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Chapter 1

Introduction

Note: This document is a work in progress. If you have any
feedback, please contact pcdavid@gmail.com. Thank you.

This document is the reference manual for the FPath and FScript Domain-Specific
Languages [David, 2005]. Both languages are designed to make it easier to deal
with software systems built using the Fractal Component Model [Bruneton et al.,
2003, 2006|. More specifically:

e FPath is a navigation language for Fractal architectures. An FPath expres-
sion is a query which is run against a set of Fractal components, returning the
set of architectural elements (for example components or interfaces) which
match the query.

e FScript is a language to program architectural reconfigurations of Fractal
systems. It builds upon FPath to select the elements which must be re-
configured, but otherwise looks like a simple “scripting language”, with a few
restrictions. These restrictions are designed so that it is possible to guarantee
that FScript reconfigurations are “well-behaved”.

One of the main strengths of the Fractal component model is its support for
reflection. In particular, the model provides standard ways to introspect Fractal
components to discover their internal structure, state and relationships with each
other (architecture), and to reconfigure these dynamically. However, Fractal is
specified as a set of APIs, and does not rely on syntactic extensions to the im-
plementation languages. In addition, these APIs are designed to be minimal and
orthogonal. In practice, this means that using these “raw” APIs can quickly lead
to writing very verbose and error-prone code. The main goal of FPath and FScript
is to provide more convenient ways to access the full power of the Fractal model,
both for introspection (FPath) and reconfiguration (FScript).



Note that the languages are not designed to implement Fractal component,
but to introspect and manipulate (instantiate, reconfigure) already implemented
components. FPath and FScript only deal with the aspects of components spec-
ified in the model. In particular, they do not expose or allow to manipulate
implementation-specific information (e.g. the internal structure of a membrane)
or business-level behaviour and state (except insofar that this state is exposed us-
ing standard Fractal interfaces). The current version of FScript has the additional
limitation that it relies on Fractal ADL descriptors to instantiate new components
dynamically (see [3.3.9). This limitation may be removed in the future.

This document assumes a good knowledge of the Fractal model. See the ref-
erence manual [Bruneton et al., 2003] or the official web site at http://fractal.
objectweb.org/ for details about Fractal. Both the definition and implementation
of FPath and FScript are independant on the specifics of a particular implementa-
tion of Fractal (Julia, AOKell. .. ), although parts of this specification are currenlty
Java-specific. As both languages make heavy use of Fractal’s reflective capabilities,
the current implementation, which is fully interpreted, requires taht components
are compliant with level 3.3 (see page 28 of the specification for the definition of
compliance levels).

This document only describes the languages syntax and semantics. Instructions
on how to use the standard implementation to invoke FPath and FScript programs
from Java can be found in the implementation’s Javadoc and in the tutorial on
the web[l] also available in the project source.

Chapter [2] first describes FPath as a standalone query language. Chapter
then present the full FScript language, which builds on FPath.

'http://fractal.objectweb.org/tutorials/fscript/index.html
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Chapter 2
FPath

FPath is an expression language to query live Fractal architectures. By expression
language we mean that FPath is side-effect free: executing an FPath program can
not modify the target system. By query we mean that an FPath expression is
used to select architectural elements in a target system according to some crite-
ria. By live Fractal architectures we mean that FPath is primarily designed to
target instanciated Fractal components, as opposed to static descriptions of such
components like Fractal ADL definitiong}
The design objectives of FPath are the following:

e the syntax should be simple to read and understand, and reasonably compact;

e the language should provide full access to all the introspection capabilities of
the Fractal model. Note however that FPath only deals with components at
the architecture level, and hence only “knows” about concepts defined in the
Fractal specification. In particular, FPath does not give access to information
specific to an implementation (e.g. the mixin structure of a Julia membrane)
or to the implementation code of primitive components;

e the language (especially its syntax), should be extensible to transparently
support extensions to the Fractal model which are not defined in the base
specification. By transparently we mean that it should not be possible to
distinguish between standard features and extensions.

e the language semantics should be defined at a high level of abstraction, to be
simple to understand while supporting efficient implementations.

Tt might be possible to use FPath or a variant of it to query static architecture descriptions.
This version of the language does not try to support this use case.



