BSOA Orchestra

Overview & Examples

BULL SERVICE-ORIENTED
ARCHITECTURE (BSOA)

REFERENCE
86 A2 53ER 01







BULL SERVICE-ORIENTED
ARCHITECTURE (BSOA)

BSOA Orchestra

Overview & Examples

BSOA Orchestra v3.0

Software

November 2006

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

REFERENCE
86 A2 53ER 01



The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not limited
to, copying, distributing, modifying, and making derivative works.

Copyright © Bull SAS 2006

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and ltanium® are registered trademarks of Intel Corporation.
Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through the
Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.



Table of Contents

Chapter 1. WIiting @ BPEL ProCess..ceceeeeesssssscssansesssnsessssnssossassssssassssssnsssssassssssassssssssss
ToT BPEL LONQUOGE .ottt
1.2 Implementing an Orchestra BPEL Process ............oiiiiiiiiiiiiiiiiiiiiie e
1.3 WHIHNG @ WSDL File....o et
1.4 WIiting @ BPEL File .....eiiiiiiee e
1.5 Writing @ Client File ......oooiiii e
1.6 Entire Files for ECho Sample.......o.uiiiiiii e

1.6.1 WSDL FIle oo
T.6.2  BPELFile oo
T.6.3  CHENt File ..oeiiiiiiieee e

Chapter 2. RUNNING the DEMOS weeeeuerericsencsnnssnnssnnsssssssssssnssasssasssasssssssssssssssssssasssssssns

2.1 College DEMO ... e e e e e
211 College DEmMO SEIUP .....eeeeiiiiiiiiiii et
2.1.2  Installing the College Demo...........uviiiiiiiiiii e
2.1.3  Deploying the College Demo............cooeiiiiiiiiiiiiiii e
2.1.4  Using the Web Interface of the College Demo
2.1.5  Cleaning the College Demo ............cooeiiiiiiiiiiiiiiiee e

2.2 Tel@COM DEMO ...ttt
2.2.1  Installing the Telecom Demo ............oooiiiiiiiiiiiiiie e E
2.2.2  Deploying the Telecom Demo ........ccuuiiiiiiiiiieiiiii e 14]
2.2.3  Use the Web Interface of the Telecom Demo..............cooiiiiiiiiiiiiiiiiciiee 14]
2.2.4  Restarting the Telecom Demo.............ccoiiiiiiiiiiiiiieeieiie e 15
2.2.5  Cleaning the Telecom Demo............ooiiiiiiiiiiiiiiie e E

2.3 Loan ApProval DEMO ........ciiiiiiiiiiiiiii et E
2.3.1 Loan Approval Demo SEHUP. .....ccuuuiiiiiiiiie et 18
2.3.2  Installing the Loan Approval Demo ...........cccuiiiiiiiiiiiiiiie e 18|
2.3.3  Deploying the Loan Approval Demo ...........ccooiiiiiiiiiiiiiieeee e 18
2.3.4  Deploying the Loan Approval Demo External Web Services..............coooiiiiiiiiiiinnnn.. IE
2.3.5  Using the Web Interface of the Loan Approval Demo.............cccccoeiiiiiiiiiiiiiiieiie 20)
2.3.6  Cleaning the Loan Approval Demo...........cccuiiiiiiiiiiiiiiie e 20

Chapter 3.

RUNNING O SOMPIE.iicuiierriirsriersniessnnessanessnnscsanscsansssassssssossssssasssnssssasess

3.1 Deploying @ SAMPIE ......oooiiiiii e

3.2 EXECUNING @ SAMPIE ...ooiiiiiiii i

Preface iii



Chapter 4. UNit TESHNG cueerrerensaesseesuessunssessunssessucssessuessesssessesssessesssessesssessesssssssessesnes 23]
4.1 Executing One Unit Test as a Client EXECUON ........eiiiiiiiiiiiiiiiii e

4.2 Executing All Unit Tests With JURit......oooiiiiiiiiii e

4.3 Reading the JUNit REPOIt ........iiiiiiiiiiiiiiee et e e e
Chapter 5. Advanced Configuration wiceieeeceesessssssssesssesssssasssassssssssssssssssasssssssssssssssns
5.1 Orchestra Engine Configurahion .............uiiiiiiiiiiiiii e z

5. 1.1 ENGINE MOGE ..o 25

5.1.2  MOnitoring MOE ......eviiiiiiiiee e 25

513 JBIMOE .o 26

5.2 Orchestra TUNING. . cce ottt ettt e ettt e et e s

5.3 Binding Framework Configuration .............ooiiiiiiiiiiiiiiicc e 27
53T URL MOPPING cetiiiiiiiiiiiiiiiieee e 27

5.3.2  Binding COMPONENES .......vviiieeesiiiiiiiii et e ettt e e e et e e e 29

5.3.3  Deploying a Web Service on .NET ..........cooiiiiiiiiiiiiiieiiiiie e 30}

iv.  BSOA Orchestra - Overview & Examples



List of Figures

Figure 2-1.  College Demo Process Steps

Figure 2-2. Telecom Demo Process Flow

Figure 2-3. Loan Approval Process for Loan Approval Demo

SHES

List of Tables

Table 2-1.  Loan Approval Demo Samples

Preface

v



vi  BSOA Orchestra - Overview & Examples



Preface

The purpose of this tutorial is to guide the user through writing a first BPEL Process. It
involves creating three different files: a BPEL file, a WSDL file and a client file.

This tutorial is based on the echo sample. This sample receives a Web Service call and
replies with the same value.

Preface  vii



viii  BSOA Orchestra - Overview & Examples



Chapter 1. Writing a BPEL Process

1.1 BPEL Language

BPEL stands for Business Process Execution Language.

The BPEL language (ws-bpel.pdf] is the way to describe Business Processes. It is an XML,
schema-based standard defined by the Oasis consortium. It enables the composition of
multiple synchronous and asynchronous Web Services into an end-to-end business flow.

1.2  Implementing an Orchestra BPEL Process

An Orchestra process consists of a BPEL file containing the BPEL language statements, a
WSDL file describing the Web Service interface (message formats, available operations,
etc) for the BPEL process, a WSDL file describing the partners in the business process, and
the WSDL files describing the partner Web Services. These files are described in following
sections.

These files are deployed to an Orchestra instance. Deploying a process translates the BPEL
file into Java classes used by Orchestra to execute each BPEL activity and Java classes to
call the external web services. These classes are located in Orchestras class path.

Note that the README file for each sample gives a command line example for deploying
that sample. These samples may be followed for user processes, but they assume the
process is located in the /BPEL/samples directory. This directory may be lost when
reinstalling Orchestra. See the command line help for the bsoap deploy command for
locating processes in a different folder.

An Orchestra BPEL process is itself an Axis Web Service and may be called in any
environment that can call a Web Service. This is typically a JSP or a freestanding Java
client. The samples provide a freestanding Java client to run the sample and the bsoap
launch command runs the sample. Again, the README file provides a command line to run
each sample. Since the process is also an Axis Web Service, the Axis wsdl2java command
can be used with the WSDL file for the process to produce stubs for use by other Java
clients and JSPs.

Chapter 1. Writing a BPEL Process 1



1.3  Writing a WSDL File

WSDL stands for Web Services Description Language.

