
TM

Copyright © 2000 by Lutris Technologies, Inc. All Rights Reserved.

No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written
permission from Lutris Technologies, Inc. No patent liability is assumed with respect to the use
of the information contained herein. Although every precaution has been taken in the
preparation of this book, the author assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use of the information contained herein.

The Lutris and Enhydra logos, Enhydra XMLC, and Enhydra Enterprise are trademarks or
registered trademarks of Lutris Technologies, Inc. All other trademarks, trade names or
company names referenced herein are used for identification only and are the property of their
respective owners.

Sun, Sun Microsystems, Solaris, Java, Java2, JDBC, and J2EE, are trademarks or registered
trademarks of Sun Microsystems, Inc. UNIX® is a registered trademark in the United States
and other countries, exclusively licensed through X/Open Company, Ltd. Windows, WinNT,
Win32, and Access are registered trademarks of Microsoft Corp. InstallShield is a trademark
of InstallShield Software Corp. Cygwin is a trademark of Cygnus Solutions Corp. Oracle is a
trademark or registered trademark of Oracle Corp. Sybase is a trademark of Sybase Corp.
Informix is a trademark of Informix Corp. Red Hat Linux is a trademark of Red Hat Corp.
Netscape is a registered trademark of America Online, Inc. All other product names mentioned
herein are trademarks of their respective owners.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed trademarks. Where those designations appear in this book, and Lutris Technologies,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

The Lutris Enhydra Development Team: Jason Abbott, Louie Boczek, Dennis Chatham, Kyle
Clark, Mark Diekhans, Dick Gemoets, Jay Gunter, Aidan Hosler, Wes Isberg, Andy John, Peter
Johnson, Matthew Kalastro, Ray Kiuchi, Wendy Lin, Andrew Longsworth, Paul Mahar, John
Marco, Shawn McMurdo, Paul Morgan, Christophe Ney, Scott Pirie, Kristen Pol, Wayne
Stidolph, Josh Sugnet, Matt Schwartz, Mike Ward, David Young.

Documentation Team: Peter Darrah, Michael Maceri, C. Rand McKinney.

Printed in the U.S.A.
ENH-US040-30 1E0R400
0001020304-9 8 7 6 5 4 3 2 1

1200 Paci fic Ave . , Suite 300, Santa Cruz, CA 95060 • Phone 831 .471.9753 • Fax 831.471.9754O

Contents

Chapter 1
Introduction 1
What You Should Already Know 1
Document Conventions 1
Where to Find Enhydra Information

and Support. 2
Software Downloads 2
Online Documentation. 2
E-mail Lists . 2
Bug Reporting 3
Working Groups 3

Acknowledgements 4

Chapter 2
Overview 5
What is Enhydra? 5

What’s New in 3.0 6
Anatomy of an Enhydra Application 7

Application Object 7
Presentation Objects 8
The Three Layers 8

Multiserver . 9
Enhydra Director 9
The Administration Console 10

The Enhydra Application Framework. 10
Presentation Manager 11
Session Manager 12
Database Manager 12

Enhydra Tools . 13
Application Wizard 13
XMLC . 13
The Data Object Design Studio (DODS) 14

JBuilder and the Kelp Tools 15
Enhydra Application Wizard 16
XMLC Compiler Wizard. 16
XMLC Property Pages 17
Enhydra Sample Project 17

Chapter 3
Installation 19
Procedure . 19
Downloading and Installing Java 2 20
Installing Enhydra 3.0 20

Installing on Windows 20
Installing on Unix 21

Configuring Enhydra. 22
Setting the PATH Environment Variable . . . 22

Viewing Online Documentation. 22
Running the Sample Applications 23
Installing JBuilder. 24

Installing the Kelp Tools 24

Chapter 4
Tutorial: Building Enhydra
Applications 25

Creating Your First Application 25
Building the Application 26
How It Works 27
The Directories and Files in SimpleApp . . . 28

Using XMLC. 29
Adding a Hit Counter. 30
Understanding the DOM 31
Using XMLC From the Command Line. . . . 33

Enhydra Programming. 35
Maintaining Session State 35
Adding a New Page to the Application. . . . 37
Populating a table 39
Adding a Business Object 42

Connecting the Application to a Database 43
Creating a Database Table 43
Establishing a JDBC Connection. 43
Configuring the Database Manager 46
Adding Data Access. 47

Using DODS . 48
Introduction 49
Creating Data Objects 50
Loading the Schema. 54
Using the DODS Data Objects 56

Chapter 5
The DiscRack Example Application 59
Building and Running DiscRack 59
Process and Preliminaries 60

DiscRack Requirements Definition 61
DiscRack Functional Specification. 61
Design and Storyboard 62
Development, Testing, and Deployment . . . 64

Overview of DiscRack 64
The Presentation Layer 65

Presentation Base Class 65
Session Data and Log In 66
iii

Event Handling. 68
HTML Pages 69
Maintaining the Storyboard 70
Populating a List Box 73
Populating a Form 75

The Business Layer 76
The Business Objects 76
Using Data Objects 77

Appendix A
Database Configuration 79
Driver Configuration 79
Oracle . 80
Informix . 80
Sybase . 81
MySQL . 81
PostgreSQL . 82
Microsoft Access 82

Appendix B
Using the Multiserver Administration
Console 85

Launching the Administration Console 85
The Console Display 86

The Applications Window 88
The Console Tool Buttons 88
The Content Frame 89

Using the Console Tools 91
Adding an Application or Servlet 91
Deleting an Application or Servlet 93
Modifying the Configuration of An

Application or Servlet 93
Debugging an Application or Servlet 94
Saving the State of The Multiserver 95

Index 97
iv

C H A P T E R

1
Chapter1Introduction

This book introduces the Enhydra Application Server and the Enhydra development
environment. It provides an introductory overview of Enhydra and explains how to
develop an application by using an example illustrating some of the key principles of
Enhydra applications.

What You Should Already Know
This book assumes you have the following basic skills:

• A general understanding of the Internet, the World Wide Web (WWW), and
Hypertext Markup Language (HTML).

• Good working knowledge of the Java programming language. Some knowledge
of Java servlets is also helpful.

• Knowledge of basic Unix commands and the Unix make utility. This is not
necessary if you are developing your application with the Kelp Toolset in an IDE
such as JBuilder.

• A good understanding of relational databases; knowledge of SQL is helpful.

Document Conventions
Enhydra runs on a variety of operating systems. In general, file and directory paths
used in this book are in Unix format, for example /usr/local/bin . To convert these
paths into Windows format, simply change the forward slash (/) characters into
backslash (\) characters; for example, C:\usr\local\bin .

This book uses the following typographical conventions:

• New terms being introduced are shown in italics.
I n t r o d u c t i o n 1

W h e r e t o F i n d E n h y d r a I n f o r m a t i o n a n d S u p p o r t
• File names, directory names, and URLs are shown in fixed-pitch font, for example:
/usr/local/bin

• Java packages, classes, methods, and other identifiers are shown in bold, for
example, the Session object. Method names are suffixed with empty parentheses,
even if the method takes parameters, for example run().

• Commands that you enter directly are shown on a separate line in fixed-pitch code
typeface. For example:

cd mydir

• Code examples are shown in fixed-pitch font. For example:
System.out.println(“something”);

• Utility program names and options are shown in bold. For example: the make
utility; the -keep option.

Where to Find Enhydra Information and Support
You can find a variety of information and support at the Enhydra web site,
http://www.enhydra.org.

Software Downloads

You can download the latest version of Enhydra and other related software at:
http://www.enhydra.org/software/downloads/index.html.

Online Documentation

A wide range of documentation is available at the Enhydra web site, at:
http://www.enhydra.org/software/enhydra/documentation/index.html. The
Enhydra installation also includes HTML documentation, as described in “Viewing
Online Documentation” on page 22.

E-mail Lists

Lutris encourages you to join one or more of the following Enhydra E-mail lists:

• Enhydra@enhydra.org is the Enhydra mailing list for developer interaction.This
list is monitored by the Enhydra project team, and is the ideal place to get answers
to your questions from fellow Enhydra developers.

• Enhydra-digest@enhydra.org is a weekly digest of all mail sent to
enhydra@enhydra.org.

• EnhydraEnterprise@enhydra.org is the Enhydra Enterprise mailing list, which is
tailored for those who are developing and deploying Enhydra applications on a
large scale. Here you can find answers to the more detailed Enhydra questions
2 G e t t i n g S t a r t e d

http://www.enhydra.org
http://www.enhydra.org/software/downloads/index.html
http://www.enhydra.org/software/enhydra/documentation/index.html

W h e r e t o F i n d E n h y d r a I n f o r m a t i o n a n d S u p p o r t
such as those on Enterprise Java Beans (EJB) and the Common Object Request
Broker Architecture (CORBA).

• EnhydraEnterprise-digest@enhydra.org is a weekly digest of
EnhydraEnterprise@enhydra.org.

• Enhydra-announce@enhydra.org is the mailing list for receiving Enhydra
announcements.

To join one or more of these lists, go to http://www.enhydra.org/community/
mailingLists/index.html.

Mailing List Archives

You can search the combined Enhydra mailing list archives at:
http://www.enhydra.org/community/mailingLists/index.html

Bug Reporting

You can report bugs in Enhydra, or request features in future releases at:
http://www.enhydra.org/community/bugReports/index.html

Working Groups

Enhydra working groups bring together developers interested in creating new
technologies for Enhydra and Enhydra applications. Each working group provides
access to the current project source code and to the project E-mail list, which allows
you to communicate with the project leaders and other developers. Go to http://
www.enhydra.org/community/mailingLists/index.html to join one or more of
these working groups.

Working Group Focuses On...

Rocks Defining Rocks, a XMLC-based application framework that
provides a high-level interface to the Document Object Model
DOM and Servlet 2.2 API. By abstracting these APIs and
implementing common presentation logic, Rocks provides
general functionality common in web applications.

DODS
(Data Object Design
Studio)

Performing Java data binding with DODS and using DODS to
build Enhydra applications.

Enhydra Director Defining the Enhydra Director architecture that enables
Enhydra applications to distribute processing among
application instances, either on the same or separate machines.
Initially, Enhydra Director will support load balancing
managers on popular web servers and operating systems.

Kelp Enabling development of Enhydra applications using popular
IDEs; currently JBuilder Foundation, Standard, Professional,
or Enterprise. This work will include new functionality in the
Enhydra Application Wizard, The Enhydra XMLC Wizard
and XMLC Toolset, as well as sample JBuilder projects.
I n t r o d u c t i o n 3

http://www.enhydra.org/community/mailingLists/index.html
http://www.enhydra.org/community/mailingLists/index.html
http://www.enhydra.org/community/mailingLists/index.html
http://www.enhydra.org/community/mailingLists/index.html
http://www.enhydra.org/community/mailingLists/index.html
http://www.enhydra.org/community/bugReports/index.html

A c k n o w l e d g e m e n t s
Acknowledgements
As an open source product, Enhydra benefits from the contributions of many
developers around the world. In particular, Lutris would like to thank the following
people who have contributed information used in some form in this book: Robert
Cadena, G. W. Estep, Rohan Oberoi, Dan Rosner, Peter Speck, and David Trisna.

Internationalization Resolving issues related to creating localized Enhydra
applications.

EJB Containers Integrating JOnAS Enterprise JavaBeans (EJB) containers with
Enhydra. Applications that use EJB technology benefit from
portability, scalability, and simplified development,
deployment, and maintenance.

Web Containers Creating a cutting-edge Servlet 2.2 container with full support
for Rocks, JSP 2.0 and an embedded Web Server.

JMX Using Sun’s Java Management Extensions (JMX) API to enable
both the Enhydra multiserver and Enhydra applications to use
the Simple Network Management Protocol (SNMP), a
hardware and software application protocol for managing
applications in a network environment.

Architecture Identifying the "big picture" for the components that make up
Enhydra Enterprise, a full J2EE-compliant version of Enhydra.
Includes identifying common infrastructure elements that
other working groups depend on, defining specific
requirements for those elements, and providing common
implementation elements for the other groups.

Database and Transaction
Manager (DBTM)

Creating the database connection management and
transaction management components of Enhydra Enterprise.
The DBTM is based on the JOnAS database connection pool
management and JOnAS Transaction Manager.

Working Group Focuses On...
4 G e t t i n g S t a r t e d

C H A P T E R

2
Chapter2Overview

This chapter provides a high-level overview of Enhydra, Enhydra applications, and
the tools used to create Enhydra applications.

What is Enhydra?
Enhydra is an application server for running robust and scalable multi-tier web
applications, and a set of application development tools.

An application server usually operates between a web server and a database server,
and provides dynamically-generated content for the web server to send to web
browser clients.

As illustrated in Figure 2.1, Enhydra has three parts:

• Multiserver, that runs Enhydra applications either by itself or with a web server.

• The application framework, a collection of Java classes that provide the runtime
infrastructure for Enhydra applications.

• Enhydra tools that you use to develop Enhydra applications.

An Enhydra application is a Java program that runs in Multiserver and uses the
Enhydra application framework at runtime. Figure 2.1, “Enhydra application
architecture” illustrates the basic elements of an Enhydra application within the
context of the Enhydra architecture.

The next section describes Enhydra applications in more detail.
O v e r v i e w 5

W h a t i s E n h y d r a ?
Figure 2.1 Enhydra application architecture

What’s New in 3.0

Enhydra 3.0 includes a number of new features, including:

• Load balancing through Enhydra Director (see “Enhydra Director” on page 9 for
more information).

• Support for the Java Servlet 2.2 API.

• Support for Java Server Pages (JSP) 1.1 API.

• Dynamic recompilation of XMLC classes.

• Numerous other improvements, including:

• session maintenance using URL rewriting instead of cookies

• Wireless Markup Language (WML) support

• enhanced JBuilder integration

• support for Oracle's JDeveloper IDE

• an enhanced Multiserver Administration Console.
6 G e t t i n g S t a r t e d

A n a t o m y o f a n E n h y d r a A p p l i c a t i o n
Anatomy of an Enhydra Application
An Enhydra application has, at a minimum:

• A single application object.

• One presentation object for each page to be dynamically generated.

These objects run in the context of the Enhydra application framework, as described
in “The Enhydra Application Framework” on page 10.

Application Object

The application object is the central hub of an Enhydra application, and is a subclass
of com.lutris.appserver.server.StandardApplication. It contains application-wide
data, such as:

• The application's name.

• The application's status (running/stopped/dead).

• The name and location of the configuration file that initializes the application.

• The log channel to use for logging.

• References to the application's: session manager, database manager, and
presentation manager, as described in “The Enhydra Application Framework” on
page 10.

Properties
You can add properties (instance variables) to the application object to store
information that needs to be accessible throughout the application. For example, if
your application has a dozen pages that need to share a collection of customer data,
you could make a vector containing the data a property of the application object so
all the pages can easily access it.

Methods

Each application object has the following methods:

• The startup() method starts the application; you can extend this to perform other
startup functions, such as reading settings from the configuration file.

• The requestPreprocessor() method initializes the Session data structure; you can
extend this as needed; for example, to check for HTTP basic authorization.

In general, application objects do not deal with HTML, handle requests or otherwise
talk to the network. The presentation objects perform these tasks.
O v e r v i e w 7

A n a t o m y o f a n E n h y d r a A p p l i c a t i o n
Presentation Objects

A presentation object (PO) generates dynamic content for one or more pages in an
Enhydra application.

When a browser requests a URL that ends in .po , Enhydra passes the request on to
the corresponding presentation object. Enhydra then instantiates and calls the
presentation object. For example, for the URL
http://www.foo.com/myapp/Xyz.po , Enhydra will call the presentation object Xyz.

Note Enhydra only calls a presentation object for URLs with a .po suffix. The web server
will generally serve a static file for other requests.

Presentation objects must implement the interface
com.lutris.appserver.server.httpPresentation.HttpPresentation . This interface has
one method, run(), that Enhydra calls, passing it an HTTP request to handle.
Presentation objects differ from Servlets in that they need handle only a single
request at a time. No concurrency control is required.

Enhydra also provides a response object that a PO can use to write data in response
(similar to a servlet's service() method). POs usually handle GET requests (for
example form submissions) and respond by writing HTML, but they may perform
other functions, for example, read files sent by a POST request.

The Three Layers

For modularity and ease of maintenance, you should divide your application into
three distinct parts or layers:

• The presentation layer contains presentation object (POs). POs handle how the
application is presented to web browsers through HTML.

• The business layer contains business objects (BOs). BOs contains the application’s
business logic, including algorithms and specialized functions, but not data access
nor display functions.

• The data layer contains data objects (DOs). DOs interface with the persistent data
source, which is typically a relational database.

The Enhydra Application Framework only requires that you use an application
object and presentation objects. The business and data classes you create are up to
you. Dividing your application into these three layers minimizes maintenance cost
because it isolates the application’s data layer from the user interface. This, in turn,
enables you to change the data layer without affecting the presentation layer.

An additional benefit of having a distinct data layer is that you can use the Data
Object Design Studio (DODS) to create your data objects. DODS graphically creates
data objects to populate the data layer, and creates both Java code and SQL code to
create the corresponding tables in the database.
8 G e t t i n g S t a r t e d

M u l t i s e r v e r
Multiserver
Multiserver is the runtime component of Enhydra. It provides the services that an
Enhydra application uses to communicate with the web server, and perform all its
other runtime functions.

To understand Enhydra Multiserver, you need to understand a little about servlets .
A servlet is a Java class that dynamically extends the functionality of a web server.
Normally, when a browser sends a request to a web server, the server simply finds
the files identified by the requested URL and returns them to the browser. However,
if the browser requests a page constructed by a servlet, the server sends the request
information to a servlet, which constructs the response dynamically and returns it to
the server.

The Java servlet API is a standard extension to Java and is part of the Java2 Enterprise
Edition (J2EE). Some web servers support the servlet API directly, while others
require an adjunct servlet runner, such as JServ for the Apache web server. Enhydra
3.0 supports the servlet API version 2.2.

Each Enhydra application runs as a single servlet, in contrast to a generic servlet
application, which typically has one servlet for each dynamically-generated page.
Enhydra Multiserver is a servlet runner that executes servlets such as Enhydra
applications, either with a web server or by itself. Multiserver can run applications in
a small-scale development environment on its own; for a production environment
requiring greater performance, you can use Multiserver in conjunction with a web
server.

Note Since an Enhydra application is a servlet, it can run in any standards-compliant
servlet runner, not just in Multiserver.

Enhydra Multiserver has a custom class loader for each application (servlet). Because
of this one-to-one correspondence between servlets and class loaders, you can install
and start new applications without needing to stop the server. To update an existing
application, you simply restart its class loader.

Enhydra Director

Enhydra Director is a new feature in Enhydra 3.0 that provides applications superior
scalability by distributing the user load among several Enhydra Multiservers. The
load balancing algorithm supports session affinity and weighted round-robin
distribution with server failover. Session affinity means that a particular session
instance will always access the same Multiserver instance. The weighted round-robin
load balancing scheme takes into account the capacity of each Multiserver instance
and the number of existing connections. Server failover ensures that if a Multiserver
goes down, all application connections are automatically transferred to another
Multiserver instance.

