
version 2.1 (October 2004)

GUIDED TOUR

This tour is a practical introduction to ProActive.

First you will get some practical experience on how to program using ProActive. This will help your understanding of the library, and of the
concepts driving it.
Second, you will be guided through some examples to run on your computer; this way, you will get an illustrated introduction to some of the
functionnalities and facilities offered by the library.

Alternatively, you can just have a look at the second part, where you just have to run the applications. In that case, do not worry about answering
the questions involving code modifications.

If you need further details on how the examples work, check the ProActive applications page.

http://www-sop.inria.fr/oasis/ProActive/apps/index.html

Table of Contents
0. Installation and setup..1

ProActive Installation..2
Quick Start...2

To Test ProActive with the examples..2
To develop with ProActive..2

Download and expand the archive...2
Run a few examples for testing..3

Local Example 1: Hello world !...3
Local Example 2: Reader/Writer...3
Local Example 3: The Dining Philosophers..3

CLASSPATH to set when writing application using ProActive...3
Create a java.policy file to set permissions..4
Create a log4j configuration file..4
Troubleshooting and support...4

1. Hands−on programming...6

1.1. The client − server example...7

Hello world ! example..8
The two classes..8

The Hello class...8
TheHelloClient Class..9
Hello World within the same VM..10
Hello World from another VM on the same host..10
Hello World from abroad: another VM on a different host...10

1.2. Initialization of the activity..12
Design of the application...12
Programming...12

InitializedHello..12
Execution...13

1.3. A simple migration example..14
1.3.1. Required conditions...14
1.3.2. design...14
1.3.3. Programming...15

a) the MigratableHello class..15
c) the client class..15

1.3.4. Execution...15

1.4. migration of graphical interfaces..17
Design of the application...17
Programming...17

HelloFrameController..18
HelloFrame..18

Execution...18
...19

2. Introduction to some of the functionalities of ProActive...19

2.1. Synchronization with ProActive..20
The readers−writers...20

1. start the application..20
2. look and check the effect of different policies : even, writer priority, reader priority...21
3. look at the code for programming such policies..21
4. Introduce a bug in the Writer Priority policy...22

The dining philosophers...22
1. start the philosophers application...22
2. understand the color codes...23
3. test the autopilot mode...24

ProActive guided tour

i

Table of Contents
2.1. Synchronization with ProActive

4. test the manual mode...24
5. start the IC2D application..24

2.2. Parallel processing with ProActive..28
C3D : a parallel, distributed and collaborative 3D renderer..28

1. start C3D..28
2. start a user..30
3. start a user from another machine..31
4. start IC2D to visualize the topology..32
5. drag−and−drop migration..33
6. start a new JVM in a computation...34
7. have a look at the source code for the main classes of this application :...34

2.3. Migration of active objects...35
Mobile agents...35

1. start the penguin application..35
2. start IC2D to see what is going on...35
3. add an agent...35
4. add several agents..35
5. move the control window to another user..36

3.0. SPMD Programming..37
OO SPMD on a Jacobi example..37

1. Execution and first glance at the Jacobi code..37
1.1 Source files: ProActive/src/org/objectweb/proactive/examples/jacobi...37
1.2 Execution...37
2. Modification and compilation..38
2.1 Source modification...38
2.2 Compilation...38
3. Detailed understanding of the OO SPMD Jacobi..38
3.1 Structure of the code..38
3.2 OO SPMD behavior...39
3.3 Adding a Method barrier for a step by step execution...39
3.4 Undestanding various different kind of barriers..41
4. Virtual Nodes and Deployment descriptors...43
4.1 Virtual Nodes...43
4.2 XML Descriptors...43
4.3 Changing the descriptor...44
5. Execution on several machines and Clusters...44
5.1 Execution on several machines in the room..44
5.2 Execution on Clusters..44

3. Conclusion..45

ProActive guided tour

ii

0. Installation and setup
Follow the link for downloading and installing ProActive.

The programming exercises in the first part imply that you :

Don't forget to add the required libraries to your classpath (i.e. the libraries contained in the ProActive/lib directory, as well as either the
proactive.jar archive, or the compiled classes of proactive (better if you modify the source code)

•

use a policy file, such as ProActive/scripts/unix/proactive.security.policy, with the JVM option
−Djava.security.policy=/filelocation/proactive.java.policy

•

Set the CLASSPATH as follow :

Under linux :

export
CLASSPATH=.:./ProActive_examples.jar:./ProActive.jar:./lib/bcel.jar:./lib/asm.jar:./lib/log4j.jar:./lib/xercesImpl.jar:./lib/fractal.jar:./lib/bouncycastle.jar

Under windows :

set CLASSPATH=.;.\ProActive_examples.jar;.\ProActive.jar;.\lib\bcel.jar;.\lib\asm.jar;.\lib\log4j.jar;.\lib\xercesImpl.jar;.\lib\fractal.jar;.\lib\bouncycastle.jar

Concerning the second part of the tutorial (examples of some functionalities):

Note that the compilation is managed by Ant ; we suggest you use this tool to make modifications to the source code, while doing this tutorial.
Nevertheless, you can just change the code and compile using compile.sh <the example application> (or compile.bat under windows)

•

The examples used in the second part of this tutorial are provided in the /scripts directory of the distribution.
The scripts are platform dependant : .sh files on linux are equivalent to the .bat files on windows

•

0. Installation and setup 1

http://jakarta.apache.org/ant

ProActive Installation
ProActive is made available for download under a LGPL license. ProActive requires the JDK 1.4 or later to be installed on your computer. Please note that
ProActive will NOT run with any version prior to 1.4 since some features introduced in JDK 1.4 are essential.

Quick Start

To Test ProActive with the examples

Download and unzip the ProActive archive•
Set the JAVA_HOME variable to the Java distribution you want to use•
Launch the scripts located in ProActive/scripts/unix or ProActive/scripts/windows•
no other setting is necessary since the scripts given with the example take care of everything•

To develop with ProActive

Download and unzip the ProActive archive•
Include in your CLASSPATH the following jar files ProActive/ProActive.jar, ProActive/lib/asm.jar,
ProActive/lib/log4j.jar, ProActive/lib/xercesImpl.jar, ProActive/lib/fractal.jar,
ProActive/lib/bouncycastle.jar

•

Don't forget to launch the JVM with a security policy file. You can also specify a log4j configuration file with the property
−Dlog4j.configuration=file:pathToFile. If not specified a default logger that logs on the console will be created

•

Below are described the different steps in more details.

Download and expand the archive

You can download the archive file (a standard zip file) containing ProActive from the download section of the ProActive home page. You will be asked to
accept the licence agreement and provide a few personal details including your email address. You will then within a few minutes receive an email.

Unzip the archive using your favorite ZIP program, such as Winzip under Windows or the unzip command−line utility on most Unix systems. Unzipping the
archive creates a ProActive directory and all the files contained in the archive go into this directory and its subdirectories.

Here is a quick overview of the directory structure of the archive:

Directory or File Description

ProActive.jar
ProActive bytecode that you need to include in the CLASSPATH in
order to use ProActive

ProActive_examples.jar

The bytecode and resources of all examples included with ProActive.
This jar file needs to be included in the CLASSPATH only when trying
to run the examples. All examples rely on ProActive and therefore the
ProActive.jar file must be included in the CLASSPATH as well.
This is done automatically by the scripts driving the examples. The
source code is also included in the src directory (see below)

ic2d.jar

The bytecode and resources of IC2D. This jar file needs to be included
in the CLASSPATH only when trying to run the application IC2D.
IC2D relies on ProActive and therefore the ProActive.jar file
must be included in the CLASSPATH. This is done automatically by
the scripts launching the application. The source code is also included in
the src directory (see below)

lib The external libraries used by ProActive

docs ProActive documentation including the full api doc

scripts/unix Unix sh scripts for running the examples

scripts/windows Windows .bat batch files for running the examples

src For source version only, the full source code of ProActive

ProActive Installation 2

http://www-sop.inria.fr/oasis/proactive/disclaimer.html
http://www.gnu.org/copyleft/lesser.txt
http://java.sun.com/j2se/1.4/
http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html
http://logging.apache.org/log4j/docs/manual.html
http://www-sop.inria.fr/oasis/proactive/disclaimer.html
http://www.winzip.com/
http://www.info-zip.org/pub/infozip/

compile For source version only, the scripts to compile ProActive using Ant.

