
Using SSL with Enhydra 5.1

Table of Contents
1.Introduction..
2.SystemRequirements ...
3.Background...
4. Installation and Configuration ..
5. Modifying Your Application ..
6. Other sources of information ..

ii

Chapter 1. Introduction
This document is a guide to developing Enhydra applications that use Secure Sockets Layer (SSL). Although not a
tutorial, if you use the development checklist and the configuration file supplied, you can get the Golf Shop Demo
that comes with the Enhydra source code working under SSL.

1

Chapter 2. System Requirements

• JDK1.2. from Sun Microsystems or Blackdown JDK 1.2 (on Linux)

• Your JDK must have keytool (located in JDK_HOME/jre/bin)

• you will also need to download Sun's Java Secure Socket Extension Kit from the Sun web site
http://java.sun.com/products/jsse/ [http://developer.java.sun.com/developer/] .

The Java Secure Socket Extension Kit contains implementations of cryptographic algorithms, and is subject to US
export restrictions: You cannot download it outside of the US and Canada. Sun has made a weakened encryption
version available for export, see the JSSE [http://developer.java.sun.com/developer/] page.

2

http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/

Chapter 3. Background
There are two ways to use SSL with Enhydra:

• Associate Enhydra with a webserver using Enhydra director. This has to be the preferred method, any serious
use of encryption will take a large amount of CPU cycles. Its far better to do this with native code than with
Java. My preferred setup would be enhydra with Apache and the mod_ssl module. See http://www.modssl.org
[http://www.modssl.org].

• In the case that you need a pure Java solution then use SSL support directly built in to Enhydra.

For the first option see the enhydra-director documentation and http://www.modssl.org [http://www.modssl.org]. I'll
discuss the pure Java option here.

JSSE is reasonably full featured, there have been 3 releases since September with the final release in January 2000.
It is included in jdk 1.4.

3

http://www.modssl.org
http://www.modssl.org

Chapter 4. Installation and Configuration
Here are the basic steps to go through to get SSL working with Enhydra.

• Install a version of Enhydra as usual with the built in SSL hooks.

• If building from source configure the build.xml .

• Edit your Java security policy file

• Generate or install X509 Certificates

• Modify Enhydra configuration file to add the SSL connection method

These steps are explained in detail below.

• Install Enhydra

Make sure that you have the version of Enhydra with SSL support. Enhydra has no implementations of crypto-
graphic algorithms, so its export outside the US is not restricted.

• Edit the Java security file

You can find your Java security file at JDK_HOME/jre/lib/security/java.security.

Find the list of security providers. The default is:

security.provider.1=sun.security.provider.Sun

To add the default JSSE security provider, add the following line:

security.provider.2=com.sun.net.ssl.internal.ssl.Provider

The numbering refers to the order in which the security providers are used. If you are using a vendor's imple-
mentation of JSSE, then the security provider will be something else. See your vendor documentation.

• Generate or install your X509 Certificates

If you are testing your setup you will want to generate your X509 certificate yourself, but if you are building a
production site, you will need to purchase a certificate from a certificate authority such as Thawte or Verisign.

• Generating your private key

Using the JDK keytool utility you can generate your own X509 certificates, but be aware this is a memory
intensive operation. In generating a certificate you will need to give information to the keytool utility, do not
lose this information. At the command prompt (presuming that JDK_HOME/jre/bin is in your path) enter:

$ keytool -genkey -alias name -keyalg RSA

Important: The program will not work without the -keyalg RSA option. Netscape uses RSA encryption, but
the keytool uses DSA by default. At this point you will be prompted if the information is correct, if it is then
the program will proceed to generate a self signed certificate and key. This may take some time.You will fi-
nally be prompted for a password for the certificate. Make a note of this as you will not be able to use the
certificate without it.

Do not attempt to run this command until you have changed your java.security file as described above. If you

4

do you will get:

keytool error: KeyPairGenerator not available

An RSA enabled provider is not provided with the default JDK1.2

Once you run the keytool command you will then be prompted for the following information:

• keystore password - if this is the first time that you are running this, it will create a keystore in your home
directory and you will be prompted to create a keystore password. You will need this password every
time you use any key management. The alias is the name that will identify the key in the keystore, you
can have several keys in your keystore. If you do not specify an alias the default name is mykey.

• First and Last name e.g. "www.whitehouse.com"

• Name of organizational unit. This is not a company name, but the name of an internal department. e.g.
"White House".