Director uses a new connection method, the Enhydra Director connection method ,
and a new set of web server extension modules. Enhydra Director works with
Apache servers via the Apache Module interface, Netscape servers via Netscape
Application Programming Interface (NSAPI), and Microsoft servers via the Internet
O v e r v i e w 9

T h e E n h y d r a A p p l i c a t i o n F r a m e w o r k
Server Application Programming Interface (ISAPI), and other web servers via the
Common Gateway Interface (CGI).

For more information and installation instructions for Enhydra Director, see the
online documentation installed with Enhydra.

The Administration Console

Enhydra Multiserver provides an administration console for managing applications
through a web browser. The administration console enables you to:

• Start and stop applications.

• Add and remove applications from management.

• Modify an application's operational attributes and check its status.

• Trace the execution of an application to aid in debugging.

The administration console is described in more detail in “Using the Multiserver
Administration Console” on page 85

The Enhydra Application Framework
The Enhydra application framework includes:

• The presentation manager

• The session manager

• The database manager

In general, the application framework includes all the classes in the
com.lutris.appserver.server.* packages, that provide the infrastructure that Enhydra
applications use at runtime. The general architecture of an Enhydra application in the
context of the application framework is illustrated in Figure 2.1, “Enhydra
application architecture”.
10 G e t t i n g S t a r t e d

T h e E n h y d r a A p p l i c a t i o n F r a m e w o r k
Figure 2.2 Enhydra Application and Enhydra Framework

Presentation Manager

The Enhydra presentation manager handles the loading and execution of the
presentation objects in an Enhydra application. The presentation manager maps
URLs to POs, and calls the PO's run() method.

Each Enhydra application has one instance of a presentation manager. To increase
performance, the presentation manager caches POs and associated files in memory as
necessary. The presentation manager also provides the key that the session manager
uses to locate a session; this key is either a cookie or a string appended to each URL in
the application.

Each application has a presentation manager that is an instance of the class
com.lutris.appserver.server.httpPresentation.HttpPresentationManager . The
com.lutris.appserver.server.httpPresentation package contains classes and
interfaces that the presentation manager and POs use.

Session
Manager

Presentation
Manager

HTTP
Request

Application
Object

Presentation
Objects (POs)

Business
Objects (BOs) Data

Objects (DOs)

Enhydra Application

Database
Manager

Database

Session
Object

HTTP
Response

JDBC
O v e r v i e w 11

T h e E n h y d r a A p p l i c a t i o n F r a m e w o r k
Session Manager

The Enhydra session manager enables an application to maintain state throughout a
session. A session is defined as a series of requests from the same user (browser
client) during a specified time period. Enhydra provides a general implementation
of session management that you can extend to create more sophisticated state
models.

Enhydra maintains user state by creating a Session object for each user. When a user
first makes a request to an application, the session manager creates a new Session
object and assigns it a unique session ID. The session manager uses the session ID to
retrieve the Session object for subsequent requests. Applications can add user-
specific information to the Session object, and then access the Session object from the
request object, as it is passed through the application.

If a user has been idle (has not issued a request to the application) for more than the
period specified in the configuration file, the user's session becomes invalid, and the
session manager releases the corresponding Session object. This makes it possible to
implement security schemes that require users to log in before accessing the
application. In such a scheme, the user enters an appropriate password and gains
access to the rest of the application; however, once the user’s session has been idle for
more than the allowed time (for example, ten minutes), the application requires the
user to log in again.

Each application has a session manager that is an instance of the class
com.lutris.appserver.server.session.StandardSessionManager. When it is created,
the session manager reads the maximum time that a session can persist, the
maximum session idle time, and other related information from the application
configuration file, appName.conf . The com.lutris.appserver.server.session package
contains classes and interfaces that the session manager and the application use for
session management.

Database Manager

The Enhydra database manager controls an application's pool of database
connections. The database manager works with logical databases. A logical database is
an abstraction that hides the differences between different database types. A logical
database uses Java Database Connectivity (JDBC) to communicate with database
servers such as Oracle, Sybase, and Informix.

The database manager is responsible for the state of a database connection, the SQL
statements that are being executed, and the result sets that are in progress.
Specifically, the database manager:

• Allocates and releases connections to the logical database.

• Allocates object IDs from the logical database.

• Creates queries and transactions.

• Maintains other database-related information.
12 G e t t i n g S t a r t e d

E n h y d r a T o o l s
Each application has a database manager that is an instance of the class
com.lutris.appserver.server.sql.StandardDatabaseManager. When it is created, the
database manager reads a configuration file that specifies the logical database to use,
the actual database types to which it maps, and other related information.

The com.lutris.appserver.server.sql package contains the classes and interfaces that
the database manager and data objects use.

Enhydra Tools
Enhydra includes the following tools to help you create applications:

• The Application Wizard

• The Extensible Markup Language Compiler (XMLC)

• The Data Object Design Studio (DODS).

Application Wizard

The application wizard (newapp) is a command-line tool that creates a basic
framework for an Enhydra application. The application wizard allows you to create
and run a new “stub” application in a matter of minutes, giving your development
project a jump-start.

The application wizard is also incorporated into the Enhydra Kelp tools, so that you
can perform the same operation from the JBuilder graphical IDE.

For an example of using the application wizard, see “Creating Your First
Application” on page 25.

XMLC

The Extensible Markup Language Compiler (XMLC) creates a Java object that
mirrors the structure of an XML document. Extensible Markup Language (XML),
which is defined by the World Wide Web Consortium (W3C), is the universal format
for structured documents and data on the Web. XMLC uses the document object
model (DOM), a W3C standard interface to allow a programs to access and update
the content and structure of XML documents.

Note Although XMLC works with XML documents, this book will focus on its use with
HTML pages.

XMLC enables you to cleanly separate HTML templates in your application, which
are typically created by page designers from Java code, which is typically created by
programmers. This provides increased modularity and eases team development and
application maintenance. Page designers can change the user interface of the
application without requiring any code changes, and the programmers can change
the “back-end” Java code without requiring any changes to the HTML.
O v e r v i e w 13

E n h y d r a T o o l s
XMLC is a command-line tool that generates a Java class file from an HTML input
file. An application can use the Java class at runtime to change the content or
attributes of any tags with ID or CLASS attributes. For an example of using XMLC,
see “Tutorial: Building Enhydra Applications” on page 25.

Dynamic Recompilation

XMLC dynamic recompilation is a new feature in Enhydra 3.0. It enables you to
change HTML layouts at runtime without restarting an application.

With the new feature, you can make any changes to the static content of HTML
pages, and the application will automatically pick up the changes. As long as you do
not add or change any ID and CLASS attributes of tags in a page, you don’t have to
rebuild and restart the application.

The Data Object Design Studio (DODS)

The Data Object Design Studio (DODS) is a graphical tool you can use to define your
data model.

Data Objects (DOs) in the DODS data model correspond to tables in the database.
Each DO has attributes that describe database columns and reference attributes
that refer to other DOs. Reference attributes enable you to create a hierarchy of DOs,
for example many-to-one or many-to-many relationships.

Once you have defined your data model, DODS generates all of the code to
implement it:

• The SQL code to define the database tables

• The Java code to create the corresponding application data objects
14 G e t t i n g S t a r t e d

J B u i l d e r a n d t h e K e l p T o o l s
For each data object, DODS generates a set of source files. For example, if your data
model includes the definition of an entity named “thing,” then DODS would
generate the following:

• A file containing the SQL CREATE TABLE command to construct a table in a
relational database, named thing.sql .

• A Java source file defining a data object representing a row the table. This class
provides a “set” and “get” method for each attribute, methods to handle caching,
and is a subclass of the Enhydra framework class GenericDO. In this example, the
class would be named ThingDO.

• A Java source file that defines a query class, which provides SQL query access to
the database table. The query class will return a collection of ThingDO objects that
represent the rows found in the table matching criteria passed from the
application.

• Optionally, a Java source file that defines a business data object (BDO) class to
handle interaction between the data object and the business layer. In this example,
the class would be named ThingBDO by default.

When DODS generates source code, it creates a directory structure that matches the
package hierarchy you have designed. DODS creates the make files in each directory,
and runs make on the generated source code. All that is left for you to do is create a
database using the SQL files, and write the more interesting components of your
application.

For an example of using DODS, see “Using DODS” on page 48.

JBuilder and the Kelp Tools
The Kelp tools enable you to develop Enhydra applications in Borland JBuilder
Oracle JDeveloper interactive development environments (IDEs). You can use Kelp
in place of Enhydra's shell scripts and make files.

The following is a general outline of Kelp, as features will vary depending on the
IDE. See the documentation included with the Kelp tools for specific features
supported by your Java IDE.
O v e r v i e w 15

J B u i l d e r a n d t h e K e l p T o o l s
Enhydra Application Wizard

The Application Wizard generates an Enhydra application that you can develop, run
and debug from within an IDE. The wizard lets you set the name, directory and
package for your new application. It generates the files described in “Creating Your
First Application” on page 25. It also generates a Readme.html file that lists the steps
to build and run the new application.

XMLC Compiler Wizard

The compiler wizard lets you set XMLC options, select HTML files to compile and
call the XMLC compiler from JBuilder.

The wizard also provides a mapping table that maps directories to package names.
This is useful when you keep your HTML files in a directory that does not match the
package name you want to use in the generated DOM classes. For example, the
DiscRack sample project has HTML files in a resources directory that need to be
compiled using the presentation package.
16 G e t t i n g S t a r t e d

J B u i l d e r a n d t h e K e l p T o o l s
XMLC Property Pages

Property pages give you full control over how XMLC builds DOM classes from
HTML files. The property pages allow you to customize class name generation and
set XMLC option files for the entire project as well as for individual HTML files.

For example, the DiscRack sample includes three XMLC options files: one for the
presentation package, and two more for packages that reside within the presentation
package. You can use the XMLC Property Pages to associate each HTML file in the
resource directories with the appropriate XMLC options file in the presentation
directories.

Enhydra Sample Project

The Enhydra sample project is an IDE project file that lets you build, debug and run
your application from within the IDE. The project also demonstrates how to perform
several dynamic page generation tasks using XMLC. When you run the Enhydra
sample project, the pages display the HTML tags and the Java methods required to
perform each task.
O v e r v i e w 17

18 G e t t i n g S t a r t e d

C H A P T E R

3
Chapter3Installation

This chapter explains how to install Enhydra. You can install Enhydra on any system
with a standard Java virtual machine. In particular, Enhydra supports:

• Windows NT 4.0, Windows 95, and Windows 98

• Solaris, Linux, and other Unix systems

For more detailed system requirements, see the top-level index.html file on the
Enhydra CD.

Procedure
Follow these steps to install and configure Enhydra:

1 If you do not already have the Java Development Kit (JDK) 1.2.2, install Java2, as
described in “Downloading and Installing Java 2”.

2 Insert the Enhydra CD, and load the index.html file in the top level of the CD into
your web browser. This file contains general information, including system
requirements and registration information. Under the heading “Install Enhydra,”
click on the Enhydra link. This displays a page with installation instructions.

3 If you are using Windows, follow the instructions in “Installing on Windows” on
page 20. If you are using Linux or a Unix system, follow the instruction in
“Installing on Unix” on page 21.

4 Configure Enhydra, following the instructions in “Configuring Enhydra” on
page 22.

5 Use your web browser to view the online documentation, as described in
“Viewing Online Documentation” on page 22.

6 If you want to run the sample applications, follow the instructions in “Running the
Sample Applications” on page 23
I n s t a l l a t i o n 19

D o w n l o a d i n g a n d I n s t a l l i n g J a v a 2

Downloading and Installing Java 2
Enhydra 3.0 requires the Java Development Kit (JDK) version 1.2.2, which is part of
Java™ 2, from Sun Microsystems. If you have already installed the JDK 1.2.2 on your
system, you can skip this section.

Enhydra is certified for use with JDKs other than the Sun JDK. For more information,
see the release notes.

You can download Java 2 for Windows from
http://java.sun.com/products/jdk/1.2. Select your platform, and follow the
download and installation instructions. Reboot your system when the installation is
complete.

Note JBuilder contains its own version of the JDK, so if you are going to use JBuilder, you
can use its JDK instead of installing Java2 separately. See “Installing JBuilder” on
page 24.

Installing Enhydra 3.0
When you install Enhydra, you will select an installation directory. The installation
process will create a lutris-enhyd r a3. 0 sub-directory that contains the Enhydra
executables and libraries. This book will refer to this lutris-enhydr a3. 0 directory as the
Enhydr a r oot d i r ect or y , or <enhydr a_r oot >.

Installing on Windows

On Windows systems, Enhydra 3.0 includes an InstallShield™ program that
automates the installation process. It is strongly recommended that you use the
InstallShield program to ensure that Enhydra is installed and configured properly.
Advanced users may choose to install Enhydra manually on Windows, but Lutris
will not support such an installation.

Cygnus Tools
Enhydra requires a Unix shell environment and command emulator on Windows
systems. The InstallShield program will install Cygnus Tools from Cygnus Solutions,
containing Cygwin®, a Unix shell environment for Windows.

Although it is possible to use a Unix shell environment other than CygWin, Lutris
strongly recommends using CygWin.

Procedure

Follow these steps:

1 If you are using Windows NT, log on as a user with Administrator privileges.

2 If you are upgrading from a previous version of Enhydra, delete the old files.
20 G e t t i n g S t a r t e d

http://java.sun.com/products/jdk/1.2

I n s t a l l i n g E n h y d r a 3 . 0

3 Exit all Windows programs.

4 Double-click on the file LutrisEnhydr a3.0 . exe in the Enhydr a/ i nst all / cut s directory
on the CD. This will launch the InstallShield program directly from the CD.

On some systems, you may encounter problems executing the InstallShield
program directly from the CD. If so, copy the file Enhydra / i nst al l / cut s/
LutrisEnhyd r a3. 0. exe from the CD to a temporary location on your hard drive. Then
double-click on this copy of LutrisEnhydr a3. 0. exe to launch InstallShield.

5 Follow the InstallShield Wizard’s instructions to install Enhydra on your system.

Important InstallShield will prompt you to enter an installation directory. The Cygnus Tools
require that you install Enhydra on your C: drive

Installing on Unix

Following the instructions in the web pages on the CD, click on the link “Get
Enhydra Installation Files.” Then right-click on the link of your choice:

• Select lutris-enhydr a3. 0. zi p for a zip archive

• Select lutris-enhydr a3. 0. t ar . gz for a GNU tar archive

• Select Lutris-Enhydr a- 3. 0- 1. i 386. r pm for Red Hat package manager

Choose “Save Link as...,” then select a directory to save the archive on your hard
drive.

If you are upgrading from a previous version of Enhydra, now delete the old version.

Red Hat Linux
To use the Red Hat Package Manager (RPM) file for Enhydra, log on as root , and enter
the following command:

rpm -ivh Lutris-Enhydra-3.0-1.i386.r pm

This installs Enhydra in the /usr/local/enhydra3.0 directory. To install Enhydra in a
different location, enter the following command, replacing dir with the name of the
desired directory:

rpm -ivh --p r efix dir Lutris-Enhydra - 3.0-1.i386.rpm

After the installation completes, check the rpm_config.status file to see if RPM was
able to find the JDK and configure Enhydra properly.

Solaris and Other Unix Systems

The Enhydra distribution is packaged as a zip archive. Use unzip to extract the files
from the archive, as follow:

unzip lutris-enhydr a3.0.zip

Note Using anything other than unzip (for example Solaris tar) to extract the files may not
set the file permissions properly. Using unzip is strongly recommended. If you do
use tar, you must use GNU tar, available at ftp.gnu.org .
I n s t a l l a t i o n 21

C o n f i g u r i n g E n h y d r a
Configuring Enhydra
After installing Enhydra, you must configure it as follows:

1 On Windows, open a Cygwin shell window; enter the commands below in this
window. On Unix, you may use any shell window.

2 Change to the Enhydra root directory, for example:
cd /u sr / l ocal/ lutris-enhydra 3.0

3 Enter the following command, where JDK_LOC represents the directory where the
JDK 1.2 is installed:

./configure JDK_LOC

For example, if the JDK is installed in /jdk1.2.2 , use the command:
./configure /jdk1.2.2

Windows In a Cygwin shell window, you must convert Windows paths to Unix-style paths. If
the JDK is installed on your C drive, simply omit the drive in the path (for example,
for C:\jdk1.2.2 , use /jdk1.2.2). If installed on any other drive, you must include the
drive letter preceded by two slashes, for example, if the JDK is installed in E:\
JDK1.2.2 , then use //E/JDK1.2.2 .

Setting the PATH Environment Variable

To enable running the Enhydra tools from the command line, you must add
<enhyd ra _r oot >/bin . to your PATH environment variable.

On Unix systems, simply set the PATH environment variable as you normally
would, for example:

setenv PATH

On Windows systems, to change the path used by applications run from the Cygwin
shell, edit the file .bashrc in the enhydra directory.

This will enable you to run XMLC, DODS, and the Multiserver Administration
Console from the command line.

Viewing Online Documentation
In addition to the documentation on the Enhydra.org web site, the Enhydra
installation includes HTML documentation. View the file <enhy dr a_r oot >/doc/
index.html in your web browser. This file includes links to the release notes, the
Frequently Asked Questions list, and other informative documents.

The doc directory includes the following documentation:

• Release notes, frequently asked questions (FAQ) list, and license information. For
updated release notes, refer to the Enhydra.org web site.

• General information on the Enhydra Multiserver Administration Console, in the
admin directory
22 G e t t i n g S t a r t e d

R u n n i n g t h e S a m p l e A p p l i c a t i o n s
• Enhydra developer documentation, in the developer directory

• Javadoc API reference documentation, in the user-doc directory

• XMLC documentation, including Javadoc for the Document Object Model, in the
xmlc directory

Running the Sample Applications
Enhydra 3.0 includes some sample applications (“demos”) that illustrate using
Enhydra. The Windows InstallShield program installs the sample applications by
default. In addition, the DiscRack application described in Chapter 5, “The DiscRack
Example Application”, is installed to <enhy dr a_ro ot >/examples/DiscRack .

On Unix systems, you must install them manually as follows:

1 On the CD, go to the directory Enhydra/install/cuts/demos.

2 Decompress the lutris-enhyd r a- demos3 . 0. t ar. gz or lutris-enhydra - demos3.0 . zi p
file to a directory of you choice, for example, / usr/ l ocal / lutris-enhydr a- demos3. 0.

Follow these steps to run them:

1 Change to the directory containing the sample applications
(lutris-enhydr a- demos3. 0) and run the start script:

cd /usr/loca l / lutris-enhydra-demos3.0
./start

2 To access the sample applications, enter the following URL into your browser:
http://localhost:xxx , where xxxx represents the port you specified for the
samples during installation. For example, if you specified port 9050, enter
http://l ocal host : 9050.

3 You will see a page with links to several sample applications:

Sample Description

DemoApp1 A very simple demonstration application.

