Non-Functional Exceptions for
Distributed and Mobile Objects

Denis Caromel and Alexandre Genoud

INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis
BP 93, 06902 Sophia Antipolis Cedex - France
First.Last@inria.fr
http://wuw.inria.fr/oasis/ProActive

Abstract. Exception handling strategies are the key to safe applica-
tions. While there has been quite a lot of research developing models to
remove non-functional properties from application code, the handling of
exceptions remains often associated to functional code. Existing solutions
are neither dynamic nor customizable and miss important features. Thus,
we defined Non-Functional Exceptions : exceptions due to abnormal be-
havior of non-functional properties such as distribution, transaction or
security. We proposed then a generic, dynamic, and flexible model based
upon a hierarchy of non-functional exceptions. In the context of dis-
tributed environments, this solution lead to the handling of exceptions
at non-functional level. ...

1 Introduction

Distributed environments require complex communications such as synchronous
and asynchronous calls, remote references, migration of activities and even in-
teractive tools to set up connectivity. Those communications need flexible mech-
anisms to handle exceptions related to distribution.

In the scope of Java for instance, RMI is an API for distributed programming,.
The limited java.io.RemoteException is provided and raised when an error
occurs, whatever the error is. The lack of information is obvious as nobody knows
exactly the nature of the exception despite additional encapsulated information.
The standard use of try/catch is convenient with simple communications but
not flexible enough with those presented above.

Unfortunately, existing solutions are not necessary well-adapted to large scale
distributed systems. Some of them do not work with asynchronous and mobile
environment while others, based upon centralized error manager, are not adapted
to the potential failure of communications. Moreover, their lack of customization
prevents the construction of complex fault tolerance strategies.

In this article, we first identify exceptions related to distribution as non-
functional exceptions, different from classical application level exceptions. We
present then a simple but powerful mechanism which provides hierarchical ex-
ception handling using some sets of object handlers. Handlers are exception man-
agers attached to various entities (JVMs, remote and mobile objects, proxies,...)

2 Denis Caromel and Alexandre Genoud

providing flexible and dynamic configuration well-adapted to distributed appli-
cations.

The previous concept has been implemented and bench-marked in the frame-
work of ProActive!, a library for parallel, distributed and mobile computing.
RMI, currently used as the transport layer, limits the control over exceptions
as it does not provide a specific and efficient handling mechanism. For such
distributed systems, flexibility as well as the possibility to create fault toler-
ance strategies would be a great improvement. Considering previous goals, the
concepts presented in this paper could be used with most of the distributed
environments.

The paper is organized as follow : we first present work related to excep-
tion handling in distributed architectures. Then, we define and classify non-
functional exceptions, particularly those related to distribution. In the next part,
we propose a model for hierarchical handling mechanisms. This model deal with
non-functional exceptions and offer the possibility to create advanced handling
strategies. Finally, we discuss performance issues and give practical examples.
We end up with some perspectives around components.

2 Related Work and Background

Through the development of a distributed library, many difficulties are encoun-
tered among which raising of exceptions. The standard mechanism, based upon
the try/catch control, is rather limited indeed, especially in distributed environ-
ment. Communication exceptions (i.e. remote call exception, migration excep-
tion...) as well as every exception related to distribution require specific handling
code. Unfortunately, constraints are let to the developer who write handling code
with every use of try/catch. This solution is not reliable because of the diffi-
culty to provide an interesting and re-usable strategy this way. The well-known
printStackTrace(e) pattern is not an interesting solution and should not be
retained anymore. As existing models are not necessarily complete as we will
see in the following paragraphs, RMI and other distributed libraries still miss a
generic and flexible handling mechanism.

