
JAC: An Aspect-Based Distributed Dynamic Framework

Renaud Pawlak*, Laurence Duchien**, Gerard Florin*,
Fabrice Legond-Aubry***, Lionel Seinturier***, Laurent Martelli****

*Lab. CEDRIC-CNAM, 292 rue Saint Martin, 75141 Paris Cedex 03, France
** Laboratoire LIFL, Bâtiment M3, 59655 Villeneuve d'Ascq, France
*** Laboratoire LIP6, 4 place Jussieu, 75252 Paris Cedex 05, France

**** AOPSYS, 5 rue Brown Séquard, 75015 Paris, France

December 5, 2002

Abstract
In this paper, we present the JAC (Java Aspect Components) framework to build aspect-

oriented distributed applications in Java. This paper goes from the aspect-oriented pro-
gramming means to the architectural details of the framework implementation. The two
core mechanisms depicted to extend the application semantics in order to add well-separated
concerns are dynamic wrappers and metamodel annotations. These two mechanisms are
dynamically controlled by aspect components. They provide a con�guration interface that
allows the programmer to adapt and integrate new concerns in running applications. We
also focus on the distributed pointcuts mechanism that is one of the more original feature
of our framework. Distributed pointcut (which are also dynamic), enable de�nitions of
crosscutting structures that are not necessarily located on a single host.

1 Introduction

Aspect-Oriented Programming (AOP) [KLM+97] is an emerging programming paradigm and
philosophy. Its origin goes back to several approaches focusing on Separation of Concerns (SoC)
such as Composition Filters [BA01], Aspectual Components [LLM99], Subject-Oriented Pro-
gramming [HO93, OKH+95, OKK+96], or Multi-Dimensional Separation of Concerns [OT01b,
OT01a]. Structured programming and Object-Oriented Programming have introduced a new
approach to design programs and a set of guidelines to make code more readable and reusable.
AOP goes beyond these approaches and introduces a new style of programming. It addresses is-
sues that can be solved in other approaches, but in a more elegant way and by greatly improving
SoC.

Within the current context of the world-wide globalisation of the IT industry, applications
may run in open and distributed environments where the underlying structures may be nomad or
hardly reliable. In these environments, several concerns such as fault-tolerance, data consistency,
remote version updating, run-time maintenance, dynamic server lookup, or scalability must be
handled by distributed applications. Concerning all these issues, needs for dynamic or fast
recon�guration of distributed applications are greatly increasing and AO (Aspect Oriented)
approaches can provide some answers. Indeed, means to separate concerns, beyond making the
applications easier to develop and maintain, also o�er some inherent facilities to add or remove
concerns on existing applications.

Object-based SoC techniques such as Composition Filters [BA01], MOPs [Sul01] or tech-
niques based on interceptors [OMG02], provide means to separate distribution-related concerns
and most of them provide support for dynamic adaptability on a per-object basis. Distribution

1

support is implemented by the rei�cation of the client-server object interaction or communica-
tion [AWBB94, FBLL02] but the global modi�cation of a set of distributed objects to introduce
a new global and distributed concern requires extra programming e�orts. On the other hand,
AO languages such as AspectJ [KHH+01] provide powerful syntax extensions (i.e. aspects, ad-
vice and joinpoints) to capture crosscutting concerns that allow the programmer to perform
global modi�cations on object sets in a very straightforward way. Distribution and dynamicity
of the concerns can be implemented in such languages but require extra implementation e�orts.

Finally, if the language approach improves separation of concerns for centralized code, it is
sometimes frustrating for the programmer to be unable to apply these concepts within dynamic
and distributed environments in a straightforward way (without any extra-implementation ef-
forts). Similarly, object-based or component based SoC techniques hardly capture global and
distributed crosscutting concerns within a single syntactic unit and programming concept as in
AO languages. Thus, both approaches provide incomplete tools for runtime manipulations of
aspects within distributed environment such as dynamic weaving, unweaving, and recon�gura-
tion.

This article provides an insight on the JAC framework (Java Aspect Components) [PSDF01b,
PSDF01a, PMSb] that we are developing for Aspect-Oriented Programming in Java. JAC �nal
goal is to provide a set of concepts to enable distributed and dynamic AOP programming. We
use ideas coming from object-based approaches and AO languages to reify the pointcut notion so
that it can be manipulated in distributed environments and in a dynamic fashion. By using this
notion the programmer is able to use AOP to implement dynamically recon�gurable distributed
applications.

Section 2 presents the JAC programming model and depicts the semantics of all the available
programming concepts. Section 3 proposes practical programming and con�guration samples of
aspects, including distributed aspects and dynamic recon�guration. Section 4 gives an overview
of the JAC architecture and on the implementation issues for implementing the notions presented
in section 2. Finally we conclude and present some directions for future works.

2 The JAC Programming Model

The goal of this section is to present the programming concepts that JAC provides to allow
programmers to build dynamic and distributed aspects. JAC is a framework, not a new language.
Manipulation of concepts is achieved by extending the classes of the framework and by using
existing JAC methods. There are two levels of aspect-oriented programming with JAC:

• The programming level where you can program totally new aspects. At this level, which is
the same as AspectJ, programmers create new aspects, new pointcuts, and new wrappers
to implement crosscutting concerns. This level is presented in sections 2.1 and 2.2.

• The con�guration level (where one can customize existing aspects to make them work with
existing applications). This level is supported by a con�guration language with a generic
syntax that allows the programmer to call con�guration methods on existing aspects. In
the JAC philosophy, it is very important to understand that you do not need to program
aspects to use AO features. We furnish a set of aspects with easy-to-use con�guration
methods for that. This level is presented in section 2.3.

2.1 Aspect Components

Aspect Components are the central point of our AO framework. These components are hosted
by JAC containers [PDF+00]. Much like containers for EJB components, JAC containers are
remotely accessible servers. Built on top of a generic distribution layer, these servers come with
two personalities: RMI or CORBA. But contrary to EJB containers that only host business
components, JAC containers host both business components (i.e. base objects) and aspect com-
ponents. Much like the components that can be found in other programming models (see for

2

instance the Aspectual Components model [LLM99]), our aspect components are the implemen-
tation units that de�ne extra characteristics which crosscut a set of base-objects. The key point
of our approach is that these base objects are not necessarily located in a single container. We
thus provide a straightforward means to develop distributed applications based on distributed
aspects.

