ProActive

Programming, Composing, Deploying on the Grid

Version 3.0 - November 2005

Reference Booklet

B AT

Dynamic Communications

Components GUI

ObjectWeb (o reG-RiuBe
——

Open Source Middleware

ProActive is a Java library for parallel, distributed, and concurrent
computing, also featuring mobility and security in a uniform framework.
ProActive provides a comprehensive API and a graphical interface. The library is
based on an Active Object pattern that is a uniform way to encapsulate:

* a remotely accessible object, * a server of incoming requests,

* a thread as an asynchronous * a mobile and potentially
activity, secure entity,

* an actor with its own script, * a component with server and

client interfaces.

ProActive is only made of standard Java classes, and requires no changes to
the Java Virtual Machine. Overall, it simplifies the programming of
applications distributed over Local Area Network (LAN), Clusters, Intranet or
Internet GRIDs.

ProActive interoperates with the following official or de-facto standards:

* Web Service Exportation * Globus GT2, GT3, GT4
e HTTP Transport, Jini, OSGi * sshGSI

* SSH, RSH, RMI/SSH Tunneling * NorduGrid

* LSF, PBS, OAR, Sun Grid Engine * Unicore, EGEE gLite

Table of Contents

Main concepts and definitionscoiiiiiiii 3
MaiN PriNCIPIES: . e it 4
asynchronous method calls and implicit futures..........cccociiiiiiiiiiciiic 4
Explicit Synchronizationcociuiiiiiiii 4
Programming AO Activity and ServiCes......cioiiiiiiiiiiiiiiiiic e 4
Reactive Active ODJECEiviiiiii i 5
Service MeEhOASv e 5
Active Object Creationoccvuiiiiiiiiiii 7
[o 11 o1 PP 7
Explicit Group Synchronizationscocovuiiiiiiiinii e 8
OO SPMD .ot rnas 8
MIGratioN .. e e 8
[q ol o L o i =P 9
COMPONENES 1ttt 10
L= o =TT VA ol 10
[DT=T 0] (oY 0 0 T=T o PR PPN 11
File Transfer Deployment ..o 12
Peer-to-Peer INfrastrUCtUre. ..o 13
L= 1] Sl o =T = o = PP 14
SBCUNIEY 1ttt e 15
Branch and BoUNd APIciiiiiiiiii e 15

2 ProActive 3.0 — Reference Booklet

Main concepts and definitions

Active Objects A remote object, with its own thread, receiving calls on
(AO) its public methods
FIFO activity An AO, by default, executes the request it receives one
after the other, in the order they were received
No-sharing Standard Java objects cannot be referenced from 2
AOs, ensured by deep-copy of constructor params,
o method params, and results
z Asynchrony Method calls towards AOs are asynchronous
= | Future The result of a non-void asynchronous method call
E Request The occurrence of a method call towards an AO
© | Service The execution by an AO of a request
8 Reply After a service, the result is sent back to the caller
o | Wait-by- Automatic wait upon the use of a still awaited future
necessity
Automatic Transmission of futures and replies between AO and
Continuation JVMs
Migration An AO moving from one JVM to another, computational
weak mobility: the AO decides to migrate; stack is lost
Group A typed group of objects or AOs. Methods are called in
parallel on all group members
Component Made of AOs, a component defines server and client
U interfaces
Z | Primitive Directly made of Java code and AOs
& | Component
; Composite Contains other components (primitives or composites)
O | Component
O [Mparallel A composite that is using groups to multicast calls to
Component inner components
Virtual Node An abstraction (a string) representing where to locate
(VN) AOs at creation
Deployment An XML file where a mapping VN - JVMs - Machine is
descriptor specified
Node The result of a mapping VN > JVMs. After activation, a
‘z’ VN contains a set of nodes living in a set of JVMs
g | P2P A P2P network of self-organized JVMs, on which to
9 deploy applications
& | Fault-Tolerance | Applications can be turned fault-tolerant simply by
(a] modifying the deployment descriptor
Security X.509 Authentication, Integrity, and Confidentiality
defined at deployment in an XML
1C2D Interactive Control and Debugging of Distribution: a
Graphical environment for monitoring and steering
Grid applications

