
Enhydra

Jolt Syntax Reference Guide

version 2.0

Developed by Lutris Technologies, Inc.

Enhydra Jolt Syntax Reference Guide v2.0 iii

TABLE OF CONTENTS

CHAPTER 1 Overview of Enhydra Jolt 1

Structuring an Enhydra Jolt Presentation 2
Enhydra Joltc Compiler Options 2
Executing a Presentation Object 3

CHAPTER 2 Enhydra Jolt Fields 5

Accessing Enhydra Jolt Fields from JavaScript 6
Dumping Known Field Names 7

CHAPTER 3 Enhydra Jolt Tags 9

Tests for Conditions 9
The <JOLT JAVADEF> Tag 10
The <JOLT HTMLDEF> Tag 12
The <JOLT JAVACALL> Tag 12

Passing Arguments Using <JOLT JAVACALL> 13
Using Conditions Within <JOLT JAVACALL> 14

The <JOLT CALL> Tag 16
The <JOLT HTMLCALL> Tag 16
The <JOLT HTML> Tag 16
The <JOLT JAVAIMPORT> Tag 18
The <JOLT INCLUDE> Tag 19
The <JOLT JAVACATCH> Tag 21
The <JOLT JAVAFINALLY> Tag 22

APPENDIX A Glossary of Terms 23

TABLE OF CONTENTS

iv Enhydra Jolt Syntax Reference Guide v2.0

Enhydra Jolt Syntax Reference Guide v2.0 1

CHAPTER 1 Overview of Enhydra Jolt

Enhydra Jolt enhances the static presentation capabilities of HTML, as it is
designed to support the systematic embedding of Java functionality within an
HTML page. Enhydra Jolt files, like HTML files, are simple ASCII files; Enhydra
Jolt files are distinguished from standard HTML files by their “.jhtml” extension.

Within a Enhydra Jolt file, Java code supplies dynamic content, while a non-
programmer can easily edit existing static content with any best-of-breed web
authoring tool. The Enhydra Jolt syntax allows for the integration of Java with
HTML, or the modular separation of HTML templates and Java libraries into
separate files.

There are two categories within the Enhydra Jolt syntax: <JOLT> tags and Enhydra
Jolt Fields. The <JOLT> tags, with their various attributes, isolate Java sections and
conditionally insert static HTML content. Enhydra Jolt Fields support the ability to
decode URL arguments, or to embed values directly from a Java object.

Enhydra Jolt files are the building blocks of Presentation Objects, which are
compiled using the Enhydra Joltc compiler. These Presentation Objects are then
executed from any web server supported by Enhydra.

Overview of Enhydra Jolt

2 Enhydra Jolt Syntax Reference Guide v2.0

Structuring an Enhydra Jolt Presentation

[structure, ideas, direction? Or, just an example file that I can walk though and see
what’s going on and explain to others.]

Enhydra Joltc Compiler Options

The Enhydra Joltc compiler, with the following commands, compiles a JHTML
file:

joltc [options] src.jhtml packageName

The .jhtml file extension is mandatory to the source file src. The resultant class
belongs to the Java package name packageName.

The compiler supports the following command line options:

When developing in the Enhydra Development Environment, the use of Enhydra
Joltc is usually transparent, as the distributed makefiles contain the rules for
running the Enhydra Jolt compiler.

-k Keep the resultant .java files. This is useful for debugging.
Normally the .java files are automatically removed after
successfully compiling the .class file.

-d destdir Specify the destination root for the Java class files. The default is
javadir.

-j javadir Directory in which to generate the .java files. The default is the
current working directory.

Enhydra Jolt Syntax Reference Guide v2.0 3

Executing a Presentation Object

Executing a Presentation Object

A compiled Presentation Object consists of a class with the same name as the
original JHTML file. A well-defined entry method, such as:

run(HTTPPresentationComms)

is automatically inserted into the Presentation Object by the Enhydra Joltc
compiler. Presentation Objects can also be constructed by hand, without the use of
the Enhydra Joltc compiler.

1 Upon receipt of a URL ending in .po (e.g., demoApp.po), En-
hydra will turn the request into a run() method on the appro-
priate PO (e.g., demoApp.class).

2 The run() method will sequentially execute each part of an
Enhydra Jolt Presentation Object (dynamic Java or static HT-
ML) according to the conditional rules set forth by <JOLT>
tags.

3 Execution continues until the Presentation Object ends natural-
ly, an unhanded exception is thrown, or an HTTP redirect is in-
voked.

