Introduction to Instrumentation with DiSL

November 25, 2014

1 Introduction

DiSL is a domain-specific language for Java bytecode instrumentation. DiSL is inspired by AOP, but in contrast
to mainstream AOP languages, it features an open join point model where any region of bytecodes can be
selected as a join point (i.e., code location to be instrumented). DiSL reconciles high-level language constructs
resulting in concise instrumentations, high expressiveness, and efficiency of the inserted instrumentation code.
Thanks to the pointcut/advice model adopted by DiSL, instrumentations are similarly compact as aspects
written in AspectJ. However, in contrast to AspectJ, DiSL does not restrict the code locations that can be
instrumented, and the code generated by DiSL avoids expensive operations (such as object allocations that
are not visible to the programmer). Furthermore, DiSL supports instrumentations with complete bytecode
coverage out-of-the-box and avoids structural modifications of classes that would be visible through reflection
and could break the instrumented code.

2 DiSL by Example

A common example of a dynamic program analysis tool is a method execution time profiler, which usually
instruments the method entry and exit join points and introduces storage for timestamps. We describe
the main features of DiSL by gradually developing the instrumentation for such a profiler. The same
instrumentation is also available on the DiSL home page! among the examples. For step-by-step instructions
on how to run the examples, please refer to Appendix A.

While running DiSL, you can encounter issues like crashes or assertion violations in JVM. This is not
directly problem of DiSL but rather limitation of JVM itself. For more information, please refer to Appendix B.

2.1 Method Execution Time Profiler

In the first version of our execution time profiler, we simply print the entry and exit times for each method
execution as it happens. For that, we need to insert instrumentation at the method entry and method exit
join points.

Each DiSL instrumentation is defined through methods declared in standard Java classes. Each method—
called smippet in DiSL terminology—is annotated so as to specify the join points where the code of the snippet
shall be inlined.? The profiler instrumentation code on Figure 1 uses two such snippets, the first one prints
the entry time, the second one the exit time.

The code uses two annotations to direct inlining. The @Before annotation requests the snippet to be
inlined before each marked bytecode region (representing a join point); the use of the @After annotation places
the second snippet after (both normal and abnormal) exit of each marked region. The regions themselves are
specified with the marker parameter of the annotation. In our example, BodyMarker marks the whole method
(or constructor) body. The resulting instrumentation thus prints a timestamp upon method entry and exit.

Lhttp://disl.ow2.org
2The name of the method is not constrained and can be arbitrarily chosen by the programmer.

http://disl.ow2.org

public class SimpleProfiler {

@Before(marker=BodyMarker.class)
static void onMethodEntry() {

System.out.println("Method entry " + System.nanoTime());
}

Q@After (marker=BodyMarker.class)
static void onMethodExit() {
System.out.println("Method exit " + System.nanoTime());
}
}

Figure 1: Instrumenting method entry and exit

Instead of printing the entry and exit times, we may want to print the elapsed wall-clock time from the
method entry to the method exit. The elapsed time can be computed in the after snippet, but to perform the
computation, the timestamp of method entry has to be passed from the before snippet to the after snippet.

In traditional AOP languages, which do not support efficient data exchange between advices, this situation
would be handled using a local variable within the around advice. In contrast, an instrumentation framework
such as DiSL has no need for the usual form of the around advice, which lets the advice code decide whether
to skip or proceed with the method invocation. DiSL therefore only supports inlining snippets before and
after a particular join point, together with a way for the snippets inlined into the same method to exchange
data using synthetic local variables, as illustrated on Figure 2.

public class SimpleProfiler {

@SyntheticLocal
static long entryTime;

@Before(marker=BodyMarker.class)
static void onMethodEntry() {
entryTime = System.nanoTime();

}

Q@After (marker=BodyMarker.class)
static void onMethodExit() {
System.out.println("Method duration " + (System.nanoTime() - entryTime));
}
}

Figure 2: Passing data between snippets using a synthetic local variable

Synthetic local variables are static fields annotated as @SyntheticLocal. The variables have the scope of a
method invocation and can be accessed by all snippets that are inlined in the method; that is, they become
local variables. Synthetic local variables are initialized to the default value of their declared type (e.g., 0,
false, null).