2.1.1 Programming aspect components

In JAC, any programmer can de�ne a new aspect component by subclassing the jac.core.Asp-
ectComponent class. This class provides default primitives to implement technical requirements
that in�uence a set of functional objects in a systematic way, which corresponds to the de�-
nition of an aspect in the AOP guidelines [KLM+97]. More speci�cally, an aspect component
programmer can in�uence the base program in three di�erent ways:

• By extending the base classes' semantics through the de�nition of some structural meta-
informations. In JAC, a runtime meta-model called RTTI (for Run-Time Type Infor-
mation) is de�ned for each application. Each item of the RTTI is an element of the
base program (e.g. classes, methods, �elds, collections). It can be tagged by any aspect
component with some meta-data in order to extend its semantics.

• By implementing an internally de�ned MOP interface (jac.core.BaseProgramListener)
that allows the aspect components to react on some events occurring within the system
(e.g. a system shutdown, an instance garbaging, an application's launching, and so on).

• By constructing pointcuts, i.e. by adding extra treatments before/after/around sets of
base-method executions. Contrary to the RTTI annotations that allow structural changes
on a per-class basis, pointcuts control the dynamic part of the application.

01> public class MyAspect extends AspectComponent {

02> public MyAspect() {

03> ClassItem cl=ClassRepository.get().getClass(AClass.class);

04> cl.getMethod("m():void")

.setAttribute("synchronized",new Boolean(true));

05> pointcut("ALL","ALL","ALL",

MyWrapper.class,"wrappingMethod",true);

06> }

07> public void onExit() {

08> [...]

09> } }

Figure 1: An Aspect Component de�nition example.

Figure 1 shows a typical de�nition of an aspect component. As said before, any aspect
component extends the AspectComponent class (line 1). At construction-time (lines 2-6), the
programmer can modify the base program semantics by tagging the classes with attributes or by
constructing pointcuts. As shown in lines 3-4, adding a meta-data on a class is achieved through
the ClassRepository class that is the entry point of the RTTI. Here, we look up a method called
m and we attach to it an attribute (i.e. a meta-data) synchronized set to true. All the meta-
data that is de�ned by the aspect components can be retrieved at any time and exploited within
the aspect components' deeper implementation to perform extra treatments (here, the entrance
of method m should be controlled by a monitor). The actual global modi�cation of the base-
program code is performed by the pointcut de�nition of line 6 (pointcut is an inherited method).
In JAC, a pointcut installs extra code around sets of methods. The extra code is de�ned by the

3

MyWrapper.wrappingMethod method's body. The introductions locations are all the methods
(third ALL) of all the instances (�rst ALL) of all the classes (second ALL). The last parameter
(boolean value true) will be explained later in section 2.2.2.

2.1.2 Pointcuts Semantics

A pointcut belongs to an aspect component and can be parameterized to automatically wrap or
perform aspect-actions on a set of base-objects according to pointcut expressions. A pointcut
expression is a regular expression that can include other keywords or operators (see tables 2 and
3). A given object/class/method/host is extended by the pointcut if:

• the �rst expression (the object pointcut expression) matches the name of the object (any
object hosted by a JAC container is potentially named),

• the second expression (the class pointcut expression) matches the class,

• the third expression (the method pointcut expression) matches the method prototype (for
instance, to match a method "void get(int i)", then the expression should be "get(int):void"
or any regular/pointcut expression that matches this string),

• the last expression (the host pointcut expression) matches the container name where the
owner object is located (this is an optional expression; default is ".*" so that the aspect
is applied, by default, on all the hosts of the topology).

Concerning the pointcut expressions, keywords are provided to de�ne method sets. Beyond
simplifying pointcut writing, keywords let the pointcut de�nition be independent from method
names and from speci�c naming conventions. Table 2 shows some of the available keywords when
writing a method pointcut expression (other slightly more speci�c keywords are available in the
actual implementation: GETTERS, ADDERS, and so on). These keywords greatly simplify the
expressions so that the use of regular expressions is most of the time not required. Furthermore,
pointcut sub-expressions can be composed using the operators given in table 3.

Keyword Semantics

ALL all the methods of the matching objects
MODIFIERS[(<name>)] all the methods that modify the states of the

objects if no name is given, else the �eld
ACCESSORS[(<name>)] all the methods that access the states of the

objects if no name is given, else the �eld

Table 2: Some keywords examples within the pointcut expressions

Operator Semantics Example

|| logical or .*:int || MODIFIERS // matches all the methods that return
an integer + all the methods that modify the object state (method
expression)

&& logical and MODIFIERS && ACCESSORS // matches only the meth-
ods that modify and also access the object state (method expres-
sion)

! logical not package.* && !package.A // matches all the classes that be-
long to package except A (class expression)

Table 3: Allowed operators within the pointcut expressions

At this development stage, pointcut expressions are not rigorously de�ned in a grammar,
this should be achieved in a close future in order to provide enhanced validity checks.

4

2.2 Dynamic wrappers

One of the key feature of the JAC framework is dynamic wrappers [PDF+00], also called generic
advice in relation to the aspect-oriented terminology. A dynamic wrapper is de�ned as a reg-
ular stand-alone object (i.e. it contains �elds that form its state and methods that de�ne its
functionalities). However, a dynamic wrapper can implement several methods that have spe-
cial semantics. Generally speaking, a dynamic wrapper is an object that de�nes behaviours to
extend the behaviour of regular objects (we say that the base object is wrapped by a wrapper).

2.2.1 Programming dynamic wrappers

Dynamic wrappers can de�ne three kinds of methods in addition to regular methods that de�ne
the functional interface of the wrapper itself:

• wrapping methods: they can perform treatments before and after the regular objects meth-
ods they are applied to (same as the around advice in AspectJ).

• role methods: that can extend regular objects interfaces (similarly to the introduce state-
ment in AspectJ).

• exception handlers: that can handle exceptions that are raised by server objects in the
object the wrapper is applied to.

The following code shows a wrapper that contains the three kinds of methods.

01> public class MyWrapper extends Wrapper {

02> public MyWrapper(AspectComponent ac) {super(ac);}

03> public Object aWrappingMethod(Interaction interaction) {

04> Object ret;

05> [...] // before code

06> proceed(interaction);

07> [...] // after code

08> return ret;

09> }

10> public Object aRoleMethod(Wrappee wrappee,... /* params */) {

11> [...]

12> }

13> public void anExceptionHandler(Interaction interaction,

14> AnException e) {

15> [...]