Both the syntax and the execution model of FPath are inspired by the XPath
World Wide Web Consortium| [1999] language. XPath is the standard query lan-
guage for XML documents defined by the W3C, used by many other XML tech-
nologies (XLink, XSLT, XQuery...). XPath is defined on an abstract representation
of XML documents as sets of nodes which represent the content of an XML docu-
ment (elements, attributes, textual content. .. ), and relations between these nodes
which represent its structure (an element contains another, which itself has some
attributes). XPath expressions can navigate along these relations to select the
nodes representing parts of the document based either on their properties or their
location in the document.

The use of XPath as a model for FPath was motivated by the following features:

e XPath does not depend on the syntax of XML documents, but only on an
abstract graph model. This makes the approach suitable other graph-like
models, in particular component architectures.

e Although XPath defines a fixed set of node types and relations suitable for
XML documents, the syntax is open-ended and supports the definition of new
kinds of nodes and relations between them without changing the language.
This is important in our case to support the same level of extensibility than
the Fractal model itself. Tf a new Fractal extension is defined which intro-
duces new architectural elements and /or new relations between components
(for example an aspect weaving relationship), it should be possible to use it
in FPath without changing the syntax of the language.

e XPath expressions can have varying degrees of precision. This make it pos-
sible in FPath to write very precise expressions, which will locate an element
at a specific location in an architecture (for example “the component which
implements service S for the direct child of composite C1 named C2”), but
also more generic and less brittle (but also less precise) expressions which
will work on a wider range of architectures (for example “any component
which provides service S and is contained, directly or not, in C17).

e The syntax is reasonably consise and readable, and the execution model is
simple to understand for users while still allowing different implementation
strategies.

It should be noted that although FPath is inspired by XPath, it is not im-
plemented using XPath, and does not use any XML representation of Fractal
architectures.

In addition to the path expressions used to navigate inside the architecture,
FPath also supports more standard kinds of expressions and primitive values, and



a standard library of functions to operate on those . In the rest of this chapter,
we first describe primitive values and expressions before going into the details of
nodes and path expressions.

2.1 Primitive Values and Expressions

2.1.1 Numbers and arithmetic operations

FPath supports only one kind of numbers, which correspond to Java’s double
type. They have the following litteral syntax:

(number) ::= (opt-sign) (digits) (opt-decimal-part)

(opt-sign) == +" | =7 | (empty)
(digits) ::= (digit) | (digit) (digits)

[

(opt-decimal-part) == ‘.7 (digits) | <.” | (empty)

<d'ngt> - 407 | 417 | 427 | 437 | 447 | 457 | 467 | (77 | 487 | 497

Numbers without a decimal part are automatically converted to floating point
representation, and all operations in FPath are done using doubles.
Here are a few examples:

1

-0.0
3.14159

-2.

+42

01234 .56789

The four arithmetic operations (addition, substraction, multiplication, divi-
sion) are available, with the standard precendence rules, but the division operator
is div instead of / to avoid confusion with the path separator. Their semantics is
the same as in Java, including the treatment of negative zero, infinities, and NaN
results. A division by zero aborts the evaluation of the whole FPath expression
with an error.

3+4%b // => 23.0
(3+4) %5 // => 35.0
3 div 4 // => 0.75
3% -1.0+7 // = 4.0



2.1.2 Strings

FPath supports Unicode strings as a base data type, and provides a set of stan-
dard functions to operate on them. Both single-quoted and double-quoted string
litterals are supported, with some standard escape characters:

(string) ::= (sg-string) | (dg-string)

¢y

(sq-string) ::= (sq-chars) ¢’

(dg-string) == "’ (dg-chars) ‘"’

(sq-chars) ::= (escape) (sq-chars) | (sq-char) (sq-chars) | (empty)
(dg-chars) == (escape) {dg-chars) | (dg-char) (dq-chars) | (empty)
(escape) == \n" | \r’ | ‘\t’ | \"7 |\

where (sg-char) (resp. (dg-char)) is the set of all Unicode characters except for
backslash (‘\’) and the single-quote character ‘>’ (resp. the double-quote character

¢||7).

For example:

"a simple string"

Yanother one’

nn

’He said "Hello".?’

’It\’s not what I expected...\n’

2.1.3 Booleans

FPath supports booleans and the corresponding operations. There is no litteral
syntax for boolean values, but they can be obtained by calling the built-in functions
true() and false().