WSDL is a document written in XML. The document describes a Web service. It specifies
the location of the service and the operations (or methods) the service exposes.

For a complete tutorial on how to write a WSDL file refer to the WSDL Tutorial
(http://www.w3schools.com/wsdl|/default.asp) .

For the simple “echo” sample, the message type that will be used by the Web Service must
be defined. In this case, it is just a simple message with one part of type String:

<nessage name="Stri ngMessageType" >
<part nane="echoString" type="xsd:string"/>
</ message>

The web service, the operations, and the messages that are involved need to be described.
For this sample, the following must be defined:

<port Type name="echoPT">
<operation nane="echo">
<i nput nessage="tns: StringMessageType"/ >
<out put message="tns: StringMessageType"/ >
</ operati on>
</ port Type>

Then, the binding must be specified. It corresponds to the message format and protocol
details for a web service. In this case:

<bi ndi ng nanme="EchoPTSCOAPBi ndi ng" type="tns: echoPT">
<soap: bi ndi ng
style="rpc"transport="http://schemas. xm soap. or g/ soap/ http"/>
<operati on nane="echo" >
<i nput >
<soap: body use="encoded" nanespace="urn: echoconpl ex: bpel : bsoap”
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ >
</i nput >
<out put >
<soap: body use="encoded" nanespace="urn: echoconpl ex: bpel : bsoap”
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ >
</ out put >
</ operati on>
</ bi ndi ng>

Finally, define the location of the web service. The following is the code for this sample, if
Orchestra is running on the port 9000 of localhost:

<servi ce nanme="EchoServi ceBP">
<port name="echoPT" bi ndi ng="t ns: EChoPTSOAPBI ndi ng" >
<soap: addr ess
| ocation="http://1ocal host: 9000/ axi s/ servi ces/ echoPT"/ >
</ port>
</ service>

The entire WSDL file can be viewed in the section titled WSDL File.

2 BSOA Orchestra - Overview & Examples



1.4

Writing a BPEL File

Writing a BPEL file manually is fairly difficult. A BPEL editor such as Zenflow is useful. Refer
to the Zenflow Overview (Zenflow.pdf or zenflow.htm).

Hereafter are described the different parts of a simple process: “Echo”.

First, define the process tag with the name of the process and its target namespace. The
name attribute of the process tag (the first of a BPEL file) must be the same as the process
name.

<process name="echo"
t ar get Namespace="http://orchestra. obj ect web. or g/ sanpl es/ echo"
xm ns:tns="http://orchestra. obj ect web. or g/ sanpl es/ echo"
xm ns="http://schenmas. xm soap. or g/ ws/ 2003/ 03/ busi ness-
process/ ">

Next, define the partnerlinks of the process:

<part nerLi nks>
<partnerLi nk nane="echo" partnerLinkType="tns: Echo"
nmyRol e="servi ce"/ >

</ partnerLi nks>

Then define the variables and handlers that will be used by the process:

<vari abl es>
<vari abl e nane="request" nessageType="tns: StringMessageType"/>
</vari abl es>

Define what the process does. The following is the code for the echo sample:

<sequence nane="EchoSequence" >
<recei ve partnerLink="echo" portType="tns: echoPT"
operation="echo" vari abl e="request"
creat el nstance="yes" nane="EchoRecei ve"/>
<reply partnerLink="echo" portType="tns:echoPT"
operation="echo" vari abl e="request"
name="EchoRepl y"/ >
</ sequence>

The entire BPEL file can be viewed in the section titled BPEL File.

Chapter 1. Writing a BPEL Process 3



1.5

1.6

4

Writing a Client File

A BPEL process is seen as a standard web service. To write a test client, the Web Service
must be called:

EchoServi ceBP es=new EchoServi ceBPLocat or () ;
EchoPT ept =es. get echoPT();

StringHol der in = new StringHol der (args[0]);
ept. echo(in);

The first two lines get the Port Type Method. A String holder is then defined that is the
in/out message of the Web Service. The Web Service is called with that variable.

The entire Client file can be viewed in the section titled Client File.

Entire Files for Echo Sample

This section provides complete file examples for the Echo sample as follows:
«  Section 1.5.1 WSDL File

e Section 1.5.2 BPEL File

«  Section 1.5.3 Client File

BSOA Orchestra - Overview & Examples



1.6.1 WSDL File

<definitions

tar get Nanespace="htt p://orchestra. obj ect web. or g/ sanpl es/ echo"
xm ns:tns="http://orchestra. obj ect web. or g/ sanpl es/ echo”

xm ns: pl nk="http://schemas. xm soap. or g/ ws/ 2003/ 05/ part ner-1i nk/"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "

xm ns="http://schemas. xm soap. or g/ wsdl /">

<message nanme="Stri ngMessageType" >
<part nane="echoString" type="xsd:string"/>
</ nessage>

<port Type nane="echoPT">
<operation nanme="echo">
<i nput nessage="tns: StringMessageType"/ >
<out put nessage="tns: StringMessageType"/ >
</ operati on>
</ port Type>

<pl nk: part ner Li nkType name="Echo">
<pl nk: rol e nane="service">
<pl nk: port Type name="tns: echoPT"/>
</ pl nk:rol e>
</ pl nk: part nerLi nkType>

<bi ndi ng name="EchoPTSOAPBI ndi ng" type="tns: echoPT">
<soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xm soap. org/ soap/ http"/>
<operati on nane="echo">
<i nput >
<soap: body use="encoded"
nanmespace="http://orchestra. obj ect web. or g/ sanpl es/ echo"
encodi ngStyl e="htt p://schemas.xm soap. or g/ soap/ encodi ng/"/>
</i nput >
<out put >
<soap: body use="encoded"
namespace="http://orchestra. obj ect web. or g/ sanpl es/ echo"
encodi ngStyl e="http://schenmas.xm soap. or g/ soap/ encodi ng/"/>
</ out put >
</ operati on>
</ bi ndi ng>

<servi ce nanme="EchoServi ceBP">
<port nane="echoPT" bi ndi ng="tns: ECchoPTSOAPBI ndi ng" >
<soap: addr ess
| ocation="http://local host: 9000/ axi s/ servi ces/ echoPT"/ >
</ port>
</ service>

</ definitions>

Chapter 1. Writing a BPEL Process



1.6.2 BPEL File

<process nanme="echo"

tar get Nanespace="htt p://orchestra. obj ect web. or g/ sanpl es/ echo"
xm ns:tns="http://orchestra. obj ect web. or g/ sanpl es/ echo”

xm ns="http://schemas. xm soap. or g/ ws/ 2003/ 03/

busi ness- process/ ">

<part ner Li nks>
<part ner Li nk nane="echo" partnerLinkType="tns: Echo"
nyRol e="servi ce"/>
</ part nerLi nks>

<vari abl es>
<vari abl e nane="request" nessageType="tns: StringMessageType"/>
</vari abl es>

<sequence nane="EchoSequence" >
<recei ve partnerLink="echo" portType="tns: echoPT"
oper ati on="echo" vari abl e="request"
createl nstance="yes" nane="EchoRecei ve"/>
<reply partnerLink="echo" portType="tns: echoPT"
oper ati on="echo" vari abl e="request"
name="EchoRepl y"/ >

</ sequence>

</ process>

1.6.3 Client File

package org. obj ect web. orchestra. sanpl es. echo;
i mport javax.xm .rpc. hol ders. *;

i mport java.lang.*;
i mport java. math.*;

public class Echodient
{
public static void main(String [] args)
{
int argNo = 1;
if (args.length !'= argNb) {
System out . println(">>>>> ERROR Nunber of arguments
needed : "+argNb);
System out. println(">>>>> The first should be a
string");
} else {
try {
EchoSer vi ceBP es=new EchoServi ceBPLocat or () ;
EchoPT ept =es. get echoPT();
StringHol der in = new StringHol der(args[0]);
ept.echo(in);
System out. println(">>>>> ECHO response recei ved
"+ in.value );
} catch (Exception e) {
e.printStackTrace(Systemerr);
}

6 BSOA Orchestra - Overview & Examples



Chapter 2. Running the Demos

2.1 College Demo

The purpose of this tutorial is to guide the user through launching the College Demo that is
provided with the package.

