Transactional Support for Web Service
Orchestrations

October 25, 2007

1 Document Structure

This document describes the implementation of a transactional model for web
services based on the Web Service-Composite Application Framework specifica-
tions (WS-CAF).

The first section introduces the final goal of the WS-CAF specifications. The
second and third sections describes the base specifications of the WS-CAF and
its implementation, the Web Services Context and Web Services Coordination
Framework. The fourth section introduces the transactional model selected:
the Long Running Action model. Finally, in the last section, we give a detailed
explanation of the WS-CAF Implementation project and hints about how it
must be used.

2 Introduction to WS-CAF

The WS-CAF is a set of three related specifications: Web Services Context
(WS-CTX), Web Services Coordination Framework (WS-CF) and Web Ser-
vices Transactions (WS-TXM). As a whole, these specifications provide a stack
of functionality for supporting applications or business processes that involve
multiple web services (WSs) and that need transactional support.

Particulary,

1. WS-CTX allows WSs to share a common context structure, which is de-
signed to be used independently of the other two specs. It is the base spec.
of the WS-CAF.

2. WS-CF complements WS-CTX. It defines a coordinator to guarantee the
notification of messages to the WSs that share a particular context.

3. WS-TXM defines several transaction protocols for ensure that a common
outcome is agreed between the WSs participating in an application or
business process.

3 WS-CTX

3.1 Introduction

The ability to scope work is needed in many aspects of distributed applications
such as business interactions or workflows. In order to correlate the work of
participants in a business activity, it is needed to propagate additional informa-
tion known as the context. In this way, the participant knows surely in wich
business activity is participating.

The main goal of the WS-CTX spec. is to propose an extensible basic
context and the operations to manage it. The intention is that this basic context
could be the shared basis from which other WS specs. (like WS security, WS
coordination, WS transactions...) could be constructed. These specs. will
augment the basic context with their specific information.

WS-CTX provides the structuring mechanisms (operations) for organizing
context information by means of which the callers (applications, WSs...) may
create, update and finalize a basic context. Other specs. may use and extend
this basic context.

3.2 Context description

The context is propagated in the SOAP header when an operation on a WS is
called. To find a context in the SOAP header indicates that the callee task (the
WS operation) is part of the activity that the context represents.

A context may be passed by reference of by value. The spec. leaves to the
implementation to choose either if the context is propagated by reference or by
value. Passing the context by value implies to add an snapshot copy of all the
context items to the SOAP header. Passing the context by reference, implies
that only the context identifier is included in the SOAP header and the URL
to a dereferencer service is needed.

A basic context is composed of the following elements.

context-identifier: This is the unique mandatory element. It must contain a
unique URI that will identify the context.

context-manager: A reference to a context manager service.
context-service: A reference to a context service.

parent-context: To support nested activities, contexts may be nested as well.
This element contains the contents or a reference to its parent context.

expires-at: An activity may have a timeout. This element contains the expi-
ration time for the context.

Arbitrary elements: Apart from the elements described above, a context may
contain whatever other element that can be expressed in XML. This per-
mits the referencing specifications to extend the basic context to create
new types of contexts.

3.3 Main components

The WS-CTX service implementation consists of two basic components that
correspond to two porttypes of the WSDL document provided in the spec.

Context Service This service provides the operations to demarcate contexts
(begin, complete), and to get/set information about it (getStatus, get/setTimeout).
The begin operation creates a new context and returns its context iden-
tifier. Each invocation on these operations (except maybe in the begin
method) must be contextualized with this context identifer in order to
look for the target context where to act. If the begin operation is called
with no context, it will create a root context. If a context is found (either
by value or by reference), the begin operation will create a context that
will be nested with the context found in the SOAP header.

Context Manager Service This element provides the necessary operations to
get and set the entire contents of a previously created context. Each
invocation on these operations must be contextualized in order to look for
the target context where to act.

3.4 Notes on the implementation

The standarization process is still being carried out. Therefore, there are mis-
matchs between the spec. and the WSDL files.

The WSDL files taken from the official WS-CAF page (www.oasis-open.org)
define ports and bindings to implement asynchronous WS. They have been
modified in order to specify also synchronous WSs (RPC style). That way we
support synchronous invocations for the SOAP engines that doesn’t support
asynchronous invocations (like Axis 1.X) while we levereage the asynchronous
invocation mechanism used in Axis2. Also the traditional asynchrous invocation
based on callbacks is supported through WS-Addressing.