16> } }

In JAC, the common joinpoint is the interaction which represents an arriving call to an object.
When an object is wrapped by a wrapper (this object is then called a wrappee), some methods
can be wrapped by wrapping methods. In this case, an arriving call is intercepted by the
wrapping methods that receive the current interaction as a unique parameter (line 3). The
interaction contains the wrappee (Wrappee interaction.wrappee), the currently called method
(AbstractMethodItem interaction.method), and the parameters passed to this method (Object[]
interaction.args). Note that this references the wrapper whilst interaction.wrappee references
the object that is being wrapped. Line 6 asks for the actual realization of the interaction using
the proceed method de�ned by the Wrapper class. During an interaction, an exception can be
raised and caught by wrapper-de�ned exception handlers (line 13 de�nes an exception handler
for exceptions instance of the AnException class). Role methods (line 10) do not take the full
interaction but only the wrappee.

The following code shows the implementation of a synchronization wrapping method. It can
be used by the pointcut de�ned in the mutexclusive con�guration method of the Cool-like aspect

5

(see section 2.3). As one can see, a simple implementation consists in using the synchronized
keyword of Java on the wrapping method. By this technique, the monitor of the wrapper is
used to make all the methods that are wrapped by the same instance of the CoordinatorWrapper
mutually exclusive.

public class CoordinatorWrapper extends Wrapper {

public CoordinatorWrapper(AspectComponent ac) {super(ac);}

public synchronized Object mutexclusive(Interaction i) {

return proceed();

}

}

2.2.2 Shared state vs. local state

A wrapper can wrap a unique given object. In this case its state is local to the wrappee: it
is a one-to-one relation). But a same wrapper can also wrap several objects. In this case its
state is shared by the wrappees: it is a one-to-many relation. Using a one-to-one or a one-
to-many relation does not have the same e�ect on the aspect implementation. For instance,
the CoordinatorWrapper de�ned in the previous section should make all the methods that are
mutually exclusive share the same wrapper (otherwise, the synchronized statement does not
work). On the contrary, a wrapper that increments a counter to know how many times a given
method has been called should be used with a one-to-one relation. Thus, each method has its
own counter.

As showed in section 2.1, the pointcuts of the aspect components handle the wrappers. When
creating a new pointcut, one can pass a wrapper instance at the pointcut construction or let
the pointcut deal with the wrapper construction. In this case, one just passes the wrapper class
name and speci�es the one2one �ag:

• if one2one = false (default), then the wrapper is constructed only once and shared between
all the wrappees � see the left part of �gure 2,

• if one2one = true, then the wrapper is constructed as many times as the pointcut is applied
(there is one wrapper per base method) � see the right part of �gure 2.

aWrapper1 aWrapper2 aWrapper3 aWrapper4

base−program objects base−program objects

wrapping links

aWrapper

A pointut instantiation when one2one = false A pointut instantiation when one2one = true

pointcuts

Figure 2: Shared or local states depending on the pointcut one2one �ag.

Figure 2 shows the creation of two pointcuts re�ecting the two possible uses of the one2one
�ag. On the left, a single wrapper is shared by several objects. On the right, each object is
wrapped by one wrapper of the pointcut.

When a dynamic wrapper wraps a base object, the reference of the base object is not changed.
As a consequence, their is no need to change the server's reference for a client object (this is

6

called non-invasive change which it is easier to implement). A base object can be wrapped by
as many wrappers as needed.

2.2.3 Composing dynamic wrappers

There are several advantages about using a standalone object to de�ne an advice (in contrast
with AspectJ that de�nes the advice within the aspects). First, advice can be more easily re-
used when programming new aspects (that can be de�ned independently from the aspects that
use them). Furthermore, they can be added or removed at runtime. Since they are neither part
of the base object's class, nor the aspect's class, the aspect can instantiate new wrappers or
destroy unused one on demand. This allows JAC to perform dynamic weaving. Last but not
least, a wrapper is the composition unit when composing several aspects together (when several
wrapping methods wrap the same wrappee method). JAC provides a composition aspect that
can be con�gured by the programmer to activate some composition rules. These composition
rules specify in which order the wrappers must be applied to the base objects. They can also
de�ne some dependencies or incompatibilities between the wrappers.

By using these composition rules, the JAC system can de�ne, for each method and wrapper
set, a correct wrapping order that ful�lls the �nal global semantics of the application. This �nal
ordering is called a wrapping chain. When the proceed method is called in a wrapping method
implementation, the system seamlessly calls the next wrapping method if the wrapping chain is
not ending. Finally, within the last wrapping method of the chain, the proceed method invokes
the wrappee method.

Constructing the wrapping chain is beyond the scope of this paper and the interested reader
can refer to [PDF99, PSDF01b] for further details.

2.3 DSL de�nitions

Besides providing a way to program new aspect components, JAC gives users the ability to
de�ne their own DSL (Domain-Speci�c Language) simply by providing a set of con�guration
methods. As its name states, a DSL provides a set of functions that are very speci�c to a given
scope which corresponds to a particular domain of interest or goal. Within the AOP context,
each DSL corresponds to a given concern implemented by an aspect.

public class MyAspect extends AspectComponent {

public void synchro(ClassItem cl,String method) {

cl.getMethod(method).setAttribute(�synchronized�,new Boolean(true));

pointcut(�ALL�,�ALL�,�ALL�,MyWrapper.class,�wrappingMethod�,true);

} }

Figure 3: An Aspect Component with a con�guration method example.

Figure 3 shows the aspect component de�ned in �gure 1 where the modi�cations performed
by the aspect are not implemented at construction time anymore but within a con�guration
method called synchro. This method can be invoked from a con�guration �le. For instance, the
following con�guration �le makes methods m1 and m2 from class C synchronized.

synchro C m1;

synchro C m2;

This �le is loaded just after the creation of the aspect and both given calls to method synchro
are performed. The con�guration syntax also enables blocking keywords to factorize sets of
con�guration method parameters and/or invocations. The aspect should then implement an
aspect component method called getBlockingKeywords(). Using this feature, it is really easy to

7

rapidly develop DSL. For instance, �gure 4 shows how to rapidly specify a Cool-like DSL. Cool
is a declarative language dedicated to synchronization and is fully presented in [LK97].

public class CoolAC extends AspectComponent {

public void defcoordinator(String name,ClassItem cl) {...}

public void selfexclusive(String coordName,String[] methods) {...}

public void mutexclusive(String coordName,String[] methods) {...}

public List getBlockingKeywords() {

return new Vector(new Object[] {

new BlockingKeyword(

�coordinator�,

�defcoordinator(String,ClassItem):void�)

}

);

} }

Figure 4: An Aspect Component for a Cool-like DSL.

