Enhydra JDDI Syntax Guide

Table of Contents

1. Overview of EnhydraJDDI

Enhydradddic COmMPIlEr OPLiONS.........ccciuirertiieerireetesi ettt n b sb e ene s 1
Executing aPresentation ODJECT ..o et 1
A =00\ 2= I 1D T T o S
SPECITYINGDEFAUITVAIUES........ccueieecice ettt sttt e st se e e eeneene e e e neerenrennenrenrs 3
JDDI Fieldsand QUOtE ChalraClarS.......ceiuieiieirieirecteciteereeireereesreseesreseestesaesbesatesbeebesbeesbesbeenbesseensesseensesnes 4
Accessing EnhydraJDDI FieldSTrom JAVASCIIEcoeeiiriiireeereeeneeie st ebeseebe e 5
Dumping Known Field NameSW/ (@@)c.eoveuerreueriererieesiesesie sttt sesie s st sbe s be s 5
T o010 = B T I = o USSR
TESESTOr CONTITIONS.......ceeiiiteiireee ettt r e e b e bt e e n e n et r et r et nn s 6
The<IDDI JAVADERS TAH ...ttt b e s r et nnenens 6
The<IDDI HTMLDERS TAJ ..v et s 7
THE<IDDI JAV ACALLSTA ceeveeeeeeeeeieeeeseseseeste e seeseeaeseesseseesesseesessessessessessessessensessessensensensesessessenns 8
Passing ArgumentsUsing <IDDI JAV ACALLS ...t s 8
Using ConditionsWithin KIDDI JAVACALLS ...ttt 9
THESIDDI CALLSTAY ..veierieieiiirit ettt b ettt et b et b et ne e 10
The<IDDI HTMLCALLS TAJ ...t cretrerieeeeresieieeses et nnnnas 10
THE<IDDI HTMLS TEG -ttt et n e 10
The<IDDI JAVAIMPORT S TAJ . ..eittereeeeeeeeieeesesieseesteseseessessesseseeseesessessessesssssessesssssessensessensessenessesesses 11
THE<IDDI INCLUDES T8 ...t cereeteteterieieieseresistee st b e ses e ses st st sse b bt se st b e se s s bebe st se st be e se st besenees 12
THE<IDDI JAVACATCHS TAJ ...eceeerirteiieririeiee sttt ettt bbbt s b st b et se bbb st bt be e seebenas 12
The<IDDI JAVAFINALLY S TEJ ...c.cotiiueteiirisieieisesie ettt ettt 13
4. APPENDIX A GlOSSArY Of TEIMSectiiviitiiesiesieseeieseeseesesessesse e saesaestes e saesses e saessessessessssssssssessessessessessessensenes

List of Tables

1.1. Command line options supported by the COMPILEN:ccccvviiiiereseer e 1
T OSSPSR ST 6
4.1. Thefollowing terms are frequently used in the EnhydraJDDI Syntax Reference Guide:cccoovvnieennee 14

List of Examples

Chapter 1. Overview of Enhydra JDDI

Enhydra JDDI enhances the static presentation capabilities of HTML, asit is designed to support the systematic em-
bedding of Java functionality within an HTML page. Enhydra JDDI files, like HTML files, are smple ASCII files;
Enhydra JDDI files are distinguished from standard HTML files by their " jHTML" extension.

Within an Enhydra JDDI file, Java code supplies dynamic content, while a non-programmer can easily edit existing
static content with any best-of-breed web authoring tool. The Enhydra JDDI syntax allows for the integration of
Javawith HTML, or the modular separation of HTML templates and Java libraries into separate files.

There are two categories within the Enhydra JDDI syntax:<JDDI> tags and Enhydra JDDI Fields. The <JDDI> tags,
with their various attributes, isolate Java sections and conditionally insert static HTML content. Enhydra JDDI
Fields support the ability to decode URL arguments, or to embed values directly from a Java object.

Enhydra JDDI files are the building blocks of Presentation Objects, which are compiled using the Enhydra Jddic
compiler. These Presentation Objects are then executed from any web server supported by Enhydra.