Next, we extend the output of our profiler to include the name of each profiled method. In DiSL, the
information about the instrumented class, method, and bytecode region can be obtained through dedicated
static context interfaces. In this case, we are interested in the MethodStaticContext interface, which provides
the method name, signature, modifiers and other static data about the intercepted method and its enclosing
class. Figure 3 refines the after snippet of Figure 2 to access the fully qualified name of the instrumented
method.

@After (marker=BodyMarker.class)
static void onMethodExit(MethodStaticContext msc) {
System.out.println(msc.thisMethodFullName() + " duration
+ (System.nanoTime() - entryTime));

"

Figure 3: Accessing the method name through static context

Static context interfaces provide information that is already available at the instrumentation time. When
inlining the snippets, DiSL therefore replaces the calls to these interfaces with the corresponding static
context information, thus improving the efficiency of the resulting tools.

DiSL provides a set of commonly used static context interfaces, which can be declared as arguments to
the snippets in any order. The DiSL programmer may also define custom static context interfaces to perform
additional static analysis at instrumentation time or to access information not directly provided by DiSL.

2.2 Adding Stack Trace

Sometimes knowing the name of the profiled method is not enough. We may also want to know the context
in which the method was called. Such context is provided by the stack trace of the profiled method.

There are several ways to obtain the stack trace information in Java, such as calling the getStackTrace()
method from java.lang. Thread, but frequent calls to this method may be expensive. Our example therefore
obtains the stack trace using instrumentation. Figure 4 shows two additional snippets that maintain the call
stack information in a shadow call stack. Upon method entry, the method name is pushed onto the shadow
call stack. Upon method exit, the method name is popped off the shadow call stack.

Q@ThreadLocal
static Stack<String> callStack;

@Before(marker=BodyMarker.class, order=1000)

static void pushOnMethodEntry(MethodStaticContext msc) {
if (callStack == null) { callStack = new Stack<String>(); }
callStack.push(msc.thisMethodFullName());

}

@After (marker=BodyMarker.class, order=1000)

static void popOnMethodExit() {
callStack.pop(Q);

}

Figure 4: Reifying a thread-specific call stack using dedicated snippets

Each thread maintains a separate shadow call stack, referenced by the thread-local variable callStack.? In
our example, callStack is initialized for each thread in the before snippet. The thread-local shadow call stack
can be accessed from all snippets through the callStack variable; for example, it could be included in the
profiler output.

To make sure all snippets observe the shadow call stack in a consistent state, the two snippets that
maintain the shadow call stack have to be inserted in a correct order relative to the other snippets. DiSL
allows the programmer to specify the order in which snippets matching the same join point should be inlined
using the order integer parameter in the snippet annotation. The smaller this number, the closer to the
join point the snippet is inlined. In our profiler, the time measurement snippets and the shadow call stack
snippets match the same join points (method entry, resp. method exit). We assign a higher order value (1000)
to the call stack reification snippets and keep the lower default order value (100) of the snippets for time

3DiSL offers a particularly efficient implementation of thread-local variables with the @ThreadLocal annotation.

measurement.? Consequently, the callee name is pushed onto the shadow call stack before the entry time is
measured, and the exit time is measured before the callee name is popped off the stack.

2.3 Profiling Object Instances

Our next extension addresses situations where the dependency of the method execution time on the identity
of the called object instance is of interest. Figure 5 refines the after snippet of Figure 2 by computing the
identity hash code of the object instance on which the intercepted method has been called.

Q@After (marker=BodyMarker.class)
static void onMethodExit(MethodStaticContext msc, DynamicContext dc) {
int identityHC = System.identityHashCode(dc.getThis());

Figure 5: Accessing dynamic context information in a snippet

The snippet uses the DynamicContext dynamic context interface to get a reference to the current object
instance. Similar to the static context interfaces, the dynamic context interfaces are also exposed to the
snippets as method arguments. Unlike the static context information, which is resolved at instrumentation
time, calls to the dynamic context interface are replaced with code that obtains the required dynamic
information at runtime. Besides the object reference used in the example, DiSL provides access to other
dynamic context information including the local variables, the method arguments, and the values on the
operand stack.