Overview of Enhydra Jolt

4 Enhydra Jolt Syntax Reference Guide v2.0

Enhydra Jolt Syntax Reference Guide v2.0 5

CHAPTER 2 Enhydra Jolt Fields

The values of page.data variables, when used within HTML sections, are called
Enhydra Jolt Fields. Enhydra Jolt Fields and their values result from two possible
scenarios. First, when entering a page environment, Enhydra Jolt Fields initially
represent decoded CGI arguments from an HTTP GET or POST method.

For example, the argument:

.../foo.po?firstName=Pete&lastName=Smith

creates the Enhydra Jolt Fields cgiArgs.firstName and cgiArgs.lastName.

The values contained in Enhydra Jolt Fields (in this example, “Pete” and “Smith”)
may be accessed from within static HTML content by pre-pending and post-
pending "(@" and "@)", respectively, such as:

Your last name is (@cgiArgs.lastName@).

This construct would generate the following string, displayed by the client:

Your last name is Smith.

Additionally, Enhydra Jolt Fields can be the result of an Enhydra Jolt Java section,
created using the set method of the page.data class. Both the page.data variable
and Enhydra Jolt Field name must be a valid Java identifier.

Enhydra Jolt Fields

6 Enhydra Jolt Syntax Reference Guide v2.0

In the example below, this statement from an Enhydra Jolt Java section creates an
Enhydra Jolt Field called minLength, with a value of 8:

page.data.set("minLength", "8");

which is then referenced within static HTML content:

The minimum required password length is (@minLength@).

and displays:

The minimum required password length is 8.

Enhydra Jolt Fields represent the hierarchical structure of page.data. The '.'
(period) character is significant, as it delimits the branches within the page.data
hierarchy. As new Enhydra Jolt Fields are created, the page.data object
accumulates their variables and values throughout the lifetime of the page. If a
referenced Enhydra Jolt Field does not exist, or is illegally specified, an exception
will be thrown when executing the Presentation Object.

If a portion of HTML needs to include the (@ or @) characters literally, they must
be quoted with the regular HTML quoting mechanism:

Quoting characters look like (@@)

This construct generates the string:

Quoting characters look like (@@)

NOTE: If referencing a directory when utilizing Enhydra Jolt Fields,
an HTML-formatted dump of all known Enhydra Jolt Field names and
their values under the specified directory will be reported.

Accessing Enhydra Jolt Fields from JavaScript

Enhydra Jolt Fields are evaluated before the HTML results of a Presentation Object
are sent as a response to the client. Therefore, Enhydra Jolt Fields are ideal for
adding simple dynamic content to pages containing JavaScript (or any other client-
side language).

Enhydra Jolt Syntax Reference Guide v2.0 7

Dumping Known Field Names

Previously in this reference, an example of an Enhydra Jolt Java section stored a
minimum password length value in an Enhydra Jolt Field called minLength. The
following JavaScript uses this Enhydra Jolt Field to alert the user before the form is
submitted:

<SCRIPT LANGUAGE="JavaScript">

if (form.password.value.length < (@minLength@))

alert("(@minLength@) characters are required")

</SCRIPT>

Using the example above, remember that the integer value “8” has been stored in
the Enhydra Jolt Field minLength. The following events occur:

1 JavaScript is called on the client-side

2 The “if...” statement asks if the password input by the users
contains less than the required number of characters as speci-
fied in minLength.

3 If the result is true (if the password does not contain the mini-
mum number of characters), the browser displays an alert pop-
up window. The value of minLength (“8”) is referenced in the
pop-up, which displays “8 characters are required”.

Dumping Known Field Names

Enhydra Jolt Fields with no inserted name (@@) automatically generate an HTML-
formatted dump of all Enhydra Jolt Field names and their values known within the
page context. This is particularly useful during application development and
debugging.

Enhydra Jolt Fields

8 Enhydra Jolt Syntax Reference Guide v2.0

Enhydra Jolt Syntax Reference Guide v2.0 9

CHAPTER 3 Enhydra Jolt Tags

The <JOLT> tags within the Enhydra Jolt syntax serve numerous functions ranging
from referencing files and Java methods to conditionally including HTML content.

Depending upon its attribute and/or conditions, a <JOLT> tag can include Java code
or HTML content within an Enhydra Jolt file. Some <JOLT> tags are also provided
to catch exceptions upon compiling or executing a Presentation Object, providing a
programmer error-catching control that is superior to CGI-based applications.

