
Configuration in
Enhydra Enterprise

Server

Tanja Jovanovic

Table of Contents
1. JNDI ..1

Introduction ..1
JNDIOverview ...1

2. Selection of application configuration file .. 4
Introduction ..4
Tag <init-param> in web.xml file .. 5

3. Application parameters ..6
Introduction ..6
Parameters in <appName>.conf file ... 6
Parameters in web.xml file ... 6
Tag <env-entry> in web.xml file ... 7

4. Order of reading configuration parameters ... 9
5. Adjustments for reading configuration from <appName>.conf file 10
6. Adjustments for reading configuration from unpacked web.xml file 11
7. Using Jonas Admin ... 12

Databasedetails ...12
8. Implementation details ...21

Configuration file ...21

ii

List of Examples
2.1. Reading configuration from <appName>.conf file .. 4
2.2. Reading configuration from web.xml file .. 4
3.1. Application parameters defined in <appName>.conf file: ... 6
3.2. Application parameters defined in web.xml file: ... 6
5.1. Setting service provider for reading conf file ... 10
5.2. Configuration for conf service provider .. 10
6.1. Setting service provider for reading unpacked web.xml file .. 11
6.2. Configuration for unpacked web.xml service provider ... 11
7.1. Setting jonas.properties for working with database resource ... 12
7.2. Setting database JNDI name in <appName>.conf file .. 12
7.3. Setting database JNDI name in web.xml file .. 12

iii

Chapter 1. JNDI

Introduction

The Java Naming and Directory Interface (JNDI) is part of the Java platform, providing applications
based on Java technology with a unified interface to multiple naming and directory services.

A fundamental facility in any computing system is the naming service - the means by which names are
associated with objects and objects are found based on their names.

JNDI Overview

The Java Naming and Directory Interface (JNDI) is an application programming interface (API) that
provides naming and directory functionality to applications written using the java programming lan-
guage. It is defined to be independent of any specific directory service implementation.

Architecture

The JNDI architecture consists of an API and a service provider interface (SPI). Java applications use
the JNDI API to access a variety of naming and directory services. The SPI enables a variety of naming
and directory services to be plugged in transparently, by allowing the Java application using the JNDI
API to access their services.

1

Figure 1: JNDI Architecture

Packaging

The JNDI is included in the Java 2 SDK, v1.3 [http://java.sun.com/j2se/1.3/] and later releases. It is also
available as a Java Standard Extension for use with the JDK 1.1 and the Java 2 SDK, v1.2. It extends the
v1.1 and v1.2 platforms to provide naming and directory functionality.

To use the JNDI, you must have the JNDI classes and one or more service providers. The Java 2 SDK,
v1.3 includes three service providers for the following naming/directory services:

• Lightweight Directory Access Protocol (LDAP)

• Common Object Request Broker Architecture (CORBA) Common Object Services (COS) name ser-
vice

• Java Remote Method Invocation (RMI) Registry

Other service providers can be downloaded from the JNDI Web site
[http://java.sun.com/products/jndi/serviceproviders.html] or obtained from other vendors. When using
the JNDI as a Standard Extension on the JDK 1.1 and Java 2 SDK, v1.2, you must first download
[http://java.sun.com/products/jndi/] the JNDI classes and one or more service providers.

The JNDI is divided into five packages:

• javax.naming

• javax.naming.directory

JNDI

2

url(http://java.sun.com/j2se/1.3/)
url(http://java.sun.com/j2se/1.3/)
url(http://java.sun.com/j2se/1.3/)
url(http://java.sun.com/j2se/1.3/)
url(http://java.sun.com/products/jndi/serviceproviders.html)
url(http://java.sun.com/products/jndi/serviceproviders.html)
url(http://java.sun.com/products/jndi/serviceproviders.html)
url(http://java.sun.com/products/jndi/)

• javax.naming.event

• javax.naming.ldap

• javax.naming.spi

You can find out more about JNDI at http://java.sun.com/products/jndi/tutorial/trailmap.html.

JNDI

3

url(http://java.sun.com/products/jndi/tutorial/trailmap.html)

Chapter 2. Selection of application
configuration file

Introduction

Application configuration can be read from application's <appName>.conf file. Since Enhydra 6.1, the
configuration can also be read from application's web.xml file. Two parameters that define which file
will be used are ConfFile and ConfFileClass. They are defined in web.xml in

<init-param>

tag.