The framework has been implemented using Apache AXIS2 as the SOAP
engine to support the interactions with WSs.

3.5 Context Manager

The Context Manager service has two operations:

getContents: Returns the content of the context reference passed in the in-
coming SOAP message.

setContents: Changes to contents of the context reference passed in the in-
coming SOAP message with the information passed in the body.

The sequence of messages from an invoking service to a Context Manager service
is shown in figure 1.

When it receives an invocation, it invokes a singleton class that holds the
contexts collection for the Context Service and Context Manager services. It

has operations to add contexts, retrieve a context or change the contents of a
given context.
3.6 Context Service

The Context Service service has the following operations:

begin: Creates a new context instance. If it detects a context in the incomming
SOAP message, the new context will be a child of the given context.

complete: Completes a context. That marks the end of the activity that the
context represents. If a context has handlers registered, then all of them
will be invocated.

getStatus: Gets the status of the given context.
setTimeout: Sets the timeout of the given context.

getTimeout: Gets the timeout of the given context if any.

Upon invocation, it invokes a singleton class called ContextService that will
serve the operations. That class will invoke internally the ContextManager
class.

3.7 Limitations

Due to the Context Service and Context Manager services sharing the single-
ton ContextManager class, both services must be deployed in the same Axis2
installation.

The setContents operation adds and changes elements based on the received
information, but it can’t delete elements from a context.

4 WS-CF

4.1 Introduction

WS-CF extends the WS-CTX specification to add a generic coordination service.
The specification permits the web services to register in an activity extending
the basic context with structures representing participants. It also defines a
service to manage the participants enroled in activities.

4.2 RegistrationContext description

WS-CF extends the basic context with the following elements:

registration-service: A reference to a Registration Service service.

sub-protocol: Some sub-protocols in which the activity may be involved

participants: A list of protocols in which the activity may be involved and a
set of participant addresses involved in every protocol.

extension: Apart from the elements described above, a context may contain
whatever other element that can be expressed in XML. This permits the
referencing specifications to extend the basic context to create new types
of contexts.

4.3 Main components

Registration Service represents a service that another service may use to
add, remove or replace participants involved in an activity.

4.4 Notes on the implementation

WS-CF specification is based on WS-CTX 1.0 specification, however a new
version of WS-CTX has been released (1.0 Standard). The WSDL and XSD
files have been changed in order to support this new WS-CTX version. Also the
same notes as in section 3.4.

4.5 Registration Service

The Registration Service service has the following operations:

addParticipant: Register a set of services in a set of protocols for the activity.
removeParticipant: Remove a set of services previously enroled in an activity.

replaceParticipant: Replace the participants passed as argument with some
others.

getParticipants: Returns a list of participants for a given set of protocols.

getStatus: Returns the current status of the activity represented by the given
context.

replaceRegistration: This operation must be implemented by a registering
service. When a Registration Service fails and recovers it may change the
address in which it is listening. To inform the registered services of that
event, it may invoke this operation in every participant found in every
context registered when the Registration Service recovers from a crash.

The sequence of messages from an invoking service to a Registration Service
service is shown in figure 2.

Every invoked operation must be contextualized including a valid context
reference in the incomming SOAP header. That context represents the activity
that the invoking service is refering to.

Upon invocation, it will use the singleton ContextManager class described
above to modify the contents of the involved contexts, adding, removing or
replacing participants.

To support protocol termination tasks, every time a participant is added
to a new protocol, a class implementing the CompletionHandler interface is
added to the involved context class. That class will have one operation called
complete which receives the completing Context class and the completion status.
For example, given a context class with no CompletionHandler elements, if a
addParticipant request is performed over that context for protocol “LRA”, a new
LRACompletionHandler object will be added to the list of CompletionHandlers
that the involved context has. When a context is completed through the Context
Service (calling the complete operation), all of the Completion Handlers for that
context are executed.

4.6 Limitations

As it shares the ContextManager class with the Context Service and Context
Manager services, the Registration Service must be deployed to the same Axis2
instance that the Context Manager and Context Service are deployed.

