
Enhydra Jolt Syntax Guide

Table of Contents
1. Overview of Enhydra Jolt ...

Enhydra Joltc Compiler Options ... 1
Executing a Presentation Object ... 1

2. Enhydra Jolt Fields ...
SpecifyingDefaultValues .. 3
Jolt Fields and Quoted Characters .. 4
Accessing Enhydra Jolt Fields from JavaScript .. 5
Dumping Known Field Names w/ (@@) ... 5

3. Enhydra Jolt Tags ...
Tests forConditions .. 6
The <JOLT JAVADEF> Tag ... 6
The <JOLT HTMLDEF> Tag .. 7
The <JOLT JAVACALL> Tag ... 8

Passing Arguments Using <JOLT JAVACALL> ... 8
Using Conditions Within <JOLT JAVACALL> .. 9

The <JOLT CALL> Tag ... 10
The <JOLT HTMLCALL> Tag ... 10
The <JOLT HTML> Tag .. 10
The <JOLT JAVAIMPORT> Tag .. 11
The <JOLT INCLUDE> Tag .. 12
The <JOLT JAVACATCH> Tag ... 12
The <JOLT JAVAFINALLY> Tag .. 13

4. APPENDIX A Glossary of Terms ..

ii

List of Tables

1.1. Command line options supported by the compiler: ... 1
3.1...6
4.1. The following terms are frequently used in the Enhydra Jolt Syntax Reference Guide: 14

iii

List of Examples
3.1...7
3.2...7
3.3...8
3.4...9

iv

Chapter 1. Overview of Enhydra Jolt
Enhydra Jolt enhances the static presentation capabilities of HTML, as it is designed to support the systematic em-
bedding of Java functionality within an HTML page. Enhydra Jolt files, like HTML files, are simple ASCII files;
Enhydra Jolt files are distinguished from standard HTML files by their " .jHTML" extension.

Within an Enhydra Jolt file, Java code supplies dynamic content, while a non-programmer can easily edit existing
static content with any best-of-breed web authoring tool. The Enhydra Jolt syntax allows for the integration of Java
with HTML, or the modular separation of HTML templates and Java libraries into separate files.

There are two categories within the Enhydra Jolt syntax:<JOLT> tags and Enhydra Jolt Fields. The <JOLT> tags,
with their various attributes, isolate Java sections and conditionally insert static HTML content. Enhydra Jolt Fields
support the ability to decode URL arguments, or to embed values directly from a Java object.

Enhydra Jolt files are the building blocks of Presentation Objects, which are compiled using the Enhydra Joltc com-
piler. These Presentation Objects are then executed from any web server supported by Enhydra.

Enhydra Joltc Compiler Options
The Enhydra Joltc compiler, with the following commands, compiles a JHTML file:

joltc [options] src.jHTML packageName

The .jHTML file extension is mandatory to the source file src . The resultant class belongs to the Java package name
packageName .

Table 1.1. Command line options supported by the compiler:

option description

-k Keep the resultant .java files. This is useful for debug-
ging. Normally the .java files are automatically removed
after successfully compiling the .class file.

-d destdir Specify the destination root for the Java class files. The
default is javadir.

-j javadir Directory in which to generate the .java files. The default
is the current working directory.

When developing in the Enhydra Development Environment, the use of Enhydra Joltc is usually transparent, as the
distributed makefiles contain the rules for running the Enhydra Jolt compiler.

Executing a Presentation Object
A compiled Presentation Object consists of a class with the same name as the original JHTML file. A well-defined
entry method, such as:

run(HTTPPresentationComms)
is automatically inserted into the Presentation Object by the Enhydra Joltc compiler. Presentation Objects can also
be constructed by hand, without the use of the Enhydra Joltc compiler.

Upon receipt of a URL ending in .po (e.g., demoApp.po), Enhydra will turn the request into a run() method on the
appropriate PO (e.g., demoApp.class).

1

The run() method will sequentially execute each part of an Enhydra Jolt Presentation Object (dynamic Java or static
HTML) according to the conditional rules set forth by <JOLT> tags.

Execution continues until the Presentation Object ends naturally, an unhanded exception is thrown, or an HTTP
redirect is invoked.

