

Version 3.0 – November 2005

Reference Booklet

Graphical and Textual Visualization Application Launcher Window

Components GUI Dynamic Communications

ProActive 3.0 – Reference Booklet 2

ProActive is a Java library for parallel, distributed, and concurrent
computing, also featuring mobility and security in a uniform framework.
ProActive provides a comprehensive API and a graphical interface. The library is
based on an Active Object pattern that is a uniform way to encapsulate:

• a remotely accessible object,

• a thread as an asynchronous
 activity,

• an actor with its own script,

• a server of incoming requests,
• a mobile and potentially

 secure entity,

• a component with server and
 client interfaces.

ProActive is only made of standard Java classes, and requires no changes to
the Java Virtual Machine. Overall, it simplifies the programming of
applications distributed over Local Area Network (LAN), Clusters, Intranet or
Internet GRIDs.

ProActive interoperates with the following official or de-facto standards:

• Web Service Exportation
• HTTP Transport, Jini, OSGi
• SSH, RSH, RMI/SSH Tunneling
• LSF, PBS, OAR, Sun Grid Engine

• Globus GT2, GT3, GT4
• sshGSI
• NorduGrid
• Unicore, EGEE gLite

Table of Contents

Main concepts and definitions ... 3
Main principles:... 4
asynchronous method calls and implicit futures... 4
Explicit Synchronization ... 4
Programming AO Activity and Services... 4
Reactive Active Object ... 5
Service methods ... 5
Active Object Creation ... 7
Groups... 7
Explicit Group Synchronizations .. 8
OO SPMD ...8
Migration.. 8
Exceptions.. 9
Components ... 10
Web services .. 10
Deployment.. 11
File Transfer Deployment ... 12
Peer-to-Peer Infrastructure... 13
Fault-Tolerance... 14
Security ... 15

Branch and Bound API ... 15

ProActive 3.0 – Reference Booklet 3

Main concepts and definitions
Active Objects
(AO)

A remote object, with its own thread, receiving calls on
its public methods

FIFO activity An AO, by default, executes the request it receives one
after the other, in the order they were received

No-sharing Standard Java objects cannot be referenced from 2
AOs, ensured by deep-copy of constructor params,
method params, and results

Asynchrony Method calls towards AOs are asynchronous

Future The result of a non-void asynchronous method call

Request The occurrence of a method call towards an AO

Service The execution by an AO of a request

Reply After a service, the result is sent back to the caller

Wait-by-
necessity

Automatic wait upon the use of a still awaited future

Automatic
Continuation

Transmission of futures and replies between AO and
JVMs

Migration An AO moving from one JVM to another, computational
weak mobility: the AO decides to migrate; stack is lost

P
R
O
G
R
A
M
M
I
N
G

Group A typed group of objects or AOs. Methods are called in
parallel on all group members

Component Made of AOs, a component defines server and client
interfaces

Primitive
Component

Directly made of Java code and AOs

Composite
Component

Contains other components (primitives or composites)

C
O
M
P
O
S
I
N
G

Parallel
Component

A composite that is using groups to multicast calls to
inner components

Virtual Node
(VN)

An abstraction (a string) representing where to locate
AOs at creation

Deployment
descriptor

An XML file where a mapping VN � JVMs � Machine is

specified

Node The result of a mapping VN � JVMs. After activation, a

VN contains a set of nodes living in a set of JVMs

P2P A P2P network of self-organized JVMs, on which to
deploy applications

Fault-Tolerance Applications can be turned fault-tolerant simply by
modifying the deployment descriptor

Security X.509 Authentication, Integrity, and Confidentiality
defined at deployment in an XML

D
E
P
L
O
Y
I
N
G

IC2D Interactive Control and Debugging of Distribution: a
Graphical environment for monitoring and steering

Grid applications

ProActive 3.0 – Reference Booklet 4

Main principles:
Asynchronous Method Calls and Implicit Futures
A a = (A) ProActive.newActive("A", params, node);
 // Create an active Object of type A in the JVM specified by Node
a.foo (param);
 // A one way typed asynchronous communication towards the (remote)
 // AO a. A request is sent to a.
v = a.bar (param);
 // A typed asynchronous communication with result.
 // v is first an awaited Future, to be transparently filled up
 // after service of the request, and the reception of a reply
v.gee (param);
 // Use of the result of an asynchronous call.
 // If v is still an awaited future, it triggers an automatic
 // wait: Wait-by-necessity

