

Contents

CHAPTER 1 .. 1

INTRODUCTION .. 1
WHAT YOU SHOULD ALREADY KNOW ... 1
CONVENTIONS USED IN THIS BOOK.. 1
GETTING STARTED .. 2
ENHYDRA 6.X INFORMATION AVAILABLE ON ENHYDRA.ORG... 3

CHAPTER 2 .. 4

INSTALLATION.. 4

CHAPTER 3 .. 5

OVERVIEW .. 5
WHAT IS ENHYDRA 6.X?... 5
DOCUMENTATION .. 6

Documentation updates .. 6
ANATOMY OF AN ENHYDRA APPLICATION... 6

Enhydra super-servlet applications... 6
Servlet applications... 8
Application layers.. 9

SERVLET CONTAINERS ... 10
ENHYDRA APPLICATION FRAMEWORK .. 10

Presentation Manager... 11
Session Manager .. 11
Database Manager ... 12

ENHYDRA TOOLS ... 13
Enhydra Application Wizard.. 13
Extensible Markup Language Compiler (XMLC) .. 13
Data Object Design Studio (DODS).. 14

CHAPTER 4 .. 17

TUTORIAL: BUILDING ENHYDRA APPLICATIONS .. 17
CREATING YOUR FIRST APPLICATION... 17

Building and starting the application ... 19
How it works.. 21
Configuration file ... 22

APPLICATION ADMINISTRATION ... 22
USING XMLC .. 25

Adding a hit counter .. 26
Understanding the Document Object Model... 28
Using XMLC from the command line .. 29

ENHYDRA PROGRAMMING... 31
Maintaining session state.. 31
Adding a new page to the application... 33
Populating a table ... 35
Adding a business object .. 38

USING DODS.. 41
DODS source building .. 41
DOML file syntax... 43
Starting dods generator .. 52
Sample of part of transient XML file.. 67
Structure of new modular DODS 6.x .. 68
DODS independence .. 69
DODS Ant task.. 72
Table configuration ... 73
Caching ... 74
User wildcards... 84

i

Loading the schema.. 84
Generated structure .. 85
Database Independency ... 85
Using multi databases in DODS ... 86
Mass modifications ... 88
Conversion of doml file ... 89
Template sets.. 90
Custom Configuration ... 90
More Information... 91

CHAPTER 5 .. 92

DISCRACK SAMPLE APPLICATION .. 92
BUILDING AND RUNNING DISCRACK .. 92
PROCESS AND PRELIMINARIES FOR DEVELOPING APPLICATIONS ... 93

DiscRack requirements definition ... 94
DiscRack functional specification ... 94
Design and storyboard.. 95
Developing, testing, and deploying... 96

OVERVIEW OF DISCRACK... 96
PRESENTATION LAYER ... 97

Presentation base class.. 97
Session data and log in... 98
Event handling .. 100
HTML pages.. 101
Maintaining the storyboard.. 102
Populating a list box.. 105
Populating a form.. 106

BUSINESS LAYER ... 108
Business objects ... 108
Using data objects .. 109

APPENDIX A... 110

DATABASE CONFIGURATIONS.. 110
DRIVER CONFIGURATION .. 110
ORACLE .. 110
INFORMIX .. 111
SYBASE... 111
QED... 112
MYSQL .. 112

Note:.. 112
Configuration... 112

POSTGRESQL... 113
INSTANTDB... 113
MCKOI .. 114
DB2.. 114
HSQLDB (HYPERSONICSQL).. 115
MICROSOFT SQL SERVER ... 116
JTURBO JDBC DRIVER .. 116
MS-JDBC DRIVER... 116
MICROSOFT ACCESS ... 117
INTERBASE ... 118
INTERCLIENT... 118

Configuration... 118
Configuration notes... 119

C-JDBC ... 120

ii

Getting started with Enhydra

Chapter 1
Introduction

This book introduces the Enhydra™ ver. 6.x application server and the Enhydra development
environment. It provides an introductory overview of Enhydra and explains how to develop an
application by using an example to illustrate some of the key principles of Enhydra
applications.

What you should already know

This book assumes you have the following basic skills:

• General understanding of the Internet, the World Wide Web (Web), and Hypertext Markup

Language (HTML).

• Good working knowledge of the Java programming language. Some knowledge of Java

servlets is also helpful.

• Good understanding of relational databases; knowledge of SQL is helpful.

Conventions used in this book

The typographical conventions used in this book are listed in Table 1.1.

Table 1.1 Typographical conventions

Convention

Description

Italics

Indicates variables, new terms and concepts, and book titles. For example,
• A servlet is a Java class that dynamically extends the functionality of a Web server.

Fixed-width

Used to indicate several types of items. These include:
• Commands that you enter directly, code examples, utility programs, and options.
For example,

• cd mydir
• System.out.println("Hello World");
• make utility
• -keep option

• Java packages, classes, methods, objects, and other identifiers. For example,
• ErrorHandler class
• run() method
• Session object

Note: Method names are suffixed with empty parentheses, even if the method takes
parameters.
Note: Only specific references to object names are in fixed-width; generic references
to objects are shown in plain text.
• File and directory names. For example:

• /usr/local/bin
Note: UNIX path names are used throughout and are indicated with a forward slash
(/). If you are using the Windows platform, substitute backslashes (\) for the forward
slashes (/).

Chapter 1: Introduction

1

Getting started with Enhydra

Table 1.1 Typographical conventions (continued)

Convention

Description

Fixed-width

italic and
<Fixed-width

italic>

Indicates variables in commands and code. For example,
• xmlc [options|optfile.xmlc ...] docfile
Note: Angle brackets (< >) are used to indicate variables in directory paths and
command options. For example,
• -class <class>

Boldface

Used for the words Note, Tip, Important, and Warning when they are used as
headings that are drawing your eye to essential or useful information.

Keycaps

Used to indicate keys on the keyboard that you press to implement an action. If you
must press two or more keys simultaneously, keycaps are joined with a hyphen. For
example,
• Ctrl-C.

{ } (braces)

Indicates a set of required choices in a syntax line. For example,
• {a|b|c}
means you must choose a, b, or c.

[] (brackets)

Indicates optional items in a syntax line. For example,
• [a|b|c]
means you can choose a, b, c, or nothing.

...(horizontal

ellipses)

Used to indicate that portions of a code example have been omitted to simplify the
discussion, and to indicate that an argument can be repeated several times in a
command line. For example,
• xmlc [options|optfile.xmlc ...] docfile

plain text

Used for URLs and generic references to objects. For example,
• http://www.lutris.com/documentation/index.html
• The presentation object is in the presentation layer

ALL CAPS

Indicates SQL statements. For example:
• CREATE statement

Table 1.2 Additional conventions

Convention

Description

Enhydra root

directory

When you install Enhydra, you install the Enhydra executables and libraries in a
directory of your choice. This directory is referred to as the Enhydra root directory or
<enhydra_root>.

Paths

UNIX path names are used throughout and are indicated with a forward slash (/). If
you are using the Windows platform, substitute backslashes (\) for the forward
slashes (/). For example,
• /usr/local/bin

URLs

URLs are indicated in plain text and are generally fully qualified. For example,
• http://www.lutris.com/documentation/index.html

Screen shots Most screen shots reflect the Microsoft Windows look and feel.

Getting Started

Getting Started with Enhydra introduces the fundamentals of Enhydra. The purpose of this
book is to introduce Enhydra and provide groundwork for understanding and working with
Enhydra and its associated tools. It includes a detailed tutorial and an explanation of the
Enhydra DiscRack sample application.

Chapter 1: Introduction

2

http://www.lutris.com/documentation/index.html

Getting started with Enhydra

Enhydra 6.x information avalable on
enhydra.org

You can find a variety of information about open-source Enhydra at the Enhydra website:

http://www.enhydra.org

The Enhydra site is the home of the Enhydra 6.x open-source community, one of Enhydra’s
greatest assets. The Enhydra community consists of numerous entities, including community
sponsors, technology providers, users, and of course, developers.

Chapter 1: Introduction

3

http://www.enhydra.org/

Getting Started with Enhydra

Chapter 2
Installation

Complete step-by-step installation instructions for Enhydra and related software (including
bundled third-party software) are provided in Enhydra documentation, directory
<enhydra_root>/multiserver/webapps/enhydra-docs. To begin, refer to the top-level
index.html file of this directory.

For convenience, we recommend that you print the file containing the Enhydra installation
instructions prior to installation. (The instructions are included in HTML and PDF format).
However, you can also follow the step-by-step installation instructions online (you can toggle
back and forth between the installation program and browser).

 Chapter 2: Installation

4

Getting Started with Enhydra

Chapter 3
Overview

This chapter provides a high-level overview of Enhydra, Enhydra applications, and the tools
used to create and run Enhydra applications. The following topics are covered:

• What is Enhydra 6.x?

• Enhydra documentation

• Anatomy of an Enhydra application

• Servlet containers

• Enhydra Application Framework

• Enhydra tools

What is Enhydra 6.x?

Enhydra is an application server for running robust and scalable multi-tier Web applications,
and a set of application development tools.

An application server usually operates between a web server and a database server, and
provides dynamically-generated content for the web server to send to web browser clients.

An Enhydra application is a java program that runs in servlet container and uses the Enhydra
application framework at runtime.

Enhydra has three parts:

• Application framework: Collection of Java classes, which provide the runtime
infrastructure for Enhydra applications.

• Enhydra tools: Use to develop Enhydra applications.

• Servlet container (Tomcat, Jetty, …): Servlet container is not a part of Enhydra any more,
but it is needed for running Enhydra applications. Any servlet container that supports servlet
2.3 specification can be used for running Enhydra applications. Three server containers are
included with Enhydra distribution: Tomcat, JOnAS Tomcat and JOnAS Jetty.

The following sections describe Enhydra and Enhydra applications in more detail.

For more information on See this topic
Enhydra application architecture “Anatomy of an Enhydra application” in the chapter 3
Servlet containers “Servlet container” in the chapter 3
Application framework “Enhydra Application Framework” in the chapter 3
Enhydra tools “Enhydra tools” in the chapter 3

 Chapter 3: Overview

5

Getting Started with Enhydra

Documentation

The documentation for this release is located in
<enhydra_root>/multiserver/webapps/enhydra-docs directory. Refer to index.html document
of this directory.

Documentation updates

• Getting Started with Enhydra has been updated to reflect changes to Enhydra and revised

for accuracy.

Anatomy of an Enhydra application

An Enhydra application can be either:

• An Enhydra super-servlet application that uses Enhydra’s own application model

• A servlet application that uses the J2EE servlet application model

These two kinds of applications are similar in many ways, but have some important
differences. Generally, a servlet application has a servlet for each page (HTML, WML, and so
on) in the application. In contrast, a super-servlet application consists of a single servlet that
contains a presentation object for each page.

You can use Enhydra tools such as XMLC and DODS to create both kinds of applications,
and you can run both kinds of applications in any standard servlet runner, such as Tomcat,
JOnAS Tomcat and JOnAS Jetty.

Enhydra super-servlet applications

An Enhydra application has (minimum):

• A single application object

• One presentation object for each page to be dynamically generated

These objects run in the context of the Enhydra application framework, as described in
“Enhydra Application Framework”, later in this chapter.

Application objects

The application object is the central hub of an Enhydra application. It is a subclass of
com.lutris.appserver.server.StandardApplication and contains application-wide data, such as:

• Name of the application

• Status of the application (for example, running/stopped/dead)

• Name and location of the configuration file that initializes the application

• Log channel to use for logging

 Chapter 3: Overview

6

Getting Started with Enhydra

• References to the application’s session manager, database manager, and presentation

manager (see“Enhydra Application Framework”, later in this chapter).

Properties

You can add properties (instance variables) to the application object to store information that
needs to be accessible throughout the application. For example, if your application has a
dozen pages that need to share a collection of customer data, you can make a vector
containing the data a property of the application object so all pages can easily access it.

Methods

Each application object has the following methods:

• startup() starts the application

You can extend this to perform other startup functions, such as reading settings from the
configuration file.

• requestPreprocessor() initializes the Session data structure

You can extend this as needed; for example, to check for HTTP basic authorization.

In general, application objects do not deal with HTML, handle requests, or otherwise talk to
the network; presentation objects perform these tasks. The next section describes
presentation objects.

Presentation objects

A presentation object generates dynamic content for one or more pages in an Enhydra super-
servlet application.

When a browser requests a URL that ends in ‘.po’, Enhydra passes the request on to the
corresponding presentation object. Enhydra then instantiates and calls the presentation
object. For example, for the URL http://www.foo.com/myapp/Xyz.po, Enhydra calls the
presentation object Xyz.

Note Enhydra only calls a presentation object for URLs with a ‘.po’ suffix. The Web server

generally serves a static file for other requests.

Presentation objects must implement the interface:

com.lutris.appserver.server.httpPresentation.HttpPresentation.

This interface has one method, run(), that Enhydra calls, passing it an HTTP request.
Presentation objects differ from servlets in that they need handle only a single request at a
time. No concurrency control is required.

Enhydra also provides a response object that a presentation object can use to write data in
response to HTTP requests (similar to a servlet’s service() method). Presentation objects
usually handle GET requests (for example, form submissions) and respond by writing HTML,
but they can perform other functions (for example, read files sent by a POST request).

 Chapter 3: Overview

7

http://www.foo.com/myapp/Xyz.po

Getting Started with Enhydra

Servlet applications

In addition to super-servlet applications, you can also create and run standard servlet
applications (sometimes called web applications) with Enhydra. Servlet applications conform
to the Java servlet API specification, part of the Java 2 Enterprise Edition (J2EE) specification
from Sun Microsystems. It is a popular application model for interactive Web applications.

For detailed information on the servlet application model, see

http://java.sun.com/products/servlet/index.html .

In a servlet application, each servlet is responsible for a single page of output (although this is
not required, it is common practice). Each servlet must be a subclass of
javax.servlet.http.HttpServlet, and will generally override the doGet() method, and possibly
other methods, such as init(). The general architecture of a servlet application is illustrated in
Figure 3.1.

Figure 3.1 Servlet application model

Although JavaServer Pages (JSPs) are often used to create the presentation layer of servlet
applications, XMLC is generally better because it provides a cleaner separation between
layout code (such as HTML) and presentation logic code. Fortunately, you can use XMLC to
help generate presentation code for servlet applications too.

Servlet versus super-servlet applications

While the servlet application model and the super-servlet application model are similar in
many ways, they also have some key differences. You can run both kinds of applications in a
servlet container, and you can use Enhydra tools such as XMLC and DODS to help create
both kinds of applications.

Since the servlet API performs its own presentation management, there is no need for the
Enhydra Presentation Manager (see “Presentation Manager”, later in this chapter). Likewise,
the servlet API provides session management, so there is no need for the Enhydra Session
Manager (see “Session Manager”, later in this chapter).

One of the key differences in the two application models is how the objects in the presentation
layer are instantiated. In a super-servlet application, each request creates a new instance of
the requested presentation object, and the PO executes in a single-thread. In contrast, in a
servlet application there is only one instance of any given servlet, and it is multithreaded (one

 Chapter 3: Overview

8

http://java.sun.com/products/servlet/index.html

Getting Started with Enhydra

thread for each request). So, POs can have member variables that are local to each instance,
while in a servlet application, any member variable is global to all threads of the instance of
the servlet.

Presentation objects have several features that you cannot take advantage of in a servlet
application:

• Dynamic page recompilation (so you can change page content while an application is
running)

• URL-encoding of session information for cookieless session maintenance

• Automatic setting of MIME-types, for applications that generate multiple document types

(for example, HTML and WML)

The Enhydra application framework provides a number of capabilities that are very useful,
including:

• Database management

• Logging

Although these are not part of the standard servlet application model, you can save a lot of
development time by using them; however, your application will then be dependent on the
Enhydra class libraries (contained in separate binaries - jar files).

Application layers

Regardless of the application model you use, you should divide your application into three
distinct parts or layers for modularity and ease of maintenance:

• The Presentation layer handles how the application is presented to web browsers through

HTML. In a super-servlet application, this layer consists of presentation objects (POs); in a
servlet application, it consists of servlets.

• The Business layer contains business objects. Business objects contain the application’s

business logic, including algorithms and specialized functions, but not data access or
display functions.

• The Data layer handles the interface with the persistent data source, which is typically a

relational database.

An additional benefit of having a distinct data layer is that you can use the Data Object Design
Studio (DODS) to create your data objects. DODS creates data objects to populate the data
layer, and creates both java code and SQL code to create the corresponding tables in the
database. For more on DODS, see “Data Object Design Studio (DODS)”, later in this chapter.

Note The Enhydra application framework only requires that you use an application object and

presentation objects. The business and data classes you create are up to you. Dividing your
application into these three layers minimizes maintenance cost because it isolates the
application’s data layer from the user interface. This, in turn, lets you change the data layer
without affecting the presentation layer.

 Chapter 3: Overview

9

Getting Started with Enhydra

Servlet containers

Servlet container provides the services that an Enhydra application uses to communicate with
the web server, and performs all other runtime functions. Enhydra is independent of servlet
container – any servlet container (that supports Servlet 2.3 specification) can be used for
running Enhydra applications (Tomcat, JOnAS Tomcat, JOnAS Jetty,…).

A servlet is a java class that dynamically extends the functionality of a web server. Normally,
when a browser sends a request to a web server, the server simply finds the files identified by
the requested URL and returns them to the browser. However, if the browser requests a page
constructed by a servlet, the server sends the request information to a servlet, which
constructs the response dynamically and returns it to the server.

The Java Servlet API is a standard extension to java and is a part of the Java 2 Enterprise
Edition (J2EE). Some web servers support the Servlet API directly, while others require an
adjunct servlet runner, such as JServ for the Apache Web server. Enhydra 3.0, and later,
supports the Servlet API version 2.2.

Each Enhydra application runs as a single servlet, in contrast to a generic servlet application,
which typically has one servlet for each dynamically-generated page.

Enhydra Application Framework

The Enhydra application framework includes:

• Presentation Manager

• Session Manager

• Database Manager

In general, the application framework includes all the classes in the
com.lutris.appserver.server.* packages, which provide the infrastructure that Enhydra
applications use at runtime.

The general architecture of an Enhydra application in the context of the application framework
is illustrated in Figure 3.2, “Enhydra application and Enhydra framework”.

Figure 3.2 Enhydra application and Enhydra framework

 Chapter 3: Overview

10

Getting Started with Enhydra

Presentation Manager

The Enhydra Presentation Manager handles the loading and execution of the presentation
objects in an Enhydra application. The Presentation Manager maps URLs to presentation
objects and calls the run() method of the presentation object.

Each Enhydra application has one instance of a Presentation Manager. To increase
performance, the Presentation Manager caches presentation objects and associated files in
memory as necessary. The Presentation Manager also provides the key that the session
manager uses to locate a session. This key is either a cookie or a string appended to each
URL in the application.

Each application has a Presentation Manager that is an instance of the class:

com.lutris.appserver.server.httpPresentation.HttpPresentationManager .

The com.lutris.appserver.server.httpPresentation package contains classes and interfaces
that the Presentation Manager and presentation objects use.

Session Manager

The Enhydra Session Manager enables an application to maintain state throughout a session.
A session is defined as a series of requests from the same user (browser client) during a
specified time period. Enhydra provides a general implementation of session management
that you can extend to create more sophisticated state models.

Enhydra maintains user state by creating a Session object for each user. When a user first
makes a request to an application, the Session Manager creates a new Session object and
assigns it a unique session ID. The Session Manager uses the session ID to retrieve the
Session object for subsequent requests. Applications can add user-specific information to the
Session object and then access the Session object from the request object, as it is passed
through the application.

If a user has been idle (has not issued a request to the application) for more than the period
specified in the configuration file, the user’s session becomes invalid, and the Session
Manager releases the corresponding Session object. This makes it possible to implement
security schemes that require users to log in before accessing the application. In such a
scheme, the user enters an appropriate password and gains access to the rest of the
application; however, once the user’s session has been idle for more than the allowed time,
the application requires the user to log in again.

Before version 6.x each application had a Session Manager that is an instance of the class
com.lutris.appserver.server.session.StandardSessionManager. When it was created, the
Session Manager read the maximum time that a session can persist, the maximum session
idle time, and other related information from the application configuration file
(<appName>.conf or web.xml file). The com.lutris.appserver.server.session package
contained classes and interfaces that the Session Manager and the application used for
session management.

Sessions in Enhydra 6 should be managed by the servlet container, the session data is being
stored in the HttpSession object. To achieve this, and to improve the flexibility of the enhydra
framework, different implementations of the session manager have been developed. The
class that implements the one used with each of the applications is to be stated in the
configuration file, for example:

SessionManager.Class=

com.lutris.appserver.server.sessionEnhydra.SimpleServletSessionManager

 Chapter 3: Overview

11

Getting Started with Enhydra

If the SessionManager.Class is not specified, the old

com.lutris.appserver.server.sessionEnhydra.StandardSessionManager
is used (it is kept for compatibility reasons, but it's use is not encouraged).

The available session manager adapters are:

• com.lutris.appserver.server.sessionEnhydra.SimpleServletSessionManager

This is a simple session manager which interconnects the servlet container sessions and
enhydra sessions by using the same session keys (generated by session container).

• com.lutris.appserver.server.sessionContainerAdapter.ContainerAdapterSessionManager

Simple session manager to be used with servlet container capable of managing their
sessions. It uses HttpSession to keep the session data. The sessions are completely
managed by the session container and are configured in the servlet container
configuration files. Any session configuration parameters defined in the application
configuration file are ignored (except SessionManager.Class). The persistence across
restarts of the application and container is realized by the appropriate servlet container
mechanisms.

• com.lutris.appserver.server.sessionContainerAdapter.TomcatContainerAdapterSessionManager
Tomcat specific session manager, extends ContainerAdapterSessionManager, witch
interacts directly with (wraps) Tomcat Session Manager.

• com.lutris.appserver.server.sessionContainerAdapter.JmxContainerAdapterSessionManager
Tomcat specific session manager, extends ContainerAdapterSessionManager, by using
JMX MBeans to obtain some session information from the session container.

Note: for the latter two containers, session data must be serializable in order to fully utilize the
persistence obtained by the session container.

Database Manager

The Enhydra Database Manager controls a pool of database connections for the application.
The Database Manager works with logical databases. A logical database is an abstraction
that hides the differences between different database types. A logical database uses Java
Database Connectivity (JDBC) to communicate with database servers such as Oracle,
Sybase, Informix, Microsoft SQL Server, PostgreSQL, InterBase, and InstantDB.

The Database Manager is responsible for the state of a database connection, the SQL
statements that are being executed, and the result sets that are in progress.

Specifically, the Database Manager:

• Allocates and releases connections to the logical database

• Allocates object IDs from the logical database

• Creates queries and transactions

• Maintains other database-related information

Each application has a Database Manager that is an instance of the class
com.lutris.appserver.server.sql.StandardDatabaseManager. When it is created, the Database
Manager reads a configuration file that specifies the logical database to use, the actual
database types to which it maps, and other related information.

The com.lutris.appserver.server.sql package contains the classes and interfaces that the
Database Manager and data objects use.

 Chapter 3: Overview

12

Getting Started with Enhydra

Enhydra tools

Enhydra includes the following tools to help you create applications:

• Enhydra Application Wizard

• Extensible Markup Language Compiler (XMLC)

• Data Object Design Studio (DODS)

Enhydra Application Wizard

The Enhydra Application Wizard (appwizard) is a tool with both a command-line and a
graphical user interface. The wizard creates a basic framework for an Enhydra application.
The wizard lets you create and run a new “stub” application in a matter of minutes, giving your
development project a jump-start. For an example of using the Application Wizard GUI, see
“Creating your first application” in the chapter 4.

Note The Application Wizard has changed significantly with the release of Enhydra 3.5.
Previously, the Application Wizard was a command-line tool, started by entering ‘newapp’
with a project name parameter. The command for starting the Application Wizard and the
parameters required to run it as a command-line tool have changed. The basic framework of
files and directories generated by the Application Wizard has changed as well.

Extensible Markup Language Compiler (XMLC)

The Extensible Markup Language Compiler (XMLC) creates a java object that mirrors the
structure of an eXtensible Markup Language (XML) document. XML, defined by the World
Wide Web Consortium (W3C), is the universal format for structured documents and data on
the Web. XMLC uses the Document Object Model (DOM), a W3C standard interface, to let
programs access and update the content and structure of XML documents.

Note Although XMLC works with XML documents, this book will focus on its use with HTML
pages.

XMLC lets you separate HTML templates in your application. These templates are typically
created by page designers from java code, which is usually created by programmers. This
functionality provides increased modularity and eases team development and application
maintenance. Page designers can change the user interface of the application without
requiring any code changes, and the programmers can change the “back-end” Java code
without requiring any changes to the HTML.

This command-line tool generates a Java class file from a HTML input file. An application can
use the Java class at runtime to change the content or attributes of any tags with ID or
CLASS attributes. For an example using the XMLC, see “Tutorial: Building Enhydra
applications” in the chapter 4.

Auto Reloading, Memory Persistence and XMLC
Deferred Parsing

XMLC Deferred parsing enables you to change a HTML page in a Web application at runtime
(which means without stopping the application). So, if you want a new look on a page, you
can change desired HTML page in the application. The application detects the new timestamp

 Chapter 3: Overview

13

Getting Started with Enhydra

on the file, dynamically loads the page, and uses it in the application. Configuring deferred
parsing to work is also simple once you understand the details behind it. Deferred parsing
comes with XMLC2.2 and it represents replacement for the earlier possibility of XMLC, auto
recompilation. For more information about deferred parsing refer to XMLC2.2 documentation.

Automatic Reloading also enables you to change the Web application at runtime (which
means without stopping the application). This changes can be seen (by web users) only if the
application, or parts of application that had been changed, are compiled or transformed from
HTML form into Java classes by XMLC, and then put in the place of old application's classes.

Both Deferred parsing and Automatic Reloading enable changes of the Web application
without stopping the application and then restarting it, so that Web users, except when the
application is seriously changed, can not notice any change in the Web application. The
changes in particular Web page are applied when the page is called by HTTP request for the
first time. These two approaches can work together. The difference between these two
approaches is that in XMLC Deferred Parsing the changed HTML pages are dynamically
loaded into the system, during the runtime, as:

org.w3c.dom.Document/org.w3c.dom.html.HTMLDocument
without having to pre-compile them by using XMLC, while before performing the Automatic
Reloading, it is necessary to compile the changed HTML files (and/or other changed
application classes).

Enhydra's possibility called Memory Persistence is used in order to hold application's session
objects in memory while particular application is stopped, or during the restart of the
application. When application is restarted, it can use its old session data (data stored in
session object) as they were left in the time the application had been stopped. Of course, it is
assumed that used servlet container wasn't stopped in the meantime.