ProActive 3.0 - Reference Booklet

Main principles:

Asynchronous Method Calls and Implicit Futures
A a = (A ProActive.newActive("A", parans, node);

/11

Create an active Object of type Ain the JVM specified by Node

a.foo (param;

11
11

A one way typed asynchronous conmuni cati on towards the (renote)
AO a. Arequest is sent to a.

v = a.bar (paranm;

11
11
11

A typed asynchronous communication with result.
v is first an awaited Future, to be transparently filled up
after service of the request, and the reception of a reply

v.gee (param;

11
11
11

Use of the result of an asynchronous call.
If vis still an awaited future, it triggers an autonatic
wait: Wit-by-necessity

Explicit Synchronization

bool ean i sAwai t ed(Obj ect);

/1
voi d
I
I
voi d
/1

Returns True if the object is still an awaited Future

wai t For (Obj ect) ;

Bl ocks until the object is no |onger awaited

The object is a future

wai t For Al | (Vector);

Bl ocks until all the objects in Vector are no | onger awaited

int waitForAny(Vector);

11
11

Bl ocks until one of the objects in Vector is no |onger awaited.
Returns the index of the available future.

Programming AO Activity and Services

When an AO must implement an activity that is not FIFO, the RunActive
interface has to be implemented: it specifies the AO behaviour in the method
named runAct i vi t y(Body body).

Example:

public class A inplenents RunActive {

11
/1

I npl ements RunActive for progranm ng a specific behaviour;
runActivity is automatically called when such an AO is created

public void runActivity(Body body) {
Servi ce service = new Service(body);
while (!terminate) {

// Do sone activity on its own
/1 Do sone services, e.g. a FIFO service on nethod
/1 narmed foo. See Service section

service. served dest ("foo");

ProActive 3.0 - Reference Booklet

Two other interfaces can also be specified:

Interface InitActive
void initActivity(Body body)
/1 Initializes the activity of the active object.
/1 Not called in case of restart after migration.
/] Called before runActivity() method, and only once.

Interface EndActive

void endActivity(Body body)
/1 Finalizes the active object after the activity stops by itself.
// Called after the execution of runActivity() nethod, and only
/1 once. Not called before a migration.

Reactive Active Object

Even when an AO is busy doing its own work, it can remain reactive to external
events (method calls). One just has to program non-blocking services to take
into account external inputs.

public class BusyButReactive inplenents RunActive {

public void runActivity(Body body) {
Service service = new Servi ce(body);
while (! hasToTerm nate) {
/1 Do sone activity on its own
/1 Non bl ocki ng service
servi ce. served dest ("changePar aneters", "term nate");

}

public void changeParaneters () {// change conputation paraneters}
public void termnate (){ hasToTerm nate=true;}
}

It also allows one to specify explicit termination of AOs (there is currently no
Distributed Garbage Collector). Of course, the reactivity is up to the length of
going around the loop. Similar techniques can be used to start, suspend, restart,
and stop AOs.

Service methods

A service Method selects a given request amongst the pending calls, and
executes it. Those methods are to be used when a FIFO service is not
appropriate, when a RunActi vi ty method is programmed.

Non-blocking services: returns immediately if no matching request is pending

voi d served dest ();
/'l Serves the ol dest request in the request queue

ProActive 3.0 - Reference Booklet 5

void served dest(String met hodNane)
/'l Serves the ol dest request ainmed at a nethod of nane net hodNane
voi d served dest (RequestFilter requestFilter)
/'l Serves the ol dest request matching the criteria given by the
/1 filter

Blocking services: waits until a matching request can be served

voi d bl ocki ngServeQ dest ();
/'l Serves the ol dest request in the request queue
voi d bl ocki ngServeQ dest (String nmet hodNane)
/'l Serves the ol dest request ainmed at a nethod of nane net hodName
voi d bl ocki ngServeQ dest (RequestFilter requestFilter)
/'l Serves the ol dest request natching the criteria given by the
/1 filter