Explicit Synchronization
boolean isAwaited(Object);
 // Returns True if the object is still an awaited Future
void waitFor(Object);
 // Blocks until the object is no longer awaited
 // The object is a future
void waitForAll(Vector);
 // Blocks until all the objects in Vector are no longer awaited
int waitForAny(Vector);
 // Blocks until one of the objects in Vector is no longer awaited.
 // Returns the index of the available future.

Programming AO Activity and Services
When an AO must implement an activity that is not FIFO, the RunActive
interface has to be implemented: it specifies the AO behaviour in the method
named runActivity(Body body).

 Example:

public class A implements RunActive {
 // Implements RunActive for programming a specific behaviour;
 // runActivity is automatically called when such an AO is created
public void runActivity(Body body) {
Service service = new Service(body);
while (!terminate) {
 ... // Do some activity on its own
 ... // Do some services, e.g. a FIFO service on method
 // named foo. See Service section
 service.serveOldest("foo");
 ...
 }...

ProActive 3.0 – Reference Booklet 5

Two other interfaces can also be specified:

Interface InitActive
void initActivity(Body body)
 // Initializes the activity of the active object.
 // Not called in case of restart after migration.
 // Called before runActivity() method, and only once.

Interface EndActive
void endActivity(Body body)
 // Finalizes the active object after the activity stops by itself.
 // Called after the execution of runActivity() method, and only
 // once. Not called before a migration.

Reactive Active Object
Even when an AO is busy doing its own work, it can remain reactive to external
events (method calls). One just has to program non-blocking services to take
into account external inputs.

public class BusyButReactive implements RunActive {

public void runActivity(Body body) {
Service service = new Service(body);
while (! hasToTerminate) {
 ... // Do some activity on its own
 ... // Non blocking service
 service.serveOldest("changeParameters", "terminate");
 ...
 }
 }
public void changeParameters () {// change computation parameters}
public void terminate (){ hasToTerminate=true;}
}
It also allows one to specify explicit termination of AOs (there is currently no
Distributed Garbage Collector). Of course, the reactivity is up to the length of
going around the loop. Similar techniques can be used to start, suspend, restart,
and stop AOs.

Service methods
A service Method selects a given request amongst the pending calls, and
executes it. Those methods are to be used when a FIFO service is not

appropriate, when a RunActivity method is programmed.

Non-blocking services: returns immediately if no matching request is pending

void serveOldest();
 // Serves the oldest request in the request queue

ProActive 3.0 – Reference Booklet 6

void serveOldest(String methodName)
 // Serves the oldest request aimed at a method of name methodName
void serveOldest(RequestFilter requestFilter)
 // Serves the oldest request matching the criteria given by the
 // filter

Blocking services: waits until a matching request can be served

void blockingServeOldest();
 // Serves the oldest request in the request queue
void blockingServeOldest(String methodName)
 // Serves the oldest request aimed at a method of name methodName
void blockingServeOldest(RequestFilter requestFilter)
 // Serves the oldest request matching the criteria given by the
 // filter

Blocking timed services: wait a matching request at most a time given in ms

void blockingServeOldest (long timeout)
 // Serves the oldest request in the request queue.
 // Returns after timeout (in ms) if no request is available
void blockingServeOldest(String methodName, long timeout)
 // Serves the oldest request aimed at a method of name methodName
 // Returns after timeout (in ms) if no request is available
void blockingServeOldest(RequestFilter requestFilter)
 // Serves the oldest request matching the criteria given by the
 // filter

Waiting primitives:

void waitForRequest();
 // Wait until a request is available or until the body terminates
void waitForRequest(String methodName);
 // Wait until a request is available on the given method name,
 // or until the body terminates

Others:

void fifoServing();
 // Start a FIFO service policy. Call does not return. In case of
 // a migration, a new runActivity() is started on the new site.
void lifoServing()
 // Invoke a LIFO policy. Call does not return. In case of
 // a migration, a new runActivity() will be started on the new
 // site.
void serveYoungest()
 // Serves the youngest request in the request queue
void flushAll()
 // Removes all requests in the pending queue

ProActive 3.0 – Reference Booklet 7

Groups
A typed collection of active objects on which calls are performed in parallel
(hiding latency), and asynchronously (returning a group of futures).