2.1 Collaborative Exception Handling

We focus now on the work of [2] which provides an interesting model as well
as practical examples. In distributed environments, remote objects and other
entities can simultaneously raise exceptions. The algorithm presented in this
article uses the concept of conversation between processes. Distant processes save
their current state and join a conversation when they have to communicate. A set
of handlers associated with exceptions is built according to the communication.
When an error occurs, the guilty process try to handle the exception alone while
other processes wait passively : the conversation is paused. If the set of handlers

! www.inria.fr/oasis/ProActive

Non-Functional Exceptions for Distributed and Mobile Objects 3

is not sufficient, the conversation is canceled. Every process check some possible
side effect due to the raised exception before restoring original states.

This model looks really promising but imposes a collaborative strategy, and
fails with an important feature required by today’s distributed environments.
Asynchronous calls are indeed the weakest point of the mechanism. With such
calls, the return time of the result is unknown and thus the lifespan of the
conversation is also unknown. The conversation is maintained as long as the
result is not deliver but this specific case prevent the continuation of the program.

2.2 Centralized Error Manager

The work presented in [3] provide a model to handle exceptions in mobile agents
systems. Agents are a kind of active objects having autonomous behavior ac-
cording to their environment. As mobility is one possible behavior, agents decide
whether or not they migrate on other virtual machines.

Authors define a guardian as a centralized mechanism helping agents to han-
dle exceptions related to distribution. Only one guardian is needed for every
agent-based application. When an agent cannot handle an exception by itself, it
contacts the guardian which gives further instructions. Of course, instructions
depend of the agent environment. When distant objects are not reachable, the
guardian can advise to delay communication. When critical failures occur, the
guardian can terminate agents. It can also propose various and complex handling
solutions. An interesting strategy could be used when the migration of agents
fails : the guardian try to find an equivalent destination.

Nevertheless, centralized models suffer some weak points. Centralization,
which offers simplicity, is not scalable. The model presented here provides only
one guardian even for large distributed systems. What would happen if the con-
nection between the guardian and all agents is broken ? What would happen
if the guardian crashes ? Moreover, the mechanism seems mostly static which
means that he cannot be modified at runtime.

2.3 Distribution and Mobility with ProActive

As ideas and concepts introduced in this paper are implemented and bench-
marked within the ProActive library [4], this section presents its main features
and the global architecture.

ProActive is built on top of standard Java APIs?, it does not require any
modification to the standard Java execution environment, nor does it make use
of a special compiler, pre-processor or modified virtual machine. The model of
distribution and activity of ProActive is part of a larger effort to improve sim-
plicity and reuse in the programming of distributed and mobile object systems.

A distributed application built using ProActive is composed of a number of
medium-grained entities called active objects. An activity is composed of a single
active object which is the only entry point to the activity and any number of

2 Java RMI, the Reflection API

4 Denis Caromel and Alexandre Genoud

standard and private Java object. Each active object has its own thread of control
and is granted the ability to decide in which order to serve the incoming method
calls that are automatically stored in a queue of pending requests. Method calls
(see figure 1) sent to active objects are always asynchronous with transparent
future objects and synchronization is handled by a mechanism known as wait-by-
necessity. At the beginning of each asynchronous remote call, the caller blocks
until the call reaches the context of the callee (on figure 1, step 1 blocks until step
2 has completed). The ProActive library provides a way to migrate any active
object from any JVM to any other one through the migrateTo(...) primitive
which can either be called from the object itself or from another active object
through a public method call.

Object A Object B

Object A

2- The request for foo Object B

is appended to the queue

Body /
! 4-The thread of the body
/ executes method foo on object B

1- Object A performs

a call to method foo Proxy

}

3- A future object

is created Future

// 5~ The body updates the future
+~ with the result of the execution of foo

6- Object A can use the result

throught the future object Result

Local node Remote node

Fig. 1. Execution of Asynchronous Remote Method Call

3 Non-Functional Exceptions

Considering previous analysis, it is obvious that existing models cannot afford
our initial objectives. They are efficient in specific cases but not flexible enough
to cover the diversity of problems. They are neither customizable nor dynamic.
Moreover, no difference is made between exceptions related to distribution and
others. This is why we defined a new classification in order to achieve a suitable
mechanism.