Blocking timed services: wait a matching request at most a time given in ms

voi d bl ocki ngServeQ dest (long tinmeout)
/'l Serves the ol dest request in the request queue.
/1 Returns after timeout (in ms) if no request is available

voi d bl ocki ngServeQ dest (String nmet hodNarme, |ong tinmeout)
/'l Serves the ol dest request ainmed at a nethod of nane net hodNane
/1 Returns after timeout (in ms) if no request is available

voi d bl ocki ngServeQ dest (RequestFilter requestFilter)
/] Serves the ol dest request matching the criteria given by the
/1 filter

Waiting primitives:

voi d wai t For Request () ;

/1 Vit until a request is available or until the body terninates
void waitForRequest(String nethodNane);

/1 Wit until a request is available on the given nethod naneg,

/1 or until the body term nates

Others:

voi d fifoServing();
/1 Start a FIFO service policy. Call does not return. In case of
/] a mgration, a new runActivity() is started on the new site.
voi d I'i foServing()
/1 Invoke a LIFO policy. Call does not return. In case of
// a mgration, a new runActivity() will be started on the new
Il site.
void serveYoungest ()
/'l Serves the youngest request in the request queue
void flushAll ()
/'l Renoves all requests in the pending queue

6 ProActive 3.0 - Reference Booklet

Active Object Creation

bj ect newActive(String classname, Cbject[]
construct or Par anet er s, Node node) ;
/|l Creates a new AO of type classname. The AOis |located on the
/1 given node, or on a default node in the local JVYMif the given
/1 node is null
Obj ect[] newActive(String classnanme, Obj ect[]
constructor Paranet ers, Virtual Node virtual node);
/'l Creates a new set of AO of type classnane.
/1 The ACs are |located on each JVMthe Virtual Node is mapped onto
Obj ect turnActive(Object, Node node);
/1 Copy an existing Java object and turns it into an AQ
/1 The AOis located on the given node, or on a default node

A typed collection of active objects on which calls are performed in parallel
(hiding latency), and asynchronously (returning a group of futures).

A ga = (A ProActiveG oup. newd oup("A"', paranms, nodes);
/] Creates at once a group of AO of type "A" in the JVMs specified
/1 by nodes. ga is a Typed G oup of type "A".
/1 The number of AO created matches the nunmber of param arrays.
/' Nodes can be a Virtual Node defined in an XM descriptor
ga.foo(...);
/'l A general group conmunication without result.
/1 A request to foo is sent in parallel to AGs in group ga
V gv = ga.bar(...);
/'l A general group communication with a result.
/1 gv is a typed group of "V', which is first a group
/1 of awaited Futures, to be filled up asynchronously
gv.gee (...);
/1 Use of the result of an asynchronous group call. It is also a
/'l collective operation: gee method is called in parallel on each
/1 object in group.
/1 VMit-by-necessity occurs when results are awaited
G oup ag = ProActiveG oup. get G oup(ga);
/'l Get the group representation of a typed group
ag. add(o);
// Add o in the group ag. o can be a standard Java object or
/1 an AQ, and in any case nust be of a conpatible type
ag. renove(i ndex)
/'l Renoves the object at the specified index
A ga2 = (A) ag.get GroupByType();
/'l Returns the typed view of a group
voi d set ScatterGoup(g);
/1 By default, a group used as a paraneter of a group
/1 communication is sent to all as it is (deep copy of the group).
/1 When set to scatter, upon a group call (ga.foo(g)) such a
/| scatter paraneter is dispatched in a round robing fashion to
/1l ACs in the target group, e.g. upon ga.foo(g)

ProActive 3.0 — Reference Booklet 7

void unsetScatterGoup(g);
/] Get back to the default: entire group transmission in all group
/1 communi cations, e.g. upon ga.foo(g)