2.4 Selecting Profiled Methods

Often, it is useful to restrict the instrumentation to certain methods. For example, we may want to profile
only the execution of methods that contain loops, because such methods are likely to contribute more to the
overall execution time.

DiSL allows programmers to restrict the instrumentation scope using the guard construct. A guard is a
user-defined class whose one method carries the @GuardMethod annotation. This method determines whether
a snippet matching a particular join point is inlined. Figure 6 shows the signature of a guard restricting the
instrumentation only to methods containing loops. The body of the methodContainsLoop() guard method,
not shown here, would implement the detection of a loop in a method. A loop detector based on control flow
analysis is included as part of DiSL.

public class MethodsContainingLoop {

@GuardMethod
public static boolean methodContainsLoop() {
... // Loop detection based on control flow analysis
3
}

Figure 6: Skeleton of a guard for selecting only methods containing a loop

The loop guard is associated with a snippet using the guard annotation parameter, as illustrated in
Figure 7. Note that the loop guard is not used in the shadow call stack snippets. We want to maintain
complete stack trace information without omitting the methods that do not contain loops.

4If snippet ordering is used, it is recommended to override the value in all snippets for improved readability.

@Before (marker=BodyMarker.class, guard=MethodsContainingLoop.class)
static void onMethodEntry() { ... }

Q@After (marker=BodyMarker.class, guard=MethodsContainingloop.class)
static void onMethodExit(...) { ... }

Figure 7: Applying time measurement snippets only in methods containing a loop

@Before (marker=BasicBlockMarker.class)
static void onBasicBlockEntry() { ... }

@After (marker=BasicBlockMarker.class)
static void onBasicBlockExit(...) { ... }

Figure 8: Writing snippets to profile entry and exit from basic blocks

3 Advanced DiSL Features

The features presented so far represent basic DiSL usage. We continue with examples illustrating the more
advanced features of DiSL, which allow experienced developers to extend DiSL functionalities with the aid of
ASM. Hence, to write a DiSL extension it is often required that the developer is familiar the ASM API. Note
that for developing most instrumentation tools these advanced features are not needed.

3.1 Join Point Marker Library

In all the examples presented earlier, profiles were collected with method granularity. Such profiles may
be insufficient when profiling long methods with loops and nested invocations. In these cases, a more fine
grained measurement can help identify the problematic parts of the long methods.

In the profiler example, a more fine grained measurement can be achieved using a different marker
with the profiling snippets. DiSL provides a library of markers (e.g., BasicBlockMarker, BytecodeMarker) for
intercepting many common bytecode patterns; Figure 8 illustrates the use of BasicBlockMarker for basic block
profiling.

As presented, the change only impacts the choice of the marker class. Although the resulting instrumenta-
tion is valid, the resulting profile is of limited use because it lacks the identification of the basic blocks being
profiled. We add this identification next.

3.2 Custom Static Context

There are multiple options for identifying a basic block in the profiler example. We can use the ordinal
number of the basic block as made available by the BasicBlockStaticContext; however, such identification is
only useful if the information about the correspondence between the basic block numbers and the profiled code
is available when interpreting the results. The source code line number is a valuable alternative when working
at the source code level, however, the identification is not necessarily unique and the need for additional
information when interpreting the results also persists. To provide an example of custom static context, we
illustrate a third option, namely identifying the basic block by the ordinal number of its first instruction and
its length counted in the number of instructions (numbers are valid for uninstrumented code). Implementing
the other two approaches in DiSL is of similar complexity.

Conceptually, the identification of the basic block is part of the static context of each snippet. Thus, it
would ideally be available through one of the existing static context interfaces. Although it is our goal to
equip DiSL with a rich library of static context interfaces offering all the information that may be required
by an analysis tool, chances are some tools will require static context information which is not provided by
DiSL. We therefore allow defining custom static contexts, which can precompute static values at weave time.

