Enhydra Enterprise
logging

Table of Contents

O 1 T [Tox 1 o o
2. Enhydralogging - USINGTOG4]ccuuniiiiiii ettt et eeere e
I Moo 7 T wlo | 1To U= 1 o o HU PP
4. Log4] coNfiguration - @XaMPIEuiie et e e e e
5. Enhydralogging - USINgMONOI0OQuuviiiiiiice e e e e e e e e e
6. Tomcat 10gging - USINGMONOIOQ .. .vvuueeiieiiee e e e e e e e e e e e e e e e e aenas

Lol gTol ol | o1 Moo o L= PSPPI
7. Jetty 10gging - USING MONOIOQ -...cevvneeiiiii ettt e ettt e ettt e e e e bt eeeeneaeeees

Chapter 1. Introduction

Enhydra Enterprise supports three different ways of logging. Logger interface defines abstract level of
Enhydralogging (Logger and LogChannel interfaces)in eaf _api.jar (EAFApi module).

Old Standard logging system (to file and to console) is default and it is defined in application conf file
by LogFile, LogToFile and LogToStderr parameters.

Also new Enhydra Enterprise supports log4j-logging. Implementations of Logger and LogChannel
classes with log4j support areincluded in EAF.

Monolog is used in Jonas for logging. So, EAF contains Monolog implementation of Enhydra Logger.
Implementations of Logger and LogChannel classes with log4j support are included in eafmonolog.jar.

If you want to use logdj or monolog logging, you have to set two new parameters in application configu-
ration file : LogClassName and L og4j(Monolog).

L ogClassName parameter means which implementation of logger classis used : Possible values:

» com.lutris.logging.StandardL ogger (default value - for standard logging system)
« com.lutris.logging.Log4jLogger (for log4j logging)

» com.lutris.logging.MonologL ogger (for monolog logging)

Log4j : Pathname of Log4j XML configuration file.

Monolog : Pathname of Monolog configuration file (trace.properties for Jonas J2EE Server).

Chapter 2. Enhydra logging - using
log4]

Log4j alows logging reguests to be printed to multiple destinations. In log4j speak, an output destina-
tionis called an appender.

By default Enhydra Application uses appenders to the console (if the Servlet container isinstaled as con-
sole application) and to the log file (multiserver.log file in <ENHYDRA_ROOT>/multiserver/logs di-

rectory).

Chapter 3. Log4j configuration

This is very short explanation of log4j configuration rules. Detailed specification can be found at:
http://jakarta.apache.org/logdj/docs/documentation.html
[http://jakarta.apache.org/l og4j/docs/documentation.html].

Log4j has three main components: loggers, appenders and layouts. Loggers are named entities (com.foo
is aparent of the logger named com.foo.Bar). The root logger can be configured with (log4j.xml):
<?xm version="1.0" encodi ng="UTF-8" ?>
<! DOCTYPE | og4j : configurati on SYSTEM "I og4j .dtd">
<l 0og4j : configuration xm ns:|og4j="http://jakarta.apache.org/log4j/'>
<appender nanme="ROLL" cl ass="org. apache. | og4j. Rol | i ngFi| eAppender">
<param nanme="Fi | e" val ue="C:/enhydra-enterprise/ multiserver/logs/enhydra.l og"/>
<par am nanme="MaxFi | eSi ze" val ue="10MB"/ >
<par am name="MaxBackupl ndex" val ue="2"/>
<l ayout class="org. apache. | o0g4j. PatternLayout">
<param name="Conver si onPattern" val ue="%l{1S08601}: [%] {1}, %, %: %dm"/>
</ | ayout >
</ appender >
<root >
<l evel value ="info"/>
<appender-ref ref="ROLL"/>
</ root >
</ 1 og4j: configuration>

where <level> isone of the: ALL, DEBUG, INFO, WARN, ERROR, FATAL, OFF.

ALL includes all messages, OFF does not show any message, DEBUG is for verbose output and with
FATAL only critical errors should be logged.

Log4j also alows logging requests to print to multiple output destinations called appenders appender-
(<ref> in example above). One of the distinctive features of log4j is the notion of inheritance in loggers.
For example, the output of alog statement of logger C will go to all the appendersin C and its ancestors.
However, if an ancestor of logger C, say P, has the additivity flag set to false, then C's output will be di-
rected to all the appenders in C and it's ancestors upto and including P but not the appenders in any of
the ancestors of P. Loggers have their additivity flag set to true by default.

The target of the log output can be afile, an OutputStream, a java.io.Writer, aremote log4j server, are-
mote Unix Syslog daemon or even aNT Event logger among many other output targets.