Run a few examples for testing

You can try to run the test applications provided with ProActive. Each example comes with a script to launch the application. Depending on you operating
system, the script you need to launch is located either in ProActive/scripts/unix or ProActive/scripts/windows. The source code of all
examples can be found in the directory ProActive/src/org/objectweb/proactive/examples.

Local Example 1: Hello world !

A simple example.

script : hello.sh or hello.bat•
source : ProActive/src/org/objectweb/proactive/examples/hello•

Local Example 2: Reader/Writer

This example is the ProActive version of the Readers/Writers canonical problem. To illustrate the ease−of−use of the ProActive model, different
synchronization policies can be applied without even stopping the application. This example is based on a easy to use Swing GUI.

script : readers.sh or readers.bat•
source : ProActive/src/org/objectweb/proactive/examples/readers•

Local Example 3: The Dining Philosophers

This example is one possible implementation of the well−known Dining Philosophers synchronization problem. This example is based on a easy to use
Swing GUI.

script : philosophers.sh or philosophers.bat•
source : ProActive/src/org/objectweb/proactive/examples/philosophers•

CLASSPATH to set when writing application using ProActive

Note that if you use the scripts provided with the distribution to run the examples you do not need to update your classpath.

In order to use ProActive in your application you need to place in your CLASSPATH the following jars files :

ProActive.jar : the library itself1.
asm.jar in lib directory : ASM the default bytecode manipulation framework used to dynamically generate the java bytecode of the Stubs2.
log4j.jar in lib directory : Log4j is the logging mechanism used in ProActive. You can define the way you want to log(console, file, GUI) by
creating a log4j configuration file, like the one used in ProActive's example and located under ProActive/scripts/unix or windows. In that case,
remind to run your java command with the property:
−Dlog4j.configuration=file:pathToLog4jFile

3.

xercesImpl.jar in lib directory : Xerces is the library used to parse and validate xml files, like Deployment Descriptors, Configuration files
and Component files

4.

fractal.jar in lib directory : Fractal is the component model used for ProActive Components5.
bouncycastle.jar in lib directory : This library is used by the ProActive security framework6.

You do not need to modify your CLASSPATH permanently as long as you include the two entries above using a Java IDE or a shell script.

In addition to the jar files above you may want to add the following jar files. None of them are used directly by the core functionnalities of ProActive but
only in part of the library. Their are needed to compile all the code but they are not needed at runtime if those specific functionnalities are not used.

bcel.jar in lib directory : BCEL is also a bytecode manipulation framework that can be used optionnally (adding the
−DbyteCodeManipulator=BCEL argument to the JVM)

1.

jini−core.jar, jini−ext.jar, reggie.jar in lib directory: used to interface with Jini2.
cog−jglobus.jar, cog−ogce.jar, cryptix.jar, cryptix32.jar, cryptix−asn1.jar, puretls.jar in lib
directory: used to interface with Globus

3.

ProActive guided tour

Run a few examples for testing 3

http://logging.apache.org/log4j/docs/manual.html

Create a java.policy file to set permissions

If you use the scripts provided with the distribution to run the examples an existing policy file named proactive.java.policy will be used by default

See Permissions in the JavaTM 2 SDK to learn more about Java permissions. As a first approximation to run your code you can create a simple policy file
granted all for everything :

grant {
 permission java.security.AllPermission;
};

Create a log4j configuration file

If you use the scripts provided with the distribution to run the examples an existing log4j file named proactive−log4j will be used by default

Example

the default logging level is INFO

log4j.rootLogger=INFO, A1

#A1 uses PatternLayout
#and displays the associated message (%m)
#using the platform dependant separator (%n)
#Use %M for method names
#see log4j documentation for details

log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%m %n

########### Change here default logging level on a
########### per−logger basis
########### usage is log4j.logger.className=Level, Appender

Troubleshooting and support

If you encounter any problem with installing ProActive and running the examples, please make sure you correctly followed all the steps described above. If
it doesn't help, here is a list of the most common mistakes:

Permission denied when trying to launch scripts under Linux Permissions do not allow to execute files. Just change the permissions with
chmod 755 *.sh

•

Java complains about not being able to find ProActive's classes. Your CLASSPATH environment variable does not contain the entry for the
ProActive's or ASM's or Log4j's or Xerces' or Fractal's or BouncyCastle's classes. ProActive.jar,asm.jar, log4j.jar,
xercesImpl.jar, fractal.jar, bouncycastle.jar must be in your CLASSPATH.

•

Java complains about denial of access. If you get the following exceptions, you probably didn't change the file java.policy as described in step 4.

org.objectweb.proactive.NodeException:
java.security.AccessControlException: access denied
(java.net.SocketPermission 127.0.0.1:1099 connect,resolve)
 at org.objectweb.proactive.core.node.rmi.RemoteNodeImpl.<init>(RmiNode.java:17)
 at org.objectweb.proactive.core.node.rmi.RemoteNodeFactory._createDefaultNode (RmiNodeFactory.java, Compiled Code)
 at org.objectweb.proactive.core.node.NodeFactory.createDefaultNode(NodeFactory.java:127)
 at org.objectweb.proactive.core.node.NodeFactory.getDefaultNode(NodeFactory.java:57)
 at org.objectweb.proactive.ProActive.newActive(ProActive.java:315)
 ...

Exception in thread "main" java.lang.ExceptionInInitializerError:
java.security.AccessControlException: access denied
(java.util.PropertyPermission user.home re ad)
 at java.security.AccessControlContext.checkPermission (AccessControlContext.java, Compiled Code)
 at java.security.AccessController.checkPermission(AccessController.java:403)
 at java.lang.SecurityManager.checkPermission(SecurityManager.java:549)
 at java.lang.SecurityManager.checkPropertyAccess(SecurityManager.java:1243)
 at java.lang.System.getProperty(System.java:539)
 at org.objectweb.proactive.mop.MOPProperties.createDefaultProperties (MOPProperties.java:190)
 ...

•

Java complains log4j initialization If you get the following message, you probably made a mistake when giving the −Dlog4j.configuration
property to the java command. Be sure that the given path is right, try also to add file: before the path.

•

ProActive guided tour

Create a java.policy file to set permissions 4

http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html

 log4j:WARN No appender could be found for logger
 log4j:WARN Please initialize the log4j system properly

Examples and compilation do not work at all under Windows system: Check if your java installation is not in a directory with spaces like
C:\Program Files\java or C:\Documents and Settings\java. Indeed bat scripts do not run properly when JAVA_HOME is set to such directories. To
get rid of those problems, the best thing is to install jdk in a directory whose name does not contain spaces such as C:\java\j2sdk.... or
D:\java\j2sdk... and then to set the JAVA_HOME environment variable accordingly: set JAVA_HOME=C:\java\j2sdk....

•

If you cannot solve the problem, feel free to email us for support at: proactive−support@sophia.inria.fr. Make sure you include a precise description of your
problem along with a full copy of the error message you get.

ProActive guided tour

Create a java.policy file to set permissions 5

mailto:proactive-support@sophia.inria.fr

1. Hands−on programming
Here is an introduction to programming with ProActive. It should give you a first flavor, and you will be able to see some more advanced examples in the
section "introduction to some functionalities of the library".

The program that we will develop is a kind of "helloworld" example. We will increase the complexity of the example, so that you familiarize yourself with
different features of ProActive.

First, we will code a "client−server" application, the server being an active object.•
Second, we will see how we can control the activity of an active object.•
Third, we will add mobility to this active object.•
Eventually, we will attach a graphical interface to the active object, and we will show how to move the widget between virtual machines (like in
the penguin example).

•

1. Hands−on programming 6

1.1. The client − server example
This example implements a very simple client−server application. You will find it here, as it is the HelloWorld example earlier mentionned in this manual. A
client object displays a String gotten from a remote server.

The corresponding class diagram is the following :

1.1. The client − server example 7

Hello world ! example
This example implements a very simple client−server application. A client object display a String received from a remote server. We will see how to write
classes from which active and remote objects can be created, how to find a remote object and how to invoke methods on remote objects.

The two classes

Only two classes are needed: one for the server object Hello and one for the client that accesses it HelloClient.