The boolean operations supported are: conjunction, disjunction and negation.
The first two are supported through the operator and and or, conjunction having
a higher priority. Negation is supported using the predefined function not ().

For example:

true() and false() // = false()
true() or false() and true() // = true()
not(true() and false()) or true() // = true()



2.1.4 Variables

Although FPath expression can not define variables or change variables values,
they can use variables defined elsewhere. When using FPath as a standalone query
language, variable definition is done in the calling program using the evaluator’s
API (not specified here). When using FPath as part of FScript, variables can be
defined and modified by the enclosing FScript program.

Referencing a variable is done by prefixing its name with a dollar sign ($):

(variable) ::== ‘$’ (name)
Examples of valid variable names include:

$var

$x3

$a_long_variable_name
$anotherOneInADifferentStyle
$yet-another-style

$_

2.1.5 Function calls

FPath expressions can invoke functions. These functions can be used either to
manipulate primitive values (numbers, strings and booleans) or to introspect node
values (representing elements in the architecture). However, no function call can
modify these architectural elements.

The syntax of function call is the following:

(call) ::= (name) ‘C (opt-arguments) ‘)’
(opt-arguments) ::= (arguments) | (empty)
(arguments) ::= (expression) | (expression) *,” (arguments)

For example:

ends-with("-controller", name($anInterface))
compatible($clItf, $srvItf)
bound ($c1Itf)



2.1.6 Opaque Object Values

Although they do not have a litteral syntax, it is possible for an FPath function to
return a raw value from the underlying implementation language (for example an
object in Java). These values can be stored in variables and used with compatible,
user-defined functions. This is intended to enable convenient extension of the
library of functions. For example, one could imagine an extension to support
regular expressions matching:

re = make-regexp("fo+");
isFoo = matches("foo", $re);

Where make-regexp is a user-supplied function which returns a compiled re-
gurlar expession object as an opaque value which is then used by matches.
None of the predefined functions produces or uses such values.

2.1.7 Comparisons

General equality an inequality tests are available for all primitive and node types,
while ordering oprators are available only for numbers.

(comparison) ::= (equality-test) | (ordering-test)

(equality-test) ::= (expression) ‘==" (expression) | (expression) V=" (expression)
(ordering-test) ::= (expression) (ordering-operator) (expression)
(ordering-operator) ::= ‘<’ | > ] <=" | >=

For example:

"foo" != "bar"

name ($§itf) == "component"
1+ 2 ==

42 <= 43

2.2 Nodes and Path Expressions

2.2.1 Graph Representation of Fractal Architectures

A Fractal architecture (i.e. a set of Fractal components) is modeled in FPath as a
directed graph with labeled arcs. The nodes in the graph represent the different
kinds of architectural entities which are visible in FPath, while the labeled arcs
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represent their relations. Note that this graph representation is just a model;
implementations do not have to use a graph representation of the architecture as
long as they conform to the language semantics

FPath defines a standard set of node types and their relations, which corre-
spond to the concepts defined in the Fractal specification. However, neither the
semantics nor the syntax of the language is specific to these particular node types
and relations. This is the very feature which makes FPath extensible in the same
way that Fractal is: if a new model extension is defined, supporting it in FPath
amounts only to adding support to the appropriate new node types and relations.
It does not require changes in the syntax or in the implementation. Indeed, an
FPath implementation must support the addition of new types of nodes and rela-
tions without requiring to be modified.

The following subsections describe the standard, predefined node types and
relations (arcs).

2.2.2 Nodes

Nodes represent elements of interest in a Fractal architecture. These do not corre-
spond exactly to the kinds of “objects” reified by the Fractal APIs, but more to the
concepts that users want to be able to talk about. For example, Fractal does not
have a specific concept of component: the component interface is just one of the
standard control interfaces (it is used to identify components, but it is of the same
nature as, for example, the content-controller interface). In contrast, FPath
has a specific kind of node to represent the components themselves, in addition to
the nodes representing their interfaces (including the component interface).
The standard kinds of nodes supported by FPath are:

e component nodes, which represent the components themselves. Exactly one
such node exist in the graph for each component in the Fractal architecture
it represents.

e interface nodes, which represent the component interfaces. Interface nodes
are used to represent all the interfaces, be they control or service interface,
client or server, internal or external. Exactly one interface node exist for
each interface in the architecture. If two components have an “identical’
interface (for example a name-controller), two different nodes are used in
the graph.

e attribute nodes, which represent the configuration attributes of the compo-
nents, as defined by their (optional) attribute-controller interface. Con-
figuration attributes are not reified explicitely in the Fractal specification,
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but available only through naming conventions — namely the JavaBeans con-
ventions — on the methods of the attribute-controller interface. One
attribute node exist for each pair of setter/getter method in this interface.