3.1 Functional versus Non-Functional

In recent literature, some classifications of exceptions are proposed. According
to [5], exceptions can be divided into two categories. The internal exceptions
are raised and handled from within a method while the external exceptions are

Non-Functional Exceptions for Distributed and Mobile Objects 5

propagated toward other methods. In the specific context of distributed envi-
ronments, this classification misses something really important as it does not
represent the nature of exceptions but just gives an indication about where han-
dling takes place.

The intrinsic nature of an exception is used to define a non-functional excep-
tion as an exception raised from a non-functional property [6]. We make a clear
difference indeed between functional exceptions related to abnormal behavior
of applications, and non-functional exceptions related to abnormal operations
in non-functional properties. For instance, distribution is considered as a non-
functional property when it is transparent at application level. According to
the previous definition but also to [7] which claims that exceptions must be
handled at Meta level, exceptions related to distribution should be considered
as non-functional exceptions to achieve transparent handling. Transparent fault
tolerance strategies, developed with such non-functional exceptions, will then
improve soundness of applications and simplify the life of developers.

3.2 Classification of Non-Functional Exceptions for Distribution

We identified potential failures (see figure 2) which we used to gather exceptions.
We built then a logical and opened hierarchy where developers add their own
exceptions. However, this structure remains customizable as flexibility should be
the most important property of every handling model. Thus, we can create new
concerns if needed. This hierarchy is used to handle specific exceptions as well
as groups of exceptions.

Distributed Exceptionsl

[Communication] [Migration] [Security] [Creation] [Group] [Services]

| | |

" Serialization ActiveObject Servicerailed
OnDeparture Future :
OnArrival ReifyObject !
Send Receive Send Receive Send Receive
SendCom ; ReceiveCom SendCom ; ReceiveCom ‘ SendCom ; ReceiveCom
SendRequest ReceiveRequest SendRequest ReceiveRequest SendRequest ReceiveRequest

SendReply ReceiveReply SendReply ReceiveReply SendReply ReceiveReply

Fig. 2. Hierarchy of Non-Functional Exceptions for Distribution

6 Denis Caromel and Alexandre Genoud
3.3 Exceptions Raised from Synchronous and Asynchronous Calls

Literature provides different semantics of communication according to the needs
of applications.

— Synchronous Method Call : Callers send reified method calls and wait until
some results are returned.

— One-way Method Call : This asynchronous communication is used when no
result is returned.

— Asynchronous Method Call : Callers do not wait results which are stored in
future objects when available.

When remote calls fail, awaited results (which could be functional exceptions)
are replaced with non-functional exceptions. The handling is obviously different
according to the communication. With synchronous calls, non-functional excep-
tions are handled at results delivery. On the other hand, asynchronous calls
lead to two different solutions. They are first synchronously placed in queues
of pending requests. Exceptions are eventually handled next to this operation.
Then, awaited results are stored in future objects when available. Most of the
exceptions are handled in such future objects. The figure 3 summarize handling
location.

3.4 Dealing with Mobility

As many distributed environments offer mobile objects, we have to take into
account this particular constraints. We must provide an automatic and dynamic
way to adapt handling mechanism to mobility. As explained later, handling
mechanism is part of any mobile objects in order to carry on their strategy,
even after a migration. Nevertheless, the mechanism can also be associated to
proxy to have a specific strategy attached to remote references.

3.5 Non-Functional Exceptions at Functional Level

Sometimes, non-functional exceptions have to be handled at functional level.
Online banking applications give interesting examples. Clients connect to cen-
tralized server with any browser and make different operations on their account.
If the server is not reachable anymore, money transfers could be transparently
delayed while statements concerning the account cannot be obtained. In this spe-
cial case, the only solution consists to inform the client that the request failed.
The treatment is thus at functional application level.