NOTE: <appName> is the name of the application.

The first parameter is obligatory. It contains the name of the configuration file (with the path relative to
directory where web.xml file is) that will be used for reading configuration.

The second parameter contains the name of the class (with full package) that will be used for creation of
configuration file and for reading application configuration. It can have the following values:

•
com.lutris.util.ConfigFile

- for <appName>.conf file

•
org.enhydra.util.XMLConfigFile

- for web.xml file

The default value is

com.lutris.util.ConfigFile.

Example 2.1. Reading configuration from <appName>.conf file

<init-param>
<param-name>ConfFile</param-name>
<param-value>../conf/discRack.conf</param-value>

</init-param>
<init-param>
<param-name>ConfFileClass</param-name>
<param-value>com.lutris.util.ConfigFile</param-value>

</init-param>

Example 2.2. Reading configuration from web.xml file

4

<init-param>
<param-name>ConfFile</param-name>
<param-value>web.xml</param-value>

</init-param>
<init-param>
<param-name>ConfFileClass</param-name>
<param-value>org.enhydra.util.XMLConfigFile</param-value>

</init-param>

Tag <init-param> in web.xml file

As described in XML DTD Servlet 2.3 specification for web-app, the tag <init-param> has the following
form:

<!ELEMENT init-param (param-name, param-value, description?)>

The init-param element contains a name/value pair as an initialization param of the servlet.

The param-name element contains the name of a parameter. Each parameter name must be unique in the
web application.

Form:

<!ELEMENT param-name (#PCDATA)>

The param-value element contains the value of a parameter.

Form:

<!ELEMENT param-value (#PCDATA)>

The description element is used to provide text describing the parent element. The description element
should include any information that the web application war file producer wants to provide to the con-
sumer of the web application war file (i.e., to the Deployer). Typically, the tools used by the web appli-
cation war file consumer will display the description when processing the parent element that contains
the description.

Form:

<!ELEMENT description (#PCDATA)>

Selection of application configuration file

5

Chapter 3. Application parameters

Introduction

Since Enhydra 6.1, application parameters are read via JNDI. Parameters can be read from application's
web.xml file, or from its <appName>.conf file.

Parameters in <appName>.conf file

As in the pervious Enhydra versions, application parameters can be defined in application's conf file
(<appName>.conf file).

Example 3.1. Application parameters defined in <appName>.conf file:

Server.XMLC.AutoRecompilation = false
SessionManager.Lifetime = 60
Application.DefaultUrl = "personMgmt/Login.po"

The section delimiter is "." sign.

Parameters in web.xml file

From Enhydra 6.1 version, application parameters can be defined in application's web.xml file. Tag
<env-entry> of web.xml is used for this purpose.

NOTE: Application parameters are read from web.xml which is in application war file (for example,
web.xml from discRack.war).

Example 3.2. Application parameters defined in web.xml file:

<env-entry>
<env-entry-name>SessionManager/Lifetime</env-entry-name>
<env-entry-value>60</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>

The section delimiter is "/" sign.

6

Tag <env-entry> in web.xml file

As described in XML DTD Servlet 2.3 specification for web-app, the tag <env-entry> has the following
form:

<!ELEMENT env-entry (description?, env-entry-name,
env-entry-value?, env-entry-type)>

The env-entry element contains the declaration of a web application's environment entry. The declara-
tion consists of an optional description, the name of the environment entry, and an optional value. if a
value is not specified, one must be supplied during deployment.

The env-entry-name element contains the name of a web applications's environment entry. The name is
a JNDI name relative to the java:comp/env context. The name must be unique within a web application.

Form:

<!ELEMENT env-entry-name (#PCDATA)>

Example:

<env-entry-name>minAmount</env-entry-name>

The env-entry-type element contains the fully-qualified Java type of the environment entry value that is
expected by the web application's code.

The following are the legal values of env-entry-type:

• java.lang.Boolean

• java.lang.Byte

• java.lang.Character

• java.lang.String

• java.lang.Short

• java.lang.Integer

• java.lang.Long

• java.lang.Float

• java.lang.Double

Form:

<!ELEMENT env-entry-type (#PCDATA)>

All parameters in Enhydra applications are type java.lang.String.