This is explained detailly in document “enhydra_utilities” in
<enhydra_root>/multiserver/webapps/enhydra-docs/enhydra directory, in html and pdf form.

Data Object Design Studio (DODS)

The Data Object Design Studio (DODS), shown in Figure 3.3, is a tool which, for the given
doml file, can generate SQL script files for creating tables (for each table separately and one
cumulative file for creating all tables), one file for deleting all tables, and/or java code for data
objects described in the given doml file. DODS also has possibility to compile generated java
classes and to parse SQL files (to split cumulative SQL into more separated SQL files using
SQLSplitter tool).

 Chapter 3: Overview

14

Getting Started with Enhydra

Figure 3.3 DODS Generator Wizard

Data objects described in the given DOML file correspond to tables in the database. Each
data object has attributes, which describe database columns, and reference attributes, which
refer to other data objects. Reference attributes let you create a hierarchy of data objects (for
example, many-to-one or many-to-many relationships).

For the given DOML, DODS generates all of the code to implement it. For example:

• SQL code to define the database tables

• Java code to create the corresponding application data objects

For each data object, DODS generates a set of source files. For example, if your DOML file

includes the definition of an entity named “thing,” then DODS would generate the following:

• A file named thing.sql containing the SQL CREATE TABLE command to construct a table

in a relational database.

• Java source file defining a data object representing a row in the table.

This class provides a “set” and “get” method for each attribute, methods to handle caching,
and is a subclass of the Enhydra framework class GenericDO. In this example, the class
would be named ThingDO.

 Chapter 3: Overview

15

Getting Started with Enhydra

• Java source file that defines a query class, which provides SQL query access to the

database table.

The query class returns a collection of ThingDO objects that represent the rows found in
the table matching criteria passed from the application.

For an example using DODS, see “Using DODS” in the chapter 4.

 Chapter 3: Overview

16

Getting Started with Enhydra

Chapter 4
Tutorial:
Building Enhydra applications

This chapter describes how to build an Enhydra application from the ground up, and provides
important tips on Enhydra application development. In this tutorial, you will:

• Use the Application Wizard to create a starting framework

• How to configure application

• Use Admin applications for Enhydra applications

• Use XMLC to expand the application

• Use DODS for database access

If you are already familiar with the basics of Enhydra, you may want to skip to the chapter 5,
“DiscRack sample application,” for a look at an application with more advanced features.

Creating your first application

The Enhydra Application Wizard (sometimes referred to as appwizard) is a quick way to get
up and running with Enhydra. The Application Wizard generates basic Java files and directory
structures for new applications. For the tutorial, you will use the Application Wizard GUI.

To create a simple application with the Application Wizard:

1 Create a directory to contain your new application and name it anything you want. For

example in directory <enhydra_root>/multiserver/enhydra, create subdirectory myapps:

mkdir myapps (UNIX)
or

md myapps (WINDOWS)

2 Open a shell window (UNIX) or command window (WINDOWS) and make the new directory

the current directory. For example:

cd myapps

3 Start the Application Wizard GUI by entering appwizard at the command prompt (or use

Start menu to start appwizard). Entering appwizard at the command prompt with no
arguments brings up the Application Wizard GUI. The Application Wizard can generate two
distinct types of Enhydra projects: a Enhydra super-servlet application, and an Web
Application. For this tutorial, you will generate a super-servlet application.

Note If the Application Wizard does not start, the path environment variable is not set

correctly. The Enhydra installation instructions provide information about setting your path
environment variable. The installation instructions are available in HTML and PDF format in
Enhydra documentation, <enhydra_root>/multiserver/webapps/enhydra-/doc directory (refer

 Chapter 4: Tutorial: Building Enhydra applications

17

Getting Started with Enhydra

to the top-level index.html).

Figure 4.1 Application Wizard GUI

Note The Application Wizard has changed significantly with the release of Lutris Enhydra 3.5.

Previously, the Application Wizard was a command-line tool, started by entering newapp
with a parameter for the project name. The command for starting the Application Wizard and
the parameters required to run it as a command-line tool have changed. The basic
framework of files and directories generated by the Application Wizard has changed as well.

4 Use the Application Wizard GUI to generate a simple Enhydra application. The Application

Wizard GUI steps you through the process of generating an Enhydra project.

1 Select a Component type.
Select Enhydra Application from the Component type pull-down menu and click Next.

2 Specify Client type and directory details.
Accept the default client type of HTML. Enter simpleApp for the Project directory name.
Enter simpleapp (note the difference in case) for Package. Set the Root path to, for
example:

<enhydra_root>/multiserver/enhydra/myapps.

3 Specify the copyright material to use.
Click Next to accept the default, No copyright setting.

4 Specify which Supplemental files to generate.
Select Generate start script and command line build files and click Finish.

The Application Wizard creates a new directory called simpleApp. This directory is
sometimes referred to as the application root directory.

5 Make the application root directory the active directory:

 Chapter 4: Tutorial: Building Enhydra applications

18

Getting Started with Enhydra

cd simpleApp

6 Application root directory has EJOSA folder structure (for more information about EJOSA,

see http://ejosa.sourceforge.net/). Browse the application root directory and note the
following items created by the Application Wizard:

• file build.xml

• file readme.html that contains some simple instructions to build and run the application

• specification directory that contains source (interfaces and classes); can be used for
independent development of project. You can make presentation and specification layer
only. In this case specification layer is changed for business layer. Specification layer also
can be used with business layer to replace data layer in development stage of application

• data directory that contains source that implements data logic

• business directory that contains source that implements business logic

• presentation directory that contains source that implements presentation logic

• application directory that contains batch files (start-enhydra.bat and stop-enhydra.bat) to
start or stop application on Windows, and also shell scripts (start-enhydra and stop-enhydra)
to start or stop application on Linux.

Building and starting the application

1 To build the application:

In the shell window (UNIX) or in the command window (WINDOWS), enter the command
enhydra-ant from the application root directory.

During the Enhydra installation, in your path should be added path to the
<enhydra_root>/multiserver/enhydra/bin directory which contains enhydra-ant.bat (enhydra-
ant shell script for Linux):

cd /myapps/simpleApp
enhydra-ant

This process will create bin directory in simpleApp/application/ directory that practically
presents CATALINA_BASE directory structure (JONAS_BASE for Enhydra Enterprise)
which contains application binaries and configuration files place in webapps
(webapps/autoload) subdirectory.

File build.xml contains directives that tell ant to recursively descend the application directory
tree. When you build the application ant compiles the files located in the simpleApp source
directories and creates a corresponding classes directory structure.

Optionally, command:

1. UNIX

./enhydra-ant makeWAR

2. WINDOWS

enhydra-ant makeWAR

 Chapter 4: Tutorial: Building Enhydra applications

19

http://ejosa.sourceforge.net/
http://ejosa.sourceforge.net/

Getting Started with Enhydra

additionally makes simpleApp.war in simpleApp/application/bin/webapps directory. This war
will have all nedded files from presentation, data, business and specification folder.

2 To start the application, enter the following commands in the Enhydra shell (UNIX) or in the
command window (WINDOWS).

1. UNIX

cd application
cd bin
./start-enhydra

2. WINDOWS

cd application
cd bin
start-enhydra

3 To stop the application, enter the following commands in the Enhydra shell (UNIX) or in the

command window (WINDOWS).

1. UNIX

./stop-enhydra

2. WINDOWS

stop-enhydra

4 To access the application, enter the following URL in your browser’s location field:

http://localhost:8080/simpleApp
http://localhost:9000/simpleApp

Note: It is assumed that Enhydra 6.x is installed with default connection port setting (8080
for Enhydra and 9000 for Enhydra Enterprise installation).

The browser will display the Welcome page for the simpleApp application.

Figure 4.2 Browser with the simpleApp welcome page loaded

You have just built and run your first Enhydra application.

 Chapter 4: Tutorial: Building Enhydra applications

20

http://localhost:8080/simpleApp
http://localhost:9000/simpleApp

Getting Started with Enhydra

You should see "Welcome to simpleApp..." and the current time. Hit the reload button and
watch the time update. The time is a sample of dynamic HTML: It could be replaced with
anything you can access or compute in java.

Clicking on the link "Sample redirect back to here" sends the browser to a special page that
always responds with a redirect request back to the main page. Sometimes this occurs so
quickly you may not notice anything happening. Redirects are very useful when you are
building a Web application.

How it works

The application created by the Application Wizard provides a simple example of how Enhydra
works.

Look at the file myapps/simpleApp/presentation/resource/Welcome.html, which contains a
few dozen HTML tags. Notice tags such as these:

<center>
The time at the web server is:
1/1/00 00:00:00 (static).

</center>

At runtime, Enhydra replaces the content of the tag with a date. The text in the ID
attribute is just a placeholder; it will never appear at runtime. The period outside the
tag will not be replaced. Thus, the sentence will always end with a period.

Look also at the WelcomePresentation.java file in the directory:

myapps/simpleApp/presentation/src/simpleapp/presentation
In particular, notice these lines of code:

WelcomeHTML welcome;
String now;
...
welcome = (WelcomeHTML)comms.xmlcFactory.create(WelcomeHTML.class);
 try {
 Dater dater =

 DaterFactory.createDater("simpleapp.business.DaterImpl");
 now = dater.getDate();
 } catch (Exception ex){ . . . }
 welcome.setTextTime(now);
 comms.response.writeDOM(welcome);

This code is used for replacing the text inside the tags.

The first couple lines in the code snippet define welcome as an instance of the
WelcomeHTML class, and now as an instance of the String class. The xmlcFactory in the
next line is used to instantiate your HTML page. Next, the variable now is set to the current
Date formatted as time. The last line of the snippet sets the time element in the welcome
class to the value of now, and returns the value.

When you build the application, the Extensible Markup Language Compiler (XMLC) finds the
 tag in the HTML and recognizes the ID attribute with value “time”. It creates a Java
class called WelcomeHTML with a method getElementTime(). The application uses
getElementTime() to modify the text content of the tag.

Note In general, XMLC will create a getElementxxx() method for each tag with ID

attribute value xxx. The xxx in the method name is replaced by the capitalized spelling of the
ID attribute value of the SPAN tag.

At runtime, the application replaces the original text content of the tag with a string

 Chapter 4: Tutorial: Building Enhydra applications

21

Getting Started with Enhydra

representation of the current date. Then, the call to write method writes the document out to
the HTTP response, looking something like this:

...
<CENTER>
The time at the web server is: 10:40 AM.

</CENTER>
...

For a more detailed explanation of XMLC, see “Using XMLC”, later in this chapter

Configuration file

The application configuration file contain critical information that determine how an Enhydra
application runs. Application configuration file can be <AppName>.conf or application’s
web.xml file (default).

Application configuration is explained detailly in document “configuration” in
<enhydra_root>/multiserver/webapps/enhydra-docs/configuration directory, in html and pdf
form.

Application administration

For managing Enhydra applications are used Tomcat Administration or JOnAS Administration
web application and Enhydra Admin application.

These applications are graphical tools that allow a system manager to configure and monitor
an instance of Enhydra and associated applications. All configuration information for Enhydra
and Enhydra applications are stored in configuration files. When Enhydra starts, it reads
these configuration files and starts the server process and any specified applications. Once
the instance of Enhydra is running, the administration applications are able to perform
management operations. All management operations work in the same manner; the active
state (including resource parameters) of Enhydra, an application, or servlet is changed and
the change may be saved in the configuration file.

When Enhydra is installed, all Enhydra applications are placed in
<enhydra_root>/multiserver/webapps (<enhydra_root>/multiserver/webapps/autoload
for Enterprise installation) directory as deployed (unpacked) war files, where
<enhydra_root> is the directory where Enhydra is installed.

Tomcat Admin (url http://localhost:<communication_port>/admin) and JOnAS admin (url
http://localhost:<communication_port>/jonasAdmin) are graphical tools based on the Struts
framework and the JMX technology.

Note: Communication port value is one of Enhydra 6.x installation options. Default value is
set to 8080 for Enhydra and 9000 for Enhydra Enterprise installation.

 Chapter 4: Tutorial: Building Enhydra applications

22

http://localhost:<communication_port>/admin
http://localhost:<communication_port>/jonasAdmin

Getting Started with Enhydra

Figure 4.3a Tomcat Admin application

Figure 4.3b JOnAS Admin application

To enter Tomcat Admin or JOnAS Admin, please enter (appropriate) values for User Name
and Password.

Note: Administration User Name and Password values are Enhydra 6.x installation options.
Default values are set to 'admin' (for User Name value) and 'enhydra' (for Password value).

 Chapter 4: Tutorial: Building Enhydra applications

23

Getting Started with Enhydra

Then you get the main Tomcat and JOnAS Admin window:

Figure 4.4a Tomcat Admin main window

Figure 4.4b JOnAS Admin main window

 Chapter 4: Tutorial: Building Enhydra applications

24

Getting Started with Enhydra

Enhydra Admin application (url http://localhost:<communication_port>/EnhydraAdmin) is also
graphical tools based on the Struts framework and the JMX technology.

Note: Communication port value is one of Enhydra 6.x installation options. Default value is
set to 8080 for Enhydra and 9000 for Enhydra Enterprise installation.

Figure 4.5 Enhydra Admin

It is a graphical tool that enables modification of the operational attributes for Enhydra
(application or servlet) and cache administration.

Application administration is explained detailly in document “enhydra_app” in
<enhydra_root>/multiserver/webapps/enhydra-docs/enhydra directory, in html and pdf form.

Using XMLC

XMLC, the Extensible Markup Language Compiler, was introduced in the chapter 3,
“Overview”. It is a powerful tool that you can use to create applications that have a clean
separation between the user interface and the back-end programming logic.

Note In general, XMLC can work with XML pages, but for practical reasons, the remainder of

this chapter focuses on how it works with HTML pages.

XMLC parses a HTML file and creates a Java object that enables an application to change
the HTML file’s content at runtime, without regard for its formatting. The java objects that
XMLC creates have interfaces defined by the Document Object Model (DOM) standard from
the World Wide Web Consortium (W3C).

 Chapter 4: Tutorial: Building Enhydra applications

25

http://localhost:<communication_port>/EnhydraAdmin

Getting Started with Enhydra

Adding a hit counter

To get a feel for how XMLC works, you are going to extend your application to display a “hit
counter” that shows the number of users who have accessed it.

1 Find the files Welcome.html and WelcomePresentation.java in the presentation directory.

2 Add the following line of HTML to Welcome.html before the closing the last </CENTER>
tag:

<P>Number of hits on this page: no count

The ID attribute tells XMLC to generate an object corresponding to the tag, so that
it can replace the text “no count” at runtime.

3 Add the lines of code shown in bold in the following code sample, to
WelcomePresentation.java:

//Add the following li

static int hitCount=0; //All Welcome PO's will share this
ne

 public void run(HttpPresentationComms comms)
 throws HttpPresentationException, IOException {

 WelcomeHTML welcome;
 String now;

 welcome = (WelcomeHTML)comms.xmlcFactory.createWelcomeHTML.class);
 try {
 Dater dater =
 DaterFactory.createDater("simpleapp.business.DaterImpl");
 now = dater.getDate();
 }catch (Exception ex){ . . . }

 welcome.setTextTime(now);
//Increment the count and write into the html
//Add the following line
 welcome.setTextHitCount(String.valueOf(++hitCount));
 comms.response.writeDOM(welcome);
 }
}

4 Build the application by running enhydra-ant from the top-level simpleApp directory and

then restart Enhydra. To do this, enter the following commands in the shell window (UNIX)
or in command window (WINDOWS):

1. UNIX:
cd /myapps/simpleApp
enhydra-ant
cd application
cd bin
./start-enhydra

2. WINDOWS:
cd /myapps/simpleApp
enhydra-ant
cd application
cd bin
start-enhydra

Building the application with enhydra-ant runs XMLC on all HTML files in the application, in

 Chapter 4: Tutorial: Building Enhydra applications

26

Getting Started with Enhydra

this case, just Welcome.html.

5 Test the application by loading http://localhost:8080/simpleApp
(http://localhost:9000/simpleApp) in your browser.

Note: Communication port value is one of Enhydra 6.x installation options. Default value is
set to 8080 for Enhydra and 9000 for Enhydra Enterprise installation.

The browser will display the Welcome page for the simpleApp application. The Welcome
page should now have a hit counter beneath the redirect link, as shown in Figure 4.6.

Figure 4.6 Browser displaying the simpleApp Welcome page with a hit counter

The page now displays the number of times it has been accessed.

6 Reload the page several times to verify that it works correctly.

The count should increment each time you access the application.

The application is doing two things:

• Storing the hit count in hitCount, a static property of the Welcome presentation object

• Writing the hit count to the Web page with the setTextHitCount() method

Recall that the PresentationManager instantiates a presentation object for each request. So,
the WelcomePresentation class is instantiated once per browser request. Because hitCount is
a static property, it is shared by all WelcomePresentation objects and its value gets
incremented by each request.

 Chapter 4: Tutorial: Building Enhydra applications

27

http://localhost:8080/simpleApp
http://localhost:9000/simpleApp

Getting Started with Enhydra

In the same way that it added a getElementTime() method for the tag,
XMLC creates a setTextHitCount() method for the tag. The
application then uses the setTextHitCount() method to write the value of hitCount into the
page, within the corresponding tag.

Note XMLC creates the WelcomeHTML class, but by default it deletes the java source file.

Understanding the Document Object Model

HTML documents have a hierarchical or tree-like structure that can be modeled in an object-
oriented language like java. The Worldwide Web Consortium (W3C) standard for the
XML/HTML object model is called the Document Object Model (DOM).

Enhydra applications use the DOM to manipulate HTML content at runtime. For example,
consider the following HTML:

<TABLE>
 <TR>
 <TD ID="cellOne">Shady Grove</TD>
 <TD ID="cellTwo">Aeolian</TD>
 </TR>
 <TR>
 <TD ID="cellThree">Over the River, Charlie</TD>
 <TD ID="cellFour">Dorian</TD>
 </TR>
</TABLE>

This HTML snippet has a <TABLE> tag that contains <TR> tags, which in turn contain <TD>
tags containing text (or data). This defines a tree-like hierarchy, as illustrated in Figure 4.7.

Figure 4.7 DOM tree of HTML

Each box or ellipse in this figure is a node in the tree. The node above another node in the
hierarchy is called its parent. The nodes below the parent are called its children.

Some nodes (like HTML tags) have attributes (for example, a table cell has a background
color attribute). W3C defines packages and interfaces that mirror the object hierarchy of
nodes in an HTML document. In addition, XMLC includes an API for changing attribute
values.

For example, use code like the following to set the color of one of the table cells:

HTMLTableCellElement cellOne = theDocument.getElementCellOne();
cellOne.setBgColor("red");

In this example, the class HTMLTableElement and the method setBgColor() come from the

 Chapter 4: Tutorial: Building Enhydra applications

28

Getting Started with Enhydra

W3C packages; getElementCellOne() comes from XMLC.

This code illustrates one important thing that XMLC does - create methods to access nodes in
the DOM. XMLC generates the getElementxxx() methods that return objects corresponding to
tags with ID attributes. You could change the color of a table cell with the W3C classes alone,
but your code would have to traverse the DOM tree, so it would be more laborious.

SPAN and DIV tags

 and <DIV> are HTML tags that you may not be familiar with. They are typically used
to apply styles using cascading style sheets (CSS). Outside of that, they are largely ignored
by browsers. However, XMLC makes extensive use of them.

• Use the tag to enclose a block of text that you want to replace at runtime.

In general, a tag can enclose any text or inline tag. An inline tag is any tag that
does not cause a line break in the layout; for example, <A> (anchor) or (bold) tags.

Note Do not use tags to enclose other tags, such as <TABLE> or <P>
(paragraph).

• Use the <DIV> tag to enclose block tags, such as <TABLE>, that cause a line break in the

HTML layout.

Using XMLC from the command line

Previously, you ran XMLC implicitly when you built the project with enhydra-ant.

The basic command-line syntax of XMLC is:

xmlc -options file.html

where options is a set of command-line options, and file is the name of the input file.

There are several dozen command-line options. In this section, we introduce three
immediately useful ones: -dump, -class, and -keep.

-dump option

The -dump option makes XMLC display the DOM tree for a document. This is primarily useful
as a learning tool; once you are familiar with XMLC, you will rarely use it.

1 Create a new file called Simple.html in the simpleApp/presentation/resource directory.

2 Add the following HTML to it:

<HTML>
 <HEAD>
 <TITLE>Simple Enhydra Page</TITLE>
 </HEAD>
 <BODY>
 <H1 ID="MyHeading">Ollie Says</H1>
 The current time is 00:00:00.
 </BODY>
</HTML>

 Chapter 4: Tutorial: Building Enhydra applications

29

Getting Started with Enhydra

3 Change to the resource directory and enter this command:

xmlc -dump Simple.html

XMLC displays the following in the shell window (UNIX) or in command window
(WINDOWS):

DOM hierarchy:
 LazyHTMLDocument%[T]:
 HTMLHtmlElementImpl: HTML
 HTMLHeadElementImpl: HEAD
 HTMLTitleElementImpl: TITLE
 LazyText: Simple Enhydra Page
 HTMLBodyElementImpl: BODY
 HTMLHeadingElementImpl: H1: id="MyHeading"
 LazyText: Ollie Says
 LazyText: The current time is
 LazyHTMLElement: SPAN: id="time"
 LazyText: 00:00:00
 LazyText: .

Each line shows the DOM object name followed by a colon and then the corresponding HTML
tag. If the tag has attributes, they are listed following the tag in name/value pairs. For
instance, HTMLHeadingElement is the DOM name for the <H1> tag, and it has an ID attribute
with the value “MyHeading”.

The level of indenting shows the object relationships. So, for example, you can see that the
first HTMLHeadingElement is the child of HTMLBodyElement.

-class and -keep options

By default, XMLC creates a class with the same name as the HTML file. So, for Simple.html,
it would create Simple.java. To create a class with a different name, use the -class option to
specify a name for the class that XMLC creates.

By default, XMLC deletes the java source file that it creates, leaving only the compiled class
file. The source file is useful primarily for understanding how XMLC and the DOM API works.
Use the -keep option to keep the java source file.

1 To create a java object named SimpleHTML for the HTML file Simple.html and to keep the

java source file, enter this command:

xmlc -keep -class simpleapp.presentation.SimpleHTML Simple.html

XMLC generates two files: SimpleHTML.java and SimpleHTML.class.

2 Open SimpleHTML.java and look at the generated code.

Within the file, you will find two methods, getElementMyHeading() and getElementTime().
XMLC recognized the ID attributes of the heading and tags in Simple.html and
generated these methods. Look through the file to get an idea of the object that XMLC
creates for a very simple document.

3 Once you are done looking at SimpleHTML.java and SimpleHTML.class, delete them.

You are done exploring how XMLC works for now, but keep your Simple.html file because
you are going to use it later in this tutorial.

 Chapter 4: Tutorial: Building Enhydra applications

30

Getting Started with Enhydra

Enhydra programming

This section covers more topics essential to Enhydra application development:

• Maintaining session state

• Adding a new page to the application

• Populating a table

• Adding a business object

Maintaining session state

Because HTTP is a stateless protocol, an application that needs to keep user-specific
information across multiple requests must perform session maintenance. For an overview of
how Enhydra performs session maintenance, see “Session Manager” in the chapter 3.

Think of the user’s session as a container in which the application can store any information
associated with a particular user. The class that you use as the container is:

com.lutris.appserver.server.session.SessionData

It is similar to a hash table in that it has these methods:

• set() method to which you pass a string key and an object to store

• get() method which returns the object, given the string key

Enhydra matches a user to a particular SessionData object with a session key, a very (24
character) long randomly-generated string. When the Enhydra Session Manager first creates
a SessionData object for a user, it generates a session key and stores it in its internal data
structure. Enhydra also gives the session key to the client, either passed as a cookie or
appended to the URL. The next time the client makes a request, the Session Manager uses
the key to find that user’s SessionData object.

Generally, you don’t need to worry about the session key - Enhydra handles all those details
for you “under the hood.” You do, however, need to keep track of keyword strings that you
use to get and set each object you want to save to the session.

To help you understand session maintenance, you are going to enhance your application so
that the Welcome page displays the number of times a particular user has accessed it, in
addition to the total “hits” on the page. For fun, you’ll also display the session key on the
page.

1 Add these four lines of HTML just before the closing the last </CENTER> tag in
Welcome.html:

<P>Number of hits from you:
no count
<P>Session identifier:
no count

2 Now add this import statement to WelcomePresentation.java:

import com.lutris.util.*;

 Chapter 4: Tutorial: Building Enhydra applications

31

Getting Started with Enhydra

3 In WelcomePresentation.java, add this member property to the WelcomePresentation class

(just after hitCount):

final String hits = "HITS";

The string “HITS” is the keyword that the application uses to save and recall the hit count
information.

4 Add the following code to the run() method, placing the line beneath the line you added with
the setTextHitCount method.

You can find this code in the SessionMaint.java file located in the

<enhydra_root>/multiserver/webapps/enhydra-docs/getting_started/samples
directory.

try {
Integer personalHits =

(Integer)comms.session.getSessionData().get(hits);
if(personalHits == null) {
personalHits = new Integer(1);

}
else {
personalHits = new Integer(personalHits.intValue() + 1);

}
comms.session.getSessionData().set(hits, personalHits);
// Save personalHits to the user’s session.

welcome.setTextPersonalHitCount(personalHits.toString());
welcome.setTextSessionID(comms.session.getSessionKey());
// Shows the session key value used for session tracking.

} catch (KeywordValueException e) {
comms.response.writeHTML("Session access error" + e.getMessage());

}

This code begins by calling getSessionData().get(hits) to get the value stored for the
keyword string “HITS.” Because SessionData stores only generic java.lang.Objects, you
have to typecast it to Integer. If the object has not been previously stored in the session, the
code creates a new Integer of value 1 (one). If the object exists, the value is incremented.

The code then saves the Integer object back into the session with setSessionData().set(hits,
personalHits) and writes the value into the Web page with getSessionKey(). Normally, you
would not need to deal with the session key, but for curiosity’s sake this example shows you
how to display it.

5 Rebuild and start the application, and access the page with your browser. The Welcome
page displays the total number of hits, as well as the number of hits from a particular client, as
well as the client’s unique Session Identifier, as shown in Figure 4.8.

 Chapter 4: Tutorial: Building Enhydra applications

32

Getting Started with Enhydra

Figure 4.8 Browser displaying the simpleApp Welcome page with a Session Identifier

Because you are running the application on your Localhost server, it is not accessible to any
other clients, so these numbers will always be the same. However, if the application was run
on a “real” server, you would see different numbers depending on how many times you had
accessed the page versus the total number of hits. Notice also that the session ID string
always stays the same.

Adding a new page to the application

Next, you are going to add a new page (HTML file and presentation object) to your
application. You’re going to use the little HTML file you created previously, Simple.html. In
addition to learning how to add a page, you’re also going to play around with the DOM a little
bit to become more familiar with it.