Chapter 1. Overview of Enhydra Jolt

2

Chapter 2. Enhydra Jolt Fields
The values of page.data variables, when used within HTML sections, are called Enhydra Jolt Fields. Enhydra Jolt
Fields and their values result from two possible scenarios. First, when entering a page environment, Enhydra Jolt
Fields initially represent decoded CGI arguments from an HTTP GET or POST method.

For example, the argument:

.../foo.po?firstName=Pete&lastName=Smith
creates the Enhydra Jolt Fields cgiArgs.firstName and cgiArgs.lastName.

The values contained in Enhydra Jolt Fields (in this example, "Pete" and "Smith") may be accessed from within
static HTML content by pre-pending and post-pending " (@ " and " @) ", respectively, such as:

Your last name is (@cgiArgs.lastName@).

This construct would generate the following string, displayed by the client:

Your last name is Smith.

Additionally, Enhydra Jolt Fields can be the result of an Enhydra Jolt Java section, created using the set method of
the page.data class. Both the page.data variable and Enhydra Jolt Field name must be a valid Java identifier.

In the example below, this statement from an Enhydra Jolt Java section creates an Enhydra Jolt Field called min-
Length, with a value of 8:

page.data.set("minLength", "8");
which is then referenced within static HTML content:

The minimum required password length is (@minLength@).
and displays:

The minimum required password length is 8.

Enhydra Jolt Fields represent the hierarchical structure of page.data. The '.' (period) character is significant, as it de-
limits the branches within the page.data hierarchy. As new Enhydra Jolt Fields are created, the page.data object ac-
cumulates their variables and values throughout the lifetime of the page. If a referenced Enhydra Jolt Field does not
exist, or is illegally specified, an exception will be thrown when executing the Presentation Object.

Specifying Default Values
You can also specify default values for Jolt Fields. The format is:

(@ (encoding) name : default @)
where encoding is either HTML or JavaScript (case insensitive).

name is the same as it was before except for the added feature that if it starts with session, then it gets the value of
the name in JoltPage.session.data instead of the name in JoltPage.data

default, optionally enclosed in quotes, is the value to use if there is no value for the name

The purpose for the encoding is to quote unsafe characters in the value to prevent possible problems when these
strings are used in HTML or JavaScript.

JavaScript encoding quotes are:

' " \
HTML encoding quotes are:

< > &

3

Here are some examples. Assume we had previously coded the following:

page.session.data.set("first", "Tubby");

page.session.data.set("last", "Smith");
and

page.data.set("company", "Tubby's Restaurant");

page.data.set("status", "open");

The following tags would be replaced by these values:

(@status@) returns "open"

page.data.get("status") returns "open"

(@session.first@) returns "Tubby"

page.session.data.get("first") returns "Tubby"

In the case of a Jolt Field that doesn't exist:

(@middle:N/A@) N/A
The following Java code,

page.data.get("middle")
fails. So the default of "N/A" is used

(@session.middle:"not specified"@) returns "not specified"

page.session.data.get("middle") fails so the default of "not specified" is used

Jolt Fields and Quoted Characters

(@(JavaScript)company@) Tubby\'s Restaurant

page.data.get("company")
returns "Tubby's Restaurant" which is then encoded for use in JavaScript giving "Tubby's Restaurant"

(@(JavaScript)(HTML)session.company:"O'Neal & Jordan") O\'Neal & Jordan
page.session.data.get("company") fails so the default of "O'Neal & Jordan" is then encoded for use in JavaScript and
HTML giving

"O\'Neal & Jordan"

Here's an example of when you would need to use the JavaScript encoding.

<SCRIPT LANGUAGE="JavaScript">

var companyname = '(@company@)';

</SCRIPT>

Since company contains the ' character, it would cause a JavaScript error if we didn't quote it. We would get

var companyname = 'Tubby's Restaurant';
which is illegal.

For the HTML case,we have a similar problem with different characters. if we did page.data.set("formula", "A < B")
and then

<HTML>(@formula@)</HTML>
we would end up with

Chapter 2. Enhydra Jolt Fields

4

<HTML>A < B</HTML>
which is illegal HTML..

If a portion of HTML needs to include the (@ or @) characters literally, they must be quoted with the regular
HTML quoting mechanism:

Quoting characters look like (@@)

This construct generates the string:

Quoting characters look like (@@)
If referencing a directory when utilizing Enhydra Jolt Fields, an HTML-formatted dump of all known Enhydra Jolt
Field names and their values under the specified directory will be reported.