A ga = (A) ProActiveGroup.newGroup("A", params, nodes);
 // Creates at once a group of AO of type "A" in the JVMs specified
 // by nodes. ga is a Typed Group of type "A".
 // The number of AO created matches the number of param arrays.
 // Nodes can be a Virtual Node defined in an XML descriptor
ga.foo(...);
 // A general group communication without result.
 // A request to foo is sent in parallel to AOs in group ga
V gv = ga.bar(...);
 // A general group communication with a result.
 // gv is a typed group of "V", which is first a group
 // of awaited Futures, to be filled up asynchronously
gv.gee (...);
 // Use of the result of an asynchronous group call. It is also a
 // collective operation: gee method is called in parallel on each
 // object in group.
 // Wait-by-necessity occurs when results are awaited
Group ag = ProActiveGroup.getGroup(ga);
 // Get the group representation of a typed group
ag.add(o);
 // Add o in the group ag. o can be a standard Java object or
 // an AO, and in any case must be of a compatible type
ag.remove(index)
 // Removes the object at the specified index
A ga2 = (A) ag.getGroupByType();
 // Returns the typed view of a group
void setScatterGroup(g);
 // By default, a group used as a parameter of a group
 // communication is sent to all as it is (deep copy of the group).
 // When set to scatter, upon a group call (ga.foo(g)) such a
 // scatter parameter is dispatched in a round robing fashion to
 // AOs in the target group, e.g. upon ga.foo(g)

Active Object Creation
Object newActive(String classname, Object[]
 constructorParameters,Node node);
 // Creates a new AO of type classname. The AO is located on the
 // given node, or on a default node in the local JVM if the given
 // node is null
Object[] newActive(String classname,Object[]
 constructorParameters,VirtualNode virtualnode);
 // Creates a new set of AO of type classname.
 // The AOs are located on each JVM the Virtual Node is mapped onto
Object turnActive(Object, Node node);
 // Copy an existing Java object and turns it into an AO.
 // The AO is located on the given node, or on a default node

ProActive 3.0 – Reference Booklet 8

void unsetScatterGroup(g);
 // Get back to the default: entire group transmission in all group
 // communications, e.g. upon ga.foo(g)

Explicit Group Synchronizations
Methods to wait for the availability of all results of a group call, or the first

one(s) to be available. Methods are both in interface Group, and static in class
ProActiveGroup.

boolean ProActiveGroup.allAwaited (Object);
 // Returns true if object is a group and all members are still
 // awaited
boolean ProActiveGroup.allArrived (Object);
 // Returns False only if at least one member is still awaited
void ProActiveGroup.waitAll (Object);
 // Wait for all the members in group to arrive (all no longer
 // awaited)
void ProActiveGroup.waitN (Object, int nb);
 // Wait for at least nb members in group to arrive
int ProActiveGroup.waitOneAndGetIndex (Object);
 // Waits for at least one member to arrived, and returns its index

OO SPMD
A group in which each group member has a proxy to the group it belongs to.
Typically used in applications with sub-domain decomposition, numerical SPMD
(Simple Program, Multiple Data), etc.

A spmdGroup = (A) ProSPMD.newSPMDGroup("A", params, nodes);
 // Creates an SPMD group and creates all members with params on
 // the nodes.
 // An SPMD group is a typed group in which every member has a
 // reference to the others (the SPMD group itself).
A mySpmdGroup = (A) ProSPMD.getSPMDGroup();
 // Returns the SPMD group of the activity.
int rank = ProSPMD.getMyRank();
 // Returns the rank of the activity in its SPMD group.
ProSPMD.barrier("barrierID");
 // Blocks the activity (after the end of the current service)
 // until all other members of the SPMD group invoke the same
 // barrier. Three barriers are available : total barrier,
 // neighbors based barrier and method based barrier.