As with other static context information, the weaver embeds these values in the snippet code as constants.
Figure 9 illustrates a custom static context that serves as the basic block ID calculator.

public class BasicBlockID extends AbstractStaticContext {
public String getID() {
// validate that the basic block has only one end

// get starting and ending instruction from marker
AbstractInsnNode startInsn = staticContextData.getRegionStart();
AbstractInsnNode endInsn = staticContextData.getRegionEnds().get(0);

// traverse entire method code and calculate instruction index
int bbStart = -1;
int bbLength = 0;
boolean startFound = false;
boolean endFound = false;
InsnList code = staticContextData.getMethodNode() .instructions;
for(AbstractInsnNode insn = code.getFirst();
insn != null; insn = insn.getNext()) {

// increase block start indexr until start instruction found
if (!startFound) {

if (insn.getOpcode() != -1) ++bbStart;

startFound = (insn == startInsn);

}

if (startFound) {
// count instructions and exit when end instruction found
if (insn.getOpcode() != -1) ++bbLength;
if (insn == endInsn) {
endFound = true;
break;
}
}
¥

// validate that both start and end were found

// construct and return the basic block ID
return bbStart + "(" + bbLength + ")";
}
}

Figure 9: Custom static context computing a basic block 1D

A custom static context is a standard Java class that extends the AbstractStaticContext class or implements
the StaticContext interface directly. The methods of the custom static context class have no arguments and
return a basic type or String. The BasicBlockID class from Figure 9 contains one such method, getID(), which
computes the ID of a basic block.

The computation queries the first and the last instruction of the region identified by the basic block
marker. After that, it iterates over the code of the entire method, first incrementing the block index until
the basic block start is reached, then incrementing the block length until the basic block end is found. The
method returns the ID as String whose first part is the index and second part the length.

Custom static context methods can access the current static context information through a protected
field called staticContextData. The available information describes the marked region, snippet, method, and
class where the custom static context is used. The region description includes one starting instruction and
one or more ending instructions depending on the marker. The snippet structure holds all the information

connected to the snippet where the static context is used. The method and class data are represented by
ASM objects MethodNode and ClassNode.

3.3 Custom Bytecode Marker

It is not always possible to profile a method by instrumenting its body. For example, the method can be
implemented in native code or can execute remotely. To profile such methods, the instrumentation has to be
placed around the method invocation.

In DiSL, method invocation can be easily captured by the BytecodeMarker with adequate parameters.
To illustrate the extensibility of DiSL, we instead implement a new custom marker that captures method
invocations, displayed in Figure 10.

public class MethodInvocationMarker extends AbstractDWRMarker {
public List<MarkedRegion> markWithDefaultWeavingReg(MethodNode method) {

List<MarkedRegion> regions = new LinkedList<MarkedRegion>();

// traverse all instructions
InsnlList instructions = method.instructions;
for (AbstractInsnNode instruction : instructions.toArray()) {

// check for method invocation instructions
if (instruction instanceof MethodInsnNode) {

// add region containing one instruction (method invocation)
regions.add(new MarkedRegion(instruction, instruction));
}
}

return regions;
}
}

Figure 10: Custom marker implementing a method invocation join point

The role of a marker is to select the bytecode regions for instrumentation. A custom bytecode marker in
DiSL must implement the Marker interface. Typically, the marker would not implement this interface directly,
but instead inherit from the AbstractDWRMarker abstract class, which also takes care of correctly placing the
weaving points. In our example, the MethodInvocationMarker class traverses all instructions using ASM and
creates a single-instruction region for each method invocation encountered; the abstract marker class is used
to compute all the weaving information automatically.

Note that the example marker captures all method invocations. To reduce the instrumentation scope, the
developer should use either a guard or a runtime check.

3.4 Analyzing Method Arguments

DiSL provides two different mechanisms for analyzing method arguments. The first approach provides the
method arguments to the snippet in an object array. The entire array is constructed dynamically at runtime,
with arguments of primitive types boxed. Conceptually simple, the approach requires object allocation and
always processes all arguments.