A typical con�guration of this aspect component can be the following (this example is a JAC
rewriting of an example taken to present Cool [LK97]).

coordinator Blcoord : BookLocator {

// register and unregister methods from the class BookLocator

// are synchronized (in the Java terminology)

selfexclusive {register,unregister};

// a set of methods from the class BookLocator

// that cannot be called simultaneously

mutexclusive {register,unregister,locate};

}

Note that this con�guration is equivalent to the following one (which is however less straight-
forward because of the Blcoord parameter redundancy).

defcoordinator Blcoord BookLocator;

selfexclusive Blcoord {register,unregister};

mutexclusive Blcoord {register,unregister,locate};

3 Programming with JAC

The goal of this section is to provide a deeper insight on the JAC programming model by
showing concrete programming examples. In section 3.1, we show a wrapper that implements
constraint checking. Section 3.2 presents a full application constructed by re-using existing
aspect components. Finally, section 3.3 explains how to perform distributed and dynamic AOP
in JAC.

3.1 A simple aspect example

Figure 5 shows a core business class that performs simple calculi.
Figure 6 shows how to implement some constraint checking in a very simple way. This

example gives some enlightenment on how to use the interaction.

• line 3: the pointcut denotes a set of points of the application where the aspect will change
something (note that the wrapper is stateless so the one2one �ag is set to false),

8

public class Calculus {

double value=0;

public void add(double toadd) { value+=toadd; }

public void sub(double tosub) { value-=tosub; }

}

Figure 5: A simple functional class.

01> public class TestAC extends AspectComponent {

02> public TestAC() {

03> pointcut("Calculus","sub.*",LimiterWrapper.class,"limit",false);

04> }

05> public class LimiterWrapper extends Wrapper {

06> public void limit(Interaction i) {

07> if(((Double)getFieldValue(i.wrappee,"value")).doubleValue()

08> - ((Double)i.args[0]).doubleValue() < 0)

09> throw new Exception("<0 forbidden");

10> proceed(i);

11> } } }

Figure 6: A very simple aspect component implementation.

• line 5-6: the wrapper wraps the points de�ned by the pointcuts with new code. Here, the
code is the one de�ned by the wrapping method limit,

• line 7: the actual test. Within a wrapper, we have access to the current interaction
information. Here, we know that i.args[0] is the parameter of the method that is associated
with the pointcut and that interaction.wrappee is the calculus object. So we can test them
and throw an exception if the value �eld is negative,

• line 10: the test failed, so we can run the sub method (thanks to proceed(i)).

3.2 Programming an entire application

Besides providing a way to program some customized aspects, JAC comes with a library of
ready to use aspects. As a consequence, programming an aspect-oriented application is just a
matter of choosing the right aspects and con�guring them so that they behave properly for the
targeted program.

Each existing aspect corresponds to an aspect component (see section 2.1). Each aspect
component is documented so that any �nal programmer is able to use it just by taking a look
at its API (i.e. the set of available con�guration methods). Table 4 gives a list of some of the
more useful aspect components provided by JAC at the time we write this paper.

Later we will show (for the impatient reader, see �gure 13, page 15) the global control
�ow between all the components of JAC framework for a given application. It goes from the
con�guration �les evaluation process to the actual extension of the base program through the
aspects components. For the programmer that just uses existing aspects and con�gures them
by writing con�guration �les, all the underlying mechanisms being transparent.

To begin with the details of this entire process, we take the example of the Calculus class
de�ned in section 3.1 and we add support for 3 aspects: GUI, persistence and authentication. All
the used commands are con�guration methods de�ned in the corresponding aspect component
interfaces.

9

aspect name used to...

tracing switch on/o� some verbose mode on programs, it can also count the methods
invocations that occur in the program.

persistence de�ne which objects of the application will be stored in a database using
JDBC

authentication allow the programmer to restrict the access of some methods to some users
user handle users and their pro�les (often co-used with authentication)

session make some useful contextual data persistent so that it will remain at the
same value for a set of interactions that belong to the same user

gui de�ne some presentation information
deployment de�ne how the objects of the application are deployed on the remote JAC

servers de�ned by the topology when JAC runs in a distributed mode
consistency introduce some protocols to make several remote objects (of the same name)

consistent
broadcasting introduce some protocols to perform broadcasting on remote objects
load-balancing introduce some protocols to perform load-balancing on remote servers

Table 4: Some useful re-usable aspect components

class Calculus {

// make JAC generate all the resolvable parameter names

// for the methods that follow the naming conventions

// (i.e. setter, adders, or removers)

generateDefaultParameterNames;

method add {

// add does not follow the naming conventions, we force

// the name that the GUI will use

setParameterNames {"Value to add"};

// set a default value when add is called

setDefaultValues {1};

}

// same for sub

method sub {

setParameterNames {"Value to sub"};

setDefaultValues {1};

}

}

Figure 7: The gui.acc con�guration �le.

Figure 7 shows the con�guration �le for the GUI. The JAC GUI is generic and introspects
the application objects to provide default views on them. However, with simple re�ection, the
GUI is not able to fetch all the information that is needed when constructing the views. For this
reason, the GUI aspect furnishes a set of con�guration methods that extends the application
classes semantics with useful data for the GUI. Typical examples of added information are the
parameter names of the methods which are not available with the java.lang.re�ect package.
Hence, the generateParameterNames and the setParameterNames allow the programmer to
indicate these names. As shown in �gure 10, these indications are provided by RTTI attributes.

Other types of con�guration can be made with the GUI such as the default parameter values
when a method is called. Here, the pop-up window that is opened by the GUI when the add
method is called will propose the �1� default value to the user, as de�ned by the setDefaultValues

10

con�guration method. These are very simple con�gurations. For more details on all the available
con�guration methods (such as providing specialized editors or viewers for the �elds, changing
the default placements in the views, and so on), one can refer to the JAC programming API at
[PMSa].

// define the users table with their passwords

addTrustedUser "renaud" "renaud";

addTrustedUser "jac" "jac";

// define the methods where authentication must perform

control Calcul {

restrict add;

restrict sub;

}

Figure 8: The authentication.acc con�guration �le.

Figure 8 shows the con�guration �le of the authentication aspect. The authentication pro-
vided by JAC is quite simple and would necessitate some enhancements to be fully usable. Still,
it allows the programmer to de�ne some users with their passwords and to restrict some meth-
ods. The right to call a method is granted only if the (username, password) couple matches
one de�ned in the trusted users' list. Again, the RTTI is used by this aspect to denote the
restricted methods, as shown in �gure 10. This aspect also installs some wrappers on the re-
stricted methods and interacts with the GUI to open a pop-up dialog that requires the user to
�ll the authentication information.