Accessing Enhydra Jolt Fields from JavaScript
Enhydra Jolt Fields are evaluated before the HTML results of a Presentation Object are sent as a response to the
client. Therefore, Enhydra Jolt Fields are ideal for adding simple dynamic content to pages containing JavaScript (or
any other client-side language).

Previously in this reference, an example of an Enhydra Jolt Java section stored a minimum password length value in
an Enhydra Jolt Field called minLength . The following JavaScript uses this Enhydra Jolt Field to alert the user be-
fore the form is submitted:

<SCRIPT LANGUAGE="JavaScript">

if (form.password.value.length < (@minLength@))

alert("(@minLength@) characters are required")

</SCRIPT>

Using the example above, remember that the integer value "8" has been stored in the Enhydra Jolt Field minLength .
The following events occur:

• JavaScript is called on the client-side.

• The " if... " statement asks if the password input by the users contains less than the required number of characters
as specified in minLength .

• If the result is true (if the password does not contain the minimum number of characters), the browser displays
an alert pop-up window. The value of minLength ("8") is referenced in the pop-up, which displays "8 characters
are required".

Dumping Known Field Names w/ (@@)
Enhydra Jolt Fields with no inserted name (@@) automatically generate an HTML-formatted dump of all Enhydra
Jolt Field names and their values known within the page context. This is particularly useful during application devel-
opment and debugging.

Chapter 2. Enhydra Jolt Fields

5

Chapter 3. Enhydra Jolt Tags
The <JOLT> tags within the Enhydra Jolt syntax serve numerous functions ranging from referencing files and Java
methods to conditionally including HTML content.

Depending upon its attribute and/or conditions, a <JOLT> tag can include Java code or HTML content within an
Enhydra Jolt file. Some <JOLT> tags are also provided to catch exceptions upon compiling or executing a Presenta-
tion Object, providing a programmer error-catching control that is superior to CGI-based applications.

Further in this chapter, as individual tags are described, the tags are referenced using their attribute as an identifier.
For example, the <JOLT> tag with the JAVADEF attribute is referred to as the <JOLT JAVADEF> tag.

In the examples provided for each tag, quotation marks ("") are used to surround arguments. These quotation marks
are optional, unless the value contains a space.

Tests for Conditions
Conditions can be applied to <JOLT> tags, to determine if HTML content (including JavaScript and nested <JOLT>
tags, where applicable), will be included in the resultant HTML file. Within each tag, only a single conditional test
can be performed. The range of test options are described the table below:

Table 3.1.

Conditional Test Behavior

IFEQ If the contents of FIELD equal VALUE, then true.

IFNEQ If the contents of FIELD are not equal to VALUE, then
true.

IFDEF If the FIELD is defined, then true

IFNDEF If the FIELD is not defined, then true

IFCALL If a method returns true, then true. Must return a boolean
value.

IFNCALL If a method returns false, then true. Must return a
boolean value.

In this example, the Java method addNewColor is invoked only if an Enhydra Jolt Field named color exists:

<JOLT JAVACALL=addNewColor IFDEF FIELD=color>

...HTML CONTENT...

</JOLT>

Applicable examples of tests for conditions are included later in this chapter.

The <JOLT JAVADEF> Tag
The general syntax of the <JOLT JAVADEF> tag is as follows, and multiple <JOLT JAVADEF> tags may not be
nested:

<JOLT JAVADEF>

...Java field, method or inner class declarations...

6

</JOLT>

The JAVADEF attribute allows for any regular Java declarations to be made, including field, method and inner class
declarations. Once defined within a <JOLT JAVADEF> section, all fields and methods become part of the Presenta-
tion Object class.

The <JOLT JAVACALL> tag can then be used to call these pre-defined methods,as long as the methods take a sin-
gle mandatory JoltPage argument.

Example 3.1.

<JOLT JAVADEF>

private static final String COMPANY="Enhydra";

void setJoltFields (JoltPage page)

throws Exception

{

// Create some Jolt Fields...

page.data.set("mode.on", new Boolean(true));

page.data.set("company", COMPANY);

... more Java code...