The second approach aims at situations where the overhead of using object arrays is not acceptable. The
approach uses code fragments called argument processors. Each argument processor analyzes only one type of
method arguments. The code of the argument processor is inlined into the snippet where it is applied. With
argument processors, it is possible to access method arguments without object allocation.

Technically, the argument processor is an annotated Java class containing argument processing methods.
The first argument of each argument processor method is of the type being processed, that is, any basic Java
type (int, byte, double ...), String, or an object reference. As additional arguments, the methods can receive
dynamic or static contexts, including argument context, which is a special kind of static context available
only within the argument processor. The ArgumentContext interface exposes information about the currently
processed argument and can be used to limit argument processing only to arguments at a particular position
or with a particular type. The argument processor methods can also use thread-local or synthetic local
variables.

An example of an argument processor that processes int arguments is given in Figure 11.

@ArgumentProcessor
public class IntArgumentPrinter {
public static void printIntegerArgument (
int val, ArgumentContext ac, MethodStaticContext msc) {

System.out.printf (
"Int argument value in method %s at position %d of %d is %d\n",
msc.thisMethodFullName(), ac.getPosition(), ac.getTotalCount(), val
);
}
}

Figure 11: A simple argument processor for printing the values of integer arguments

The argument processor is used by applying it in an argument processor context within a snippet. The
argument processor context can apply an argument processor in two modes. All snippets can apply the
processor on the arguments of the current method. Snippets inserted just before a method invocation
can also apply the processor on the invocation arguments. Figure 12 illustrates a snippet that uses the
IntArgumentPrinter argument processor from Figure 11 to print out the values of the integer arguments of
the currently executed method.

@Before(marker = BodyMarker.class)
public static void onMethodEntry(ArgumentProcessorContext apc) {
apc.apply(IntArgumentPrinter.class, ArgumentProcessorMode.METHOD_ARGS);

Figure 12: Using an argument processor within a snippet

3.5 Custom Bytecode Transformer

DiSL is designed for writing tools that observe the application without modifying its behavior. It will refuse
to insert snippets that change the application control flow or insert or modify fields or methods.? However,
in special cases, a tool implementation may require application modifications beyond what DiSL allows. In
these cases, DiSL can invoke a custom transformer to modify the class just before it is instrumented.

Custom transformers receive raw class data through the Transformer interface in the form of a byte array.
DiSL does not provide any API to perform the class transformation. The programmer can use some of the
available bytecode manipulation frameworks like ASM.

DiSL
instrumentation
Instrumented framework
Java program Instrumentation
Analysis classes
classes
ASM
Instrumented
Java class library instrument Java class library
Observed ‘I’Qaﬂﬁfs‘ JVMTI Instrumentation
JVM 9 agent JVM
A\ ~ J \ v J
observed process instrumentation process

Figure 13: Architecture of DiSL.

4 Architecture and Instrumentation Process

To minimize perturbation in the observed program, DiSL performs bytecode instrumentation within a separate
Java Virtual Machine (JVM) process, that is, the instrumentation process. In this way, class loading and
initialization triggered by the instrumentation framework do not happen within the observed process.

As illustrated in Figure 13, a native JVMTI agent® captures all class loading events (starting with
java.lang.Object) in the observed JVM and sends every class as a byte array to the DiSL instrumentation
framework through a socket. Here, DiSL uses ASM for instrumentation.

Figure 14 gives an overview of the DiSL instrumentation process. During initialization, DiSL parses
all instrumentation classes (step 1). Then it creates an internal representation for snippets and initializes
the used markers, guards, static contexts, and argument processors. When DiSL receives a class from the
JVMTT agent (step 2), the instrumentation process starts with the snippet selection. The selection is done in
three phases, starting with scope matching (step 3). Then, bytecode regions are marked using the markers
associated with the snippets selected in the previous phase. Finally, marked bytecode regions are evaluated
by guards and only snippets with at least one valid marked region are selected (step 4).