// define Calcul as a persistent root

configureClass Calcul root;

// calcul0 is a name of an object that should never

// change and that should be bound to the corresponding

// stored object

registerStatic calcul0;

// the storage configuration

configureStorage jac.aspects.persistence.PostgresStorage {

// the database name, the user, and the password

"calcul", "jac", ""

};

Figure 9: The persistence.acc con�guration �le.

The persistence aspect provided by JAC enables the programmer to make any object or class
persistent. A sample use is given in �gure 9. A root object is an object that is a persistence
root, i.e. all the referenced objects are also persistent. A static name is a name that never
changes and that is stored within the persistent storage (here the PostgresStorage).

Once all the aspects have been applied and con�gured, the calculus instance is wrapped
by a wrapping chain that extends its behaviour. For instance, the authentication wrapper
requires the username and the password before each call of the add or sub methods. Moreover,
the Calculus class is extended as shown in �gure 10. These extensions are made through the
internal structural metamodel of JAC de�ned in the jac.core.rtti package. Each meta item
such as a class, a �eld, or a method can be manipulated and annotated with attributes that
re�ne their semantics. This mechanism can be compared to the annotation or the stereotype
mechanism de�ned in UML.

11

authentication.type = restricted

persistence.type = root

gui.parameterNames = {"Value to add"}

gui.parameterNames = {"Value to sub"}

authentication.type = restricted

Calcul

value: double

+add(double value): void

+sub(double value): void

Figure 10: The Calculus class extended semantics with the three over-depicted aspects.

3.3 Creating distributed applications and aspects

Several aspects do not need to be aware of the distribution concern in their de�nition since
they are inherently symmetric regarding distribution (e.g. a tracing aspect). In these cases, the
automatic distribution of pointcuts shown in �gure 15 is su�cient. However, this is not always
the case and some aspects may willingly depend on and even modify the distributed semantics
of the application. In the following section, we present a load-balancing aspect that implements
a simple load-balancing concern relying on the distribution scheme of the application it is woven
to.

LL
O

A
D

−
B

A
L

A
N

C
IN

G

s1 s2

s0

round−
trip

s1 s2

s0s0

document0 document0

document0

document0 document0

clientsclientsclients

D
E

PL
O

Y
M

E
N

T
+

C
O

N
SI

ST
E

N
C

Y

Figure 11: The document server application with a distribution aspect and a load-balancing
aspect.

Let us take a client/server application. It consists of a document server object that serves
documents to some clients that share this server. The document server is segmented with pages
that are indexed from 1 to N and implements a method int[] searchFor(String s) returning the
indexes of the pages where one or several occurrences of the string s were found.

The searchFor method can easily overload the server host when the number of pages is high,
and thus, it can be very interesting to load-balance this server. As shown in �gure 11, this

12

is simple to achieve with the existing aspects of JAC and we there show how to perform a
load-balancing server with 2 hosts (the principles would be the same with n hosts).

If one considers an initial centralized server located on s0 (left part of �gure 11), then the
idea is to replicate it on sites s1 and s2. These replicas must be in strong consistency so that
the set of pages is always the same if we use one replica or another. Note that the initial server
is not part of the consistency. By using the JAC furnished aspects, this is done by con�guring
the deployment and the consistency aspects.

// deployment.acc

replicate "document0" ".*[1-2]"

Then, to make the two replicated servers consistent:

// consistency.acc

addStrongPushConsistency "document0" ".*[1-2]"

Note that the second parameter of these rules is a host pointcut expression (see section 2.1.2)
that matches all the hosts between s1 and s2. The resulting distributed program is shown in the
center part of �gure 11. To perform a simple load-balancing protocol on the document server
(called document0), we can then install a special invocation semantics on the document on s0
(right part of �gure 11). Instead of performing local calls or remote calls to only one remote
document, document0:s0 sequentially calls all the remote documents replicated on the other
hosts (with a round-trip algorithm) (see the L stub of �gure 11).

Since our pointcuts have distributed capabilities, it is easy to de�ne a load-balancing aspect
that performs these requirements. Figure 12 shows the load-balancing aspect that we program
especially for this example.

public class LoadBalancingAC extends AspectComponent {

LoadBalancingAC() {

// note that this pointcut uses an host expression to specify

// on which host the load-balancing is performed

pointcut("document0", "Document", ".*",

LoadBalancingWrapper.class, "loadBalance",

"s0");

}

class LoadBalancingWrapper extends Wrapper {

int count = 0;

// this wrapping method actually implements the aspect-

// method and the round-trip algorithm on the replicas

public Object loadBalance() {

// if the replication group is empty we perform a local call

if(replicaRefs.length == 0) return proceed();

// this test is part of the round-trip

if(count >= replicaRefs.length) {

count = 0;

}

// performs the remote call on the currently selected replica

// and increments the count to round-trip

return replicaRefs[count++].invoke(method(),args());

}

}

Figure 12: A simple load-balancing aspect.

13

As one can see, implementing such an aspect is quite easy with our AO model. Of course,
this implementation is not generic and is dedicated to this particular example. However, we
can easily add some con�guration methods that allow the user to parameterize this aspect for
his/her own application.

Several other useful aspects can be programmed using the same kind of technique such as
fault-tolerance, caching (with a cache proxy), or broadcasting. Several sample implementations
are provided in the jac.aspects.distribution package of JAC [PMSa].

3.4 Implementing dynamic adaptability with aspects

In section 3.3, we have shown how to program a distributed aspect-oriented application. In this
section, we want to explain how dynamic adaptability can be performed.

If we take again the document server example, one can see that a strong consistency protocol
has been chosen (in the consistency aspect). However, if the data consistency is not very
important, i.e. working documents can be unconsistent, a weak consistency protocol can be
used.