Calculator1 Simulates a pocket calculator.

Chat Room1

1. This application was constructed with Enhydra JDDI, a tool for rapid prototyping of
simple applications.

Uses a special algorithm to achieve the effects of
push technology using HTTP. Messages that
users enter appear immediately to other users.

Golf Shop An example of a classic Web shopping cart
application used to support an on-line Golf
Store. The user name is enhydra and the
password is lutris or you may create your
own account.
I n s t a l l a t i o n 23

I n s t a l l i n g J B u i l d e r
Installing JBuilder
Borland JBuilder is a graphical IDE for Java development, as described in “JBuilder
and the Kelp Tools” on page 15. Lutris Enhydra Professional Edition includes
Borland JBuilder Foundation. To install JBuilder, follow the installation instructions
in the index.html file in the Jbuilder directory on the CD.

Although Enhydra Standard Edition does not include Borland JBuilder, you can
download JBuilder Foundation for free from the Borland web site: http://
www.borland.com/jbuilder.

JBuilder Foundation includes a complete JDK that you can use with Enhydra. If you
install JBuilder first, you can then configure Enhydra to use the JBuilder JDK.

Installing the Kelp Tools

The Kelp Tools for JBuilder and Oracle JDeveloper are included in both Enhydra
Standard Edition and Enhydra Professional Edition. You should install Enhydra 3.0
and either JBuilder or JDeveloper before installing Kelp.

For detailed system requirements and installation instructions, see Enhydra/kelp/
kelpdoc.html .

Windows

To install the Kelp tools on Windows:

• For JBuilder, double-click on Enhydra/kelp/cuts/jb-kelp1.1.exe to run the
InstallShield program.

• For JDeveloper, double-click on Enhydra/kelp/cuts/jdev-kelp1.1.exe to run the
InstallShield program.

The InstallShield program will install Kelp and make the Kelp tools accessible from
the IDE menus.

Linux and Solaris

To install the Kelp tools on Linux or Solaris:

• For JBuilder, extract the zip file Enhydra/kelp/cuts/jb-kelp1.1.zip to your
system.

• For JDeveloper, extract the zip file Enhydra/kelp/cuts/jdev-kelp1.1.zip to your
system.

On Linux and Unix systems, you need to manually configure your tools for use with
Kelp. The zip files include a readme.html file that includes instructions for setting up
the Kelp tools and the sample project.
24 G e t t i n g S t a r t e d

http://www.borland.com/jbuilder
http://www.borland.com/jbuilder

C H A P T E R

4
Chapter4Tutorial: Building Enhydra

Applications
This chapter describes how to build a Enhydra application from the ground up, and
provides important tips on Enhydra application development. It begins with using
the application wizard to create a starting framework, and leads you through using
XMLC to expand the application, then adding simple database access.

If you are already familiar with the basics of Enhydra, you may want to skip to the
next chapter, “The DiscRack Example Application” on page 59, for a look at an
application with more advanced features.

Note In this tutorial, you are often instructed to enter commands. On Unix platforms, you
can enter the commands in any shell. On Windows, you must enter the commands in
a Cygwin shell window.

Creating Your First Application
The application wizard (sometimes referred to as “newapp”) is a quick way to get
up and running with Enhydra. It is a command-line tool that generates the basic Java
files and directory structure for a new application.

First, create a directory to contain your new application, and name it anything you
want, for example “myapps.” Then, open a shell window and make the new
directory the current directory, for example:

cd myapps

Now, run the application wizard by typing newapp followed by the name of the
application to create. In this case, call it simpleApp:

newapp simpleApp

The application wizard will create a new directory called simpleApp . This directory is
sometimes referred to as the application root directory.
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 25

C r e a t i n g Y o u r F i r s t A p p l i c a t i o n
Make this the active directory:
cd simpleApp

Notice that the application wizard created the following in this directory:

• Two make files: config.mk and Makefile

• A README file that contains some simple instructions to build and run the
application

• A simpleApp directory that contains all the source code for the application; the
contents of this directory are explained later

Building the Application

Enter the make command to build the application:
make

This will create two sub-directories in the application root directory:

• The classes directory contains the application’s class files.

• The output directory contains everything needed to run the application.

The top-level make file, Makefile , contains directives that tell make to recursively
descend the application directory tree, following the directives of the make file in
each sub-directory. It also has an INCLUDE directive that references config.mk , which
in turn references
<enhydra_root >/lib/stdrules.mk , a large make file shared by all Enhydra
applications.

When you build the application, make compiles the files in the simpleApp/simpleApp
source directory and creates a corresponding directory structure in the classes
directory. It then combines those classes into a jar (Java archive) file and places the
jar file into the output directory along with the configuration files needed to run the
application.

To start the application, enter the following commands:
cd output
./start

Now, to access the application, enter the following URL in your browser’s location
field: http://localhost:9000.
26 G e t t i n g S t a r t e d

C r e a t i n g Y o u r F i r s t A p p l i c a t i o n
You will see the following page in your browser:

You have just built and run your first Enhydra application!

Now hit ctrl+C in the shell window to stop the Enhydra process.

How It Works

The application created by the application wizard provides a simple example of how
Enhydra works. Look at the file myapps/simpleApp/simpleApp/presentation/
Welcome.html , which contains a few dozen HTML tags. Notice tags such as these:

<CENTER>
The current time is 1/1/00 00:00:00 Oh no!.
</CENTER>

At runtime, Enhydra replaces the content of the SPAN tag with a date value. The text
in there is just a placeholder; it will never appear at runtime. Note the period outside
of the SPAN tag will not be replaced. Thus, the sentence will always end with a period.

Look also at the Welcome.java file in the same directory. In particular, notice these
lines of code:

String now = new Date().toString();
WelcomeHTML welcome =
WelcomeHTML)comms.xmlcFactory.create(welcomeHTML.class);
welcome.setTextTime(now);
comms.response.writeHTML(welcome);

When you build the application, XMLC finds the SPAN tag in the HTML and
recognizes the ID attribute with value “Time”. It creates a Java class called
WelcomeHTML with a method setTextTime() that the application uses to modify
the text content of the SPAN tag. In general, XMLC will create a setTextXXX() method
for each SPAN tag with ID attribute value “XXX”.
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 27

C r e a t i n g Y o u r F i r s t A p p l i c a t i o n
Then, at runtime, the application replaces the original text content of the SPAN tag
with a string representation of the current date. Then, the call to writeHTML()
writes the document out to the HTTP response, looking something like this:

...
<CENTER>
The current time is Mon Feb 28 10:42:34 PST 2000.
</CENTER>
...

For a more detailed explanation of XMLC, see “Using XMLC” on page 29.

The Directories and Files in SimpleApp

Let’s take a closer look at the directories and files in the simpleApp directory:

• The simpleApp sub-directory contains the source code for the application. It is
divided into three sub-directories for the business, data, and presentation layers.
The business and data directories are empty in the new application. The
presentation directory contains java, html, and media files.

• The classes sub-directory contains the application’s compiled Java classes in their
package hierarchy, and any associated media files such as .GIF files.

• The output sub-directory contains the application’s configuration files,
multiserver.conf and simpleApp.conf , and a lib directory with a simpleApp.jar
file containing an archived package of everything in the classes directory.

The finished Enhydra application includes the jar file and the configuration file. The
make program also copies the multiserver configuration file and the start script to
the output directory to make it easier to run the application.

Configuration Files

The application configuration files contain critical information that determine how
an Enhydra application runs:

• The Multiserver configuration file, multiserver.conf

• The application configuration file, which is named AppName.conf (for example
simpleApp.conf) by default

• If the application is to be administered by the Multiserver Administration
Console, the multiserverAdmin.conf file

• The start script, which is named start . This is not a configuration file; however, it
specifies the all-important CLASSPATH that the application will use. If you do not
specify a CLASSPATH in this file, the application will use the system CLASSPATH,
which may not be correct.

By editing the configuration files, you can change the various settings contained in
the files, as explained below.

Note The application wizard creates “input” versions of the two configuration files in the
app_root / appName directory; for example, simpleApp/simpleApp . These are the files
28 G e t t i n g S t a r t e d

U s i n g X M L C
that you should edit. Running make creates “runtime” versions of the files in the
app_root /output directory, for example simpleApp/output . You should not edit these
versions of the files, because they will be over-written each time you re-build the
project.

The Multiserver configuration file contains information that the Multiserver uses to
run the application, including:

• The name and location of the application configuration file

• The name of the log file and other log file information

• The TCP port on which the application will run

The application configuration file contains the following important application-
specific information:

• The CLASSPATH that this application will use; the difference between this CLASSPATH
and the one specified in the multiserver start script is that this one applies to the
application’s own class loader, while the latter is global in scope for all
applications run by that Multiserver instance.

• The class name of the application object; for example:
Server.AppClass = simpleApp.SimpleApp

• The prefix used to derive presentation object class names and paths from URLs;
for example:
Server.PresentationPrefix = "simpleApp/presentation"

• The maximum length (in minutes) of a user session and the session idle time; for
example:
SessionManager.Lifetime = 60
SessionManager.MaxIdleTime = 2

• The default URL for the application; for example:
Application.DefaultUrl = "Welcome.po"

When a browser requests the application URL, this is the URL (typically a
presentation object) that the Multiserver returns by default.

Using XMLC
XMLC, the Extensible Markup Language Compiler was introduced in Chapter 2,
“Overview”. It is a powerful tool that you can use to create applications that have a
clean separation between the user interface and the back-end programming logic.

In general, XMLC can work with XML pages, but for practical reasons we are going
to focus on how it works with HTML pages. XMLC parses an HTML file and creates
a Java object that enables an application to change the HTML file’s content at
runtime, without regard for its formatting. The Java objects that XMLC creates have
interfaces defined by the Document Object Model (DOM) standard from the World
Wide Web Consortium (W3C).
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 29

U s i n g X M L C
For simplicity, the remainder of this chapter will refer to HTML documents, but in
most cases the discussion can be extended to include XML documents in general.

Adding a Hit Counter

To get a feel for how XMLC works, you are going to extend your application to
display a “hit counter” that shows the number of users who have accessed it.

Find the files Welcome.html and Welcome.java in the presentation directory.Add the
following line of HTML to Welcome.html before the closing </CENTER> tag:

Number of hits on this page: no count

The ID attribute tells XMLC to generate an object corresponding to the SPAN tag, so
that it can replace the text “no count” at runtime.

Now, add the two lines of code indicated below to Welcome.java in the same
directory.

import java.util.Date;
import com.lutris.xml.xmlc.*;
import com.lutris.appserver.server.httpPresentation.*;
public class Welcome implements HttpPresentation {

Add this: static int h i tCount=0; // All Welcome PO's wi l l share this.
 public void r un(HttpPresentat i onComms comms)

throws HttpPresentationException {
String now = new Date().toString();
WelcomeHTML welcome =

 (WelcomeHTML)comms.xmlcFactory . create(welcomeH TML.class);
 welcome.setT extTime(now);

// Increment the count and write into the html.

Add this: welcome.setTextHitCount(String.valueOf(++hitCount));
comms.response.writeHTML(welcome);

}
}

Build the application by running make from the top-level simpleApp directory. Then
restart Enhydra:

cd /myapps/simpleApp
make
cd output
./start

Building the application with make runs XMLC on all the HTML files in the
application, in this case, just Welcome.html .
30 G e t t i n g S t a r t e d

U s i n g X M L C
Test the application by loading http://localhost:9000 in your browser. You will see
this:

Notice that the page now displays the number of times it has been accessed. Reload
the page several times to verify that it works correctly.

The application is doing two things:

• Storing the hit count in hitCount, a static property of the Welcome presentation
object

• Writing it to the web page with the setTextHitCount() method

Recall that the presentation manager instantiates a presentation object for each
request. So, the Welcome class is instantiated once per browser request. But because
hitCount is a static property, it is shared by all Welcome objects, and its value gets
incremented by each request.

In the same way that it added a setTextTime method for the tag,
XMLC creates a setTextHitCount method for the tag. The
application then uses the setTextHitCount method to write the value of hitCount
into the page, within the corresponding SPAN tag.

Note XMLC creates the WelcomeHTML class, but by default it deletes the Java source file.

Understanding the DOM

HTML documents have a hierarchical or tree-like structure that can be modeled in an
object-oriented language such as Java. The Worldwide Web Consortium’s standard
for the XML/HTML object model is called the Document Object Model (DOM).

Enhydra applications use the DOM to manipulate HTML content at runtime. For
example, consider the following HTML:
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 31

U s i n g X M L C
<TABLE>
<TR>

<TD ID=”cellOne”>Shady Grove</TD>
<TD ID=”cellTwo”>Aeolian</TD>

</TR>
<TR>

<TD ID=”cellThree”>Over the River, Charlie</TD>
<TD ID=”cellFour”>Dorian</TD>

</TR>
</TABLE>

This HTML snippet has a TABLE tag that contains TR tags, that in turn contain TD
tags containing text. This defines a tree-like hierarchy, as illustrated in Figure 4.1

Figure 4.1 DOM tree of HTML

Each box or ellipse in the above figure is a node in the tree. The node above a node in
the hierarchy is called is parent ; the nodes below are called its children . Some nodes
(like HTML tags) have attributes , for example a table cell has a background color
attribute. The W3C defines packages and interfaces that mirror the object hierarchy
of nodes in an HTML document. In addition, XMLC includes an API for changing
attribute values.

You could use code like this to set the color of one of the table cells:
HTMLTableCellElement cellOne = theDocument.getElementCellOne();
cellOne.setBgColor(“red”);

The class HTMLTableElement and setBgColor() came from the W3C packages, and
getElementCellOne() came from XMLC. This code illustrates one important thing
XMLC does—create methods to access nodes in the DOM. XMLC generates the
getElementXXX() methods that return objects corresponding to tags with ID
attributes. You could change the color of a table cell with the W3C classes alone, but

TABLE

TR

TDTD

TR

TDTD

Shady Grove Aeolian
Over the River Dorian

 Charlie
32 G e t t i n g S t a r t e d

U s i n g X M L C
your code would have to traverse the DOM tree, so it would have been more
laborious.

SPAN and DIV Tags
SPAN and DIV are HTML tags that you may not be familiar with. They are typically
used to apply styles using Cascading Style Sheets. Outside of that, they are largely
ignored by browsers. XMLC makes extensive use of them, however.

Use the SPAN tag to enclose a block of text that you want to replace at runtime. In
general, a SPAN tag can enclose any text or in-line tag. An in-line tag is any tag that
does not cause a line break in the layout, for example A (anchor) or B (bold) tags. Do
not use SPAN tags to enclose other tags, such as TABLE or P (paragraph). Use the DIV tag
to enclose block tags, such as TABLE, that do cause a line break in the HTML layout.

Using XMLC From the Command Line

Previously, you have run XMLC implicitly when you built the project with make. To
run XMLC from the command line, you must have the enhydra.jar file on your
CLASSPATH.This is something that the make files automatically do for you.

Set your CLASSPATH with one of the following commands:

Unix export CLASSPATH=<enhyra_root>/lib/enhydra.jar:.

Windows export CLASSPATH=< enhydra_root>/lib/enhydra.jar\;.

The basic command-line syntax of XMLC is:
XMLC - options file .html

where options is a set of command line options, and file is the name of the input file.
There are several dozen command line options. In this section we introduce three
immediately useful ones: dump, class, and keep.

The -dump Option

The -dump option makes XMLC display the DOM tree for a document. This is
primarily useful as a learning tool; once you are familiar with XMLC you will rarely
use it.

Create a new file called Simple.html in the simpleApp/simpleApp/presentation
directory. Add the following HTML to it:

<HTML>
<HEAD><TITLE>Simple Enhydra Page</TITLE></HEAD>
<BODY>
<H1 ID=”MyHeading”>Ollie Says</H1>
The current time is 00:00:00.
</BODY>
</HTML>

Change to the presentation directory and enter this command:

xmlc -dump Simple.html
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 33

U s i n g X M L C
XMLC displays the following in the shell window:
DOM hierarchy:

HTMLDocument:null DocumentType
HTMLHtmlElement: HTML

HTMLHeadElement: HEAD
HTMLTitleElement: TITLE

Text: XMLC Test
HTMLBodyElement: BODY

HTMLHeadingElement: H1: id='MyHeading'
Text: Ollie Says

Text: The current time is
HTMLElement: SPAN: id='Time'

Text: 00:00:00
Text: .

Each line shows the DOM object name followed by a colon and then the
corresponding HTML tag; if the tag has attributes they are listed following the tag in
name/value pairs. For instance, HTMLHeadingElement is the DOM name for the
H1 tag, and it has an id attribute with value “MyHeading.” The level of indenting
shows the object relationships, so for example, you can see that the first
HTMLHeadingElement is the child of HTMLBodyElement.

The -class and -keep Options

By default, XMLC creates a class with the same name as the HTML file. So, for
Simple.html it would create Simple.java . Use the -class option to specify a name for
the class that XMLC creates.

By default, XMLC deletes the Java source file that it creates; leaving only the
compiled class file. Use the -keep option to keep the Java source file. The source file is
useful primarily for understanding how XMLC and the DOM API works.

To create a Java object named SimpleHTML for the HTML file Simple.html , and to
keep the Java source, enter this command:

xmlc -keep -class simpleApp.presentation.SimpleHTML
Simple.html

XMLC generates two files: SimpleHTML.java and SimpleHTML.class .

Open SimpleHTML.java . At the beginning of the file, you will see two methods,
getElementMyHeading() and getElementTime(). XMLC recognized the ID
attributes of the heading and SPAN tags and generated these methods. XMLC also
generated the method setTextTime() for the SPAN tag. Peruse this file to get an idea
of the object that XMLC creates for a very simple document.

You’re done exploring how XMLC works for now. But keep your Simple.html file,
because you are going to use it later in this tutorial.
34 G e t t i n g S t a r t e d

E n h y d r a P r o g r a m m i n g
Enhydra Programming
This section covers some more topics essential to Enhydra application development:

• Maintaining session state

• Adding a page to an application

• Populating an HTML table

• Adding a business object to the application

Maintaining Session State

Since HTTP is a stateless protocol, an application that needs to keep user-specific
information across multiple requests must perform session maintenance. For an
overview of how Enhydra performs session maintenance, see “Session Manager” on
page 12.

Think of the user’s session as a container in which the application can store any
information associated with a particular user. The class that you use as the container
is com.lutris.appserver.server.session.SessionData; it is similar to a hash table in
that it has a set() method to which you pass a string key and an object to store, and a
get() method that returns the object, given the string key.

Enhydra matches a user to a particular SessionData object with a session key , a very
long randomly-generated character string. When the Enhydra session manager first
creates a SessionData object for a user, it generates a session key and stores it in its
internal data structure. Enhydra also gives the session key to the client, either passed
as a cookie or appended to the URL. The next time the client makes a request, the
session manager uses the key to find that user’s SessionData object.

Generally, you don’t need to worry about the session key—Enhydra handles all those
details for you “under the hood.” You do, however, need to keep track of the
keyword strings that you use to get and set each object you want to save to the
session.