At this point, all snippets that will be used for instrumentation are known. Static contexts are used
to compute the static information required by snippets (step 5). As described in Section 3, custom static
contexts allow programmers to declare expressions to be evaluated at instrumentation time. However, if such
expressions do not require custom context information, they can simply be embedded in the snippet code.

Argument processors are evaluated for snippets, and argument processor methods that match method
arguments are selected (step 6). All the collected information is finally used for instrumentation (step 7).
Argument processors are applied, and calls to static contexts are replaced with the computed static informa-
tion. The framework also generates the bytecodes to access dynamic context information. To prevent the
instrumentation code from throwing exceptions that could modify the control flow in the observed program,
DiSL automatically inserts code intercepting all exceptions originating from the snippets, reporting an error if
an exception is thrown (and not handled) by the instrumentation. Finally, the instrumented class is returned
to the observed JVM (step 8) where it is linked.

5As an exception, thread-local variables must insert a field into java.lang.Thread.
Shttp://download.oracle.com/javase/6/docs/platform /jvmti/jvmti.html

http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html

Guards Markers Static contexts Processors

DiSL pmmmmmme e ,
1
instrumentation: v v

1
N 1
Instrumentation | framework () Shadow | Static context (5) (6) '
classes | marking) evaluation ¥ :
1 ~ 1
| Snippet : T Processor ||
| parsing ! ¥ . selection E
'

(1) ' Scope . :
: (3) matching Weaving | (7) |
] A < 1
1 1
lecococoooodcococoooscacoocoadboonococoncoccoooos]

Loaded Instr.

class (2) (8) class

JVMTI agent

Figure 14: Overview of the DiSL instrumentation process.

5 Acknowledgments

The initial version of this tutorial has been based on a paper by Lukas Marek, Yudi Zheng, Danilo Ansaloni,
Lubomir Bulej, Aibek Sarimbekov, Walter Binder and Petr Tuma.

10

[\

[\

A Running DiSL

This appendix provides a step-by-step guide to download, compile, and run the DiSL framework. The current
release of DiSL is tested with Java 7 and Linux, for which we provide scripts to compile and run the framework.
To build DiSL and the examples, Java 7 JDK must be installed on the system, including rudimentary tools
such as ant, gcc, make and python.

The source code of DiSL can be downloaded from the DiSL home page”, hosted by the OW2 Consortium.
In particular, DiSL releases are available at http://forge.ow2.org/projects/disl/files/. After downloading and
extracting the latest release candidate of DiSL, the main directory contains a README file that describes
how to compile the framework and access additional documentation.®

A very simple example of a DiSL instrumentation can be found in the example/smoke directory. In this
example the observed program (i.e., example/smoke/app/src/Main.java) prints a hello-world message, while
the instrumentation (i.e., example/smoke/instr/src/DiSLClass.java) inlines the code to print a message at the
beginning and at the end of the main method body.

Listing 1 shows the sequence of commands needed to compile the DiSL framework and to run the example.
In line 1, we compile the DiSL framework. Line 3 runs the example program.

Listing 1: Compiling the framework and running the included DiSL example.
[disl]$ ant
[dis1l]$ cd example/app/smoke
[disl/example/app/smokel$ ant run

Listing 2 shows the expected output of the instrumented program. Line 2 is the message printed by the
observed program, while lines 1 and 3 are the messages printed by the instrumentation.

Listing 2: Output of the included DiSL example.

Instrumentation: Before method main
Application: Inside method main
Instrumentation: After method main

It is possible to use the disl.py script to invoke DiSL with user-defined instrumentations, provided the
following rules are adhered to:

e All the instrumentation and the analysis classes must be packed into a single jar file, including any
external libraries used by the analysis. Such libraries can be added to the jar file using, for example,
the jarjar® tool.

e The MANIFEST.MF file in the META-INF directory of the jar file must list fully qualified binary names'®
of all DiSL instrumentation classes, i.e., classes containing snippets or argument processors. Listing 3
shows the manifest file of the included example. In this case, the instrumentation consists of a single
class (i.e., DiSLClass) that can be found in the default package. In more complex cases, the DiSL-Classes
attribute will contain a comma-separated list of class binary names.