5 Long Running Actions (LRA)
5.1 LRA Model

The LRA model is designed to be used in business interactions that occur over
a long periods of time. A business interaction (e.g. A seat reservation on an
airline) is represented by an LRA activity. The LRA activities can be nested.
The work performed within an LRA activity is required to be compensatable and
must remain ready for compensation until the enclosing environment informs
that it is no longer needed. Therefore, the activity’s work is either performed
successfully or undone using a compensator when the LRA activity is going to
be terminated and the LRA protocol is triggered. The WS-LRA spec. states
that a compensator is an LRA participant that operates on behalf of a service
to undo the work performed within the scope of a LRA or to compensate a piece
of work that could not be completed.

The spec. does not define how the participant services perform their work
and how they ensure that the completed work can be undone.

5.2 LRAContext description

WS-LRA extends the RegistrationContext with the following elements:
Ira-id: Id which identifies the current LRA activity.

timelimit: A time limit to complete the activity

coordinator-hierarchy: A set of URIs representing a Coordinator hierarchy.

5.3 Main components

WS-LRA spec specifies the interface that a compensator service must implement
in order to compensate its work, complete it or free the allocated resources
needed to compensate. It will be invoked by the Context Service when an
activity is completed and there are participants registered for the LRA protocol
in that activity’s context.

5.4 Notes on the implementation

The last WS-LRA dates from 2003 while the last WS-CTX and WS-CF spec-
ifications date from 2005. To adapt the WS-LRA to the new specifications
released later, the WSDL and associated schema file has been heavily modified.
Also the same notes as 4.4 applies to this.

5.5 LRACompletionHandler

This class implements the LRA completion protocol. Whan a participant is
registered in a Context with the LRA protocol for the first time, a new LRA-
CompletionHandler is added to the context’s completion handlers.

When the Context Service receives a complete message, it will execute every
completion handler found in the context passing it the context content and the
completion status. Based on this, the completion hanler will:

e Invoke the compensate operation of every participant if the completion
status is FAIL.

e Invoke the complete operation of every participant if the completion status
is SUCCESS.

e Invoke the forget operation of every participant otherwise.

5.6 Compensator interface

Every compensator service must implement the following operations:

compensate: When called, a compensator service must use the information it
has to compensate the work done.

complete: When called, the compensator is notifier of a successfus execution
and can free the resources needed to compensate.

forget: If a previous call to compensate failed, a compensator must maintain
the compensation information until a call to forget is executed.

6 WS-CAF Manual
6.1 WS-CAF Service

The WS-CAF services implementation (Context Manager, Context Service and
Registration Service) is composed of two main parts: A module implementation
and the three main services’ implementation.

6.1.1 Module

This implementation uses the Axis2 modules mechanism! to read and write
contexts to the message headers, as well as to provide ways for a service to be
compensable. All the module code is in the module directory and is composed
of the following parts:

binding contains the XML to Java binding for the different contexts (Basic
Context, Registration Context and LRA Context). It’s based on JAXB
2.0%.
The content in this directory is not intended to be modified by hand
because a regeneration of the databinding (executing ant generate) will
delete the directory and recreate it with the new generated code.

config contains the module.xml file with the module configuration.

schemas contains the wsctx, wscf and wslra schemas used to generate the
databindings.

src contains the core implementation of the module (handlers and message
receivers).

utils contains helper classes for the module and databinding.

To build the module, there is a build.xml file for ant as well as a build.properties
file with some necessary routes defined.

build.properties a valid route to an Axis2 1.3 repository is needed in order
to generate and compile the module. To deploy the module and libraries
automatically, also the webapp.dir property must point to the location
where the Axis2 war file is deployed.

build.xml has some targets to build and deploy the module. The main target,
jar-module, will build the .mar file in the dist directory and will leave
a file named wscaf-module-common.jar in the lib directory. To deploy
the module successfully, the wscaf.mar file must be copied to modules
directory in the Axis2 deploy dir. Also, the wscaf-module-common.jar file
must be copied to the lib directory in the Axis2 deploy dir as well.
If the webapp.dir has been set in build.properties, then the deploy target
will copy those files automatically.

Lhttp://ws.apache.org/axis2/1 _3/modules.html
Zhttps://jaxb.dev.java.net/

In order to use the module, some phases must be defined in te axis2.xml file. A
sample file is included in the config directory.