Each node has a name (accessible through the predefined name () function),
and each node type defines how a node can be converted into each of the three
primitive value types (numbers, strings, booleans).

Unless specified otherwise for a particular node type, two nodes are equal (as
defined by the = operator) if and only if they represent the same architectural
element.

In the following discussion we will sometimes identify nodes with the architec-
tural elements they represent for simplicity when there is no risk of confusion.

Component nodes

Component nodes represent the actual Fractal components in the target architec-
ture. They are different from the interface node which represent their component
interface. Each component in the architecture, whether a primitive, composite or
another kind, is represented by exactly one component node.

The name of a component node is defined as:

1. The value returned by the NameController#getFcName() method of the
standard name-controller interface if the component provides this interface
(or a compatible extension of it).

2. The empty string ("") otherwise.

When converted into a string, the value of a component node is the node’s
name. When converted into a boolean, its value is always true(). Finally, when
converted into a number, the value of a component node is Java’s Double.NaN
(Not a Number).

The following pre-defined functions give access to additional information on
component nodes:

e The state(aCompNode) function takes a component node in argument and
returns a string indicating the current lifecycle state of the corresponding
component. More precisely, it returns:

1. The value returned by the #getFcState() method of the standard
lifecycle-controller interface if the component provides this inter-
face (or a compatible extension of it).

2. The empty string ("") otherwise.
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e The started(aCompNode) function takes a component node in argument and
returns true() if state(aCompNode) = "STARTED", false() otherwise.

e The stopped(aCompNode) function takes a component node in argument and
returns true() if state(aCompNode) = "STOPPED", false() otherwise.

Interface nodes

Interface nodes represent component interfaces. Each interface of each component
present in the architecture, whether it is internal or external, client or server, is
represented by exactly one interface node.

The name of an interface node is defined as the result of the Interfacet#igetFc-
ItfName () method of the Interface object representing the component interface.

When converted into a string, the value of an interface node is the node’s name.
When converted into a boolean, its value if always true (). Finally, when converted
into a number, the value of an interface node is Java’s Double.NaN.

The following pre-defined functions give access to additional information on
interface nodes:

e The client(anItfNode) function takes a single interface node as argu-
ment and returns true() if the interface is a client (i.e. required) interface,
and false() otherwise. More precisely, it returns the same value as the
Java expression ((InterfaceType) itf.getFcType()).isFcClientItf ()
where itf denotes the interface represented by anI thodeE].

e The server(anItfNode) function takes a single interface node as argument
and returns true() if the interface is a server (i.e. provided) interface, and
false() otherwise. It is equivalent to not(client (anItfNode)).

e The optional(anItfNode) function takes a single interface node as ar-
gument and returns true() if the interface is optional, and false() oth-
erwise. More precisely, it returns the same value as the Java expression
((InterfaceType) itf.getFcType()).isFcOptionalItf() where itf de-
notes the interface represented by anItfNode.

e The mandatory(anItfNode) function takes a single interface node as argu-
ment and returns true() if the interface is mandatory (i.e. not optional),
and false() otherwise. It is equivalent to not (optional (anItfNode)).

e The collection(anItfNode) function takes a single interface node as argu-
ment and returns true () if the interface is a collection interface, and false ()

2Like most of the functions described in this section, this assumes that the type of the interface
is (a subtype of) the standard org.objectweb.fractal.api.type.InterfaceType.
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otherwise (if it is a single interface). More precisely, it returns the same
value as the Java expression ((InterfaceType) itf.getFcType()).isFc-
CollectionItf() where itf denotes the interface represented by anItf-
Node.

The single(anItfNode) function takes a single interface node as argument
and returns true() if the interface is a single interface (i.e. not collection),
and false() otherwise. It is equivalent to not (collection(anItfNode)).

The internal(anItfNode) function takes a single interface node as argu-
ment and returns true () if the interface is an internal interface, and false ()
otherwise (if it is an external interface). More precisely, it returns the same
value as the Java expression itf.isFcInternalItf () where itf denotes the
interface represented by anItfNode.