To help you understand session maintenance, you are going to enhance your
application so that the Welcome page displays the number of times a particular user
has accessed it, in addition to the total “hits” on the page. For fun, you’ll also display
the session key on the page.

Add these four lines of HTML just before the closing </CENTER> tag in Welcome.html :
<P>Number of hits from you:
no count
<P>Session identifier:
no count

Now add the following code to Welcome.java . Add this import statement:
import com.lutris.util.*;

Add this member property to the Welcome class (just after hitCount):
final String hits = "HITS";
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 35

E n h y d r a P r o g r a m m i n g
The string “HITS” is the keyword that the application will use to save and recall the
hit count information.

Now add the following code to the run() method, just before the call to
comms.response.writeHTML(). You can find this code in the <enhydra_root >/doc/
samples/SessionMaint.java file.

try {
Integer personalHits = (Integer)comms.session.getSessionData().get(hits);
if(personalHits == null) {

personalHits = new Integer(1);
} else {

personalHits = new Integer(personalHits.intValue() + 1);
}
comms.session.getSessionData().set(hits, personalHits);
// Save personalHits to the user’s session.

welcome.setTextPersonalHitCount(personalHits.toString());
welcome.setTextSessionID(comms.session.getSessionKey());
// Shows the session key value used for session tracking.

} catch (KeywordValueException e) {
comms.response.writeHTML("Session access error" + e.getMessage());

}

This code begins by calling getSessionData().get(hits) to get the value stored for the
keyword string “HITS.” Because SessionData stores only generic java.lagn.Objects,
you have to type cast it to Integer. If the object has not been previously stored in the
session, the code creates a new Integer of value one. If it does exist, it is incremented.

The code then saves the Integer object back into the session with
setSessionData().set(hits, personalHits) and writes the value into the web page
with getSessionKey(). Normally, you would not need to deal with the session key,
but for curiosity’s sake this example shows you how to display it.
36 G e t t i n g S t a r t e d

E n h y d r a P r o g r a m m i n g
Rebuild and start the application, and access the page with your browser. The page
now looks like this:

The page now displays the total number of hits as well as the number of hits from a
particular client. Since you are running the application on your Localhost server, it is
not accessible to any other clients, so these two numbers will always be the same.
However, if it were running on a “real” server, you would see different numbers
depending on how many times you had accessed the page versus the total number of
hits. Notice also that the session ID string always stays the same.

Adding a New Page to the Application

Next, you are going to add a new page (HTML file and presentation object) to your
application. You’re going to use the little HTML file you created previously,
Simple.html . In addition to learning how to add a page, you’re also going to play
around with the DOM a little bit to become more familiar with it.

First, you need to create a new presentation object. Copy the file Welcome.java , and
call it Simple.java. Edit Simple.java and change the name of the class from
Welcome to Simple, and then remove all the session-related code you added to
Welcome. Change all the occurrences of WelcomeHTML to SimpleHTML; also
change the welcome identifier to simple.

Now, you have a “stripped down” presentation object. The run method should look
like this:

public void run(HttpPresentationComms comms) throws HttpPresentationException
{

String now = new Date().toString();
SimpleHTML simple = new SimpleHTML();
simple.setTextTime(now);
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 37

E n h y d r a P r o g r a m m i n g
comms.response.writeHTML(simple);
}

Add the following statements at the top of the file, after the other import statements:
import org.w3c.dom.*;
import org.w3c.dom.html.*;

Now add the following lines just before the last statement in the run() method:
HTMLHeadingElement heading = simple.getElementMyHeading();
heading.setAttribute("align", "center");
Text heading_text = (Text) heading.getFirstChild();
heading_text.setData("Mr. Ollie Otter says:");

This code does the following:

• Gets the HTMLHeadingElement object named “MyHeading,” from the DOM

• Sets its ALIGN attribute to CENTER. This will center the heading on the page

• Gets the child object of the heading (a Text object)

• Sets a new value for the text, "Mr. Ollie Otter says:"

You could have done the same thing by putting a SPAN tag around the text in the
heading, since then XMLC would have generated a setTextMethod() that you could
have then called in the code, but this example illustrates how to do it with the DOM.

Note This code performs some low-level DOM manipulation that you should normally not
do in your application, because it violates the separation of presentation and business
logic. It is only presented here to help explain the DOM.

Finally, edit Makefile in the presentation directory and add the new files to the
CLASSES and HTML_CLASSES variables, to make them look like this:

CLASSES = \
Redirect \
Welcome \
Simple

HTML_CLASSES = WelcomeHTML \
SimpleHTML

The HTML_CLASSES variable is passed to the XMLC -class option to make it create the
specified classes, just as you did on the command line. The Lutris convention is to
create fooHTML class for a file foo.html . This convention is defined in
<enhydra_root >/lib/stdrules.mk .

Save all the files and run make in the presentation directory to build the package.

To create a link from the Welcome page to your new page, add the following HTML
at the bottom of Welcome.html :

Go to Simple Page

If you have not done so already, stop your Multiserver by hitting ctrl-C in the shell
window, and build the application from the top level:

cd /myapps/simpleApp/simpleApp
make
38 G e t t i n g S t a r t e d

E n h y d r a P r o g r a m m i n g
Now access the application from your browser, as you did before. Click on the link
“Go to simple page” to view the Simple PO. You will see the following rather
uninteresting page:

Don’t worry, though: you’re going to make this page more interesting in the next
section.

Populating a table

Another common task in web application development is how to populate an HTML
table with dynamic data. This section discusses populating a table using a static
String array as the data source; in a later section, you will modify the code to get data
from a database.

Follow these steps to populate a table:

• In the Simple.html file, create an HTML table with a template row with an ID
attribute

• In the corresponding presentation object, programmatically populate the table.

• Rebuild and run the application.

Create the table in HTML

Edit the file presentation/Simple.html in your simpleApp project. Add the HTML
shown below just before the end of the BODY tag.

Note If you don’t want to type in all this HTML, you can copy and paste it from
<enhydra_root >/doc/GettingStarted/samples/TableCode.html .

<H2 align=center>Disc List</H2>
<TABLE border=3>
<TR>
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 39

E n h y d r a P r o g r a m m i n g
<TH>Artist</TH> <TH>Title</TH> <TH>Genre</TH>
<TH>I Like This Disc</TH>

</TR>
<TR id=TemplateRow>
<TD>Van Halen</TD>
<TD>Fair Warning</TD>
<TD>Good Stuff</TD>
<TD>Yes</TD>
</TR>
</TABLE>

This HTML contains a table with a single “template” row (TR tag). Notice that both
this row and the SPAN tags enclosing the cell contents have ID attributes. This is called
a template row, because it is used as a model from which you construct further rows
of the table.

Programmatically Populate the Table

Now copy the file <enhydra_root >/doc/GettingStarted/samples/TableCode.java . into
your application’s presentation directory, and rename it Simple.java . If you like, you
can save your old Simple.java to Simple.sav for future reference.

Now, look at your new Simple.java : In addition to the standard features of a
presentation object, the first thing you’ll notice in this code is a member property of
that is an array of strings representing the content the application will use to
populate the table. This array takes the place of a database result set for this example:

String[][] discList =
{ { "Felonious Monk Fish", "Deep Sea Blues", "Blues", "Yes" },
 { "Funky Urchin", "Lovely Spines", "Techno Pop", "Yes" },
 { "Stinky Pups", "Shark Attack", "Hardcore", "Not" } };

The next new section of code gets the document objects for the table elements:
HTMLTableRowElement templateRow = simple.getElementTemplateRow();
HTMLElement artistCellTemplate = simple.getElementArtist();
HTMLElement titleCellTemplate = simple.getElementTitle();
HTMLElement genreCellTemplate = simple.getElementGenre();
HTMLElement likeThisDisc = simple.getElementLikeThisDisc();

The next section of code removes the ID attributes from these objects. The reason for
this is that the DOM requires that each ID in the document be unique; when you
make a copy of the table row, you would otherwise have duplicate IDs. The
removeAttribute() method removes the attribute with the specified name:

templateRow.removeAttribute("id");
artistCellTemplate.removeAttribute("id");
titleCellTemplate.removeAttribute("id");
genreCellTemplate.removeAttribute("id");
likeThisDisc.removeAttribute("id");

Then, a call to getParentNode() gets a reference to the table document object, which
you’ll be using later:

Node discTable = templateRow.getParentNode();
40 G e t t i n g S t a r t e d

E n h y d r a P r o g r a m m i n g
Next comes the heart of the code, a for loop that iterates through each “row” in the
“result set,” puts text in each cell in the table row, and then appends a copy (or clone)
of the row to the table:

for (int numDiscs = 0; numDiscs < discList.length; numDiscs++) {
simple.setTextArtist(discList[numDiscs][0]);
simple.setTextTitle(discList[numDiscs][1]);
simple.setTextGenre(discList[numDiscs][2]);
simple.setTextLikeThisDisc(discList[numDiscs][3]);
discTable.appendChild(templateRow.cloneNode(true));

}

That last statement is crucial: The cloneNode() method creates a copy of the Node
object which calls it, in this case, templateRow. The boolean argument determines if
it copies only the node itself or the node and all its children, and their children, and
so on. In this example, the argument is true, because you want to copy the row and
its child nodes (the table cells and the text inside them).

Finally, removeChild() removes the template row from the table. This ensures that
the “dummy data” in the template does not show up in the runtime page.

discTable.removeChild(templateRow);

Rebuild and Run the Application

Now rebuild the application, and load the page in your browser. You should see the
following result:
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 41

E n h y d r a P r o g r a m m i n g
Adding a Business Object

So far, your application has three objects: the SimpleApp application object, and two
presentation objects, Welcome and Simple. Now, you are going to add a business
object that you will use it in the following sections. This will not change what the
application displays.

The business object represents a list of discs; this is not terribly useful, but it does
suffice to illustrate a basic role of business objects as you proceed.

Create a new file called SimpleDiscList.java in the business directory, simpleApp/
simpleApp/business . It’s in your application’s business package, so the first line in the
file will be:

package simpleApp.business;

Now, add the following lines (cut and paste the array initializer from the Simple
class, but be sure to add the underscore in front of the identifier):

public class SimpleDiscList {
String[][] _discList =

{ { "Felonious Monk Fish", "Deep Sea Blues", "Blues", "Yes" },
 { "Funky Urchin", "Lovely Spines", "Techno Pop", "Yes" },
 { "Stinky Pups", "Shark Attack", "Hardcore", "Not" } };

public SimpleDiscList() {
}
public String[][] getDiscList() {
 return _discList;
}

}

To ensure that this file gets compiled when you build the project, edit the make file in
the business directory, and add the name of the file to the CLASSES variable:

CLASSES = \
SimpleDiscList

This make file is automatically included by the top-level make file, so that is all you
have to do to add the file to the project. Make sure the file compiles by entering make
in the business directory.

Now, back in the presentation directory, edit Simple.java as follows:

• Import the new class:
import simpleApp.business.SimpleDiscList;

• Add these two lines to create an instance of your new business object, and call its
getDiscList() method. These lines take the place of the static array initializer in the
previous section.

SimpleDiscList sdl = new SimpleDiscList();
String[][] discList = sdl.getDiscList();

Rebuild and test your application.

You won’t see anything different, but you have extracted some functionality out of
the presentation object into the new business object. This will come in handy in an
upcoming section: when you replace the static array with a real database query, you
42 G e t t i n g S t a r t e d

C o n n e c t i n g t h e A p p l i c a t i o n t o a D a t a b a s e
won’t have to change your presentation class, because the business object provides a
buffer between it and the data layer.

Connecting the Application to a Database
Enhydra uses Java Database Connectivity (JDBC), a standard Java API, to
communicate with databases. Enhydra can connect to any JDBC-compliant database,
such as Oracle, Sybase, Informix, Microsoft SQL Server, PostgreSQL, and InstantDB.

Before you can proceed to connect the application to a database, you are going to take
a brief detour to lay some groundwork. In particular, you are going to:

• Create the database table used by the application

• Establish and test the JDBC connection to your database

• Configure Enhydra’s database manager to connect to your database through JDBC

Creating a Database Table

The remainder of this section requires the existence of a specific table in your data, so
you need to create that table before proceeding. Most databases provide a tool for
directly executing SQL statements. For example, Oracle supplies SQL*Plus. Use this
tool to execute the provided SQL file and create the table in your database. The SQL
file is in <enhydra_root >/doc/GettingStarted/samples/tutorial_create.sql

Here is the command for Oracle SQL*Plus:
SQL> @<enhydra_root >/doc/GettingStarted/samples/tutorial_create.sql

This SQL file contains a CREATE TABLE statement to create a simple table,
LE_TUTORIAL_DISCS, and some INSERT statements to populate it with data. You are
going to use this table in the forthcoming sections of the tutorial.

If you are using a database other than Oracle, refer to your database documentation
for instructions on how to execute a SQL file or create tables.

Establishing a JDBC Connection

Before you can create a database application, you need to establish a JDBC
connection from your system to the database server, which may be running on a
different system.

This section shows you how to write a simple stand-alone program to establish a
JDBC connection to database server. Starting with a stand-alone program enables
you to isolate any problems that occur.

This example uses an Oracle database. If you are using a different database, refer to
your database's documentation for more specific information

Note If you have already configured JDBC on your system, you can skip this section.
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 43

C o n n e c t i n g t h e A p p l i c a t i o n t o a D a t a b a s e
1 Configure your database to “listen” on a specific TCP port. Most database servers
listen on a certain port by default (for example, Oracle uses port 1521). See your
database's documentation for details.

2 Install the JDBC driver for your database. This consists of a zip or jar file
containing the database-specific JDBC classes, for example the Oracle JDBC driver
is classes111.zip . See your database's documentation for details.

Windows The Cygnus tools require the JDBC driver to be on the C drive, so make sure the
JDBC driver library is on the C drive.

3 Determine the connection string for your database. The connection string contains:

• The name of the system running the database server

• The TCP port on which the database server is listening

• The name of the database instance

Every database has its own format. For example, the connection string for the Oracle
driver is

jdbc:oracle:thin:@db_host:xxxx:db_inst

where db_host is the name of the database server, xxxx is the port number (1521, by
default), and db_inst is the name of the database instance. You will also need your
database username and password. Use these values as illustrated in the call to
DriverManager.getConnection() in the code below

Use the following simple program to test your JDBC connection:

import java.sql.*;
public class JDBCTest {

public static void main(String[] args){
Connection con = null;
Statement stmt = null;
ResultSet rs = null;

// Load the driver, get a connection, create statement, run query, and print.
try {

Class.forName("oracle.jdbc.driver.OracleDriver");
con = DriverManager.getConnection(

"jdbc:oracle:thin:@your_computer:1521:your_sid" ,"name", "pass");
stmt = con.createStatement();
rs = stmt.executeQuery("SELECT * FROM LE_TUTORIAL_DISCS");
rs.next();
System.out.println("Title = " + rs.getString("title") +

" -- Artist = " + rs.getString("artist"));
}
catch(ClassNotFoundException e) {

System.err.println("Couldn't load the driver: "+ e.getMessage());
}
catch(SQLException e) {

System.err.println("SQLException caught: "+ e.getMessage());
}

}
}

To use this program:
44 G e t t i n g S t a r t e d

C o n n e c t i n g t h e A p p l i c a t i o n t o a D a t a b a s e
1 Create a directory with a name such as /tmp/jdbcTest .

cd /tmp
mkdir jdbcTest
cd jdbcTest

2 Copy the above code from <enhydra_root >/doc/GettingStarted/samples/
JDBCTest.java into the new directory.

3 Edit the file to put in your connect string, username and password. These appear
in the call to getConnection(), the second statement in the try block.

4 Compile the file:
javac JDBCTest.java

5 Set your CLASSPATH so the JVM can find your JDBC driver and the test program.
For an Enhydra application, this would normally be performed in an application’s
start script; however, since this is a stand-alone test application, you’ll just do it in
the shell window. On Unix, enter this command:

export CLASSPATH=< path_to_your_JDBC_driver >:.

On Windows, enter this command:
export CLASSPATH=< path_to_your_JDBC_driver >\;.

6 Run the program:
java JDBCTest

If you have populated the table as instructed previously, you will see the following in
the shell window:

Title = Rockin Apps -- Artist = Enhydra Orchestra

If there was an error, you will see some exception messages in the shell window that
should help you isolate the problem. Also, refer to your database's JDBC
documentation or the Enhydra mailing list.

Configuring the Application to use JDBC

To make the JDBC classes available to your Enhydra application, you must put the
JDBC driver in the CLASSPATH system variable. To do this, set CLASSPATH in the
application’s start script. Note there are two copies of the start script: one in the
application’s source directory and one in the output directory. As with
application.conf , building the application overwrites the one in the output
directory.

Note Enhydra has its own class loader, so if you put the JDBC driver in the CLASSPATH by
specifying it in the application’s configuration file, the driver will not work.

So, edit the file simpleApp/simpleApp/start and add these lines just before the last
line in the file:

CLASSPATH=”JDBC_LIB”
export CLASSPATH

where JDBC_LIB is the JDBC driver library (generally a jar or zip file), including the
file path. For example,

CLASSPATH=”/myapps/lib/classes111.zip”
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 45

C o n n e c t i n g t h e A p p l i c a t i o n t o a D a t a b a s e
Be careful not to put any blank spaces in this line, since they will prevent it from
working properly.

Configuring the Database Manager

Now that you have verified your JDBC connection, you need to provide the database
connection parameters to your application. You do this in the application’s
configuration file, appName.conf . In this example, the file is simpleApp.conf . The make
utility copies this file to the output directory after every build, so be sure to edit the
file in simpleApp/simpleApp , not the version in simpleApp/output .

Open simpleApp/simpleApp/simpleApp.conf in a text editor. Add the following lines
to the bottom of the file:

#--
Database Manager Configuration
#---
DatabaseManager.Databases[] = " id "
DatabaseManager.DefaultDatabase = " id "
DatabaseManager.Debug = "false"
DatabaseManager.DB. id .ClassType = " Oracle "
DatabaseManager.DB. id .JdbcDriver = " oracle.jdbc.driver.OracleDriver "
DatabaseManager.DB. id .Connection.Url = " jdbc:oracle:thin:@db_svr:1521:db_inst "
DatabaseManager.DB. id .Connection.User = " User "
DatabaseManager.DB. id .Connection.Password = " Password "
DatabaseManager.DB. id .Connection.MaxPreparedStatements = 10
DatabaseManager.DB. id .Connection.MaxPoolSize = 30
DatabaseManager.DB. id .Connection.AllocationTimeout = 10000
DatabaseManager.DB. id .Connection.Logging = false
DatabaseManager.DB. id .ObjectId.CacheSize = 20
DatabaseManager.DB. id .ObjectId.MinValue = 1

Note This is an example of the configuration file for Oracle; for information on configuring
for other databases, see Appendix A, “Database Configuration” on page 79.

Change all of the items shown in bold to match your connection parameters as
follows:

• The id identifier is used in the configuration file to identify the database
connection. You can use any string here, as long as it is consistent throughout the
file.