Explicit Group Synchronizations

Methods to wait for the availability of all results of a group call, or the first
one(s) to be available. Methods are both in interface Group, and static in class
ProActi veG oup.

bool ean ProActiveG oup. all Awaited (Object);
/! Returns true if object is a group and all nenbers are still
/] awaited
bool ean ProActiveGoup.allArrived (oject);
/! Returns False only if at |east one nenber is still awaited
voi d ProActiveG oup.waitAll (Object);
/1 VWit for all the nenbers in group to arrive (all no |onger
/] awai t ed)
void ProActiveGoup.waitN (Cbject, int nb);
/1 Wait for at least nb nenbers in group to arrive
int ProActiveG oup.waitOneAndGet | ndex (Object);
/1 Waits for at |east one nenber to arrived, and returns its index

00O SPMD

A group in which each group member has a proxy to the group it belongs to.
Typically used in applications with sub-domain decomposition, numerical SPMD
(Simple Program, Multiple Data), etc.

A spmdGoup = (A) ProSPMD. newSPMDG oup(" A", paranms, nodes);
/'l Creates an SPMD group and creates all nenbers with parans on
/'l the nodes.
/1 An SPMD group is a typed group in which every nenber has a
/1 reference to the others (the SPVD group itself).
A nySpmdG oup = (A) ProSPNMD. get SPMDG oup() ;
/'l Returns the SPMD group of the activity.
int rank = ProSPMD. get MyRank();
/'l Returns the rank of the activity in its SPVD group.
ProSPMD. barrier("barrierlD");
/1 Blocks the activity (after the end of the current service)
/1 until all other nmenbers of the SPMD group invoke the sane
/] barrier. Three barriers are available : total barrier,
/1 nei ghbors based barrier and nmethod based barrier.

Computational mobility: an active object changes of JVM at execution. Migration
is weak: stack is to be lost, and mi gr at eTo primitive is static.

8 ProActive 3.0 - Reference Booklet

void mgrateTo(Object 0);

/'l Mgrate the current AOto the same JVM as the AO
void void mgrateTo(String nodeURL);

/'l Mgrate the current AOto JVM given by the node URL
int void mgrateTo(Node node);

/'l Mgrate the current AOto JVM given by the node

To initiate the migration of an object from outside, define a public method, that
upon service will call mi gr at eTo primitive:

public void noveTo(Object o) {

try{
ProActive. m grateTo(0);

} catch (Exception e) {
e.printStackTrace();
| ogger.info("Cannot mgrate.");

}

}

voi d onDeparture(String Met hodNane);
/1 Specification of a method to execute before migration
void onArrival (String MethodNane);
/'l Specification of a method to execute after migration, upon the
/1l arrival in a new JVM
void setMgrationStrategy(MgrationStrategy ns);
/'l Specifies a migration itinerary
void mgrationStrategy.add(Destination d);
/1 Adds a JVMdestination to an itinerary
void mgrationStrategy.renove(Destination d)
/'l Rermove a JVM destination in an itinerary

ProActive has two exception mechanisms because there are two kinds of
exceptions: functional and non-functional ones. First an example with functional
exceptions that permits asynchronous calls with exceptions:

ProActive.tryWthCat ch(My/Exception. class);// Just before the try
try { // Some asynchronous calls with potential M/Exception
ProActive.endTryWthCatch();// At the end of the try
} catch (MyException e) {
...
} finally {
ProActive.renoveTryWthCatch();// At the beginning of the finally
}

Non-functional exceptions make use of handlers. They can be added on a JVM
and on an AO. It's also possible to specify an exception type to handle.

ProActive 3.0 - Reference Booklet 9

ProAct i ve. addNFELi st ener OnNAQ(myAO, new NFELi stener () {
publ i c bool ean handl eNFE(NonFunct i onal Exception nfe) {
/1 Do sonmething with the exception nfe...
/'l Return true if we were able to handle it
return true;

)

The behaviour of the default handler (if none could handle the exception) is to
throw the exception if it's on the proxy side, or log it if it's on the body side.