// consistency-alt.acc

addWeakPullConsistency "document0" ".*[1-2]"

By using the consistency-alt con�guration, the network tra�c will be considerably lowered when
users change the document's data. However, when the available bandwidth is high, we prefer to
use the strong consistency. Thus, a speci�c agent can be used to swap con�gurations depending
on the available bandwidth. The following code uses the JAC API to implement such an agent.

public class ConsistencyPolicySwapper {

[...] // constants definition, watching thread construction

int policy=STRONG;

public void watch() {

if(Network.availableBandwidth()>50 && policy==WEAK) {

setPolicy("consistency.acc");

} else if(Network.availableBandwidth()<=50 && policy==STRONG) {

setPolicy("consistency-alt.acc");

}

}

void setPolicy(String accName) {

try {

Application app=ApplicationRepository.get().getApplication("document");

// all the client calls wait!

lock(app);

// remove the consistency aspect for the document application

ApplicationRepository.get().unextend("document","consistency");

// set the new configuration file

app.getAcConfiguration().setURL(new URL(accName));

// weave again the consistency

ApplicationRepository.get().extend("document","consistency");

// notify the clients

unlock(app);

} catch(Exception e) {

[...]

}

[...] // lock and unlock implementation (transactional features)

}

14

4 The JAC Architecture

In sections 2 and 3, we have presented the programming model of JAC and introduced aspect
components, pointcuts, and dynamic wrappers semantics. The goal of section 4 is to show how
these di�erent elements interact within the JAC architecture as well as to present some of the
implementation issues encountered.

4.1 Overview

Aspect Component 1

Aspect Component 2

Aspect Component 3

aspect2.acc

aspect1.acc

aspect3.acc

class1.class

class2.class

class3.class

JAC
classloader

parses

Aspect
Manager

new aspects
registers

functional classes

functional objects

wrappers

deploy
(with pointcuts)

useextend
(wrap)

manages

Parser

creates and/or
configures

annotate to extends the
initial semantics (RTTI)

wrappable
to make

translates

loads

BCEL

uses

Figure 13: The JAC architecture: global �ow of control of a JAC application.

Figure 13 shows how the di�erent JAC system objects interact with the application objects
to implement the aspects semantics as depicted in section 2. On the right side of the �gure,
one can see that the functional classes are modi�ed at the bytecode-level in order to make their
instances wrappable. The bytecode translation mechanism is implemented with BCEL [Pro]
and is further explained in section 4.2. Once the classes are translated, they are ready to be
wrapped by the aspect components. When an aspect is woven to a given application, the JAC
system �rst reads the available aspect component con�guration (*.acc �les on the upper left of
the �gure). The parser then invokes a set of con�guration methods on the newly instantiated
aspect component. These invocations trigger the creation of pointcuts and the tagging of the
functional classes with some meta-data (through the RTTI).

When a new instance is created, the AC-Manager (Aspect-Component-Manager) automati-
cally noti�es all the registered aspects so that the pointcuts wrap its methods according to the
aspect con�guration. The important point here is that any aspect component can be woven or
unwoven at any time, moreover, its con�guration �le can be parsed again while the application

15

is running. When an aspect is unwoven or when a new con�guration is read, all the added meta-
data and the pointcuts are destroyed by the system. This is possible thanks to the wrapping
mechanism implementation for dynamic wrapping/unwrapping. The next section shows how
the wrapping mechanism is implemented.

4.2 Dynamic wrapping implementation

As said in section 2.2, JAC wrappers can be added or removed at runtime. The goal of this
section is to explain and evaluate the underlying mechanisms that are used to implement this
feature.

Contrary to regular wrappers that delegate to the wrappee and that implement the same
interface as the wrappee [BFJR98, Kni99, BW00] most of the time, dynamic wrappers rely
on a Meta-Object Protocol (MOP) [Mae87, KdRB91, Zim96, Sul01] that uses re�ection for
its implementation. The JAC MOP implementation uses a load-time transformative technique
[Chi00] that inserts hooks towards the wrappers. These hooks are re�ective invocations so that
the actual wrapping method can be resolved at runtime. Let us take a simple C class example.

public class C {

public int m1(int i,String s) {

// m1 body

}

}

Our load-time transformation translates the class C into the following:

01> public class C implements Wrappee {

02> static AbstractMethodItem _JAC_method_0;

03> static {

04> _JAC_method_0=ClassRepository.get().getClass("C")

05> .getMethod("m1(int,String):int"); }

06> List _JAC_wc_method0;

07> C() {

08> _JAC_wc_method_0=Wrapping.getWrappingChain(this,_JAC_method_0);

09> }

10> // renamed method

11> private int _org_m1(int i,String s) {

12> // m1 body

13> }

14> // added stub method

15> public int m1(int i,String s) {

16> return ((Integer)Wrapping.nextWrapper(new Interaction(

17> _JAC_wc_method_0,this,_JAC_method_0,

18> new Object[]{new Integer(i),s},0)).intValue();

19> }

20> }

The main translation is to rename the original method into an hidden one (here m1 is translated
into _org_m1 (line 11)) so that the original method is not called directly. Instead, the original
method is replaced by a stub method (same prototype, line 15) that wraps the original method
by using Wrapper.nextWrapper(Interaction) (line 16). The �elds static AbstractMethodItem
_JAC_method_0 (line 2) and Object[][] _JAC_wc_method0 (line 6) are added on optimization
purpose. Indeed, the method item (corresponding to a java.lang.re�ect.Method but in the JAC
RTTI) and the wrapping chain (i.e. all the wrappers that currently wrap the wrappee) are quite
slow to resolve (lines 4-5 and line 8) so that it is crucial to cache the result in directly accessible
�elds.

16

The initial interaction is created in the stub method (lines 16-18). It takes the wrapping chain
that is internally used, the wrappee's reference, the current method, the parameters (translated
into an array of objects), and an initial rank in the wrapping chain (0). The following code
shows a simpli�ed version of the Wrapping.nextWrapper method (in real implementation, it also
handles statics and constructors).

public static Object nextWrapper(Interaction interaction) {

try {

// if the current rank is smaller than the wrapping chain's size

// some wrappers still remain to call

if (interaction.wrappingChain.size>interaction.rank) {

// invoke the wrapper of current rank ([0]->wrapper,

// [1]->wrapping method)

return ((Method)interaction.wrappingChain.get(interaction.rank)[1])

.invoke(interaction.wrappingChain.get(interaction.rank)[0],

new Object[]{interaction});

} else {

// invoke the original method

return ((MethodItem)interaction.method).getOrgMethod()

.invoke(interaction.wrappee,interaction.args);

}

} catch (InvocationTargetException e) {

[...] // handle exception with exception handlers

}

}

Finally, the proceed(interaction) method de�ned in section 2.2.3 is simply equivalent to Wrap-
ping.nextWrapper(interaction.rank+=1). Moreover, wrapping or unwrapping a given object at
runtime is really easy since it consists of adding or removing an element in the method's wrap-
ping chain (that can be retrieved with Wrapping.getWrappingChain(wrappee,method).