Further in this chapter, as individual tags are described, the tags are referenced
using their attribute as an identifier. For example, the <JOLT> tag with the JAVADEF
attribute is referred to as the <JOLT JAVADEF> tag.

NOTE: In the examples provided for each tag, quotation marks (““)
are used to surround arguments. These quotation marks are optional,
unless the value contains a space.

Tests for Conditions

Conditions can be applied to <JOLT> tags, to determine if HTML content (including
JavaScript and nested <JOLT> tags, where applicable), will be included in the

Enhydra Jolt Tags

10 Enhydra Jolt Syntax Reference Guide v2.0

resultant HTML file. Within each tag, only a single conditional test can be
performed. The range of test options are described the table below:

In this example, the Java method addNewColor is invoked only if an Enhydra Jolt
Field named color exists:

<JOLT JAVACALL=addNewColor IFDEF FIELD=color>

...HTML CONTENT...

</JOLT>

Applicable examples of tests for conditions are included later in this chapter.

The <JOLT JAVADEF> Tag

The general syntax of the <JOLT JAVADEF> tag is as follows, and multiple <JOLT
JAVADEF> tags may not be nested:

<JOLT JAVADEF>

...Java field, method or inner class declarations...

</JOLT>

The JAVADEF attribute allows for any regular Java declarations to be made,
including field, method and inner class declarations. Once defined within a <JOLT
JAVADEF> section, all fields and methods become part of the Presentation Object
class.

Conditional Test Behavior

IFEQ If the contents of FIELD equal VALUE, then true.

IFNEQ If the contents of FIELD are not equal to VALUE, then true.

IFDEF If the FIELD is defined, then true.

IFNDEF If the FIELD is not defined, then true.

IFCALL If a method returns true, then true. Must return a boolean value.

IFNCALL If a method returns false, then true. Must return a boolean value.

Enhydra Jolt Syntax Reference Guide v2.0 11

The <JOLT JAVADEF> Tag

The <JOLT JAVACALL> tag can then be used to call these pre-defined methods,as
long as the methods take a single mandatory JoltPage argument.

For example:

<JOLT JAVADEF>

private static final String COMPANY="Enhydra";

void setJoltFields (JoltPage page)

throws Exception

{

// Create some Jolt Fields...

page.data.set("mode.on", new Boolean(true));

page.data.set("company", COMPANY);

... more Java code...

}

</JOLT>

<JOLT JAVACALL=”setJoltFields”></JOLT>

The company name is (@company@)

The mode is set to (@mode.on@)

The above <JOLT JAVADEF> declaration defines two fields (company and mode), as
well as a method (setJoltFields) then called by the <JOLT JAVACALL> tag.

An HTML-defined method can be called directly from Java by using the
call(methodName) method from the JoltPage class. This is an overloaded method
allowing an optional KeywordValueTable to be layered on the page.data scope
prior to calling the method.

For example:

page.call(myMethod, myArguments);

NOTE: Multiple <JOLT JAVADEF> tags are legal. Their contents are

Enhydra Jolt Tags

12 Enhydra Jolt Syntax Reference Guide v2.0

concatenated in the order they are defined.

The <JOLT HTMLDEF> Tag

The general syntax of the <JOLT HTMLDEF> tag is as follows, and multiple <JOLT
HTMLDEF> tags may be nested:

<JOLT HTMLDEF=”methodName”>

...HTML CONTENT...

</JOLT>

The HTMLDEF attribute allows for a block of HTML to be defined and subsequently
referenced by name, creating an environment for the modular development of code.
The <JOLT JAVACALL> tag can then be used to call methods.

NOTE: Methods defined by the HTMLDEF attribute and Java methods
defined by the JAVADEF attribute are accessed in exactly the same
manner.

The <JOLT JAVACALL> Tag

The general syntax of the <JOLT JAVACALL> tag is as follows, and multiple <JOLT
JAVACALL> tags may be nested:

<JOLT JAVACALL=”methodName” ARG.field1=”value1”
ARG.field2=”value2”>

...HTML CONTENT...

</JOLT>

NOTE: The CALL and JAVACALL attributes are functionally equivalent.
JAVACALL is included for backwards compatibility.

Enhydra Jolt Syntax Reference Guide v2.0 13

The <JOLT JAVACALL> Tag

The CALL attribute instructs the Presentation Object to call the specified method,
identified by methodName. Usually the method is declared within the JHTML file
and either applies HTML to the output or sets Enhydra Jolt Fields.