Run disl.py -h for info how to use the script and to list all available parameters.

Listing 3: Manifest file of the included DiSL example.

Manifest-Version: 1.0
DiSL-Classes: DiSLClass

"http://disl.ow2.org
8http://disl.projects.ow2.org/xwiki/bin /view/Main /Doc/
9http://code.google.com/p/jarjar/

10http://docs.oracle.com /javase/specs/jls/se8/html /jls-13.html#jls-13.1

11

http://forge.ow2.org/projects/disl/files/
http://disl.ow2.org
http://disl.projects.ow2.org/xwiki/bin/view/Main/Doc/
http://code.google.com/p/jarjar/
http://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.1

An archive of all examples and tools presented in this paper can be downloaded from the DiSL release
page. This archive must be extracted within the main directory of DiSL and includes an additional README
file that describes how to run the examples. Listing 4 shows how the runExample.sh script can be used to run
the example shown in Figure 1 of this paper.

Listing 4: Running the profiler example presented in Figure 1.

[disl/examples]$./runExample.sh \
2.1-Method_Execution_Time_Profiler-Figure_1

12

B JVM Crashes

DiSL is designed to instrument application together with whole Java Class Library. It uses custom java agent
implemented in C to intercept loading of every class. A class is instrumented before it is loaded by the JVM,
thus the application always uses instrumented version of the class. Thanks to such a mechanism, DiSL is
able to instrument even core classes like java.lang.Object. This however has unfortunate consequences.

Current versions of Oracle JVM are not able to handle bigger modifications to classes loaded during
the initial stage of the JVM startup. Sadly, instead of producing some meaningful error message, the JVM
crashes instantly.

The solution is to ether modify the instrumentation or exclude from instrumentation a class (method)
that caused the problem. As pointing to the specific class often requires a lot of effort, we recommend to
exclude all the core classes during development and seek the solution during testing (deployment).

Here, we describe possible solutions for the crashing problem.

B.1 Exclusion using scopes

First method is to instrument only a part of an application. This is possible using scope parameter of an
annotation.

Listing 5: Instrumenting only part of an application using scope

Before (marker=BodyMarker.class, scope="Main.*")

Scope in Listing 5 restricts instrumentation only to all methods an a Main class (in any package). The
Scope ensures that none of the bootstrap classes is instrumented which resolves the problem.

B.2 Exclusion using exclusion lists

Another option is to use exclusion list. Exclusion list contains set of classes excluded from instrumentation.
Passing of exclusion list to the instrumentation is done via -s_exclusionlist parameter of the disl.py startup
script.

Listing 6 enumerates all expression used to exclude most of the classes from Java class library. It is
recommended, that during the development, the exclusion list should include classes that are not testing the
core functionality and refine it to the level of exclusion of a particular methods during deployment.

Listing 6: Exclusion list excluding most of the classes of Java Class Library

RECOMMENDED TO BE EXCLUDED
sun.instrument.*.*
java.lang.0Object.*
java.lang.Thread.*
ch.usi.dag.disl.*.x*

EXCLUDES MOST OF THE JDK CLASSES
org.jcp.*
org.omg. *
org.xml. *
org.ietf.*
java.*x . x
javax.*.x
com. sun. *
com.apple. *
sun. *.*
sunx. *

13

Note that expressions in the exclusion list is using the same expression language as the Scope pattern.
Precise description of the scoping language is present in Javadoc (see Scopelmpl class).

14

	Introduction
	DiSL by Example
	Method Execution Time Profiler
	Adding Stack Trace
	Profiling Object Instances
	Selecting Profiled Methods

	Advanced DiSL Features
	Join Point Marker Library
	Custom Static Context
	Custom Bytecode Marker
	Analyzing Method Arguments
	Custom Bytecode Transformer

	Architecture and Instrumentation Process
	Acknowledgments
	Running DiSL
	JVM Crashes
	Exclusion using scopes
	Exclusion using exclusion lists