Enhydra Jddic Compiler Options

The Enhydra Jddic compiler, with the following commands, compilesa JHTML file:
jddic [options] src.jHTM. packageNane

The .JHTML file extension is mandatory to the source file src . The resultant class belongs to the Java package name
packageName .

Table 1.1. Command line options supported by the compiler:

option description

-k Keep the resultant .java files. This is useful for debug-
ging. Normally the .java files are automatically removed
after successfully compiling the .classfile.

-d destdir Specify the destination root for the Java class files. The
default isjavadir.
-j javadir Directory in which to generate the .javafiles. The default

isthe current working directory.

When developing in the Enhydra Development Environment, the use of Enhydra Jddic is usualy transparent, as the
distributed makefiles contain the rules for running the Enhydra JDDI compiler.

Executing a Presentation Object

A compiled Presentation Object consists of a class with the same name as the original JHTML file. A well-defined
entry method, such as:

run(HTTPPr esent at i onComms)
is automatically inserted into the Presentation Object by the Enhydra Jddic compiler. Presentation Objects can also
be constructed by hand, without the use of the Enhydra Jddic compiler.

Upon receipt of a URL ending in .po (e.g., demoApp.po), Enhydra will turn the request into a run() method on the
appropriate PO (e.g., demoApp.class).

Chapter 1. Overview of Enhydra JDDI

The run() method will sequentially execute each part of an Enhydra JDDI Presentation Object (dynamic Java or
static HTML) according to the conditional rules set forth by <JDDI> tags.

Execution continues until the Presentation Object ends naturally, an unhanded exception is thrown, or an HTTP
redirect isinvoked.

Chapter 2. Enhydra JDDI Fields

The values of page.data variables, when used within HTML sections, are called Enhydra JDDI Fields. Enhydra
JDDI Fields and their values result from two possible scenarios. First, when entering a page environment, Enhydra
JDDI Fieldsinitially represent decoded CGI arguments from an HTTP GET or POST method.

For example, the argument:

.../ foo.po?first Nane=Pet e& ast Nane=Snith
creates the Enhydra JDDI Fields cgiArgs.firstName and cgiArgs.lastName.

The values contained in Enhydra JDDI Fields (in this example, "Pete" and "Smith") may be accessed from within
static HTML content by pre-pending and post-pending " (@ " and " @) ", respectively, such as:

Your last nanme is (@gi Args. | ast Nanmre@ .
This construct would generate the following string, displayed by the client:
Your last nane is Smith.

Additionally, Enhydra JDDI Fields can be the result of an Enhydra JDDI Java section, created using the set method
of the page.data class. Both the page.data variable and Enhydra JDDI Field name must be avalid Javaidentifier.

In the example below, this statement from an Enhydra JDDI Java section creates an Enhydra JDDI Field called min-
Length, with avalue of 8:

page. dat a. set (" mi nLength", "8");
which is then referenced within static HTML content:

The mi ni num required password length is (@r nLength@.
and displays:

The m ni num required password length is 8.

Enhydra JDDI Fields represent the hierarchical structure of page.data. The "' (period) character is significant, as it
delimits the branches within the page.data hierarchy. As new Enhydra JDDI Fields are created, the page.data object
accumulates their variables and values throughout the lifetime of the page. If a referenced Enhydra JDDI Field does
not exist, or isillegally specified, an exception will be thrown when executing the Presentation Object.

Specifying Default Values

Y ou can also specify default values for JDDI Fields. The format is:

(@ (encoding) nane : default @
where encoding is either HTML or JavaScript (case insensitive).

name is the same as it was before except for the added feature that if it starts with session, then it gets the value of
the name in JoltPage.session.data instead of the name in JoltPage.data

default, optionally enclosed in quotes, isthe value to useif thereis no value for the name

The purpose for the encoding is to quote unsafe characters in the value to prevent possible problems when these
strings are used in HTML or JavaScript.