However, any method may be called by importing the referred class or fully
qualifying the method name. For example, Enhydra includes a utility class called
JoltDebug that is automatically included by the Enhydra Joltc compiler.

In this example, the getRequest method dumps all the information about the
request in a pre-formatted manner:

<JOLT JAVACALL=”JoltDebug.getRequest”>

...HTML CONTENT...

</JOLT>

An example of a fully qualified method would be:

<JOLT JAVACALL=”com.lutris.jolt.Utils.exampleMethod”>

...HTML CONTENT...

</JOLT>

Passing Arguments Using <JOLT JAVACALL>

When passing arguments to a method, the ARG. prefix is removed and the fields
are then accessible to Java-defined methods or Enhydra Jolt Fields in HTML-
defined methods. For example:

<JOLT JAVACALL=”exampleMethod” ARG.first=”Pete”
ARG.last=”Smith”>

</JOLT>

This examples makes exampleMethod.first (the value is “Pete”) and
exampleMethod.last (the value is “Smith’) accessible.

Optionally, valid HTML content may be present and delimited by the closing </
JOLT> tag. In this case, the text is made available to the method in a page variable
named tagContents. This can be used to good effect for creating a library of
HTML formatting routines. For example:

Enhydra Jolt Tags

14 Enhydra Jolt Syntax Reference Guide v2.0

<JOLT JAVADEF>

void addColor (JoltPage page)

throws Exception

{

// -> page.append() is used to write HTML.

page.append("
");

page.append(page.tagContents);

page.append("");

}

</JOLT>

...

<JOLT JAVACALL=”addColor”>

Color me blue!!!

</JOLT>

In this example, addColor is a Java method that returns the content text (“Color me
blue!!!”) as an HTML string with additional tags:

Color me blue!!!

The variable page.tagContents is available within the scope of the method.

Using Conditions Within <JOLT JAVACALL>

Following are ways that method invocation can be made conditional within a <JOLT
JAVACALL> tag. For a quick look at the list of conditional tests, please see the table
on page 10.

In the example below, using the IFEQ conditional attribute, the method methodName
is invoked if the value of the variable called fieldName is equal to value value. If
fieldName does not exist then the condition is not true and methodName is not
called, regardless of value:

Enhydra Jolt Syntax Reference Guide v2.0 15

The <JOLT JAVACALL> Tag

<JOLT JAVACALL=”methodName” IFEQ FIELD=”fieldName”
VALUE="value">

...HTML CONTENT...

</JOLT>

Similarly, using the IFNEQ conditional attribute, method methodName will be
invoked if the value of the variable called fieldName is not equal to value value. If
fieldName does not exist then the condition is true and methodName is called,
regardless of value:

<JOLT JAVACALL=”methodName” IFNEQ FIELD=”fieldName”
VALUE="value">

...HTML CONTENT...

</JOLT>

Below, using the IFDEF conditional attribute, the method methodName is invoked
simply if the variable called fieldName exists:

<JOLT JAVACALL=”methodName” IFDEF FIELD=”fieldName”>

...HTML CONTENT...

</JOLT>

Using IFNDEF, the method methodName is invoked if the variable called fieldName
does not exist:

<JOLT JAVACALL=”methodName” IFNDEF FIELD=”fieldName”>

...HTML CONTENT...

</JOLT>

Enhydra Jolt Tags

16 Enhydra Jolt Syntax Reference Guide v2.0

Here, using IFCALL, method methodName is invoked if testMethod returns a
boolean true.

<JOLT JAVACALL=”methodName” IFCALL=”testMethod”>

...HTML CONTENT...

</JOLT>

Similarly, using IFNCALL, the method methodName is invoked if testMethod returns
a boolean false.

<JOLT JAVACALL=”methodName” IFNCALL=”testMethod”>

...HTML CONTENT...

</JOLT>

NOTE: Complex conditionals can also be achieved by nesting a <JOLT
JAVACALL> tag within conditional <JOLT HTML> tags.

The <JOLT CALL> Tag

This tag is identical to the <JOLT JAVACALL> tag.

The <JOLT HTMLCALL> Tag

This tag is identical to the <JOLT JAVACALL> tag, with the exception that additional
arguments are not allowed.

The <JOLT HTML> Tag

The general syntax of the <JOLT HTML> tag is as follows, and multiple <JOLT HTML>
tags may be nested:

<JOLT HTML CONDITION_SYNTAX>

Enhydra Jolt Syntax Reference Guide v2.0 17

The <JOLT HTML> Tag

...HTML CONTENT...