Hence, appender type is mostly one of: ConsoleAppender, FileAppender, RollingFileAppender, Daily-
RollingFileAppender, SocketA ppender, IM SAppender, SMTPA ppender, AsyncAppender.

If you want to customize not only the output destination but also the output format, it can be accom-
plished by associating a layout with an appender. For example, the PatternLayout with the conversion
pattern %r [%6t] %-5p %oc - %m%n will output something akin to:

176 [main] INFO org.foo.Bar - Located nearest gas station.

In the output above: the first field equals the number of milliseconds elapsed since the start of the pro-
gram, the second field indicates the thread making the log request, the third field represents the priority
of the log statement, the fourth field equals the name of the logger associated with the log request, the
text after the - indicates the statement's message.

url(http://jakarta.apache.org/log4j/docs/documentation.html)

Chapter 4. Log4j configuration -
example

For output logging requests printed to Windows NT Event Loggers (for Windows NT, Windows 2000 or
Windows XP, versions of Windows which support Event Viewer program).

<?xm version="1.0" encodi ng="UTF-8" ?>
<! DOCTYPE | 0g4j : confi gurati on SYSTEM "| og4j.dtd">
<l og4j : configuration xmns:|og4j="http://]jakarta.apache.org/log4j/"'>
<appender name="ROLL" cl ass="org. apache. | o0g4j.Rol | i ngFi | eAppender" >
<param name="Fi | e" val ue="C:/enhydra-enterprise/nultiserver/logs/enhydra.log"/>
<par am nanme="MaxFi | eSi ze" val ue="10MB"/ >
<par am nanme="MaxBackupl ndex" val ue="2"/>
<l ayout class="org.apache. | og4j. PatternLayout">
<par am nane="Conver si onPattern" val ue="%l{1S08601}: [%] %1}, %, %: %m"/>
</l ayout >
</ appender >
<appender nanme="ACCESS" cl ass="org. apache. | o0g4j. Rol | i ngFi | eAppender ">
<param nanme="Fi | e" val ue="C:/enhydra-enterprise/ multiserver/logs/acces.|og"/>
<l ayout class="org.apache. | og4j. PatternLayout">
<par am name="Conver si onPattern" val ue="%%n"/>
</ | ayout >
</ appender >
<appender nane="Consol e" cl ass="org. apache. | og4j . Consol eAppender ">
<l ayout class="org.apache. | og4j.PatternLayout">
<par am nanme="Conver si onPattern" val ue="%l{|SC8601}: %: %Pm"/>
</ | ayout >
</ appender >
<appender nanme="Event Vi ewer" cl ass="org. apache.| og4j.nt. NTEvent LogAppender" >
<par am nanme="sour ce" val ue="Enhydra"/>
<l ayout class="org. apache. | og4j. PatternLayout">
<param name="Conver si onPattern" val ue="%l{1S08601}: [%] {1}, %, %: %dm"/>
</ | ayout >
</ appender >
</ appender >
<l ogger nanme="REQUEST">
<appender -ref ref="ACCESS"/ >
</ | ogger >
<l ogger nanme="SysCQut">
<appender - ref ref="Consol e"/>
</l ogger >
<r oot >
<l evel value ="info"/>
<appender-ref ref="ROLL"/>
<appender -ref ref="Consol e"/>
<appender-ref ref="EventViewer"/>
<l--
<appender - ref ref="XM.Qut Format"/>
<appender - ref ref="CHAl NSAW CLI ENT"/ >
coS
</ r oot >
</ 1 og4j: configuration>

* When the code is changed, save log4j.xml to <ENHYDRA_ROOT> and restart Enhydra Enterprise
again.

e Then, start Windows Event Viewer. Go to the Application's Log. All output messages (from Enhy-
dra Enterprise Server) will be shown in the window.

If you want to change 'source' parameter in Event Viewer (application name instead of 'Enhydra), then
you should create separate logger for each application you want to log with it's own 'source’ name. The
name of the logger should be equal to Server.AppClass value in conf file of that application, i.e. the last
name of names separeted by dots with inserted 'org.enhydra. Logger and its appender definitions are
given in the following example. If application's conf file (golfshop.conf) contains line:

4

Logd4j configuration - example

Ser ver . AppCl ass=gol f shop. Gol f Shop

then logdj.xml should contain following lines among <appender> elements:

<appender nane="Event Vi ewer Gol f Shop" cl ass="org. apache. | 0og4j . nt. NTEvent LogAppender ">
<par am nanme="sour ce" val ue="Enhydr a- Gol f Shop"/ >
<l ayout class="org.apache. | og4j. PatternLayout">
<par am nane="Conver si onPattern" val ue="%l{1S08601}: [%] %1}, %, %: %m"/>
</l ayout >
</ appender >

and following lines among <logger> elements:

<l ogger nane="org. enhydra. Gol f Shop" additivity="fal se">
<appender - ref ref="Event Vi ewer Gol f Shop"/>
</l ogger >

Chapter 5. Enhydra logging - using
Monolog

Monolog allows logging requests to be printed to multiple destinations. Monolog contains several imple-
mentations for Monolog interface. As a default (in Jonas and in Enhydra Enterprise), log4j implementa-
tion of Monolog logging is used.