The College Demo is a BPEL process that models some simple steps in enrolling a student in
a college. The student not only enrolls, but also requests a grant or subsidy (scholarship)

and gets a transportation pass from an appropriate bus company.

The following figure graphically shows the steps.

Figure 2-1. College Demo Process Steps

b

User
The user sends an College
enrollment recuest r/" . S G
to the college. _ ge
] accepis the
recuest.
ﬂv 0% b
College Greneral council
The college The general _cum:ij
enrolls the granis or refises the
new student. subsidy.
Carner
The camier registers the
student on the bus line
] . ‘1 and =ends information
]1 — WL about the temporary bus
= College card.
Mk The college retums

information abaoul schuu_!_,/ 'L-'E':E.;?t;‘ Web service
emroliment, bz card and
subsidy request.

The demo must be installed (Sections 2.1.1, 2.1.2, 2.1.3) before the process can be run
(Section 2.1.4).

Chapter 2. Running the Demos 7



2.1.1

2.1.2

College Demo Setup

First, check to make sure that the BPEL JOnAS server is not running (run bsoap st op to
stop it).

If the College Demo has previously been deployed, a necessary prerequisite is to do a
Clean operation (see Cleaning the College Demo).

If the default Orchestra installation is to be used to run the College Demo on the local
machine, with or without port number changes, then no further setup is necessary. Skip to
the section titled Installing the College Demo.

When using the jms service, change the JONAS_BASE/conf/jonas.properties:

Add the CollegeDemoQueue to the list of JIMS queues:
j onas. service. | ns. queues
BPELQueue, BPELRepl yQueue, BPELFaul t Queue, Col | egeDenmoQueue
Note that JMS is the default message service and these queues are added when
Orchestra is installed.

When using the JORAM rar, change the JONAS_BASE/conf/joramAdmin.xml file to

include the following lines, if not already in the file:

<Queue nane="Col | egeDenpQueue" >
<fr eeReader/ >
<freeWiter/>
<j ndi name="Col | egeDenmoQueue"/ >
</ Queue>

Go to the $BPEL_HOME directory and specify the host and port number in the
build.properties. Then go to the $BPEL_HOME/Demos/College directory, specify the host
and port number where the external WS is located (to deploy them on the computer hosting
Orchestra, enter the same values) in the college.properties file.

Installing the College Demo

Start the BPEL JOnAS server:
bsoap start

Then run successively:
denps col |l ege config
and
denos col | ege instal

8 BSOA Orchestra - Overview & Examples



2.1.3 Deploying the College Demo

Before being deployed, the College Demo should have been installed (see the section titled
Installing the College Demo).

Make sure that the BPEL JOnAS server is running (if not, run bsoap start to start it).

Then, execute:

denos col | ege depl oy

2.14 Using the Web Interface of the College Demo

Once the demo is running, any user can try to register his son or daughter in the College.

1.

2.

Open a web browser window.

Open page:
http://{host}:{port}/college
For example: htt p: / /| ocal host : 9000/ col | ege

Then register a student by clicking on Registration, filling in the text boxes for First
Name, Last Name, etc. and choosing a Grade and Bus Stop then clicking on Submit.
This should display a File Information view with all of the supplied information, plus a
File Number. Save the File Number for the next step.

Verify that the registration has been validated.

- First click on Welcome Page in the File Information view, and then click on File
Follow Up in the Home page view.

- Enter the saved File Number and the First/Last names separated by a space into
the input boxes, then click on Submit. The File Follow Up view should display the
following message followed by the File Information:

- Your file has been handled. Your kid is registered for College. The file for the bus
ticket has been approved by the State Department. The bus company has also
approved the request.

Chapter 2. Running the Demos 9



2.1.5

2.2

Cleaning the College Demo

To clean the College Demo, execute:
denps col | ege cl ean

Note:

BSOAP STOP is required to undeploy the college demo using DEMOS COLLEGE CLEAN if
the college demo has already been deployed (otherwise the EAR file can not be removed).
An alternative is to use the JONAS Administration Console to undeploy the EAR file. For
example: http:/ /| ocal host: 9000/ j onasAdmi n/, login, and use the menu entry
Domain->Server Jonas->Deployment->Applications.

Telecom Demo

The purpose of this tutorial is to guide the user through launching the Telecom Demo
provided with the package.

The following figure describes the flow of the process. The process of this demo involves a
telecom phone number request. There are three partners: a customer, a service provider,
and a telecom provider. The customer requests a phone number from the service provider.
Then the process starts and the service provider sends the request to the telecom provider.
The telecom provider responds to the service provider with a phone number. This phone
number is then sent to the customer.

The process of this demo concerns a telecom phone number request. There are three
partners: a customer, a service provider, and a telecom provider. The customer requests a
phone number from the service provider. Then the process starts and the service provider
sends the request to the telecom provider. The telecom provider responds to the service
provider with a phone number. This phone number is then sent to the customer.

To show the restart mechanism, the scenario is to start the process on the customer’s side
by requesting a new phone number. Then the Orchestra engine of the service provider can
be killed. The Orchestra engine can be restarted and the provider will furnish the phone
number. This scenario demonstrates that the engine restarts properly and receives the
provider’s message.

10  BSOA Orchestra - Overview & Examples



Figure 2-2. Telecom Demo Process Flow

Customer Service Provider Telecom Provider
The Customner
reqests a f
e feom the iy D ®
Service Provider an
\_‘, The Service Provider
i T requests amimber from
The Lustamer ﬂ‘ﬂé’ o] the Telecom Prowvider. |
can check 1ts
file toretrieve Tha Frocass L %
the phomne st
rrrnber.
Telecom Provider
@ Web Service

The Service The Telecom
Provider feturns Provider returns
the phone number

the respdnse to
the Custdmer .—-
Bhg—T «

. /

Orchestra Engine

The demo must first be installed (Sections 2.2.1— 2.2.2). Then it can be executed (Section
2.2.3). Finally, this demo can show the “restart” mechanism available in the BPEL engine
(Section 2.2.4).

2.2.1 Installing the Telecom Demo

First, check that the Orchestra engine is not running (run bsoap st op to stop it). Then go
to the $BPEL_HOME directory, and specify a host and a port number in the build.properties
file.