</JOLT>

Similar to calling methods using the <JOLT JAVACALL> tag, when using the <JOLT
HTML> tag, content will be included if the FIELD variable content is equal to the
value associated with VALUE.

In the following example of using the conditional IFEQ with the <JOLT HTML> tag, if
mode.on contains the value "true", then the HTML content will be included in the
Presentation Object by the Enhydra Joltc compiler.

<JOLT HTML IFEQ FIELD=”mode.on” VALUE=”true”>

You are seeing this because

you are in verbose mode.

</JOLT>

Using IFNEQ in the example below, if the field fieldName does not exist then the
condition is not true and the HTML is not included, regardless of value.

<JOLT HTML IFNEQ FIELD=”fieldName” VALUE="value">

...HTML CONTENT...

</JOLT>

However, also using IFNEQ in this example, if the fieldName does not exist, the
condition becomes true and the HTML content is included regardless of VALUE:

<JOLT HTML IFNEQ FIELD=”mode.on” VALUE=”true”>

You have chosen non-verbose mode.

</JOLT>

In the example below, using IFDEF, HTML content will be included simply if the
variable called fieldName exists:

<JOLT HTML IFDEF FIELD=”fieldName”>

...HTML CONTENT...

Enhydra Jolt Tags

18 Enhydra Jolt Syntax Reference Guide v2.0

</JOLT>

Similarly, using IFNDEF, HTML content will be included using the example below,
simply if the variable called fieldName does not exist:

<JOLT HTML IFNDEF FIELD=”fieldName”>

...HTML CONTENT...

</JOLT>

In this example, using IFCALL, HTML content will be included if the Java method
named testMethod returns true.

<JOLT HTML IFCALL=”testMethod”>

...HTML CONTENT...

</JOLT>

Similarly, using IFNCALL, HTML content will be included if the Java method
named testMethod returns false.

<JOLT HTML IFNCALL=”testMethod”>

...HTML CONTENT...

</JOLT>

NOTE: Complex conditionals can also be achieved by nesting <JOLT
HTML> tags.

The <JOLT JAVAIMPORT> Tag

The general syntax of the <JOLT JAVAIMPORT> tag is as follows, and multiple <JOLT
JAVAIMPORT> tags may not be nested:

<JOLT JAVAIMPORT>

 ...Java import statements...

</JOLT>

Enhydra Jolt Syntax Reference Guide v2.0 19

The <JOLT INCLUDE> Tag

The JAVAIMPORT attribute is used to delimit one or more Java import statements.
Since the Java language mandates that imports are included at the head of a Java
file, using this tag ensures this condition. Multiple Enhydra Jolt import tags can be
declared anywhere in the JHTML file.

NOTE: Imports can be included in simple <JOLT JAVADEF> tags, as
long as this section is the first in the file. However, the use of this
feature is not recommended.

The <JOLT INCLUDE> Tag

The general syntax of the <JOLT INCLUDE> tag is as follows, and multiple <JOLT
INCLUDE> tags may be nested:

<JOLT INCLUDE=”RelativeFilePath”>

</JOLT>

The INCLUDE attribute provides a convenient method of including content from one
file within another. The named file is compiled into the page as if it were in-line
code. Either Enhydra Jolt files or standard HTML files can be included, using the
<JOLT INCLUDE> tag.

An HTML file, for instance, might be included as a copyright footer or common
header. The included file may include additional <JOLT> tags and access Enhydra
Jolt Fields contained within the current page context. The </JOLT> end-tag is
especially important when using the <JOLT INCLUDE> tag, as the included file
cannot cross the boundary of the current page.

By convention, included files use the .jinc extension. The example below includes
the file CommonFooter.jinc, located in the directory above the current directory of
the JHTML file.

<JOLT INCLUDE=”../CommonFooter.jinc”>

</JOLT>

The <JOLT INCLUDE> and <JOLT JAVADEF> tags can be used effectively to split
otherwise large JHTML files into a number of manageable pieces. This approach

Enhydra Jolt Tags

20 Enhydra Jolt Syntax Reference Guide v2.0

can also be used to separate Java method calls from the HTML component, for
support or maintenance reasons.

Enhydra Jolt Syntax Reference Guide v2.0 21

The <JOLT JAVACATCH> Tag

The <JOLT JAVACATCH> Tag

The general syntax of the <JOLT JAVACATCH> tag is as follows, and multiple <JOLT
JAVACATCH> tags may not be nested:

<JOLT JAVACATCH=”ExceptionName”>

 ...Java Code...