4

Non-Functional Exceptions for Distributed and Mobile Objects 7

[Functional Code] [Non-Functional Distributed Code]

/l visanactiveobject ~(YMA

// foo returns an int

/I The call is synchronous ions 6 i
int result = v.foo(); o - —E-XEeE“-ODS—?SCy ratanytime __

/[bar returns a reifiable object E>§ceptions éccur when

/l Thecall i h o
S Y
Exceptions occur at \\\\\\\\\\

b.useResult(); @ - - LT -

/I The remote object migrate
v.migrateTo(""JVM B™);

/1 Object has migrated

/Itothe VM B
int result = v.foo(); @---- - - - - !

Handling Mechanism

@ -~ Exceptions raised and handled in non—functional code

Fig. 3. Various Contexts Lead to Different Handling Location

Hierarchical and Dynamic Handling

To achieve transparent handling, we suggest to deal with non-functional excep-
tions at a non-functional level. Intensive use of the previous hierarchy should
simplify the construction of the handling mechanism and improve its flexibil-
ity. Considering the models presented above as well as the current needs of
distributed environments, some features are highly desirable. We identify the
following characteristics as being needed.

1.
2.
3.

Handling of non-functional exceptions is achieved in non-functional code.
Configuration of handling mechanism must be both dynamic and flexible.
Setting occurs at various infrastructure levels.

— Middleware : static configuration in the code

— Virtual Machine
Setting also occurs at various programming entity levels.

— Remotely accessible entity

— Mobile entity

— Proxy

— Future object (with asynchronous calls)
Both centralized and collaborative mechanisms remain possible.
When needed, non-functional exceptions can be handled in functional code.

8 Denis Caromel and Alexandre Genoud

4.1 Reified Exception Handlers

Handlers are dedicated exception managers applied to non-functional exceptions.
To handle exceptions outside the functional code, the classical try/catch lan-
guage construct has to be reified into a dedicated object. A handler object have
to implement a specific interface called IHandler.

Interface IHandler {

// Is the exception managed by the current handler ?
public boolean isHandling(Exception e);

// Provide a treatment for handled exception(s)
public void handle(Exception e);
}

Handlers are built on the hierarchy of non-functional exceptions in order
to deal with exceptions (for example, SendRequestGroupException) as well as
groups of exceptions (every group exceptions, see [8] for further information
about group). Following this paragraph, we present a handler class implement-
ing the classical printStackTrace behavior for every exception. The optional
System.exit(0) can be removed to continue the execution of applications.

Class HPrintStackTrace implements IHandler {

public boolean isHandling(Exception e) {
return (e instanceOf Exception);

}

public void handle(Exception e) {
e.printStackTrace();
System.exit (0);
}
}

4.2 Prioritized Levels of Handling

Handlers are associated into static and dynamic levels. A static level is been
created at JVM initialization while a dynamic level is created at runtime. Each
of these levels provides a specific fault tolerance strategy built with a set of
handlers. Thus, we propose a basic strategy at default level while we offer more
complex ones at higher levels. Every non-functional exceptions has at least a
reliable handler at default level to ensure the security of the mechanism. The
following levels (presented from lower to higher priority) are associated to con-
stants within the implementation :

1. Default : Default level is static and initialized in core code. Static handlers
provide basic handling with every distributed exception.

2. Virtual Machine : Such dynamic handlers allow the configuration of a general
handling behavior for every VM.

Non-Functional Exceptions for Distributed and Mobile Objects 9

Remote and Mobile Object : Such objects can have their own handlers.
Proxy : References to active object can also have their own handlers.
Future : Results of asynchronous calls can require a specific treatment.
Code : Sometimes handlers are set punctually in the code.

o G W

Default handlers provide a basic handling strategy which avoid intensive use
of dynamic handlers. Construction and configuration happen during initializa-
tion of ProActive. Default level contains only static handlers which are provided
for every class of distributed exception.