The Hello class

This class implements server−side functionalities. Its creation involves the following steps:

Provide an implementation for the required server−side functionalities•
Provide an empty, no−arg constructor•
Write a main method in order to instantiate one server object and register it with an URL.•

Here is a possible implementation for the Hello class:

Hello.java

public class Hello {

 private String name;
 private String hi = "Hello world";
 private java.text.DateFormat dateFormat = new java.text.SimpleDateFormat("dd/MM/yyyy HH:mm:ss");

 public Hello() {
 }

 public Hello(String name) {
 this.name = name;
 }

 public String sayHello() {
 return hi + " at " + dateFormat.format(new java.util.Date())+
 " from node : " + org.objectweb.proactive.ProActive.getBodyOnThis().getNodeURL();
 }

 public static void main(String[] args) {
 // Registers it with an URL
 try {
 // Creates an active instance of class HelloServer on the local node
 Hello hello = (Hello)org.objectweb.proactive.ProActive.newActive(Hello.class.getName(), new Object[]{"remote"});
 java.net.InetAddress localhost = java.net.InetAddress.getLocalHost();
 org.objectweb.proactive.ProActive.register(hello, "//" + localhost.getHostName() + "/Hello");
 } catch (Exception e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

Implement the required functionalities

Implementing any remotely−accessible functionality is simply done through normal Java methods in a normal Java class, in exactly the same manner it
would have been done in a non−distributed version of the same class. This has to be contrasted with the RMI approach, where several more steps are needed:

Define a remote interface for declaring the remotely−accessible methods.•
Rewrite the class so that it inherits from java.rmi.server.UnicastRemoteObject, which is the root class of all remote objects.•
Add remote exceptions handling to the code.•

Hello world ! example 8

Why an empty no−arg constructor ?

You may have noticed that class Hello has a constructor with no parameters and an empty implementation. The presence of this empty no−arg constructor
is imposed by ProActive and is actually a side−effect of ProActive's transparent implementation of active remote objects (as a matter of fact, this side−effect
is caused by ProActive being implemented on top of a 100% Java metaobject protocol). If no such constructor is provided, active objects cannot be created.
If no constructor at all is provided, active objects can still be created because, in this specific case, all Java compilers provide a default no−arg empty
constructor. If a no−arg constructor is provided but its implementation is not empty, unwanted behavior may appear because the no−arg constructor is
always called when an active object is created, whatever code the user can write.

Creating the remote Hello object

Now that we know how to write the class that implements the required server−side functionalities, let us see how to create the server object. In ProActive,
there is actually no difference between a server and a client object as both are remote objects.Creating the active object is done through instantiation−based
creation. We want this active object to be created on the current node, which is why we use newActive with only two parameters. In order for the client to
obtain an initial reference onto this remote object, we need to register it in the registry (which is actually the well−known rmiregistry) with a valid RMI
URL.

The HelloClient Class

The responsibility of this class is first to locate the remote server object, then to invoke a method on it in order to retrieve a message, and finally display that
message.

HelloClient.java

public class HelloClient {

 public static void main(String[] args) {
 Hello myServer;
 String message;
 try {
 // checks for the server's URL
 if (args.length == 0) {
 // There is no url to the server, so create an active server within this VM
 myServer = (Hello)org.objectweb.proactive.ProActive.newActive(Hello.class.getName(), new Object[]{"local"});
 } else {
 // Lookups the server object
 System.out.println("Using server located on " + args[0]);
 myServer = (Hello)org.objectweb.proactive.ProActive.lookupActive(Hello.class.getName(), args[0]);
 }
 // Invokes a remote method on this object to get the message
 message = myServer.sayHello();
 // Prints out the message
 System.out.println("The message is : " + message);
 } catch (Exception e) {
 System.err.println("Could not reach/create server object");
 e.printStackTrace();
 System.exit(1);
 }
 }
}

Looking up a remote object

The operation of lookup simply means obtaining a reference onto an object from the URL it is bound to. The return type of method
Proactive.lookupActive() is Object, then we need to cast it down into the type of the variable that holds the reference (Hello here). If no object
is found at this URL, the call to Proactive.lookupActive() returns null.

Invoking a method on a remote object

This is exactly like invoking a method on a local object of the same type. The user does not have to deal with catching distribution−related exceptions like,
for example, when using RMI or CORBA. Future versions of ProActive will provide an exception handler mechanism in order to process these exceptions in
a separate place than the functional code. As class String is final, there cannot be any asynchronism here since the object returned from the call cannot
be replaced by a future object (this restriction on final classes is imposed by ProActive's implementation).

ProActive guided tour

The Hello class 9

Printing out the message

As already stated, the only modification brought to the code by ProActive is located at the place where active objects are created. All the rest of the code
remains the same, which fosters software reuse.

Hello World within the same VM

In order to run both the client and server in the same VM, the client creates an active object in the same VM if it doesn't find the server's URL. The code
snippet which instantiates the Server in the same VM is the following:

if (args.length == 0) {
 // There is no url to the server, so create an active server within this VM
 myServer = (Hello)org.objectweb.proactive.ProActive.newActive(Hello.class.getName(), new Object[]{"local"});
}

To launch the Client and the Server, just type:

linux> java −Djava.security.policy=scripts/unix/proactive.java.policy
−Dlog4j.configuration=file:scripts/unix/proactive−log4j
org.objectweb.proactive.examples.hello.HelloClient

windows> java −Djava.security.policy=scripts\unix\proactive.java.policy
−Dlog4j.configuration=file:scripts\unix\proactive−log4j
org.objectweb.proactive.examples.hello.HelloClient &

Hello World from another VM on the same host

Starting the server

Just start the main method in the Hello class.
linux> java −Djava.security.policy=scripts/unix/proactive.java.policy
−Dlog4j.configuration=file:scripts/unix/proactive−log4j org.objectweb.proactive.examples.hello.Hello

windows> java −Djava.security.policy=scripts\unix\proactive.java.policy
−Dlog4j.configuration=file:scripts\unix\proactive−log4j org.objectweb.proactive.examples.hello.Hello &

Launching the client

linux> java −Djava.security.policy=scripts/unix/proactive.java.policy
−Dlog4j.configuration=file:scripts/unix/proactive−log4j
org.objectweb.proactive.examples.hello.HelloClient //localhost/Hello

windows> java −Djava.security.policy=scripts\unix\proactive.java.policy
−Dlog4j.configuration=file:scripts\unix\proactive−log4j
org.objectweb.proactive.examples.hello.HelloClient //localhost/Hello

Hello World from abroad: another VM on a different host

Starting the server

Log on to the server's host, and launch the Hello class.
linux remoteHost> java −Djava.security.policy=scripts/unix/proactive.java.policy
−Dlog4j.configuration=file:scripts/unix/proactive−log4j org.objectweb.proactive.examples.hello.Hello

windows remoteHost> java −Djava.security.policy=scripts\unix\proactive.java.policy
−Dlog4j.configuration=file:scripts\unix\proactive−log4j org.objectweb.proactive.examples.hello.Hello &

Launching the client

Log on to the client Host, and launch the client
linux clientHost> java −Djava.security.policy=scripts/unix/proactive.java.policy
−Dlog4j.configuration=file:scripts/unix/proactive−log4j
org.objectweb.proactive.examples.hello.HelloClient //remoteHost/Hello

ProActive guided tour

The HelloClient Class 10

windows clientHost> java −Djava.security.policy=scripts\unix\proactive.java.policy
−Dlog4j.configuration=file:scripts\unix\proactive−log4j
org.objectweb.proactive.examples.hello.HelloClient //remoteHost/Hello

ProActive guided tour

The HelloClient Class 11

1.2. Initialization of the activity
Active objects, as indicates their name, have an activity of their own (an internal thread).
It is possible to add pre and post processing to this activity, just by implementing the interfaces InitActive and EndActive, that define the methods
initActivity and endActivity.

The following example will help you to understand how and when you can initialize and clean the activity.

When instanciated, the activity of an object is automatically started, but it will first do what is written in the initActivity method.

Ending the activity can only be done from inside the active object (i.e. from a call to its own body). This is the reason why we have written a terminate
method in the following example.

Design of the application

The InitializedHello class extends the Hello class, and implements the interfaces InitActive and EndActive.It acts a a server for the InitializedHelloClient
class.

The main method is overriden so that it can instantiate the InitializedHello class

Programming

InitializedHello

The source code of the InitializedHello class is here.

initActivity and endActivity here just log messages onto the console, so you can see when they are called.

initActivity is called at the creation of the active object, while endActive is called after the activity has terminated (thanks to the method terminate).