• The connection string is jdbc:oracle:thin:@db_svr:1521:db_inst . This is the
format of the Oracle connection string, where db_svr is the database server, 1521 is
the TCP port on which the server is listening, and db_inst is the name of your
database instance.

• Set User to your database user name

• Set Password to your database password

Make sure there is a carriage return at the end of the file; this is required for the file to
work properly.
46 G e t t i n g S t a r t e d

C o n n e c t i n g t h e A p p l i c a t i o n t o a D a t a b a s e
After you edit the configuration file, run make to propagate the changes to the file in
the output directory.

Adding Data Access

Now that you have laid the groundwork, you are ready to add data access to
simpleApp. This section describes how to add a simple data object with embedded
SQL that replaces the static array used in “Populating a table” on page 39. The next
section, “Using DODS”, describes how to build a “real” data layer for the application
using DODS.

First, you are going to create a data object that queries the database. Copy the file
SimpleDiscQuery.java from <enhydra_root >/doc/GettingStarted/samples to your
data layer, that is, the simpleApp/simpleApp/data directory. Remember to edit the
make file in the data directory to add the file to the CLASSES variable, just as you did
in “Adding a Business Object” on page 42.

Take a look at SimpleDiscQuery.java . In particular, notice the import statement right
at the top:

import java.sql.*;

This tells you right away that this class is going to use JDBC. In addition to the
constructor, there is only one other method, query(), where the object performs most
of its real work.

The constructor has essentially one statement:
c = Enhydra.getDatabaseManager().allocateConnection();

This statement tells the Enhydra database manager to allocate a database connection.
Then, the query() method calls executeQuery on the connection to execute the SQL
query statement:

resultSet = connection.executeQuery("SELECT * FROM
LE_TUTORIAL_DISCS");

The remainder of the code in query() iterates through the result set returned by the
SELECT statement, and returns it in the form of a Vector of Vectors. Although each
row is known to contain only four elements (since there are four columns in the
table), the number of rows is unknown in general, which is why the method returns a
Vector.

However, you will recall that the presentation object Simple expects the data to be in
the form of a two-dimensional array of Strings. So, the SimpleDiscList needs to
perform some conversion.

Edit the file for the business object you created previously, SimpleDiscList.java .

Now, find the file <enhydra_root >/doc/GettingStarted/samples/
SimpleDiscList.java . You can simply replace your old SimpleDiscList.java with this
file, or if you prefer, you can make the changes manually:

1 Add two import statements at the top:
import simpleApp.data.SimpleDiscQuery;
import java.util.*;
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 47

U s i n g D O D S
2 Add a member variable corresponding to the data object:
SimpleDiscQuery _sdq;

3 Replace the body of the getDiscList() method with the code in the new file. It
converts the Vector of Vectors returned by query() to a two-dimensional String
array that the presentation object expects.

Notice that you did not have to change the presentation object at all. The data object
provides a buffer between the PO and the data object.

Now, build the application from the top level. When you get it to compile, try
running it. If everything is in place, you will see the following:

Notice the discs displayed in the table have the values from the database, not the
static array. You’ve created your first database query page!

Using DODS
The Data Object Design Studio (DODS) is an graphical object-relational mapping tool
that generates SQL code to create tables in a database and the corresponding
application code to access the tables. DODS creates code that is specific to different
databases, so you don’t have to learn the nuances of each database. DODS also
handles common issues such as transactions and data integrity.

DODS is most useful when you are creating a database from scratch, or when you are
free to modify the database schema, as explained in “Loading the Schema” on
page 54.

You are not required to use DODS in developing a Enhydra database application, but
it does significantly simplify the process.
48 G e t t i n g S t a r t e d

U s i n g D O D S
Introduction

This section introduces DODS and explains how to use it to create the database
schema and associated data objects for the DiscRack application (see Chapter 5, “The
DiscRack Example Application”). This example uses an Oracle database.

Start DODS by entering the following command:
dods

Note If DODS does not run when you enter this command, you need to set your PATH. See
“Setting the PATH Environment Variable” on page 22.

You will see the DODS graphical interface. Open the DODS file for the DiscRack
project by choosing File | Open, and selecting
<enhydra_root >/examples/DiscRack/discRack.doml .

DODS will show the DiscRack data model:

Figure 4.2 DODS with the discRack.doml loaded.

The DODS window has three sub-panels:

• At the top, the object panel shows the entity-relationship model. Each data object
(corresponding to a table in the database) is represented by a box with a name
inside. Relationships between data objects are shown by red lines between the
boxes.

• In the lower left, the package panel displays the package hierarchy in the current
data model, with a directory for each object/table in the data model, and a blue
dot signifying objects in each package.

• In the lower right, the attribute panel shows the attributes (properties or
columns) of the selected data object. Each attribute is represented by a row in the
grid, with various information, such as the data type or nullability of the attribute,
indicated in columns of the grid.
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 49

U s i n g D O D S
The schema of the discRack database is pictured in Figure 4.2. DODS shows the
features common to both the database schema and the object model. For example, the
disc data object has title and artist fields, that are the properties (members) of the
Java class as well as the columns of the corresponding database table.

DODS creates Java code for object operations and SQL code for database operations,
for example the one-to-many relationship between person and discs.

Figure 4.3 Disc Rack object-model/schema

Creating Data Objects

Now you are going to create the data layer for the discRack application from scratch.

1 Create a new data model by choosing File | New. DODS will close any open data
model file and start a new one containing a single package, named “root” by
default.

2 Select your database type. Using the Database menu, select your database type.
For example, if you are using Oracle, choose Database | Oracle. This will ensure
that the SQL statements that DODS generates have the correct syntax for your
database.

3 Now create the package hierarchy.

Begin by changing the name of the root package. In the lower left panel, select the
root folder then choose Edit | Package. Enter the name of this application in the
dialog box, “simpleApp,” then hit Enter.

Add the data package: select the discRack folder, choose Insert | Package, type
“data,” then hit Enter.

Similarly, create disc and person directories as subdirectories of the data directory.
Recall that package names in Java begin with a lowercase letter. The package panel
(in the lower left of the window) should now look like this:
50 G e t t i n g S t a r t e d

U s i n g D O D S
4 Create the Person data object.

Select the person package in the lower left pane then choose
Insert | Data Object. You will see the Data Object Editor dialog box.

Change the defaults as follows:

• In the Class tab, change the name to “Person”

• In the Package tab, select the person package

• In the DataBase tab, change the "db Table Name" to “Person”

Leave the rest of the defaults and click OK. This will create both a Person
table in the database and a Person object in the Java application. Note the
class is uppercase “Person” while the package name is lowercase “person.”

Now add the login attribute to the Person data object. Select the Person data object
(indicated by a blue dot) and click Insert | Attribute. The Attribute Editor window
comes up:
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 51

U s i n g D O D S
Change the defaults as follows:

• In the General tab, change the name to login.

• In the Java tab, note the default Java data type is string, corresponding to the
SQL VARCHAR data type. Leave this value.

• In the Database tab, select the “Can be queried” check box.

Leave the rest of the defaults and click OK.

Notice that the attributes appear in the attribute panel in the lower right of the
DODS window. The fields show the different options you can set in the Attribute
Editor; for example, the yellow "Q" means that the data object can be queried.
Move the cursor over the other symbols to see what they represent.

Repeat this procedure to add three more attributes to the person data object:
“password,” “firstname,” and “lastname.” You may want to use the Add Attribute
button on the toolbar.

5 Create the Disc data object similarly to the procedure in the previous step. Add the
following attributes: title, artist, and genre.

Adding the owner attribute is a little more complicated because there is a one to-
many relationship between Person and Disc based on the owner attribute. Select
the Disc data object and choose Insert | Attribute. Change the name to Owner.
Click on the Java tab and then on the Java Type list box. Scroll down and select
"discRack.data.person.PersonDO."

Click on Database tab. Select "Can be queried" and "Referenced DO must exist."
Choose OK to close the Attribute Editor.

You will notice a red arrow in the interface between the Disc object and Person
object showing that Disc uses Person. Notice the attribute pane displays icons
indicating that the owner attribute has an object reference and a referential
constraint.

6 Save and build the data model.

Save the data model file. DODS stores the data model specification in a doml file,
with an XML-like syntax. Select File | Save and choose a location for the doml file.
Save it in the top level project directory.

Now that you have defined all the data objects, DODS is ready to generate and
compile the code. The "Build All" command causes DODS to overwrite the
existing data directory with all the new information from the data model, so if you
want to save your old data layer code, copy it to another directory.

Now, the big moment you have been waiting for… select File | Build All. The
"Destroy and Create New DODS Directory" dialog box appears. Select the data
52 G e t t i n g S t a r t e d

U s i n g D O D S
directory of your simpleApp project. Choose the Re/Create Directory button. You
will see the following warning dialog box:

Choose Yes, and the build will begin. DODS will align the directory structure in
the GUI with the directory structure in the project, generate Java and SQL files,
and then run make to build the data layer.

As it proceeds, DODS displays messages in a dialog box:

If the build is successful, you will see the message “DODS BUILD COMPLETE.” If
the build fails, look at the messages in the output screen. Verify that the paths of
the files are correct. You can also search the doml file for clues, since it is easy to
read.

DODS generates the following files in the data directory:

• The disc and person directories, which contain the Java code for the disc and
person data objects, respectively, and an SQL file defining the corresponding
database table.

• The create_tables.sql and drop_tables.sql files, which contain standard SQL
statements to create and remove, the disc and person tables from a database,
respectively.

• Two make files: Makefile , and config.mk .

• The classes directory, which is initially empty.

Each data object directory contains Java source files to create four classes. For
example, the person data object contain personDO, personQuery,
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 53

U s i n g D O D S
personDataStruct, and personBDO. The data object and the query classes are the
most commonly used classes.

DODS also generates make files for the data layer. This allows you to compile the
data layer independently or along with the entire project. The empty classes
directory is only used if you compile the data layer separately.

Loading the Schema

The next step in the process is to run the SQL script that DODS generated to create
the tables in the database. Figure 4.4 illustrates the complete schema generated by
DODS:

Figure 4.4 Disc Rack database schema generated by DODS

Notice there are some differences from the original database schema:

• The DISC and PERSON tables have two additional fields, OID and VERSION;

• There is a third table, OBJECTID, that contains one column, NEXT, with a single
row.

The OID column is the primary key for each table created by DODS. The application
code generated by DODS ensures that every row has a value of OID that is unique
within the database. Whenever a new row is added to a table, the application
generates a unique Object ID to put in the OID column; it uses the OBJECTID table to
keep track of the next Object ID to be assigned.

DODS application code uses the VERSION column in each table to ensure that the
data that an application is updating is accurate. Because many users can be accessing
the database simultaneously, a record can change between the time an application
retrieves it when it attempts to change the record.

Every time an application updates a row, it increments the VERSION column in the
database. The application qualifies updates on both the VERSION and OID
columns—if it finds that there are no rows that have the expected values, then it
knows that another process has changed the row it is trying to update, and it throws
an exception. You can catch the exception in your application code to handle such
situations appropriately.

OBJECTID

NEXT

PERSON

OID
VERSION
LOGIN
PASSWORD
FIRSTNAME
LASTNAME

DISC

OID
VERSION
ARTIST
TITLE
GENRE
OWNER

1

*

54 G e t t i n g S t a r t e d

U s i n g D O D S
Procedure

To load the SQL scripts that DODS creates, follow these steps:

1 Edit the create_tables.sql file in the <DiscRack_root >/discRack/data directory.

The file contains the SQL CREATE TABLE commands to create the PERSON,
DISC, and OBJECTID tables:

create table person
(

login VARCHAR2(32) DEFAULT '' NOT NULL ,
password VARCHAR2(32) DEFAULT '' NOT NULL ,
firstname VARCHAR2(32) DEFAULT '' NOT NULL ,
lastname VARCHAR2(32) DEFAULT '' NOT NULL ,
oid DECIMAL(19,0) NOT NULL PRIMARY KEY,
version INT NOT NULL

);

create table Disc
(

title VARCHAR2(32) DEFAULT '' NOT NULL ,
artist VARCHAR2(32) DEFAULT '' NOT NULL ,
genre VARCHAR2(32) DEFAULT '' NOT NULL ,
owner DECIMAL(19,0) NOT NULL REFERENCES person (oid)

ON DELETE CASCADE,
isLiked INTEGER DEFAULT 0 NOT NULL ,
oid DECIMAL(19,0) NOT NULL PRIMARY KEY,
version INT NOT NULL

);

create table objectid
(

next DECIMAL(19,0) NOT NULL
);

Note DODS may generate SQL files that are not fully compatible with your database
server. You may have to edit the file manually to remove extraneous text that may
be causing errors when reading the file. For example, for Oracle, you may have to
remove extra blank lines.

You can configure many things about the SQL that DODS generates in the
configuration file <enhydra_root >/dods/dods.conf . For example, by default DODS
generates C-style comments, but you can change the style of comments if your
database requires a different format.

2 Load the tables into the database. For example, the command for SQL*Plus is:
SQL> @<enhydra_root >/examples/DiscRack/discRack/data/
create_tables.sql

3 Add some dummy data to the database for testing purposes. The file
<enhydra_root>/doc/GettingStarted/samples/tutorial_insert.sql contains some
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 55

U s i n g D O D S
sample data, including one person and several discs. Here is the command for
SQL*Plus:
SQL> @/<enhydra_root >/doc/GettingStarted/samples/
tutorial_insert.sql

Using the DODS Data Objects

Now all you need to do is modify the business object, SimpleDiscList, to use the
DODS data objects instead of the simplified one you created previously. Replace
your old SimpleDiscList.java with the file
<enhydra_root >/doc/GettingStarted/samples/SimpleDiscList.java .

The main difference between the old and new objects is in the getDiscList() method;
here is the heart of it:

...
try {

DiscDO[] discArray;
DiscQuery dquery = new DiscQuery();
discArray = dquery.getDOArray();
String result[][] = new String[4][discArray.length];
for(int i=0; i< discArray.length; i++) {

result[0][i] = (String)discArray[i].getTitle();
result[1][i] = (String)discArray[i].getArtist();
result[2][i] = (String)discArray[i].getGenre();
result[3][i] = discArray[i].getIsLiked() ? "Yes" : "No";

}
}
return result;
...

This code uses the DiscQuery and DiscDO objects in the data.disc package to get
data from the database. DiscQuery provides a set of methods for querying the DISC
table; by default it performs the equivalent of SELECT * FROM DISC. It has methods
that you can use to qualify the query (the WHERE clause of the SELECT statement)
and order the result set. The getDOArray() method returns an array of DiscDO
objects returned from the query.

The DiscDO object is the basic data object representing a row of data from the DISC
table. It has getter and setter methods for each column in the table. The above code
only uses the getter methods getTitle(), getArtist(), getGenre(), and getIsLiked(),
which returns a boolean value. All of them except getIsLiked() return a string, so the
method performs some simple logic to translate the boolean value to the appropriate
string.

Run the Application

The last step is to recompile the project, by running make at the top level. Then start
the multiserver with the start command, and load http://localhost:9000 in your
browser.
56 G e t t i n g S t a r t e d

U s i n g D O D S
When you access the Simple page, you should see the following in your browser:

If you don’t see this page, check the following:

1 Look in the discRack.conf file in the output directory to be sure that the database
settings are correctly listed.

2 Check the output displayed in the shell window when you start the Multiserver
for errors. If the database settings are in discRack.conf and the JDBC driver is in
the application’s CLASSPATH, there should be no errors listed when multiserver
starts.

3 Re-run the JDBC connection test to verify that the database is correct and JDBC is
working.

4 Try putting the wrong password into the application configuration file.
Multiserver should start, but the application will return an SQL exception and a
stack trace.

5 Make sure you do not have any extraneous Java VMs running. Sometimes, the
classloader can fail to find the correct classes if it picks up an old CLASSPATH from a
running VM.
T u t o r i a l : B u i l d i n g E n h y d r a A p p l i c a t i o n s 57

58 G e t t i n g S t a r t e d

C H A P T E R

5
Chapter5The DiscRack Example Application

This chapter introduces the DiscRack application, and uses it as a comprehensive
example to illustrate some key concepts of Enhydra application development.

Building and Running DiscRack
Enhydra 3.0 includes the DiscRack application, which is installed to the
<enhydra_root> /examples/DiscRack directory. Throughout this chapter, this top-level
directory containing DiscRack will be referred to as <DiscRack_root> .

To build and run DiscRack, you need to make the following modifications to the
installed files:

• Edit config.mk in <DiscRack_root> and change the ENHYDRA_DIR variable to your
Enhydra root directory.

• Edit the configuration file discRack.conf.in in <DiscRack_root >/discRack , and
make sure all the Database Manager configuration settings are correct, as
described in “Configuring the Database Manager” on page 46. Also refer to
Appendix A, “Database Configuration.”

• Build the application by entering the make command from the <DiscRack_root>
directory.

• Edit the start script in <DiscRack_root >/discRack , and make sure the CLASSPATH
variable references the location of your JDBC library, as described in “Configuring
the Database Manager” on page 46. Also, make sure the path to the multiserver
executable is correct.

Important DiscRack uses the database and corresponding application data layer described in
Chapter 4, “Tutorial: Building Enhydra Applications.” Before you can run the
application, you must load the database schema, as described in “Loading the
Schema” on page 54. Alternatively, you can load the Microsoft Access database in
<DiscRack_root >/discRack/data/discRack.mdb .
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 59

P r o c e s s a n d P r e l i m i n a r i e s
To run DiscRack, enter the following commands:
cd <DiscRack_root> /discRack/output
./start

To access the application, enter the URL http://Localhost:5555 in your browser
location field. Your browser displays the following screen:

Play around with the application to get a sense for how it works. Click on the “Sign
Up!” button to add yourself as user, then add some discs to your inventory. Try
viewing your inventory and editing one of the discs.

Process and Preliminaries
Before discussing the workings of the DiscRack application, it is useful to understand
how you go about developing an Enhydra application in general. You can adapt the
traditional software development process to Enhydra application development to
ensure that:

• The application does what it is supposed to do

• You complete the project in a timely and cost-effective manner

• The application is easy to maintain and upgrade

An in-depth discussion of software methodology is beyond the scope of this book,
but it is instructive to understand the basic principles and how they apply to the
simple DiscRack application, so that you can reap the benefits when developing a
more complex real-world application.
60 G e t t i n g S t a r t e d

P r o c e s s a n d P r e l i m i n a r i e s
The following process is loosely based on Lutris Technologies’ Structured Delivery
Process (SDP), a rigorous methodology that Lutris developed over the course of many
projects. The simplified process described below may be suitable for small projects;
for more information on methodology for large, team development projects, see the
information on the SDP on the Lutris web site at http://www.lutris.com.

A simplified Enhydra application development process consists of the following
steps:

• Requirements definition: creating a problem statement of what the application is
supposed to accomplish as specifically as possible. This statement essentially
defines the high-level goals of the application.

• Functional specification: outlining how the application solve the problem stated
in the requirements definition.