4.3 Distribution

Figure 14: The distribution mechanism in JAC: focus on a single object.

17

JAC fully handles the distribution of aspects. Our motivation for this feature is that, when
programming distributed applications, some aspects properties may be required on several con-
tainers where the distributed application is running so that the aspect modi�cations crosscut
objects that are not necessarily located on one single container. As simple examples, when
applying a tracing aspect to a distributed application, most of the programmers would expect
all the calls on all the objects to be traced, whether they are local or remote. In client/server
schemes, an authentication aspect should be able to add the authentication concern, on all
the clients and all the server containers. Finally, several aspects such as data consistency or
load-balancing are inherently distributed and need to be aware of distribution information.

As shown in �gure 14, the core distribution mechanism in JAC is based on the application
of two kinds of aspect component.

• A deployment aspect component that is used to create a distributed application from a
centralized application (step one). The deployment aspect de�nes a pointcut that wraps
the constructors to apply a deployment process (using RMI).

• A set of distributed aspects that implement distributed protocols (step two) which allow
the di�erent objects of the application to collaborate between the di�erent containers
where the application has been deployed. Since the pointcuts have distributed semantics,
it is really simple to de�ne distributed protocols once the application has been deployed.

Figure 15: The distribution of aspects mechanism.

18

Using aspects authorizes to modularize the deployment issue and the di�erent protocols
that are used when programming a distributed application. The protocols implemented by
the aspects are of various schemes (consistency protocols, multicasting, load-balancing, fault-
tolerance, and so on). Another advantage in using aspects is that the distributed protocols can
be added or removed at runtime if the underlying AO middleware handles it (this is the case
with JAC). This feature allows the programmer to adapt easily its distributed application to
various technical requirements.

The basic mechanism to distribute aspects consists of applying the same technique to the
aspect manager of the JAC system. Several distribution strategies are allowed for JAC since
the distribution is parameterized into two core system aspects. One of the simpler technique is
to replicate the AC-Manager (see section 4.1) and to install a consistency protocol (top part of
�gure 15) so that the weaving/unweaving of an aspect on one site triggers the weaving of the
same aspect on other sites (middle part of �gure 15). This way, the semantics of the pointcuts
are no more local but distributed as shown on the bottom part of �gure 15.

4.4 Performance measurements

The critical point of the JAC framework in terms of performances is the dynamic wrappers invo-
cation mechanism. Since this invocation relies on re�ection in order to achieve dynamic adding
or aspect removing, the performance overhead of JAC mainly comes from the re�ective call's
overhead (itself mainly coming from the array of objects construction to pass the parameters).

Type of calls Number
of calls

Total
time

Time per call Overhead

(A) regular object calls 6,000,000 55 ms ∼9.16 ns -
(B) re�ective calls 60,000 47 ms ∼0.78 µs (A)x 85
(C) JAC objects calls (0 wrapper) 60,000 61 ms ∼1 µs (A)x 111 or

(B)x 1.29
JAC (1 wrapper) 60,000 85 ms ∼1.41 µs (C)+41%
JAC (2 wrappers) 60,000 110

ms
∼1.83 µs (C)+83%

JAC (3 wrappers) 60,000 130
ms

∼2.16 µs (C)+116%

Table 6: Comparative performance measurements for Java and JAC.

Table 6 shows the performances of empty method calls on regular objects and on JAC
wrappable objects. These tests are performed with a bench program that calls several methods
with di�erent prototypes and that is available in the JAC distribution [PMSb]. The bench
program was run under Linux with a Pentium III 600 MHz with 256KB of cache and with the
SUN's Java HotSpot Client VM version 1.4.

One can see that a call on a JAC wrappable object is comparable to a re�ective call on a
regular Java object (with an overhead of 29%). Each time a wrapper is added, an overhead of
about 40% of the initial time is added (note that the bench adds empty wrappers that just call
proceed in their implementations).

Finally, the price to pay for adaptability is quite high (as for re�ection) compared to compiled
approaches such as AspectJ. However, with real-word aspects and especially when the appli-
cation is distributed, this cost becomes negligible. For the moment, the JAC approach is thus
more suited for middle grained wrappable objects (only business objects are made wrappable in
real-word applications, technical components that need performances are not aspectized) and
for distributed and adaptable programming.

19

5 Related works

The JAC approach is widely inspired from the AOP guidelines [KLM+97] and the AspectJ
[KHH+01] programming concepts. In fact, JAC can be regarded as a research and implementa-
tion e�ort to apply an AspectJ-like model to dynamic distributed programming. It also intends
to provide a powerful con�guration level to maximize aspect re-use.

Several projects such as JMangler [KCA01] or Javassist [Chi00] use bytecode-level weaving
techniques to achieve AOP without needing the source code . However, they are not speci�cally
dedicated to dynamic adaptation or distributed AOP and thus require some extra implementa-
tion e�orts.

A relatively close approach is the The Lasagne project [TVJ+01] that provides dynamic
weaving/unweaving of aspects that makes them close to the JAC implementation. The dynam-
icity is achieved by policy selection on the client. The distribution mechanism is provided on
regular ORB which makes di�cult the actual distribution of the aspects. In fact, the main
di�erence comes from the distributed pointcut notion which is, as far as we know, original to
the JAC framework.

Generally speaking, several works handle separation of concerns in object-oriented or component-
based environments at a client-server interaction level [AWBB94, HNP98, CBE00, FBLL02].
Most of them provide dynamic adaptability features. However, we think that actual AOP in
distributed environments should provide a distributed-pointcut or a similar notion in order to
be really e�ective.

6 Conclusion

This paper introduces JAC, a framework for aspect-oriented programming in Java. We give a
synthesis of all the global design that enables dynamic weaving, distribution of aspects, and as-
pect re-use through con�guration. We also gave several indications on how to use the framework
and focussed on some implementation points.

The key concept introduced by JAC is the notion of aspect component. An aspect component
is the software entity that captures a crosscutting concern. The pointcut mechanism associated
with an aspect component allows, like in other approaches such as AspectJ, to express the
elements of the base objects where the aspect is to be woven. The originality of our approach
is that this mechanism can be applied to distributed objects: i.e. a given crosscut can modify
the semantics of objects physically located on distributed hosts. To achieve this, JAC comes
with a container mechanism. Our containers host both business objects and aspect component
instance. They are remotely accessible using either CORBA or RMI software buses.