Migration
Computational mobility: an active object changes of JVM at execution. Migration
is weak: stack is to be lost, and migrateTo primitive is static.

ProActive 3.0 – Reference Booklet 9

void migrateTo(Object o);
 // Migrate the current AO to the same JVM as the AO
void void migrateTo(String nodeURL);
 // Migrate the current AO to JVM given by the node URL
int void migrateTo(Node node);
 // Migrate the current AO to JVM given by the node

To initiate the migration of an object from outside, define a public method, that

upon service will call migrateTo primitive:

public void moveTo(Object o) {
 try{
 ProActive.migrateTo(o);
 } catch (Exception e) {
 e.printStackTrace();
 logger.info("Cannot migrate.");
 }
 }

void onDeparture(String MethodName);
 // Specification of a method to execute before migration
void onArrival(String MethodName);
 // Specification of a method to execute after migration, upon the
 // arrival in a new JVM
void setMigrationStrategy(MigrationStrategy ms);
 // Specifies a migration itinerary
void migrationStrategy.add(Destination d);
 // Adds a JVM destination to an itinerary
void migrationStrategy.remove(Destination d) ;
 // Remove a JVM destination in an itinerary

Exceptions
ProActive has two exception mechanisms because there are two kinds of
exceptions: functional and non-functional ones. First an example with functional
exceptions that permits asynchronous calls with exceptions:

ProActive.tryWithCatch(MyException.class);// Just before the try
try { // Some asynchronous calls with potential MyException
 ProActive.endTryWithCatch();// At the end of the try
} catch (MyException e) {
 // ...
} finally {
 ProActive.removeTryWithCatch();// At the beginning of the finally
}

Non-functional exceptions make use of handlers. They can be added on a JVM

and on an AO. It’s also possible to specify an exception type to handle.

ProActive 3.0 – Reference Booklet 10

ProActive.addNFEListenerOnAO(myAO, new NFEListener() {
 public boolean handleNFE(NonFunctionalException nfe) {
 // Do something with the exception nfe...
 // Return true if we were able to handle it
 return true;
 }});

The behaviour of the default handler (if none could handle the exception) is to
throw the exception if it's on the proxy side, or log it if it's on the body side.

Components
Components are formed from AOs, a component is linked and communicates
with other remote components. A component can be composite, made of other
components, and as such itself distributed over several machines. Component
systems are defined in XML files (ADL: Architecture Description Language); these
files describe the definition, the assembly, and the bindings of components.
Components follow the Fractal hierarchical component model specification and
API, see http://fractal.objectweb.org. The following methods are specifically
added by the ProActive implementation of Fractal.

In the class org.objectweb.proactive.ProActive :

Component newActiveComponent("A", params, VirtualNode,
 ComponentParameters);
 // Creates a new ProActive component from the specified class A.
 // The component is distributed on JVMs specified by the Virtual
 // Node.
 // The ComponentParameters defines the configuration of a
 // component:
 // name of component, interfaces (server and client), etc.
 // Returns a reference to a component, as defined in the Fractal
 // API.

In the class org.objectweb.proactive.core.component.Fractive :

ProActiveInterface createCollectiveClientInterface(String itfName,
 String itfSignature);
 // This method is used in primitive components.
 // It generates a client collective interface named itfName, and
 // typed as itfSignature.
 // This collective interface is a typed ProActive group.

Web services
ProActive allows active objects exportation as web services. The service is
deployed onto a Jakarta Tomcat web server with a given url. It is identified by its
urn, a unique id of the service. It is also possible to choose the exported
methods of the object. The WSDL file matching the service will be accessible at

ProActive 3.0 – Reference Booklet 11

http://localhost:8080/servlet/wsdl?id=a for a service whose name is "a" and
whose id is deployed on a web server which location is http://localhost:8080.