The external (anItfNode) function takes a single interface node as argu-
ment and returns true () if the interface is an external interface, and false ()
otherwise (if it is an internal interface). It is equivalent to not (internal (an-
ItfNode)).

The signature(anItfNode) function takes a single interface node as argu-
ment and returns a string representing the fully qualified name of the Java
interface implemented (or required) by the interface. More precisely, it re-
turns the same value as the Java expression ((InterfaceType) itf.getFc-
Type()) .getFcItfSignature () where itf denotes the interface represented
by anItfNode.

The bound(anItfNode) function takes a single interface node as argument
and returns true() if the interface is a client interface and it is currently
bound to (at least) one server interface, and false() otherwise.

The compatible(anItfNodel, anItfNode2) function takes two interface
nodes as parameters and returns true() if:

1. anItfNodel is a client interface;
2. anItfNode?2 is a server interface;

3. it would be possible to create a direct binding from anItfNodel to
anItfNode2 (see [Bruneton et al., 2003| for the detailed conditions).

The function returns false() otherwise.
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Attribute nodes

Attribute nodes represent configuration attributes/parameters of Fractal compo-
nents, as exposed through the standard attribute-controller interface. These
attributes are not explicitely reified by the Fractal model, as they are only defined
through method naming convention. However, as they provide one of the main
ways to dynamically configure components, FPath represents them explicitely.

If a component does not provide the standard attribute-controller inter-
face, it does not contribute any attribute node.

FIXME: The following description is badly worded, and does not support read-
only attributes. Given a component which provides the standard attribute-con-
troller interface, let T be the signature of that interface (i.e. T is a Java interface
type which extends AttributeController). Each pair of methods of T of the form
V getX() /void setX (V) or B isX() / void setX(B), where X is a valid Java
identifier, V represents any Java type (including primitive types) and B represents
either boolean or Boolean, defines one attribute node. The name of this attribute
node is the identifier X where the first character (always a letter) is converted to
lower case. If for some identifier X the three methods B isX(), B getX () and
void setX (B) exist, only one attribute node represents the attribut X.

TODO: The Fractal specification supports write-only attributes (see p. 13).
Should we support these too? Are there any cases when they might be useful?

When converted into a string, the value of an attribute node is the node’s
name. When converted into a boolean, its value if always true(). Finally, when
converted into a number, the value of an attrubute node is Java’s Double.NaN.

The following pre-defined functions give access to additional information on
attribute nodes:

e The value(anAttrNode) function takes a single attribute node as argument
and returns the current value of the corresponding attribute. More precisely,
if the name of the attribute node is x, the value () returns the same value
as the following Java expression:

((T) c.getFcInterface("attribute-controller")).getX()
// or
((T) c.getFcInterface("attribute-controller")).isX()

where:

— ¢ is the component interface of the component which contributed an-
AttrNode;
— T is the actual type of that component’s attribute-controller;

— X is the capitalized version of the attribute’s name.
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2.2.3 Axes

The different kinds of nodes defined in the previous section represent the individual
elements which are visible in FPath. The structure of the application, i.e. its
architecture, is represented by how these elements are connected to each other in
a oriented graph. Each arc in the graph is annotated by a label which denotes
a particular relation between the two nodes it connects. The different possible
relations between nodes are called ares, and each is identified by a label. FPath
defines a standard set of axes which include all the relations defined in the Fractal
specification which can exist between the pre-defined node types. As for node
types, the set of available axes can be extended without changing the language
syntax or semantics to take into account extensions to the Fractal model.

e The component axis connects every single node (including component nodes)
to the component node which represent their “owner” Fractal component.

e The interface axis connects component nodes to the interface nodes which
represent external interfaces of the corresponding component.

e The internal-interface axis connects component node to the interface
nodes which represent internal interfaces of the corresponding component.

e The attribute axis connects component node to the attribute nodes which
represent configuration attributes of the corresponding component.

e The binding axis connects client interface nodes to the server interface node
they are bound to, if any.

e The child axis connects component nodes representing composites to the
component nodes representing their direct sub-components. The child-or-
-self axis is a superset of the child axis which also connects each compo-
nent node to itself.

e The parent axis connects component nodes to the component nodes repre-
senting their direct parents. The parent-or-self axis is a superset of the
parent axis which also connects each component node to itself.

e The descendant axis is the transitive closure of the child axis. It connects a
given component node to all the components it contains, directly or indirectly
(including itself in the case of descendant-or-self).

e The ancestor axis is the transitive closure of the parent axis. The ancestor
axis connects a given component node to all its direct or indirect parents.
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e The sibling axis connects a component node to all the components which
share at least one direct parent with it, i.e. all the components which are “at
the same level” in the architecture.

e The descendant-or-self, ancestor-or-self, and sibling-or-self axes
are variants of respectively descendant, ancestor, and sibling which also
connect the origin component node to itself.