The env-entry-value element contains the value of a web application's environment entry. The value
must be a String that is valid for the constructor of the specified type that takes a single String parame-
ter, or for java.lang.Character, a single character.

Application parameters

7

Form:

<!ELEMENT env-entry-value (#PCDATA)>

Example:

<env-entry-value>100.00</env-entry-value>

The description element is used to provide text describing the parent element. The description element
should include any information that the web application war file producer wants to provide to the con-
sumer of the web application war file (i.e., to the Deployer). Typically, the tools used by the web appli-
cation war file consumer will display the description when processing the parent element that contains
the description.

Form:

<!ELEMENT description (#PCDATA)>

Application parameters

8

Chapter 4. Order of reading
configuration parameters

When an Enhydra application is being started, JOnAS reads (via JNDI) applications configuration pa-
rameters from web.xml located in application's war file. So, no matter which file is used for application
configuration file (<appName>.conf or web.xml), during the application's start, first are read parameters
from web.xml file in war file (if defined there).

After that, depending on which configuration file is used, the parameters are read from that configura-
tion file. If any of application parameters is defined both in web.xml in war and in unpacked configura-
tion file (<appName>.conf or web.xml) the value defined in unpacked file overrides the the value de-
fined in web.xml in application's war file.

9

Chapter 5. Adjustments for reading
configuration from <appName>.conf
file

In order to read application parameters from <appName>.conf file, check if the following things are
done:

In carol.properties file (in <ENHYDRA_HOME>/conf directory), in the list of active service providers
(after default service provider - jrmp, iiop, jeremie, or cmi) should be added JNDI service provider for
reading .conf parameters.

NOTE: <ENHYDRA_HOME> is directory where Enhydra is installed.

Example 5.1. Setting service provider for reading conf file

For example, we'll call this new service provider conffile

jonas rmi acativation (jrmp, iiop, jeremie, cmi)
carol.protocols=jrmp, conffile

Also, configuration about this service provider should be added in this file (carol.properties).

Example 5.2. Configuration for conf service provider

##
Configuration for conf file
##
portable remote object delegate class for this protocol (class name with package)
carol.conffile.PortableRemoteObjectClass=org.enhydra.util.spi.ConfFilePRODelegate
Name service class for this protocol
carol.conffile.NameServiceClass=org.enhydra.util.spi.ConfFileRegistry
java.naming.factory.initial property
carol.conffile.context.factory=org.enhydra.util.spi.ConfFileInitialContextFactory
java.naming.provider.url property (only for carol, no importance)
carol.conffile.url=conffile://nohost:0

Service provider for configuration file is in jndiConfSpi.jar. This jar file should be placed in ENHY-
<DRA_HOME>/lib/ext/enhydra/tools/jndi directory.

10

Chapter 6. Adjustments for reading
configuration from unpacked web.xml
file

In order to read application parameters from web.xml file, check if the following things are done:

In carol.properties file (in <ENHYDRA_HOME>/conf directory), in the list of active service providers
(after default service provider - jrmp, iiop, jeremie, or cmi) should be added JNDI service provider for
reading parameters from unpacked web.xml file.

NOTE: <ENHYDRA_HOME> is directory where Enhydra is installed.

Example 6.1. Setting service provider for reading unpacked web.xml file

For example, we'll call this new service provider webxmlfile

jonas rmi acativation (jrmp, iiop, jeremie, cmi)
carol.protocols=jrmp, webxmlfile

Also, configuration about this service provider should be added in this file (carol.properties).

Example 6.2. Configuration for unpacked web.xml service provider

##
Configuration for web.xml (unpacked)
##
portable remote object delegate class for this protocol (class name with package)
carol.webxmlfile.PortableRemoteObjectClass=org.enhydra.util.spi.webxml.WebXmlPRODelegate
Name service class for this protocol
carol.webxmlfile.NameServiceClass=org.enhydra.util.spi.webxml.WebXmlRegistry
java.naming.factory.initial property
carol.webxmlfile.context.factory=org.enhydra.util.spi.webxml.WebXmlInitialContextFactory
java.naming.provider.url property (only for carol, no importance)
carol.webxmlfile.url=webxmlfile://nohost:0

Service provider for configuration file is in jndiWebXmlSpi.jar. This jar file should be placed in EN-
<HYDRA_HOME>/lib/ext/enhydra/tools/jndi directory.