JavaScript encoding quotes are:

A
HTML encoding quotes are:

< > &

Chapter 2. Enhydra JDDI Fields

Here are some examples. Assume we had previously coded the following:

page. session.data.set ("first", "Tubby");
page. sessi on. data.set("last", "Smth");
and

page. dat a. set (" conpany", "Tubby's Restaurant");
page. dat a. set ("status", "open");

The following tags would be replaced by these values:
(&Gtatus@ returns "open"

page. dat a. get ("status") returns "open"
(@ession.first@ returns "Tubby"

page. session.data.get ("first") returns "Tubby"
In the case of aJDDI Field that doesn't exist:

(@iddle:NA@ NA
The following Java code,

page. dat a. get (" mi ddl e")
fails. So the default of "N/A" isused

(@ession.nddle:"not specified"@ returns "not specified"

page. session.data.get("mddle") fails so the default of "not specified" is used

JDDI Fields and Quoted Characters

(@JavaScri pt)conpany@ Tubby\'s Restaurant

page. dat a. get (" conpany")
returns "Tubby's Restaurant” which is then encoded for use in JavaScript giving "Tubby's Restaurant"

(@JavaScri pt) (HTM.) sessi on. conpany: " O Neal & Jordan") O'Neal & Jordan
page.sessl on.data.get("company") fails so the default of "O'Neal & Jordan" is then encoded for use in JavaScript and
HTML giving

"O ' Neal & Jordan®

Here's an example of when you would need to use the JavaScript encoding.

<SCRI PT | anguage="JavaScri pt">

var conpanyname = '(@onmpany@"';

</ SCRI PT>

Since company contains the ' character, it would cause a JavaScript error if we didn't quote it. We would get

var conpanynane = ' Tubby's Restaurant';
whichisillegal.

For the HTML case,we have a similar problem with different characters if we did page.data.set("formula’, "A < B")
and then

<HTML>(@ or mul a@ </ HTM_>
we would end up with

Chapter 2. Enhydra JDDI Fields

<HTM_L>A < B</ HTM_>
whichisillegal HTML.

If a portion of HTML needs to include the (@ or @) characters literally, they must be quoted with the regular
HTML quoting mechanism:

Quoting characters | ook |ike (@@
This construct generates the string:

Quoting characters | ook |ike (@@
If referencing a directory when utilizing Enhydra JDDI Fields, an HTML-formatted dump of all known Enhydra
JDDI Field names and their values under the specified directory will be reported.

Accessing Enhydra JDDI Fields from JavaScript

Enhydra JDDI Fields are evaluated before the HTML results of a Presentation Object are sent as a response to the
client. Therefore, Enhydra JDDI Fields are ideal for adding simple dynamic content to pages containing JavaScript
(or any other client-side language).

Previoudly in this reference, an example of an Enhydra JDDI Java section stored a minimum password length value
in an Enhydra JDDI Field called minLength . The following JavaScript uses this Enhydra JDDI Field to alert the
user before the form is submitted:

<SCRI PT LANGUAGE="JavaScri pt">
if (form password.value.length < (@r nLength@)
alert("(@nnLength@ characters are required")

</ SCRI PT>
Using the example above, remember that the integer value "8" has been stored in the Enhydra JDDI Field min-
Length . The following events occur:
» JavaScript is called on the client-side.

» The" if..." statement asksif the password input by the users contains less than the required number of characters
as specified in minLength .

» If theresult istrue (if the password does not contain the minimum number of characters), the browser displays
an alert pop-up window. The value of minLength ("8") is referenced in the pop-up, which displays "8 characters
arerequired”.

Dumping Known Field Names w/ (@Q@)

Enhydra JDDI Fields with no inserted name (@@) automatically generate an HTML-formatted dump of all Enhydra
JDDI Field names and their values known within the page context. Thisis particularly useful during application de-
velopment and debugging.

Chapter 3. Enhydra JDDI Tags

The <JDDI> tags within the Enhydra JDDI syntax serve numerous functions ranging from referencing files and Java
methods to conditionally including HTML content.