A a = (A) ProActive.newActive("A", new Object []{});
 // Constructs an active object
String [] methods = new String [] {"foo", "bar"};
 // A String array containing the exported methods
ProActive.exposeAsWebService(a,"http://localhost:8080","a",methods);
 // Export the active object as a web service
ProActive.unExposeAsWebService("a", "http://localhost:8080");
 // Undeploy the service "a" on the web server located at
 // http://localhost:8080

Deployment
Virtual Nodes (VN) allow one to specify the location where to create AOs. A VN is
uniquely identified as a String, is defined in an XML Deployment Descriptor
where it is mapped onto JVMs. JVMs are themselves mapped onto physical
machines: VN --> JVMs --> Machine. Various protocols can be specified to create
JVMs onto machines (ssh, Globus, LSF, PBS, rsh, rlogin, Web Services, etc.).
After activation, a VN contains a set of nodes, living in a set of JVMs. Overall,

VNs and deployment descriptors allow to abstract away from source code:
machines, creation, lookup and registry protocols.

Descriptor example: creates one JVM on the local machine

...
 <virtualNodesDefinition>
 <virtualNode name="Dispatcher"/><!-- Name of the Virtual Node
 that will be used in program source -->
 </virtualNodesDefinition>
...

<mapping>
 <!-- This part contains the mapping VNs -- JVMs -->
 <map virtualNode="Dispatcher">
 <jvmSet>
 <vmName value="Jvm1"/>
 <!-- Virtual Node Dispatcher is mapped onto Jvm1 -->
 </jvmSet>
 </map>
 </mapping>
 <jvms>
 <jvm name="Jvm1">
 <!-- This part defines how the jvm will be obtained: creation or
 acquisition: creation in this example -->
 <creation>
 <processReference refid="creationProcess"/><!-- Jvm1 will be
 created using creationProcess defined below -->
 </creation>
 </jvm>
 </jvms>

ProActive 3.0 – Reference Booklet 12

 </deployment>
 <infrastructure>
 <processes>
 <processDefinition id="creationProcess">
 <!-- Definition of creationProcess referenced above -->
 <jvmProcess
 class="org.objectweb.proactive.core.process.JVMNodeProcess"/>
 <!-- creationProcess is a jvmProcess. The jvm will be created
 on the local machine using default settings (classpath, java
 path,...) -->
 </processDefinition>
 </processes>
...

Deployment API

ProActiveDescriptor pad = ProActive.getProActiveDescriptor(String
 File);
 // Returns a ProActiveDescriptor object from the xml
 // descriptor file name
pad.activateMapping(String VN);
 // Activates the given Virtual Node: launches or acquires
 // all the JVMs the VN is mapped onto
pad.activateMappings();
 // Activates all VNs defined in the ProActiveDescriptor
VirtualNode vn = pad.getVirtualNode(String)
 // Creates at once a group of AO of type "A" in the JVMs specified
 // by the given vn. The Virtual Node is automatically activated if
 // not explicitly done before
Node[] n = vn.getNodes();
 // Returns all nodes mapped to the target Virtual Node
Object[] n[0].getActiveObjects();
 // Returns a reference to all AOs deployed on the target Node
ProActiveRuntime part = n[0].getProActiveRuntime();
 // Returns a reference to the ProActive Runtime (the JVM) where
 // the node has been created
pad.killall(boolean softly);
 // Kills all the JVMs deployed with the descriptor
 // not softly: all JVMs are killed abruptely
 // softly: all JVMs that originated the creation of a rmi registry
 // waits until registry is empty before dying

File Transfer Deployment
File Transfer Deployment is a tool for transfering files at deployment time. This
files are specified using the ProActive XML Deployment Descriptor in the
following way:

<VirtualNode name="exampleVNode" FileTransferDeploy="example"/>
....
</deployment>
<FileTransferDefinitions>

ProActive 3.0 – Reference Booklet 13

 <FileTransfer id="example">
 <file src="hello.dat" dest="world.dat"/>
 <dir src="exampledir" dest="exampledir"/>
 </FileTransfer>
 ...
</FileTransferDefinitions>
<infrastructure>
....
<processDefinition id="xyz">
 <sshProcess>...
 <FileTransferDeploy="implicit"> <!-- referenceID or keyword
 "implicit" (inherit)-->
 <copyProtocol>processDefault, scp, rcp</copyProtocol>
 <sourceInfo prefix="/home/user"/>
 <destinationInfo prefix="/tmp" hostname="foo.org"
 username="smith" />
 </FileTransferDeploy>
 </sshProcess>
</processDefinition>

Peer-to-Peer Infrastructure
A P2P infrastructure of ProActive JVMs over desktop machines. It is self-
organized and configurable. The infrastructure maintains a dynamic network of
JVMs for deploying computational applications.