• Design and storyboard: designing the presentation, data, and business layers of
the application, and then creating the storyboard.

• Development and testing: coding and testing the application.

• Deployment: packaging and installing the application in its operational
environment.

This abbreviated methodology is presented here to illustrate the key aspects of the
development process. Complex, real-world applications generally call for a more
comprehensive process that includes project milestones, cost analysis,
documentation, and so on.

DiscRack Requirements Definition

The Otter family needs a way to track their compact disc collections. Each family
member has a CD collection, and they sometimes get mixed up: Otters forget who
owns what. They decide that an Enhydra application would be the perfect way to
help them manage their CDs. After some discussion, they arrive at a brief
requirements statement:

DiscRack will enable each user to keep track of his or her individual CD inventory;
and to add, modify, and delete CDs as needed. The application will keep track of
all the pertinent information about each CD, including artist and title.

DiscRack Functional Specification

Briefly, DiscRack will meet its requirements as follows:

• Maintain a list of users and passwords; users must log in with a user name and
password to access their CD inventory.

• Allow new users to sign up by entering their name, a user name, and a password.

• Once logged in, a user can see his CD inventory and:

• Add new CDs to the inventory
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 61

http://www.lutris.com

P r o c e s s a n d P r e l i m i n a r i e s
• Edit existing CD entries

• Delete an existing entry, with confirmation prompt

• The information that will be displayed for each CD includes artist, title, genre, and
whether the user likes the CD.

Design and Storyboard

The bulk of this step consists of the engineering design for the application, including
the design of database schema and corresponding data layer, business logic, and
presentation logic. The user interface design can be largely encapsulated by a
storyboard.

A storyboard is a visual way of describing a user’s navigation paths through the
application. It provides an outline of the application’s user interface, and a
framework from which the rest of the application design can proceed. A conceptual
storyboard that is largely an application flow chart is sometimes referred to as a site
map, in contrast to a mocked-up HTML storyboard. This book will refer to both as a
storyboard.
62 G e t t i n g S t a r t e d

P r o c e s s a n d P r e l i m i n a r i e s
The storyboard for DiscRack is shown in Figure 5.1.

Figure 5.1 DiscRack Storyboard

You can see from the storyboard that there are five HTML pages in the application.
You can also see that the DiscCatalog page that shows the CD inventory is the central
page in the application. The first page the user sees will always be the Login page; the
last page will always be the Logout page.

Welcome / Login Page

Edit / Add Page

DiscCatalog (Main) Page

Logout / Thanks Page

Valid Login?

Yes

No

Edit:

Confirm Delete
(JavaScript Dialog)

Delete

Log out

Populate form with data

Add

Signup Page
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 63

O v e r v i e w o f D i s c R a c k
DiscRack includes a working storyboard (or application “mockup”) in the resources
directory. It is a set of static HTML pages that illustrate how the application works.
To see the storyboard, load this file in your browser:

<DiscRack_root> /discrack/resources/personMgmt/Login.html

This displays DiscRack login page.

Click on the “Login” button to “log in” and see the disc catalog; click on the “Sign
Up” button to display the Signup page. Click around on the links, and you can see
the rest of the storyboard. The flow of the HTML pages follows Figure 5.1. Of course,
none of the back-end logic is activated—all the HTML is static. But the storyboard
gives you a good feel for how the application works.

Development, Testing, and Deployment

The remaining steps are development, testing, and finally deployment. Rather than
go through the exercise of describing these steps for DiscRack, the rest of this chapter
describes the DiscRack application itself.

When you build an application from the top level, the make files create an output
directory containing the configuration files and the start script. Also, there will be a
lib directory with a JAR file that contains all the application’s class files, along with
any other files (for example, GIFs or style sheets).

To deploy the application, you just need to copy these files to the server on which
you want the application to run, and make the appropriate changes to the
configuration files to reflect the new location. Of course, Enhydra must be installed
on this server, and you need to have any ancillary libraries (such as your database’s
JDBC driver) available.

Overview of DiscRack
The DiscRack application consists of 23 classes in nine packages:

Layer/package Class or package name Description

discRack package DiscRack The application object

DiscRackException A simple base exception class

presentation layer/
package

BasePO An abstract base class for all presentation
objects

DiscRackSessionData A container for session data
ErrorHandler A class to handle exceptions not caught

elsewhere in the application
DiscRackPresentationException A presentation layer exception class

presentation.personMgmt
package

A package that contains classes for managing
presentation related to the PERSON table:
Register and Login
64 G e t t i n g S t a r t e d

T h e P r e s e n t a t i o n L a y e r
The six HTML files are in the resources directory. These correspond to the five
HTML pages shown in the storyboard, plus an error page that appears when an error
occurs that is not handled by an exception.

The Presentation Layer
The presentation layer includes all of the HTML, Java, and JavaScript that defines the
user interface of the application.

Presentation Base Class

All of the Presentation objects in DiscRack are derived from a common base class,
BasePO, which is an implementation of the Enhydra interface HttpPresentation.
This interface has one method, run(), which takes the HTTP request as a parameter.

A Presentation base class enables the application to group common functionality in
one place. Notice that BasePO is an abstract class, so it cannot be instantiated itself,
only sub-classed. Also, some of its methods are declared abstract, so subclasses must
implement them.

BasePO has methods to handle some of DiscRack’s key tasks:

• User log in and session maintenance

• Event handling, and calling the HTML generation methods in the subclass
Presentation objects

It is important to realize that you are not required to use a base Presentation class. An
alternative is to use the Enhydra Application object to perform common tasks.

presentation.discMgmt package A package that contains classes for managing
presentation related to the DISC table: Edit
and DiscCatalog

Business layer/package DiskRackBusinessException A business layer exception class

business.person package A package that contains two classes:
Person, which represents a person
PersonFactory, which has a single method
that returns the Person object for a user name

business.disk package A package that contains two classes:
Disc, which represents a disc.
DiscFactory, which has methods to return a
Disc object for an ID or for the owner’s name.

Data layer Described in “Loading the Schema” on
page 54.

Layer/package Class or package name Description
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 65

T h e P r e s e n t a t i o n L a y e r
The central method in BasePO is run(), which makes method calls to perform
session maintenance and event handling:

public void run(HttpPresentationComms comms) throws Exception {
// Initialize new or get the existing session data
initSessionData(comms);
// Check if the user needs to be logged in for this request.
if(this.loggedInUserRequired()) {

checkForUserLogin();
}
// Handle the incoming event request
handleEvent(comms);

}

Every time a client browser requests a presentation object URL, the application calls
this method. Its logic is very simple:

• Initialize or get the existing session data by calling initSessionData().

• If this PO requires a log in—as determined by loggedInUserRequired(), an
abstract method implemented by each PO—then call checkForUserLogin() to
determine if the user has already logged in; if not, then redirect the browser to the
login page.

• Call handleEvent to handle the current event and determine what HTML to
generate.

Each of these methods is explained in the following sections.

The run method has a parameter, comms, that is an object containing information
about the HTTP request. Its member properties include: application, exception,
request, response, session and sessionData. These six properties provide all of the
information for the request. For example, you can retrieve session data with
getComms().sessionData.get() and query string parameters with
getComms().request.getParameter().

Session Data and Log In

The basics of Enhydra session maintenance were introduced in “Maintaining Session
State” on page 35. In contrast to the way session information was handled in that
previous example, DiscRack stores all its session information in a single object,
DiscRackSessionData, and saves that object in the user’s session.

DiscRackSessionData is a simple container class that has two properties: a Person
object that represents the user and a string called userMessage for error messages
such as “Please choose a valid disc to edit.” DiscRackSessionData has member
properties for these data, and methods to get and set them.

There are several advantages of keeping session data in one object:

• It centralizes control of session information; this is especially helpful when
multiple presentation objects access the same session data.
66 G e t t i n g S t a r t e d

T h e P r e s e n t a t i o n L a y e r
• It is type-safe. Since Session.getSessionData() returns a generic Object, if you
store session data separately, you have to cast each item to the appropriate type,
which can lead to runtime errors that are hard to debug.

• It facilitates session data maintenance. If there is a large amount of session data,
you can periodically clean up the unneeded data. For example, say you wanted to
store an array of hundreds of discs in the user’s session to speed access, but you
didn’t necessarily want leave it there until they log out. With a session data object,
you could easily implement a method to clean up unneeded data in the session.

The initSessionData() Method

The first thing each PO does is to call initSessionData(). The main portion of this
method is shown here:

Object obj = getComms().sessionData.get(DiscRackSessionData.SESSION_KEY);
if(null != obj) {

this.mySessionData = (DiscRackSessionData)obj;
} else {

this.mySessionData = new DiscRackSessionData();
getComms().sessionData.set(DiscRackSessionData.SESSION_KEY,

this.mySessionData);
}

The first statement in this code snippet gets the session data object, using the session
key “DiscRackSessionData.” If the session data object exists, it gets type cast to
DiscRackSessionData; otherwise, the code creates a new DiscRackSessionData
object and saves it to the user’s session with set().

The loggedInUserRequired() Method
BasePO has an abstract method called loggedInUserRequired() that returns a
boolean value. Thus, every PO is required to implement this method, which indicates
whether a user is required to be logged in to access the associated page. In
BasePO.run(), if this method returns true, then
checkForUserLogin() is called.

The checkForUserLogin() Method

The checkForUserLogin() method determines if a user has a valid login. If not, then
it redirects the browser to the Login page:

...
Person user = getUser();
if (null == user) {
...

throw new ClientPageRedirectException(LOGIN_PAGE);
}
...

Several statements that write debug messages to a log channel have been removed
from this code for clarity. The call to getUser() is really just a call to
getSessionData().getUser(), which retrieves the Person object saved in the current
session. If the user has not logged in, or the session has timed out, then this method
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 67

T h e P r e s e n t a t i o n L a y e r
will return null , and the code will throw a ClientPageRedirectException with the
URL to the Login page as the argument to the constructor.

When a client browser is redirected by a ClientPageRedirectException, any
parameters from a query string that were available to the original presentation object
are lost. So if you want to pass an error message, you must put the information in the
user’s session or directly into the query string of the redirected URL.

Event Handling

In this context, an “event” refers to the task a user is performing. While you could
create a separate PO for each task in an application, in many cases it makes sense to
have a single PO handle multiple events. For example, the Edit PO responds to four
events: showing the add page, showing the edit page, actually adding a disc to the
database, and deleting a disc from the database. The Login PO handles three events:
show page, login, and logout.

Setting the Event Parameter

DiscRack keeps track of the event it is processing with the “event” parameter, which
is sent in the query string of a request. For example, the URL

http://Localhost:8000/discMgmt/Edit.po?event=showAddPage

specifies the event “showAddPage.”

DiscRack illustrates several techniques for setting the event:

• The “showAddPage” event is defined in the DiscCatalog.html page by the
JavaScript onClick event handler of the “Add a New Disc” button. This calls the
JavaScript function showAddPage(), which explicitly adds the event to the URL
requested: document.location='Edit.po?event=showAddPage' . This function is
defined in presentation/discMgmt/DiscCatalogScript.html , not the DiscCatalog
page, as explained in “Replacing JavaScript” on page 71.

• The “add” event (to add a disc to the database) is defined in the Edit.html page by
a hidden form field: <input type="hidden" name="event" value="add"
id="EventValue"> . When the user clicks the Add button, “event=add” is added to
the form submission request along with the other form data the user entered.

• The “exit” event is defined in the DiscCatalog.html page by the second form’s
ACTION attribute, "../personMgmt/Exit.html" . At compile time, this URL is
replaced by '../personMgmt/Login.po?event=logout' , as explained in “URL
Mapping” on page 70.

Although DiscRack does not demonstrate it, you can also set the event when you
throw a PageRedirectException. You use this exception to transfer control from one
PO to another. To specify an event, add the string “?event=someEvent” to the URL
string passed to the constructor of PageRedirectException.
68 G e t t i n g S t a r t e d

T h e P r e s e n t a t i o n L a y e r
The handleEvent() Method

Once the event is set, the handleEvent() method of BasePO performs the actual
event handling:

String event = getComms().request.getParameter(EVENT);
String returnHTML = null;

if (event == null || event.length() == 0) {
returnHTML = handleDefault();

} else {
returnHTML = getPageContentForEvent(event);

}
getComms().response.writeHTML(returnHTML);

This method gets the “event” parameter from the request query string and calls the
appropriate event handler. If it does not find “event” in the request query string, it
calls handleDefault() which is an abstract method, and so must be implemented by
all BasePO subclasses. Otherwise, it calls getPageContentForEvent() which returns
the string content for the specific event and PO. This method contains the following
three lines:

Method method = this.getClass().getMethod(toMethodName(event),
null);
String thePage = (String)method.invoke(this, null);
return thePage;

This code uses reflection (defined in the java.lang.reflect package) to call the method
in the PO corresponding to the current event. Reflection allows you to call a method
whose name is defined at runtime.

The call to toMethodName() returns a string “handleXxx” where “xxx” is the
current event (for example “handleShowAddPage” for “showAddPage”). The call to
method.invoke() then calls this method.

Reflection allows BasePO to call methods in its subclasses without knowing in
advance the names of the methods. This scheme works as long as the presentation
object code follows the appropriate naming conventions: for every event “foo,” there
must be a method handleFoo() in the PO class that needs to handle that event.

HTML Pages

The HTML pages for DiscRack are in the <discRack_root> /discRack/resources
directory. Keeping the HTML pages there rather than in the presentation directory
cleanly separates the HTML files from the Java files. Although this is superfluous for
small applications, it is a key advantage for large applications with a graphic design
team and a programming team.

The make files in the presentation layer control how the application uses the HTML
files. There are a total of three make files in the presentation layer, one in the top
level, and one in each sub-directory. To keep the HTML files in a directory separate
from the presentation classes, the make files use the HTML_DIR directive that
specifies the relative path to the directory containing the HTML files. For example, in
presentation/Makefile , you’ll see:
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 69

T h e P r e s e n t a t i o n L a y e r
HTML_DIR = ../resources

And in presentation/discMgmt/Makefile :
HTML_DIR = ../../resources/discMgmt

The make rules will also find any HTML files in the presentation directories (for
example discMgmt/DiscCatalogScript.html).

The HTML_CLASSES directive indicates the names of the class files that XMLC creates,
as explained in “Adding a New Page to the Application” on page 37.

Notice there is a presentation/media directory that contains only a make file. This
directory mirrors the final package structure for the JAR file. A line in the make file
copies the GIF into the finished jar file:

JAR_INSTALL = \
../../resources/media/*.gif

Maintaining the Storyboard

The storyboard is initially just a mockup of the application. But with a few simple
steps, you can maintain the working storyboard throughout the entire development
process. This capability becomes particularly important for large applications created
by a team of programmers and graphic designers: each team can work on their part
of the application separately from the other.

After the graphic designers complete their work, you can then replace the old, “mock
up” user interface with the new improved interface, that may include improved
graphics, JavaScript special effects, style sheets, and so on. An example of doing this
is illustrated in “Replacing the User Interface” on page 72.

In addition to keeping the HTML files separate from the Java code, as described in
the previous section, there are three steps you have to follow to maintain the
storyboard during development:

1 Define rules to map URLs like Login.html to Login.po

2 Remove dummy data from the HTML files

3 Replace JavaScript, if necessary

Each of these steps is described in detail in the following sections.

URL Mapping

In the working storyboard, as in any static HTML pages, hyperlinks reference other
HTML pages. That is, the URLs in hyperlinks end in .html . However, in the working
application, links to dynamic pages reference presentation object URLs that end in
.po .

So, you need to do something to convert the “normal” URLs in the storyboard to .po
URLs. You do this by using the XMLC -urlmapping option to map URLs from one
form to another. You use this option like this:

-urlmapping oldURL newURL
70 G e t t i n g S t a r t e d

T h e P r e s e n t a t i o n L a y e r
To use this option in the make process, you must create an XMLC options file, and
then identify the file in the make file with the XMLC_HTML_OPTS_FILE directive. For
example:

XMLC_HTML_OPTS_FILE = options.xmlc

The presentation/discMgmt/options.xmlc file contains the lines:
-urlmapping 'Edit.html' 'Edit.po'
-urlmapping 'DiscCatalog.html' 'DiscCatalog.po'
-urlmapping '../personMgmt/Exit.html' '../personMgmt/Login.po?event=logout'

When XMLC compiles the files in this directory, it will replace occurrences of the first
string (for example, “Edit.html”) with the second string (for example, “Edit.po”) in
hyperlink URLs and FORM ACTION attributes.

Removing Dummy Data
HTML files often contain “dummy” data to make the storyboard pages look more
representative of their actual runtime appearance. You need to remove this dummy
data from the production application.

Look in presentation/discMgmt/options.xmlc again; in particular, look at the last
line:

-delete-class discardMe

The -delete-class option tells XMLC to remove any tags (and their contents) whose
CLASS attribute is “discardMe.” For example, if you look in resources/discMgmt/
DiscCatalog.html , you see this HTML:

<tr class="discardMe">
<td>Sonny and Cher</td>
<td>Greatest Hits</td>
<td>Boring Music</td>
<td>Not</td>

</tr>

It’s not that we don’t love Sonny and Cher: the CLASS attribute in the table row
definition marks the row for deletion. Unlike ID , the value of a CLASS attribute does
not have to be unique in the page. You can remove all of the dummy in the
application with the same “discardMe” value.

Replacing JavaScript
In addition to replacing URLs, you often need to replace JavaScript in the storyboard
with JavaScript to be used in the “real” application. For example, resources/
DiscCatalog.html contains the following script:

<SCRIPT id="DummyScript">
<!--
function doDelete()
{

document.EditForm.action='DiscCatalog.html';
if(confirm('Are your sure you want to delete this disc?')) {

document.EditForm.submit();
}

}

T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 71

T h e P r e s e n t a t i o n L a y e r
function showAddPage()
{

document.location='Edit.html';
}
//-->
</SCRIPT>

These functions help to keep the storyboard working. At runtime, though, the
application needs to use the “real” functions, which are defined in presentation/
DiscCatalogScript.html , for example:

...
function showAddPage()
{

document.location='Edit.po?event=showAddPage';
}
...

Because XMLC views JavaScript as a comment, the URL mapping option will not
work on this URL inside the JavaScript function. So, you have to replace it at runtime
with the following code in DiscCatalog.java :

DiscCatalogHTML page = new DiscCatalogHTML();
HTMLScriptElement script = new DiscCatalogScriptHTML().getElementRealScript();
XMLCUtil.replaceNode(script, page.getElementDummyScript());

This is an example of replacing a node with a node from another document. This
implementation uses the XMLCUtil class.

Because this action happens at runtime, it may have a slight effect on performance. If
performance is critical, you may wish to replace the JavaScript in the final deployed
version of the application.

Maintaining the storyboard seems like additional unnecessary work, but it is worth
the work when your HTML is evolving in parallel with the Java code. As an example
of the power of a working storyboard, you can exchange the HTML in Disk Rack
from the basic HTML to designed HTML.