Depending upon its attribute and/or conditions, a <JDDI> tag can include Java code or HTML content within an En-
hydra JDDI file. Some <JDDI> tags are also provided to catch exceptions upon compiling or executing a Presenta-
tion Object, providing a programmer error-catching control that is superior to CGIl-based applications.

Further in this chapter, as individual tags are described, the tags are referenced using their attribute as an identifier.
For example, the <IJDDI> tag with the JAVADEF attribute is referred to as the <JDDI JAVADEF> tag.

In the examples provided for each tag, quotation marks (
are optional, unless the value contains a space.

) are used to surround arguments. These quotation marks

Tests for Conditions

Conditions can be applied to <JDDI> tags, to determine if HTML content (including JavaScript and nested <JDDI>
tags, where applicable), will be included in the resultant HTML file. Within each tag, only a single conditional test
can be performed. The range of test options are described the table below:

Table3.1.

Conditional Test Behavior

IFEQ If the contents of FIELD equal VALUE, then true.

IFNEQ If the contents of FIELD are not equal to VALUE, then
true.

IFDEF If the FIELD is defined, then true

IFNDEF If the FIELD is not defined, then true

IFCALL If a method returns true, then true. Must return a boolean
value.

IFNCALL If a method returns false, then true. Must return a
boolean value.

In this exampl e, the Java method addNewColor isinvoked only if an Enhydra JDDI Field named color exists:
<JDDI JAVACALL=addNewCol or | FDEF FI ELD=col or >

... HTML CONTENT. ..

</ JDDl >

Applicable examples of tests for conditions are included later in this chapter.

The <JDDI JAVADEF> Tag

The general syntax of the <JDDI JAVADEF> tag is as follows, and multiple <JDDI JAVADEF> tags may not be
nested:

<JDDI JAVADEF>

...Java field, nethod or inner class declarations...

6

Chapter 3. Enhydra JDDI Tags

</ JDDI >

The JAVADEF attribute allows for any regular Java declarations to be made, including field, method and inner class
declarations. Once defined within a <JDDI JAVADEF> section, al fields and methods become part of the Presenta
tion Object class.

The <IDDI JAVACALL> tag can then be used to call these pre-defined methods,as long as the methods take a sin-
gle mandatory JoltPage argument.

Example 3.1.

<JDDlI JAVADEF>
private static final String COVPANY="Enhydra";
voi d setJddi Fi el ds (Jol t Page page)

throws Exception

{
/!l Create sone JDDI Fields...

page. dat a. set (" node. on", new Bool ean(true));
page. dat a. set (" conpany"”, COVPANY);
nore Java code. ..

}
</ JDDI >

<JDDI JAVACALL="set Jddi Fi el ds"></JDDl >

The conpany nane is (@onpany@

The npde is set to (@mde. on@

The above <JDDI JAVADEF> declaration defines two fields (company and mode), as well as a method (setJddi-
Fields) then called by the <JDDI JAVACALL> tag.

An HTML-defined method can be called directly from Java by using the call(methodName) method from the Jolt-
Page class. This is an overloaded method allowing an optional KeywordValueTable to be layered on the page.data
scope prior to calling the method.

Example 3.2.

page. cal | (nmyMet hod, nyArgunents);
Multiple <JDDI JAVADEF> tags are legal. Their contents are concatenated in the order they are defined.

The <JDDI HTMLDEF> Tag

The general syntax of the <JDDI HTMLDEF> tag is as follows, and multiple <JDDI HTMLDEF> tags may be
nested:

Chapter 3. Enhydra JDDI Tags

<JDDI HTM_DEF="net hodNanme" >
... HTML CONTENT. ..
</ JDDI >

The HTMLDEF attribute alows for a block of HTML to be defined and subsequently referenced by name, creating
an environment for the modular development of code. The <JDDI JAVACALL> tag can then be used to call meth-
ods.

Methods defined by the HTMLDEF attribute and Java methods defined by the JAVADEF attribute are accessed in
exactly the same manner.