Notes:

The default Orchestra installation process will have already set these to localhost and the
specified installation port number.

Use Cleaning the Telecom Demo first, if the Telecom Demo has already been deployed.

This installation involves two steps (in the following order):
 Install the telecom provider side on a remote server.

 Install the service provider side locally.

Chapter 2. Running the Demos 11



12

INSTALL THE TELECOM PROVIDER SIDE

The telecom provider is a remote web service deployed on a different JOnAS server than
the one on which the Orchestra engine is running.

1.

Install a JONAS server for the telecom provider on a remote computer.

After installation, this may require sefting a $JONAS_BASE value and executing “ant
create_jonasbase”. Then in $JONAS_BASE/conf/jonas.properties, specify either JMS
as a JOnAS service or a JORAM resource adapter (for the default, see the JOnAS
Installation guide).

2. On the remote computer hosting the JOnAS server, do the following based on whether
using the jms service or the JORAM rar:
- If using the jms service, change the JONAS_BASE/conf/jonas.properties:
Add the TelecomProviderQueue to the list of JMS queues:
j onas. service. jnms. queues sanpl eQueue, Tel econProvi der Queue
- If using the JORAM rar, change the JONAS_BASE/conf/joramAdmin.xml file by
adding the following lines, if not already in the file:
<Queue nane="Tel econProvi der Queue" >
<f r eeReader/ >
<freeWiter/>
<j ndi nane="Tel econProvi der Queue"/ >
</ Queue>
3. On the local computer hosting the Orchestra engine, go to the
$BPEL_HOME/Demos/Telecom/TelecomProviderWebapp directory, open the
build.properties file and fill in the remote computer’s values for: server.name (default
jonas), server.host (use its DNS name), and server.port (default 9000). Also fill in the
local computer’s values for: service.host (use its DNS name), and service.port (default
9000).
Warning:

Specify the complete name for server.host property. Do not use localhost and 127.0.0.1 as
this file will be used by the customer.

4. On the local computer hosting the Orchestra engine, run:

denos tel ecomconfig

BSOA Orchestra - Overview & Examples



5. On the remote computer, in the TelecomProviderWebapp directory, run:
ant install

6. Then copy the $BPEL_HOME/Demos/Telecom/TelecomProviderWebapp directory
from the local computer to some convenient directory on the remote computer acting as
the telecom provider. A simple way to do this is to place the TelecomProviderWebapp
directory contents in a JAR file, FTP it to the remote compute, and then extract the JAR
file contents.

Check to make sure that the telecom provider JOnAS server is not running.
7. Launch the remote telecom provider JOnAS server (jonas start).

8. On the remote computer, in the TelecomProviderWebapp directory, run:
ant depl oy
Check the deployment by using a browser pointed at:
http:// {host}:{port}/telecomProvider/

INSTALL THE SERVICE PROVIDER SIDE
The Service Provider is the BPEL process.

When using the jms service, change the JONAS_BASE/conf/jonas.properties.
Add the TelecomDemoQueue to the list of IMS queues:

j onas. service. j ns. queues
BPELQueue, BPELRepl yQueue, BPELFaul t Queue, Tel econDenmoQueue

When using the JORAM rar, change the JONAS_BASE/conf/joramAdmin.xml file to
include the following lines, if not already in the file:

<Queue nane="Tel econDenbQueue" >
<freeReader/ >
<freeWiter/>
<j ndi nanme="Tel ecomDenoQueue"/ >
</ Queue>

Note:

With the default Orchestra installation, the jonas.properties and the joramAdmin.xml files
already have the correct JMS values, so no additions are necessary.

Before installing the Telecom Demo, launch Orchestra if it is not already running.
This should be done by running bsoap start.

Then run: denos tel ecominstall

Chapter 2. Running the Demos 13



2.2.2 Deploying the Telecom Demo

Before being deployed, the Telecom Demo should have been installed [see Installing the
Telecom Demo). Be sure the BPEL engine JOnAS server is running on the local machine (if
not, run bsoap start to start it).

Then, execute: denps t el ecom depl oy

2.2.3 Use the Web Interface of the Telecom Demo

Once the demo is running, try to obtain a phone number.
9. Open a web browser.

10. Open page: http://{host}:{port}/telecom
(for example: http://localhost:2000/telecom).

11. Then, make a request to register a phone number, by filling in the form and clicking on
SUBMIT

12. Remember the first name, last name, and file number that is returned for use in the next
step, then click on Welcome Page.

13. Click on the File Followup button to see if the registration has been validated. Fill in
the form with the returned file number and the first and last names separated by a
space and click on the Submit Button, then click on the Validate button.

14  BSOA Orchestra - Overview & Examples



224 Restarting the Telecom Demo

To show the restart mechanism, kill the Orchestra engine running the Service Provider, and
restart it.

Note:

For Windows, use the task manager to kill the command window where BSOAP START
was done.

First, restart Orchestra: bsoap start.

Then launch the restart mechanism: this can be done by executing bsoap
restart Engi ne.

This script restarts all instances that are not finished and are waiting for a message. Here
the process is waiting for the remote Telecom Provider to validate the request. Thus, it will
restart.
The request can then be validated using the following web page (see the steps under
INSTALL THE TELECOM PROVIDER SIDE in Section 2.2.1:

http://{host}:{port}/tel econProvider

Then, use the telecom inferface specified in Section 2.2.3 to see if the request is validated.

2.2.5 Cleaning the Telecom Demo

To clean the Telecom Demo, run: denos t el ecom cl ean

Note:

BSOAP STOP is necessary before running DEMOS TELECOM CLEAN.

Chapter 2. Running the Demos 15



2.3  Loan Approval Demo

Loan Approval Demo process:

A customer makes a credit loan request to a loan service.

- If the amount requested is above or equals 10,000, then the request is sent
directly to an approver.

- If the requested amount is lower than 10 000, the request is sent to an assessor
who checks the risk associated to the requester.

- If the risk is low, the loan is approved.

- If the risk is medium or high, then the request is sent to the approver.

Approver behavior:
- If the amount requested is above 100,000, the loan is refused.

—  If the amount requested is above 15,000 and the risk associated with the
requester is high, the loan is refused.

- If the amount requested is above 30,000 and the risk associated with the
requester is medium, the loan is refused.

Else, the loan is accepted.

Medium risk list: LastName equals to:
juliani

zvong

kadash

pouit

koron

b=

High-risk list: LastName equals to:
robert

durand

dupont

macfy

frund

liogi

max

NOOo~wDdD =

16  BSOA Orchestra - Overview & Examples



Figure 2-3. Loan Approval Process for Loan Approval Demo

BPEL Engine Server External Web Services Server

i N If requested amount < 10 000
User

The user subimits aloan
request to the process.

requested amount == 10 000

The loan assessor atbrites a
ik lewel to a equestor; Tow,
@ rnednm, or igh (based onthe
requestor's last name).

M “' fam A
i lh. Theloan approver decides to
User

appraree o not appeoe the
requested loan based onthe
Theuser gets the answer arnont requested and the risk
frorn the loan corrpary: Tewvel of the requestor.
yes (loan approyed) oo
o (loan refused).

h Web serviee

The user and the external web services can be hosted on different remote servers.