• Name of your organization e.g "US Government"

• City or location e.g "Washington"

• State or Province eg "District of Columbia"

• Country code e.g. "USA"

I find the use of first and last name to be confusing, it really wants the Fully Qualified Domain Name
(FQDN) of the host that you are running your server on. In other SSL implementations they ask for the Com-
mon Name. Its important that you get this right, your certificate authority will not issue a certificate without
it.

Note: Once you have entered the key information you will be prompted for a password for the private key,
with the default option being that the password will be the same as the keystore. You must choose the default
option. This is a bug, that should be fixed in the next version of Enhydra.

To verify that the key was properly created in the keystore you can verify it with:

$ keytool -list

• Generating a certificate request

If you want a certificate from a recognized certificate authority, or your own self signed certificate you will
need to generate a certificate request. Once you have the certificate request you can submit it to your certifi-
cate authority, or issue your own self signed certificate using either keytool or OpenSSL.

At the command prompt type:

$ keytool -alias name -certreq -file filename
where name is the alias of the key in the keystore that your generating the request against.

The specified file will be where the certificate request will be written to. If not specified the request will be
output to standard out.

If successful the certificate request should look like:

-----BEGIN NEW CERTIFICATE REQUEST-----

Chapter 4. Installation and Configuration

5

MIIBuzCCASQCAQAwezELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExEzARBgNVBAcT

CnNhbnRhIGNydXoxDzANBgNVBAoTBmx1dHJpczEbMBkGA1UECxMSc2VjdXJlIGRldmVsb3BtZW50

MRQwEgYDVQQDEwtzdGV2ZSBsYXRpZjCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAuunCyGrr

wCCZeUAJrCvoN/n82k8IF1OwH7KNzAyaPgMU6L7CcawvWqVQY/TncHZmy5tvIlNaEJR300Ha8Keo

TxWIG7T/GHgwqBcjmt/reZbvKdKxBnT7ocoWx2G5BjHoN8RxMLQtZIc/vd9QUrelfw3WMTSLoT4A

QJiAOQpcSvECAwEAAaAAMA0GCSqGSIb3DQEBBAUAA4GBAEkeC/6FzrLO0EUAg0zaIDHazB7kKqZH

AFFOXitH2CiZVM5458NVECGdlNauRvjpwQvsRcRHC2rEpfTD0db9ISH/lN0JmDUz

-----END NEW CERTIFICATE REQUEST-----

The first and last lines with BEGIN and END are part of the certificate request and should not be removed.

If you want to validate the certificate request use OpenSSL or keytool. Why use OpenSSL if its not java
based ? OpenSSL is more robust and has a more refined set of command line tools than keytool. OpenSSL is
an open source implementation of the SSL, and TLS protocols. Its widely used with the apache mod_ssl
package to provide SSL servers. If you have any doubts about open source crypto packages, note that openssl
and mod_ssl are used by three commercial Apache vendors as the basis for their secure servers. See
http://www.openssl.org [http://www.openssl.org] and http://www.modssl.org [http://www.modssl.org] for
downloads and documentation. Once OpenSSL is installed run the command:

$ openssl req -noout -text -in csr
where csr is the name of the file containing your Certificate request.

• Submitting your certificate request

To submit your certificate to a recognized certificate authority, see the instruction on their web page. Two
well known certificate authorities are: http://www.thawte.com [http://www.thawte.com] and Verisign
[http://www.verisign.com].See the instructions on their respective pages.

If you are doing development and are creating your own self signed certificate run the command: of the key
you want to associate with the certificate. Once run the certificate will be stored in the keystore.

To validate the certificate, first export the export from the keystore:

$ keytool -export -alias name -file filename
where name is the alias of the associated key, and filename is the name of the file that the certificate will be
written into.

Now, to read the certificate information:

$ keytool -printcert -file file
where file is the name of the file with the exported certificate.