In the situation when the configuration is read from web.xml and the service provider for reading un-
packed web.xml (jndiWebXmlSpi.jar) doesn't exist, the default service provider will be used and the
configuration parameters will be read only from the web.xml file located in application's war file.

11

Chapter 7. Using Jonas Admin

Database details

Since Enhydra 6.0, details about database that an application may use, can be entered by using Jonas
Admin. This section explains what needs to be done in order to use this enhydra'a feature.

In jonas.properties file (in <ENHYDRA_HOME>/conf directory), services that need to be launched in
the JOnAS Server are set. The propery that contains these values is jonas.services, and the services im-
portant for this enhydra's feature are: jtm and dbm.

Example 7.1. Setting jonas.properties for working with database resource

jonas.services jtm,dbm,security,web

In application configuration file should be added parameter /
DatabaseManager/DB/<db_name>Connection/DataSourceName for web.xml configuration file or pa-
rameter DatabaseManager.DB.<db_name>.Connection.DataSourceName for <appName>.conf config-
uration file. The value of this parameter has the following form:

jndi:<database_jndi_name>

where <database_jndi_name> is database's JNDI name under which the data (about the database the ap-
plication uses) will be entered in Jonas Admin.

Example 7.2. Setting database JNDI name in <appName>.conf file

DatabaseManager.DB.sid1.Connection.DataSourceName = jndi:discRackBase3

Example 7.3. Setting database JNDI name in web.xml file

<env-entry>
<env-entry-name>DatabaseManager/DB/sid1/Connection/DataSourceName</env-entry-name>
<env-entry-value>jndi:discRackBase3</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>

Now, we go to Jonas Administration application (http://localhost:<communication_port>/jonasAdmin)
to enter database data. The dafault <communication_port> is 9000, the dafault user name is admin and
the dafault password is enhydra.

When started, we go to part Resources and choose Database (JDBC).

12

Figure 2: Database resource in Jonas Admin

We go to Datasources tab and click on New datasource button to add a new database.

Using Jonas Admin

13

Figure 3: New datasource button

The window for entering database data will appear. The following information should be added:

• Name - File name of the datasource. Data entered here will be saved in file under this name
(<Name>.properties) in <ENHYDRA_HOME>/conf directory.

• JNDI name - JNDI name of the database. In our example, that name is discRackBase3.

• Description - Description of the datasource.

• URL - URL to access to the database. This is the
DatabaseManager.DB.<db_name>.Connection.Url parameter of <appName>.conf file or Database-
Manager/DB/<db_name>/Connection/Url parameter of web.xml file.

• JDBC Driver - JDBC driver class name to access to the database. This is the
DatabaseManager.DB.<db_name>.JdbcDriver parameter of <appName>.conf file or DatabaseM-
anager/DB/<db_name>/JdbcDriver parameter of web.xml file.

• User name - User name or login to log in the database. This is the
DatabaseManager.DB.<db_name>.Connection.User parameter of <appName>.conf file or
DatabaseManager/DB/<db_name>/Connection/User parameter of web.xml file.

• User password - User password to log in the database. This is the
DatabaseManager.DB.<db_name>.Connection.Password parameter of <appName>.conf file or
DatabaseManager/DB/<db_name>/Connection/Password parameter of web.xml file.

Using Jonas Admin

14

Figure 4: Filled datasource admin window

When all data are entered, we click on Apply button, and than on Confirm button after data check. In our
example, file discRackHSQL.properties will be created in <ENHYDRA_HOME>/conf directory.

Now, this database (discRackHSQL) should be deployed so that can be used for reading database con-
figuration for the application. All other databases (for that application) that won't be used, should be un-
deployed.

For example, the situation is: the database discRack1, that was used before for the discRack application,
is deployed, and the database discRackHSQL, that will be used for the discRack application is unde-
ployed.

Again, we go in Jonas Admin to part Resources, but now choose Deployment tab to see which databases
are deployed, and which are not.

To undeploy discRack1, we have to choose this database in Deployed list and click on Undeploy button.