Monolog Logging can be configured as following:

* User configuration

A user can define a Monolog key in the application configuration file. This key should point to the
logger configuration file. As well, a LogClassName property should be defined
(com.lutris.logging.MonologL ogger). An example (AirSent.conf):

LogCl assNane = com | utris.|oggi ng. Monol ogLogger
Monol og = C:/trace. properties

e Default

If no user configuration is done, logger initialization searches the classpath for avalid logger config-
uration file. The name of the the configuration file can be changed in JOnAS property file. This file
must exist in the classpath. A configuration file name example (jonas.properties):

jonas.log.configfile trace

The configuration of monolog is described by several properties. It is therefore possible to define:

* Leves: you can define intermediate levels which you can use to initialize logger level.

e Handlers: An handler represents an output. Monolog provides four standard handlers(console, file,
RollingFile, and ntevent) and a generic handler which permits to configure any handler.

» Loggers. A Logger is identified by names. However we consider that each logger has a main name.
This name is used to identify it in the property file. There are several configurable things on a Log-
ger instance.

To each logged message, alevel must be associated. This level characterises the importance of the level.
The monolog specification defines six levels:

FATAL.: It characterizes a very high error message.

ERROR: It characterizes an error message.

* WARN: It characterizes a warning message.

INFO: It characterizes ainformation message.

Enhydralogging - using Monolog

» DEBUG: It characterizes a debugging message.
* INHERIT: Thislevel does not characterize the importance of a message but it is used to configure a
logger. It permits to specify that alogger must inherit its level of its ancestor.

More details about Monolog logging can be found at: http://monolog.objectweb.org/index.html
[http://monol og.objectweb.org/index.html].

url(http://monolog.objectweb.org/index.html)

Chapter 6. Tomcat logging - using
Monolog

Application Logging
In orded to perform logging in Tomcat, Enhydra uses its extension of Jakarta Commons Logging.

There are two ways of configuring Monolog logging in Tomcat.

» Default configuration

By default Monolog logging in Tomcat is initialized by a search for a property file in the classpath.
The name of the property fileis defined in the JOnAS under afollowing property key:

jonas.log.configfile

Here it is possible to change the name of the file. In that case it must exist in the classpath. All the
neccesary configuration of the logger can be done in this property file.

* User configuration

A user can define a Monolog key in the application configuration file. This key should point to the
logger configuration file. As well, a LogClassName property should be defined
(com.lutris.logging.MonologL ogger). An example:

LogCl assNane = com | utris.|oggi ng. Monol ogLogger
Monol og = C:/trace. properties

Server Logging

MonologFileLogger

MonologFileLogger is an extension of org.apache.catalina.logger.LoggerBase. It is used instead of the
org.apache.catalina.logger.FileLogger to stream the Tomcat's logging trough Monolog. The configura-
tion of the logger is straight forward. In the server.xml a parameter should be declared:

<Logger cl assName="or g. apache. catal i na. | ogger. Monol ogFi | eLogger" />

The rest of the configuration is done in the trace.properties configuration file. If no specific logger for
MonologFilel ogger is declared, the setting for the root logger will be used.

Chapter 7. Jetty logging - using
Monolog

Monolog logging in Jetty is performed using Monolog's extension of Jetty's LogSink class:
MonologSink.

To enable Monolog logging in Jetty, the jetty.xml file in the enhydra/conf folder should contain the fol-
lowing lines:

<Cal I name="instance" class="org. nortbay.util.Log">
<Cal | nane="di sabl eLog"/ >
<Cal | nane="add">
<Ar g>
<New cl ass="or g. enhydr a. | oggi ng. Monol ogSi nk" >
<Cal | name="start"/>
</ New>
</ Arg>
</Cal | >
</Call>

» Default configuration

By default Monolog logging in Jetty is initialized using the property file found in the classpath.
Therefore, al the necessary configuration should be done in this file. The name of the file depends
on the settings in JONAS - jonas.properties and the key jonas.log.configfile and can be therefore
changed as needed. An example:

jonas.log.configfile trace

The only restriction isthat this file must be present in the classpath.