VM and higher levels contain dynamic handlers to improve and adapt fault
tolerance strategies defined at default level. This is particularly useful when
different versions of a distributed middleware (Peer to Peer, Client/Server or
Desktop/Mobile applications) derive from a common source. Such dynamic han-
dlers are created at runtime and added to appropriate level (VM, active object,
proxy, future or temporary code levels). A standard strategy, common to ev-
ery distributed application, is provided with the default level while more specific
strategies are achieved with dynamic levels. Of course, as configuration change
from application to application, or even from execution ton execution, dynamic
handling offers obviously much more possibilities than static handling. Handlers
are modified or exchanged according to the context of environment.

4.3 Presentation of the API

We defined an API consisting of three major static functions to set, configure
and use handler properties.

// Binds an handler to a given class of exception at specific level.
void setExceptionHandler(Level, IHandler, Exception);

// Removes the handler associated to a given class at specific level.
IHandler unsetExceptionHandler(Level, Exception);

// Searches the handler associated to the class of the raised
// exception through the prioritized levels.
IHandler searchExceptionHandler(Exception);

This simple example show how to protect an application against potential
communication failures. Every communication exception of the given remote
object is from now managed by the new handler.

// Creation of a remote and mobile object
RO ro = (RO) ProActive.newActive("RO", params);

// Set a specific handler for communication
setExceptionHandler(ro.remoteObjectLevel,
\"CommunicationHandler\",
\"CommunicationException\");

// Remote method calls are protected
ro.foo();

10 Denis Caromel and Alexandre Genoud

We set up handlers statically and dynamically in order to build exception
handling strategies. The following code is part of a middleware and shows how
to use an exception handling mechanism at non-functional level.

try {
// Send reified method call
sendRequest (methodCall, null);

} catch (NonFunctionalException e) {

// Search a handler
IHandler handler = searchExceptionHandler(e);
handler.handle(e);
}

We summarize important stages to customize dynamic handler mechanism.

1. Define a Distributed Exception (see figure 2) within the hierarchy of non-
functional exceptions.

. Create a reliable handler from scratch or from an existing one.

. Register handler during initialization or at runtime (setEzceptionHandler).

. Adapt try/catch construction with searchEzceptionHandler.

[)

4.4 implementation

We tried to keep implementation as simple as possible. Performance issues were
also highly considered. Levels are represented with hashmap structures to pro-
vide instant access to handlers. We decided to minimize time complexity instead
of space. This decision seems obvious when considering the huge size of memory
available in our computer. However, dynamic levels can be associated to ac-
tive objects and made the choice difficult : migration implies indeed both active
objects and their dynamic levels.

Reflexion is highly used to search reliable handlers according to their class or
mother class. Levels have precedence over the type of exception. It means that
the search algorithm supports handlers of higher levels instead of more specific
handlers from lower level. For instance, on the figure 4, the handler HO1 is
chosen instead of HO3 because it belongs to an higher level. This option seems
to be more natural but it is still possible to reverse the priority when needed.

4.5 Performance Issues

Space Complexity Every JVM contains at least default and VM levels, each
one consisting of some handlers associated in a hashtable. In comparison with
available resources of modern computers, memory requirements are rather poor.
Of course, higher levels add weight to entities associated with them. Such dy-
namic handlers are created on the fly and associated, for example, to active
objects through the active object level. During migration, dynamic levels move
along with their associated active objects. We cannot ignore the cost which

Non-Functional Exceptions for Distributed and Mobile Objects 11

default Defaults Handlers

_default DefaultsHandlers

Fig. 4. Levels have Precedence over Exception Type

mostly depends of the number of handlers. We serialized active objects to com-
pute the overall size of handlers and levels. The empty size of the No handler
strategy could be reduced to 0 with the singleton pattern creating the data struc-
ture upon the first handler setting. The table 1 summarizes some typical space
requirements.