6.1.2 Services

The services folder contains the implementation for the Context Service, Context
Manager and Registration Service services. They use the above module so in
order to use them the module must be deployed previously. It has the following
structure:

codegen contains the Axis2 generated code for all the services. This includes
databinding code to transform XML elements to Java elements and the
stubs needed to invoke the three main services, as well as a generic com-
pensator stub that is used by the Context Service to invoke compensators
when a LRA context is completed. It also contains the services deploy-
ment descriptor and generated WSDLs.
The content in this directory is not intended to be modified by hand be-
cause a regeneration of the service (executing ant generate) will delete the
directory and recreate it with the new generated code.
Due to the way the faults are thrown, its necessary to modify the service’s
skeleton interface (classes *.<ServiceName>SkeletonInterface) to add a
throws AzisFault to every operation every time the code is regenerated.
Using the Java Eclipse IDE will help in this task as it will detect errors in
the skeletons and suggest the solution.

test contains test cases for all the three main services.

utils contains static classes that helps converting elements from Axis2 XML
model (Axiom) to XMLBeans model used in the services and the other
way around. It also containt helper classes to manipulate Contexts in
Axiom format, to generate request messages as well as some miscellaneous
utilities used in the main services.

middleware contains the classes implementing the interface of the main ser-
vices. For every service it has a <ServiceName>Skeleton class that im-
plements the service’s interface. It also contains the completion handlers
for every protocol. For the moment only LRA is implemented in LRA-
CompletionHandler.

core contains the true implementation of the main services. It has the referred
ContextManager, ContextService and RegistrationService classes that im-
plements the logic necessary to manage contexts.

lib contains the jar files that the service needs in order to work.

wsdl contains the wsdl files and associated schemas used to generate the ser-
vice’s interface, databindings and stubs.

The project is built with Apache Ant through the build.xml project descriptor.
It has the following main targets:

generate regenerates the codegen directory. This is useful when updating the
axis version.

build-all generates binaries for the services and utilities jars. It generates a
dist /wscaf-all.aar file that contains the services implementation and must
be deployed in Axis2. It also generates lib/wscaf-codegen.jar with the
code in the codegen directory and lib/wscaf-utils.jar with the content of
the utils directory. These two jars are intented to be used for clients that
will invoke the wscaf services, as they contain the stubs needed as well as
some useful utilities.

deploy-all-tomcat deploys the generated service archive in a servlet container
if the webapp.dir property is defined.

As with the module, some properties must be set in the build.properties file:

axis2.dir must point to a local Axis2 1.3 repository.

xmltask.dir must point to a place where the xmltask jar can be found. XML-
Task is not included but can be downloaded from http://www.oopsconsultancy.com /software /xmltask /

webapp.dir must point to the place where Axis2 war is deployed. It’s only
necessary to use the automatic deployment function .

6.2 Context reading and writing

The provided module will handle the Context serialization and deserialization
when enganged to a service. Once enganged, it will leave the incomming context
in the following properties:

ContextModuleConstants.CurrentContextProperty if the incomming con-
text was a basic context.

ContextModuleConstants.CurrentRegistrationContextProperty if the
incomming context was a registration context.

ContextModuleConstants.CurrentLRAContextProperty if the incom-
ming context was a LRA context.

So, for example, the following code:

org.oasis.wscaf.bindings.wsctx.ContextType ctx =
(org.oasis.wscaf.bindings.wsctx.ContextType)MessageContext.
getCurrentMessageContext () . getProperty(
ContextModuleConstants.CurrentContextProperty) ;

10

will return in ctx the incomming basic context that was in the message header.
An outgoing context can be put in a header using this method:

MessageContext outMessageContext =
MessageContext.getCurrentMessageContext ().
getOperationContext () .getMessageContext (
WSDLConstants.MESSAGE_LABEL_QUT_VALUE) ;
outMessageContext.setProperty (
ContextModuleConstants.OutContextProperty, newCtx);

As with the incomming context, the property name varies depending on the
context type passed as parameter:

ContextModuleConstants.OutContextProperty for a basic context;

ContextModuleConstants.OutRegistrationContextProperty for a reg-
istration context;

ContextModuleConstants.OQutLRAContextProperty for a LRA context;

6.3 Compensator services

In order to be compensable, a service’s skeleton must implement the interface
org.oasis.wscaf.module.utils.Compensator and have the wscaf module enganged.