To create a new presentation object:

1 Copy the file WelcomePresentation.java and call it SimplePresentation.java.

2 Open SimplePresentation.java and change the name of the class from

WelcomePresentation to SimplePresentation.

3 Remove all the session-related code.

4 Change all the occurrences of WelcomeHTML to SimpleHTML.

5 Change the welcome identifier to simple.

Now you have “stripped down” presentation object. The run() method should look like this:

 Chapter 4: Tutorial: Building Enhydra applications

33

Getting Started with Enhydra

public void run(HttpPresentationComms comms)
 throws HttpPresentationException, IOException {

 SimpleHTML simple;
 String now;

 simple = (SimpleHTML)comms.xmlcFactory.create(SimpleHTML.class);
 try {
 Dater dater =

DaterFactory.createDater("simpleapp.business.DaterImpl");
 now = dater.getDate();
 } catch (Exception ex){ . . . }

 simple.setTextTime(now);
 comms.response.writeDOM(simple);
}

6 Add these statements at the top of the file, after the other import statements:

import org.w3c.dom.*;
import org.w3c.dom.html.*;

7 Add the following lines just before the last statement in the run() method:

HTMLHeadingElement heading = simple.getElementMyHeading();
heading.setAttribute("align", "center");
Text heading_text = (Text) heading.getFirstChild();
heading_text.setData("Mr. Ollie Otter says:");

This code does the following:

• Gets the HTMLHeadingElement object named MyHeading from the DOM

• Sets its ALIGN attribute to CENTER to center the heading on the page

• Gets the child object of the heading (a Text object)

• Sets a new value for the text string, “Mr. Ollie Otter says:”

You could have done the same thing by putting a tag around the text in the
heading. XMLC would then have generated a setTextMethod() that you could have called in
the code. This example, however, illustrates how to do it with the DOM.

Note This code performs some low-level DOM manipulation that you should normally not do in
your application because it violates the separation of presentation and business logic. It is
only presented here to help explain the DOM.

The convention is to create fooHTML class for a file foo.html.

8 Save all files and run enhydra-ant in the applications root directory to build the package.

To create a link from the Welcome page to your
new page:

1 Add the following HTML at the bottom of Welcome.html:

Go to Simple Page

 Chapter 4: Tutorial: Building Enhydra applications

34

Getting Started with Enhydra

2 If you have not already done so, stop your servlet container by pressing Ctrl-C in the shell

window (UNIX), or in command window (WINDOWS) or by starting stop-enhydra batch/shell
script file, build the application from the top level and start Enhydra:

1. UNIX:
cd /multiserver/enhydra/myapps/simpleApp
./enhydra-ant
cd application
cd bin
./start-enhydra

2. WINDOWS:
cd /multiserver/enhydra/myapps/simpleApp
enhydra-ant
cd application
cd bin
start-enhydra

3 Now access the application from your browser, as you did before.

4 Click the Go to Simple Page link to view the SimplePresentation PO.

The Simple presentation object has only a heading and the current time. You’re going to
make this page more interesting in the next section.

Figure 4.9 Browser displaying the simpleApp Simple presentation object

Populating a table

Another common task in Web application development is populating an HTML table with
dynamic data. This section discusses populating a table using a static String array as the data
source. In a later section, you will modify the code to get data from a database.

Follow these steps to populate a table:

• Create the table in HTML

• Programmatically populate the table

• Rebuild and run the application

 Chapter 4: Tutorial: Building Enhydra applications

35

Getting Started with Enhydra

Create the table in HTML

In the Simple.html file, create an HTML table with a template row and an ID attribute.

1 Edit the file Simple.html in your simpleApp project.

2 Add the HTML shown below just before the end of the <BODY> tag.

Note If you don’t want to type in all this HTML, you can copy and paste it from

<enhydra_root>/multiserver/webapps/enhydra-docs/enhydra/getting_started/samples/TableCode.html
file.

<H2 align=center>Disc List</H2>
<TABLE border=3>
 <TR>
 <TH>Artist</TH> <TH>Title</TH> <TH>Genre</TH>
 <TH>I Like This Disc</TH>
 </TR>
 <TR id=TemplateRow>
 <TD>Van Halen</TD>
 <TD>Fair Warning</TD>
 <TD>Good Stuff</TD>
 <TD>Yes</TD>
 </TR>
</TABLE>

This HTML contains a table with a single “template” row (in the second <TR> tag).

Notice that both this row and the tags enclosing the cell contents have ID attributes.
This is called a template row, because it is used as a model from which you construct further
rows of the table.

Programmatically populate the table

To programmatically populate the table, edit the presentation object corresponding to
Simple.html. In the following steps, you will add code to Simple.java to iteratively replace the
HTML table elements with text from an array of strings.

1 Copy the file:
<enhydra_root>/multiserver/webapps/enhydra-docs/getting_started/samples/TableCode.java
into your application’s presentation directory and rename it SimplePresentation.java.

Note If you like, you can save your old SimplePresentation.java to SimplePresentation.sav for

future reference.

2 Now, look at your new SimplePresentation.java.

In addition to the standard features of a presentation object, the first thing you’ll notice in this
code is a member property that is an array of strings representing the content the
application will use to populate the table. This array takes the place of a database result set
for this example:

String[][] discList =
{ { "Felonious Monk Fish", "Deep Sea Blues", "Jazz", "Yes" },
{ "Funky Urchin", "Lovely Spines", "Techno Pop", "Yes" },
{ "Stinky Pups", "Shark Attack", "Hardcore", "No" } };

The next new section of code gets the document objects for the table elements:

HTMLTableRowElement templateRow = simple.getElementTemplateRow();

 Chapter 4: Tutorial: Building Enhydra applications

36

Getting Started with Enhydra

HTMLElement artistCellTemplate = simple.getElementArtist();
HTMLElement titleCellTemplate = simple.getElementTitle();
HTMLElement genreCellTemplate = simple.getElementGenre();
HTMLElement likeThisDisc = simple.getElementLikeThisDisc();

The next section of code removes the ID attributes from these objects. The reason for this
is that the DOM requires each ID in the document to be unique. When you make a copy of
the table row, you would otherwise have duplicate IDs.

The removeAttribute() method removes the attribute with the specified name:

templateRow.removeAttribute("id");
artistCellTemplate.removeAttribute("id");
titleCellTemplate.removeAttribute("id");
genreCellTemplate.removeAttribute("id");
likeThisDisc.removeAttribute("id");

Then, a call to getParentNode() gets a reference to the table document object, which you’ll
be using later:

Node discTable = templateRow.getParentNode();

Next comes the heart of the code, a for loop that iterates through each “row” in the “result
set”, puts text in each cell in the table row, and then appends a copy (or clone) of the row to
the table:

for (int numDiscs = 0; numDiscs < discList.length; numDiscs++) {
simple.setTextArtist(discList[numDiscs][0]);
simple.setTextTitle(discList[numDiscs][1]);
simple.setTextGenre(discList[numDiscs][2]);
simple.setTextLikeThisDisc(discList[numDiscs][3]);
discTable.appendChild(templateRow.cloneNode(true));

}

That last statement is crucial: The cloneNode() method creates a copy of the Node object
that calls it; in this case, templateRow. The boolean argument true determines if it copies
only the node itself or the node and all its children, and their children, and so on. In this
example, the argument is true because you want to copy the row and its child nodes (the
table cells and the text inside them).

Finally, removeChild() removes the template row from the table. This ensures that the
“dummy data” in the template does not show up in the runtime page.

discTable.removeChild(templateRow);

Rebuild and run the application

Now rebuild the application and load the page in your browser.

1 If you have not already done so, stop your servlet container, and build the application from
the top level:

1. UNIX:
cd /enhydra/myapps/simpleApp
./enhydra-ant
cd application
cd bin
./start-enhydra

 Chapter 4: Tutorial: Building Enhydra applications

37

Getting Started with Enhydra

2. WINDOWS:
cd /enhydra/myapps/simpleApp
enhydra-ant
cd application
cd bin
start-enhydra

2 Now access the application from your browser, as you did before.

3 Click the Go to Simple Page link to view the new SimplePresentation PO.

The Simple presentation object now includes a Disc List table, as shown in Figure 4.10.

Figure 4.10 Simple PO with a programmatically populated Disc List table

Adding a business object

So far, your application has three objects: the SimpleApp application object, and two
presentation objects, Welcome and Simple. Now, you are going to add a business object that
you will use in the following sections. This will not change what the application displays.

The business object represents a list of discs. This is not terribly useful, but it does illustrate a
basic role of business objects as you proceed.

To add a business object:

Since version 6.x presentation and business layer don’t communicate directly, but though
specification layer. The reason for this separation is providing possibility of separate
development of presentation and business layer. Due to this new logic, to add a new business
object, three classes should be created. Firstly, in specification layer should be created
interface that business object will implement and that will be used in the presentation layer,
and the factory class that will create the business object. Secondly, the implementation of the
interface should be created in business layer. This implementation presents the business

 Chapter 4: Tutorial: Building Enhydra applications

38

Getting Started with Enhydra

object. In the following text is detailly explained their creation.

1 Create new file called SimpleListOfDiscs.java in

simpleApp/specification/src/simpleapp/spec directory. This file will be the mentioned
interface. Since the interface is in specification layer, it will belong to package:

package simpleapp.spec;

This interface has only one method (it will be used in presentation layer):

public String[][] getDiscList();

2 The complete interface can be found in directory

<enhydra_root>/multiserver/webapps/enhydra-docs/getting_started/samples and copied to
simpleApp/specification/src/simpleapp/spec directory. It looks like:

package simpleapp.spec;

public interface SimpleListOfDiscs {

 public String[][] getDiscList();

}

3 Create new factory class called SimpleListOfDiscsFactory.java in directory

simpleApp/specification/src/simpleapp/spec directory. This class also belongs to package:

package simpleapp.spec;

This class has one constructor and only one method which creates list od discs:

public static SimpleListOfDiscs createSimpleListOfDiscs(String

fullClassName)

This method has one argument – fullClassName. It contains the full class name of the
implementation (business object) that will be created. The method returns this object as it’s
interface type. This is the way how the separation of presentation and business layers is
done.

4 The complete class can be found in directory

<enhydra_root>/multiserver/webapps/enhydra-docs/getting_started/samples and copied to
simpleApp/specification/src/simpleapp/spec directory. It looks like:

package simpleapp.spec;

public class SimpleListOfDiscsFactory {

 private SimpleListOfDiscsFactory() { }

 public static SimpleListOfDiscs createSimpleListOfDiscs(String

 fullClassName) {
 SimpleListOfDiscs result = null;
 Class objectClass = null;
 try {
 // Create the value object
 objectClass = Class.forName(fullClassName);
 result = (SimpleListOfDiscs) objectClass.newInstance();
 } catch (Exception ex) {
 System.out.println("Error on creating the object" + ex);
 }
 return result;
 }
}

 Chapter 4: Tutorial: Building Enhydra applications

39

Getting Started with Enhydra

5 Create new file called SimpleListOfDiscsImpl.java in the business directory, in

simpleApp/business/src/simpleapp/business. It represents the business object that
implements the interface from the specification layer. Because SimpleListOfDiscsImpl.java
is in your application’s business package, the first line in the file will be:

package simpleapp.business;

The class implements the interfase SimpleListOfDiscs that must be imported:

import simpleapp.spec.SimpleListOfDiscs;

Add the following lines (cut and paste the array initializer from the Simple class, but be
sure to add the underscore (_) in front of the identifier discList):

String[][] discList =

 { { "Felonious Monk Fish", "Deep Sea Blues", "Jazz", "Yes" },
 { "Funky Urchin", "Lovely Spines", "Techno Pop", "Yes" },
 { "Stinky Pups", "Shark Attack", "Hardcore", "No" } };

The method has default constructor and only one method that returns the variable
_discList:

public String[][] getDiscList() {
 return _discList;
}

6 The complete file can be found in directory <enhydra_root>/multiserver/webapps/enhydra-
docs/getting_started/samples and copied to simpleApp/business/src/simpleapp/business
directory. It looks like:

package simpleapp.business;
import simpleapp.spec.SimpleListOfDiscs;

 public class SimpleListOfDiscsImpl implements SimpleListOfDiscs{
 String[][] _discList =
 { { "Felonious Monk Fish", "Deep Sea Blues", "Jazz", "Yes" },
 { "Funky Urchin", "Lovely Spines", "Techno Pop", "Yes" },
 { "Stinky Pups", "Shark Attack", "Hardcore", "No" } };

 public SimpleListOfDiscsImpl() {}

 public String[][] getDiscList() {
 return _discList;
 }
}

7 When all these classes are created, go back in the presentation directory, and edit
SimplePresentation.java as follows:

1 Import new classes (interface and factory class):

import simpleapp.spec.SimpleListOfDiscsFactory;
import simpleapp.spec.SimpleListOfDiscs;

2 Add the following lines in run method to create an instance of your new business object

(instead of the part that was populating discList variable with the string), and call it
getDiscList() method. These lines take the place of the static array initializer in the
previous section.

 Chapter 4: Tutorial: Building Enhydra applications

40

Getting Started with Enhydra

String[][] discList;
 try {
 SimpleListOfDiscs sdl = SimpleListOfDiscsFactory.

createSimpleListOfDiscs(
"simpleapp.business.SimpleListOfDiscsImpl");

 discList = sdl.getDiscList();
 } catch (Exception ex){. . . }

8 The complete class can be found in directory
<enhydra_root>/multiserver/webapps/enhydra-docs/getting_started/samples and copied to
simpleApp/presentation/src/simpleapp/presentation directory.

10 Rebuild and test your application.

You won’t see anything different, but you have extracted some functionality out of the
presentation object into the new business object. This will come in handy in an upcoming
section, when you replace the static array with a real database query. In that case, you
won’t have to change your presentation class because the business object provides a buffer
between it and the data layer.

Using DODS

The Data Object Design Studio (DODS), is a tool which, for the given doml file, can generate
SQL script files for creating tables (for each table separately and one cumulative file for
creating all tables), one file for deleting all tables, and/or java code for data objects described
in the given doml file. DODS also has possibility to compile generated java classes and to
parse SQL files (to split cumulative SQL into more separated SQL files using SQLSplitter
tool).

DODS is one part of Enhydra 6.x. If Enhydra 6.x is installed, so is DODS. In this case, DODS
home directory <dods_home> is: <enhydra_home>/multiserver/enhydra/dods.

Since 5.1 version, DODS has become independent from Enhydra, which means that can be
used without it. In this case, DODS home directory <dods_home> is the directory in which
independent DODS is installed.

If Enhydra is installed, DODS is included within, so nothing more needs to be done.

Note: DODS have methods: getTableName(), getHandle(), getVersion(), getNewVersion(),
getOId(), getVersionColumnName(), getOIdColumnName(), getOriginDatabase(),
getPrimaryKeyName() and the same set methods. Due to a possible method name collisions,
please don’t call your columns of tables by names: tableName, handle, version,
newVersion, oId, versionColumnName, oIdColumnName, originDatabase,
primaryKeyName. These DODS methods are deprecated and will be removed in the future
DODS version. New methods have syntax get_xxx() and set_xxx(…), so, the columns
names should not start with “_” sign.

Also, DODS has method getConfigurationAdministration() that is not deprecated, so,
column name configurationAdministration also must not be used.

DODS source building

If Enhydra 6.x is installed, DODS is included within, so nothing more needs to be done.

To build independent DODS, it is necessary to do the following actions:

• Unix stile slashes (/) must always be used instead of Dos stile backslashes (\).

 Chapter 4: Tutorial: Building Enhydra applications

41

Getting Started with Enhydra

• Start Command Promt and go to <dods_source> directory.

• To configure DODS you can call configure batch file with following options:

Configure [-version version_number] [-release release_tag]
[-jdkhome jdk_home_dir] [-debug on/off]
[-optimize on/off] [-instdir installdir]

 where:

o version sets version_number.
o release sets release_tag.
o jdkhome sets java jdk_home_dir. Defaults: Path to system registred (if eny) jdk.
o debug compiles source with debug information (on/off). Default: off .
o optimize sets whether the source should be compiled with optimization or not

(on/off). Default: on.
o instdir the path to your installation directory (see 'Make Options' --> make install)

Configure without parameters sets configuration parameters to default values.

• To build DODS start Command Promt and go to <dods_source> directory.
DODS building is completely Ant based. You can give one of the following options to
the make command:

o make - builds and configures DODS with javadoc and docbook documentation

o make buildAll - builds and configures DODS with javadoc and docbook
documentation

o make buildOptimize - builds, optimizes and configures DODS with javadoc and
docbook documentation

o make buildNoDoc - builds and configures DODS without documentation building

o make install - copies and configures DODS without source compiling

o make distributions - builds and configures DODS with javadoc and docbook
documentation and creates distribution; nsis 2.0b should be included in DODS if
doesn't exist (files makensis.exe and makensisw.exe in
Dods/Install/Windows/install directory)

o make optimizeDistributions - builds and configures DODS with javadoc and
docbook documentation and creates optimized distribution; nsis 2.0b should be
included in DODS if doesn't exist (files makensis.exe and makensisw.exe in
Dods/Install/Windows/install directory)

o make clean - removes the output folder (in order to start a new compilation from
the scratch)

o make help - displays all options

 where <dods_home> is directory in which DODS is built.

Note After DODS building, you MUST add <dods_home>/bin directory to the begining of the

system PATH.

 Chapter 4: Tutorial: Building Enhydra applications

42

Getting Started with Enhydra

DOML file syntax

This section describes the syntax of DOML files, which are used by the Data Object Design
Studio (DODS) to generate data access code for Enhydra applications.

Structure

The hierarchy of tags in a DOML file is:

<doml>

<author/>
<projectname/>
<database>

<package>
<package>

<package>
<table>

<column>
<type/>
<initialValue/>

</column>
<column>

<type/>
</column>
<index>

<indexColumn/>
</index>

</table>
</package>
<package>

<table>
<column>

<type/>
</column>
<column>

<javadoc/>
<referenceObject/>
<type/>

</column>
<column>

<javadoc/>
<type/>

</column>
</table>

</package>
</package>

</package>
</database>

</doml>

Tag reference

This section contains an alphabetical reference of all the tags allowed in DOML files. Each
entry corresponds to an XML tag, and contains the subsections:

• Content - tags that the tag can contain.
• Attributes - attributes the tag can have.
• Context - tags within which the tag can appear, in other words, the tags that can

contain it.

 Chapter 4: Tutorial: Building Enhydra applications

43

Getting Started with Enhydra

So, for a tag <sampleTag>, whose attributes are attribute1, attribute2, and so on,
whose context is <contextTag>, and which can contain contentTag, its general syntax
would look like:

<contextTag>
 <sampleTag attribute1 attribute2 ...>
 <contentTag/>
 </sampleTag>
</contextTag>

<author>

Author of doml project.

Content None

Attributes None

Context <doml>

<column>

<column> describes a column in a database table.

Content <javadoc>

<referenceObject>

<type>

<initialValue>

Attributes id - The name of the column in the database table.

usedForQuery - Specifies whether the values of the column will be used for
queries. The possible values for usedForQuery are: true and false.

isConstant- Specifies whether the column contains a constant value. The
possible values for isConstant are: true and false.

generateSecure - Specifies whether secure methods (methods with check of
Users access) should be generated for the column. The possible values for
generateSecure are: true and false. The default value is false.

generateInsecure - Specifies whether insecure methods (methods without
check of Users access) should be generated for the column. The possible values
for generateInsecure are: true and false. The default value is true.

Context <table>

 Chapter 4: Tutorial: Building Enhydra applications

44

Getting Started with Enhydra

<database>

Contains the package hierarchy, and specifies the database.

Content <package>

Attributes database - The database attribute specifies the database vendor. The valid
types are as follows:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Standard - generated SQL code will conform to standard JDBC SQL. This is
the default value.

Oracle - DODS will generate SQL optimized for Oracle databases.

Informix - DODS will generate SQL optimized for Informix databases.

MySQL - DODS will generate SQL optimized for MySQL databases.

MSQL - DODS will generate SQL optimized for MSQL databases.

Sybase - DODS will generate SQL optimized for Sybase databases.

PostgreSQL - DODS will generate SQL optimized for PostgreSQL
databases.

DB2 - DODS will generate SQL optimized for DB2 databases.

QED - DODS will generate SQL optimized for QED databases.

InstantDB - DODS will generate SQL optimized for InstantDB databases.

HypersonicSQL- DODS will generate SQL optimized for HypersonicSQL
databases.

MckoiSQL - DODS will generate SQL optimized for MckoiSQL

templateset - Template set that will be used for java code generation. The
possible values for templateset are: standard and <any user defined template>.
Default value is "standard".

generateSecure - Specifies whether secure methods (methods with check of
Users access) should be generated for the database. The possible values for
generateSecure are: true and false. The default value is false.

generateInsecure - Specifies whether insecure methods (methods without
check of Users access) should be generated for the database. The possible
values for generateInsecure are: true and false. The default value is true.

dirtyDOs – This parameter is attribute of <database> and <table> tag in DOML
file. Optionally, "dirty" methods (methods that can create DOs in memory without
transactions) can be marked as "deprecated" or even not be generated at all. If
set to "Compatible", "dirty" methods will be generated (as before), if set to
"Deprecate", "dirty" methods will be generated as deprecated, and if set to
"Omit", "dirty" methods will not be generated at all. If parameter is set on <table>
tag they override default value and value on <database> tag.

massDeletes - When turned allow you to build data layer including classes
xxxDelete. These class provide you QueryBuilder speed in massive update
operations, while maintaining caches (both global and transactions) valid.

 Chapter 4: Tutorial: Building Enhydra applications

45

Getting Started with Enhydra

massUpdates When turned allow you to build data layer including classes
xxxUpdate. These class provide you QueryBuilder speed in massive update
operations, while maintaining caches (both global and transactions) valid..

Context <doml>

<doml>

Root element of DOML files. This tag contains a database hierarchy that contains all the
packages.

Content <author>

<projectname>

<database>

Attributes None

Context None

<index>

<index> is used to specify index columns.

Content <indexColumn>

Attributes id - The name of the index constraint in the database table.

unique - Specifies whether the index constraint is unique. The possible values
for unique are: true and false. The default value is false.

clustered - Specifies whether the index constraint is clustered. The possible
values for clustered are: true and false. The default value is false.

Context <table>

<indexColumn>

<indexColumn> is used to specify each index column in the constraint index.

Content None

Attributes id - The name of the column in the database table.

Context <index>

 Chapter 4: Tutorial: Building Enhydra applications

46

Getting Started with Enhydra

<initialValue>

<initialValue>is used to specify a default initial value for the column.

Content None

Attributes None

Context <column>

<javadoc>

The <javadoc> tag contains the text for Javadoc entries for the column.

Content None

Attributes None

Context <column>

<package>

Each package can contain a sub-package or a table structure.

Content <package>

<table>

Attributes id - The name of the package. The format for the name includes the parent
package’s id value. For example, if I had a package myPackage, and a sub-
package of it called mySubPackage, mySubPackage’s id value would be
myPackage.mySubPackage.

Context <database>

<projectname>

Contains information about project.

Content None

Attributes None

Context <doml>

 Chapter 4: Tutorial: Building Enhydra applications

47

Getting Started with Enhydra

<referenceObject>

If the column is a reference to another table, <referenceObject> specifies the table.

Content None

Attributes constraint - Specifies whether the specified table row must exist. The possible
values for constraint are: true and false.

reference - Specifies the ID of the referenced table.

Context <column>

<table>

<table> describes a table in a database.

Content <column>

<index>

Attributes id - Similar to the id attribute in <package>, <table>’s id contains the value of the
table name located in the package. For example, if I had a package myPackage,
a subpackage mySubPackage, and a table myTable, the id value is
myPackage.mySubPackage.myTable.

dbTableName - The actual SQL table name. By default this is the same as the
id value, minus the package information. For example,
myPackage.mySubPackage.myTable’s dbTableName is myTable.

isView - This attribute is not currently used by DODS.

generateSecure - Specifies whether secure methods (methods with check of
Users access) should be generated for the table. The possible values for
generateSecure are: true and false. The default value is false.

generateInsecure - Specifies whether insecure methods (methods without
check of Users access) should be generated for the table. The possible values
for generateInsecure are: true and false. The default value is true.

massDeletes - When turned allow you to build data layer including classes
xxxDelete. These class provide you QueryBuilder speed in massive update
operations, while maintaining caches (both global and transactions) valid.

massUpdates - When turned allow you to build data layer including classes
xxxUpdate. These class provide you QueryBuilder speed in massive update
operations, while maintaining caches (both global and transactions) valid.

multidb - Specifies whether code for multi database support should be
generated. The possible values for multidb are: true and false. The default value
is false.

dirtyDOs – This parameter is attribute of <database> and <table> tag in DOML
file. Optionally, "dirty" methods (methods that can create DOs in memory without
transactions) can be marked as "deprecated" or even not be generated at all. If
set to "Compatible", "dirty" methods will be generated (as before), if set to
"Deprecate", "dirty" methods will be generated as deprecated, and if set to

 Chapter 4: Tutorial: Building Enhydra applications

48

Getting Started with Enhydra

"Omit", "dirty" methods will not be generated at all. If parameter is set on <table>
tag they override default value and value on <database> tag.

Context <package>

<type>

<type> dictates the form of the data stored in the column. If no <type> is specified, the column
contains all default values.

Content None

Attributes size - Specifies the size of data types that are commonly measured in width, like
VARCHAR. Size must be an integer.

canBeNull - Specifies whether the column can contain null values. The possible
values for canBeNull are: true and false.

dbType - Specifies the internal SQL data type the database will use for this
column. The default value of dbType is VARCHAR.

javaType - Specifies the Java data type returned by the DO to the user when
querying this attribute of the DO. The default value of javaType is String .

Context <column>

 Chapter 4: Tutorial: Building Enhydra applications

49

Getting Started with Enhydra

Sample DOML file

The following snippet shows content of a DOML file, discRack.doml, which creates tables
containing data person and its discs. This file can be found in discRack example, in
<dods_home>/examples/discrack directory.