}

</JOLT>

<JOLT JAVACALL="setJoltFields"></JOLT>

The company name is (@company@)

The mode is set to (@mode.on@)

The above <JOLT JAVADEF> declaration defines two fields (company and mode), as well as a method (setJolt-
Fields) then called by the <JOLT JAVACALL> tag.

An HTML-defined method can be called directly from Java by using the call(methodName) method from the Jolt-
Page class. This is an overloaded method allowing an optional KeywordValueTable to be layered on the page.data
scope prior to calling the method.

Example 3.2.

page.call(myMethod, myArguments);

Multiple <JOLT JAVADEF> tags are legal. Their contents are concatenated in the order they are defined.

The <JOLT HTMLDEF> Tag
The general syntax of the <JOLT HTMLDEF> tag is as follows, and multiple <JOLT HTMLDEF> tags may be
nested:

<JOLT HTMLDEF="methodName">

Chapter 3. Enhydra Jolt Tags

7

...HTML CONTENT...

</JOLT>

The HTMLDEF attribute allows for a block of HTML to be defined and subsequently referenced by name, creating
an environment for the modular development of code. The <JOLT JAVACALL> tag can then be used to call meth-
ods.

Methods defined by the HTMLDEF attribute and Java methods defined by the JAVADEF attribute are accessed in
exactly the same manner.

The <JOLT JAVACALL> Tag
The general syntax of the <JOLT JAVACALL> tag is as follows, and multiple <JOLT JAVACALL> tags may be
nested:

<JOLT JAVACALL="methodName" ARG.field1="value1" ARG.field2="value2">

...HTML CONTENT...

</JOLT>

The CALL and JAVACALL attributes are functionally equivalent. JAVACALL is included for backwards compati-
bility.

The CALL attribute instructs the Presentation Object to call the specified method, identified by methodName. Usu-
ally the method is declared within the JHTML file and either applies HTML to the output or sets Enhydra Jolt
Fields.

However, any method may be called by importing the referred class or fully qualifying the method name. For exam-
ple, Enhydra includes a utility class called JoltDebug that is automatically included by the Enhydra Joltc compiler.

In this example, the getRequest method dumps all the information about the request in a pre-formatted manner:

<JOLT JAVACALL="JoltDebug.getRequest">

...HTML CONTENT...

</JOLT>

An example of a fully qualified method would be:

<JOLT JAVACALL="com.lutris.jolt.Utils.exampleMethod">

...HTML CONTENT...

</JOLT>

Passing Arguments Using <JOLT JAVACALL>

When passing arguments to a method, the ARG. prefix is removed and the fields are then accessible to Java-defined
methods or Enhydra Jolt Fields in HTML-defined methods. For example:

Example 3.3.

<JOLT JAVACALL="exampleMethod" ARG.first="Pete" ARG.last="Smith"> </JOLT>
This examples makes exampleMethod.first (the value is "Pete") and exampleMethod.last (the value is "Smith') ac-
cessible.

Chapter 3. Enhydra Jolt Tags

8

Optionally, valid HTML content may be present and delimited by the closing </JOLT> tag. In this case, the text is
made available to the method in a page variable named tagContents . This can be used to good effect for creating a
library of HTML formatting routines. For example:

Example 3.4.

<JOLT JAVADEF>

void addColor (JoltPage page)

throws Exception

{

// -> page.append() is used to write HTML.

page.append("
");

page.append(page.tagContents);

page.append("");

}

</JOLT>

<JOLT JAVACALL="addColor">

Color me blue!!!

</JOLT>
In this example, addColor is a Java method that returns the content text ("Color me blue!!!") as an HTML string
with additional tags:

Color me blue!!!
The variable page.tagContents is available within the scope of the method.

Using Conditions Within <JOLT JAVACALL>

Following are ways that method invocation can be made conditional within a <JOLT JAVACALL> tag. For a quick
look at the list of conditional tests, please see the table on Conditional Test .

In the example below, using the IFEQ conditional attribute, the method methodName is invoked if the value of the
variable called fieldName is equal to value value . If fieldName does not exist then the condition is not true and
methodName is not called, regardless of value :

<JOLT JAVACALL="methodName" IFEQ FIELD="fieldName" VALUE="value">

...HTML CONTENT...