• Importing a certificate

If you are using a certificate authority to issue your certificate, you will receive a file that looks like:

-----BEGIN CERTIFICATE-----

MIIC3DCCAkWgAwIBAgIDATZXMA0GCSqGSIb3DQEBBAUAMIHEMQswCQYDVQQGEwJa

QTEVMBMGA1UECBMMV2VzdGVybiBDYXBlMRIwEAYDVQQHEwlDYXBlIFRvd24xHTAb

BgNVBAoTFFRoYXd0ZSBDb25zdWx0aW5nIGNjMSgwJgYDVQQLEx9DZXJ0aWZpY2F0

Chapter 4. Installation and Configuration

6

http://www.openssl.org
http://www.modssl.org
http://www.thawte.com
http://www.verisign.com

aW9uIFNlcnZpY2VzIERpdmlzaW9uMRkwFwYDVQQDExBUaGF3dGUgU2VydmVyIENB

MSYwJAYJKoZIhvcNAQkBFhdzZXJ2ZXItY2VydHNAdGhhd3RlLmNvbTAeFw0wMDA3

MjQyMjMyNDBaFw0wMTA4MDcyMjMyNDBaMHoxCzAJBgNVBAYTAlVTMRMwEQYDVQQI

EwpDYWxpZm9ybmlhMRMwEQYDVQQHEwpTYW50YSBDcnV6MSIwIAYDVQQKExlMdXRy

aXMgVGVjaG5vbG9naWVzLCBJbmMuMR0wGwYDVQQDExRiZWVsemVidWIubHV0cmlz

LmNvbTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA4pMbXgVD0jBrQHW5Xqpj

jfSQ70HzCwagrUyHPtV5LbvLffInJ2mAhihlqwPxCmr0HnYIioDxtJgr/3gqfL9C

IC1/L1xlEx06IKBkFs9X4XVXPay2DzFFGnpvCvSlEjCYobHpK+QqwF8bJrnEa9Bd

oyLyxkGBGthaQkxUJARus+MCAwEAAaMlMCMwEwYDVR0lBAwwCgYIKwYBBQUHAwEw

DAYDVR0TAQH/BAIwADANBgkqhkiG9w0BAQQFAAOBgQC6xEHb6Is9jUJUf06XfWiD

wrZ4/IOYnA52bg54NVTTyjjl3qxcQpanAwajp6aAnWUYb34MuRZ8dpsYVu3TUjNF

xxgv0MWQByb4LIjv+l2JcTO4a5ZmFp7Kqp6U2XgdgcS2YYxG+mMQmTdJ3PjCB4Od

g3TILQ8TdSHnSG4YaQgNPw==

-----END CERTIFICATE-----

You can verify that with openssl:

$ openssl x509 -noout -text -in enhydra.crt

Or else by using keytool:

$ keytool -printcert -v -file crt
where crt is the name of the file containing the certificate.

Note: keytool and openssl will handle certificates in different ways. keytool will complain that a certificate is
unreadable if it does contain a new line at the end of the file, while openssl will not have such a problem.

Once you have verified your certificate you can import it into your keystore by issuing the command:

$ keytool -import -alias name -file certfile -trustcacerts
where certfile is the name of the issued certificate file, name is the name of the alias that you want to asso-
ciate with the certificate. The trustcacerts option tells keytool to look in the cacerts file that can be found in
the JDK/jre/lib/security directory. This file contains the root certificates for Thawte and Verisign and keytool
uses them to verify the certificates you input into the keystore.

Note: If you are using a Certificate authority other than Thawte or Verisign you will have to import their root
certificates into the JDK/jre/lib/security/cacerts file. To do this download the root certificate files from your
Certificate Authority. then run keytool:

$ keytool -import -alias name -file filename -keystore cacerts
where name is the alias that you want to associate with the certificate and filename is the name of the file
containing the root certificate.

Chapter 4. Installation and Configuration

7

Chapter 5. Modifying Your Application
Now you can alter your Enhydra application configuration file so that it can find the certificates and keys. For exam-
ple, here is the configuration file for the GolfShop demo shipped with the Enhydra source code. This configuration
file is in the directory:

GOLF_SHOP_HOME/output/

Add the following lines to the configuration file:

begin ---------------------------------

Connection.golfPortSSL.Type = https

Connection.golfPortSSL.Port = 8443

Connection.golfPortSSL.SecureRandomAlgorithm =SHA1PRNG

Connection.golfPortSSL.SecureRandomProvider = SUN

Connection.golfPortSSL.SSLContextProvider = SunJSSE

Connection.golfPortSSL.SSLContextProtocol =TLS

Connection.golfPortSSL.KeyStoreLocation="/home/steve/.keystore"

Connection.golfPortSSL.KeyStoreProvider=JKS

Connection.golfPortSSL.KeyManagerAlgorithm = SUNX509

Connection.golfPortSSL.KeyManagerProvider = SunJSSE

Connection.golfPortSSL.TrustManager=JSSE

Connection.golfPortSSL.Password = your_password_here

Connection.golfPortSSL.ClientAuthentication=false

#

Connect the port to the application

#

Channel.golfPortSSL.golfChannel.Servlet = GolfShopSSL

Channel.golfPortSSL.golfChannel.Url= /

Channel.golfPortSSL.golfChannel.Enabled = yes

#

Specify applications (no admin).