<?xml version="1.0" encoding="UTF-8"?>
<doml>
 <database database="Standard">
 <package id="discRack">
 <package id="discRack.data">
 <package id="discRack.data.person">
 <table id="discRack.data.person.Person" dbTableName="person">
 <column id="login" usedForQuery="true">
 <type dbType="VARCHAR" javaType="String"/>
 </column>
 <column id="password" usedForQuery="true" generateSecure="true">
 <type dbType="VARCHAR" javaType="String"/>
 </column>
 <column id="firstname" usedForQuery="true">
 <type dbType="VARCHAR" javaType="String"/>
 </column>
 <column id="lastname" usedForQuery="true">
 <type dbType="VARCHAR" javaType="String"/>
 </column>
 </table>
 </package>
 <package id="discRack.data.disc">
 <table id="discRack.data.disc.Disc">
 <column id="title" usedForQuery="true">
 <type dbType="VARCHAR" javaType="String"/>
 </column>
 <column id="artist" usedForQuery="true">
 <type dbType="VARCHAR" javaType="String"/>
 </column>
 <column id="genre" usedForQuery="true">
 <type dbType="VARCHAR" javaType="String"/>
 </column>
 <column id="owner" usedForQuery="true">
 <javadoc>/**
 *Attribute describing a link to the owner of this disc.
 */</javadoc>
 <referenceObject constraint="true"
reference="discRack.data.person.Person"/>
 <type dbType="none" javaType="discRack.data.person.PersonDO"/>
 </column>
 <column id="isLiked" usedForQuery="true">
 <javadoc>/**
 * A flag indicating whether the user likes this disc
 */</javadoc>
 <type dbType="BIT" javaType="boolean"/>
 </column>
 </table>
 </package>
 </package>
 </package>
 </database>
</doml>

 Chapter 4: Tutorial: Building Enhydra applications

50

Getting Started with Enhydra

Sample of part of DOML file for using indexes

The following snippet shows part of a DOML file, Computers.doml (creates tables containing
data about computers and their parts).

<table id="firm.computers.hardware.parts.motherboard" dbTableName="Motherboard">
 <column id="manufacturrer" generateSecure="false" generateInsecure="false">
 <type canBeNull="false" dbType="CHAR" javaType="String" size="40"/>
 </column>
 <column id="type" generateSecure="false">
 <type dbType="CHAR" javaType="String" size="40"/>
 </column>
 <column id="chipSet" generateSecure="false">
 <type dbType="CHAR" javaType="String" size="40"/>
 </column>
 <column id="compName" generateSecure="false">
 <referenceObject constraint="true" reference="firm.comp.hardware.Computers" />
 <type dbType="none" javaType="firm.computers.hardware.ComputersDO"/>
 </column>
 <column id="integratedGraphicAdapter">
 <type dbType="BIT" javaType="boolean"/>
 </column>
 <column id="integratedModem" >
 <type dbType="BIT" javaType="boolean"/>
 </column>
 <column id="integratedNetworkKard">
 <type dbType="BIT" javaType="boolean"/>
 </column>
 <column id="integratedMusicKard">
 <type dbType="BIT" javaType="boolean"/>
 </column>
<!-- Each computer has only one motherboard. (There are all common computers.) -->
 <index id="computerName" unique="true">
 <indexColumn id="compName"/>
 </index>
</table>
.
.
<table id="firm.computers.hardware.parts.monitor" dbTableName="Monitor">
 <column id="manufacturrer">
 <type canBeNull="false" dbType="CHAR" javaType="String" size="40"/>
 </column>
 <column id="type" >
 <type dbType="CHAR" javaType="String" size="40"/>
 </column>
 <column id="maxResolution">
 <type canBeNull="true" dbType="CHAR" javaType="String" size="20"/>
 </column>
 <column id="refreshFrequency" >
 <type canBeNull="true" dbType="INTEGER" javaType="int"/>
 </column>
 <column id="compName" >
 <referenceObject constraint="true" reference="firm.computers.hardware.Computers"/>
 <type dbType="none" javaType="firm.computers.hardware.ComputersDO"/>
 </column>
<!-- Each computer has only one monitor. (There are all common computers.) -->
 <index id="computerName" unique="true">
 <indexColumn id="compName"/>
 </index>
</table>

The whole DOML file Computers.doml in <dods_home>/examples/doml_examples directory.

 Chapter 4: Tutorial: Building Enhydra applications

51

Getting Started with Enhydra

Starting dods generator

There are two different ways to run dods generator. If you want to start generator quickly, you
can start wizard by typing:

dods
 without any parameter. Those files are located in :

• <enhydra_home>multiserver/enhydra/bin folder, for DODS in Enhydra.
• <dods_home>/bin folder, for independent DODS.

Note: <enhydra_home>multiserver/enhydra/bin (in the case DODS is used in Enhydra), or
<dods_home>/bin folder (for independent DODS) should be added in the system path. Then,
DODS can be started from any directory (by typing dods).

This will be described in the Quick Compile section.

If you want to start generator without wizard, you need to type (in the command line) dods
with additional parameters. You can find details in Custom Compile section.

File location

After generating, locations of generated files are:

<OUTPUT_DIRECTORY>\SQLcreate.sql
<OUTPUT_DIRECTORY>\<PACKAGE_0>\..\<PACKAGE_N>\<TableName>DataStruct.java
<OUTPUT_DIRECTORY>\<PACKAGE_0>\..\<PACKAGE_N>\<TableName>DOI.java
<OUTPUT_DIRECTORY>\<PACKAGE_0>\..\<PACKAGE_N>\<TableName>DO.java
<OUTPUT_DIRECTORY>\<PACKAGE_0>\..\<PACKAGE_N>\<TableName>Query.java
<OUTPUT_DIRECTORY>\<PACKAGE_0>\..\<PACKAGE_N>\<TableName>.xml

where <OUTPUT_DIRECTORY> is base directory of your project, <PACKAGE_0>\..\<PACKAGE_N> is
generated from last package id attribute of DOML file, and <TableName> is the name of the
table from your database. For example, if part of your DOML file looks like this:

<package id="discRack">
 <package id="discRack.data">
 <table id=" discRack.data.Person" dbTableName="Person">
...
 </table>

you will get file structure as follows:

<OUTPUT_DIRECTORY>\discRack\data\PersonDataStruct.java
<OUTPUT_DIRECTORY>\discRack\data\PersonDOI.java
<OUTPUT_DIRECTORY>\discRack\data\PersonDO.java
<OUTPUT_DIRECTORY>\discRack\data\PersonQuery.java
<OUTPUT_DIRECTORY>\discRack\data\Person.xml

There are transient XML files that are generated from DOML file, before java code is
generated. The java code, mentioned before, is actually generated from those transient xml
files. If you want, you can change these xml files instead of DOML file and generate java code
directly, without using the DOML file. You can find instructions for this in Advanced Custom
Compile section.

If you change the DOML file, all java classes will be generated again, but, if you change
transient xml files instead of the DOML file, only changed xml files are generated in java files.
Other java files (whose xml files are not changed) are left as they are.

 Chapter 4: Tutorial: Building Enhydra applications

52

Getting Started with Enhydra

Quick Compile

DODS Generator Wizard is a graphical tool that helps you to easily generate Java and SQL
files. It is recommended for the first time users.

When you start dods, you will get window like on Figure 4.11.

Figure 4.11 DODS Generator Wizard

In the Output directory field you should input directory with full path of output directory that will
be used.

DOML file field should be used for entering your DOML file.

Config directory field contains path to custom configuration folder (which contains
dodsConf.xml file). It is used to generate java source code and SQL scripts. If the path is set
to any other path than default (offered), in the application’s configuration file shoul be set
parameter :

DatabaseManager.ConfigurationDir
to new path of the custom configuration folder.

example:
DatabaseManager.ConfigurationDir=C:\configurations\dods

 Chapter 4: Tutorial: Building Enhydra applications

53

Getting Started with Enhydra

There are four options on the Generator Wizard:

• Generate SQL:

This field should be checked if you want to generate: SQL files for each table
separately, one cumulutave SQL file for creating all tables (SQLcreate.sql), and one
file for deleting those tables (SQLdrop.sql).

o SQL Splitter:

It is used for creating separated cumulative SQL files (for creating tables, for adding
foreign keys, primary keys and for deleting tables). This option enables creating
tables without cross references, and after their creation, adding needed references.

SQL Splitter copies all SQL commands from all SQL files which are situated in the
working directory and all its subdirectories into SQL files.

Original SQL files are created by DODS - Enhydra.

All SQL commands are copied into file separateCreate.sql except sql commands
which reference to foreign and primary key columns.

In the separateIntegrity.sql file class puts ALTER TABLE sql commands with adding
foreign key references.

In the separatePrimary.sql file class puts ALTER TABLE sql commands with adding
primary keys.

In the separateDropTable.sql file class puts DROP TABLE sql commands for all
tables which were created by create table SQL statements in the first file
(separateCreate.sql).

In the separateIndex.sql file class puts CREATE INDEX sql commands for all tables
which were created by create table SQL statements in the first
file(separateCreate.sql).

In the separateDropIntegrity.sql file class puts DROP foreign key sql commands for all
tables which were created by create table SQL statements in the first file
(separateCreate.sql).

In the separateDropPrimary.sql file class puts DROP primary sql commands for all
tables which created by create table SQL statements in the first file
(separateCreate.sql).

All others Sql commands class puts into separate file.

Unless Generate SQL field is checked, this field can not be checked. If this option is
checked, Generator Wizard doesn't create cumulative SQL files.

• Generate Java:

This field should be checked if you want to generate Java files (DO, Query, DOI and
DataStruct objects).

o Compile Java:

It is used for compiling generated java files. Compiled files will be located in folder
<output_directory>/classes. Unless Generate Java field is checked, this field can not
be checked.

If you do not need both Java and SQL generation, you can choose one of them instead
of both. At least one of these options must be checked.

 Chapter 4: Tutorial: Building Enhydra applications

54

Getting Started with Enhydra

There are two combo boxes on the Generator Wizard. Template set combo box contains
possible template sets:

• standard

If this template set is chosen, DODS generates standard code.

• <user_defined_templates>:

Users can define their own tempate sets.

Selected template set depends on <template_set> tag in doml file. If this tag is not set,
defaut template set is “standard”. If this tag is set, the value of this tag will be selected in
template set combo box.

DB vendor combo box contains list of database vendors. If one of these vendors is selected,
this database will overwrite database declared in doml file. Possible database vendors are:

• MSQL

• Oracle

• Informix

• Sybase

• PostgreSQL

• MySQL

• Standard

• DB2

• QED

• HypersonicSQL

• InstantDB

• MckoiSQL

There is a possibility on the Generator Wizard for generating following types of
documentation:

• HTML: If you check this field, doml file will be converted into html file.

• PDF: If you check this field, doml file will be converted into pdf file.

• XMI: If you check this field, doml file will be converted into xmi file.

• PTL: If you check this field, doml file will be converted into ptl (Rational Rose) file.

On the Generator Wizard, there is also a check box:

• Overwrite - for code generating (java and sql), no matter if the code already existed.

 Chapter 4: Tutorial: Building Enhydra applications

55

Getting Started with Enhydra

Custom Compile

In case you want to generate Java and SQL code manually, type dods in the command line
with desired parameters.

Command line:

dods [-?/help] [-a action] [-t templateset] [-b/-database] [-c confPath]
[-f/force] [-h/html] [-p/pdf] [-x/xmi] [-r/ptl] domlfile outputdir

where:

• outputdir is full path to output directory that will be used.

• domlfile is full path to .doml file for generating code.
options:

 [-? -help] shows help.

 [-a action] - ant task parameter for code generation:

• dods:build_all - to create all sql files and java classes (default).

• dods:sql - to create only sql files.

• dods:java - to create only java files and to compile them.

• dods:javaNoCompile - to create only java files and not to compile them.

• dods:noCompile - to create SQL files and java files and not to compile them.

• dods:build_all_split - to create all sql files and java classes and to compile it. SQL files
will be divided into separate files using SQLSplitter .

• dods:sqlsplit - to create only sql files and separate in different files using SQLSplitter.

• dods:noCompileSplit - to create SQL files and separate sql commands using
SQLSplitter and java files and not to compile them.

• dods:generatorOff - to disable generating and compiling of java source code, for
generating documentation only (you stil need to set documentation propertys: html, pdf,
ptl, xmi).

[-t templateset] - template set for generating java and sql code:

• standard - generate standard java code (default).

• <user defined> - any user defined template set.

[-b/-database] - sets database vendor for generating sql

[-c confPath] - sets folder with dodsConf.xml file

[-f/-force] - with this switch, code will be always generated, without it, only changes will be
regenerated.

[-h/-html] - generates DODS html documentation from .doml file.

[-p/-pdf] - generates DODS pdf documentation from .doml file.

[-x/-xmi] - generates DODS xmi documentation from .doml file.

 Chapter 4: Tutorial: Building Enhydra applications

56

Getting Started with Enhydra

[-r/-ptl] - generates DODS ptl (Rational Rose) documentation from .doml file.

Advanced Custom Compile

In this section you can find information about advanced settings for generation of Java files.

One XML file is generated for every table from DOML file (situated in table folder with other
java and sql files). That XML file is used as a base for generating four Java files.

DTD for that file can be found in <dods_home>/dtd/temporaryXML.dtd file. Some tags could
be changed, i.e. <AUTHOR>.

Important: some tags should not be changed, or otherwise generated code will not be

compailable.

Structure

The hierarchy of tags in a XML file is, as follows:

<TABLE>

<PACKAGE/>
<AUTHOR/>
<PROJECT_NAME/>
<TABLE_NAME/>
<CLASS_NAME/>
<DB_VENDOR/>
<TEMPLATE_SET/>
<COLUMN>

<REFERENCE_OBJECT>
<CONSTRAINT/>
<IS_ABSTRACT/>
<IS_FOREIGN_KEY/>
<TABLE_NAME/>
<PACKAGE/>

</REFERENCE_OBJECT>
<IS_CONSTANT/>
<JAVADOC/>
<DB_TYPE/>
<JAVA_TYPE/>
<JAVA_DEFAULT_VALUE/>
<USED_FOR_QUERY/>
<CAN_BE_NULL/>
<IS_PRIMARY_KEY/>
<SIZE/>
<GENERATE_SECURE/>
<GENERATE_INSECURE/>

</COLUMN>
<REFERRER>

<REFATTR/>
</REFERRER>
<INDEX>

<INDEX_COLUMN/>
</INDEX>
<DO_IS_OID_BASED/>
<IS_ABSTRACT/>
<DELETE_CASCADES/>
<DO_IS_MULTIDB_BASED/>
<IS_ANY_COLUMN_SECURE/>
<GENERATE_DIRTY>
<GENERATE_SECURE/>
<GENERATE_INSECURE/>

 Chapter 4: Tutorial: Building Enhydra applications

57

Getting Started with Enhydra

<MASS_UPDATES/>
<MASS_DELETES/>

</TABLE>

Tag reference

This section contains an alphabetical reference of all the XML tags that DODS can generate
using given DOML file. Every tag contains the subsections:

• Content - tags that the tag can contain.
• Attributes - attributes the tag can have.
• Context - tags within which the tag can appear, in other words, the tags that can

contain it.

<author>

Author of the Java code (your name).

None Content

Attributes None

Context <table>

<can_be_null>

Can column be null. Possible values for can_be_null are: true and false.

Content None

Attributes None

Context <column>

<class_name>

The name of the class which represents table in the database, mostly, it is the
TABLE_NAME.

Content None

Attributes None

Context <table>

 Chapter 4: Tutorial: Building Enhydra applications

58

Getting Started with Enhydra

<column>

Represents one column in the table.

Content <reference_object>

<is_constant>

<javadoc>

<db_type>

<java_type>

<java_default_value>

<used_for_query>

<can_be_null>

<is_primary_key>

<size>

<generate_secure>

<generate_insecure>

Attributes name - Name of the column in the table.

Context <table>

<constraint>

Specifies whether the specified table row must exist. Possible values for <constraint> are:
true and false.

Content None

Attributes None

Context <reference_object>

<db_type>

Data type from database that represents column.

Content None

Attributes None

Context <column>

 Chapter 4: Tutorial: Building Enhydra applications

59

Getting Started with Enhydra

<db_vendor>

The database type. Possible values are Standard, InstantDB, Oracle, Informix, MySQL,
Sybase, PostgreSQL, MSQL, DB2, QED or HypersonicSQL.

Content None

Attributes None

Context <table>

<delete_cascades>

This is value retrieved from the configuration file and is used for sql code generation.

Content None

Attributes None

Context <table>

<do_is_multidb_based>

Contains information about generation code for multi database support. Possible values: true
and false.

Content None

Attributes None

Context <database>

<do_is_oid_based>

Is table based on OID keys. Currently do_is_oid_based tag has only one value: true.

Content None

Attributes None

Context <table>

<generate_dirty>

Specifies whether 'dirty' methods are to be generated (“Compatible”) - as before, deprecated
(“Depricate”), or not generated at all (“Omit”).

Content None

 Chapter 4: Tutorial: Building Enhydra applications

60

Getting Started with Enhydra

Attributes None

Context <table>

<generate_insecure>

True if insecure methods should be generated, otherwise false.

Content None

Attributes None

Context <table>

<column>

<generate_secure>

True if secure methods should be generated, otherwise false.

Content None

Attributes None

Context <table>

<column>

<index>

Represents table index.

Content <index_column>

Attributes id - Id of index.

unique - True if index is unique, otherwise false.

clustered - True if index is clustered, otherwise false.

Context <table>

<index_column>

Identifies index column.

Content None.

 Chapter 4: Tutorial: Building Enhydra applications

61

Getting Started with Enhydra

Attributes id - Id of index column, same as name of column.

Context <index>

<is_abstract>

Is generated class abstract. Currently is_abstract tag has only one value: false.

Content None

Attributes None

Context <table>

<reference_object>

<is_any_column_secure>

It is true if for any table column are generated secure methods, otherwise, is false.

Content None

Attributes None

Context <table>

<is_constant>

Does column have constant value, that is, does it represent constant class attribute (not taken
from database). Possible values for is_constant are: true and false.

Content None

Attributes None

Context <column>

<is_foreign_key>

Is column used as a foreign key. Currently is_foreign_key tag has only one value: false.

Content None

Attributes None

Context <reference_object>

 Chapter 4: Tutorial: Building Enhydra applications

62

Getting Started with Enhydra

<is_primary_key>

Is column a primary key. Currently is_primary_key tag has only one value: false.

Content None

Attributes None

Context <column>

<javadoc>

Text for Javadoc documentation.

Content None

Attributes None

Context <column>

<java_default_value>

Default value for Java data type.

Content None

Attributes None

Context <column>

<java_type>

Data type from Java that represents column.

Content None

Attributes None

Context <column>

<mass_deletes>

When turned allow you to build data layer including classes xxxDelete. These class provide
you QueryBuilder speed in massive update operations, while maintaining caches (both global
and transactions) valid.

Content None

 Chapter 4: Tutorial: Building Enhydra applications

63

Getting Started with Enhydra

Attributes None

Context <table>

<mass_updates>

When turned allow you to build data layer including classes xxxUpdate. These class provide
you QueryBuilder speed in massive update operations, while maintaining caches (both global
and transactions) valid.

Content None

Attributes None

Context <table>

<package>

Package that contains Java files.

Content None

Attributes None

Context <table>

<reference_object>

<project_name>

The project name.

Content None

Attributes None

Context <table>

<refattr>

Tag that is used like attribute for tag <referrer>. It represents column of table that references
generated class.

Content None.

Attributes name - Name of the column that references some DO objects. It is object of
generated class, mostly.

 Chapter 4: Tutorial: Building Enhydra applications

64

Getting Started with Enhydra

do_name - Name of the DO object that is referenced by attribute.

generateSecure - True if secure methods should be generated, otherwise false.

Context <referrer>

<reference_object>

If the column is a reference to another table, <reference_object> specifies the table.

Content <constraint>

<is_abstract>

<is_foreign_key>

<package>

<table_name>

Attributes name - Name of the reference object class.

Context <column>

<referrer>

Outer table that references generated class.

Content <refattr>

Attributes name - Name of the outer table that references generated class.

package - Name of the outer table package that references generated class.

generateSecure - True if secure methods should be generated, otherwise false.

Context <table>

<size>

Specifies the size of data types that are commonly measured in width, like VARCHAR. size
must be an integer.

Content None

Attributes None

Context <column>

 Chapter 4: Tutorial: Building Enhydra applications

65

Getting Started with Enhydra

<table>

Root element of XML files. It contains one table from database.

Content <package>

<author>

<project_name>

<table_name>

<class_name>

<db_vendor>

<template_set>

<do_is_oid_based>

<is_any_column_secure>

<is_abstract>

<delete_cascades>

<column>

<referrer>

<index>

<generate_secure>

<generate_insecure>

<do_is_multidb_based>

<generate_dirty>

<mass_updates>

<mass_deletes>

Attributes None

Context None

<table_name>

The name of the table in the database.

Content None

Attributes None

 Chapter 4: Tutorial: Building Enhydra applications

66

Getting Started with Enhydra

Context <table>

<reference_object>

<template_set>

Template set that will be used for java code generation. The possible values for template_set
are: standard (default) and <any user defined template>.

Content None

Attributes None

Context <table>

<used_for_query>

Should column be used for queries. Possible values for used_for_query are: true and false.

Content None

Attributes None

Context <column>

Sample of part of transient XML file

The following snippet shows part of a transient file, Disc.xml (for table Disc from DiscRack
example).

<TABLE>(i)

<PACKAGE>discRack.data.disc</PACKAGE>(2)
<AUTHOR>NN</AUTHOR>(2)
<PROJECT_NAME>DiscRack</PROJECT_NAME>(2)
<TABLE_NAME>Disc</TABLE_NAME>(2)
<CLASS_NAME>Disc</CLASS_NAME>(2)
<DB_VENDOR>Standard</DB_VENDOR>(2)
<TEMPLATE_SET>standard</TEMPLATE_SET>(4)
<GENERATE_SECURE>false</GENERATE_SECURE>(2)
<GENERATE_INSECURE>true</GENERATE_INSECURE>(2)
<DO_IS_OID_BASED>true</DO_IS_OID_BASED>(2)
<IS_ABSTRACT>false</IS_ABSTRACT>(2)
<DELETE_CASCADES>false</DELETE_CASCADES>(2)
<DO_IS_MULTIDB_BASED>false</DO_IS_MULTIDB_BASED>(2)
<IS_ANY_COLUMN_SECURE>false</IS_ANY_COLUMN_SECURE>(2)

<GENERATE_DIRTY>Compatible</GENERATE_DIRTY>(2)

.

.
<COLUMN name="artist">(2)

<IS_CONSTANT>false</IS_CONSTANT>(2)
<DB_TYPE>VARCHAR</DB_TYPE>(2)
<JAVA_TYPE>String</JAVA_TYPE>(2)
<USED_FOR_QUERY>true</USED_FOR_QUERY>(2)
<CAN_BE_NULL>false</CAN_BE_NULL>(2)
<IS_PRIMARY_KEY>false</IS_PRIMARY_KEY>(2)

 Chapter 4: Tutorial: Building Enhydra applications

67

Getting Started with Enhydra

<SIZE>32</SIZE>(2)
<GENERATE_SECURE>false</GENERATE_SECURE>(2)
<GENERATE_INSECURE>true</GENERATE_INSECURE>(2)

</COLUMN>(2)
.
.

<COLUMN name="owner">(2)
<REFERENCE_OBJECT name="Person">(3)

<CONSTRAINT>true</CONSTRAINT>(3)
<IS_ABSTRACT>false</IS_ABSTRACT>
<IS_FOREIGN_KEY>false</IS_FOREIGN_KEY>(3)
<PACKAGE>discRack.data.person</PACKAGE>(3)
<TABLE_NAME>person</TABLE_NAME>(3)

</REFERENCE_OBJECT>(3)
<IS_CONSTANT>false</IS_CONSTANT>(2)
<JAVADOC>/**

 *Attribute describing a link to the owner of this disc.
 */</JAVADOC>(4)

<DB_TYPE>none</DB_TYPE>(2)
<JAVA_TYPE>discRack.data.person.PersonDO</JAVA_TYPE>(2)
<JAVA_DEFAULT_VALUE></JAVA_DEFAULT_VALUE>(4)

<USED_FOR_QUERY>true</USED_FOR_QUERY>(2)
<CAN_BE_NULL>false</CAN_BE_NULL>(2)
<IS_PRIMARY_KEY>false</IS_PRIMARY_KEY>(2)
<IS_ARRAY>false</IS_ARRAY>(2)
<GENERATE_SECURE>false</GENERATE_SECURE>(2)
<GENERATE_INSECURE>true</GENERATE_INSECURE>(2)

</COLUMN>(2)
</TABLE>(1)

(1) red; (2) green; (3) violet; (4) blue

Different line colors are used to describe tag existence and possibility to change tag values.

Red tags must exist and must NOT be changed.

Green tags must exist and can be changed.

Blue tags are not required.

Violet tags can exist and must NOT be changed.

Structure of new modular DODS 6.x

DODS 6.x jars:

Dods runtime:

• dbmanager-api.jar - contains DatabaseManager interfaces and exceptions
• dbmanager.jar - DatabaseManager core - standard Database Manager

implementation

Implementations:

• stdconnection.jar - standard implementations of ConnectionAllocator and
DBConnection

• stdtransaction.jar - standard implementation of DBTransaction
• stdcaches.jar - standard cache implementations (DataStruct cache, Query caches)
• dsconnection.jar - Implementation of ConnectionAllocator and DBConnection which

supports connection to the database using DataSource objects and which supports
using DataSource connection pool - used in Enhydra 6.x.

 Chapter 4: Tutorial: Building Enhydra applications

68

Getting Started with Enhydra

Generator:

• dods.jar
• ejen.jar

How to use different implementations:

ConnectionAllocator

• Parameter: ConnectionAllocator. Default value: none (DODS will use
StandardConnectionAllocator)

• File: configuration file
• Context: DatabaseManager, Database
• If this parameter is set to full class name of class that implements

ExtendedConnectionAllocator interface, DODS will use this class to create
Connection Allocator, if parameter is not set DODS will use default
ExtendedConnectionAllocator implementation - StandardConnectionAllocator.

Connection

• Parameter ConnectionFactory - Default value: none (DODS will use
StandardDBConnectionFactory)

• File: configuration file
• Context: Connection
• If this parameter is set to full class name of class that implements

AbstractDBConnectionFactory interface DODS will use this class to create database
connection factory, if parameter is not set DODS will use default
AbstractDBConnectionFactory implementation - StandardDBConnectionFactory

Transaction

• Parameter : TransactionFactory. Default value: none (DODS will use
StandardTransactionFactory)

• File: configuration file
• Context: DatabaseManager, Database
• If this parameter is set to full class name of class that implements

AbstractDBTransactionFactory interface DODS will use this class to create database
transaction factory, if parameter is not se DODS will use default
AbstractDBTransactionFactory implementation - StandardDBTransactionFactory.

Cache implementations

• Parameter: QueryCacheImplClass. Default value: none (DODS will use
QueryCacheImpl class)

• File: configuration file
• Context: DatabaseManager, Database
• If this parameter is set to full class name of class that extends DataStructCache

abstract class DODS will use this class to create data struct cache for xxxDO class, if
parameter is not set DODS will use class QueryCacheImpl as default.

DODS independence

Since version 5.1, DODS is independent from Enhydra. This means that it is possible for user
to make any application (it doesn't need to be enhydra application) that can use DODS.