Here is the initActivity method :

public void initActivity(Body body) {
 System.out.println("I am about to start my activity");
}

Here is the endActivity method :

public void endActivity(Body body) {
 System.out.println("I have finished my activity");
}

The following code shows how to terminate the activity of the active object :

public void terminate() {

1.2. Initialization of the activity 12

 // the termination of the activity is done through a call on the
 // terminate method of the body associated to the current active object
 ProActive.getBodyOnThis().terminate();
}

The only differences from the the previous example is the classes instantiated, which are now InitializedHello (and not Hello) and InitializedHelloClient, and
you will add a call to hello.terminate().

InitializedHello: Code is here.

InitializedHelloClient: Code is here.

So, create InitializedHelloClient.java and InitializedHello.java in src/org/objectweb/proactive/examples/hello

Now compile all proactive sources

cd compile
windows>build.bat examples
linux>build examples
cd ..

Add "./classes" directory to CLASSPATH to use these two new source files

windows>set
CLASSPATH=.;.\classes;.\ProActive_examples.jar;.\ProActive.jar;.\lib\bcel.jar;.\lib\asm.jar;.\lib\log4j.jar;.\lib\xercesImpl.jar;.\lib\fractal.jar;.\lib\bouncycastle.jar
linux>export
CLASSPATH=.:./classes:./ProActive_examples.jar:./ProActive.jar:./lib/bcel.jar:./lib/asm.jar:./lib/log4j.jar:./lib/xercesImpl.jar:./lib/fractal.jar:./lib/bouncycastle.jar

Execution

Execution is similar to the previous example; just use the InitializedHelloClient client class and InitializedHello server class.

Starting the server

linux> java −Djava.security.policy=scripts/unix/proactive.java.policy
−Dlog4j.configuration=file:scripts/unix/proactive−log4j
org.objectweb.proactive.examples.hello.InitializedHello

windows> java −Djava.security.policy=scripts\unix\proactive.java.policy
−Dlog4j.configuration=file:scripts\unix\proactive−log4j
org.objectweb.proactive.examples.hello.InitializedHello &

Launching the client

linux> java −Djava.security.policy=scripts/unix/proactive.java.policy
−Dlog4j.configuration=file:scripts/unix/proactive−log4j
org.objectweb.proactive.examples.hello.InitializedHelloClient //localhost/Hello

windows> java −Djava.security.policy=scripts\unix\proactive.java.policy
−Dlog4j.configuration=file:scripts\unix\proactive−log4j
org.objectweb.proactive.examples.hello.InitializedHelloClient //localhost/Hello

ProActive guided tour

Execution 13

1.3. A simple migration example
This program is a very simple one : it creates an active object that migrates between virtual machines. It is a extension of the previous client−server example,
the server now being mobile.

1.3.1. Required conditions

The conditions for MigratableHello to be a migratable active object are :

− it must have a constructor without parameters : this is a result of a ProActive restriction : the active object having to implement a no−arg constructor.

− implement the Serializable interface (as it will be transferred through the network).

Hello, the superclass, must be able to be serialized, in order to be transferred remotely. It does not have to implement directly java.io.Serializable, but its
attributes should be serializable − or transient. For more information on this topic, check the manual.

1.3.2. design

We want to further enhance InitializedHello it by making migratable : we'd like to be able to move it across virtual machines.

Thus, we create a MigratableHello class, that derives from InitializedHello. This class will implement all the non−functionnal behavior concerning the
migration, for which this example is created. The Hello class (and InitializedHello) is left unmodified.

Note that the migration has to be initiated by the active object itself. This explains why we have to write the moveTo method in the code of MigratableHello
− i.e. a method that contains an explicit call to the migration primitive. (cf migration documentation)

MigratableHello also implements a factory method for instanciating itself as an active object : static MigratableHello
createMigratableHello(String : name)

The class diagram for the application is the following :

1.3. A simple migration example 14

http://www-sop.inria.fr/oasis/ProActive/doc/api/org/objectweb/proactive/doc-files/Migration.html
http://www-sop.inria.fr/oasis/ProActive/doc/api/org/objectweb/proactive/doc-files/Migration.html

1.3.3. Programming

a) the MigratableHello class

The code of the MigratableHello class is here.

MigratableHello derives from the Hello class from the previous example

MigratableHello being the active object itself, it has to :

− implement the Serializable interface

− provide a no−arg constructor

− provide an implementation for using ProActive's migration mechanism.

A new method getCurrentNodeLocation is added for the object to tell the node where it resides..

A factory static method is added for ease of creation.

The migration is initiated by the moveTo method :

/** method for migrating
* @param destination_node destination node
*/
public void moveTo(String destination_node) {
 System.out.println("\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
 System.out.println("starting migration to node : " + destination_node);
 System.out.println("...");
 try {
 // THIS MUST BE THE LAST CALL OF THE METHOD
 ProActive.migrateTo(destination_node);
 } catch (MigrationException me) {
 System.out.println("migration failed : " + me.toString());
 }
}

Note that the call to the ProActive primitive migrateTo is the last one of the method moveTo. See the manual for more information.

c) the client class

The entry point of the program is written in a separate class : MigratableHelloClient

It takes as arguments the locations of the nodes the object will be migrated to.

The program calls the factory method of MigratableHello to create an instance of an active object. It then moves it from node to node, pausing for a while
between the transfers.

1.3.4. Execution

− start several nodes using the startnode script.

windows>cd scripts/windows
 startNode.bat //localhost/n1
 startNode.bat //localhost/n2
linux>cd scripts/linux
 ./startNode.sh //localhost/n1
 ./startNode.sh //localhost/n2

− compile and run the program (run MigratableHelloClient), passing in parameter the urls of the nodes you'd like the agent to migrate to.

cd compile
windows>build.bat examples
linux>build examples
cd ..

linux>java −Djava.security.policy=scripts/unix/proactive.java.policy

ProActive guided tour

1.3.3. Programming 15

−Dlog4j.configuration=file:scripts/unix/proactive−log4j
org.objectweb.proactive.examples.hello.MigratableHelloClient //localhost/n1 //localhost/n2

windows>java −Djava.security.policy=scripts\unix\proactive.java.policy
−Dlog4j.configuration=file:scripts\unix\proactive−log4j
org.objectweb.proactive.examples.hello.MigratableHelloClient //localhost/n1 //localhost/n2

− observe the instance of MigratableHello migrating :

During the execution, a default node is first created. It then hosts the created active object. Then the active object is migrated from node to node, each time
returning "hello" and telling the client program where it is located.

ProActive guided tour

1.3.3. Programming 16

1.4. migration of graphical interfaces
Graphical interfaces are not serializable, yet it is possible to migrate them with ProActive.
The idea is to associate the graphical object to an active object. The active object will control the activation and desactivation of this graphical entity during
migrations.

Of course, this is a very basic example, but you can later build more sophisticated frames.

Design of the application

We will write a new active object class, that extends MigratableHello. The sayHello method will create a window containing the hello message. This
window is defined in the class HelloFrame

Programming

1.4. migration of graphical interfaces 17

HelloFrameController

The code of the HelloFrameController is here.

This class extends MigratableHello, and adds an activity and a migration strategy manager to the object .
It creates a graphical frame upon call of the sayHello method.

Here we have a more complex migration process than with the previous example. We need to make the graphical window disappear before and reappear in a
new location after the migration (in this example though, we wait for a call to sayHello). The migration of the frame is actually controlled by a
MigrationStrategyManager, that will be attached to the body of the active object.. An ideal location for this operation is the initActivity method (from
InitActive interface), that we override :

/**
 * This method attaches a migration strategy manager to the current active object.
 * The migration strategy manager will help to define which actions to take before
 * and after migrating
 */
public void initActivity(Body body) {
 // add a migration strategy manager on the current active object
 migrationStrategyManager = new MigrationStrategyManagerImpl((Migratable) ProActive.getBodyOnThis());
 // specify what to do when the active object is about to migrate
 // the specified method is then invoked by reflection
 migrationStrategyManager.onDeparture("clean");
}

The MigrationStrategyManager defines methods such as "onDeparture", that can be configured in the application. For example here, the method "clean" will
be called before the migration, conveniently killing the frame :

public void clean() {
 System.out.println("killing frame");
 helloFrame.dispose();
 helloFrame = null;
 System.out.println("frame is killed");
}

HelloFrame

This is an example of a graphical class that could be associated with the active object. Here is the code.

