The doControl () method just performs the control action and returns.

public class MyPluginSessionObject implements
org.ow?2.clif.scenario.isac.util.SessionObjectAction,
org.ow?2.clif.scenario.isac.plugin.ControlAction {
public ActionEvent doControl(int number, Map params) {
switch (number)

3.1.11. External data provisioning

All parameters set in an Isac scenario may contain an external data reference, through an expression
of this form : ${dataProviderIdentifier:reference}. At runtime, this expression will be
replaced by the String returned by the doGet (reference) call on the plug-in session object
identified by dataProviderIdentifier. The format of reference is unspecified and typically
depends on the data provider plug-in implementation.

To implement a data provider plug-in, just implement interface DataProvider and the
corresponding doGet (String) method. You are free to interpret the string argument and return
any String (computed or picked up from any source).

Note that the XML plug-in descriptor does not declare the data provisioning capability. On the other
hand, this capability is not checked and the outcome of trying to get data from a plug-in that does
not implement the DataProvider interface is unspecified.

public class MyPluginSessionObject implements

org.ow2.clif.scenario.isac.util.SessionObjectAction,

org.ow?2.clif.scenario.isac.plugin.DataProvider {
public ActionEvent doGet(String reference) {

10

December, 11th 2009

Appendix A: injector and probe (aka blade)'s life cycle

int) filre FEERER= stopg)

resune() failure

successtul init)
_ -
sart) filre ™ ialized |22 .
L successiul start()
successful resure() siop)
suspended <¢—— P> running °
successful suspendl)
stop() o
#failue ;cormleﬂ'm
aborted completed stopped +
* infty) failure| successful init()

11

	1. Compile from sources
	2. Probes
	2.1. Defining your own probes
	2.1.1. Relying on the provided probe framework

	3. Load injectors and ISAC
	3.1. Defining your own load injectors
	3.1.1. Using MTScenario utility class
	3.1.2. Writing your own ISAC plug-ins
	3.1.3. Principle
	3.1.4. The ISAC plug-in creation Wizard for Eclipse
	3.1.5. XML descriptor files
	3.1.6. Session object instantiation
	3.1.7. Load injection primitives
	3.1.8. Timer primitives
	3.1.9. Condition primitives
	3.1.10. Control primitives
	3.1.11. External data provisioning