DODS works with DatabaseManagers. DatabaseManager is a class that provides facilities for
work with databases.

There are two modes of using DODS:

 Chapter 4: Tutorial: Building Enhydra applications

69

Getting Started with Enhydra

• non-threading
In non-threading mode, only one DatabaseManager is used for the whole application,
no matter the application has one or more Threads.

• threading

In threading mode, there is one DatabaseManager for every Thread. User needs, for
every Thread, to define DatabaseManager. If, for any Thread, the DatabaseManager
is not defined, the default DatabaseManager is used.

In the following text, the DODS independence is explaned for non-threading mode.

• in main application,
add code that makes new DatabaseManager and registers it in DODS (by using class
DODS.java from org.enhydra.dods package):

try {
. . .
String fileName = “discRack.conf”;
DODS.startup(fileName);
. . .
} catch (Exception e) {

e.printStackTrace();
}

 where "discRack.conf" is an example of application's configuration file. This file is the
same as the Database Manager section of Enhydra application's configuration file.

This file can look like this:

#---
Database Manager Configuration
#---

The databases that are used by CSAM. Each of these databases
has configuration parameters set under DatabaseManager.DB."databaseName".

DatabaseManager.Databases[] = "sid1"

The default database used in this application.

DatabaseManager.DefaultDatabase = "sid1"

Turn on/off debugging for transactions or queries. Valid values
are "true" or "false".

DatabaseManager.Debug = "false"

The type of database. Normally this is "Standard".

DatabaseManager.DB.sid1.ClassType = "Standard"
DatabaseManager.DB.sid1.ClassType = "Oracle"

The jdbc driver to use.

DatabaseManager.DB.sid1.JdbcDriver = "org.enhydra.instantdb.jdbc.idbDriver"
DatabaseManager.DB.sid1.JdbcDriver = "oracle.jdbc.driver.OracleDriver"
DatabaseManager.DB.sid1.JdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver"

Database url.

DatabaseManager.DB.sid1.Connection.Url =
 "jdbc:idb:C:/DODS_5.1/output/examples/discrack/output/discRack.prp"

 Chapter 4: Tutorial: Building Enhydra applications

70

Getting Started with Enhydra

DatabaseManager.DB.sid1.Connection.Url =
 "jdbc:oracle:thin:@MyHost:MyPort:MyDBName"
DatabaseManager.DB.sid1.Connection.Url = "jdbc:odbc:discRack"

Database user name. All connection are allocated by this user.

DatabaseManager.DB.sid1.Connection.User = "scott"
#DatabaseManager.DB.sid1.Connection.User = "Admin"
Database user password.

DatabaseManager.DB.sid1.Connection.Password = "tiger"
#DatabaseManager.DB.sid1.Connection.Password = ""

The maximum number of connections that a connection
pool will hold. If set to zero, then connections
are allocated indefinitly or until the database
refuses to allocate any new connections.

DatabaseManager.DB.sid1.Connection.MaxPoolSize = 30

Maximum amount of time that a thread will wait for
a connection from the connection pool before an
exception is thrown. This will prevent possible dead
locks. The time out is in milliseconds. If the
time out is <= zero, the allocation of connections
will wait indefinitely.

DatabaseManager.DB.sid1.Connection.AllocationTimeout = 10000

Used to log database (SQL) activity.

DatabaseManager.DB.sid1.Connection.Logging = false

The number of object identifiers that are allocated
as a group and held in memory. These identifiers
are assigned to new data objects that are inserted
into the database.

DatabaseManager.DB.sid1.ObjectId.CacheSize = 20
DatabaseManager.DB.sid1.ObjectId.MinValue = 1000000

User wildcards

DatabaseManager.DB.User.userWildcard = "*"
DatabaseManager.DB.User.userSingleWildcard = "_"
DatabaseManager.DB.User.userSingleWildcardEscape = "$"
DatabaseManager.DB.User.userWildcardEscape = "$"

Default table configuration

DatabaseManager.defaults.AllReadOnly = false
DatabaseManager.defaults.lazyLoading = false
DatabaseManager.defaults.maxExecuteTime = 200
DatabaseManager.defaults.TransactionCaches = true
DatabaseManager.defaults.TransactionCheck = true
DatabaseManager.defaults.AutoSave = true

Default database configuration

DatabaseManager.DB.sid1.TransactionCheck = false
DatabaseManager.DB.sid1.AutoSave = false

Default cache configuration

DatabaseManager.defaults.cache.maxCacheSize = 500
DatabaseManager.defaults.cache.maxSimpleCacheSize = 100
DatabaseManager.defaults.cache.maxComplexCacheSize = 10

 Chapter 4: Tutorial: Building Enhydra applications

71

Getting Started with Enhydra

DatabaseManager.defaults.cache.reserveFactor = 0.1

Table and cache configuration is explained in sections “Table configuration” and “Cache
configuration”, later in this chapter.

The example of non-enhydra application that uses DODS is DiscRack application, explained
in next section.

Examples of non-enhydra applications

Examples of DODS non-enhydra applications are included in DODS installation and they are
in DODS, in directory:

<DODS_HOME>/examples

Process of running non-enhydra application will be presented in this section on the example
Disc Rack. This example application is in <DODS_HOME>/examples/discrack directory.

To run an example, these steps have to be done in Command Promt:

• first, go to wanted example (directory)

cd <DODS_HOME>/examples /discrack

• second, run ant,by typing:

ant

 ant will build this application in its <output_directory>

• then, go to application’s output directory:

cd <output_directory>

• then, example will be run with:

run

The ant, which is used here, must be DODS’s ant.bat, which means that path
<DODS_HOME>/bin must be included at the beginning of the system path.

DODS Ant task

Invokes DODS to generate a set of java classes from a doml file.The files will only be
regenerated/compiled if the date of the doml file is newer than at least one of the generated
files. This task extends Ant's ask.

Typically made visible to an Ant build file (build.xml) with the following declaration:

<taskdef name="dods" classname="org.enhydra.ant.taskdefs.Dods"/>

Parameters:

• domlfile- the doml input file describing data object mapping. Required = Yes.
• outputDir - target for generated classes, expressed as a directory path. Required =

Yes.
• force - forces DODS always to regenerate source files. Possible values: ("true",

"false"(default)). Required = No.
• action - name of Ant task from generate.xml. Required = No.

 Chapter 4: Tutorial: Building Enhydra applications

72

Getting Started with Enhydra

• templateDir - name of folder for template set for generating java code, expressed as
a directory path. Required = No.

• templateSet - template set for generating java code. Required = No.
• confDir - path to custom configuration folder (If the path is set to any other path than

default (offered), in the application’s configuration file shoul be set parameter:
DatabaseManager.ConfigurationDir

to new path of the custom configuration folder). Required = No.
• database - sets database vendor for generating sql. Required = No.
• html - indicates DODS to generate html documentation from .doml file. Possible

values: ("true", "false"(default)). Required = No.
• pdf - indicates DODS to generate pdf documentation from .doml file. Possible values:

("true", "false"(default)). Required = No.
• xmi - indicates DODS to generate xmi documentation from .doml file. Possible

values: ("true", "false"(default)). Required = No.
• ptl - indicates DODS to generate ptl (Rational Rose) documentation from .doml file.

Possible values: ("true", "false"(default)). Required = No.
• without parameters - to create all sql files and java classes and to compile it.

action parameters:

• dods:build_all - to create all sql files and java classes.
• dods:sql - to create only sql files.
• dods:java -to create only java files and to compile them.
• dods:javaNoCompile -to create only java files and not to compile them.
• dods:noCompile -to create SQL files and java files and not to compile them.
• dods:build_all_split - to create all sql files and java classes and to compile it. SQL

files will be divided into separate files using SQLSplitter
• dods:sqlsplit - to create only sql files and separate in different files using

SQLSplitter.
• dods:noCompileSplit - to create SQL files and separate sql commands using

SQLSplitter and java files and not to compile them.
• dods:generatorOff - to disable generating and compiling of java source code, for

generating documentation only (you stil need to set documentation propertys: html,
pdf, ptl, xmi).

templateset parameters:

• standard - generate standard java code.
• <user_defined> - any user defined template set.

Example:
<dods domlfile ="${basedir}/discRack.doml" outputDir="${basedir}/src"
templateSet="standard"/>

Table configuration

Table configuration is explained on DiscRack example (directory
<dods_output>/examples/discrack). The table parameters are defined on three levels.

 The first level is DatabaseManager level. On this level can be defined the following
parameters (all information are optional):
DatabaseManager.defaults.lazyLoading true =
DatabaseManager.defaults.maxExecuteTime = 200
DatabaseManager.defaults.AllReadOnly = false

The second level is database level. On this level can be defined the following parameters (all
information are optional):
DatabaseManager.DB.<database_name>.lazyLoading false =
DatabaseManager.DB.<database_name>.maxExecuteTime = 350

 Chapter 4: Tutorial: Building Enhydra applications

73

Getting Started with Enhydra

DatabaseManager.DB.<database_name>.AllReadOnly = false

 The third level is table level. In the case of DiscRack example, there are two tables: Disc and
person. The tables can have the following parameters:

Table Disc - table configuration
DatabaseManager.DB.DiscRack.Disc.readOnly = false
DatabaseManager.DB.DiscRack.Disc.lazyLoading false =
DatabaseManager.DB.DiscRack.Disc.maxExecuteTime = 150

Table Person - table configuration
DatabaseManager.DB.DiscRack.person.readOnly = true
DatabaseManager.DB.DiscRack.person.lazyLoading lse = fa
DatabaseManager.DB.DiscRack.person.maxExecuteTime = 150

Table defaults on DatabaseManager and Database are default values for all application's
tables. If, any of these parameters is defined on the Database level, that value is used as a
default for all tables. If any of the parameters is not defined on the Database level, then, if it is
defined on the DatabaseManager level, this value is used. If any of these parameters is not
defined neither on the Database, nor on DatabaseManager level, DODS uses its own
program defaults. For lazyLoading, program default is false, for maxExecuteTime 0 and for
readOnly and AllReadOnly false.

If any of parameters lazyLoading or maxExecuteTime is defined on the table level, that
value is used. If not, the default value for all tables is used (explained in previous paragraph).

Table parameter readOnly is true if the table is read-only, otherwise is false. If read-only is
true, the operations: insert, update or delete on the tables are not possible.

If parameter AllReadOnly is defined and set to true (it can be defined on DatabaseManager
or Database level), all applications will be read-only. In that case, table parameter readOnly
is ignored. Only, If AllReadOnly is set to true and readOnly attribute of the table is set to
false, warning is written to log during table initialization. In runtime exception is thrown on
attempt of writing to that table.

Parameter lazyLoading is true if table supports lazy-loading, otherwise is false.

Parameter maxExecuteTime is time for query execution. Every query that is executed longer
than maxExecuteTime is printed (SQL statement, execution time and maxExecutionTime) in
application's log file.

Caching

Caching affects the behaviour of the DO class. If checked, all DO instances (their original
DataStruct objects) are stored in the cache inside the DO class. Subsequent queries of the
table use the Query class for queries. The results of all Queries, are complete.

Cache transformation

Since DODS 5.1 final, the DO cache is transformed into DataStruct cache. Instead of whole
DOs, only their original DataStructs are added to new DataStruct cache.

DO have had only one data (DataStruct object) and all transformations were done on this
object. DataStruct object contains values of columns of one table row. Now, DO holds 2
DataStruct-references:

• originalData

 Chapter 4: Tutorial: Building Enhydra applications

74

Getting Started with Enhydra

• data

The originalData holds original data (that was read from the database). This is never
modified till commit, and this DataStruct object is added to DataStruct cache, if this cache
exists.

The second, data, is only created (by copying the first one and setting version=version+1) if
data is modified. If the second DataStruct exists, the DO’s attribute isDirty is set to true. Even
if after some modifications the new DataStruct holds exactly the same value as the original
one, the DO is still dirty. So there is no way back from isDirty=true to isDirty=false (except
during commit of the transaction). If the transaction is committed, the new datastruct is moved
in place for the original datastruct. The new datastruct is NULL again, so the attribute isDirty
becomes false again.

A newly created DO (in memory, not from the database) will just have a data DataStruct
object. Data values in DataStruct object originalData is null before the commit().

The oid and the version attributes are moved from DO to DataStruct object.

New attributes added in DataStruct object are:

• isEmpty

type: boolean
default value : true
Since originalData is being constructed for every DO, this flag "knows" if DataStruct
has any useful content. If there is no data in DataStructs – except oid and version,
this attribute is true, otherwise false.

• databaseName

type: String
default value : null
The logical database to which this DataStruct belongs to.

New methods added in DataStruct object are:

• getOId()
Returns DataStruct's identifier.

• setDatabase(String dbName)

Sets attribute databaseName.

• getDatabase()

Returns attribute databaseName.

• getHandle()

Returns this DataStruct's handle (identifier as a string).

• getCacheHandle()

Returns this DataStruct's cache handle (String in the form:
"<database_name>.<indentifier_as_String>").

• get and set methods for every table column

In DO class are added new methods that work with originalData:

• originalData_get<column_name>([User usr])
Returns the row value of the column <column_name> of the DO’s originalData
object.

 Chapter 4: Tutorial: Building Enhydra applications

75

Getting Started with Enhydra

• originalData_set(Object data)

Sets the DO's originalData object.

• getData()
Returns DO's DataStruct object. If DO’s data object exist, returns that object,
otherwise returns DO’s originalData object.

• originalData_get()
Returns DO's originalData object.

• getOriginalVersion()
Returns the current version of DO’s originalData object.

Introduction

DODS provides the possibility for every table to have its cache.

The possible cache types are:

1. None

No caching is available.

2. LRU
The size of the cache is limited by the maximal number of objects that can be stored in it.
When the cache is full, the objects in it are being replaced by new objects according to
LRU (least recently used) algorithm. This algorithm says that the object which had been
used the least recently (in the scale of time, the object to which had been accessed the
longest time ago, which is on the end of LRU list) is removed from list and new one is put
in front of the LRU list. If maximal number of objects is set to 0, it means that caching is
not available (None type) at the moment, and if this number is set to negative number, it
means that the cache is unbounded (it has no number limit).

3. Full (special case of LRU caching)
This is a LRU cache which is unbounded. The entire table is queried and cached when
the application starts. This is appropriate for tables of "static" data which are accessed
frequently and which will not change during the execution of the application.

DODS has two levels of caching:

1. Data Caching level

There is only one LRU cache: cache with DataStruct objects. The keys of this cache are
cache handles – Strings in the following form:

"<DataStruct_database_name>.<String_presentation_of_DataStruct_oid>"

, and cache values are, as mentioned before DataStruct objects.

2. Query caching level

Beside DataStruct object cache, there is a possibility of using three query caches (simple,
complex and multi-join). Multi-join cache is included since DODS 6.x. All query caches
are also LRU caches. The keys of these caches are Strings in the following form:

"<query_database_name>.<String_presentation_of_query>"

 Chapter 4: Tutorial: Building Enhydra applications

76

Getting Started with Enhydra

and cache values are Query objects. Query objects are objects of the
org.enhydra.dods.cache.QueryCacheItem class.

The QueryCacheItem object stores one query and its necessary data:

• Database of the query

• List of IDs of DataStruct object that are results of the query. This list can contain all

results, or just some of them.

• Number of cached query results

• Information whether all results are in result list or not

• Information whether the query results are modified (if there have been performed
inserts, updates or deletes, the results are modified)

• Time needed for query execution

• Array of conditions declared in WHERE part of the query (array of

org.enhydra.dods.cache.Condition objects). This is needed only for simple queries.

Queries that were created with the query's and QueryBuilder's methods that support joins
between tables are stored in multi-join cache. Queries that are supported by DataStruct cache
are simple queries. Simple query is query that is not multi-join query and for which cache
mechanisms can determine whether DataStruct object is query result or not (and query).
Other queries (that are not multi-join queries) are complex queries.

The default values for maximal DataStruct cache size, simple, complex and multi-join query
cache are 0 (no caching).

The default values for maximal cache size for DataStruct, simple and complex query cache
are 0 (no caching).

Cache configuration

Cache configuration is explained on DiscRack example (directory
<dods_output>/examples/discrack). The cache parameters are defined on three levels.
The first level is DatabaseManager level. On this level can be defined the following
parameters (all information are optional):

DatabaseManager.defaults.cache.maxCacheSize = 100
DatabaseManager.defaults.cache.maxSimpleCacheSize = 20
DatabaseManager.defaults.cache.maxComplexCacheSize = 5
DatabaseManager.defaults.cache.maxMultiJoinCacheSize = 3
DatabaseManager.defaults.cache.reserveFactor = 0.1
DatabaseManager.defaults.cache.CachePercentage = -1
DatabaseManager.defaults.cache.initAllCaches = true

The second level is database level. On this level can be defined the following parameters (all
information are optional):

DatabaseManager.DB.<database_name>.cache.maxCacheSize = 1100
DatabaseManager.DB.<database_name>.cache.maxSimpleCacheSize = 10
DatabaseManager.DB.<database_name>.cache.maxComplexCacheSize = 5
DatabaseManager.DB.<database_name>.cache.maxMultiJoinCacheSize = 3
DatabaseManager.DB.<database_name>.cache.reserveFactor = 0.1

 Chapter 4: Tutorial: Building Enhydra applications

77

Getting Started with Enhydra

DatabaseManager.DB.<database_name>.cache.CachePercentage = -1
DatabaseManager.DB.<database_name>.cache.initAllCaches = true

The third level is table level. In the case of DiscRack example, there are two tables: Disc and
person. The tables can have the following parameters:

Table Disc - cache configuration
DatabaseManager.DB.DiscRack.Disc.cache.maxCacheSize = 10000
DatabaseManager.DB.DiscRack.Disc.cache.maxSimpleCacheSize = 2000
DatabaseManager.DB.DiscRack.Disc.cache.maxComplexCacheSize = 250
DatabaseManager.DB.DiscRack.Disc.cache.maxMultiJoinCacheSize = 100
DatabaseManager.DB.DiscRack.Disc.cache.reserveFactor = 0.1
DatabaseManager.DB.DiscRack.Disc.cache.CachePercentage = 0.5

Table Person - cache configuration
DatabaseManager.DB.DiscRack.person.cache.maxCacheSize = -1
DatabaseManager.DB.DiscRack.person.cache.maxSimpleCacheSize = 2000
DatabaseManager.DB.DiscRack.person.cache.maxComplexCacheSize = 250
DatabaseManager.DB.DiscRack.person.cache.maxMultiJoinCacheSize = 75
DatabaseManager.DB.DiscRack.person.cache.initialCondition = *

Cache defaults on DatabaseManager and Database are default values for all application's
table caches. If, any of these parameters is defined on the Database level, that value is used
as a default for all tables. If any of the parameters is not defined on the Database level, then,
if it is defined on the DatabaseManager level, this value is used. If any of these parameters is
not defined neither on the Database, nor on DatabaseManager level, DODS uses its own
program defaults. For maxCacheSize, maxSimpleCacheSize, maxComplexCacheSize,
maxMultiJoinCacheSize and reserveFactor program default value is 0, for CachePercentage
is -1.0, and for initAllCaches is false.

If any of table level parameters maxCacheSize, maxSimpleCacheSize,
maxComplexCacheSize, maxMultiJoinCacheSize, reserveFactor and CachePercentage is
defined on the table level, that value is used. If not, the default value for all tables is used
(explained in previous paragraph).

Table parameter initialCondition can be defined only on the table level. It contains "where"
part of select clause. With this select clause is DataStruct cache of specified table initialized.
If initialCondition = '*', the entire table will be added to the DataStruct cache in DataStruct
cache initialization. If the parameter is NULL or not defined, no objects are added to the Data
cache during the cache initialization.

It, for any table parameter initialCondition is not defined and the initAllCaches parameter is
set to 'true' (on DatabaseManager or Database level, as explained before), the default value
of initialCondition parameter for the table is "*".

Parameter maxCacheSize contains information about maximal size of DataStruct cache.
Parameter maxSimpleCacheSize contains information about maximal size of simple query
cache. Parameter maxComplexCacheSize contains information about maximal size of
complex query cache. Parameter maxMultiJoinCacheSize contains information about
maximal size of multi-join query cache.

Parameter CachePercentage is used for query to make decision what type of query will be
executed: select t.* or select t.oid. If no lazy loading and caching is turned on and value of
CachePercentage is less then currently used cache (in percents), t1.* is used for query
statement. Otherwise select t.oid. Parameter value 0 means use always t1.oid if cache is
turned on, -1 (default) means never if not lazyloading but cached. If lazy loading is on always
is used t1.oid query.

In <table_name>Query.java class are added new methods:

• setLoadData(boolean newValue)

 Chapter 4: Tutorial: Building Enhydra applications

78

Getting Started with Enhydra

If parameter newValue set to true, query select t.* will be executed no matter what are
the values of parameters lazyLoading and CachePercentage.
• getLoadData()
Returns true if query select t.* will be executed, otherwise false.

Reserve factor is constant used in query caching. It is percent of how many more object are
taken for evaluation. If num is number of needed results, then it is used

num + reserveFactor * num
objects for estimating what is quicker: go to database for all object that are not in the cache,
or run again query on database. This value is given in percents, as number between 0 and 1
(0.25 means 25%).

For example, if reserveFactor is 0.5, and wanted number of results is 50, the estimation will
be done on 75 (50 + 0.5 * 50) objects.

In the following text are explained maximal cache sizes (for DataStruct cache and query
caches). The parameters maxCacheSize, maxSimpleCacheSize, maxComplexCacheSize
and maxMultiJoinCacheSize of application's configuration file define these sizes.

• maxCacheSize > 0
This cache is limited. The maximal number of elements in the cache is maxCacheSize.

• maxCacheSize = 0
This means that there is no cache available. This value excludes cache from use.

• maxCacheSize < 0
This cache is unlimited.

In the previous mentioned DiscRack example for cache configuration, DataStruct cache for
table person has type full, because maxCacheSize is negative and initialCondition is "*". This
combination of parameters values forms special case of LRU: full cache.

DODS has class org.enhydra.dods.cache.UpdateConfigurationAdministration. This class has
public synchronized methods that provide possibility of run-time setting some cache and table
parameters. This class is used by Enhydra application CacheAdmin. It is not recommended to
be used by user applications.

Select statement

For query by oid (query by oid is query which "where" clause contains request for DO with
specified oid), first is checked in the DataStruct cache if there is DataStruct object with
desired oid. If DataStruct object is not find in the cache, hitting the database is performed, and
the retrieved DataStruct object is added to the DataStruct cache. Queries by oid are not
added in the query cache (they are trivial).

For full caching also, for query by oid, first is checked in the DataStruct cache if there is
DataStruct object with desired oid. If DataStruct object is not find in the cache, hitting the
database is not performed (all rows from the table are in the cache, so there is no result of
this query).

For non-oid queries, for full caching, if the query is simple query, the query's result can be
retrieved from the DataStruct cache, so there is no need to retrieve results from the database.
In any other case of full caching, everything is done the same as for any other query (this is
explained in the next paragraph).

For all other queries, it is checked if the query is already in the Query cache (simple, complex
or multi-join). Query object has one attribute called "orderRelevant" which is true if query

 Chapter 4: Tutorial: Building Enhydra applications

79

Getting Started with Enhydra

results must not be modified (no DO can be inserted, updated or deleted from cached query
results). With the method isOrderRelevant() is checked whether the results of select can be
modified or not.

If query is in the cache and the isOrderRelevant() returns false, result oids are retrieved from
QueryCache. If query is in the cache and the isOrderRelevant() returns true, and the result
oids are not modified, the result oids are also retrieved from query cache. But, if query is in
the cache and the isOrderRelevant() returns true, but the result oids are modified, the result
oids from the QueryCache are not used. Instead of that, hitting the database is performed.

If the result is found in the query cache, for every result oid, it is checked whether there is that
object is in the DataStruct cache. Then, when is counted number of results that are not in the
DataStruct cache, the time needed for performing queries by oid on database for all oids from
the result that are not in the cache is compared against the time needed for performing the
whole query.

If the time needed for performing queries by oid on database is less or equal to query
execution time, results are retrieved from the cache, and those that are not there, from
database (using queries by oid).

If the time is longer, or the query is not in the query cache, or the query supports joins with
other tables, or cached query results are modified but for this query is order relevant, the
query is performed on the database.

If the results are retrieved from the database, the query and its necessary data are put in the
Query cache (simple, complex or multi-join).

If there was already that query in the query cache, but the query was executed again
(because there were not enough result oids in the result list, or because the old query was
modified, and for the new query isOrderRelavant is true), the old query is replaced by the new
one (this query is not modified).

Insert statement

Data object is inserted in the database and first time the data is moved to original DataStruct,
it is added to the DataStruct cache, after successful commit.

All complex and multi-join queries of the table that are for the database of inserted DO, are
removed from the query caches.

For every simple query of the table (with the inserted DO's database) from query cache it is
checked whether inserted DO is query result or not.

If new DO is query result, in the query cache is this query marked as "modified".

If its cached results are complete (all are in the query cache), oid of this inserted DO is added
to query cached result list. If cached results are not complete oid is not added to the list.

Update statement

Data object is updated in the database and first time the data is moved to original DataStruct,
it is added to the cache if commit was successful (the old DataStruct object is removed from
the DataStruct cache if it was there).

All complex and multi-join queries of the table that are for the database of inserted DO are
removed from the query caches.

 Chapter 4: Tutorial: Building Enhydra applications

80

Getting Started with Enhydra

For every simple query of the table (with the inserted DO's database) from query cache it is
checked whether updated DO is the query result or not.

If yes, this query is marked as "modified" in the query cache, and the DO is included in query
results only if it wasn't in the cache and the cached result list is complete.

If no, if DO's oid exists in the query results, it is removed from there and because of this
change of the results, this query is marked as "modified" in the query cache.

Delete statement

Deletes DO from the database and removes its original DataStruct object originalData from
the DataStruct cache (if it is there).

Goes through the query cache (simple, complex and multi-join) and wherever finds this DO,
removes it from the query results and marks that query as "modified".

Cache Initialization

For every cache, it is possible to define initial query statement which contains "where" clause
which is used during DataStruct cache initialization. When cache is created, query with this
"where" condition is performed on the database, and the results are put in the DataStruct
cache.

Before the query is executed, parameter maxDBrows is set to maxCacheSize using method

setMaxRows(int max)
 of <table_name>Query.java class.

Using this method, maximum maxCacheSize DOs will be retrieved from the database and
their original DataStruct objects (originalData) will be added to DataStruct cache.

If a table is fully cached, simple queries are done in the memory (even the first time this is
done in the cache and not in the Database)

If initial query statement is set to "*", all rows of the table from the database (up to
maxCacheSize) will be put in the DataStruct cache.

If initial query statement is set to null, no rows from the table in database will be put in the
DataStruct cache (cache would be empty).