</JOLT>

Similarly, using the IFNEQ conditional attribute, method methodName will be invoked if the value of the variable
called fieldName is not equal to value value . If fieldName does not exist then the condition is true and methodName
is called, regardless of value :

<JOLT JAVACALL="methodName" IFNEQ FIELD="fieldName" VALUE="value">

...HTML CONTENT...

Chapter 3. Enhydra Jolt Tags

9

</JOLT>

Below, using the IFDEF conditional attribute, the method methodName is invoked simply if the variable called
fieldName exists:

<JOLT JAVACALL="methodName" IFDEF FIELD="fieldName">

...HTML CONTENT...

</JOLT>

Using IFNDEF, the method methodName is invoked if the variable called fieldName does not exist:

<JOLT JAVACALL="methodName" IFNDEF FIELD="fieldName">

...HTML CONTENT...

</JOLT>

Here, using IFCALL, method methodName is invoked if testMethod returns a boolean true.

<JOLT JAVACALL="methodName" IFCALL="testMethod">

...HTML CONTENT...

</JOLT>

Similarly, using IFNCALL, the method methodName is invoked if testMethod returns a boolean false.

<JOLT JAVACALL="methodName" IFNCALL="testMethod">

...HTML CONTENT...

</JOLT>

Complex conditionals can also be achieved by nesting a <JOLT JAVACALL> tag within conditional <JOLT
HTML> tags.

The <JOLT CALL> Tag
This tag is identical to the <JOLT JAVACALL> tag.

The <JOLT HTMLCALL> Tag
This tag is identical to the <JOLT JAVACALL> tag, with the exception that additional arguments are not allowed.

The <JOLT HTML> Tag
The general syntax of the <JOLT HTML> tag is as follows, and multiple <JOLT HTML> tags may be nested:

<JOLT HTML CONDITION_SYNTAX>

...HTML...

</JOLT>

Similar to calling methods using the <JOLT JAVACALL> tag, when using the <JOLT HTML> tag, content will be
included if the FIELD variable content is equal to the value associated with VALUE .

In the following example of using the conditional IFEQ with the <JOLT HTML> tag, if mode.on contains the value
" true ", then the HTML content will be included in the Presentation Object by the Enhydra Joltc compiler.

<JOLT HTML IFEQ FIELD="mode.on" VALUE="true">

Chapter 3. Enhydra Jolt Tags

10

You are seeing this because

you are in verbose mode.

</JOLT>

Using IFNEQ in the example below, if the field fieldName does not exist then the condition is not true and the
HTML is not included, regardless of value .

<JOLT HTML IFNEQ FIELD="fieldName" VALUE="value">

...HTML CONTENT...

</JOLT>

However, also using IFNEQ in this example, if the fieldName does not exist, the condition becomes true and the
HTML content is included regardless of VALUE :

<JOLT HTML IFNEQ FIELD="mode.on" VALUE="true">

You have chosen non-verbose mode.

</JOLT>

In the example below, using IFDEF, HTML content will be included simply if the variable called fieldName exists:

<JOLT HTML IFDEF FIELD="fieldName">

...HTML CONTENT...

</JOLT>

Similarly, using IFNDEF, HTML content will be included using the example below, simply if the variable called
fieldName does not exist:

<JOLT HTML IFNDEF FIELD="fieldName">

...HTML CONTENT...

</JOLT>

In this example, using IFCALL, HTML content will be included if the Java method named testMethod returns true.

<JOLT HTML IFCALL="testMethod">

...HTML CONTENT...

</JOLT>

Similarly, using IFNCALL, HTML content will be included if the Java method named testMethod returns false.

<JOLT HTML IFNCALL="testMethod">

...HTML CONTENT...

</JOLT>

Complex conditionals can also be achieved by nesting <JOLT HTML> tags.

The <JOLT JAVAIMPORT> Tag
The general syntax of the <JOLT JAVAIMPORT> tag is as follows, and multiple <JOLT JAVAIMPORT> tags
may not be nested:

<JOLT JAVAIMPORT>

Chapter 3. Enhydra Jolt Tags

11

...Java import statements...

</JOLT>

The JAVAIMPORT attribute is used to delimit one or more Java import statements. Since the Java language man-
dates that imports are included at the head of a Java file, using this tag ensures this condition. Multiple Enhydra Jolt
import tags can be declared anywhere in the JHTML file.

Imports can be included in simple <JOLT JAVADEF> tags, as long as this section is the first in the file. However,
the use of this feature is not recommended.