Execution

Similarly to the simple migration example (use the HelloFrameController class), you will start remote nodes and specify a migration path.•
you have 2 ways for handling the display of the graphical objects :•

look on the display screens of the machines♦

export the displays : in startNode.sh, you should add the following lines before the java command :

DISPLAY=myhost:0
export DISPLAY

♦

The displayed window : it just contains a text label with the location of the active object.

ProActive guided tour

HelloFrameController 18

2. Introduction to some of the functionalities of ProActive
This chapter will present some of the facilities offered by ProActive, namely :

− synchronization

− parallel processing

− migration

2. Introduction to some of the functionalities of ProActive 19

2.1. Synchronization with ProActive
ProActive provides an advanced synchronization mechanism that allows an easy and safe implementation of potentially complex synchronization policies.

This is illustrated by two examples :

The readers and the writers•
The dining philosophers•

The readers−writers

The readers and the writers want to access the same data. In order to allow concurrency while ensuring the consistency of the readings, accesses to the data
have to be synchronized upon a specified policy. Thanks to ProActive, the accesses are guaranteed to be allowed sequentially.

The implementation with ProActive uses 3 active objects : Reader, Writer, and the controller class (ReaderWriter).

1. start the application

using the readers script

ProActive starts a node (i.e. a JVM) on the current machine, and creates 3 Writer, 3 Reader, a ReaderWriter (the controller of the application) and a
ReaderDisplay, that are active objects.

2.1. Synchronization with ProActive 20

http://www-sop.inria.fr/oasis/ProActive/apps/readers.html

a GUI is started that illustrates the activities of the Reader and Writer objects.

2. look and check the effect of different policies : even, writer priority, reader priority

What happens when priority is set to "reader priority" ?

3. look at the code for programming such policies

in org.objectweb.proactive.examples.readers.ReaderWriter.java

More specifically, look at the routines in :

public void evenPolicy(org.objectweb.proactive.Service service)

public void readerPolicy(org.objectweb.proactive.Service service)

public void writerPolicy(org.objectweb.proactive.Service service)

Look at the inner class MyRequestFilterm that implements org.objectweb.proactive.core.body.request.RequestFilter

ProActive guided tour

2. look and check the effect of different policies : even, writer priority, reader priority 21

How does it work?

4. Introduce a bug in the Writer Priority policy

For instance, let several writers go through at the same time.

− observe the Writer Policy policy before recompiling

− recompile (using compile.sh readers or compile.bat readers)

− observe that stub classes are regenerated and recompiled

− observe the difference due to the new synchronization policy : what happens now?

− correct the bug and recompile again ; check that everything is back to normal

The dining philosophers

The "dining philosophers" problem is a classical exercise in the teaching of concurrent programming. The goal is to avoid deadlocks.

We have provided an illustration of the solution using ProActive, where all the philosophers are active objects, as well as the table (controller) and the dinner
frame (user interface).

1. start the philosophers application

with philosophers.sh or philosophers.bat

ProActive guided tour

4. Introduce a bug in the Writer Priority policy 22

http://www-sop.inria.fr/oasis/ProActive/apps/phil.html

ProActive creates a new node and instantiates the active objects of the application : DinnerLayout, Table, and Philosopher

the GUI is started.

2. understand the color codes

Philosophers

philosophing

hungry, wants the fork !

eating

Forks
taken

free

ProActive guided tour

2. understand the color codes 23

3. test the autopilot mode

The application runs by itself without encountering a deadlock.

4. test the manual mode

Click on the philosophers' heads to switch their modes

Test that there are no deadlocks!

Test that you can starve one of the philosophers (i.e. the others alternate eating and thinking while one never eats!)

5. start the IC2D application

IC2D is a graphical environment for monitoring and steering of distributed and metacomputing applications.

− being in the autopilot mode, start the IC2D visualization application (using ic2d.sh or ic2d.bat)

ProActive guided tour

3. test the autopilot mode 24

http://www-sop.inria.fr/oasis/ProActive/IC2D/index.html

the ic2d GUI is started. It is composed of 2 panels : the main panel and the events list panel

− acquire you current machine

ProActive guided tour

3. test the autopilot mode 25

menu monitoring − monitor new RMI host

It is possible to visualize the status of each active object (processing, waiting etc...), the communications between active objects, and the
topology of the system (here all active objects are in the same node) :

ProActive guided tour

3. test the autopilot mode 26

ProActive guided tour

3. test the autopilot mode 27

2.2. Parallel processing with ProActive
Distribution is often used for CPU−intensive applications, where parallelism is a key for performance.

A typical application is C3D.

Note that parallelisation of programs can be facilitated with ProActive, thanks to asynchronism method calls, as well as group communications.

C3D : a parallel, distributed and collaborative 3D renderer

C3D is a Java benchmark application that measures the performance of a 3D raytracer renderer distributed over several Java virtual machines using Java
RMI. It showcases some of the benefits of ProActive, notably the ease of distributed programming, and the speedup through parallel calculation.

Several users can collaboratively view and manipulate a 3D scene. The image of the scene is calculated by a dynamic set of rendering engines using a
raytracing algorithm, everything being controlled by a central dispatcher.

the active objects in the c3d application

1. start C3D

using the script c3d_no_user

A "Dispatcher" object is launched (ie a centralized server) as well as 4 "Renderer" objects, that are active objects to be used for parallel rendering.

2.2. Parallel processing with ProActive 28

http://www-sop.inria.fr/oasis/ProActive/apps/c3d.html

the 4 renderers are launched

ProActive guided tour

2.2. Parallel processing with ProActive 29

the dispatcher GUI is launched

The bottom part of the window allows the addition and removal of renderers.

2. start a user

using c3d_add_user

− connect on the current host (proposed by default) by just giving your name

ProActive guided tour

2. start a user 30

for example the user "alice"

− spin the scene, add a random sphere, and observe how the action takes place immediately

− add and remove renderers, and observe the effect on the "speed up" indication from the user window.

Which configuration is the fastest for the rendering?

Are you on a multi−processor machine?

* you might not perceive the difference of the performance. The difference is better seen with more distributed nodes and objects (for example on a cluster
with 30+ renderers).

3. start a user from another machine

using the c3d_add_user script, and specifying the host (NOT set by default)

ProActive guided tour

3. start a user from another machine 31

If you use rlogin, make sure the DISPLAY is properly set.

You must use the same version of ProActive on both machines!

− test the collaborative behavior of the application when several users are connected.

Notice that a collaborative consensus must be reached before starting some actions (or that a timeout occured).

4. start IC2D to visualize the topology

− to visualize all Active objects, you need to acquire ("monitoring" menu) :

− the machine on which you started the "Dispatcher"

− the machine on which you started the second user

ProActive guided tour

4. start IC2D to visualize the topology 32

− add random spheres for instance, and observe messages (Requests) between Active Objects.

− add and remove renderers, and check graphically whether the corresponding Active Objects are contacted or not, in order to achieve the rendering.

− you can textually visualize this information by activating "add event timeline for this WorldObject" on the World panel with the right mouse button, and
then "show the event list window" on the top menu window

5. drag−and−drop migration

− from IC2D, you can drag−and−drop active objects from one JVM to another. Click the right button on a C3DRenderingEngine, and drag and drop it in
another JVM. Observe the migration taking place.

− add a new sphere, using all rendering engines, and check that the messages are still sent to the active object that was asked to migrate.

ProActive guided tour

5. drag−and−drop migration 33

− as migration and communications are implemented in a fully compatible manner, you can even migrate with IC2D an active object while it is
communicating (for instance when a rendering action is in progress). Give it a try!

Since version 1.0.1 of the C3D example, you can also migrate the client windows!

6. start a new JVM in a computation

manually you can start a new JVM − a "Node" in the ProActive terminology − that will be used in a running system.

− on a different machine, or by remote login on another host, start another Node, named for instance NodeZ :

under linux : startNode.sh rmi://mymachine/NodeZ & (or startNode.bat
rmi://mymachine/NodeZ)

The node should appear in IC2D when you request the monitoring of the new machine involved (Monitoring menu, then "monitor new RMI host".

− the node just started has no active object running in it. Drag and drop one of the renderers, and check that the node is now taking place in the computation :

− spin the scene to trigger a new rendering

− see the topology

* if you feel uncomfortable with the automatic layout, switch to manual using the "manual layout" option (right click on the World panel). You can then
reorganize the layout of the machines.