Table and cache statistics
 DODS has the possibility of providing table and cache statistics.
 The public method:

get_statistics()

 of the <table_name>DO.java class returns the statictics object (statistics object must
implement org.enhydra.dods.statistics.Statistics interface). This object provides the following
methods for the table statistics and one method for retrieving cache statistics:

• getStatisticsType()
 Returns type of the statistics. It returns 0 if statistics is for table that has no caching, 1 if
statistics is for table with only Data caching, and 2 if statistics is for table with Query caching.

• getInsertNum()

 Chapter 4: Tutorial: Building Enhydra applications

81

Getting Started with Enhydra

 Returns number of insert statements performed on the table.

• setInsertNum(int newInsertNum)
 Sets number of insert statements performed on the table to value newInsertNum value.

• incrementInsertNum()
 Increases number of insert statements performed on the table for one.

• getUpdateNum()
 Returns number of update statements performed on the table.

• setUpdateNum(int newUpdateNum)
Sets number of update statements performed on the table to value newUpdateNum value.

• incrementUpdateNum()
 Increases number of update statements performed on the table for one.

• getDeleteNum()
 Returns number of delete statements performed on the table.

• setDeleteNum(int newDeleteNum)
 Sets number of delete statements performed on the table to value newDeleteNum.

• incrementDeleteNum()
 Increases number of delete statements performed on table for one.

• getDMLNum()
 Returns number of DML operations (inserts, updates and deletes) performed on the table.

• getLazyLoadingNum()
 Returns number of lazy loadings performed on the table.

• setLazyLoadingNum(int newLazyLoadingNum)
 Sets number of lazy loadings performed on the table to value newLazyLoadingNum.

• incrementLazyLoadingNum()
 Increases number of lazy loadings performed on the table for one.

• getStartTime()
 Returns time when the statistics was started.

• setStartTime(Date startTime)
 Sets time when the statistics starts to value startTime.

• getStopTime()
 Returns time when the statistics was stopped.

• setStopTime(Date stopTime)
 Sets time when the statistics stops to value stopTime.

• stopTime()
 Sets stop time to current time.

• getQueryNum()
 Returns total number of non-oid queries performed on the table. Query by oid is query which
"where" clause contains request for DO with specified oid. Non-oid query is any other query.

• setQueryNum(int newQueryNum)
Sets total number of non-oid queries performed on the table to value newQueryNum.

• incrementQueryNum()
 Increases total number of non-oid queries performed on the table for one.

• getQueryByOIdNum()

 Chapter 4: Tutorial: Building Enhydra applications

82

Getting Started with Enhydra

 Returns total number of queries by oid performed on the table.

• setQueryByOIdNum(int newQueryByOIdNum)
 Sets total number of queries by oid performed on the table to value newQueryByOIdNum.

• incrementQueryByOIdNum()
 Increases total number of queries by oid performed on the table for one.

• getQueryAverageTime()
 Returns average time needed for executing non-oid query.

• updateQueryAverageTime(int newTime)
 Updates average time needed for executing non-oid queries to value newTime.

• getQueryByOIdAverageTime()
 Returns average time needed for executing query by oid.

• updateQueryByOIdAverageTime(int newTime, int no)
 Updates average time for executing OId queries with time newTime and increments number of
them by paramether no.

• clear()
 Clears DO, simple query and complex query statistics.

• getCacheStatistics(int type)
 Returns cache statistics (objects must implement interface
org.enhydra.dods.statistics.CacheStatistics) for :

o DataStruct cache when parameter type equals 0

o simple query cache when parameter type equals 1

o complex query cache when parameter type equals 2

o multi-join query cache when parameter type equals 3

 Cache statistics objects have the following methods:

• getCacheAccessNum()
 Returns total number of times the cache was accessed.

• setCacheAccessNum(int num)
 Sets total number of times the cache was accessed to value num.

• incrementCacheAccessNum(int num)
Increases total number of times the cache was accessed for value num.

• getCacheHitsNum()
 Returns number of cache accesses that were successful.

• setCacheHitsNum(int cacheHitsNum)
 Sets number of of cache accesses that were successful to value cacheHitsNum.

• incrementCacheHitsNum(int num)
 Increases of cache accesses that were successful for value num.

• getUsedPercents()
 Returns how much cache is currently used. This value is given in percents. If cache is
unbounded, method returns 100%.

• getCacheHitsPercents()
 Returns how many cache accesses were successful. This value is given in percents.

• clearStatistics()
 Clears statistics.

 Chapter 4: Tutorial: Building Enhydra applications

83

Getting Started with Enhydra

User wildcards

Like cache size, user wildcards are also defined in application’s configuration file.

Example:
For file discRack.conf part of code for user wildcards can look like:

User wildcards

DatabaseManager.DB.User.userWildcard = "*"
DatabaseManager.DB.User.userSingleWildcard = "_"
DatabaseManager.DB.User.userSingleWildcardEscape = "§"
DatabaseManager.DB.User.userWildcardEscape = "§"

Loading the schema

The picture 4.12 shows the schema of the Disc Rack example (the example is explained
detailly in the chapter 5).

Figure 4.12 DiscRack object-model/schema

There are two tables:

• Person, which has columns: Login, Password, FirstName and LastName
• Disc, which has columns: Title, Artist, Genre, Owner and isLiked

The complete schema of the DiscRack database generated by DODS is pictured in Figure
4.13. DODS shows the features common to both the database schema and the object model.
For example, the disc data object has title and artist fields, that are the properties (members)
of the Java class, as well as the columns of the corresponding database table.

DODS creates Java code for object operations and SQL code for database operations (for
example, the one-to-many relationship between person and discs).

Figure 4.13 DiscRack database schema generated by DODS

 Chapter 4: Tutorial: Building Enhydra applications

84

Getting Started with Enhydra

There are some differences from the original database schema:

• DISC and PERSON tables have two additional fields, OID and VERSION

• There is a third table, OBJECTID, that contains one column, NEXT, with a single row

The OID column is the primary key for each table created by DODS. The application code
generated by DODS ensures that every row has a value of OID that is unique within the
database. Whenever a new row is added to a table, the application generates a unique object
ID to put in the OID column. It uses the OBJECTID table to keep track of the next object ID to
be assigned.

DODS application code uses the VERSION column in each table to ensure that the data (that
application is updating) is accurate. Because many users can be accessing the database
simultaneously, a record can change between the time the application retrieves it and when
the application attempts to change the record.

Every time an application updates a row, it increments the VERSION column in the database.
The application qualifies updates on both the VERSION and OID columns - if it finds that
there are no rows that have the expected values, then it knows that another process has
changed the row it is trying to update, and it throws an exception. You can catch the
exception in your application code to handle such situations appropriately.

Generated structure

DODS generates the following files and subdirectories in the data directory:

• disc and person directories, which contain the Java code for the disc and person data
objects, respectively, and an SQL file defining the corresponding database tables

• create_tables.sql and drop_tables.sql files, which contain standard SQL statements to

create and remove the disc and person tables from a database, respectively

• file build.xml

• classes directory, which is initially empty

Each data object directory contains java source files to create four classes. For example, the
person data object directory contains personDO, personDOI, personQuery, and
personDataStruct. The data object and the query classes are the most commonly used
classes.

DODS also generates build.xml file for the data layer. This lets you compile the data layer
independently or along with the entire project. The empty classes directory is used only if you
compile the data layer separately.

Database Independency

DODS generates java code that is database independent. This means that java code is the
same no matter which database is used.

 When you want to change the database, the only thing you need to do is to change
<App_name>.conf file (update it with information considering new database). This change is
necessary for connection to the database.

 Chapter 4: Tutorial: Building Enhydra applications

85

Getting Started with Enhydra

Using multi databases in DODS

DODS has the possibility of working with more than one database at the same time. This
means that, when the application is started, it doesn't have to be stopped in order to change
the database the application uses.

 The table supports multi databases if the attribute multidb of <table> tag in doml file is set
to true for that table.

 To take advantage of simultaneous use of multiple table DODS requires separate doml file
for every distinct database.

 Example:
<doml>

<database database="Standard">
.........

<package id="multibase.data.employee">
<table id="multibase.data.employee.Employee" multidb="true">

<column id="firstName" usedForQuery="true">
<type dbType="VARCHAR" javaType="String"/>

</column>
........

</table>
.........

</package>
.........

</doml>

<doml>

<database database="Standard">
.............

<package id="multibase.data.employee.programer">
<table id="multibase.data.employee.programer.Programer"

multidb="true">
<column id="firstName" usedForQuery="true">

<type dbType="VARCHAR" javaType="String"/>
</column>
.............

</table>
............

</package>
............

</database>
</doml>

 For that kind of table, in <App_name>.conf file must be defined all logical databases the
application will use on this table. For each of these databases must be configured all needed
parameters.

 Example:
#--
Database Manager Configuration
#--

DatabaseManager.Databases[] = "programer", "employee"
DatabaseManager.DefaultDatabase = "employee"

DatabaseManager.DB.programer.Connection.User = ""
DatabaseManager.DB.employee.Connection.User = ""

DatabaseManager.DB.programer.Connection.Password = ""
DatabaseManager.DB.employee.Connection.Password = ""

..

 Chapter 4: Tutorial: Building Enhydra applications

86

Getting Started with Enhydra

DatabaseManager.DB.programer.Connection.Logging = false
DatabaseManager.DB.employee.Connection.Logging = false

DatabaseManager.DB.programer.ObjectId.CacheSize = 20
DatabaseManager.DB.programer.ObjectId.MinValue = 1000000

DatabaseManager.DB.employee.ObjectId.CacheSize = 20
DatabaseManager.DB.employee.ObjectId.MinValue = 1000000

 If the table doesn't support multi databases, the default database will be used for this table.

 When the <App_name>.conf file (with information about all databases) is updated, and the
application is started, it uses the default database. The definition of the new (desired)
database is being done in the stage of creation of DO and Query objects.

 When a Query object is created for a database (given or default), the results of this Query
are only DOs from that database, not from any other database.

 If caching is used, there is only one cache for all <table_name>DO's original data
originalData (these DataStruct objects can belong to different databases, but are all placed in
the same DataStruct cache).

 DODS takes care of referential integrities within the database which means that DODS
searches referenced object in the same database in which the object that referenced it is. If
you want to use referenced objects from any other database, you must yourself take care of
referential integrities.

 In the <table_name>DO class public constructors and methods (query, createVirgin,
createCopy, createExisting) are now defined and with the database parameter.

 Here are some examples of using these constructors and methods.

 Query example:

ProgramerDO[] programers;
ProgramerQuery pQuery = new ProgramerQuery("programer");
programers = pQuery.getDOArray();
Create example:
EmployeeDO newE=EmployeeDO.createVirgin("employee");
newE.setFirstName(employees[i][0]);
...................................
newE.save();

 Example of transferring data from one database to another

ProgramerDO[] programers;
ProgramerQuery pQuery = new ProgramerQuery("programer");
programers = pQuery.getDOArray();
for(int i=0; i< programers.length; i++) {
EmployeeDO newEmployee=EmployeeDO.createVirgin("employee");
newEmployee.setFirstName(programers[i].getFirstName());
newEmployee.setLastName(programers[i].getLastName());
newEmployee.setOccupation("programer");
newEmployee.setDepartment("IT");
newEmployee.save();
}

 You can use them with this parameter in which case the object will be created for the given
logical database, or you can use these constructors and methods without database
parameter. In this case, they will be created for default database. If the methods with
database parameter are used, and the parameter is set to null, the default database is used.

 Chapter 4: Tutorial: Building Enhydra applications

87

Getting Started with Enhydra

Mass modifications

DODS's duality (a problem)

DODS gives you the option to choose how you want to modify rows of table in database.
Obvious one is to use instances of generated DO classes:

SomeDOClass sgDO = SomeDOClass.createExisting(oid);
sgDO.delete();

Other option is QueryBuilder, which may be used to build not only select queries, but update
or delete statements, as in:

QueryBuilder qb = getQueryBuilderForClass("SomeDOClass");
qb.setDeleteQuery();
qb.addWhereClause("oid", Integer.parseInt(enumoid), QueryBuilder.EQUAL);
qb.executeUpdate();

There could be a situation where you may want to touch many rows at once.

First approach must be encompassed by loop which would iterate value of oid, thus producing
many separate SQL statements. This isn't efficient at all, and it gets slower as number of rows
raises.

Second approach, using QueryBuilder produces one SQL statement, and executes much
faster. But: Cache implementation in DODS includes caching DataStructs and queries for
table globally, and caching DO objects in transaction. Both caches are implemented in
generated classes only, so using QueryBuilder won't touch caches.

Warning: Direct use of QueryBuilder is NOT recommended, since it doesn't affect any of the
caches, and your application may work erroneously.

Generated classes (a solution)

New options in .doml file are massUpdates and massDeletes. They're implemented as
boolean attributes of doml and table tags. Default values are false.

When turned on new options allow you to build data layer including two classes xxxUpdate
and xxxDelete.

These classes provide you QueryBuilder speed in massive update operations, while
maintaining caches (both global and transactions) valid.

Classes xxxUpdate and xxxDelete have constructor that takes xxxQuery as parameter. This
instance of query builds WHERE clause of a statement, while setCOLUMN methods provide
contents of SET part.

xxxQuery query = new xxxQuery(dbt);
query.setQueryCOLUMN_NAME(value);
xxxUpdate update = new xxxUpdate(query);
update.setANOTHER_COLUMN(another_column_value);
update.save();
dbt.commit();

In order to keep caches valid, global query caches (for affected table) are cleared, because
we cannot compute their consistency without all DataStructs. DataStructs in global cache and
DO objects in transaction caches are removed (for delete) or emptied (they will be loaded as
with lazy load feature, for update).

 Chapter 4: Tutorial: Building Enhydra applications

88

Getting Started with Enhydra

New .conf parameter SelectOids introduced at DatabaseManager, LogicalDatabase, and
table level, specifies whether there would be additional select statement executed to collect
oids that would be affected by mass modification.

Default value for SelectOids is false, and usual override method is applied too (table level
overrides database which in turn overrides manager's value). If parameter is true, before
actually executing massive modifications select statement will be run to collect list of OId's.
This is then used to update cache for listed DataStructs/DOs only. Otherwise (SelectOids is
false), all instances of xxxDataStruct/xxxDO will be updated.

Both xxxUpdate and xxxDelete have method setSelectOIds(boolean) for developer to prevent
configuration parameter SelectOids effects. If certain mass modification will affect many rows,
developer may choose to prevent collecting oids, so even if administrator sets parameter to
true, application doesn't lose on its speed.

xxxQuery query = new xxxQuery(dbt);
query.setQueryCOLUMN_NAME(value);
xxxDelete delete = new xxxDelete(query);
delete.setSelectOIds(false);
delete.save();
dbt.commit();

Conversion of doml file

DODS has the possibility of converting doml file, release 5.*. As described in “Quick Compile”,
Generator Wizard has the possibility of converting doml file into html, pdf, xmi and ptl
document types. The name of the target (html, pdf, xmi, ptl) files will be the same as the name
of doml file that is being converted, and they would be located in output directory.

 The doml file can also be converted manually. For this purpose are used files that are in
<dods _home>/bin folder, and they are:

• doml2html - converts doml 5.* file into html file.
doml2html is used with the following parameters:

 doml2html [-help] [doml5*-file] [html-file]
 where:

help - prints message for usage and exits.
doml5*-file - doml file relese 5.*.
html-file - desired target html file.

• doml2pdf - converts doml 5.* file into pdf file.
doml2pdf is used with the following parameters:

 doml2pdf [-help] [doml5*-file] [pdf-file]
 where:

help - prints message for usage and exits.
doml5*-file - doml file relese 5.*.
pdf-file - desired target pdf file.

• doml2xmi - converts doml 5.* file into xmi file.
doml2xmi is used with the following parameters:

 doml2xmi [-help] [doml5*-file] [xmi-file]
 where:

help - prints message for usage and exits.
doml5*-file - doml file relese 5.*.
xmi-file - desired target xmi file.

• doml2ptl - converts doml 5.* file into ptl file.
 doml2ptl is used with the following parameters:

 Chapter 4: Tutorial: Building Enhydra applications

89

Getting Started with Enhydra

 doml2ptl [-help] [doml5*-file] [ptl-file]
 where:

help - prints message for usage and exits.
doml5*-file - doml file relese 5.*.
ptl-file - desired target ptl (Rational Rose) file.

• olddoml_2_doml60 - converting doml 3.1 and 5.0 into doml 6.x file.
olddoml_2_doml60 is used with the following parameters:

olddoml_2_doml60 [-help] [olddoml-file] [doml60-file]
where:

help - prints message for usage and exits.
olddoml_2_doml60 - doml file relese 3.1 or 5.0.
doml60-file - desired target doml file relese 6.0.

• doml31_2_conf60 - converting old style (doml 3.1) properties of doml elements, from

doml 3.1 file, to configuration file properties parameter setings in output file.
doml31_2_conf60 is used with the following parameters:

doml31_2_conf60 [-help] doml31-file confProperty60-file
[defaultLazyLoading] [defaultCaching]

where:
help - prints message for usage and exits.
doml31-file - Original doml 3.1 file
confProperty60-file - Output file where configuration properties will be written.
defaultLazyLoading - If LazyLoading is not defined in the doml file (for that table)
then this value is used (values: true/false).
defaultCaching - If Caching is not defined in the doml file (for that table) then this
value is used (values: true/false).

If LazyLoading (or Caching) is not defined in the doml file, and there is no default
value defined (defaultLazyLoading or defaultCaching), the following line is written to
the application configuration file (no value) :

DatabaseManager.DB.<database_name>.<table_name>.cache.maxCacheSize=
DatabaseManager.DB.<database_name>.<table_name>.cache.initialCondition=
DatabaseManager.DB.<database_name>.<table_name>.lazyLoading=

Template sets

User can make its own template sets. All template sets (standard and users) are placed in
one directory. The name and location of this directory is defined in the dodsConf.xml file. This
file is detailly explained in the next section.

 Also, this directory can be set from DODS Ant task (parameter templateDir).This was
explained before in this chapter, in the DODS Ant task section.

 Within this template set directory, every template set is placed in its own subdirectory.

Custom Configuration

To configure DODS, use dodsConf.xml file, located in <dods_root>/build/conf directory. This
file contains the following information:

• Location of templates - tag <TemplateDir>

example:

<TemplateDir>C:/DODS/build/template</TemplateDir>

 Chapter 4: Tutorial: Building Enhydra applications

90

Getting Started with Enhydra

• For each database vendor, location of its configuration file (in xml format) - tag
<Database>. The paths are relative to dodsConf.xml file folder.

 example:

<Database>
<Vendor name="Standard">StandardConf.xml</Vendor>
<Vendor name="InstantDB">InstantDBConf.xml</Vendor>
<Vendor name="Oracle">OracleConf.xml</Vendor>
<Vendor name="Informix">InformixConf.xml</Vendor>
<Vendor name="MSQL">MSQLConf.xml</Vendor>
<Vendor name="Sybase">SybaseConf.xml</Vendor>
<Vendor name="PostgreSQL">PostgreSQLConf.xml</Vendor>
<Vendor name="HypersonicSQL">HypersonicSQLConf.xml</Vendor>
<Vendor name="DB2">DB2Conf.xml</Vendor>
<Vendor name="QED">QEDConf.xml</Vendor>
<Vendor name="MySQL">MySQLConf.xml</Vendor>

</Database>

 Database Vendor's configuration file contains information about that database (type of
ObjectId, column name for oid and version, information about DeleteCascade, constraints,
quotes,comments, characters for like and wildcard, mapping JDBC types to vendor-specific
data types,...).

 If tags <ClassPath>, <ClassName> in database vendor's configuration file are not
mentioned, standard code is generated for that database vendor.

 If database is specific, path to jar file for that database vendor is in tag <ClassPath>, and
its main class is in tag <ClassName>.

 example, for database Informix:

<ClassPath>C:/DODS/lib/dbvendors/informix.jar</ClassPath>
<ClassName>com.lutris.appserver.server.sql.informix.InformixLogicalDatabase<
/ClassName>

More Information

DODS, especially caching and transactions, is more detailly explained in the document:

“Inside DODS” (<dods_home>/doc/dods directory).

If DODS is installed within Enhydra, the Enhydra's index.html
(<enhydra_root>/multiserver/webapps/enhydra-docs directory) containes link to
index_dods.html (or index_dods.pdf) page.

In DODS, this page is root of doc directory (<dods_home>/doc).

This page (index_dods) contains the link to “Inside DODS” document.

 Chapter 4: Tutorial: Building Enhydra applications

91

Getting Started with Enhydra

Chapter 5
DiscRack sample application

This chapter introduces the DiscRack application, and uses it as a comprehensive example to
illustrate key concepts of Enhydra application development. In order to follow that you should
include sources of demos when installing Enhydra.

Building and running DiscRack

Enhydra includes the DiscRack application, which is installed in the <enhydra_root>/demos-
source/discRack directory. Throughout this chapter, this top-level directory containing
DiscRack is referred to as <DiscRack_root>. To build and run DiscRack, you need to do:

1 Check all application’s configuration files (all discRack.conf.in files) and make sure all

Database Manager configuration settings are correct

2 Build the application by entering the enhydra-ant command from the <DiscRack_root>

directory. Building the application will generate all the classes and packages for the
DiscRack application.

Note The DiscRack database and corresponding application data layer are identical to the

those created in the chapter 4, “Tutorial: Building Enhydra applications,” with the exception
of package naming. This database schema is loaded for you by default, using an hsql
database.

3 The jar files for default hSQL database are included in Enhydra.

4 To run DiscRack, enter the following commands:

1 UNIX:

cd <DiscRack_root>/application/bin
./start-enhydra

2 WINDOWS:

cd <DiscRack_root>/application/bin
start-enhydra

5 To access the application, enter the URL http://localhost:8080/discRack
(http://localhost:9000/discRack for Enhydra Enterprise installation) in your browser location
field.

Note: Communication port value is one of Enhydra 6.x installation options. Default value is
set to 8080 for Enhydra and 9000 for Enhydra Enterprise installation.

Your browser displays the following screen:

 Chapter 5: DiscRack sample application

92

http://localhost:8080/discRack
http://localhost:9000/discRack

Getting Started with Enhydra

Figure 5.1 Browser displaying the DiscRack Login presentation object

Play around with the application to get a sense for how it works:

• Click the Register button to add yourself as a user, then add some discs to your inventory.

• Try viewing your inventory and editing one of the discs.

Process and preliminaries for developing
applications

Before discussing the workings of the DiscRack application, it is useful to understand how you
go about developing an Enhydra application in general. You can adapt the traditional software
development process to Enhydra application development to ensure that:

• The application does what it is supposed to do.

• You complete the project in a timely and cost-effective manner.

• The application is easy to maintain and upgrade.

An in-depth discussion of software methodology is beyond the scope of this book, but it is
helpful to understand the basic principles and how they apply to the simple DiscRack
application, so that you can reap the benefits when developing a more complex, real-world
application.

A simplified Enhydra application development process consists of these steps:

• Requirements definition

As specifically as possible, create a statement of what the application is supposed to
accomplish. This statement essentially defines the high-level goals of the application.

 Chapter 5: DiscRack sample application

93

Getting Started with Enhydra

• Functional specification

Outline how the application solves the problem(s) stated in the requirements definition.

• Design and storyboard

Design the presentation, data, and business layers of the application, then create the
storyboard.

• Development and testing

Code and test the application.

• Deployment

Pack the application and install it in its operational environment.

This abbreviated methodology illustrates the key aspects of the development process.
Complex, real-world applications generally call for a more comprehensive process that
includes project milestones, cost analysis, documentation, and so on. The following sections
illustrate these abbreviated steps.

DiscRack requirements definition

The Otter family needs a way to track their compact disc collections. Each family member has
a CD collection, and they sometimes get mixed up: Otters forget who owns what. They decide
that an Enhydra application would be the perfect way to help them manage their CDs. After
some discussion, they arrive at a brief requirements definition:

DiscRack will let each user keep track of his or her individual CD inventory by adding,
modifying, and deleting CDs as needed. The application will keep track of all the pertinent
information about each CD, including artist and title.

DiscRack functional specification

Briefly, DiscRack will meet its requirements as follows:

• Maintain a list of users and passwords

To access their CD inventory, users must log in with a user name and password.

• Allow new users to sign up by entering their name, user name, and password.

• Once logged in, a user can see his or her CD inventory and:

• Add new CDs to the inventory.

• Edit existing CD entries.

• Delete an existing entry, with a confirmation prompt.

• The information that will be displayed for each CD includes artist, title, genre, and whether

or not the user likes the CD.

 Chapter 5: DiscRack sample application

94

Getting Started with Enhydra

Design and storyboard

The bulk of this step consists of the engineering design for the application, including the
design of database schema and corresponding data layer, business logic, and presentation
logic. The user interface design can be largely encapsulated by a storyboard.

A storyboard is a visual way of describing a user’s navigation paths through the application. It
provides an outline of the application’s user interface, and a framework from which the rest of
the application design can proceed.

A conceptual storyboard, which is largely an application flowchart, is sometimes referred to as
a site map, in contrast to a mocked-up HTML storyboard. This book refers to both as a
storyboard. The storyboard for DiscRack is shown in Figure 5.2.

Figure 5.2 DiscRack Storyboard

You can see from the storyboard that there are five HTML pages in the application.

You can also see that the DiscCatalog page that shows the CD inventory is the central page
in the application. The first page the user sees will always be the Login page; the last page
will always be the Logout page.

 Chapter 5: DiscRack sample application

95

Getting Started with Enhydra

DiscRack includes a working storyboard (or application “mockup”) in the resources directory.
It is a set of static HTML pages that illustrate how the application works. To see the
storyboard, load this file in your browser:

<DiscRack_root>/discrack/presentation/resource/personMgmt/Login.html

This displays the DiscRack login page.

• Click the Login button to log in and see the disc catalog.

• Click the Register button to display the Register page.

• Click around on the links to can see the rest of the storyboard.

The flow of the HTML pages follows Figure 5.2. Of course, none of the back-end logic is
activated - all the HTML is static. But the storyboard gives you a good feel for how the
application works.

Developing, testing, and deploying

To finish the application process, the remaining steps include developing, testing, and finally
deploying.

When you build an application from the top level (with enhydra-ant command) , the build.xml
files create <DiscRack_root>/application/bin directory containing the configuration files, and
start-enhydra and stop-enhydra scripts. Also, the application’s .jar file is generated. It contains
all the class files for the application, along with any other files (for example, GIFs or
stylesheets).

To deploy the application, you need to start Enhydra with start-enhydra script.

The rest of this chapter describes the DiscRack application itself.