#

Application.GolfShopSSL.ConfFile = GolfShopXMLC.conf

Application.GolfShopSSL.Description =

"Enhydra Demo Secure Shopping Cart Application(SSL)."

Application.GolfShopSSL.Running = yes

#end --

This example uses the XMLC implementation of the GolfShop demo.

8

The remainder of this section explains each line in detail.

Connection.golfPortSSL.Type = https

Define the connection method, this is required if you want to use SSL.

Connection.golfPortSSL.Port = 8443

Define the port to connect to with the HTTPS method. The default port for SSL is 443, but that is a privileged port
on Unix and you will need to be root to use it. The HTTP alternative ports are in the 8000 range. If you are testing
your application on a port other than 443, Internet Explorer will not be able to connect to it. Netscape does not have
a problem with SSL on non-standard ports. A workaround is to use SSH port-forwarding to bind port 44 on your lo-
cal machine to the port on which Enhydra is running. For example, if your Enhydra application is running on
foo.bar.org on port 8443 where I am user steve, then I invoke ssh:

ssh -x -l steve -L 443:foo.bar.org:8443 steve@foo.bar.org

Connection.golfPortSSL.SecureRandomAlgorithm =SHA1PRNG

Java security provides a cryptographically strong Pseudo Random Number Generator (PRNG). This specifies the al-
gorithm.

Connection.golfPortSSL.SecureRandomProvider = SUN

The provider refers to the providers in the java.security file, in our case SUN or SSL

Connection.golfPortSSL.SSLContextProvider = JSSE

The SSLContext Provider currently defaults to JSSE. The SSLContext holds the state of the SSL implementation. It
is used to generate the factories for the sockets.

Connection.golfPortSSL.SSLContextProtocol =TLS

This currently has two defaults SSL or TLS. TLS is a protocol that is likely replacement for SSL 3.0.

Connection.golfPortSSL.KeyStoreLocation="/home/steve/.keystore"

The keystore is generated and managed by the keytool utility. The default is to have it in your home directory.

Connection.golfPortSSL.KeyStoreProvider=JKS

The key store provider

Connection.golfPortSSL.KeyManagerAlgorithm = SUNX509

Currently SUNX509 is the only default value

Connection.golfPortSSL.KeyManagerProvider = JSSE

This is currently the only provider. The name may change to SunJSSE in the future.

Connection.golfPortSSL.TrustManager=JSSE

The Trust manager

Connection.golfPortSSL.Password =

When you generated the key and certificate or the certificate request you will have had to specify the password for
it. At this point, assuming that everything is correct you should be able to start up enhydra and connect to it on port
8443.

Chapter 5. Modifying Your Application

9

Chapter 6. Other sources of information

• For general Java security see Java Security by Scott Oakes, published by O'Reilly

• An interesting book is Java2 Network security by Marco Pistoia published by Prentice Hall. This has interesting
and topical information, but the sample code had many bugs.

• The best source for JSSE are the javadoc files that come with the jar files. In particular, there is an
overview.html, API_users.html, and addtional.html files which are very useful

• The comp.lang.java.security mailing list has occasional things on JSSE

• Sun has a mailing list archive at http://java.sun.com/security/hypermail/java-security-archive
[http://java.sun.com/security/hypermail/java-security-archive/]. This has many interesting things related to JSSE.

• An excellent resource to learn about SSL is the open source OpenSSL libraries at http://www.openssl.org. It
forms the basis of most of the commercial SSL version of Apache when combined with mod_ssl
http://www.modssl.org [http://www.modssl.org].

• An excellent paper on SSL scalability issues see http://www.awe.com/mark/apcon2000/
[http://www.awe.com/mark/apcon2000/]. The authors are two of the main openssl developers.

10

http://java.sun.com/security/hypermail/java-security-archive/
http://www.openssl.org
http://www.modssl.org
http://www.awe.com/mark/apcon2000/