− to fully distribute the computation, start several nodes (you need 2 more) and drag−and drop renderers in them.

Depending on the machines you have, the complexity of the image, look for the most efficient configuration.

7. have a look at the source code for the main classes of this application :

org.objectweb.proactive.examples.c3d.C3DUser.java

org.objectweb.proactive.examples.c3d.C3DRenderingEngine.java

org.objectweb.proactive.examples.c3d.C3DDispatcher.java

look at the method public void processRotate(org.objectweb.proactive.Body body, String methodName, Request r) that handles election
of the next action to undertake.

ProActive guided tour

6. start a new JVM in a computation 34

2.3. Migration of active objects
ProActive allows the transparent migration of objects between virtual machines.

A nice visual example is the penguin's one.

Mobile agents

This example shows a set of mobile agents moving around while still communicating with their base and with each other. It also features the capability to
move a swing window between screens while moving an agent from one JVM to the other.

1. start the penguin application

using the penguin script.

2. start IC2D to see what is going on

using the ic2d script

acquire the machines you have started nodes on

3. add an agent

− on the Advanced Penguin Controller window : button "add agent"

an agent is materialized by a picture in a java window.

− select it, and press button "start"

− observe that the active object is moving between the machines, and that the penguin window disappears and reappears on the screen associated with the
new JVM.

4. add several agents

after selecting them, use the buttons to :

− communicate with them ("chained calls")

− start, stop, resume them

− trigger a communication between them ("call another agent")

2.3. Migration of active objects 35

http://www-sop.inria.fr/oasis/ProActive/apps/penguin.html

5. move the control window to another user

− start a node on a different computer, using another screen and keyboard

− monitor the corresponding JVM with IC2D

− drag−and−drop the active object "AdvancedPenguinController" with IC2D into the newly created JVM : the control window will appear on the other
computer and its user can now control the penguins application.

− still with IC2D, doing a drag−and−drop back to the original JVM, you will be able to get back the window, and control yourself the application.

ProActive guided tour

5. move the control window to another user 36

3.0. SPMD Programming

OO SPMD on a Jacobi example

1. Execution and first glance at the Jacobi code

1.1 Source files: ProActive/src/org/objectweb/proactive/examples/jacobi

The Jacobi example is made of two Java classes:

− Jacobi.java: the main class

− SubMatrix.java: the class implementing the SPMD code

Have a first quick look at the code, especially the Jacobi class, looking for the strings "ProActive", "Nodes", "newSPMDGroup".

The last instruction of the class:

matrix.compute();

is an asynchronous group call. It sends a request to all active objects in the SPMD group, triggering computations in all the SubMatrix.

We will get to the class SubMatrix.java later on.

1.2 Execution

ProActive examples come with scripts to easily launch the execution under both Unix and Windows.

For Jacobi, launch:

ProActive/scripts/unix/jacobi.sh

or

ProActive/scripts/windows/jacobi.bat

The computation stops after minimal difference is reached between two iterations (constant MINDIFF in class Jacobi.java), or after a fixed number of
iteration (constant ITERATIONS in class Jacobi.java).

The provided script, using an XML descriptor, creates 4 JVMs on the current machine. The Jacobi class creates an SPMD group of 9 Active Objects; 2 or 3
AOs per JVM.

Look at the traces on the console upon starting the script; in the current case, remember that all JVMs and AOs send output to the same console. More
specifically, understand the following:

− "Created a new registry on port 1099"

− "Reading deployment descriptor ... Matrix.xml "

− "created VirtualNode"

− "**** Starting jvm on"

− "ClassFileServer is reading resources from classpath"

− "Detected an existing RMI Registry on port 1099""

3.0. SPMD Programming 37

− "Generating class : ... jacobi.Stub_SubMatrix "

− "ClassServer sent class ... jacobi.Stub_SubMatrix successfully"

You can start IC2D (script ic2d.sh or ic2d.bat) in order to visualize the JVMs and the Active Objects. Just activate the "Monitoring a new host" in the
"Monitoring" menu at the top left.

To stop the Jacobi computation and all the associated AOs, and JVMs, just ^C in the window where you started the Jacobi script.

2. Modification and compilation

2.1 Source modification

Do a simple source modification, for instance changing the values of the constants MINDIFF (0.00000001 for ex) and ITERATIONS in class Jacobi.java.

Caveat: Be careful, due to a shortcoming of the Java make system (ant), make sure to also touch the class SubMatrix.java that uses the constants.

2.2 Compilation

ProActive distribution comes with scripts to easily recompile the provided examples:

linux>ProActive/compile/build

or

windows>ProActive/compile/build.bat

Several targets are provided (start build without arguments to obtain them). In order to recompile the Jacobi, just start the target that recompile all the
examples:

build examples

2 source files must appear as being recompiled.

Following the recompilation, rerun the examples as explained in section 1.2 above, and observe the differences.

3. Detailed understanding of the OO SPMD Jacobi

3.1 Structure of the code

Within the class SubMatrix.java the following methods correspond to a standard Jacobi implementation, and are not specific to ProActive:

− internalCompute ()

− borderCompute ()

− exchange ()

− buildFakeBorder (int size)

− buildNorthBorder ()

− buildSouthBorder ()

− buildWestBorder ()

− buildEastBorder ()

− stop ()

The methods on which asynchronous remote method invocations take place

ProActive guided tour

2. Modification and compilation 38

are:

− sendBordersToNeighbors ()

− setNorthBorder (double[] border)

− setSouthBorder (double[] border)

− setWestBorder (double[] border)

− setEastBorder (double[] border)

The first one sends to the appropriate neighbors the appropriate values, calling set*Border() methods asynchronously. Upon execution by the AO, the
methods set*Border() memorize locally the values being received.

Notice that all those communication methods are made of purely functional Java code, without any code to the ProActive API.

On the contrary, the followings are ProActive related aspects:

− buildNeighborhood ()

− compute ()

− loop ()

We will detail them in the next section.

Note: the classes managing topologies are still under development. In the next release, the repetitive and tedious topology related instructions (e.g. methods
buildNeighborhood) won't have to be written explicitly by the user, whatever the topology (2D, 3D).

3.2 OO SPMD behavior

Let us detail the OO SPMD techniques and ProActive related methods.

First of all, look for the definition and use of the attribute "asyncRefToMe". Using the primitive "getStubOnThis()", it provides a reference to the current
active object **on which method calls are asynchronous**. It permits the AO to send requests to itself.

For instance in

this.asyncRefToMe.loop();

Notice the absence of classical loop. The method "loop()" is indeed asynchronously called from itself; it is not really recursivity since it does not have the
drawback of the stack growing. It features an important advantage: the AO will remain reactive to other calls being sent to him. Moreover, it eases reuse
since it is not necessary to explicitly encode within the main SPMD loop all the messages that have to be taken into account. It also facilitates composition
since services can be called by activities outside the SPMD group, they will be automatically executed by the FIFO service of the Active Object.

The method "buildNeighborhood ()" is called only once for initialization. Using a 2D topology (Plan), it constructs references to north, south, west, east
neighbors −− attributes with respective names. It also construct dynamically the group of neighbors. Starting from an empty group of type SubMatrix

this.neighbors = (SubMatrix) ProActiveGroup.newGroup

(SubMatrix.class.getName());

such typed view of the group is used to get the group view: Group neighborsGroup = ProActiveGroup.getGroup(this.neighbors); Then, the appropriate
neighbors are added dynamically in the group, e.g.:

neighborsGroup.add(this.north);

Again, the classes managing topologies will permit to simplify this code.

3.3 Adding a Method barrier for a step by step execution

Let say we would like to control step by step the execution of the SPMD code. We will add a barrier in the SubMatrix.java, and control the barrier from
input in the Jacobi.java class.

ProActive guided tour

3.2 OO SPMD behavior 39

In class SubMatrix.java, add a Method barrier() of the form:

String[] st= new String[1];

st[0]="keepOnGoing";

ProSPMD.barrier(st);

Do not forget to define the keepOnGoing() method that indeed can return void, and just be empty. Find the appropriate place to call the barrier()
Method in the loop() Method.