Replacing the User Interface

Once the graphic design is completed, you can replace the user interface of the
application with its final version. DiscRack includes a resources_finished directory
containing “finished” versions of the HTML pages, along with a graphic and a
stylesheet.

To replace the original storyboard resources with the “finished” resources:

• Rename the resources directory to resources_old

• Rename the resources_finished directory to resources

• Edit <DiscRack_root> /discRack/presentation/media/Makefile and in the
JAR_INSTALL directive, remove the two comment symbols (#), and add a
continuation character (\) after the first line; so that it looks like this:

JAR_INSTALL = \
../../resources/media/*.gif \
72 G e t t i n g S t a r t e d

T h e P r e s e n t a t i o n L a y e r
../../resources/media/*.css \

../../resources/media/*.jpg

This ensures that the new JPEG graphics files and the style sheet file are included
in the packaged application JAR file.

• Rebuild the presentation package, by entering the following commands from the
directory <DiscRack_root> /discRack/presentation :

make clean
make

The make clean command will remove all the old classes, so that make will
completely rebuild the application from scratch.

Now, restart and access the application. You see the new and improved user
interface:

Populating a List Box

The DiscCatalog page illustrates how to populate a SELECT list box, which is a
common task. First, look at the HTML for the SELECT tag in DiscCatalog.htm l:

<SELECT id="TitleList" Name="discID">
<OPTION selected VALUE="invalidID">Select One</OPTION>
<OPTION id="templateOption">Van Halen: Van Halen One</OPTION>
<OPTION class="discardMe">Sonny and Cher: Greatest Hits</OPTION>
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 73

T h e P r e s e n t a t i o n L a y e r
<OPTION class="discardMe">Sublime: 40 oz. to Freedom</OPTION>
</SELECT>

Now look in DiscCatalog.java for the code that populates the list box.
HTMLOptionElement templateOption = page.getElementTemplateOption();
Node discSelect = templateOption.getParentNode();

The first line above retrieves the DOM object corresponding to the template OPTION
tag. The second line calls getParentNode() to get the container SELECT tag. Since the
SELECT tag has an ID attribute, this line could have also been:

Node discSelect = page.getElementTitleList();

Then, following some code for populating the table, there is one line to remove the
template row.

templateOption.removeChild(templateOption.getFirstChild());

The other OPTION tags have CLASS=”discardMe,” which causes XMLC to remove them
at build time, as explained in “Removing Dummy Data” on page 71.

Then, within the for loop that iterates over the discs belonging to the current user, the
following lines actually populate the list box:

HTMLOptionElement clonedOption = (HTMLOptionElement)
templateOption.cloneNode(true);
clonedOption.setValue(currentDisc.getHandle());
Node optionTextNode =

clonedOption.getOwnerDocument().createTextNode(currentDisc.getArtist() + ":
" +

currentDisc.getTitle());
clonedOption.appendChild(optionTextNode);
discSelect.appendChild(clonedOption);

The first line copies (clones) the template option element into a DOM object of type
HTMLOptionElement. The second line sets the VALUE attribute to the value returned
by getHandle(), which is the disc’s OBJECTID, an unique identifier. The third (very
long) line creates a text node consisting of “artistName: titleName.” Finally, the last two
lines append the text node to the option node, and then append the option node to
the select node.

The resulting runtime HTML will look something like this:
<SELECT name='discID' id='TitleList'>
<OPTION value='invalidID' selected>Select One</OPTION>
<OPTION value='1000001'>Funky Urchin: Lovely Spines</OPTION>
<OPTION value='1000021'>The Seagulls: Screaming Fun</OPTION>
</SELECT>

Although this example might seem obscure, it is fairly short, and you can extend its
basic functionality to handle more complex situations. For example, you modify it to
set the default selection based on a second query.
74 G e t t i n g S t a r t e d

T h e P r e s e n t a t i o n L a y e r
Populating a Form

When a user chooses a disc from the list box and clicks on the “Edit Disc” button, a
form appears that is populated with the existing values for that disc. The user can
then edit the values and submit them back to the database.

Here is the HTML for the form elements in Edit.html . The TABLE tags have been
omitted for clarity:

<INPUT TYPE="hidden" NAME="discID" VALUE="invalidID" ID="DiscID">
Artist: <input name="artist" id="Artist" >
Title: <input name="title" id="Title" >
Genre: <input name="genre" id="Genre" >
Do you like this disk?
<input TYPE="checkbox" name="like" CHECKED ID="LikeBox">
<INPUT TYPE="submit" VALUE="Save This Disc Info">

In Edit.java , the event-handling method handleDefault() calls showEditPage()
with a null parameter to populate the form with the selected disc’s values.
Ordinarily, the only request parameter (other than the event type) is the disc ID,
accessed by this statement:

String discID = this.getComms().request.getParameter(DISC_ID);

These statements also access the other request parameters, but ordinarily they are
null (but see the error-handling case discussed later):

String title = this.getComms().request.getParameter(TITLE_NAME);
String artist = this.getComms().request.getParameter(ARTIST_NAME);
String genre = this.getComms().request.getParameter(GENRE_NAME);
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 75

T h e B u s i n e s s L a y e r
Then, a call to findDiscByID() retrieves a Disc data object that has that ID:
disc = DiscFactory.findDiscByID(discID);

Then, there is a series of if statements that check the values of title, artist, genre, and
isLiked, which are normally null. Therefore, the following statements are executed
(the surrounding if statements are not shown for brevity):

page.getElementDiscID().setValue(disc.getHandle());
page.getElementTitle().setValue(disc.getTitle());
page.getElementArtist().setValue(disc.getArtist());
page.getElementGenre().setValue(disc.getGenre());
page.getElementLikeBox().setChecked(disc.isLiked());

These statements use XMLC calls to set the VALUE attributes of the form elements; the
values are retrieved from the disc object.

When the user finishes editing, and clicks “Save this Disc Info,” handleEdit()
processes the changes. This method calls saveDisc(), which attempts to save the new
values—if successful, it redirects the client to the DiscCatalog page; if any of the new
values are null, though, saveDisc() throws an exception. The catch clause then calls
showEditPage() with an error string and with request parameters.

Note that ClientPageRedirectException is a subclass of java.lang.Error, so it is not
caught by the catch clause when it is thrown.

try {
saveDisc(disc);
throw new ClientPageRedirectException(DISC_CATALOG_PAGE);

} catch(Exception ex) {
return showEditPage("You must fill out all fields to edit this disc");
}

The result is that when a user tries to edit a disc and delete some of the values, the
edit page will re-display, maintaining all the non-null form element values, and
restoring the previous values to the null-valued form elements. The page will also
display the error string.

The Business Layer
The DiscRack business layer is simple, consisting primarily of two packages, Disc
and Person, and two corresponding factory classes DiscFactory and PersonFactory.
A factory is an object whose primary role is to create other objects.

The Business Objects

The business objects Disc and Person are largely wrappers for the corresponding
data layer classes, DiscDO and PersonDO, with get and set methods for each
property in the data objects (or column in the database tables). For example, Disc has
getArtist() and setArtist() methods.

The objects in the business layer perform all the interfacing with the data layer. So, if
the data layer needs to change, nothing in the presentation layer is affected;
conversely, if the presentation layer changes, nothing in the data layer is affected.
76 G e t t i n g S t a r t e d

T h e B u s i n e s s L a y e r
DiscFactory has two static methods:

• findDiscsForPerson(), that returns an array of Disc objects that belong to the
Person object specified as the method’s argument.

• findDiscByID(), that returns the single Disc object that has the ID specified in the
method’s argument.

PersonFactory has one static method, findPerson(), that returns a Person object that
has the user name specified in the method’s argument. If the method finds more than
one person in the database, then it writes an error message to the log channel and
throws an exception.

Using Data Objects

To help understand ow DiscRack uses DODS data layer code, look at the
findPerson() method in PersonFactory. The comments have been removed from this
code for brevity.

public static Person findPerson(String username)
throws DiscRackBusinessException
{

try {
PersonQuery query = new PersonQuery();
query.setQueryLogin(username);
query.requireUniqueInstance();
PersonDO[] foundPerson = query.getDOArray();
if(foundPerson.length != 0) {

return new Person(foundPerson[0]);
} else {

return null;
}

} catch(NonUniqueQueryException ex) {
...

First, this method instantiates a new PersonQuery object. PersonQuery is a data
layer object used to construct and execute a query on the person table. It has a
number of setQueryXXX() methods for qualifying the query parameters (that is,
setting the values to be matched in the WHERE clause of the SELECT statement). For
example, the above code calls setQueryLogin(), with username as a parameter, to
set the value to be matched in the LOGIN column.

Next, the method calls requireUniqueInstance(), which indicates that the query is to
return a single row, and will throw an exception otherwise. Then, it calls
getDOArray(), which executes the query, returning an array of PersonDO objects.
Finally, the method returns a single Person object returned by the query; if the query
did not return any rows, it returns null .
T h e D i s c R a c k E x a m p l e A p p l i c a t i o n 77

78 G e t t i n g S t a r t e d

A P P E N D I X

A
Appendix ADatabase Configuration

This appendix provides information on connecting Enhydra applications to specific
database types. In general, you need to add the database configuration information
to the application configuration file, appName.conf .

Driver Configuration
Enhydra connects to databases using a JDBC driver. Enhydra has its own class
loader, but the JDBC driver must be loaded by the system class loader. Therefore, it is
important to specify the path to JDBC driver in your system CLASSPATH and not in the
Enhydra application’s CLASSPATH.

A common way to do this is to save the driver in a lib directory in the project and
define the CLASSPATH in the start script. To do this, follow these steps:

1 Create a lib directory in the top level of your project and copy your JDBC driver to
this directory.

2 Edit your application’s start file (in the appName/appName directory) to place the
driver in your CLASSPATH. For example, the bold set CLASSPATH:

#!/bin/sh

echo "***"
echo "*** Connect to http://`hostname`:9000/"
echo "***"

CLASSPATH=”../lib/classes111.zip”
export CLASSPATH

/ usr/ l ocal / lutris-enhydr a3.0 / bi n/ mult i ser ver . / mul t is er ver .c onf

3 Build the project with make, which will copy the start script to the directory
appName/output . Use this script to start your application.
D a t a b a s e C o n f i g u r a t i o n 79

O r a c l e
Be careful to keep the right driver with your application. For example, there are
multiple versions of the Oracle JDBC driver, classes111.zip . When your application
goes into production, make sure that the project administrator knows to reference the
correct driver when the database is upgraded in the future.

Oracle
This section presents an example of an Oracle configuration. To use this example,
change the values shown in bold.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "database_id"
DatabaseManager.DefaultDatabase = "database_id"
DatabaseManager.Debug = "false"
DatabaseManager.DB.database_id.ClassType = "Oracle"
DatabaseManager.DB.database_id.JdbcDriver = "oracle.jdbc.driver.OracleDriver"
DatabaseManager.DB.database_id.Connection.Url =
"jdbc:oracle:thin:@server_name:1521:db_instance"
DatabaseManager.DB.database_id.Connection.User = "User"
DatabaseManager.DB.database_id.Connection.Password = "Password"
DatabaseManager.DB.database_id.Connection.MaxPreparedStatements = 10
DatabaseManager.DB.database_id.Connection.MaxPoolSize = 30
DatabaseManager.DB.database_id.Connection.AllocationTimeout = 10000
DatabaseManager.DB.database_id.Connection.Logging = false
DatabaseManager.DB.database_id.ObjectId.CacheSize = 20
DatabaseManager.DB.database_id.ObjectId.MinValue = 1

The driver used here is the Oracle thin driver, and “db_instance” is the name of the
Oracle database instance.

Informix
This section presents an example of an Informix configuration. To use this example,
change the values shown in bold.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "database_id"
DatabaseManager.DefaultDatabase = "database_id"
DatabaseManager.Debug = "false"
DatabaseManager.DB.database_id.ClassType = "Informix"
DatabaseManager.DB.database_id.JdbcDriver = "com.informix.jdbc.IfxDriver"
DatabaseManager.DB.database_id.ConnectionURL =
jdbc:informix-sqli://<hostname>:<port#>:INFORMIXSERVER=<db_inst>;user=<user>;
password=<password>
DatabaseManager.DB.database_id.Connection.user = "<user>"
DatabaseManager.DB.database_id.Connection.Password = "<password>"
DatabaseManager.DB.database_id.Connection.MaxPreparedStatements = 10
DatabaseManager.DB.database_id.Connection.MaxPoolSize = 30
80 G e t t i n g S t a r t e d

S y b a s e
DatabaseManager.DB.database_id.Connection.AllocationTimeout = 10000
DatabaseManager.DB.database_id.Connection.Logging = false
DatabaseManager.DB.database_id.objectID.CacheSize = 20
DatabaseManager.DB.database_id.MinValue = 1

Sybase
This section presents an example of a Sybase configuration. To use this example,
change the values shown in bold.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = "database_id"
DatabaseManager.DefaultDatabase = "database_id"
DatabaseManager.Debug = "true"
DatabaseManager.DB.database_id.ClassType = "Sybase"
DatabaseManager.DB.database_id.JdbcDriver = "com.sybase.jdbc2.jdbc.SybDriver"
DatabaseManager.DB.database_id.Connection.Url =
"jdbc:sybase:Tds:<hostname>.sybase.com:7100"
DatabaseManager.DB.database_id.Connection.User = "name"
DatabaseManager.DB.database_id.Connection.Password = "password"
DatabaseManager.DB.database_id.Connection.MaxPoolSize = "2"
DatabaseManager.DB.database_id.Connection.AllocationTimeout = "2"
DatabaseManager.DB.database_id.Connection.Logging = "true"
DatabaseManager.DB.database_id.Connection.MaxPreparedStatements = "2"
DatabaseManager.DB.database_id.ObjectId.CacheSize = 2
DatabaseManager.DB.database_id.ObjectId.MinValue = 1

MySQL
MySQL is an Open Source database that is lightweight and fast. However, it does not
support transactions. Because of this, you have to make a small patch to the Enhydra
code to use MySQL. For more information, see the Enhydra mailing list archive.

Patch

Because MySQL does not support transactions, and therefore does not support
autocommit, you have to make a small change to the code and rebuild Enhydra. You
need to change the file com/lutris/appserver/server/sql/standard/
StandardDBConnection.java and comment out one line, as shown below:

public void setAutoCommit(boolean on) throws SQLException {
validate();
logDebug("ignores set auto commit: " + on);
// connection.setAutoCommit(on);

}

You must then rebuild this Enhydra package. For details, see the Enhydra mailing list
archive.
D a t a b a s e C o n f i g u r a t i o n 81

P o s t g r e S Q L
Configuration

This section presents an example of a MySQL configuration. To use this example,
change the values shown in bold.

#---
Database Manager Configuration
#---
DatabaseManager.Databases[] = database_id
DatabaseManager.DefaultDatabase = database_id
DatabaseManager.Debug = true
DatabaseManager.DB.database_id.ClassType = Standard
DatabaseManager.DB.database_id.Connection.User = username
DatabaseManager.DB.database_id.Connection.Password = password
DatabaseManager.DB.database_id.Connection.MaxPoolSize = 5
DatabaseManager.DB.database_id.Connection.AllocationTimeout = 10000
DatabaseManager.DB.database_id.Connection.Logging = true
DatabaseManager.DB.database_id.ObjectId.CacheSize = 1024
DatabaseManager.DB.database_id.ObjectId.MinValue = 100
DatabaseManager.DB.database_id.JdbcDriver = org.gjt.mm.mysql.Driver
DatabaseManager.DB.database_id.Connection.Url ="jdbc:mysql://[host]:[port]/
[inst]"

PostgreSQL
PostgreSQL is a popular open source database used with Enhydra. However, as
explained in “Loading the Schema” on page 54, DODS requires a special column
named OID in each table—however OID is a reserved word in PostgreSQL.
Fortunately, the column names used for OID and VERSION are configurable.

To configure these names, add the following lines to you application configuration
file:

DatabaseManager.ObjectIdColumnName = " ColName_for_ObjectID "
DatabaseManager.VersionColumnName = " ColName_for_Version "

where ColName_for_ObjectID and ColName_for_Version are the column names you want to
use instead of OID and VERSION.

Microsoft Access
Microsoft Access is not a true SQL database server; as such, it is suitable for
development and testing, but not for a production database. Access does not have a
JDBC driver. However, Access does support ODBC, and there is a JDBC-ODBC
bridge in the Sun JDK, which enables Access to work with Enhydra.

Since Access cannot read in files containing SQL commands, you must create tables
in the Access GUI. See the Access documentation for more information. For the
DiscRack example, you can also use the Access database provided in
<enhydra_root>/examples/DiscRack/discRack.mdb .
82 G e t t i n g S t a r t e d

M i c r o s o f t A c c e s s
You can test the ODBC access alone using the test program in , “Establishing a JDBC
Connection” on page 43. Use the driver and connect strings from the configuration
file listed here. If you encounter problems, be sure your data values are valid.

To use Enhydra with Access:

1 Register the database as an ODBC data source:

• Go to Start | Settings | Control Panel and click on ODBC Data Sources.

• Select the add button in the window that comes up.

• Select the Microsoft Access Driver in the Create New Datasource window and
click Finish.

• The ODBC Microsoft Access Setup window appears. Choose a name, like
discRack, for the Data Source Name. Under Database, click the Select button,
browse to the *.mdb file, select it, and click the OK button.

2 Place database information in the application’s configuration file, as shown in the
example below.

Note You don’t have to place the JDBC driver in the application’s CLASSPATH, because the
ODBC/JDBC bridge is in the JDK and thus is already in the system’s CLASSPATH.

This section presents an example of an Access configuration. To use this example,
change the values shown in bold.

#--
-
Database Manager Configuration
#--
-
DatabaseManager.Databases[] = " database_id "
DatabaseManager.DefaultDatabase = " database_id "
DatabaseManager.Debug = "false"
DatabaseManager.DB. database_id .ClassType = "Standard"
DatabaseManager.DB. database_id .JdbcDriver =
"sun.jdbc.odbc.JdbcOdbcDriver"
DatabaseManager.DB. database_id .Connection.Url =
"jdbc:odbc: discRack "
DatabaseManager.DB. database_id .Connection.User = "Admin"
DatabaseManager.DB. database_id .Connection.Password = ""
DatabaseManager.DB. database_id .Connection.MaxPreparedStatements =
10
DatabaseManager.DB. database_id .Connection.MaxPoolSize = 30
DatabaseManager.DB. database_id .Connection.AllocationTimeout = 10000
DatabaseManager.DB. database_id .Connection.Logging = false
DatabaseManager.DB. database_id .ObjectId.CacheSize = 20
DatabaseManager.DB. database_id .ObjectId.MinValue = 1
D a t a b a s e C o n f i g u r a t i o n 83

84 G e t t i n g S t a r t e d

A P P E N D I X

B
Appendix BUsing the Multiserver Administration

Console
This appendix introduces the Enhydra Multiserver Administration Console, which
you can use to start, stop, add, delete, and modify your applications and servlets.