2.2.4 Nodesets

A nodeset is a set of node values of the same type (i.e. only component nodes, or
attribute nodes, but not component and attribute nodes in the same set). Nodesets
are used to offer aggregate operations and avoid explicit loops. For example, path
expressions (described in the next section) take nodesets as input and produce
nodesets. Functions can also take nodesets as arguments and produce nodesets as
a result.

When a single node value is present in a context where a nodeset value is
expected, the node is automatically wrapped in a singleton nodeset. On the other
hand, when a nodeset is present in a context where a single node value is expected,
then:

e if the nodeset is a singleton, the node it contains is automatically unwrapped;

e otherwise, the behaviour depends on the operator or function which expected
the node value. It can either:

— abort with an error;

— if the nodeset is non-empty, select one of the node (based on any criteria)
to use as the value to operate on;

— apply itself repeatedly for each of the values in the nodeset (providing
an implicit loop).

FIXME: This irreqular behaviour in how nodeset conversion is handled is very
bad design. It should be fixed in future versions of the language.

2.2.5 Path Expressions

Path expressions are used to navigate inside the graph structure described in the
previous sections. A path is evaluated relative to an initial nodeset, and produces
a result nodeset containing the architectural elements matching the query. This
evaluation is a multi-step process, each step producing an intermediate nodeset
result, which is then used as input to the next step, if any, or as the final result
for the last step. Each step is itself (conceptually) split into up to three phases:
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1. selection of a set of candidate nodes, by navigating inside the graph, from
each of the initial nodes along a specified axis;

2. (optional) testing of the candidate nodes on their names;
3. (optional) filtering of the matching candidates using predicate expressions.

The set of candidate nodes which match both the name test and all the predicates
is the result nodeset for that step.

Syntax

A path expression is made of an initial, non-path, expression whose value will be
the initial nodeset, and a sequence of at least one step, each prefixed by a slash
character:

(path) ::= (expression) (steps)

(steps) == /7 (step) | /7 (step) (steps)

Each step is itself made of two to three parts: an axis specifier, a test, and an
optional sequence of predicates:

4

(step) == (axis) ‘::’ (test) (opt-predicates)

(axis) == (name)

(test) := ¥’ | (name)

(opt-predicates) = (empty) | (predicates)

(predicates) == ‘[’ (expression) ‘1’| ‘[’ (expression) ‘1’ (predicates)

Syntaxically, the axis specifier can be any valid identifier. This is what makes
FPath extensible in terms of the node types and relations it can handle. Although
this specification defines a fixed set of predefined axes (component, child...), the
language can handle extensions to the Fractal model which define new relations
between components. For example, one could define an aspect axis which con-
nects base components to aspect components Pessemier| [2006] which affects them
without requiring changes to the FPath language syntax or semantics.
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Semantics

Given a step of the from axis: :test[pred,] ... [pred,] and current the initial
nodeset, the result nodeset produced by this step is computed by the following
algorithm:

S1. [Initialisation] result « 0.

S2. [Selection| Select every node connected to any of the current ones through
aris

an arc whose label matches the azis part: result «— U{n : ¢ — n,c €
current}.

S

w

. |Test| If the test is an identifier (as opposed to *), remove from result the
nodes whose name do not match: result < {n € result : name(n) = test}.

S4. |Filtering] Only keep the elements for which all predicates hold: result «
{z € result : pred,(z) A --- A pred,(z)}.

S5. [End| The algorithm finishes and returns result.

Given a full path of the form expr/step,/.../step,, the result nodeset pro-
duced by the full path is computed by the following algorithm:

P1. [Initialisation| Evaluate the initial expression expr, which must produce a
nodeset and put the result in current (if expr produces a single node, it is
automatically converted into a singleton nodeset first). i « 1.