In class Jacobi.java, just after the compute() Method, add an infinite loop that, upon a user's return key pressed, calls the method keepOnGoing() on
the SPMD group "matrix". Here are samples of the code:

while (true) {

printMessageAndWait();

matrix.keepOnGoing();

}

...

private static void printMessageAndWait() {

java.io.BufferedReader d = new java.io.BufferedReader(

new java.io.InputStreamReader(System.in));

System.out.println(" −−> Press return key to continue");

System.out.println(" or Ctrl c to stop.");

try {

d.readLine();

} catch (Exception e) {

}

}

Recompile, and execute the code. Each iteration needs to be activated by hitting the return key in the shell window where Jacobi was launched. Start IC2D
(./ic2d.sh or ic2d.bat), and visualize the communications as you control them. Use the "Reset Topology" button to clear communication arcs. The green and
red dots indicate the pending requests.

You can imagine and test other modifications to the Jacobi code.

ProActive guided tour

3.2 OO SPMD behavior 40

3.4 Undestanding various different kind of barriers

The group of neighbors built above is important wrt synchronization. Below in method "loop()", an efficient barrier is achieved only using the direct
neighbors:

ProSPMD.barrier("SynchronizationWithNeighbors"+ this.iterationsToStop, this.neighbors);

This barrier takes as a parameter the group to synchronize with: it will be passed only when the 4 neighbors in the current 2D example have reached the
same point. Adding the rank of the current iteration allows to have a unique identifier for each instance of the barrier.

Try to change the barrier instruction to a total barrier:

ProSPMD.barrier("SynchronizationWithNeighbors"+ this.iterationsToStop);

Then recompile and execute again. Using IC2D observe that many more communications are necessary.

ProActive guided tour

3.4 Undestanding various different kind of barriers 41

ProActive guided tour

3.4 Undestanding various different kind of barriers 42

In order to get details and documentation on Groups and OO SPMD, have a look at:

ProActive/src/org/objectweb/proactive/doc−files/

TypedGroupCommunication.html

OOSPMD.html

4. Virtual Nodes and Deployment descriptors

4.1 Virtual Nodes

Get back to the source code of Jacobi.java, and understand where and how the Virtual Nodes and Nodes are being used.

4.2 XML Descriptors

The XML descriptor being used is:

ProActive/descriptors/Matrix.xml

Look for and understand the following definitions:

ProActive guided tour

4. Virtual Nodes and Deployment descriptors 43

− Virtual Node Definition

− Mapping of Virtual Nodes to JVM

− JVM Definition

− Process Definition

A detailed presentation of XML descriptors is available at:

ProActive/docs/api/index.html

entry 9. XML Deployment Descriptors

4.3 Changing the descriptor

Edit the file Matrix.xml in order to change the number of JVMs being used. For instance, if your machine is powerful enough, start 9 JVMs, in order to have
a single SubMatrix per JVM.

You do not need to recompile, just restart the execution. Use IC2D to visualize the differences in the configuration.

5. Execution on several machines and Clusters

5.1 Execution on several machines in the room

Associate with several persons or use several machines, and modify the file

ProActive/examples/descriptors/Matrix.xml

in order to launch the Jacobi computation on several machines. You can use IC2D to visualize the machines and the JVMs being launched on them.

5.2 Execution on Clusters

If you have access to your own clusters, configure the XML descriptor to launch the Jacobi on them, using the appropriate protocol:

ssh, LSF, PBS, Globus, etc.

Have a look at

ProActive/docs/api/org/objectweb/proactive/doc−files/Descriptor.html

to get the format of the XML descriptor for each of the supported protocols.

ProActive guided tour

4.3 Changing the descriptor 44

3. Conclusion
This tour was intented to guide you through an overview of ProActive.

You should now be able to start programming with ProActive, and you should also have an idea of the capabilities of the library.

We hope that you liked it and we thank you for your interest in ProActive.

Further information can be found on the website, and suggestions are welcome.

import org.objectweb.proactive.ProActive;

public class Hello {
private String name;
private String hi = "Hello world";
private java.text.DateFormat dateFormat = new java.text.SimpleDateFormat(

"dd/MM/yyyy HH:mm:ss");

public Hello() {
}

public Hello(String name) {
this.name = name;

}

public String sayHello() {
return hi + " at " + dateFormat.format(new java.util.Date()) +
" from node : " + ProActive.getBodyOnThis().getNodeURL();

}

public static void main(String[] args) {
// Registers it with an URL
try {

// Creates an active instance of class HelloServer on the local node
Hello hello = (Hello) org.objectweb.proactive.ProActive.newActive(Hello.class.getName(),

new Object[] { "remote" });
java.net.InetAddress localhost = java.net.InetAddress.getLocalHost();
org.objectweb.proactive.ProActive.register(hello,

"//" + localhost.getHostName() + "/Hello");
} catch (Exception e) {

System.err.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

}

public class HelloClient {
public static void main(String[] args) {

Hello myServer;
String message;
try {

// checks for the server's URL
if (args.length == 0) {

// There is no url to the server, so create an active server within this VM
myServer = (Hello) org.objectweb.proactive.ProActive.newActive(Hello.class.getName(),

new Object[] { "local" });
} else {

// Lookups the server object
System.out.println("Using server located on " + args[0]);
myServer = (Hello) org.objectweb.proactive.ProActive.lookupActive(Hello.class.getName(),

args[0]);
}

// Invokes a remote method on this object to get the message
message = myServer.sayHello();
// Prints out the message
System.out.println("The message is : " + message);

} catch (Exception e) {

3. Conclusion 45

mailto:proactive-support@inria.fr

System.err.println("Could not reach/create server object");
e.printStackTrace();
System.exit(1);

}
}

}

package org.objectweb.proactive.examples.hello;

import org.objectweb.proactive.Body;
import org.objectweb.proactive.EndActive;
import org.objectweb.proactive.InitActive;
import org.objectweb.proactive.ProActive;

public class InitializedHello extends Hello implements InitActive, EndActive {

/**
 * Constructor for InitializedHello.
 */

public InitializedHello() {
}

/**
 * Constructor for InitializedHello.
 * @param name
 */

public InitializedHello(String name) {
super(name);

}

/**
 * @see org.objectweb.proactive.InitActive#initActivity(Body)
 * This is the place where to make initialization before the object
 * starts its activity
 */

public void initActivity(Body body) {
System.out.println("I am about to start my activity");

}

/**
 * @see org.objectweb.proactive.EndActive#endActivity(Body)
 * This is the place where to clean up or terminate things after the
 * object has finished its activity
 */

public void endActivity(Body body) {
System.out.println("I have finished my activity");

}

/**
 * this method will end the activity of the active object
 */

public void terminate() {
// the termination of the activity is done through a call on the
// terminate method of the body associated to the current active object
ProActive.getBodyOnThis().terminate();

}

public static void main(String[] args) {
// Registers it with an URL
try {

// Creates an active instance of class HelloServer on the local node
InitializedHello hello = (InitializedHello) org.objectweb.proactive.ProActive.newActive(InitializedHello.class.getName(),

new Object[] { "remote" });
java.net.InetAddress localhost = java.net.InetAddress.getLocalHost();
org.objectweb.proactive.ProActive.register(hello,

"//" + localhost.getHostName() + "/Hello");
} catch (Exception e) {

System.err.println("Error: " + e.getMessage());
e.printStackTrace();

}
}

}

ProActive guided tour

3. Conclusion 46

package org.objectweb.proactive.examples.hello;

public class InitializedHelloClient {
public static void main(String[] args) {

InitializedHello myServer;
String message;
try {

// checks for the server's URL
if (args.length == 0) {

// There is no url to the server, so create an active server within this VM
myServer = (InitializedHello) org.objectweb.proactive.ProActive.newActive(InitializedHello.class.getName(),

new Object[] { "local" });
} else {

// Lookups the server object
System.out.println("Using server located on " + args[0]);
myServer = (InitializedHello) org.objectweb.proactive.ProActive.lookupActive(InitializedHello.class.getName(),

args[0]);
}

// Invokes a remote method on this object to get the message
message = myServer.sayHello();
// Prints out the message
System.out.println("The message is : " + message);
myServer.terminate();

} catch (Exception e) {
System.err.println("Could not reach/create server object");
e.printStackTrace();
System.exit(1);

}
}

}

package org.objectweb.proactive.examples.hello;

import org.objectweb.proactive.ActiveObjectCreationException;
import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.body.migration.MigrationException;
import org.objectweb.proactive.core.node.NodeException;

import java.io.Serializable;

// the object that will be migrated active has to be Serializable
public class MigratableHello extends InitializedHello implements Serializable {