Time Complexity The Time complexity is interesting. Adding and remov-
ing handlers are just punctual operations which do not break performance. On
the other hand, searching handlers is almost complexity less due to some spe-
cific hashtable properties. Existing try/catch required by distributed methods
are overloaded with more complex strategies based upon our handling mecha-
nism. Overall performance are still efficient as the mechanism is only used when
exceptions occur. We did some benchmarks where we raised huge number of
non-functional exceptions and measured how long each handling mechanisms
did to find the reliable handler. Note that handling time is null as handlers do
nothing. Results are presented on the figure 5. We expected our handling mech-
anism to be a few times slower than the standard try/catch mechanism due to
its hierarchical and flexible architecture. But significant differences appear only
after thousand successive raised and handled exceptions. The performance ratio
between the two mechanisms is approximately of 1:4 which means that for reg-
ular use, the dynamic handler mechanism is competitive and can be compared
to other ones.

12

Denis Caromel and Alexandre Genoud

Strategy

Description

Number of Handlers

Size in Byte

No Handler

No handler is pro-
vided

0

82 (cost of an empty level)

Minimal

One
generic
achieve
safety

global and
handler
application

209

Per Group

One handler is pro-
vided for each group
of non-functional ex-
ception 2

1561

Per Communication

Every = communica-
tion exception has
2 handlers : remote
object level and VM
level

12 (2% 6)

2833

Table 1. Space Requirements Depends of the Number of Handlers

700

600

500

400

Handling Time (in millisecond)

200

100 -

T T T T
try/catch Handling Mechanism —+—
Dynamic Handler Mechanism ---x---

500

1
1000 1500

2000

1 1
2500 3000

Number of Raised Exceptions

1 1
3500 4000

Fig. 5. Time Complexity

Non-Functional Exceptions for Distributed and Mobile Objects 13

5 Canonical Examples

We present now some interesting properties of the model such as simplicity,
flexibility or robustness with the use of canonical examples.

5.1 Simulating a Centralized Error Manager

We demonstrate that our handling mechanism can easily be configured into
a centralized error manager as presented in [3]. We achieve a similar goal by
creating an active object containing plenty of prioritized handlers on one single
JVM. This object is known from every other JVM and from every active object.
When an exception occurs somewhere, the right handler is not searched in the
internal scope from where it has been raised but the exception is sent to this
centralized error manager. This manager searches the appropriate handler and
send it back to the caller in order to handle the exception. We don’t avoid
typical problems common to centralized error manager but we offer at least an
equivalent handling mechanism.

VM 4

Remote
Object

VM 2 VM 3

VM 1
Remote
Object RETED
Object
Remote
Remote Object Remote
Object Object
S 4

Notify an exception related
to distribution. Give also the
level from where it has been
raised

Centralized GUARDIAN |-~
Containing Set of Handlers

Guardian identifies the
appropriate according to the contex
of exception and send it back to the
remote object

Legend

Signal an exception

,,,,,, = Send back appropriate
handler

Fig. 6. Centralized Error Managers are simple to implement

5.2 Handling Exceptions with PDA

Personal Digital Assistants are mobile by definition. Distributed applications
running on such computers must provide unconnected mode to handle at least
CommunicationException due to broken connections. We created specific han-
dlers storing the pending requests raised when a PDA is no longer reachable.

14 Denis Caromel and Alexandre Genoud

Time by time, a dedicated thread check if the connection has been restored in
order to deliver the queued requests. As shown on 7, handling can be adapted
according to the PDA : B and C do not have specific behavior while A stores its
own requests.

PDA handlers have the following scheme (code is simplified).

Class HCommunicationExceptionPDA implements IHandler {

public boolean isHandling(Exception e) {
return (e instance0f CommunicationException);

}
public void handle(Exception e) {

// The first time an exception occur a

// thread testing connectivity is created

// This thread will deliver the queued requests
if (firstUse) {

connectivityThread = new ConnectivityThread();

}

// Then the reified method call is stored
// Exceptions are not propagated
queue.store(e.getReifiedMethodCall()) ;

5.3 Peer-to-Peer Fault-Tolerance Strategy

Peer-to-Peer computing running on large scale distributed systems is a source of
errors. In the case of SETI@home? clients first connect to a centralized server,
download and compute some amount of data and finally upload results to the
server. Each of these stages is subject to errors. With more advanced Peer-to-
Peer applications such as eDonkey*, the model is slightly different but the same
difficulties along with new ones appear. Of course, many solutions can deal with
complex environments but we are convinced that our mechanism is not only
reliable with large systems but also lead to easier managements of the handling
strategy. Each participant has an appropriate set of handlers corresponding to a
specific fault-tolerance strategy. Raised exceptions are handled according to the
participant and its particular context.