Components are formed from AOs, a component is linked and communicates
with other remote components. A component can be composite, made of other
components, and as such itself distributed over several machines. Component
systems are defined in XML files (ADL: Architecture Description Language); these
files describe the definition, the assembly, and the bindings of components.
Components follow the Fractal hierarchical component model specification and
API, see http://fractal.objectweb.org. The following methods are specifically
added by the ProActive implementation of Fractal.

In the class org.objectweb.proactive.ProActive :

Conponent newAct i veConmponent ("A", params, Virtual Node,
Conponent Par anet er s) ;
/'l Creates a new ProActive conponent fromthe specified class A
/'l The conponent is distributed on JVMs specified by the Virtual
/1 Node.
/1 The Conponent Paraneters defines the configuration of a
/| conponent:
/'l name of conponent, interfaces (server and client), etc.
/'l Returns a reference to a conponent, as defined in the Fractal
/1 API.

In the class org.objectweb.proactive.core.component.Fractive :

ProActivelnterface createCollectivedientlnterface(String itfNang,
String itfSignature);
/1 This method is used in prinitive conponents.
/1 1t generates a client collective interface naned itfNanme, and
/1 typed as itfSignature.
/1 This collective interface is a typed ProActive group.

Web services

ProActive allows active objects exportation as web services. The service is
deployed onto a Jakarta Tomcat web server with a given url. It is identified by its
urn, a unique id of the service. It is also possible to choose the exported
methods of the object. The WSDL file matching the service will be accessible at

10 ProActive 3.0 — Reference Booklet

http://localhost:8080/serviet/wsdl?id=a for a service whose name is "a" and
whose id is deployed on a web server which location is http://localhost:8080.

A a = (A) ProActive.newActive("A", new Cbject []1{});
/1 Constructs an active object
String [] nethods = new String [] {"foo", "bar"};
/1 A String array containing the exported nethods
ProActi ve. exposeAs\WebSer vi ce(a, "http:/ /1 ocal host: 8080", "a", net hods) ;
/1 Export the active object as a web service
ProActi ve. unExposeAsWebServi ce("a", "http://Iocal host: 8080");
/'l Undepl oy the service "a" on the web server |ocated at
/1 http://1ocal host: 8080

Deployment

Virtual Nodes (VN) allow one to specify the location where to create AOs. A VN is
uniquely identified as a String, is defined in an XML Deployment Descriptor
where it is mapped onto JVMs. JVMs are themselves mapped onto physical
machines: VN --> JVMs --> Machine. Various protocols can be specified to create
JVMs onto machines (ssh, Globus, LSF, PBS, rsh, rlogin, Web Services, etc.).
After activation, a VN contains a set of nodes, living in a set of JVMs. Overall,
VNs and deployment descriptors allow to abstract away from source code:
machines, creation, lookup and registry protocols.

Descriptor example: creates one JVM on the local machine

<vi rtual NodesDefi ni ti on>
<vi rtual Node name="Di spatcher"/><!-- Nanme of the Virtual Node
that will be used in program source -->
</ virtual NodesDefinition>

<mappi ng>
<l-- This part contains the mapping VNs -- JVMs -->
<map vi rtual Node="Di spat cher">
<j virbet >
<vmNane val ue="Jvnl"/>
<!-- Virtual Node Dispatcher is mapped onto Jvml -->

</ j vntet >
</ map>
</ mappi ng>
<j vims>
<j vm name="JvmL" >
<l-- This part defines how the jvmw Il be obtained: creation or

acquisition: creation in this exanple -->
<creation>
<processRef erence refid="creati onProcess"/><!-- Jvnl will be
created using creationProcess defined bel ow -->
</creation>
</jvme
</jvns>