/**
 * Creates a new MigratableHello object.
 */

public MigratableHello() {
}

/**
 * Creates a new MigratableHello object.
 *
 * @param name the name of the agent
 */

// ProActive requires the active object to explicitely define (or redefine)
// the constructors, so that they can be reified
public MigratableHello(String name) {

super(name);
}

/** factory for locally creating the active object
 * @param name the name of the agent
 * @return an instance of a ProActive active object of type MigratableHello
 *
 */

public static MigratableHello createMigratableHello(String name) {
try {

return (MigratableHello) ProActive.newActive(MigratableHello.class.getName(),
new Object[] { name });

} catch (ActiveObjectCreationException aoce) {
System.out.println("creation of the active object failed");

ProActive guided tour

3. Conclusion 47

aoce.printStackTrace();
return null;

} catch (NodeException ne) {
System.out.println("creation of default node failed");
ne.printStackTrace();
return null;

}
}

/** method for migrating
 * @param destination_node destination node
 */

public void moveTo(String destination_node) {
System.out.println("\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−");
System.out.println("starting migration to node : " + destination_node);
System.out.println("...");
try {

// THIS MUST BE THE LAST CALL OF THE METHOD
ProActive.migrateTo(destination_node);

} catch (MigrationException me) {
System.out.println("migration failed : " + me.toString());

}
}

}

package org.objectweb.proactive.examples.hello;

public class MigratableHelloClient {

/** entry point for the program
 * @param args destination nodes
 * for example :
 * rmi://localhost/node1 jini://localhost/node2*/

public static void main(String[] args) { // instanciation−based creation of the active object
MigratableHello migratable_hello = MigratableHello.createMigratableHello(

"agent1");

// check if the migratable_hello has been created
if (migratable_hello != null) {

// say hello
System.out.println(migratable_hello.sayHello());
// start moving the object around
for (int i = 0; i < args.length; i++) {

migratable_hello.moveTo(args[i]);
System.out.println("received message : " +

migratable_hello.sayHello());
}

// possibly terminate the activity of the active object ...
migratable_hello.terminate();

} else {
System.out.println("creation of the active object failed");

}
}

}

package org.objectweb.proactive.examples.hello;

/**
 * This class allows the creation of a graphical window
 * with a text field
 *
 */

public class HelloFrame extends javax.swing.JFrame {
private javax.swing.JLabel jLabel1;

/** Creates new form HelloFrame */
public HelloFrame(String text) {

initComponents();
setText(text);

}

ProActive guided tour

3. Conclusion 48

/** This method is called from within the constructor to
 * initialize the form.
 * It will perform the initialization of the frame
 */

private void initComponents() {
jLabel1 = new javax.swing.JLabel();
addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent evt) {
exitForm(evt);

}
});

jLabel1.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
getContentPane().add(jLabel1, java.awt.BorderLayout.CENTER);

}

/** Kill the frame */
private void exitForm(java.awt.event.WindowEvent evt) {

// System.exit(0); would kill the VM !
dispose(); // this way, the active object agentFrameController stays alive

}

/**
 * sets the text of the label inside the frame
 */

private void setText(String text) {
jLabel1.setText(text);

}
}

package org.objectweb.proactive.examples.hello;

import org.objectweb.proactive.ActiveObjectCreationException;
import org.objectweb.proactive.Body;
import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.body.migration.Migratable;
import org.objectweb.proactive.core.node.NodeException;
import org.objectweb.proactive.ext.migration.MigrationStrategyManager;
import org.objectweb.proactive.ext.migration.MigrationStrategyManagerImpl;

/**
 *
 * This class allows the "migration" of a graphical interface. A gui object is attached
 * to the current class, and the gui is removed before migration, thanks to the use
 * of a MigrationStrategyManager
 */
public class HelloFrameController extends MigratableHello {
HelloFrame helloFrame;
MigrationStrategyManager migrationStrategyManager;

/**required empty constructor */
public HelloFrameController() {
}

/**constructor */
public HelloFrameController(String name) {
super(name);
}

/**
 * This method attaches a migration strategy manager to the current active object.
 * The migration strategy manager will help to define which actions to take before
 * and after migrating
 */
public void initActivity(Body body) {
// add a migration strategy manager on the current active object
migrationStrategyManager = new MigrationStrategyManagerImpl((Migratable) ProActive.getBodyOnThis());
// specify what to do when the active object is about to migrate
// the specified method is then invoked by reflection
migrationStrategyManager.onDeparture("clean");
}

/** factory for locally creating the active object

ProActive guided tour

3. Conclusion 49

 * @param name the name of the agent
 * @return an instance of a ProActive active object of type HelloFrameController
 *
 */
public static HelloFrameController createHelloFrameController(String name) {
try {
// creates (and initialize) the active object
HelloFrameController obj =
(HelloFrameController) ProActive.newActive(HelloFrameController.class.getName(), new Object[] { name });
return obj;
} catch (ActiveObjectCreationException aoce) {
System.out.println("creation of the active object failed");
aoce.printStackTrace();
return null;
} catch (NodeException ne) {
System.out.println("creation of default node failed");
ne.printStackTrace();
return null;
}
}

public String sayHello() {
if (helloFrame == null) {
helloFrame = new HelloFrame("Hello from " + ProActive.getBodyOnThis().getNodeURL());
helloFrame.show();
}
return "Hello from " + ProActive.getBodyOnThis().getNodeURL();
}

public void clean() {
System.out.println("killing frame");
helloFrame.dispose();
helloFrame = null;
System.out.println("frame is killed");
}
}

ProActive guided tour

3. Conclusion 50

	Table of Contents
	0. Installation and setup
	ProActive Installation
	Quick Start
	To Test ProActive with the examples
	To develop with ProActive

	Download and expand the archive
	Run a few examples for testing
	Local Example 1: Hello world !
	Local Example 2: Reader/Writer
	Local Example 3: The Dining Philosophers

	CLASSPATH to set when writing application using ProActive
	Create a java.policy file to set permissions
	Create a log4j configuration file
	Troubleshooting and support

	1. Hands-on programming
	1.1. The client - server example
	Hello world ! example
	The two classes
	The Hello class
	The HelloClient Class
	Hello World within the same VM
	Hello World from another VM on the same host
	Hello World from abroad: another VM on a different host

	1.2. Initialization of the activity
	Design of the application
	Programming
	InitializedHello

	Execution

	1.3. A simple migration example
	1.3.1. Required conditions
	1.3.2. design
	1.3.3. Programming
	a) the MigratableHello class
	c) the client class

	1.3.4. Execution

	1.4. migration of graphical interfaces
	Design of the application
	Programming
	HelloFrameController
	HelloFrame

	Execution

	
	2. Introduction to some of the functionalities of ProActive
	2.1. Synchronization with ProActive
	The readers-writers
	1. start the application
	2. look and check the effect of different policies : even, writer priority, reader priority
	3. look at the code for programming such policies
	4. Introduce a bug in the Writer Priority policy

	The dining philosophers
	1. start the philosophers application
	2. understand the color codes
	3. test the autopilot mode
	4. test the manual mode
	5. start the IC2D application

	2.2. Parallel processing with ProActive
	C3D : a parallel, distributed and collaborative 3D renderer
	1. start C3D
	2. start a user
	3. start a user from another machine
	4. start IC2D to visualize the topology
	5. drag-and-drop migration
	6. start a new JVM in a computation
	7. have a look at the source code for the main classes of this application :

	2.3. Migration of active objects
	Mobile agents
	1. start the penguin application
	2. start IC2D to see what is going on
	3. add an agent
	4. add several agents
	5. move the control window to another user

	3.0. SPMD Programming
	OO SPMD on a Jacobi example
	1. Execution and first glance at the Jacobi code
	1.1 Source files: ProActive/src/org/objectweb/proactive/examples/jacobi
	1.2 Execution
	2. Modification and compilation
	2.1 Source modification
	2.2 Compilation
	3. Detailed understanding of the OO SPMD Jacobi
	3.1 Structure of the code
	3.2 OO SPMD behavior
	3.3 Adding a Method barrier for a step by step execution
	3.4 Undestanding various different kind of barriers
	4. Virtual Nodes and Deployment descriptors
	4.1 Virtual Nodes
	4.2 XML Descriptors
	4.3 Changing the descriptor
	5. Execution on several machines and Clusters
	5.1 Execution on several machines in the room
	5.2 Execution on Clusters

	3. Conclusion