Nevertheless, this proposition should be seen as a possible perspective as
further work is required to offer sound Peer-to-Peer applications.

3 http://setiathome.ssl.berkeley.edu/
4 http://www.edonkey2000.com

Non-Functional Exceptions for Distributed and Mobile Objects 15

When PDAs are not available
Requests are queued

Queues of Pending

Request
When PDAs are available
queued requests ar e served

Fig. 7. Handlers Store Requests and Check Connectivity

6 Conclusion and Perspectives

We have developed a generic handling model for non-functional exceptions and
more specifically for exceptions related to distribution. As implementation use
the classical try/catch language construct, the model is reliable for a large panel
of programming language such as C++, Java or even the recent C+#.

We defined non-functional exceptions along with their classification and de-
scribed where and when handling takes place. Then, we built a hierarchy of
prioritized levels to provide hierarchical fault tolerance strategies. As seen in the
canonical examples, our model is not only generic but also flexible. Every han-
dling strategy can be adapted to the needs of specific distributed applications.

As future work, it would be interesting to develop exception handling compo-
nents based upon the model presented in this paper. We could plug such entities
directly in applications in order to provide specific handling strategies. More
generally, we could develop distributed and other non-functional strategies for
programming model such as component programming.

16

Denis Caromel and Alexandre Genoud

References

. Valerie Issarny. Concurrent FEzception Handling. Advances in Exception Handling

Techniques 2000: 111-127. Inria Rocquencourt.

. Jie Xu, Alexander B. Romanovsky and Brian Randell. Coordinated Exception Han-

dling in Distributed Object Oriented System (Revision and Correction). Department
of Computing Science, University of Newcastle upon Tyne, Newcastle upon Tyne,
UK.

Arnand Tripathi and Robert Miller . Ezception Handling in Agent-Oriented Sys-
tems. Advances in Exception Handling Techniques, Springer-Verlag LNCS 2022,
March 2001.

Denis Caromel, W. Klauser, J. Vayssiere. Toward Seamless Computing and Meta-
computing in Java. Concurrency Practice and Experience (September-November
1998) p. 1043-1061 Editor Geoffrey C. Fox, published by Wiley & Sons

Alessandro F. Garcia, Cecilia M. F. Rubira, Alexander Romanovsky and Jie Xu.
A Comparative Study of Fxception Handling Mechanisms for Building Dependable
Object-Oriented Software. Journal of Systems and Software, Elsevier, Vol. 59, Issue
2, November 2001, p. 197-222.

Kiczales, Lamping, Mendhekara, Maeda, Lopes, Loingtier, Irwin. Aspect-Oriented
Programming. Proceedings of ECOOP 97, n 1241 LNCS, Springer-Verlag, June 1997,
p- 220-242.

Tan S. Welch, Robert J. Stroud and Alexander Romanovsky. Aspects of Fxceptions
at the Meta-Level (Position Paper). Department of Computing, University of New-
castle upon Tyne.

Laurent Baduel, Frangoise Baude, Denis Caromel. Efficient, Flexible, and Typed
Group Communications in Java. Proceedings of the Joint ACM Java Grande -
ISCOPE 2002 Conference. Nov. 2002.

Anh Nguyen-Tuong. Integrating Fault-Tolerance Techniques in Grid Applications.
Partial Fullfillment of the Requirements for the Degree Doctor of Computer Science.
University of Virginia.