ProActive 3.0 — Reference Booklet 11

</ depl oyment >
<infrastructure>
<processes>
<processDefinition id="creati onProcess">
<!-- Definition of creationProcess referenced above -->
<j vnProcess
cl ass="org. obj ect web. proacti ve. core. process. JVM\odePr ocess"/ >
<l-- creationProcess is a jvnProcess. The jvmwi || be created
on the | ocal machine using default settings (classpath, java
path,...) -->
</ processDefinition>
</ processes>

Deployment API

ProActi veDescriptor pad = ProActive. get ProActiveDescriptor(String
File);
/'l Returns a ProActiveDescriptor object fromthe xm
/'l descriptor file nane
pad. acti vat eMappi ng(String VN);
/'l Activates the given Virtual Node: |aunches or acquires
/1 all the JVMs the VN is napped onto
pad. act i vat eMappi ngs();
/1 Activates all VNs defined in the ProActiveDescriptor
Vi rtual Node vn = pad. get Vi rtual Node(String)
/'l Creates at once a group of AO of type "A" in the JVMs specified
/1 by the given vn. The Virtual Node is automatically activated if
/1 not explicitly done before
Node[] n = vn. get Nodes();
/'l Returns all nodes napped to the target Virtual Node
oject[] n[0].getActiveObjects();
/'l Returns a reference to all AGs deployed on the target Node
ProActiveRuntine part = n[0].getProActiveRuntine();
/'l Returns a reference to the ProActive Runtine (the JVM where
/1 the node has been created
pad. kil lall (bool ean softly);
/1 Kills all the JVMs deployed with the descri ptor
/1 not softly: all JVMs are killed abruptely
/1 softly: all JVMs that originated the creation of a rm registry
/1 waits until registry is enpty before dying

File Transfer Deployment

File Transfer Deployment is a tool for transfering files at deployment time. This
files are specified using the ProActive XML Deployment Descriptor in the
following way:

<Vi rt ual Node nane="exanpl eVNode" Fil eTransfer Depl oy="exanpl e"/>

</ dépl oyment >
<Fi | eTransferDefinitions>

12 ProActive 3.0 — Reference Booklet

<Fil eTransfer id="exanple">
<file src="hello.dat" dest="world.dat"/>
<dir src="exanpledir" dest="exanpledir"/>
</ Fil eTransfer>

</ Fi |l eTransferDefinitions>
<i nfrastructure>

<processDefinition id="xyz">
<sshProcess>. ..
<Fi | eTransferDepl oy="inplicit"> <!-- referencel D or keyword
“implicit" (inherit)-->
<copyPr ot ocol >processDefaul t, scp, rcp</copyProtocol >
<sourcel nfo prefix="/hone/user"/>
<destinationlnfo prefix="/tnmp" hostname="foo0. org"
usernane="smth" />
</ Fi |l eTr ansf er Depl oy>
</ sshProcess>
</ processDefinition>

Peer-to-Peer Infrastructure

A P2P infrastructure of ProActive JVMs over desktop machines. It is self-
organized and configurable. The infrastructure maintains a dynamic network of
JVMs for deploying computational applications.

Deploying the Infrastructure

$ cd ProActive/scripts/unix/p2p
$./startP2PService [-acq acquisitionMethod] [-port portNumber] [-s Peer ...]

A simple example

first.peer.host$./startP2PService.sh
second.peer.host$./startP2PService.sh -s //first.peer.host
third.peer.host$./startP2PService.sh -s //second.peer.host

Acquiring Nodes

<servi ces>

<servi ceDefinition id="p2pl ookup">
<P2PServi ce nodesAsked="50" acqg="rm " port="6666">
<peer Set >

<peer >/ / second. peer. host </ peer >

</ peer Set >
</ P2PSer vi ce>

</ servi ceDefinition>

</ servi ces>

ProActive 3.0 - Reference Booklet 13

Fault-Tolerance

ProActive can provide fault-tolerance capabilities through two different protocols:
a Communication-Induced Checkpointing protocol (CIC) or a Pessimistic Message
Logging protocol (PML). Making a ProActive application fault-tolerant is fully
transparent; active objects are turned fault-tolerant using Java properties that
can be set in the deployment descriptor. The programmer can select at
deployment time the most adapted protocol regarding the application and the
execution environment.