Loan Approval Samples:

Table 2-1. Loan Approval Demo Samples

Name Amount Risk Level | Tracks executed | Loan response
DiMento 5 000 low 1,4 yes
Arthui 11 000 low 2,5 yes
Koron 9 000 medium 1,3,5 yes
Robert 11 000 high 2,5 yes
Tyuin 101 000 low 2,5 no
Pouit 30 000 medium 2,5 yes
Kadash 31 000 medium 2,5 no
Frund 15 000 high 2,5 yes
Macfy 16 000 high 2,5 no

Chapter 2. Running the Demos 17



23.1 Loan Approval Demo Setup

If the Loan Approval Demo has never been installed before and the default Orchestra
installation is being used, with or without port number changes, then skip to the section
Installing the Loan Approval Demo.

If the Loan Approval Demo was previously deployed, use the cleaning procedure (see
Cleaning the Loan Approval Demo) to remove it.

Go to the $BPEL_HOME directory, and specify a host and port number in the
build.properties file. (The default orchestra installation will already have set the host/port
values in the build.properties file.)

2.3.2 Installing the Loan Approval Demo

To install the Loan Approval Demo, perform the following steps:
1. First, check that the BPEL JOnAS server is running (if not, run bsoap st art to start it).

2. Then, execute:
denps | oan install

2.3.3 Deploying the Loan Approval Demo

Before being deployed, the Loan Approval Demo should have been installed [see Installing

Loan Approval Demo).

1. First, check that the BPEL JOnAS server is running (if not, run bsoap start to start if).

2. Then, execute:
denos | oan depl oy

18  BSOA Orchestra - Overview & Examples



2.3.4

Deploying the Loan Approval Demo External Web Services

Deploying the Loan Approval Demo External Web Services on Remote Server Locally

To deploy the external web services on the same server on which the JOnAS BPEL engine is
running, instead of doing the procedure in the previous section, just execute the following
on the local machine:

denos | oan depl oyExt

Deploying the Loan Approval Demo External Web Services on Remote Server

Before being deployed, the Loan Approval Demo should have been installed (see Loan
Approval Demo Setup.

Make sure that the JOnAS server hosting the external web services is running with 'ws'
jonas service activated.

Note:

The WS service is part of a default JONAS installation; therefore no changes should be
necessary.

Then, copy the $BPEL_HOME/Demos/LoanApproval /wsp directory on the server hosting
the JOnAS server for external web services.

Go to this directory on the external server and execute:
ant install-wsp

Setting Server Name, Host Number, and Port Number

Whether the external web service was installed locally or on a remote server, the ANT
script will ask the following questions to allow setting the server name, host number, and
port number.

Enter the JOnAS server name on which you want to deploy the Web Services (default
is BPEL)

Enter the host on which you want to deploy the Web Services (default is localhost)
Enter the port on which you want to deploy the Web Services (default is 2000)

Respond with the settings that were used for the server hosting the external web service.

Chapter 2. Running the Demos 19



2.3.5 Using the Web Interface of the Loan Approval Demo
Once the demo is running, any user can make a request for a loan.
1. Open a web browser window.

2. Open page: http://{host}:{port}/loanApprovalDemo

For example: http://localhost:2000/loanApprovalDemo

3. Make a loan request. The Demo can be tested by using the first two columns of table
2-1 as input for the last name and loan amount (use any first name) and then clicking
on Submit.

4. See if the request was accepted. If table 2-1 was used for the input values, the

expected approval results are those listed in the last column of that table. To run a test
case with different input values, click on the Home button.

2.3.6 Cleaning the Loan Approval Demo
To clean the Loan Approval Demo, run: denps | oan cl ean

If the external web services are on another server, go into the
$BPEL_HOME/Demos/LoanApproval/wsp directory and run: ant cl ean
Note:

BSOAP STOP must be used before doing the DEMOS LOAN CLEAN operation on the local
server and the external server, if used, must be stopped before doing the ANT CLEAN
operation.

20  BSOA Orchestra - Overview & Examples



Chapter 3. Running a Sample

The purpose of this tutorial is to guide the user through launching the samples provided
with the package. It is comprised of two steps: first, deploy a sample, and then execute the
sample. For more information, see the README file for each sample located under
$BPEL_HOME/samples/<sample_name>.

3.1 Deploying a Sample

Before deploying a sample, launch the JOnAS application server. This should be done by
running bsoap start.

Then, execute: bsoap depl oy -p {sanpl enanme} -sanpl es

For example:
bsoap depl oy -p echo -sanples

Notes:

»  When deploying a sample that uses externally referenced web services, those web
services should have the path of their WSDL files listed at the end of the deploy
command line. See the Invoke sample README file for an example.

«  When deploying a process that is not in the sample folder, the following command
syntax is used.
deploy -p process -bpel process.bpel -wsdl process.wsdl -srcDir srcDir {service.wsdl}
{service.wsdl}
process is the name of the process
srcDir is the directory containing the process
{service.wsdl} are external services invoked by the process.

Chapter 3. Running a Sample 21



3.2

Executing a Sample

A sample must be deployed (see Deploying a Sample) before being executed.

Once it has been deployed, execute:

bsoap | aunch -p {sanpl enane} -cc {clientnanme} {argunent1}
{argunent 2}

For example:
bsoap | aunch -p echo -cc
or g. obj ect web. or chest ra. sanpl es. echo. EchoCl i ent
Dupont
or:

bsoap | aunch -p narketplace -cc

or g. obj ect web. or chestra. sanpl es. nar ket pl ace. Mar ket Pl aceC i ent
buyer auto

12000

Notes:

« The 'invoke' and 'while' samples are dependent on the 'incrementService' sample. The
'incrementService' sample must be compiled (see Deploying a Sample) [also see the
Invoke README file) before these samples can be successfully executed.

«  The 'marketplace' sample requires two separate invocations of the client, one for the
'buyer' and one for the 'seller', to complete successfully:

bsoap | aunch -p marketplace -cc

or g. obj ect web. or chest ra. sanpl es. mar ket pl ace. Mar ket Pl aced i ent
seller auto

12000

bsoap | aunch -p marketplace -cc

or g. obj ect web. or chest r a. sanpl es. mar ket pl ace. Mar ket Pl aced i ent
buyer auto

12000

22  BSOA Orchestra - Overview & Examples



Chapter 4. Unit Testing

The purpose of this tutorial is to guide the user through executing unit tests. Guidance is
also provided for reading JUnit reports and writing a unit test.

4.1 Executing One Unit Test as a Client Execution

Before executing a unit test, launch the JOnAS application server. This should be done by
running bsoap start.

Then, execute:
tests runOne -p {testNane} [-tn {testnane}]

For example:
tests runOne -p unitCopy -tn testCopyl

If -tn arg is not specified, all suites of this test will be launched.

Note that there is a - | aunchonl y option that enables re-launching a test that has already
been deployed. The test will then only be executed, not redeployed.

For example:
tests runOne -p unitCopy -tn testCopyl -l aunchonly

4.2 Executing All Unit Tests With JUnit

Before executing a unit test, launch the JOnAS application server. This should be done by
running bsoap start.