Overview of DiscRack

The basic DiscRack application consists of 23 classes in 9 packages. The fundamental
package structure and class functions for DiscRack are described in Table 5.1:

Table 5.1 DiscRack Application Overview

Class or package name

Description

discRack package

DiscRack Application object
DiscRackException Simple base exception class

Presentation layer/package

BasePO Abstract base class for all presentation objects
DiscRackSessionData Container for session data
ErrorHandler Class to handle exceptions not caught elsewhere in the application
DiscRackPresentationException Presentation layer exception class

presentation.personMgmt package

Package that contains the Register and Login classes for managing
presentation related to the PERSON table

presentation.discMgmt package

Package that contains the Edit and DiscCatalog classes for managing
presentation related to the DISC table

 Chapter 5: DiscRack sample application

96

Getting Started with Enhydra

Table 5.1 DiscRack Application Overview (continued)

Class or package name

Description

Business layer/package

DiscRackBusinessException Business layer exception class

business.person package

Package that contains two classes:
• Person, which represents a person
• PersonFactory, which has a single method that returns the Person object for
a user name

Person object for a user name

Package that contains two classes:
• Disc, which represents a disc
• DiscFactory, which has methods to return a Disc object for
an ID or for the owner’s name.

Data layer

Described in “Loading the schema” in the chapter 4.

WAP layer/package

The six HTML files are in the presentation/resource directory. These correspond to the five
HTML pages shown in the storyboard, plus an error page that appears when an error occurs
that is not handled by an exception.

Presentation layer

The presentation layer includes all of the HTML, Java, and JavaScript that defines the user
interface of the application.

Presentation base class

All of the presentation objects in DiscRack are derived from a common base class, BasePO,
which is an implementation of the Enhydra interface HttpPresentation. This interface has one
method, run(), which takes the HTTP request as a parameter.

A presentation base class enables the application to group common functionality in one place.
Notice that BasePO is an abstract class, so it cannot be instantiated itself, only subclassed.
Also, some of its methods are declared abstract, so subclasses must implement them.

BasePO has methods to handle some of the key tasks for DiscRack:

• User log in and session maintenance

• Event handling and calling the HTML generation methods in the subclass presentation
objects

Note It is important to realize that you are not required to use a base presentation class. An

alternative is to use the Enhydra Application object to perform common tasks.

The central method in BasePO is run(), which makes method calls to perform session
maintenance and event handling:

public void run(HttpPresentationComms comms) throws Exception {
// Initialize new or get the existing session data
initSessionData(comms);
// Check if the user needs to be logged in for this request.

 Chapter 5: DiscRack sample application

97

Getting Started with Enhydra

if(this.loggedInUserRequired()) {
checkForUserLogin();

}
// Handle the incoming event request
handleEvent(comms);

}

Every time a client browser requests a presentation object URL, the application calls run(). Its
logic is very simple:

• Initialize or get the existing session data by calling initSessionData().

• If this presentation object requires a log in (as determined by loggedInUserRequired(), an

abstract method implemented by each presentation object), then call checkForUserLogin()
to determine if the user has already logged in. If not, then redirect the browser to the login
page.

• Call handleEvent() to handle the current event and determine what HTML to generate.

Each of these methods are explained in the following sections.

The run() method has one parameter, comms, that is an object containing information about
the HTTP request. Its member properties include application, exception, request, response,
session, and sessionData. These six properties provide all of the information for the request.

For example, you can retrieve session data with getComms().sessionData.get() and query
string parameters with getComms().request.getParameter().

Session data and log in

The basics of Enhydra session maintenance were introduced in “Maintaining session state” in
the chapter 4. In contrast to the way session information was handled in that example,
DiscRack stores all its session information in a single DiscRackSessionData object and saves
that object in the user’s session.

DiscRackSessionData is a simple container class containing methods to get and set these
member properties:

• A Person object that represents the user

• A string, called userMessage, for error messages such as “Please choose a valid disc to
edit”

There are several advantages of keeping session data in one object:

• It centralizes control of session information.

This is especially helpful when multiple presentation objects access the same session data.

• It is type-safe.

Because Session.getSessionData() returns a generic Object, if you store session data
separately, you will have to cast each item to the appropriate type, which can lead to
runtime errors that are hard to debug.

• It facilitates session data maintenance.

If there is a large amount of session data, you can periodically clean up the unneeded data.
For example, say you wanted to store an array of hundreds of discs in the user’s session to

 Chapter 5: DiscRack sample application

98

Getting Started with Enhydra

speed access, but you didn’t necessarily want leave it there until they log out. With a
session data object, you could easily implement a method to clean up unneeded data in the
session.

initSessionData() method

The first thing each presentation object does is to call initSessionData(). The main portion of
this method is shown here:

Object obj =
getComms().sessionData.get(DiscRackSessionData.SESSION_KEY);
if(null != obj) {
this.mySessionData = (DiscRackSessionData)obj;

} else {
this.mySessionData = new DiscRackSessionData();
getComms().sessionData.set(DiscRackSessionData.SESSION_KEY,
this.mySessionData);

}

The first statement in this code snippet gets the session data object, using the session key
“DiscRackSessionData”. If the session data object exists, it gets typecast to
DiscRackSessionData; otherwise, the code creates a new DiscRackSessionData object and
saves it to the user’s session with set().

loggedInUserRequired() method

BasePO has an abstract method called loggedInUserRequired() that returns a boolean value,
which indicates whether a user is required to be logged in to access the associated page.
Thus, every presentation object is required to implement this method.

In BasePO.run(), if this method returns true, then checkForUserLogin() is called.

checkForUserLogin() method

The checkForUserLogin() method determines if a user has a valid login. If not, then it
redirects the browser to the Login page:

...
Person user = getUser();
if (null == user) {
...
throw new ClientPageRedirectException(LOGIN_PAGE);

}
...

Several statements that write debug messages to a log channel have been removed from this
code for clarity.

The call to getUser() is really just a call to getSessionData().getUser(), which retrieves the
Person object saved in the current session. If the user has not logged in, or the session has
timed out, then this method returns null, and the code will throw a
ClientPageRedirectException with the URL to the Login page as the argument to the
constructor.

When a client browser is redirected by a ClientPageRedirectException, any parameters from
a query string that were available to the original presentation object are lost. So if you want to

 Chapter 5: DiscRack sample application

99

Getting Started with Enhydra

pass an error message, you must put the information in the user’s session or directly into the
query string of the redirected URL.

Event handling

While you could create a separate presentation object for each task in an application, in many
cases it makes sense to have a single presentation object handle multiple events. For
example:

• Edit presentation object responds to four events - showing the add page, showing the edit
page, actually adding a disc to the database, and deleting a disc from the database.

• Login presentation object handles three events -show page, login, and logout.

Note In this context, an “event” refers to the task a user is performing.

Setting the event parameter

DiscRack keeps track of the event it is processing with the event parameter, which is sent in
the query string of a request. For example, this URL specifies the event showAddPage:

http://Localhost:8080/discRack/discMgmt/Edit.po?event=showAddPage
http://Localhost:9000/discRack/discMgmt/Edit.po?event=showAddPage

Note: Communication port value is one of Enhydra 6.x installation options. Default value is
set to 8080 for Enhydra and 9000 for Enhydra enterprise installation.

DiscRack illustrates several techniques for setting the event:

• showAddPage event is defined in the DiscCatalog.html page by the JavaScript onClick

event handler of the Add a New Disc button.

This calls the JavaScript function showAddPage(), which explicitly adds the event to the
URL requested:

document.location='Edit.po?event=showAddPage'

This function is defined in presentation/resource/discMgmt/DiscCatalogScript.html, not the
DiscCatalog page, as explained in “Replacing JavaScript”, later in this chapter.

• event (to add a disc to the database) is defined in the Edit.html page by a hidden form field:

<input type="hidden" name="event" value="add" id="EventValue">

When the user clicks the Add button, event=add is added to the form submission request
along with the other form data the user entered.

• exit event is defined in the DiscCatalog.html page by the second form’s ACTION attribute:

"../personMgmt/Exit.html"

At compile time, this URL, as explained in “URL mapping” (later in this chapter), is replaced
by:

../personMgmt/Login.po?event=logout'

Although DiscRack does not demonstrate it, you can also set the event when you throw a

 Chapter 5: DiscRack sample application

100

http://localhost:8080/discRack/discMgmt/Edit.po?event=showAddPage
http://localhost:9000/discRack/discMgmt/Edit.po?event=showAddPage

Getting Started with Enhydra

PageRedirectException. You use this exception to transfer control from one presentation
object to another. To specify an event, add this string to the URL string passed to the
constructor of PageRedirectException:

"?event=someEvent"

handleEvent() method

Once the event is set, the handleEvent() method of BasePO performs the actual event
handling:

String event = getComms().request.getParameter(EVENT);
String returnHTML = null;

if (event == null || event.length() == 0) {
returnHTML = handleDefault();

} else {
returnHTML = getPageContentForEvent(event);

}
getComms().response.writeHTML(returnHTML);

This method gets the event parameter from the request query string and calls the appropriate
event handler. If it does not find event in the request query string, it calls handleDefault(),
which is an abstract method and so must be implemented by all BasePO subclasses.
Otherwise, it calls getPageContentForEvent(), which returns the string content for the specific
event and PO.

This method contains the following three lines:

Method method = this.getClass().getMethod(toMethodName(event), null);
String thePage = (String)method.invoke(this, null);
return thePage;

This code uses reflection (defined in the java.lang.reflect package) to call the method in the
presentation object corresponding to the current event. Reflection lets you call a method
whose name is defined at runtime.

The call to toMethodName() returns a string, handleXxx, where Xxx is the current event (for
example, handleShowAddPage for showAddPage). The call to method.invoke() then calls this
method.

Reflection allows BasePO to call methods in its subclasses without knowing in advance the
names of the methods. This scheme works as long as the presentation object code follows
the appropriate naming conventions:

For every event “foo”, there must be a method handleFoo() in the presentation object class
that needs to handle that event.

HTML pages

You will find the HTML pages for DiscRack in the
<discRack_root>/discRack/presentation/resource directory. Keeping the HTML pages there
rather than in the presentation/src directory cleanly separates the HTML files from the Java
files. Although this is superfluous for small applications, it is a key advantage for large
applications with a graphic design team and a programming team.

The options.xmlc files in the presentation layer (directory resources) controls how the

 Chapter 5: DiscRack sample application

101

Getting Started with Enhydra

application uses the HTML files.

Maintaining the storyboard

The storyboard is initially just a mockup of the application. But with a few simple steps, you
can maintain a working storyboard throughout the entire development process. This capability
becomes particularly important for large applications created by a team of programmers and
graphic designers. Each team can work on their part of the application separately from the
other.

After the graphic designers complete their work, you can then replace the old, “mock up” user
interface with the new improved interface, which may include enhanced graphics, JavaScript
special effects, stylesheets, and so on. An example of doing this is illustrated in “Replacing
the user interface”, later in this chapter.

In addition to keeping the HTML files separate from the Java code, as described in the
previous section, there are three steps you must follow during development to maintain the
storyboard:

1 Define rules to map URLs like Login.html to Login.po

2 Remove dummy data from the HTML files

3 Replace JavaScript, if necessary

Each of these steps is described in detail in the following sections.

URL mapping

In the working storyboard, as in any static HTML pages, hyperlinks reference other HTML
pages. That is, the URLs in hyperlinks end in .html. However, in the working application, links
to dynamic pages reference presentation object URLs that end in .po. So, you need to do
something to convert the “normal” URLs in the storyboard to .po URLs.

You do this by using the XMLC -urlmapping option to map URLs from one form to another.
You use this option like this:

-urlmapping oldURL newURL

To use this option in the build process, you must create an XMLC options file options.xmlc.
For example:

The presentation/resource/discMgmt/options.xmlc file contains the lines:

-urlmapping 'Edit.html' 'Edit.po'
-urlmapping 'DiscCatalog.html' 'DiscCatalog.po'
-urlmapping '../personMgmt/Exit.html'
'../personMgmt/Login.po?event=logout'

When XMLC compiles the files in this directory, it replaces occurrences of the first string (for
example, Edit.html) with the second string (for example, Edit.po) in hyperlink URLs and
FORM ACTION attributes.

Removing dummy data

 Chapter 5: DiscRack sample application

102

Getting Started with Enhydra

HTML files often contain “dummy” data to make the storyboard pages look more
representative of their actual runtime appearance. You need to remove this dummy data from
the production application.

Look in presentation/resource/discMgmt/options.xmlc again. In particular, look at the last line:

-delete-class discardMe

The -delete-class option tells XMLC to remove any tags (and their contents) whose CLASS
attribute is discardMe. For example, if you look in
presentation/resource/discMgmt/DiscCatalog.html, you see this HTML:

<tr class="discardMe">
<td>Sonny and Cher</td>
<td>Greatest Hits</td>
<td>Boring Music</td>
<td>Not</td>

</tr>

It’s not that we don’t like Sonny and Cher, however, the CLASS attribute in the table row
definition marks the row for deletion.

Unlike ID, the value of a CLASS attribute does not have to be unique in the page. You can
remove all of the dummy in the application with the same discardMe value.

Replacing JavaScript

In addition to replacing URLs, you often need to replace JavaScript in the storyboard with
JavaScript to be used in the “real” application. For example,
presentation/resource/DiscCatalog.html contains the following script:

<SCRIPT id="DummyScript">
<!--
function doDelete()
{
document.EditForm.action='DiscCatalog.html';
if(confirm('Are your sure you want to delete this disc?')) {
document.EditForm.submit();
}

}
function showAddPage()
{
document.location='Edit.html';

}
//-->
</SCRIPT>

These functions help to keep the storyboard working. At runtime, though, the application
needs to use the “real” functions, which are defined in presentation/DiscCatalogScript.html.
For example:

...
function showAddPage()
{
document.location='Edit.po?event=showAddPage';

}
...

Because XMLC views JavaScript as a comment, the URL mapping option will not work on this

 Chapter 5: DiscRack sample application

103

Getting Started with Enhydra

URL inside the JavaScript function. So, you have to replace it at runtime with the following
code in DiscCatalog.java:

DiscCatalogHTML page = new DiscCatalogHTML();
HTMLScriptElement script = new DiscCatalogScriptHTML().getElementRealScript();
XMLCUtil.replaceNode(script, page.getElementDummyScript());

This is an example of replacing a node with a node from another document. This
implementation uses the XMLCUtil class.

Note Because this action happens at runtime, it may have a slight affect on performance. If

performance is critical, you may want to replace the JavaScript in the final deployed version
of the application.

Maintaining the storyboard seems like additional unnecessary work, but it is worth the effort
when your HTML is evolving in parallel with the Java code. As an example of the power of a
working storyboard, you can exchange the HTML in DiscRack from the basic HTML to
designed HTML.

Replacing the user interface

Once the graphic design is completed, you can replace the user interface of the application
with its final version. Enhydra includes in documentation in
<enhydra_root>/multiserver/webapps/enhydra-
docs/getting_started/samples/resourceForDiscRack directory “finished” versions of the HTML
pages.

To replace the original storyboard resources with the “finished” resources:

1 Copy HTML files (Exit.html, Login.html and Register.html) from directory
<enhydra_root>/multiserver/webapps/enhydra-
docs/getting_started/samples/resourceForDiscRack/HTML_personMgmt to directory
<DiscRack_root>/presentation/resource/personMgmt

2 Copy HTML files (DiscCatalog.html and Edit.html) from directory
<enhydra_root>/multiserver/webapps/enhydra-docs/getting_started/samples/resourceForDiscRack/HTML_discMgmt
to directory <DiscRack_root>/presentation/resource/discMgmt

3 Rebuild the application by entering the following commands from the application’s root

directory <DiscRack_root>:

1 UNIX:

cd <DiscRack_root>
./enhydra-ant clean
./enhydra-ant

2 WINDOWS:

cd <DiscRack_root>
enhydra-ant clean
enhydra-ant

The enhydra-ant clean command removes all the old classes so that enhydra-ant will
completely rebuild the application from scratch.

4 Now, run DiscRack by entering the following commands:

1 UNIX:

cd application/bin
./start-enhydra

 Chapter 5: DiscRack sample application

104

Getting Started with Enhydra

2 WINDOWS:

cd application/bin
start-enhydra

5. To see the new and improved user interface, enter the URL http://localhost:8080/discRack
(http://localhost:9000/discRack) in your browser location field.

Note: Communication port value is one of Enhydra 6.x installation options. Default value is
set to 8080 for Enhydra and 9000 for Enhydra Enterprise.

Figure 5.3 Browser displaying the DiscRack Login presentation object with updated graphics

Populating a list box

The DiscCatalog page illustrates how to populate a SELECT list box, which is a common
task. First, look at the HTML for the SELECT tag in DiscCatalog.html:

<SELECT id="TitleList" Name="discID">
<OPTION selected VALUE="invalidID">Select One</OPTION>
<OPTION id="templateOption">Van Halen: Van Halen One</OPTION>
<OPTION class="discardMe">Sonny and Cher: Greatest Hits</OPTION>
<OPTION class="discardMe">Sublime: 40 oz. to Freedom</OPTION>
</SELECT>

Now look in DiscCatalog.java for the code that populates the list box:

HTMLOptionElement templateOption = page.getElementTemplateOption();
Node discSelect = templateOption.getParentNode();

The first line retrieves the DOM object corresponding to the template OPTION tag. The
second line calls getParentNode() to get the container SELECT tag. Because the SELECT
tag has an ID attribute, this line could have also been:

 Chapter 5: DiscRack sample application

105

http://localhost:8080/discRack
http://localhost:9000/discRack

Getting Started with Enhydra

Node discSelect = page.getElementTitleList();

Then, following some code for populating the table, there is one line to remove the template
row.

templateOption.removeChild(templateOption.getFirstChild());

The other OPTION tags contain CLASS="discardMe", which causes XMLC to remove those
items at build time, as explained before in “Removing dummy data”.

Then, within the for loop that iterates over the discs belonging to the current user, the
following lines actually populate the list box:

HTMLOptionElement clonedOption = (HTMLOptionElement)
templateOption.cloneNode(true);
clonedOption.setValue(currentDisc.getHandle());
Node optionTextNode =

clonedOption.getOwnerDocument().createTextNode(currentDisc.getArtist() +
": " + currentDisc.getTitle());

clonedOption.appendChild(optionTextNode);
discSelect.appendChild(clonedOption);

The first line copies (clones) the template option element into a DOM object of type
HTMLOptionElement. The second line sets the value attribute to the value returned by
getHandle(), which is the disc’s OBJECTID, an unique identifier.

The third (very long) line creates a text node consisting of artistName: titleName. Finally, the
last two lines append the text node to the option node, and then append the option node to
the select node.

The resulting runtime HTML will look something like this:

<SELECT name='discID' id='TitleList'>
<OPTION value='invalidID' selected>Select One</OPTION>
<OPTION value='1000001'>Funky Urchin: Lovely Spines</OPTION>
<OPTION value='1000021'>The Seagulls: Screaming Fun</OPTION>
</SELECT>

Although this example might seem obscure, it is fairly short, and you can extend its basic
functionality to handle more complex situations. For example, you can modify it to set the
default selection based on a second query.

Populating a form

When a user chooses a disc from the list box and clicks the Edit Disc button, the browser
displays a form. As shown in Figure 5.4, the edit form is populated with the existing values for
that disc. The user can then edit the values and submit them back to the database.

 Chapter 5: DiscRack sample application

106

Getting Started with Enhydra

Figure 5.4 DiscRack disc edit form

Here is the HTML for the form elements in Edit.html. The TABLE tags have been omitted for
clarity:

<INPUT TYPE="hidden" NAME="discID" VALUE="invalidID" ID="DiscID">
Artist: <input name="artist" id="Artist" >
Title: <input name="title" id="Title" >
Genre: <input name="genre" id="Genre" >
Do you like this disk?
<input TYPE="checkbox" name="like" CHECKED ID="LikeBox">
<INPUT TYPE="submit" VALUE="Save This Disc Info">

In Edit.java, the event-handling method handleDefault() calls showEditPage() with a null
parameter to populate the form with the selected disc’s values. Ordinarily, the only request
parameter (other than the event type) is the disc ID, accessed by this statement:

String discID = this.getComms().request.getParameter(DISC_ID);

These statements also access the other request parameters, but ordinarily they are null (but
see the error-handling case discussed later):

String title = this.getComms().request.getParameter(TITLE_NAME);
String artist = this.getComms().request.getParameter(ARTIST_NAME);
String genre = this.getComms().request.getParameter(GENRE_NAME);

Then, a call to findDiscByID() retrieves a Disc data object that has that ID:

disc = DiscFactory.findDiscByID(discID);

Next, there is a series of if statements that check the values of title, artist, genre, and isLiked,
which are normally null. Therefore, the following statements are executed (the surrounding if
statements are not shown for brevity):

 Chapter 5: DiscRack sample application

107

Getting Started with Enhydra

page.getElementDiscID().setValue(disc.getHandle());
page.getElementTitle().setValue(disc.getTitle());
page.getElementArtist().setValue(disc.getArtist());
page.getElementGenre().setValue(disc.getGenre());
page.getElementLikeBox().setChecked(disc.isLiked());

These statements use XMLC calls to set the value attributes of the form elements; the values
are retrieved from the Disc object.

When the user finishes editing and clicks Save this Disc Info, handleEdit() processes the
changes. This method calls saveDisc(), which attempts to save the new values:

• If successful, it redirects the client to the DiscCatalog page.

• If any of the new values are null, though, saveDisc() throws an exception.

The catch clause then calls showEditPage() with an error string and request parameters.

Note ClientPageRedirectException is a subclass of java.lang.Error, so it is not caught by the

catch clause when that statement is thrown.

try {
saveDisc(disc);
throw new ClientPageRedirectException(DISC_CATALOG_PAGE);

} catch(Exception ex) {
return showEditPage("You must fill out all fields to edit this
disc");

}

The result is that when a user tries to edit a disc and deletes some of the values, the edit
page redisplays, maintaining all the non-null form element values and restoring the previous
values to the null-valued form elements. The page also displays the error string.

Business layer

The DiscRack business layer is simple, consisting primarily of:

• Two packages - disc and person

• Two corresponding factory classes - DiscFactory and PersonFactory.

A factory is an object whose primary role is to create other objects.

Business objects

The business objects Disc and Person are largely wrappers for the corresponding data layer
classes, DiscDO and PersonDO, with get and set methods for each property in the data
objects (or column in the database tables). For example, Disc has getArtist() and setArtist()
methods.

The objects in the business layer perform all the interfacing with the data layer. So, if the data
layer needs to change, nothing in the presentation layer is affected.

Conversely, if the presentation layer changes, nothing in the data layer is affected.

DiscFactory has two static methods:

 Chapter 5: DiscRack sample application

108

Getting Started with Enhydra

• findDiscsForPerson() returns an array of Disc objects that belong to the Person object

specified as the method’s argument.

• findDiscByID() returns the single Disc object that has the ID specified in the method’s

argument.

PersonFactory has one static method, findPerson(). It returns a Person object that has the

user name specified in the method’s argument. If the method finds more than one person in
the database, then it writes an error message to the log channel and throws an exception.

Using data objects

To help understand how DiscRack uses the DODS data layer code, look at the findPerson()
method in PersonFactory. The comments have been removed from this code for brevity.

public static Person findPerson(String username)
throws DiscRackBusinessException
{
try {
PersonQuery query = new PersonQuery();
query.setQueryLogin(username);
query.requireUniqueInstance();
PersonDO[] foundPerson = query.getDOArray();
if(foundPerson.length != 0) {
return new Person(foundPerson[0]);

} else {
return null;

}
} catch(NonUniqueQueryException ex) {

...

First, this method instantiates a new PersonQuery object. PersonQuery is a data layer object
used to construct and execute a query on the person table. It has a number of setQueryxxx()
methods for qualifying the query parameters (that is, setting the values to be matched in the
WHERE clause of the SELECT statement). For example, the above code calls
setQueryLogin() with username as a parameter to set the value to be matched in the LOGIN
column.

Next, the method calls requireUniqueInstance(), which indicates that the query is to return a
single row, and will throw an exception otherwise. Then, it calls getDOArray(), which executes
the query, returning an array of PersonDO objects. Finally, the method returns a single
Person object returned by the query; if the query did not return any rows, it returns null.

 Chapter 5: DiscRack sample application

109

Getting Started with Enhydra

Appendix A
Database configurations

This appendix provides information on connecting Enhydra applications to specific database
types. In general, you need to add the database configuration information to the application
configuration file (e.g., simpleApp.conf). Configurable items in the code snippets that you
need to specify, such as path names or database identifier, are enclosed in brackets and
italicized (for example, <path_name> or <database_id>).

Driver configuration

Important Enhydra connects to databases using a JDBC driver. Enhydra has its own class

loader, but the JDBC driver must be loaded by the system class loader. Therefore, it is
important to specify the path to the JDBC driver in your system CLASSPATH and not in the
Enhydra application’s CLASSPATH.

A common way to specify the path to the JDBC driver is to save the driver in a lib directory in
the project and define the CLASSPATH in the run script. To do this, follow these steps:

1 Create a lib directory in the top level of your project and copy your JDBC driver to this
directory.

2 Edit your application’s run file template, start.in, (in the <appName>/input directory) to place
the driver in your CLASSPATH. For example:

...

Build up classpath.

CLASSPATH="../lib/idb.jar\;../lib/jta-spec1_0_1.jar"
APPCP="${ENHYDRA_LIB}${PS}../classes"
...

3 Build the project with ant, which will copy the run script to the directory <appName>/output.
Use this script to start your application.

Be careful to keep the right driver with your application. For example, there are multiple
versions of the Oracle JDBC driver, classes111.zip. When your application goes into
production, make sure that the project administrator knows to reference the correct driver
when the database is upgraded in the future.

Oracle

This section presents an example of an Oracle configuration, where <database_id> is your
database identifier.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"

Apendix A: Database configurations

110

Getting Started with Enhydra

DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "false"
DatabaseManager.DB.<database_id>.ClassType = "Oracle"
DatabaseManager.DB.<database_id>.JdbcDriver = "oracle.jdbc.driver.OracleDriver"
DatabaseManager.DB.<database_id>.Connection.Url =
"jdbc:oracle:thin:@<server_name>:<port#>:<db_instance>"
DatabaseManager.DB.<database_id>.Connection.User = "<user>"
DatabaseManager.DB.<database_id>.Connection.Password = "<password>"
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = 10
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = 30
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = 10000
DatabaseManager.DB.<database_id>.Connection.Logging = false
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 20
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

The driver used here is the Oracle thin driver, and <db_instance> is the name of the Oracle
database instance.