The <JDDI JAVACALL> Tag

The general syntax of the <JDDI JAVACALL> tag is as follows, and multiple <JDDI JAVACALL> tags may be
nested:

<JDDI JAVACALL="net hodNarme" ARG fi el dl1="val uel" ARG fiel d2="val ue2">
... HTML CONTENT. . .
</ JDDI >

The CALL and JAVACALL attributes are functionally equivalent. JAVACALL isincluded for backwards compati-
bility.

The CALL attribute instructs the Presentation Object to call the specified method, identified by methodName. Usu-
ally the method is declared within the JHTML file and either applies HTML to the output or sets Enhydra JDDI
Fields.

However, any method may be called by importing the referred class or fully qualifying the method name. For exam-
ple, Enhydraincludes a utility class called JoltDebug that is automatically included by the Enhydra Jddic compiler.

In this exampl e, the getRequest method dumps al the information about the request in a pre-formatted manner:
<JDDI JAVACALL="Jol t Debug. get Request " >
... HTML CONTENT. . .
</ JDDl >
An example of afully qualified method would be:
<JDDI JAVACALL="com lutris.jolt.Uils.exanpl eMethod">
... HTML CONTENT. . .
</ JDDI >

Passing Arguments Using <JDDI JAVACALL>

When passing arguments to a method, the ARG. prefix is removed and the fields are then accessible to Java-defined
methods or Enhydra JDDI Fields in HTML-defined methods.

Example 3.3.

<JDDI JAVACALL="exanpl eMet hod" ARG first="Pete" ARG |ast="Snith"> </JDDI >
This examples makes exampleMethod.first (the value is "Pete") and exampleMethod.last (the value is "Smith') ac-

Chapter 3. Enhydra JDDI Tags

cessible.

Optionally, valid HTML content may be present and delimited by the closing </JDDI> tag. In this case, the text is
made available to the method in a page variable named tagContents . This can be used to good effect for creating a
library of HTML formatting routines.

Example 3.4.

<JDDI JAVADEF>
voi d addCol or (Jol t Page page)
throws Exception
{
/1 -> page.append() is used to wite HTM.
page. append("
");
page. append(page. t agCont ents) ;
page. append(" </ FONT>") ;
}
</ JDDI >

<JDDI JAVACALL="addCol or" >
Col or nme blue!!!

</ JDDI >
In this example, addColor is a Java method that returns the content text ("Color me blue!!!") as an HTML string
with additional tags:

Col or me bl ue!!! </ FONT>
The variable page.tagContents is avail able within the scope of the method.

Using Conditions Within <JDDI JAVACALL>

Following are ways that method invocation can be made conditional within a<JDDI JAVACALL> tag. For a quick
look at the list of conditional tests, please see the table on Conditional Test .

In the example below, using the IFEQ conditional attribute, the method methodName is invoked if the value of the
variable called fieldName is equal to value value . If fieldName does not exist then the condition is not true and
methodName is not called, regardless of value :

<JDDI JAVACALL="ret hodNane" | FEQ FI ELD="fi el dName" VALUE="val ue">
... HTML CONTENT. ..
</ JDDI >

Similarly, using the IFNEQ conditional attribute, method methodName will be invoked if the value of the variable
called fieldName is not equal to value value . If fieldName does not exist then the condition is true and methodName
iscalled, regardiess of value:

<JDDI JAVACALL="net hodNane" | FNEQ FI ELD="fi el dNanme" VALUE="val ue">

Chapter 3. Enhydra JDDI Tags

... HTML CONTENT. . .
</ JDDI >

Below, using the IFDEF conditional attribute, the method methodName is invoked simply if the variable called
fieldName exists:

<JDDI JAVACALL="rnet hodNanme" | FDEF FI ELD="fi el dNane" >

... HTML CONTENT. ..

</ JDDI >

Using IFNDEF, the method methodName isinvoked if the variable called fieldName does not exist:
<JDDI JAVACALL="net hodNane" | FNDEF FI ELD="fi el dNane" >

... HTML CONTENT. ..

</ JDDI >

Here, using IFCALL, method methodName isinvoked if testMethod returns a boolean true.