Then, execute:
tests runAll

The - | aunchonl y option is also available for the runAll command. It will launch the tests
without re-deploying them. Therefore, they must be deployed beforehand.
tests runAll -launchonly

Chapter 4. Unit Testing 23



4.3  Reading the JUnit Report

If all the unit tests are launched, view the report of their execution in a browser window.

Open the file:
$BPEL_HOME /tests/org/objectweb/orchestra/tests /unit/reports/index. html

24  BSOA Orchestra - Overview & Examples



Chapter 5. Advanced Configuration

5.1 Orchestra Engine Configuration

The configuration of the Orchestra Engine can be changed. This can be done before
launching Orchestra by changing the file $BPEL_HOME/conf/BPELConfig.xml.

It is also possible to change the configuration at run time (not recommended) using the
administration console.

5.1.1 Engine Mode

The Orchestra Engine typically runs using Entity Beans to store all data it is using during the
run of processes instances. However, it is possible to switch to a mode in which nothing
will be stored. To change this mode, change the config file.

Switch from:

<Engi neMbde node="DB"/>
to:
<Engi neMbde node="Menory"/>

5.1.2 Monitoring Mode

It is also possible to change the monitoring mode. To do this, change the following line in
the config file:
<Mbni t or node="Runni ngOnl y"/ >

The five possible modes and their meaning are as follows:

«  Nothing: Monitors nothing. This means that it is not possible to see the state of either
running instances or the finished ones.

*  RunningOnly: Monitors only Running Instances. Once the instance is finished, the data
is lost.

»  MessageOnly: The Messages exchanged by the Engine will be stored in files at the
end of instances.

*  RunningAndMessage: Monitors running instances. All exchanged messages are stored
in files at the end of the instances; other data is lost.

«  All: This option will monitor running AND finished instances.

Chapter 5. Advanced Configuration 25



5.1.3

5.2

JBI Mode

<Jbi node="off"/>

Orchestra will soon be integrated as a JBI Service Engine in ServiceMix. There is an
option in the configuration file BPELConfig.xml to turn this function on or off. By default, the
value of this paramater is "off".

The capability for the Orchestra Service Engine to be able to plug Orchestra into
ServiceMix and other ESBs, such as Petals, will soon be available. Documentation will be
provided to explain the configuration steps. At that time it will be possible to change this
parameter to "on".

Orchestra Tuning

The following parameters can be modified to tune the JOnAS server:

« Transaction timeout (jonas.service.jtm.timeout) in
$JONAS_BASE/conf/jonas.properties

»  Threads number (maxThreads, minSpareThreads, maxSpareThreads)allowed in tomcat
container (servlet): $JONAS_BASE/conf/server.xml

»  JDBC connection pool configuration: $JONAS_BASE/conf/PostgresSQL1 .properties |
idbc.minconpool, jdbc.maxconpool, jdbc.connmaxage, jdbc.maxwaiters ...)

+  jonas.service.ejb.maxworkthreads in $JONAS_BASE/conf/jonas.properties should be
at least greater than the sum of all mdb max cache size

The following parameters can be modified to tune the database:

Max. connection number allowed in database: /etc/postgresql/postgresql.conf
(max_connections, for postgres database).
The following parameters can be modified to tune the BPEL engine:

+  Servlet session timeout in tomcat container: web.xml (<session-timeout>30</session-
timeout>).

«  Number of axis servlet loaded on startup: web.xml.
¢ WS call timeout: web service implementation (setTimeOut(0)).

+  Database sharing in JOnAS (default is not to share the database): deployment
descriptor for each entity bean.

26  BSOA Orchestra - Overview & Examples



5.3

5.3.1

Binding Framework Configuration

The Binding Framework allows for the re-mapping of URLs and the addition of SOAP
aware binding components (Sender) that act as web services for systems that do not
support web services. This configuration is done by adding entries to the BFConfig.xml file
that is located in the $JONAS_BASE/conf directory.

URL Mapping

«  Mapping a URL endpoint to a configured "Sender":

<Sender s>
<Sender id='parts'

cl ass='com suppl i er. part SOAPSender' / >

</ Sender s>

<Endpoi nt s>

<Endpoi nt id="Supplier' href="http://supplier’

altref="bsoa://parts/partinfo'/>

</ Endpoi nt s>

This will cause the 'com.test.testSOAPSender' class to be instantiated and the “invoke”
method will be passed in the SOAP envelope string input as described in the WSDL. It
must return a SOAP envelope string as described in the WSDL for this operation. (This will
be discussed in more detail below.)

¢ Mapping a URL endpoint to an alternate URL:

<Endpoi nt s>

<Endpoint id="Test' href="http://ww.test.con
altref="http://ww.testl. com/>

</ Endpoi nt s>

This will substitute the URL http://www.test1.com for http://www.test.com. It is useful for
temporarily sending requests to another URL or, as described below, when used along with
the EndpointList statement.

Chapter 5. Advanced Configuration 27



28

Mapping an endpoint to a list of endpoints:

<Endpoi nt s>

<Endpoi nt id="Supplierl href="http://ww.supplierl.com
altref="http://ww. supplierl.confpartl' />

<Endpoi nt id="Supplier' href="http://supplier’
epref =" Suppliers' />

<Endpoi nt Li st id="Suppliers' default="SuppliersTest2' >
<Endpoi nt id="SuppliersTestl epref="Supplierl />

<Endpoi nt id="SuppliersTest2'
altref="http://ww. supplier2.com/>

</ Endpoi nt Li st >

</ Endpoi nt s>

This will substitute the URL http://www.supplier2.com for http://supplier. It is used when
there are multiple suppliers. Supplier1 is currently to be used, but this could change; by
modifying the configuration file, all the requests will go to a new URL.

BSOA Orchestra - Overview & Examples



5.3.2 Binding Components

A Binding component is a class that either implements
com.bull.bsoap.bpel.bindingframework.BFBindingComponent or includes a method with
the signature of:

/**
* | nvoke the configured conponent
* @aram senv String wsdl defined Request SOAPEnvel ope
* @aram parans String parans from endpoint specified
*

@eturn String wsdl defined Response record
* @hrows Exception

*

/

public String invoke(String sEnv, String parans) throws
Excepti on;

The SOAP envelope, corresponding to the WSDL definition, that is sent by AXIS to the
configured web service will be passed to the component, along with the parameter that
was configured at the end of the URL:

bsoa:// sender Nane/ par am

The senderName matches the id as defined in the Senders section of the BFConfig.xml file,
and param is the remainder of the URL that will be passed into the invoke method.

CONFIGURATION

Currently, this must be done before executing 'bsoap start'. This restriction will be lifted
when a complete configuration tool is available for the Binding Framework.

»  Define a Sender in BFConfig.xml.
<Sender s>
<Sender id='parts' class='"com supplier.partSOAPSender"' />

</ Sender s>

+  Define an Endpoint mapping to the Sender, bsoa must be the protocol used.
<Endpoi nt s>

<Endpoi nt id='"Supplier' href="http://supplier’
altref="bsoa://parts'/>

</ Endpoi nt s>

+  Build the component and install into the $BPEL_HOME/components directory. This can
either be a jar file or the exploded package structure.