Moreover, aspect components can be dynamically (un)woven to the application. This dy-
namicity enables application adaptability which can be extremely useful within distributed and
changing environments.

Besides aspect components, JAC also provides a powerful mechanism for con�guring existing
or developed aspects. Based on methods de�ned in aspect components, customized con�guration
�les can be provided for each aspect involved in a given application. The idea is to let the person
in charge of software integration express in a declarative way the steps required to con�gure an
application. This mechanism can be related to a Domain Speci�c Language (DSL) for aspect
con�guration.

Concerning future works, we are currently investigating the means to overcome the re�ection
overhead needed by dynamic (un)weaving of aspects (see section 4.2). Tracks can be found in
partial evaluation techniques but we will certainly need a modi�ed VM if we want to keep
dynamic adaptability properties.

In the close future, we also intend to provide better support for aspect con�guration which
is, to us, one of the central point of AOP. The challenge here is to re-use existing aspects and,
this way, answer the hard problem of component integration. Several con�guration languages
will be supported in a close future and their grammar should be better de�ned. Moreover, the

20

pointcut grammar should also be more rigorously de�ned in order to support compilation and
validity checks.

References

[AWBB94] M. Aksit, K. Wakita, J. Bosch, and L. Bergmans. Abstracting object interactions
using composition �lters. Lecture Notes in Computer Science, 791:152�184, 1994.

[BA01] L. Bergmans and M. Aksits. Composing crosscutting concerns using composition
�lters. Communications of the ACM, 44(10):51�57, 2001.

[BFJR98] J. Brant, B. Foote, R. E. Johnson, and D. Roberts. Wrappers to the rescue. In
Prodeedings of ECOOP'98, 1998.

[BW00] M. Buchi and W. Weck. Generic wrappers. In Proceedings of the 14th European
Conference on Object-Oriented Programming (ECOOP'00), volume 1850 of Lecture
Notes in Computer Science, pages 201�225. Springer, June 2000.

[CBE00] Constantinos A. Constantinides, Atef Bader, and Tzilla Elrad. Separation of con-
cerns in concurrent software systems. In ECOOP workshop on Aspect-Oriented
Programming, 2000.

[Chi00] S. Chiba. Load-time structural re�ection in java. In Proceedings of the 14th European
Conference on Object-Oriented Programming (ECOOP'00), volume 1850 of Lecture
Notes in Computer Science, pages 313�336. Springer, June 2000.

[FBLL02] R. E. Filman, S. Barrett, D. D. Lee, and T. Linden. Inserting ilities by controlling
communications. Comm. ACM, 45(1):116�122, January 2002.

[HNP98] D. Holmes, J. Noble, and J. Potter. Towards reusable synchronisation for object-
oriented. In ECOOP workshop on Aspect-Oriented Programming, 1998.

[HO93] W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure
objects). In Proceedings of OOPSLA'93, volume 28 of SIGPLAN Notices, pages
411�428, octobre 1993.

[KCA01] G. Kniesel, P. Costanza, and M. Austermann. JMangler - A Framework for Load-
Time transformation of Java class �les. In IEEE Workshop on Source Code Analysis
and Manipulation (SCAM), 2001.

[KdRB91] G. Kiczales, J. des Rivieres, and D.G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Getting
started with ASPECTJ. Communications of the ACM, 44(10):59�65, 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP'97), 1997.

[Kni99] G. Kniesel. Type-safe delegation for run-time component adaptation. In Proceedings
of the ECOOP'99, volume 1628 of Lecture Notes in Computer Science, 1999.

[LK97] C. V. Lopes and G. Kiczales. D: A language framework for distributed programming.
Technical report, Xerox Palo Alto Research Center, 1997.

[LLM99] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with Aspectual Compo-
nents. Technical Report Technical Report NU-CCS-99-01, Northeastern University's
College of Computer Science, avril 1999.

21

[Mae87] P. Maes. Concepts and experiments in computational re�ection. In Proceedings
of the 2nd Conference on Object-Oriented Programming: Systems, Languages and
Applications (OOPSLA'87), volume 22 of SIGPLAN Notices, pages 147�155. ACM
Press, December 1987.

[OKH+95] H. Ossher, K. Kaplan, W. Harrison, A. Matz, and V. Kruskal. Subject-oriented
composition rules. In Proceedings of OOPSLA'95, volume 30 of Sigplan Notices,
pages 235�250. ACM Press, 1995.

[OKK+96] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying subject-
oriented composition. Theory and Practice of Object Systems, 2(3), 1996.

[OMG02] OMG. Common Object Request Broker Architecture 2.6, February 2002.
http://www.omg.org.

[OT01a] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyperspace
approach, chapter Software Architectures and Component Technology: The State of
the Art in Research and Practice. In L. Bergmans and M. Aksit, kluwer academic
publishers edition, 2001.

[OT01b] H. Ossher and P. Tarr. Using multidimensional separation of concerns to (re)shape
evolving software. Communications of the ACM, 44(10):43�50, 2001.

[PDF99] R. Pawlak, L. Duchien, and G. Florin. An automatic aspect weaver with a re�ective
programming language. In Proceedings of Re�ection'99, July 1999.

[PDF+00] R. Pawlak, L. Duchien, G. Florin, L. Martelli, and L. Seinturier. Distributed sepa-
ration with aspect components. In Proceedings of TOOLS Europe 2000, June 2000.

[PMSa] R. Pawlak, L. Martelli, and L. Seinturier. The JAC API.
http://jac.aopsys.com/doc/javadoc/.

[PMSb] R. Pawlak, L. Martelli, and L. Seinturier. The JAC project home page.
http://jac.aopsys.com.

[Pro] The Jakarta Project. Bcel.
http://jakarta.apache.org/bcel/.

[PSDF01a] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. Dynamic wrappers: handling
the composition issue with jac. In Proceedings of TOOLS USA 2001, 2001.

[PSDF01b] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. Jac: A �exible solution for
aspect-oriented programming in java. In Proceedings of Re�ection 2001, LNCS 2192,
pages 1�21, May 2001.

[Sul01] G. T. Sullivan. Aspect-oriented programming using re�ection and metaobject pro-
tocols. Communications of the ACM, 44(10):95�97, 2001.

[TVJ+01] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, Joergensen, and N. Bo. Dy-
namic and selective combination of extensions in component-based applications. In
Proceedings of ICSE'01, 2001.

[Zim96] C. Zimmermann. Advances in Object-Oriented Metalevel Architectures and Re�ec-
tion. CRC Press, 1996.

22