<JDDI JAVACALL="net hodNane" | FCALL="t est Met hod" >

... HTML CONTENT. ..

</ JDDI >

Similarly, using IFNCALL, the method methodName isinvoked if testMethod returns a boolean false.
<JDDI JAVACALL="net hodNane" | FNCALL="t est Met hod" >

... HTML CONTENT. ..

</ JDDI >

Complex conditionals can also be achieved by nesting a <JDDI JAVACALL> tag within conditional <JDDI
HTML> tags.

The <JDDI CALL> Tag

Thistag isidentical to the <JDDI JAVACALL> tag.

The <JDDI HTMLCALL> Tag

Thistagisidentical to the <JDDI JAVACALL> tag, with the exception that additional arguments are not allowed.

The <JDDI HTML> Tag

The general syntax of the <JDDI HTML> tag is as follows, and multiple <JDDI HTML> tags may be nested:
<JDDI HTML CONDI TI ON_SYNTAX>
</ JDDl >

Similar to calling methods using the <JDDI JAVACALL< tag, when using the <JDDI HTML > tag, content will be
included if the FIELD variable content is equal to the value associated with VALUE .

In the following example of using the conditional IFEQ with the <JDDI HTML> tag, if mode.on contains the value
" true", then the HTML content will be included in the Presentation Object by the Enhydra Jddic compiler.

10

Chapter 3. Enhydra JDDI Tags

<JDDI HTM. | FEQ FI ELD="npde. on" VALUE="true"<

You are seeing this because

you are in verbose node.

</ JDDI >

Using IFNEQ in the example below, if the field fieldName does not exist then the condition is not true and the
HTML is not included, regardless of value.

<JDDI HTM. | FNEQ FI ELD="fi el dNanme" VALUE="val ue">
... HTML CONTENT. ..
</ JDDI >

However, also using IFNEQ in this example, if the fieldName does not exist, the condition becomes true and the
HTML content isincluded regardless of VALUE :

<JDDI HTM. | FNEQ FI ELD="nonde. on" VALUE="true">

You have chosen non-verbose node.

</ JDDI >

In the example below, using IFDEF, HTML content will be included simply if the variable called fieldName exists:
<JDDI HTM. | FDEF FI ELD="fi el dNane" >

... HTML CONTENT. ..

</ JDDl >

Similarly, using IFNDEF, HTML content will be included using the example below, simply if the variable called
fieldName does not exist:

<JDDI HTM. | FNDEF FI ELD="fi el dName" >

... HTML CONTENT. ..

</ JDDl >

In this example, using IFCALL, HTML content will be included if the Java method named testM ethod returns true.
<JDDI HTM. | FCALL="t est Met hod" >

... HTML CONTENT. ..

</ JDDl >

Similarly, using IFNCALL, HTML content will be included if the Java method named testMethod returns fal se.
<JDDI HTM. | FNCALL="t est Met hod" >

... HTML CONTENT. ..

</ JDDl >

Complex conditionals can also be achieved by nesting <JDDI HTML > tags.

The <JDDI JAVAIMPORT> Tag

The genera syntax of the <JDDI JAVAIMPORT> tag is as follows, and multiple <JDDI JAVAIMPORT> tags may
not be nested:

11

Chapter 3. Enhydra JDDI Tags

<JDDI JAVAI MPORT>
...Java inport statements...

</ JDDI >

The JAVAIMPORT attribute is used to delimit one or more Java import statements. Since the Java language man-
dates that imports are included at the head of a Java file, using this tag ensures this condition. Multiple Enhydra
JDDI import tags can be declared anywhere in the JHTML file.

Imports can be included in ssimple <JDDI JAVADEF> tags, as long as this section is the first in the file. However,
the use of this feature is not recommended.

The <JDDI INCLUDE> Tag

The general syntax of the <JDDI INCLUDE> tag is as follows, and multiple <DDI INCLUDE> tags may be nested:
>JDDI | NCLUDE="Rel ati veFi | ePat h"> >/ JDDI >

The INCLUDE attribute provides a convenient method of including content from one file within another. The
named file is compiled into the page as if it were in-line code. Either Enhydra JDDI files or standard HTML files
can be included, using the <JDDI INCLUDE> tag.