Launching the Administration Console
To launch the Multiserver Administration Console (the Console), follow these steps:

1 Type the following command to start the multiserver:
./bin/multiserver

If the Console does not start, then your path is not correctly set. See “Setting the
PATH Environment Variable” on page 22 for more information.

2 In your browser, display the console by entering the following URL:
http://localhost:8001/
U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 85

T h e C o n s o l e D i s p l a y
3 The Console displays a password entry dialog box, as shown in Figure B.1. To get
started, enter the default username (admin) and password (enhydra).

Figure B.1 The Multiserver Administration Console password dialog box

The Enhydra Console will display in your browser, as described in the next section.

The Console Display
Figure B.1 shows the initial view of the Console in a browser window. The Console
has two frames:

• The frame on the left is the Control Frame, which contains the buttons that you use
to operate the console tools.

• The frame on the right is the Content Frame. This frame is initially empty. It
displays the results of actions that you perform.
86 G e t t i n g S t a r t e d

T h e C o n s o l e D i s p l a y
Figure B.2 The Multiserver Administration Console display

The Control Frame has two components:

• The Applications window

• The Console Tool buttons
U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 87

T h e C o n s o l e D i s p l a y
The Applications Window

The Applications window contains a list of all of the applications and servlets
available in the Enhydra Multiserver. You will see two applications that are initially
available:

• The Welcome application

• The Javadoc application

Use the ADD button to add new applications or servlets to the Multiserver, and the
DELETE button to delete applications or servlets from the Multiserver.

Note To permanently add or delete an application or servlet, you must save the console’s
state by clicking the SAVE STATE button.

The Console Tool Buttons

Table B.1 describes the function of each console tool button in the Console.

Table B.1 The Console Tool buttons

Button Description

Starts the servlet or application that is currently selected in the
Applications window.
Note that this button is unavailable when the selected application or
servlet is already running.

Stops the servlet or application that is currently selected in the
Applications window.
If the application has active users, you are prompted to verify that you
want the application stopped.
Note that this button is unavailable when the selected application or
servlet is not already running.

Adds a servlet or application to the Enhydra Multiserver.
For more information, see “Adding an Application or Servlet” on page 91.

Removes the servlet or application that is currently selected in the
Applications window from the Enhydra Multiserver.
For more information, see “Deleting an Application or Servlet” on page 93.
88 G e t t i n g S t a r t e d

T h e C o n s o l e D i s p l a y
The Content Frame

This section describes the Content Frame of the Console, which shows you
information about the application of servlet that is currently selected in the
Applications window. Some of the Console tools also use the Content Frame to
display information or to ask you for input.

You can select the information you want displayed in the Content Frame by clicking
on one of its two tabs:

• Click on the Application or Servlet tab to display status information for the
application or servlet. Figure B.3 shows an example of the status display for an
application. Note that the status display for a servlet is slightly different.

• Click on the Connections tab to display connection status information for the
application or servlet. Figure B.4 shows an example of the connection status
display for an application.

Modifies the configurable attributes of the servlet or application that is
currently selected in the Applications window.
For more information, see “Modifying the Configuration of An
Application or Servlet” on page 93.

Invokes the debugging utility for the servlet or application that is currently
selected in the Applications window.
When you click this button, the debugging control panel displays, as
described in “Debugging an Application or Servlet” on page 94.

Saves the state of the Enhydra Multiserver.
For more information, see “Saving the State of The Multiserver” on
page 95.

Stops the Enhydra Multiserver.

Table B.1 The Console Tool buttons

Button Description
U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 89

T h e C o n s o l e D i s p l a y
Figure B.3 shows a portion of the status display for the Welcome application.

Figure B.3 The status display for a running application
90 G e t t i n g S t a r t e d

U s i n g t h e C o n s o l e T o o l s
Figure B.4 shows the connection status display for the Welcome application.

Figure B.4 The connection status display for a running application

Using the Console Tools
This section describes how to use the console tools to work with your Enhydra
applications and servlets. This section tells you how to:

• Add a new servlet or application to the Enhydra Multiserver

• Delete an application or servlet

• Modify the configuration of an application or servlet

• Use the debugging tool

• Save the state of the Multiserver

Adding an Application or Servlet

To add an application or servlet to those that can be managed from the
administration console, the application’s configuration (.conf) file must be in the
Enhydra applications directory. The default location for this directory is
<enhydra_root >/apps .

Use the following steps to add an application to the Multiserver:
U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 91

U s i n g t h e C o n s o l e T o o l s
1 Click the ADD button. The Multiserver Administration Console displays the Add
New Application/Servlet dialog box, which is shown in Figure B.5.

Figure B.5 The Add Application dialog box

2 Select the name of your application from the dropdown list. Your application’s
name only appears in the list if its configuration file is in the /<enhydra_root>/apps
directory.

3 Click the OK button to add your application to the Multiserver.

If you are adding a servlet instead of an application, you need to enter additional
information in the dialog box, including:

• The name of the servlet

• The name of the class to instantiate for the servlet

• Any additional class paths required for the servlet

• The root of the servlet’s file system on disk

• Optionally, any initial arguments for the servlet
92 G e t t i n g S t a r t e d

U s i n g t h e C o n s o l e T o o l s
Deleting an Application or Servlet

Note When you remove an application or servlet from the Multiserver, you are not
deleting the application or servlet, or its configuration file from your computer. You
are simply removing it from the Multiserver’s configuration file.

Use the following steps to delete an application or servlet from the Multiserver:

1 If the application is running, you must first stop it.

2 Select the application in the Applications window.

3 Click the DELETE button.

Modifying the Configuration of An Application or Servlet

Use the following steps to modify the configuration of an application in the
Multiserver:

1 Select the application in the Applications window.

2 Click the MODIFY button. The Content Frame displays the Modify window, as
shown in Figure B.6.

Figure B.6 The Modify Configuration window

The Modify Configuration window features tabs that you can use to modify the
application or servlet. If you are modifying an application, you can choose from
among four tabs. Use the:

• Application tab to add additional class paths for the application or servlet

• Sessions tab to modify the application’s Session Manager parameters

• Database tab to modify the applications database connection.

• Advanced tab to modify the application’s default URL.
U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 93

U s i n g t h e C o n s o l e T o o l s
If you are modifying a servlet, there is only one tab to choose. You can use the Servlet
tab to modify the Servlet’s configuration options, which are the same options that
you specify when adding the Servlet.

Debugging an Application or Servlet

The debugging tool provides you with a window into the operation of a running
application or servlet; it traces the flow of requests to and responses from an
application or servlet.

Use the following steps to debug an application or servlet in the MultiServer:

1 Select the application in the Applications window.

2 Click the DEBUG button. The Debug popup window displays, as shown in Figure
B.7.

Figure B.7 The Debug popup window

The scrolling area in the window shows the active event list. You can use the
debugging buttons as follows:

• Click the PAUSE button to pause the debugging function, which stops the
accumulating of events in the scroll list.

• Click the RESUME button to resume the debugging function.

• Click the CLEAR button to clear the list of events.

• Click the FINISH button to halt debugging and close the popup window.
94 G e t t i n g S t a r t e d

U s i n g t h e C o n s o l e T o o l s
Saving the State of The Multiserver

When you add or delete applications or servlets with the Console, you are changing
the current configuration of the Multiserver. If you want the changes to be retained,
you must save the configuration.

Use the following steps to write the current configuration to the Multiserver
configuration file:

1 Click the SAVE STATE button.

2 Click the OK button in the confirmation dialog box.
U s i n g t h e M u l t i s e r v e r A d m i n i s t r a t i o n C o n s o l e 95

96 G e t t i n g S t a r t e d

Index

Symbols
<enhydra_root>

see enhydra_root 20

A
accessing data 47
adding a business object 35
adding a new page 37
adding a page 35
adding an application 91
adding data access 47
application

configuration file 7, 28
connecting to database 43
log channel 7
name 7
properties 7
status 7

application development 35
adding a business object 35
adding a page 35
maintaining session state 35
populating a table 35

Application framework 8
components 10
session manager 12

application layers 8
application object 7, 29

data contained in 7
requestPreprocessor()

method 7
startup() method 7

application root directory 25
application server 5
Application Wizard 13, 16, 25

about 13
and JBuilder 13
using 25

applications
developing 60
DiscRack 59
how to create 25

archives
of e-mail lists 3

attribute panel 49
attributes 14

B
building an application 26
building Enhydra

applications 25
business layer 8, 76
business objects 76

adding 42

C
Calculator 23
Chat Room 23
classes

GenericDO 15
HTMLHeadingElement 38
HTMLTableElement 32
HttpPresentation 8
httpPresentation 11
server 10
session 12
SessionData 35
sql 13
StandardDatabaseManager

13
StandardSessionManager 12

CLASSPATH 28, 33
cloneNode method 41
command line 33
compiler wizard 16
configuration files 7, 28

application 28
database 46, 79
Multiserver 28, 29

configuring databases 79
configuring Enhydra 22
configuring the application to

use JDBC 45
configuring the database

manager 46
console

see Multiserver
Administration Console 22

conventions used in this book 1

D
data layer 8
data model 52
Data object

creating with DODS 50

Data Object Design Studio
see DODS 13, 48

data objects 77
attributes 14
creating 50

database
accessing 47
configuration 79
connecting application to 43
creating a table 43

database configuration
Informix 80
Microsoft Access 82
MySQL 81
Oracle 80
PostgreSQL 82
Sybase 81

database manager
configuring 46

debuggin an application 94
deleting an application 93
Demo applications, Enhydra 23
DemoApp 23
deployment 61
Design and Storyboard 62
design and storyboard 61
designing applications 60
developer documentation 23
developing applications 60
development and testing 61
directory structure 15, 28
DiscRack application 59

business layer 76
classes 64
data objects 77
deployment 64
development and testing 64
event handling in 68
functional specification

for 61
log in 66
overview of 64
packages 64
populating a form 75
populating a list box 73
presentation layer 65
removing dummy data 71
replacing JavaScript 71
replacing the user

interface 72
I n d e x 97

requirements definition
for 61

running 60
session data 66
storyboard for 63
URL mapping 70

DiscRack_root 59
DIV 33
Document Object Model

see DOM 31
document object model

see DOM 13
DODS 3, 8, 13, 22

14
about 14
attribute panel 49
directory structure 15
object panel 49
package panel 49
saving the data model 52
SQL script generated by 54
starting 49
using 48
using the data objects 56

DODS window 49
DOM 13

object hierarchy 32
understanding 31

downloads 2
dump option 33
dynamic recompilation 14

E
EJB Containers 4
e-mail list archives 3
e-mail lists 2
Enhydra 5

Administration Console 10
and Cygnus tools 20
and SPAN tags 27
and URL rewriting 6
application architecture 7
application development 35
application framework 5
application layers 8
bug reporting 3
building applications 25
configuring 22
connecting to databases

with 79
creating your first

application 25
designing applications for 60
Director 9

dynamic recompilation
feature 14

dynamic recompilation of
XMLC 6

E-mail lists 2
e-mail lists 2
installation 19
installing 20
installing on Red Hat

Linux 21
Introduction 1
Java Server Pages (JSP) 1.1

API 6
Java Servlet 2.2 API 6
Kelp 15
Multiserver 5, 9
Multiserver Administration

Console 85
new features 6
online documentation 2, 22
Overview 5
parts of 5
prerequisites to using 1
Presentation Manager 11
programming 35
reporting bugs 3
sample applications 23
sample project 17
Session Manager 12
software downloads 2
tools 5, 13
tutorial 25
version 3.0 6
WML support 6
working groups 3

Enhydra Director 6, 9
Enhydra Link 3
Enhydra Multiserver

about 9
as servlet runner 9
class loader 9

Enhydra root directory 20, 22
Enhydra Tools 13
Enhydra tools 5
Enhydra Working Groups 3
Enhydra@enhydra.org 2
enhydra_root 20, 22
Enhydra-

announce@enhydra.org 3
Enhydra-digest@enhydra.org 2
EnhydraEnterprise@enhydra.or

g 2
EnhydraEnterprise-

digest@enhydra.org 3
event handling 68

executeQuery method 47
Extensible Markup Language

see XML 13
Extensible Markup Language

Compiler
see XMLC 13

F
factory 76
Functional Specification 61
Functional specification 61

G
GenericDO class 15
getConnection method 44
getElement method 32
getParentNode method 40
Golf Shop 23

H
hit counter 30
HTML tags

SPAN and DIV 33
HTMLHeadingElement class 38
HTMLTableElement class 32
HttpPresentation class 8
httpPresentation class 11

I
Informix 43, 80
Installation 19
installing 20

on Unix 21
on Windows 20

InstantDB 43
Internationalization 4

J
Java 8, 29

downloading and
installing 20

Java Server Pages (JSP) 1.1
API 6

Java Servlet 2.2 API 6
JBuilder 13, 15, 20

installing 24
JDBC 43, 79

configuring with
application 45

establishing a connection 43
JDK

see Java 20
98 G e t t i n g S t a r t e d

K
Kelp 3, 15

installing 24

L
load balancing 9
loading the schema 54
log channel 7
logging 7

M
maintaining session state 35
maintaining the storyboard 70
methods

cloneNode 41
execute query 47
getConnection 44
getElement 32
getParentNode 40
query 47
removeAttribute 40
removeChild 41
run 37
setBgColor 32
setText 27
writeHTML 28

Microsoft Access 82
Microsoft SQL Server 43
modifying an application 93
Multiserver 5, 9
Multiserver Administration

Console 6, 22, 85
.conf file 28
adding an application 91
applications window 88
console tool buttons 88
content frame 86, 89
control frame 86
debugging with 94
deleting an application 93
display 86
launching 85
modifying an application 93
online documentation 23
saving the state of 95
stopping 38

Multiserver configuration
file 28, 29

MySQL 81

N
new features 6

newapp 13
see Application Wizard 13

newapp, using 25

O
object panel 49
online documentation 2, 22
Oracle 43, 80
Overview of Enhydra 5

P
package panel 49
path

setting 22
path environment variable 22
PO

see Presentation Objects 8
populating a form 75
populating a list box 73
populating a table 35
PostgreSQL 43, 82
prerequisites 1
presentation base class 65
presentation layer 8
Presentation Manager 11
presentation object 7, 29
presentation objects

about 8
base class for 65
run() method 11

property pages 17

Q
query method 47

R
Red Hat Linux

installing on 21
removeAttribute method 40
removeChild method 41
removing dummy data 71
replacing JavaScript 71
replacing the user interface 72
reporting bugs 3
Requirements Definition 61
requirements definition 61
Rocks 3
run method 37

S
sample applications 23

Calculator 23

Chat Room 23
DemoApp 23
Golf Shop 23

sample project 17
saving Multiserver state 95
Schema, loading with DODS 54
server class 10
servlet runner 9
servlets

defined 9
session class 12
session data 66
Session data structure 7
session idle time 29
session key 35
session management 12
Session Manager 12
Session object 12
session state 35
SessionData class 35
setBgColor method 32
setText method 27
setting the path variable 22
simpleApp 25
simpleapp

directory structure of 28
SPAN 33
SPAN tags 27

and XMLC 27
SQL 8

loading scripts 55
sql class 13
StandardDatabaseManager

class 13
StandardSessionManager

class 12
start script 28
storyboard

maintaining 70
Sybase 43, 81

T
tools 5
tutorial 25

adding a business object 42
adding a hit counter 30
adding a new page 37
adding data access 47
configuring for JDBC 45
configuring the database

manager 46
creating a database table 43
creating data objects 50
establishing a JDBC

connection 43
I n d e x 99

loading the schema 54
populating a table 39
user access count 35
using the DODS data

objects 56

U
Unix

installing Enhydra on 21
URL mapping 70
URL rewriting 6
user session 29
using DODS data objects 56

V
version 3.0 features 6

W
Web Containers 4
Windows

installing Enhydra on 20
WML support 6
working groups 3

DODS 3
EJB Containers 4
Enhydra Link 3
Internationalization 4
Kelp 3
Rocks 3
Web Containers 4

writeHTML 28

X
XML 13
XMLC 13, 22, 27, 29

about 13
and Java 14
and SPAN tags 27
compiler wizard 16
documentation 23
dump option 33
dynamic recompilation of 6
getElement method 32
keep option 34
property pages 17
using from the command

line 33
100 G e t t i n g S t a r t e d

	Title
	Contents
	Ch 1: Introduction
	What You Should Already Know
	Document Conventions
	Where to Find Enhydra Information and Support
	Software Downloads
	Online Documentation
	E-mail Lists
	Bug Reporting
	Working Groups

	Acknowledgements

	Ch 2: Overview
	What is Enhydra?
	What’s New in 3.0

	Anatomy of an Enhydra Application
	Application Object
	Presentation Objects
	The Three Layers

	Multiserver
	Enhydra Director
	The Administration Console

	The Enhydra Application Framework
	Presentation Manager
	Session Manager
	Database Manager

	Enhydra Tools
	Application Wizard
	XMLC
	The Data Object Design Studio (DODS)

	JBuilder and the Kelp Tools
	Enhydra Application Wizard
	XMLC Compiler Wizard
	XMLC Property Pages
	Enhydra Sample Project

	Ch 3: Installation
	Procedure
	Downloading and Installing Java 2
	Installing Enhydra 3.0
	Installing on Windows
	Installing on Unix

	Configuring Enhydra
	Setting the PATH Environment Variable

	Viewing Online Documentation
	Running the Sample Applications
	Installing JBuilder
	Installing the Kelp Tools

	Ch 4: Tutorial: Building Enhydra Applications
	Creating Your First Application
	Building the Application
	How It Works
	The Directories and Files in SimpleApp

	Using XMLC
	Adding a Hit Counter
	Understanding the DOM
	Using XMLC From the Command Line

	Enhydra Programming
	Maintaining Session State
	Adding a New Page to the Application
	Populating a table
	Adding a Business Object

	Connecting the Application to a Database
	Creating a Database Table
	Establishing a JDBC Connection
	Configuring the Database Manager
	Adding Data Access

	Using DODS
	Introduction
	Creating Data Objects
	Loading the Schema
	Using the DODS Data Objects

	Ch 5: The DiscRack Example Application
	Building and Running DiscRack
	Process and Preliminaries
	DiscRack Requirements Definition
	DiscRack Functional Specification
	Design and Storyboard
	Development, Testing, and Deployment

	Overview of DiscRack
	The Presentation Layer
	Presentation Base Class
	Session Data and Log In
	Event Handling
	HTML Pages
	Maintaining the Storyboard
	Populating a List Box
	Populating a Form

	The Business Layer
	The Business Objects
	Using Data Objects

	App A: Database Configuration
	Driver Configuration
	Oracle
	Informix
	Sybase
	MySQL
	PostgreSQL
	Microsoft Access

	App B: Using the Multiserver Administration Console
	Launching the Administration Console
	The Console Display
	The Applications Window
	The Console Tool Buttons
	The Content Frame

	Using the Console Tools
	Adding an Application or Servlet
	Deleting an Application or Servlet
	Modifying the Configuration of An Application or Servlet
	Debugging an Application or Servlet
	Saving the State of The Multiserver

	Index