+  Deploy any supporting jars into the $BPEL_HOME/support directory that are needed
by this component.

Chapter 5. Advanced Configuration 29



5.3.3 Deploying a Web Service on .NET

This document aims to explain how to create a web service on .NET. The
Demos/College/asyncSeasonTicket web service will be used. The intent is to deploy
asyncSeasonTicket on .NET. It will be called from a Java EE server for example.

PROCESS
1. Install Visual Studio 2003 and its prerequisites.

2. Update the PATH environment variable to add the bin directory of the .NET SDK.
(often: C:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin).

3. Create a source directory for the seasonTicket WS (it will be called sourceST).

Copy asyncSeasonTicket.wsd| (see RELATED DOCUMENT #1) in this directory.

A Warnings:

This file must be in one part (no import), move the content of the
asyncSeasonTicketAbstract.wsdl into asyncSeasonTicket.wsdl.

Consider changing the service URL (put
http://localhost/SeasonTicket/Service 1 .asmx)

5. Copy asyncSchoolEnrolment.wsdl in sourceST directory (see RELATED DOCUMENT #2
for the final file).

A Warnings:

Remove all import statements.
Remove all types, messages, port types not related to asyncSeasonTicketCallbackPT.

Consider changing the service URL (often
http://localhost:9000/axis/services/asyncseasonticketcallbackpt) in the address
location of asyncseasonticketcallbackpt port.

6. Open a shell window and go in sourceST.

7. Execute the following command: “wsdl /server asyncSeasonTicket.wsdl”. A file named
“AsyncSeasonTicketServiceBP.cs” will be generated.

8. Open Visual Studio.

30  BSOA Orchestra - Overview & Examples



Select “File” -> “New"” -> “Project”, select “Project Visual C#” in the type and

“ASP.NET Web Service” in the template. In the “Location” text box, write
“http://localhost/SeasonTicket”. Click on OK.

10. Double Click on ‘Form1’ to edit the C# code.

11. Go to the “View” menu and choose “Solution Explorer”. It appears on the right.

12. In the Solution Explorer, expand the applicaton tree.

13. Select “File” -> “Add Existing ltem”. Browse and choose
sourceSN\AsyncSeasonTicketServiceBP.cs.

14. In the solution explorer, rightlick on “references” and select “Add a Web Reference”.
In the URL field, enter the URL to sourceST\asyncSchoolEnrolment.wsd| (e.g:
file:\\D:\SeasonTicketSources\asyncSchoolEnrolment.wsdl). Click on “go”. Available
operations must appear. On the right bottom of the pop up window, in the field “Web
reference name:”, enter “enrollment”. Then click on “AddReference”.

15. Modify Servicel.asmx.cs file in Visual Studio.

On the top, add “using SeasonTicket.enrolment;”

Just before the class declaration (public class Servicel), add:
“[WebService(Namespace="http://bsoap.bull.com/bpel /demo/asyncSeasonTic
ket")].

Modify the class declaration by changing “System.Web.Services. WebService” to
“AsyncSeasonTicketServiceBP”.

Add the implementation of the “initiate” operation (see RELATED DOCUMENT
#3).

16. Remember to configure proxies of both the BPEL server and the .NET server.

17. Deploy the web service: go to the “Debugr” menu and select “Start”.

Chapter 5. Advanced Configuration 31



NOTES

1. Changing the URL of the callback

- In the solution explorer, open webReferences -> enrollement >
asyncSchoolEnrolment.wsdl and enter the new URL.

- In the solution explorer, open webReferences -> enrollement -> reference.map ->
reference.cs and enter the new URL.

- Deploy the web service.
2. Tracing the .NET web service execution

To see if the web service is called, add traces in the “initiate” method (see related RELATED
DOCUMENT #4).

RELATED DOCUMENT #1: asyncSeasonTicket.wsdl

<?xm version="1.0"7?>

<definitions

t ar get Nanespace="htt p:// bsoap. bul | . conl bpel / deno/ asyncSeasonTi cket "
xm ns:tns="http://bsoap. bul | . conf bpel / deno/ asyncSeasonTi cket"
xm ns: col | ege="http://bsoap. bull.con bpel / deno/ col | ege”
xm ns: bpws="http://schemas. xm soap. or g/ ws/ 2003/ 03/ busi ness-
process/"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xm soap. org/ wsdl /" >

<types>
<schema xm ns="http://ww. W3. or g/ 2001/ XM_Schena"
t ar get Nanespace="htt p:// bsoap. bul | . conl bpel / deno/ asyncSeasonTi cket ">
<conpl exType nanme="asyncSeasonTi cket Request" >
<sequence>
<el ement name="School BusDeparture" type="xsd:string" />
<el ement nane="School BusArrival" type="xsd:string" />
<el ement name="Subsi dyAgreenent" type="xsd:string" />
</ sequence>
</ conmpl exType>
</ schema>

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
t ar get Nanespace="htt p:// bsoap. bul | . coni bpel / deno/ col | ege" >
<conpl exType nane="recordl nf oType" >
<sequence>
<el ement m nCccurs="0" maxCccurs="1" nane="School Recor dN\b"
type="string" />
<el ement m nCccurs="0" maxCccurs="1" nane="Nane" type="string" />
<el ement m nCccurs="0" maxCccurs="1" nanme="Fi rst Nane"
type="string" />
<el ement m nCccurs="0" maxCccurs="1" nanme="Address" type="string" />
</ sequence>
</ conpl exType>
</ schema>
</types>

<message nanme="asyncSeasonTi cket Request Message" >

<part name="recordl nfo" type="college:recordl nfoType"/>

<part nanme="seasonTi cket Request" type="tns:asyncSeasonTi cket Request"/>
</ nessage>

32  BSOA Orchestra - Overview & Examples



<port Type nane="asyncSeasonTi cket PT" >
<operation nane="initiate">
<i nput nessage="t ns: asyncSeasonTi cket Request Message"/ >
</ operati on>
</ port Type>

<bi ndi ng name="AsyncSeasonTi cket PTSOAPBI ndi ng"
type="tns: asyncSeasonTi cket PT" >
<soap: bi ndi ng styl e="rpc"
transport="http://schenmas. xm soap. or g/ soap/ http"/>
<operation nanme="initiate" >
<soap: operation
soapAction="http://bsoap. bul | .com bpel / denb/ asyncSeasonTi cket"/ >
<i nput >
<soap: body use="encoded" nanespace=
encodi ngStyl e="http://schemas. xnm soap. or g/ soap/ encodi ng/ "/ >
</i nput >
</ operati on>
</ bi ndi ng>

<servi ce nane="AsyncSeasonTi cket Servi ceBP" >
<port nanme="asyncSeasonTi cket PT"
bi ndi ng="t ns: AsyncSeasonTi cket PTSOAPBi ndi ng" >
<soap: addr ess
| ocation="http://|ocal host/ SeasonTi cket 2/ Servi cel. asnx"/ >
</ port>
</ service>

</definitions>

RELATED DOCUMENT #2: asyncSchoolEnrolment.wsdl

<?xm version="1.0"?>

<definitions

t ar get Nanespace="htt p: // bsoap. bul | . coni bpel / deno/ asyncSchool Enr ol nent "
xm ns:tns="http://bsoap. bul | . conf bpel / deno/ asyncSchool Enr ol nent "
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schemas. xn soap. or g/ wsdl / soap/"
xm ns="http://schemas. xm soap. org/wsdl /" >