An HTML file, for instance, might be included as a copyright footer or common header. The included file may in-
clude additional <JDDI> tags and access Enhydra JDDI Fields contained within the current page context. The /
<JDDI> end-tag is especially important when using the <JDDI INCLUDE> tag, as the included file cannot cross the
boundary of the current page.

By convention, included files use the .jinc extension. The example below includes the file CommonFooter.jinc, lo-
cated in the directory above the current directory of the JHTML file.

<JDDI | NCLUDE=". ./ ConmonFooter.jinc"> </JDDl >

The <JDDI INCLUDE> and <JDDI JAVADEF> tags can be used effectively to split otherwise large HTML files
into a number of manageable pieces. This approach can also be used to separate Java method calls from the HTML
component, for support or maintenance reasons.

The <JDDI JAVACATCH> Tag

The general syntax of the <JDDI JAVACATCH> tag is as follows, and multiple <JDDI JAVACATCH> tags may
not be nested:

<JDDI JAVACATCH="Excepti onNane" >
...Java Code. ..
</ JDDI >

To catch exceptions created at the Presentation Object level, a single <JDDI JAVACATCH> clause can be created.
It does not matter where in the file the clause appears, but the order is maintained. However, this clause is rarely
necessary, as exceptions are usually caught within the Java code within the Presentation Object, or by an externa
exception mechanism.

The content of the <JDDI JAVACATCH> clause isthe body of aregular Java catch handler. For example:
<JDDI JAVACATCH="M/Exception">

/1 The catch handl er code for MyException...

</ JDDl >

12

Chapter 3. Enhydra JDDI Tags

<JDDI JAVACATCH="Exception">
/1 Catch all exceptions...

</ JDDI >

The <IDDI JAVACATCH> tag offers the facility to catch exceptions thrown anywhere within a page. A more gen-
eral mechanism is offered by Enhydra, enabling exception handlers to be declared to handle exceptions from a group
of Presentation Objects.

The <JDDI JAVAFINALLY> Tag

The general syntax of the <JDDI JAVAFINALLY> tag is as follows, and multiple <JDDI JAVAFINALLY > tags
may not be nested:

<JDDI JAVAFI NALLY>
...Java Code. ..
</ JDDI >

Similarly to <JDDI JAVACATCH> clauses, a single <JDDI JAVAFINALLY > clause can be declared anywhere in
afile. It does not matter where in the file the clause appears, but than can be only one. Also similar to <JDDI JAVA-
CATCH> clauses, this clause is rarely necessary. The contents of the <JDDI JAVAFINALLY > clauseis the body of
aregular Javafinaly handler.

<JDDI JAVAFI NALLY>
/1 Any Java code here will always be executed...

</ JDDI >

13

Chapter 4. APPENDIX A Glossary of Terms

Table 4.1. The following terms are frequently used in the Enhydra JDDI Syntax Reference
Guide:

Attribute One or more strings that appears after an element name
within the start-tag. For example:

<JDDI JAVACATCH>
where JAVACATCH is an attribute.

Content The HTML text that appears between a start-tag and end-
tag. For example:

 Text in bold
where "Text in bold" is the content.

Element A string that defines the structure of an HTML docu-
ment. Elements are enclosed in angle brackets, referred

to as "tags." For example, B isan HTML element. JDDI
isalso an HTML element.

End-tag Element An HTML tag that terminates an HTML statement. For
example:

</ JDDI >

Start-tag An HTML tag that begins an HTML statement. For ex-
ample:

<JDDl >

Value Values may be optionally assigned to attributes in the
form of an attribute-value pair. For example:

<JDDI JAVACALL="cl ass. myMet hod"
ARG a="foo" ARG b="bar">

</ JDDI >
contains three attributes (CALL, ARG.a, ARG.b) and
three values, respectively (class.myMethod, foo, bar).

14