</JOLT>

To catch exceptions created at the Presentation Object level, a single <JOLT
JAVACATCH> clause can be created. It does not matter where in the file the clause
appears, but the order is maintained. However, this clause is rarely necessary, as
exceptions are usually caught within the Java code within the Presentation Object,
or by an external exception mechanism.

The content of the <JOLT JAVACATCH> clause is the body of a regular Java catch
handler. For example:

<JOLT JAVACATCH=”MyException”>

// The catch handler code for MyException...

</JOLT>

<JOLT JAVACATCH=”Exception”>

// Catch all exceptions...

</JOLT>

The <JOLT JAVACATCH> tag offers the facility to catch exceptions thrown anywhere
within a page. A more general mechanism is offered by Enhydra, enabling
exception handlers to be declared to handle exceptions from a group of Presentation
Objects.

Enhydra Jolt Tags

22 Enhydra Jolt Syntax Reference Guide v2.0

The <JOLT JAVAFINALLY> Tag

The general syntax of the <JOLT JAVAFINALLY> tag is as follows, and multiple
<JOLT JAVAFINALLY> tags may not be nested:

<JOLT JAVAFINALLY>

 ...Java Code...

</JOLT>

Similarly to <JOLT JAVACATCH> clauses, a single <JOLT JAVAFINALLY> clause can
be declared anywhere in a file. It does not matter where in the file the clause
appears, but than can be only one. Also similar to <JOLT JAVACATCH> clauses, this
clause is rarely necessary. The contents of the <JOLT JAVAFINALLY> clause is the
body of a regular Java finally handler.

<JOLT JAVAFINALLY>

// Any Java code here will always be executed...

</JOLT>

Enhydra Jolt Syntax Reference Guide v2.0 23

APPENDIX A Glossary of Terms

The following terms are frequently used in the Enhydra Jolt Syntax Reference
Guide:

Attribute One or more strings that appears after an element name within the
start-tag. For example:

<JOLT JAVACATCH>

where JAVACATCH is an attribute.

Content The HTML text that appears between a start-tag and end-tag. For
example:

Text in bold

where “Text in bold” is the content.

Element A string that defines the structure of an HTML document. Elements
are enclosed in angle brackets, referred to as "tags." For example, B
is an HTML element. JOLT is also an HTML element.

End-tag An HTML tag that terminates an HTML statement. For example: </
JOLT>

Glossary of Terms

24 Enhydra Jolt Syntax Reference Guide v2.0

Start-tag An HTML tag that begins an HTML statement. For example:
<JOLT>.

Value Values may be optionally assigned to attributes in the form of an
attribute-value pair. For example:

<JOLT JAVACALL=”class.myMethod”

ARG.a="foo" ARG.b="bar">

</JOLT>

contains three attributes (CALL, ARG.a, ARG.b) and three values,
respectively (class.myMethod, foo, bar).

Enhydra Jolt Syntax Reference Guide v2.0 25

INDEX

Symbols
11, 12, 14, 16, 18, 19, 22

(6
) 6
'.' 6
(@ 5
.jhtml 1
.jinc file extension 19
.po 3
@) 5

A
addColor 14
addNewColor 10
ARG. prefix 13

C
CALL 12, 13
call(methodName) method 11
class file 2
client-side language 6
conditions 14

D
-d destdir (joltc compiler option) 2

E
entry method 3
exception 6
exceptions 9

F
field names, dumping 7

G
GET 5
getRequest 13

H
HTMLDEF 12

I
IFCALL 10
IFDEF 10
IFEQ 10
IFNCALL 10
IFNDEF 10
IFNEQ 10

INCLUDE 19

J
-j javadir (joltc compiler option) 2
JAVACATCH 21
JAVADEF attribute 10
JAVAFINALLY 22
JAVAIMPORT 19
JavaScript 6
Jolt Fields 5
Jolt, introduction to 1
joltc compiler 2, 3
JoltDebug 13
JoltPage class 11

K
-k (joltc compiler option) 2
KeywordValueTable 11

L
Lutris Business Server 3

M
makefiles 2
method invocation 14
minLength 6

P
page.tagText 14
POST 5
Presentation Object 1, 3
Presentation Objects 3

R
referencing files 9
run() method 3

S
source file 2

T
tests for conditions 9