<types>
<schema xm ns=http://ww. w3. or g/ 2001/ XM_Schenma

t ar get Nanespace="htt p: // bsoap. bul | . coni bpel / deno/ asyncSchool Enr ol nent

<conpl exType nane="asyncSeasonTi cket Response" >
<sequence>
<el enent nane="School Recor dNb" type="xsd:string"/>
<el ement nane="School BusConpanyResponse" type="xsd:string"/>
<el enment nane="BusConpanyRecor dNb" type="xsd:string"/>
</ sequence>
</ conpl exType>
</ schema>
</types>

<message nanme="asyncSeasonTi cket ResponseMessage" >
<part nane="seasonTi cket Response"

type="tns: asyncSeasonTi cket Response"/ >

</ nessage>

>

Chapter 5. Advanced Configuration 33



34

<port Type nane="asyncSeasonTi cket Cal | backPT" >

<operation nane="onResul t

<i nput message="tns:asyncSeasonTi cket ResponseMessage"/ >

</ operati on>
</ port Type>

"

<bi ndi ng name="AsyncSeasonTi cket Cal | backPTSOAPBi ndi ng"
type="tns: asyncSeasonTi cket Cal | backPT" >

<soap: bi ndi ng styl e="rpc"

transport="http://schenmas. xm soap. or g/ soap/ http"/>

<operation nane="onResul t
<soap: operation

"

soapAction="http://bsoap. bul|l.com bpel /deno/ asyncSchool Enrol nent"/ >

<i nput >

<soap: body use="encoded"

nanmespace=

encodi ngStyl e="http://schenmas. xnm soap. or g/ soap/ encodi ng/ "/ >

</i nput >
</ operati on>
</ bi ndi ng>

<servi ce nane="AsyncSeasonTi cket Servi ceCal | backBP" >
<port nane="asyncSeasonTi cket Cal | backPT"
bi ndi ng="t ns: AsyncSeasonTi cket Cal | backPTSOAPBi ndi ng" >

<soap: address | ocation=

"http://1ocal host: 9000/ axi s/ servi ces/ asyncSeasonTi cket Cal | backPT"/ >

</ port>
</ service>

</definitions>

RELATED DOCUMENT #3: "initiate" operation

[ WebMet hod( MessageNane="asyncSeasonTi cket Request Message") |
public override void initiate(recordlnfoType recordl nfo,
asyncSeasonTi cket Request seasonTi cket Request)

{

string busStop = seasonTi cket Request. School BusDepart ure;

asyncSeasonTi cket Response str = new asyncSeasonTi cket Response() ;
str. School Recor dNb = recordl nfo. School Recor dNb ;

st r. BusConpanyRecor dNb =

st r. School BusConpanyResponse = "No BusStop with this Nane : "

bool found = fal se

found = found || busStop
found = found || busStop
found = found || busStop
found = found || busStop
found = found || busStop
found = found || busStop
i f (found)

st r. School BusConpanyResponse =

String rep = "BC'

ToLower (
ToLower (
ToLower (

ToLower (
ToLower (

)
)
)
ToLower ().
)
)

. Equal s("grenobl e");

. Equal s("eybens");

. Equal s("fontai ne");
Equal s("bresson");

. Equal s("echirol |l es");
. Equal s("jarrie");

"OK"

rep = recordl nfo. School RecordNb + rep

st r. BusConpanyRecor dNb
}

=rep ;

AsyncSeasonTi cket Servi ceCal | backBP asl=new
AsyncSeasonTi cket Servi ceCal | backBP() ;

asl.onResult(str);

BSOA Orchestra - Overview & Examples

+ busStop ;



RELATED DOCUMENT #4: tracing .NET web service execution

Add in Servicel.asmx.cs file the method:

public void wite(string st)

{
string filename = "d:\\tnp.txt";
StreamVWiter sw
if (File.Exists(filenane))

{
sw = new StreamNiter(filenane);
}
el se
{
sw = File.CreateText(fil enane);
}
sw. WitelLine(st+" : "+System DateTi nme. Now. ToString());
sw. Cl ose();
}

Replace “d:\\tmp.txt", with your own path.
Add “using System.lO;"” onto the top of the class.

Call this method in the initiate method (e.g: write “before invoke
AsyncSeaseanTicketCallBack”). This method only keeps the last trace, not all traces.

Chapter 5. Advanced Configuration

35



36  BSOA Orchestra - Overview & Examples



Technical publication remarks form

Title: BSOA Orchestra

Reference No.: 86 A2 53ER O1 Date: November 2006

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as
required.
If you require a written reply, please include your complete mailing address below.

NAME: Date:

COMPANY:

ADDRESS:

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dert

1 Rue de Provence

BP 208

38432 ECHIROLLES CEDEX
FRANCE

info@frec.bull.fr



Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON Phone: +33 (0) 2 417372 66
B.P.20845 FAX: +33 (0] 2417370 66
49008 ANGERS CEDEX 01 E-Mail: srv.Dupilcopy@bull.net
FRANCE

CEDOC Reference # Designation Qty

- - ___ _ L__1

e

- - ___ _L__1

e

- - ___ _L__1

e

{ __1 : The latest revision will be provided if no revision number is given.

NAME:

Date:

COMPANY:

ADDRESS:

PHONE: FAX:
E-MAIL:

For Bull Subsidiaries:

|dentification:

For Bull Affiliated Customers:
Customer Code:

For Bull Internal Customers:
Budgetary Section:

For Others: Please ask your Bull representative.






BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

REFERENCE No.
86 A2 53ER 01



	86 A2 53ER 01
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Chapter 1. Writing a BPEL Process
	BPEL Language
	Implementing an Orchestra BPEL Process
	Writing a WSDL File
	Writing a BPEL File
	Writing a Client File
	Entire Files for Echo Sample
	WSDL File
	BPEL File
	Client File


	Chapter 2. Running the Demos
	College Demo
	College Demo Setup
	Installing the College Demo
	Deploying the College Demo
	Using the Web Interface of the College Demo
	Cleaning the College Demo

	Telecom Demo
	Installing the Telecom Demo
	Deploying the Telecom Demo
	Use the Web Interface of the Telecom Demo
	Restarting the Telecom Demo
	Cleaning the Telecom Demo

	Loan Approval Demo
	Loan Approval Demo Setup
	Installing the Loan Approval Demo
	Deploying the Loan Approval Demo
	Deploying the Loan Approval Demo External Web Services
	Using the Web Interface of the Loan Approval Demo
	Cleaning the Loan Approval Demo


	Chapter 3. Running a Sample
	Deploying a Sample
	Executing a Sample

	Chapter 4. Unit Testing
	Executing One Unit Test as a Client Execution
	Executing All Unit Tests With JUnit
	Reading the JUnit Report

	Chapter 5. Advanced Configuration
	Orchestra Engine Configuration
	Engine Mode
	Monitoring Mode
	JBI Mode

	Orchestra Tuning
	Binding Framework Configuration
	URL Mapping
	Binding Components
	Deploying a Web Service on .NET