6.4 Clients

For the clients not implementing the compensator interface, using the wscaf-
codegen.jar and optionally wscaf-utils.jar classes should be enough to execute
the operations in the three wscaf main services.

6.5 WS-CAF core implementation

The figure 3 shows the relationship between the main classes implementing the
WSCAF core specification.

The main class is ContextManager which holds a Hash Table with all the
contexts created so far by the Context Service and indexed by context identifier.
The ContextService class is invoked by the Context Service service to create new
contexts and it puts them in the table through the ContextManager class. It
also serves the other operations that the Context Service service exposes, using
the ContextManager instance to work over the existing contexts.

The RegistrationService class will be invoked by the Registration Service
service and it will use the ContextManager class to add, remove and replace
participants from contexts.

To support different context types, a class named ContextWrapper holds a
context and the completion handlers associated to that context. When a par-
ticipant is registered in a protocol for the first time through the addParticipant

11

operation, the RegistrationContext class will obtain the target ContextWrap-
per class (the one indexed by the identifier of the operation’s context) using
the ContextManager instance and it will add a CompletionHandler object to it
based on the participant’s protocol. Only LRA is implemented for the moment.
When this context is completed through the complete() operation in the Con-
textService instance, it will obtain the same ContextWrapper instance and will
execute its registered Completion Handlers.

The information a context has is saved in a class called Context or Registra-
tionContext depending on the type of context and the content it has. A context
is always created as a Context instance but once the first element of a Regis-
trationContext is added (being it a Registration Service endpoint reference or
a participant group) it is converted to a RegistrationContext instance.

12

eAC ortent l

fo R — 5 Cortet manager
sponseHa ot generatad
e Manager
conterts Servioe generated

contertsSet

Figure 1: Context Manager messages

13

———» Registerg genersied
Registration pemersied

addParicipant

,

6N e H
i
L

getStatus

S
invahdPratocal <*

S i

~ JnvalioParicipant ./ ¥

- 2

Figure 2: Registration Service messages

14

RegistrationService

protocolsSupported

RegiztrationService()
sin Letﬁ egistrationService()

RegistrationContext

DEFAULT REGISTRATION SERVICE

registrationService
subProtocols
extension

copy()
RegiztrationContext()
RegistrationContexti)
RegiztrationContext()
RegistrationContexti)
RegiztrationContext()
getRegistrationService()
zetRegistrationService()
zetExtension()
getExtenzion ()
addParticipanti)
removeParticipant()
replaceParticipant()
getParticipantz(}
getParticipantzProtocolz()
augmentToReqgistrationContext()
getSubProtocol()
getSubProtocolz()
addSubProtocol()
aszign()

printContents()

getinstance()
addParticipant(}
addParticipant(}
removeParticipant()
removeParticipant(}
replaceParticipant()
replaceParticipant(}
getParticipants()
getStatus()
registrationReplaced()
checkProtocoleSupported()
addCompletionHandlers()

contextManager

CuUlnes1s

ContextMana
getinstance(
getContext()
getContext()
getContextSt
addContext()
addContext()

Context
contextService
contextManager
expiresit
id
augmenters
copy()

Context()

Contexti)

Context()

Context()

Context()
getContextidentifier()
setContextidentifier()
getContextManager()
zetContextManager()
getContextService()

context

existz()

izCompleted(
izTimed Qut(}
removeConte
completedCh
getChildren()
print&liveCh:
getContents(

setContents(
—

ContextW
children
timer
completionHant
copy()
ContextWrappe
getContextiden
getContext()
setContext()
getParent(}
getChildren()
zetRootChx()
getRootCtx()

zetContextService()
getExpiresat()
zetExpiresAt()
getid()

setid()
getParentContext()
zetParentContext()
getasugmenters()
setiugmenterz()
getTypel)
zetTypel)
printContent=()
printContent=(}
as=ign()
augmentersSize()
addAugmenter()
getiugmenter()

Figure 3: WSCAF core implementation classes

15

hazChildren()
addChildContex
removeChidCo
timedQut()
cancelTimeout|
zefTimsout()
igTimedQut()
complete()
izCompleted()
getStatus()
zetStatusl)
addCompletiont
removeComplel