This is the link where you can find all needed information and downloads for Oracle database:
Oracle

Informix

This section presents an example of an Informix configuration, where <database_id> is your
database identifier.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "false"
DatabaseManager.DB.<database_id>.ClassType = "Informix"
DatabaseManager.DB.<database_id>.JdbcDriver = "com.informix.jdbc.IfxDriver"
DatabaseManager.DB.<database_id>.Connection.Url =
jdbc:informix-sqli://<hostname>:<port#>:INFORMIXSERVER=<db_instance>;
user=<user>;password=<password>
DatabaseManager.DB.<database_id>.Connection.User = "<user>"
DatabaseManager.DB.<database_id>.Connection.Password = "<password>"
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = 10
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = 30
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = 10000
DatabaseManager.DB.<database_id>.Connection.Logging = false
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 20
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

This is the link where you can find all needed information and downloads for Informix
database: Informix

Sybase

This section presents an example of a Sybase configuration, where <database_id> is your
database identifier.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "true"
DatabaseManager.DB.<database_id>.ClassType = "Sybase"
DatabaseManager.DB.<database_id>.JdbcDriver = "com.sybase.jdbc2.jdbc.SybDriver"
DatabaseManager.DB.<database_id>.Connection.Url =
"jdbc:sybase:Tds:<hostname>.sybase.com:7100"
DatabaseManager.DB.<database_id>.Connection.User = "<name>"
DatabaseManager.DB.<database_id>.Connection.Password = "<password>"

Apendix A: Database configurations

111

http://www.oracle.com/products/
http://www-3.ibm.com/software/data/informix/ids/

Getting Started with Enhydra

DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = "2"
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = "2"
DatabaseManager.DB.<database_id>.Connection.Logging = "true"
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = "2"
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 2
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

This is the link where you can find all needed information and downloads for Informix
database: sybase

QED

QED, the Quadcap Embeddable Database. QED is a fast, small, pure Java, relational
database, implementing the SQL 92 standard, with transactions and resilient failure recovery.
QED has a novel open source license permitting free use of QED by all and free redistribution
in other open source projects.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "true"
DatabaseManager.DB.<database_id>.ClassType = "Sybase"
DatabaseManager.DB.<database_id>.JdbcDriver = " com.quadcap.jdbc.JdbcDriver"
DatabaseManager.DB.<database_id>.Connection.Url = " jdbc:qed:<databaseFolderPath>"
DatabaseManager.DB.<database_id>.Connection.User = "<name>"
DatabaseManager.DB.<database_id>.Connection.Password = "<password>"
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = "2"
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = "2"
DatabaseManager.DB.<database_id>.Connection.Logging = "true"
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = "2"
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 2
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

Where <databaseFolderPath> is path to folder that represents QED database.

This is the link where you can find all needed information and downloads for Informix
database: QED

MySQL

MySQL is an open source database that is lightweight and fast.

Note:

Prior to version 3.23, MySQL does not support transactions, and therefore does not support
explicit commit (they use autocommit by default after eny SQL command). To use MySQL
versions 3.22 and earlier, you have to make change to application configuration file. You will
need to set parameter ‘ChangeAutocommit’, of logical database, to ‘false’ (this will disable
DODS to change, database connection, autocommit property). Example:

DatabaseManager.DB.<database_id>.ChangeAutocommit = "true"

Configuration

This section presents an example of a MySQL configuration, where <database_id> is your
database identifier.

Apendix A: Database configurations

112

http://www.sybase.com/products/databaseservers
http://www.quadcap.com/products/qed/docs/index.html

Getting Started with Enhydra

#---
Database Manager Configuration
#---

DatabaseManager.Databases[] = <database_id>
DatabaseManager.DefaultDatabase = <database_id>
DatabaseManager.Debug = true
DatabaseManager.DB.<database_id>.ClassType = Standard
DatabaseManager.DB.<database_id>.Connection.User = <username>
DatabaseManager.DB.<database_id>.Connection.Password = <password>
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = 5
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = 10000
DatabaseManager.DB.<database_id>.Connection.Logging = true
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 1024
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 100
DatabaseManager.DB.<database_id>.JdbcDriver = org.gjt.mm.mysql.Driver
DatabaseManager.DB.<database_id>.Connection.Url =
DatabaseManager.DB.<database_id>.ChangeAutocommit = "true"

"jdbc:mysql://<hostname>:<port#>/<db_instance>"

This is the link where you can find all needed information and downloads for MySQL
database: MySQL

PostgreSQL

Note Although other versions are available commercially, the Together company supports
the open-source version of PostgreSQL for the Linux operating system for use with Enhydra.

PostgreSQL is a popular open-source database used with Enhydra. However, as explained in
“Loading the schema” in the chapter 4, DODS requires a special column named OID in each
table. However, OID is a reserved word in PostgreSQL.

Fortunately, the column names used for OID and VERSION are configurable. To configure
these names, add the following lines to your application configuration file:

DatabaseManager.ObjectIdColumnName = "<ColName_for_ObjectId>"
DatabaseManager.VersionColumnName = "<ColName_for_Version>"

where <ColName_for_ObjectId> and <ColName_for_Version> are the column names you
want to use instead of OID and VERSION.

This is the link where you can find all needed information and downloads for PostgreSQL
database: PostgreSQL

InstantDB

To use an InstantDB database with an Enhydra application

1 In the application configuration file <appName>/output/conf/<appName>.conf (or better, in

<appName>/input/conf/<appName>.conf.in) set the following line:

DatabaseManager.DB.<database_id>.Connection.Url = "jdbc:idb:<propFile>.prp"

where <propFile> is the full path to the database properties file, and <database_id> is the
database identifier used in the configuration file.

2 In the same configuration file, identify the JDBC driver with the line:

DatabaseManager.DB.<database_id>.JdbcDriver =
"org.enhydra.instantdb.jdbc.idbDriver"

Apendix A: Database configurations

113

http://www.mysql.com/downloads/index.html

Getting Started with Enhydra

Apendix A: Database configurations

114

For DB2 Universal JDBC Type 2 Connectivity, specify a URL of the following form:

3 Add the path to idb.jar to the setting for CLASSPATH in the application’s run script, in
<appName>/run, or better in . <appName>/run.in.

This is the link where you can find all needed information and downloads for InstantDb
database: InstantDB

Mckoi

To use an Mckoi sql database with an Enhydra application

1 In the application configuration file <appName>/output/conf/<appName>.conf (or better, in

<appName>/input/conf/<appName>.conf.in) set the following line:

DatabaseManager.DB.<database_id>.Connection.Url = "
jdbc:mckoi:local://<confFilePath>"

where < confFilePath> is the full path to the database properties file, and <database_id> is the
database identifier used in the configuration file.

2 In the same configuration file, identify the JDBC driver with the line:

DatabaseManager.DB.<database_id>.JdbcDriver = " com.mckoi.JDBCDriver"

3 Add the path to mckoidb.jar and mkjdbc.jar to the setting for CLASSPATH in the
application’s run script, in <appName>/run, or better in . <appName>/run.in.

This is the link where you can find all needed information and downloads for InstantDb
database: Mckoi

DB2

To use an DB2 database with an Enhydra application

1 In the application configuration file <appName>/output/conf/<appName>.conf (or better, in

<appName>/input/conf/<appName>.conf.in) set the following line:

DatabaseManager.DB.<database_id>.Connection.Url = “<url>”

The <url> argument represents a data source, and indicates what type of JDBC connectivity
you are using.

For DB2 Universal JDBC Type 4 Connectivity, specify a URL of the following form:

Syntax for a URL for Universal Type 4 Connectivity:

>>-+-jdbc:db2:------+-//server--+-------+--/database------------>
 +-jdbc:db2j:net:-+ '-:port-'
 '-jdbc:db2j:-----'

>--+-----------------------------+-----------------------------><
 | .-,---------------------. |
 | V | |
 '-:---property--=--value--;-+-'

Getting Started with Enhydra

Apendix A: Database configurations

115

“jdbc:hsqldb:hsql://<hostName>:<port>”

where <hostName> is the host name or IP adress of computer with runing database server,

Syntax for a URL for Universal Type 2 Connectivity:

>>-jdbc:db2:database--+-----------------------------+----------><
 | .-,---------------------. |
 | V | |
 '-:---property--=--value--;-+-'

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j: or jdbc:db2j:net:
jdbc:db2: indicates that the connection is to a server in the DB2 UDB family. jdbc:db2j:
indicates that the connection is to a for local Cloudscape access. jdbc:db2j:net: indicates that
the connection is to a remote IBM(R) Cloudscape server.

server
The domain name or IP address of the database server.

port
The TCP/IP server port number that is assigned to the database server. This is an integer
between 0 and 65535. The default is 446.

database
The name of the database server.
For a connection to a DB2 UDB for Linux, UNIX(R) and Windows(R) server, the name is the
database name.

For a connection to an IBM Cloudscape server, the name is the fully-qualified name of the file
that contains the database. This name must be enclosed in double quotation marks ("). For
example:
"c:/databases/testdb"

property=value;
A property for the JDBC connection. For the definitions of these properties, see Properties for
the DB2 Universal JDBC Driver.

2 In the same configuration file, identify the JDBC driver with the line:

DatabaseManager.DB.<database_id>.JdbcDriver = ” com.ibm.db2.jcc.DB2Driver "

This is the link where you can find all needed information and downloads for DB2 database:
DB2

HSQLDB (HypersonicSQL)

HSQLDB is a relational database engine written in Java, with a JDBC driver, supporting a rich
subset of ANSI-92 SQL (BNF tree format). It offers a small (less than 160k), fast database
engine which offers both in memory and disk based tables. Embedded and server modes are
available. Additionally, it includes tools such as a minimal web server, in-memory query and
management tools (can be run as applets) and a number of demonstration examples.

To use an HSQLDB database with an Enhydra application

1 In the application configuration file <appName>/output/conf/<appName>.conf (or better, in

<appName>/input/conf/<appName>.conf.in) set the following line:

DatabaseManager.DB.<database_id>.Connection.Url =

Getting Started with Enhydra

Apendix A: Database configurations

116

and <port> is port where database server wait for request (default: 9001).

2 In the same configuration file, identify the JDBC driver with the line:

DatabaseManager.DB.<database_id>.JdbcDriver = ”org.hsqldb.jdbcDriver "

3 Add the path to hsqldb.jar to the setting for CLASSPATH in the application’s run script, in
<appName>/run, or better in . <appName>/run.in.

This is the link where you can find all needed information and downloads for HSQLDB
database: HSQLDB

Microsoft SQL Server

The exact configuration settings for connecting to MS SQL server depend on the JDBC driver
you are using. We do not recommend using the JDBC-ODBC bridge with MS SQL Server.

This is the link where you can find all needed information and downloads for MSQL database:
MSQL

JTurbo JDBC driver

We certified the JTurbo 2.0 JDBC driver, and the configuration settings for this are:

JTurbo 2.0 JDBC Driver for MS SQL server
DatabaseManager.Databases [] = "my_db"
DatabaseManager.DefaultDatabase = "my_db"
DatabaseManager.DB.my_db.ClassType = "Standard"
DatabaseManager.DB.my_db.JdbcDriver = "com.inet.tds.TdsDriver"
NOTE: substitute your server's IP address for 10.0.0.18 below
Substitute the port your DB is listening on for 1433 below
DatabaseManager.DB.my_db.Connection.Url =
"jdbc:inetdae:10.0.0.18:1433?database=my_db"
DatabaseManager.DB.my_db.Connection.User = "<user_name>"
DatabaseManager.DB.my_db.Connection.Password = "<password>"

If you are using another JDBC driver, you need to determine the driver package, for the
DatabaseManager.DB.my_db.JdbcDriver setting, and connection string, for
DatabaseManager.DB.my_db.Connection.Url setting.

MS-JDBC driver

Configuration settings example for MS-JDBC driver are:

DatabaseManager.DB.my_db.JdbcDriver = "
com.microsoft.jdbc.sqlserver.SQLServerDriver"
NOTE: substitute your server's IP address (hostname)
Substitute the port your DB is listening on for (default: 1433)
DatabaseManager.DB.my_db.Connection.Url
 = " jdbc:microsoft:sqlserver://<hostname>:<port>; DatabaseName=
<databaseName>;SelectMethod=cursor "
DatabaseManager.DB.my_db.Connection.User = "<user_name>"
DatabaseManager.DB.my_db.Connection.Password = "<password>"

If you are using another JDBC driver, you need to determine the driver package, for the
DatabaseManager.DB.my_db.JdbcDriver setting, and connection string, for
DatabaseManager.DB.my_db.Connection.Url setting.

Getting Started with Enhydra

Microsoft Access

Microsoft Access is not a true SQL database server; as such, it is suitable for development
and testing, but not for a production database. Access does not have a JDBC driver.
However, Access does support ODBC, and there is a JDBC-ODBC bridge in the Sun JDK,
which enables Access to work with Enhydra.

Because Access cannot read-in files containing SQL commands, you must create tables in
the Access GUI. For the DiscRack example, you can also use the Access database provided
in <dods_home>/examples/DiscRack/discRack.mdb.

To use Enhydra with Access:

1 Register the database as an ODBC data source:

1 Go to Start|Settings|Control Panel and click ODBC Data Sources.

2 Click the Add button in the dialog box that comes up.

3 Select the Microsoft Access Driver in the Create New Datasource dialog box and click

Finish.

The ODBC Microsoft Access Setup dialog box appears.

4 Choose a name, like discRack, for the Data Source Name. Under Database, click the
Select button, browse to the *.mdb file, select it, and click OK.

2 Place database information in the application’s configuration file, as shown in the example

below. Replace <data_source> with the name you chose for Data Source Name in the
preceding step.

Note You don’t have to place the JDBC driver in the application’s CLASSPATH because the

ODBC/JDBC bridge is in the JDK and thus is already in the system’s CLASSPATH.

This section presents an example of an Access configuration, where <database_id> is your
database identifier.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "false"
DatabaseManager.DB.<database_id>.ClassType = "Standard"
DatabaseManager.DB.<database_id>.JdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver"
DatabaseManager.DB.<database_id>.Connection.Url = "jdbc:odbc:<data_source>"
DatabaseManager.DB.<database_id>.Connection.User = "Admin"
DatabaseManager.DB.<database_id>.Connection.Password = ""
DatabaseManager.DB.<database_id>.Connection.MaxPreparedStatements = 10
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = 30
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = 10000
DatabaseManager.DB.<database_id>.Connection.Logging = false
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 20
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

This is the link where you can find all needed information for Microsoft Access: Microsoft
Acces

Apendix A: Database configurations

117

Getting Started with Enhydra

Apendix A: Database configurations

118

Database.OidDbType.Standard_JDBC= "DECIMAL(9,0)"
Database.BitType.Standard_JDBC= "SMALLINT"
Database.TimeType.Standard_JDBC= "DATE"

InterBase

InterBase® is an efficient and powerful RDBMS engine. Its vendor, Borland/Inprise, has
released InterBase version 6.0 as an open-source product. See http://www.interbase.com
for more information and product downloads.

InterClient

The JDBC driver for InterBase is called InterClient™ The InterClient system includes an
all-Java thin client, and a server-side daemon (also known as a service on Microsoft
Windows NT) called InterServer. This daemon accepts JDBC connection requests and in
turn connects to the InterBase RDBMS daemon. The three processes (JDBC client,
InterServer daemon, InterBase daemon) can run all on separate hosts, all on the same
host, or in any other combination.

InterClient is a class 3 JDBC driver in that it has a separate daemon on the server to serve
JDBC connections; however, it also matches the definition of a class 4 driver because the
client component can connect only to one DBMS back-end, InterBase.

InterClient is installed separately from InterBase. On Windows, InterClient is commonly
installed in:

C:\Program Files\Borland\InterClient\interclient.jar

Depending on the version of InterClient, it might instead be installed in:

C:\Program Files\InterBase Corp\InterClient\interclient.jar

Find the JAR file and append its location to your system CLASSPATH environment
variable on the client host where you run Java applications.

Different versions of InterClient are available.

• InterClient version 1.50x works only with JDK 1.1x.

• InterClient version 1.51x works only with JDK 1.2.x.

Whichever version of InterClient you use, you must use the matching version of
InterServer.

Configuration

You need to configure both the dods.conf and your <application>.conf to support
InterClient.

DODS configuration

You should apply the following configuration edits to dods.conf to make the
Standard_JDBC database class match InterBase features. This is necessary because
there is not yet a specific com.lutris.appserver.server.sql.interbase package in the Enhydra
sources.

Getting Started with Enhydra

Apendix A: Database configurations

119

jdbc:interbase://servername//usr/local/data/inventory.gdb

If the server is a Windows host, the path starts with a drive letter identifier:

Database.TimestampType.Standard_JDBC= "DATE"
Database.OnCascadeDelete.Standard_JDBC= true
Database.StringQuoteCharacter.Standard_JDBC= '
Database.StringMatch.Standard_JDBC= "LIKE"
Database.StringWildcard.Standard_JDBC= "%"

Application configuration

This section presents an example of an Interbase configuration, where <database_id> is
your database identifier.

#--
Database Manager Configuration
InterBase / InterClient
#--
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.Debug = "false"
DatabaseManager.DB.<database_id>.ClassType = "Standard"
DatabaseManager.DB.<database_id>.JdbcDriver = "interbase.interclient.Driver"
DatabaseManager.DB.<database_id>.Connection.Url =
"jdbc:interbase://loopback/<path_to_database>"
DatabaseManager.DB.<database_id>.Connection.User = "sysdba"
DatabaseManager.DB.<database_id>.Connection.Password = "masterkey"

Configuration notes

The JDBC driver class is interbase.interclient.Driver.

Server name

The general URL format for InterClient JDBC connections is as follows:

jdbc:interbase://servername/<path_to_database>

where <path_to_database> is the full path to the database file, including the name of the
database (for example, /usr/local/data/inventory.gdb).

The servername is the hostname or IP address of the server running InterServer, the
server-side daemon that accepts JDBC connection requests. If your Enhydra application
runs on the same host where InterServer runs, you can use the special servername
loopback.

Pathnames

The <path_to_database> is an absolute path to the InterBase database file on the server
where the InterBase RDBMS server runs. InterBase does not have abstract handles to
databases, like some database products do (for example, Oracle SIDs or BDE aliases).
You must specify the real path to the database. You cannot use mapped drives or NFS
filesystems in this path.

Notice the literal slash character (/) following the server name. If the absolute path starts
with a slash character (/), then you should have a pair of slash characters (//) together. For
example:

Getting Started with Enhydra

Apendix A: Database configurations

120

DODS uses C-JDBC as any standard JDBC driver.

jdbc:interbase://servername/C:/data/inventory.gdb

If InterServer runs on a different host than the InterBase RDBMS server, you must specify
this host in the path to database, with the following syntax:

jdbc:interbase://<interserver_host>/<interbase_host>:<path_to_database>

Tip Slash (/) and backslash (\) characters within path names are interchangeable to

InterBase; the InterBase daemon translates these characters as needed to match the
convention on the server platform. It is easier to use slashes in code, however, because
escape sequences are required to represent backslashes in code.

Ports

InterBase does not take a port number argument in connection strings. InterClient and
InterServer always communicate using the TCP/IP service named interserver, which
defaults to port 3060. InterServer and InterBase always communicate using the TCP/IP
service named gds_db , which defaults to port 3050. These services and port numbers are
registered with IANA.

Username and password

The username sysdba and its default password masterkey are used in the example
configuration above, but for security reasons it is recommended that you: (a) change the
default sysdba password on your InterBase server, and (b) create a non-superuser login in
the InterBase password database, and use that login for general database access.

C-JDBC

C-JDBC is a database cluster middleware that allows any Java application (standalone
application, servlet or EJB container, ...) to transparently access a cluster of databases
through JDBC. You do not have to modify client applications, application servers or database
server software. You just have to ensure that all database accesses are performed through
JDBC.
First you will need to install C-JDBC. The easiest way to install C-JDBC is to use the Java
graphical installer. A Java Virtual Machine is of course needed in this case. Simply launch the
installation program by typing:

java -jar c-jdbc-x.y.bin-installer.jar

(Check CJDBC_HOME environment variable)

Once you have installed the C-JDBC controller, you will find the driver JAR in the drivers/
directory of the controller installation location.

To install the C-JDBC driver, you just have to add the c-jdbc-driver.jar to the client application
classpath. This driver replaces the database native driver in the client application.

The database native driver will be used by the C-JDBC controller to access your database.
Therefore, the C-JDBC driver and controller can be seen as a proxy between your application
and your database native driver.

Getting Started with Enhydra

Apendix A: Database configurations

121

In the application configuration file <appName>/output/conf/<appName>.conf (or better, in
<appName>/input/conf/<appName>.conf.in) identify the JDBC driver with the line:

DatabaseManager.DB.<database_id>.JdbcDriver=”org.objectweb.cjdbc.driver.Driver"

In the same configuration file, identify the database with the database URL .

The JDBC URL expected for the use with C-JDBC is the following:

jdbc:cjdbc://host1:port1,host2:port2/database.

Host is the machine name (or IP address) where the C-JDBC controller is running, port is the
port where the controller is bound on this host.

At least one host must be specified but a list of comma separated hosts can be specified.
If several hosts are given, one is picked up randomly from the list. If the currently selected
controller fails, another one is automatically picked up from the list.

Default port number is 25322 (C-JDBC on the phone !) if omitted. Those two URL are
equivalent:

"jdbc:cjdbc://localhost:/tpcw"
"jdbc:cjdbc://localhost:25322/tpcw"

So set URL in conf file to:

DatabaseManager.DB.<database_id>.Connection.Url = " jdbc:cjdbc://<host>:<port>"

Example:

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "<database_id>"
DatabaseManager.DefaultDatabase = "<database_id>"
DatabaseManager.DB.<database_id>.ClassType = "Standard"
DatabaseManager.DB.<database_id>.JdbcDriver = =”org.objectweb.cjdbc.driver.Driver"
DatabaseManager.DB.<database_id>.Connection.Url = " jdbc:cjdbc://<host>:<port>"
DatabaseManager.DB.<database_id>.Connection.User = "<name>"
DatabaseManager.DB.<database_id>.Connection.Password = "<password>"
DatabaseManager.DB.<database_id>.Connection.MaxPoolSize = "2"
DatabaseManager.DB.<database_id>.Connection.AllocationTimeout = "2"
DatabaseManager.DB.<database_id>.Connection.Logging = "true"
DatabaseManager.DB.<database_id>.ObjectId.CacheSize = 2
DatabaseManager.DB.<database_id>.ObjectId.MinValue = 1

Details of creating, configuring and starting C-JDBC database is out of scope of this document. All
details about these features can be found on C-JDBC ObjectWeb site

C-JDBC is a free, open source ObjectWeb Consortium (http://www.objectweb.org/)'s project. It is
licensed under the GNU Lesser General Public License

	Chapter 1
	Introduction
	What you should already know
	Conventions used in this book
	Getting Started
	Enhydra 6.x information avalable on enhydra.org

	Chapter 2
	Installation

	Chapter 3
	Overview
	What is Enhydra 6.x?
	Documentation
	Documentation updates

	Anatomy of an Enhydra application
	Enhydra super-servlet applications
	Application objects
	Properties
	Methods
	Presentation objects

	Servlet applications
	Servlet versus super-servlet applications

	Application layers

	Servlet containers
	Enhydra Application Framework
	Presentation Manager
	Session Manager
	Database Manager

	Enhydra tools
	Enhydra Application Wizard
	Extensible Markup Language Compiler (XMLC)
	Auto Reloading, Memory Persistence and XMLC Deferred Parsing

	Data Object Design Studio (DODS)

	Chapter 4
	Tutorial:�Building Enhydra applications
	Creating your first application
	Building and starting the application
	How it works
	Configuration file

	Application administration
	Using XMLC
	Adding a hit counter
	Understanding the Document Object Model
	SPAN and DIV tags

	Using XMLC from the command line
	-dump option
	-class and -keep options

	Enhydra programming
	Maintaining session state
	Adding a new page to the application
	To create a new presentation object:
	To create a link from the Welcome page to your new page:

	Populating a table
	Create the table in HTML
	Programmatically populate the table
	Rebuild and run the application

	Adding a business object
	To add a business object:

	Using DODS
	DODS source building
	DOML file syntax
	Structure
	Tag reference
	<author>
	<column>
	<database>
	<doml>
	<index>
	<indexColumn>
	<initialValue>
	<javadoc>
	<package>
	<projectname>
	<referenceObject>
	<table>
	<type>

	Sample DOML file
	Sample of part of DOML file for using indexes

	Starting dods generator
	File location
	Quick Compile
	Custom Compile
	Advanced Custom Compile
	Structure
	Tag reference
	<author>
	<can_be_null>
	<class_name>
	<column>
	<constraint>
	<db_type>
	<db_vendor>
	<delete_cascades>
	<do_is_multidb_based>
	<do_is_oid_based>
	<generate_dirty>
	<generate_insecure>
	<generate_secure>
	<index>
	<index_column>
	<is_abstract>
	<is_any_column_secure>
	<is_constant>
	<is_foreign_key>
	<is_primary_key>
	<javadoc>
	<java_default_value>
	<java_type>
	<mass_deletes>
	<mass_updates>
	<package>
	<project_name>
	<refattr>
	<reference_object>
	<referrer>
	<size>
	<table>
	<table_name>
	<template_set>
	<used_for_query>

	Sample of part of transient XML file
	Structure of new modular DODS 6.x
	DODS 6.x jars:
	How to use different implementations:

	DODS independence
	Examples of non-enhydra applications

	DODS Ant task
	Table configuration
	Caching
	Cache transformation
	Introduction
	Cache configuration
	Select statement
	Insert statement
	Update statement
	Delete statement
	Cache Initialization
	Table and cache statistics

	User wildcards
	Loading the schema
	Generated structure
	Database Independency
	Using multi databases in DODS
	Mass modifications
	DODS's duality (a problem)
	Generated classes (a solution)

	Conversion of doml file
	Template sets
	Custom Configuration
	More Information

	Chapter 5
	DiscRack sample application
	Building and running DiscRack
	Process and preliminaries for developing applications
	DiscRack requirements definition
	DiscRack functional specification
	Design and storyboard
	Developing, testing, and deploying

	Overview of DiscRack
	Presentation layer
	Presentation base class
	Session data and log in
	initSessionData() method
	loggedInUserRequired() method
	checkForUserLogin() method

	Event handling
	Setting the event parameter
	handleEvent() method

	HTML pages
	Maintaining the storyboard
	URL mapping
	Removing dummy data
	Replacing JavaScript
	Replacing the user interface

	Populating a list box
	Populating a form

	Business layer
	Business objects
	Using data objects

	Appendix A
	Database configurations
	Driver configuration
	Oracle
	Informix
	Sybase
	QED
	MySQL
	Note:
	Configuration

	PostgreSQL
	InstantDB
	Mckoi
	DB2
	HSQLDB (HypersonicSQL)
	Microsoft SQL Server
	JTurbo JDBC driver
	MS-JDBC driver
	Microsoft Access
	InterBase
	InterClient
	Configuration
	DODS configuration
	Application configuration

	Configuration notes
	Server name
	Pathnames
	Ports
	Username and password

	C-JDBC