P2. [Step| Evaluate step; using algorithm S above, using current as the initial
nodeset, and put back the result into current.

P3. [Loop| Increment i: ¢ «— i+ 1. If 1 < n, goto P2.

P4. |End| The algorithm finishes and returns current as the value of the full path
expression.
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Chapter 3

FScript

3.1 Procedures Definitions

An FScript program is made of a sequence of top-level procedure definitions.
FScript supports two kinds of procedures: functions and actions. Functions can
only use introspection features and are hence guaranteed to be side-effect free.
They can be used in FPath expression (for example in predicates) to supplement
the standard library of FPath functions. Actions on the other hand are allowed
to modify the target architecture. Concretely, the body of a function can use
only other functions (be they predefined FPath functions or user-supplied), while
actions can make use of functions and other actions (primitives or user-defined).
The only syntaxic difference between functions and actions appears in their
definitions (Note: maybe we should change this to make it clearer by reading
source code which calls correspond to pure functions or actions. Maybe something
like the mutation! convention used by Scheme. On the other hand maybe this
would make FScript code too ugly and actually harder to read). Functions are
introduced by the keyword function while actions use the keyword action:

function my-function(<parameters>) { <body> }

action my-action(<parameters>) { <body> }

Recursive definitions, direct or indirect, are forbidden:

function £f() { ...; £(O; ...; } // ERROR: direct recursiion
function f1(O) { ...; f20; ... }
function f2() { ...; f1(); ... } // ERROR: indirect recursiion

Inside the body of a procedure, the values of the arguments are available as
variables with names matching the parameter names in the signature:
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action do-something(x, y) {
do-this ($x) ;
do-that ($y);

}

3.2 Control Structures

FScript procedures support a limited set of control structures so that it is possible
to ensure that they will enventually terminate (there is no bound on the time they
can take however).

3.2.1 Variables Assignment

New local variables can be created inside the body simply by assigning them an
initial value:

X = <some-expression>;

Variable values can be changed simply by re-assigning them:

X = <some-expression>;
... // do something with $x
x = <another-expression>;

. // do something else with the new value of $x

Invocation parameters behave exactly like local variable except that they are
automatically assigned before entering the body of the procedure. In particular,
this means their value can be reassigned:

action f(x) {
do-something($x) ;
X = ...;
do-something-else($x);

+

FIXME: Would there be any advantages to forbid the redefinition of variable?
TODO: It would probably be a good idea to have a var v = ...; statement
to explicitely introduce new variables as it would catch some typos. It could be
optional at first, with a simple warning when a variable is created without using it.
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3.2.2 Sequence and Blocks

Sequences of instructions can be grouped in blocks, where each instruction is ended
by a semicolon ‘;’. Blocks themselves are enclosed in braces { ... }. Blocks can
not be introduced anywhere where an instruction is expected; the FScript grammar
uses blocks only at certain points:

e the body of a procedure must be a block;
e the “then” and “else” parts of a conditional must be blocks;

e the body of an iteration must be a block.

3.2.3 Conditionals

Conditional execution is supported using the following two constructs:

if (<test>) {
<block-body>
}

if (<test>) {
<block-body>
} else {
<block-body>
+

where <test> must be an FPath expression (i.e. it can not be an action invocation,
which can have side-effects). The test expression is first evaluated, and its result
converted into a boolean value. If it is true, the then block is exectuded. If it is
false, the first construct does nothing, while the second executes the else block.

3.2.4 TIteration

FScript supports a restricted form of iteration, which ensures that the execution
will always terminate. The foreach construct executes a given block repeatedly
with a local iteration variable successively bound to each element in a nodeset
(which is always finite):

for <var> : <expression> {
<block-body>
+
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The <expression> must evaluate to a nodeset (or a single node value which
will be automatically converted to a singleton nodeset). The body of the block is
executed exactly once for each node in the nodeset, with the corresponding value
bound to <var>.

3.2.5 Explicit return

At any point during its execution, a procedure can stop its execution and imme-
diatly return to the caller, optionally yielding a value, using a return statement:

return;
return <expression-or-action>;

3.3 Primitive Actions

FScript includes a standard library of primitive actions which correspond to all the
reconfiguration actions defined in the Fractal specification [Bruneton et al. [2003].
This library can of course be extended to support new operations introduced by
extension to the model. For example, one could imagine new primitives to support
weaving and unweaving of aspect components as supported by FAC [Pessemier
et al., |2004].