Using Jonas Admin

15

Figure 5: Database Undeployment

To deploy discRackHSQL, we have to choose this database in Deployable list and click on Deploy but-
ton.

Using Jonas Admin

16

Figure 6: Database Deployment

To apply these operations, we click on Apply button, ant then on Confirm button.

After the database configuration parameters are added and deployed, the application must be restarted
(or started if hasn't been active). This is done in Jonas Admin, in part Deployments, Web Applications
(WAR).

For example, we want to restart discRack application.

First, we have to undeploy the application (if deployed). We choose discRack.war in Deployed list, click
on Undeploy button, then on Apply button and finally on the Confirm button. The application is unde-
ployed.

Using Jonas Admin

17

Figure 7: Application Undeployment

Second, we have to deploy the application. We choose discRack.war in Deployable list, click on Deploy
button, then on Apply button and finally on the Confirm button. The application is deployed.

Using Jonas Admin

18

Figure 8: Application deployment

The restarted application will now work with discRackHSQL database.

NOTE: If the configuration data about the application database are entered by using Jonas Admin as de-
scribed, the following parameters are not neccessary in the configuration file:
DatabaseManager.DB.<db_name>.Connection.Url, DatabaseManager.DB.<db_name>.JdbcDriver,
DatabaseManager.DB.<db_name>.Connection.User and
DatabaseManager.DB.<db_name>.Connection.Password (for <appName>.conf file), or DatabaseMan-
ager/DB/<db_name>/Connection/Url, DatabaseManager/DB/<db_name>/JdbcDriver, DatabaseMan-
ager/DB/<db_name>/Connection/User and DatabaseManager/DB/<db_name>/Connection/Password
(for web.xml file). Instead of that, only
DatabaseManager.DB.<db_name>.Connection.DataSourceName parameter (for <appName>.conf file)
or DatabaseManager/DB/<db_name>/Connection/DataSourceName parameter (for web.xml file) must
exist in configuration file.

This way we can change many different databases for the application. When enter data for every next
base, please be carefull that the database JNDI name should be the same as the one defined in configura-
tion file. In our example, this name is discRackBase3.

In the case we want any of databases to be deployed during the start of Jonas, we have to set property
jonas.service.dbm.datasources in jonas.properties file (in <ENHYDRA_HOME>/conf directory). This
property is set with a coma-separated list of Datasource properties (file names without the '.properties'
suffix).

In this section we have already created the database discRackHSQL.properties, and, for example let us
assume that we have already created another database called pokerBase.properties, and that we want to
laod both databases during the Jonas start. In this case, we set jonas.service.dbm.datasources property to
values:

jonas.service.dbm.datasources discRackHSQL,pokerBase

Using Jonas Admin

19

Next time we start JOnAS Server, it will load defined data sources (in our case discRackHSQL and
pokerBase), related jdbc drivers and register the data sources into JNDI.

Using Jonas Admin

20

Chapter 8. Implementation details

Configuration file

As a consequence of the existance of more than one type of the configuration file (for now
<appName>.conf and web.xml), the classes for configuration file have been reorganized. They consist
of:

• Interface

org.enhydra.util.ConfigFileInterface

that defines methods that every configuration file should have.

• Abstract class

org.enhydra.util.AbsConfigFile

that implements

org.enhydra.util.ConfigFileInterface

and contains non specific code for all configuration files.

• Class

com.lutris.util.ConfigFile

that extends

org.enhydra.util.AbsConfigFile.

This class implements <appName>.conf config file and defines methods that are specific for this
type of configuration file.

• Class

org.enhydra.util.XMLConfigFile

that extends

org.enhydra.util.AbsConfigFile.

This class implements web.xml config file and defines methods that are specific for this type of con-
figuration file.

The configuration object

com.lutris.util.Config

(which contains application configuration datails) now works with

org.enhydra.util.ConfigFileInterface

interface.

21

For adding new type of configuration file, the class

org.enhydra.util.AbsConfigFile

should be extended (or directly interface

org.enhydra.util.ConfigFileInterface

implemented), and in web.xml file parameters ConfFile (name of the configuration file with the path rel-
ative to directory where is web.xml file) and ConfFileClass (name of the class with full package that
will be used for configuration file) should be set to new values.

Implementation details

22