A Fault-tolerant deployment descriptor

<vi rt ual NodesDefi ni ti on>
<vi rtual Node nanme="NonFT- Wr kers" property="nultiple"/>
<vi rtual Node nane="FT-Wrkers" property="nultiple"
ftServiceld="appli"/>
</ virtual NodesDefinition>

<serviceDefinition id="appli">
<faul t Tol erance>

<!-- Protocol selection : cic or pm -->
<protocol type="cic"></protocol >
<l-- URL of the fault-tolerance server -->

<gl obal Server
url ="rm://local host: 1100/ FTSer ver" ></ gl obal Server>

<!-- URL of the resource server; all the nodes nmapped on the
FT-Workers virtual node will be registered in as resource
nodes for recovery -->

<r esour ceServer
url ="rm://local host: 1100/ FTServer"></resour ceServer >

<l-- Average tine between two consecutive checkpoints for each
object -->
<ttc value="5"></ttc><!-- in seconds -->

</faul t Tol erance>
</ servi ceDefinition>
</ servi ces>

Starting the fault-tolerance server

The global fault-tolerance server can be launched using the
ProActivel/ scri pts/[unix|w ndows]/FT/ startd obal FTServer . [sh| bat]

script, with 5 optional parameters:
the protocol: -proto [cic|pnl]. Default value is cic.
the server name: - nane [server Nane] . Default name is FTServer.
the port number: -port [portNunber] . Default port number is 1100.
the fault detection period: -f dperi od [peri odl nSec], the time between
two consecutive fault detection scanning. Default value is 10 sec.
the URL of a p2p service that can be used by the resource server: - p2p
[servi ceURL] . No default value.

14 ProActive 3.0 - Reference Booklet

JEM3D: Java Electro-Magnetism with

An X.509 Public Key Infrastructure (PKI) allowing communication Authentication,

Integrity, and Confidentiality (AIC) to be configured in an XML security file, at PPOACtive

deployment, outside any source code. Security is compatible with mobility, ing on the Grid
allows for hierarchical domain specification and dynamically negotiated policies.

Example of specification

<Rul e>

<Fronmp<Entity type="VN' name="VN1"/> </Fronp

<To> <Entity type="VN' name="VN2"/> </ To>

<Conmuni cat i on>

<Request val ue="aut hori zed" >
<Attributes authentication="required"

integrity="required"
confidentiality="optional"/>

</ Request >
</ Conmuni cati on>
<M grati on>deni ed</ M grati on>
<AQCr eat i on>deni ed</ AQCCr eat i on>

</ Rul e>

This rule specifies that: from Virtual Node "VN1" to the VN "VN2", the Vibro_Acoustic Code Coupling of
communications (requests) are authorized, provided authentication and integrity .

are being used, while confidentiality is optional. Migration and AO creation are MPI Legacy with Components
not authorized. Courtesy of EADS CCR

Airbus A319 Cockpit

Branch and Bound API , . . Cockpit solution for 100 Hz

This is a simple API for solving parallel problems using a Branch-And-Bound
infrastructure.

Cockpit solution for 300 Hz

public class YourTask extends Task {

public Result execute() // For conputing a solution

public Vector split() // For generating sub-tasks

public Result gather(Result[] results) // Gathering all results
public void initLowerBound() // For conputing a |ower bound
public void initUpperBound() // For conputing a upper bound

~ PAMPLMan] T =
: oo
Start the computation: 1 e == e
¥ e
¥ rersrorv || || [\
X TETTOPAC -
Task task = new Your Task(soneArgunents); g
Manager nmanager = ProActiveBranchNBound. newBnB(t ask, o — T
nodes, e e =
Lar ger Queuel npl . cl ass. get Nane()) ; setas
Result futureResult = manager.start(); // this call is asynchronous

ProActive 3.0 - Reference Booklet 15 16 ProActive 3.0 - Reference Booklet