An implementation of FScript must provide a standard way to add new prim-
itive operations.

The rest of this section describes all the primitive actions included in the stan-
dard library.

TODO: For each action: be more explicit on the error conditions, and show
the equivalent Java code.

3.3.1 Changing attribute values: set-value()

The set-value(attr, value) primitive action is used to change the value of a
component’s attribute. It takes two parameters:

e attr is an FPath expression which must evaluate to a non-empty nodeset
containing attribute nodes;

e value is an FPath expression which must evaluate to a basic value (i.e. not
a node or a nodeset).

As mentioned earlier (Sec. , FPath, and hence FScript, normally only
deals with floating point numbers. The only exception is when a numeric value is
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used to set the value of a Fractal component attribute: if the attribute’s type (as
defined by the signature of the corresponding setter method in the components
attribute-controller) is an integral typeE], or a corresponding wrapper reference
type, the number’s value is automatically converted into the appropriate type. This
conversion is done using the method Number.zValue(), where z is the target
integral type (i.e. byte, short...).

3.3.2 Creating bindings between interfaces: bind ()

The bind(clitf, srvitf) primitive action is used to bind a client interface to a
compatible server interface. It corresponds to the bindFc(string, any) method
of the standard BindingController interface (see [Bruneton et al.l 2003, Sec. 4.3,

p. 14]).

3.3.3 Destroying bindings between interfaces: unbind()

The unbind(clitf) primitive action is used to destroy a binding from client
interface to a server interface. It corresponds to the unbindFc(string) method
of the standard BindingController interface (see [Bruneton et al.l 2003, Sec. 4.3,

p. 14]).

3.3.4 Adding sub-components to composites: add()

The add(parent, child) primitive action is used to add a new sub-component to
a composite component. It corresponds to the addFcSubComponent (Component)
method of the standard ContentController interface (see [Bruneton et al., [2003]
Sec. 4.4, p. 15])

3.3.5 Removing sub-components from composites: remove ()

The remove (parent, child) primitive action is used to remove a sub-component
from a composite component. It corresponds to the removeFcSubComponent ()
method of the standard ContentController interface (see [Bruneton et al., [2003]
Sec. 4.4, p. 16])

3.3.6 Changing a component name: set-name()

Text set-name (comp, name primitive action is used to change the name of a com-
ponent, as defined by its name-controller interface. If the component denoted by

! Java’s integral type are byte, short, int, long and char |Gosling et al., 2005, Sect. 4.2.2,
p. 36]
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comp does not implement name-controller, calling set-name () results in an er-
ror. Otherwise, it corresponds to the setFcName (String) method of the standard
NameController interface (see [Bruneton et al., 2003, Sec. 4.4, p. 17]).

3.3.7 Starting a component: start()

The start(comp) primitive action is used to ensure that the component passed in
argument is in the STARTED state. If the component denoted by comp does not im-
plement 1ifecycle-controller, calling start() results in an error. Otherwise,
it corresponds to the startFc() method of the standard LifeCycleController
interface (see [Bruneton et al., 2003, Sec. 4.5, p. 17]).

3.3.8 Stopping a component: stop()

The stop(comp) primitive action is used to ensure that the component passed in
argument is in the STOPPED state. If the component denoted by comp does not
implement 1ifecycle-controller, calling stop() results in an error. Otherwise,
it corresponds to the stopFc() method of the standard LifeCycleController
interface (see [Bruneton et al., 2003, Sec. 4.5, p. 17]).

3.3.9 Instantiating new components: new()

The new(tmplName) primitive action is used to instanciate a new component. Its
argument tmplName must be the fully qualified name of a Fractal ADL compo-
nent definition, as a string, and returns a component node representing the newly
instanciated component (this action is the only pre-defined action which returns a
value). It corresponds to the newComponent (String, Map) method of the Fractal
ADL Factory interface, the second parameter being nullﬂ

// Fscript
¢ = new("com.myapp.SomeComponent") ;

// Java
Factory fact = FactoryFactory.getFactory(FRACTAL_BACKEND) ;
Component ¢ = fact.newComponent ("com.myapp.SomeComponent", null);

2Future versions of FScript may provide more control on the instanciation process, and per-
haps independance from Fractal ADL definitions.
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