

Petals Service Platform

Architecture overview

Draft

Adrien LOUIS

08 / 03 / 2005

Summary

1 MACROSCOPIC VIEW 3

2 PETALS CORE ELEMENTS 4

3 PETALS CONTAINER IN ACTION 5

START THE CONTAINER 5
REGISTER THE SERVICES 6
SEND A MESSAGE 7
RECEIVE A MESSAGE 9

Illustrations

Figure 1 : Petals as a JBI container ___ 3
Figure 2 : A ditributed environment ___ 3
Figure 3 : The container and its system services ___ 4
Figure 4 : Instantiation of the binding/engine components ___ 5
Figure 5 : Start of the components __ 5
Figure 6 : The "Address" element___ 6
Figure 7 : Register a service___ 6
Figure 8 : Send a message – external (component) view ___ 7
Figure 9 : Create a message and its itinerary__ 7
Figure 10 : Send a message - internal view ___ 8
Figure 11 : Receive a message - internal view ___ 9
Figure 12 : Receive a message - external (component) view __ 9

1 Macroscopic view

As Petals respects the JBI specification, it can be represented in a macroscopic overview with

the following diagram:

Figure 1 : Petals as a JBI container

A Petals container hosts JBI components, which expose some services.

Description of those services has to be provided by the hosting component in a WSDL2.0

way.

The services are exposed to the JBI environment (i.e. the other components of the Petals

environment) through endpoints.

A Petals container interacts with other Petals container in a transparent way for a component.

Thus, it allows a component to request a service hosted by a distant component.

Figure 2 : A ditributed environment

2 Petals core elements

A Petals container is build upon multiple elements:

• The Petals core element, which represents the master piece of the Petals container,

• System services components, which are plugged into the container:

o The Directory element, which is the access point of the distributed global

directory. It allows the container to register / unregister and to query

information about the distributed environment (other containers, services,

endpoints).

o The ItineraryResolver, which is in charge of the build of a message itinerary

(based on rules), by adding for example a data transformation service between

the sender and the receiver of a given message,

o The AddressResolver, which is in charge of finding physical addresses of the

services constituting a message itinerary (based on rules), with the help of the

Directory component.

o The Transporter element, which is used by the container to send and receive

messages to/from other containers,

The Directory and the Transporter components are directly associated to the container. The

ItineraryResolver and the AddressResolver are associated to a Router element, which is

associated to the container.

Figure 3 : The container and its system services

3 Petals container in action

Start the container

The Petals container hosts the user services, trought JBI components.

JBI components are third part elements, which have to be referenced in the container

configuration, and are loaded in the container environment at the initialization of it. They

have to respect the javax.jbi.component.Component interface to allow the container the

possibility to manage them and communicate with them.

Figure 4 : Instantiation of the binding/engine components

User components, a.k.a. binding and engine components in the JBI specification, are

initialized by the container before they start. The container initializes them with a

componentContext object. This is the element with which components will interact.

Figure 5 : Start of the components

Register the services

Components have to register in the JBI environment the services they expose, through their

componentContext. The container uses the Directory element to reference them in the

distributed directory.

The Directory manipulates Address elements, which contain all information about the

location of a service (the JBI ServiceEndpoint description, the container hosting this service

and the component in which this ServiceEndpoint is based).

Figure 6 : The "Address" element

Then, those services are ready to be called by other JBI components which are present in the

environment (Note that it is the charge of the Directory element to promote the registered

services in the distributed environment).

Figure 7 : Register a service

Send a message

For a component, the mean of sending a message is to use the DeliveryChannel object, which

is promoted by the ComponentContext object.

The DeliveryChannel allow the creation of MessageExchange through a

MessageExchangeFactory. It offer the possibility to create predefined MEP, such as InOnly,

InOutput, InOptionalOut and RobustInOnly messages.

Then the component specifies in this message the service that it is requesting, and the

message content to send.

Figure 8 : Send a message – external (component) view

The MessageExchange creation is made by the MessageExchangeFactory component.

An empty itinerary is then created and attached to the MessageExchange. Only the sender

address is specified in the itinerary.

Figure 9 : Create a message and its itinerary

When the component asks the DeliveryChannel to send its message, the DeliveryChannel

send it to the Router element.

First, the Router asks the ItineraryResolver to manage the itinerary of the message.

The ItineraryResolver uses rules to determine the itinerary of the given message.

Some examples of itinerary management can be:

• if the message has no recipient, send the message to a Content Based Routing service,

• if the message is written in French and the recipient is English, send the message to a

translation service before send it to the final recipient,

• …

Then, the destination of the message (the next node of the itinerary) has to be found.

The Router asks the AddressResolver to resolve the address of the destination, which consist

in finding a physic endpoint satisfying the destination address.

The AddressResolver has to find the container, the component and the endpoint name of the

destination.

If multiple real destinations satisfy the destination (for example, a translation service is hosted

by three containers), the AddressResolver uses rules to defined which real destination has to

be chosen.

Last, the Router asks the Transporter to send the message to the chosen real address.

Figure 10 : Send a message - internal view

Receive a message

When the Transporter of a container receives a message, it calls the

IncomingMessageDispatcher and gives to it the received message.

The IncomingMessageDispatcher look at the message and find the component that has to

receive the message.

Then, it pushes the message in the component’s incoming messages queue.

Figure 11 : Receive a message - internal view

When the component wants to read received messages, it calls the DeliveryChannel. The

DeliveryChannel looks at its incoming message queue and return the oldest message of the

queue, if any.

Figure 12 : Receive a message - external (component) view