The <JOLT INCLUDE> Tag
The general syntax of the <JOLT INCLUDE> tag is as follows, and multiple <JOLT INCLUDE> tags may be
nested:

<JOLT INCLUDE="RelativeFilePath"> </JOLT>

The INCLUDE attribute provides a convenient method of including content from one file within another. The
named file is compiled into the page as if it were in-line code. Either Enhydra Jolt files or standard HTML files can
be included, using the <JOLT INCLUDE> tag.

An HTML file, for instance, might be included as a copyright footer or common header. The included file may in-
clude additional <JOLT> tags and access Enhydra Jolt Fields contained within the current page context. The /
<JOLT> end-tag is especially important when using the <JOLT INCLUDE> tag, as the included file cannot cross
the boundary of the current page.

By convention, included files use the .jinc extension. The example below includes the file CommonFooter.jinc, lo-
cated in the directory above the current directory of the JHTML file.

<JOLT INCLUDE="../CommonFooter.jinc"> </JOLT>

The <JOLT INCLUDE> and <JOLT JAVADEF> tags can be used effectively to split otherwise large JHTML files
into a number of manageable pieces. This approach can also be used to separate Java method calls from the HTML
component, for support or maintenance reasons.

The <JOLT JAVACATCH> Tag
The general syntax of the <JOLT JAVACATCH> tag is as follows, and multiple <JOLT JAVACATCH> tags may
not be nested:

<JOLT JAVACATCH="ExceptionName">

...Java Code...

</JOLT>

To catch exceptions created at the Presentation Object level, a single <JOLT JAVACATCH> clause can be created.
It does not matter where in the file the clause appears, but the order is maintained. However, this clause is rarely
necessary, as exceptions are usually caught within the Java code within the Presentation Object, or by an external
exception mechanism.

The content of the <JOLT JAVACATCH> clause is the body of a regular Java catch handler. For example:

<JOLT JAVACATCH="MyException">

// The catch handler code for MyException...

</JOLT>

Chapter 3. Enhydra Jolt Tags

12

<JOLT JAVACATCH="Exception">

// Catch all exceptions...

</JOLT>

The <JOLT JAVACATCH> tag offers the facility to catch exceptions thrown anywhere within a page. A more gen-
eral mechanism is offered by Enhydra, enabling exception handlers to be declared to handle exceptions from a group
of Presentation Objects.

The <JOLT JAVAFINALLY> Tag
The general syntax of the <JOLT JAVAFINALLY> tag is as follows, and multiple <JOLT JAVAFINALLY> tags
may not be nested:

<JOLT JAVAFINALLY>

...Java Code...

</JOLT>

Similarly to <JOLT JAVACATCH> clauses, a single <JOLT JAVAFINALLY> clause can be declared anywhere in
a file. It does not matter where in the file the clause appears, but than can be only one. Also similar to <JOLT
JAVACATCH> clauses, this clause is rarely necessary. The contents of the <JOLT JAVAFINALLY> clause is the
body of a regular Java finally handler.

<JOLT JAVAFINALLY>

// Any Java code here will always be executed...

</JOLT>

Chapter 3. Enhydra Jolt Tags

13

Chapter 4. APPENDIX A Glossary of Terms

Table 4.1. The following terms are frequently used in the Enhydra Jolt Syntax Reference
Guide:

Attribute One or more strings that appears after an element name
within the start-tag. For example:

<JOLT JAVACATCH>
where JAVACATCH is an attribute.

Content The HTML text that appears between a start-tag and end-
tag. For example:

 Text in bold
where "Text in bold" is the content.

Element A string that defines the structure of an HTML docu-
ment. Elements are enclosed in angle brackets, referred
to as "tags." For example, B is an HTML element. JOLT
is also an HTML element.

End-tag Element An HTML tag that terminates an HTML statement. For
example:

</JOLT>

Start-tag An HTML tag that begins an HTML statement. For ex-
ample:

<JOLT>.

Value Values may be optionally assigned to attributes in the
form of an attribute-value pair. For example:

<JOLT JAVACALL="class.myMethod"

ARG.a="foo" ARG.b="bar">

</JOLT>
contains three attributes (CALL, ARG.a, ARG.b) and
three values, respectively (class.myMethod, foo, bar).

14