Deploying the Infrastructure

$ cd ProActive/scripts/unix/p2p
$./startP2PService [-acq acquisitionMethod] [-port portNumber] [-s Peer ...]

A simple example

 first.peer.host$./startP2PService.sh
 second.peer.host$./startP2PService.sh -s //first.peer.host
 third.peer.host$./startP2PService.sh -s //second.peer.host

Acquiring Nodes

<services>
 <serviceDefinition id="p2plookup">
 <P2PService nodesAsked="50" acq="rmi" port="6666">
 <peerSet>
 <peer>//second.peer.host</peer>
 </peerSet>
 </P2PService>
 </serviceDefinition>
 ...
</services>

ProActive 3.0 – Reference Booklet 14

Fault-Tolerance
ProActive can provide fault-tolerance capabilities through two different protocols:
a Communication-Induced Checkpointing protocol (CIC) or a Pessimistic Message
Logging protocol (PML). Making a ProActive application fault-tolerant is fully

transparent; active objects are turned fault-tolerant using Java properties that
can be set in the deployment descriptor. The programmer can select at
deployment time the most adapted protocol regarding the application and the
execution environment.

A Fault-tolerant deployment descriptor

 <virtualNodesDefinition>
 <virtualNode name="NonFT-Workers" property="multiple"/>
 <virtualNode name="FT-Workers" property="multiple"
 ftServiceId="appli"/>
 </virtualNodesDefinition>
 ...
 <serviceDefinition id="appli">
 <faultTolerance>
 <!-- Protocol selection : cic or pml -->
 <protocol type="cic"></protocol>
 <!-- URL of the fault-tolerance server -->
 <globalServer
 url="rmi://localhost:1100/FTServer"></globalServer>
 <!-- URL of the resource server; all the nodes mapped on the
 FT-Workers virtual node will be registered in as resource
 nodes for recovery -->
 <resourceServer
 url="rmi://localhost:1100/FTServer"></resourceServer>
 <!-- Average time between two consecutive checkpoints for each
 object -->
 <ttc value="5"></ttc><!-- in seconds -->
 </faultTolerance>
 </serviceDefinition>
 </services>

Starting the fault-tolerance server

The global fault-tolerance server can be launched using the
ProActive/scripts/[unix|windows]/FT/startGlobalFTServer.[sh|bat]
script, with 5 optional parameters:

the protocol: -proto [cic|pml]. Default value is cic.
the server name: -name [serverName]. Default name is FTServer.
the port number: -port [portNumber]. Default port number is 1100.
the fault detection period: -fdperiod [periodInSec], the time between
two consecutive fault detection scanning. Default value is 10 sec.

the URL of a p2p service that can be used by the resource server: -p2p
[serviceURL]. No default value.

ProActive 3.0 – Reference Booklet 15

Security
An X.509 Public Key Infrastructure (PKI) allowing communication Authentication,
Integrity, and Confidentiality (AIC) to be configured in an XML security file, at
deployment, outside any source code. Security is compatible with mobility,

allows for hierarchical domain specification and dynamically negotiated policies.

Example of specification

<Rule>
 <From><Entity type="VN" name="VN1"/> </From>
 <To> <Entity type="VN" name="VN2"/> </To>
 <Communication>
 <Request value="authorized">
 <Attributes authentication="required"
 integrity="required"
 confidentiality="optional"/>
 </Request>
 </Communication>
 <Migration>denied</Migration>
 <AOCreation>denied</AOCreation>
</Rule>

This rule specifies that: from Virtual Node "VN1" to the VN "VN2", the
communications (requests) are authorized, provided authentication and integrity
are being used, while confidentiality is optional. Migration and AO creation are
not authorized.

Branch and Bound API
This is a simple API for solving parallel problems using a Branch-And-Bound
infrastructure.

public class YourTask extends Task {

 public Result execute() // For computing a solution
 public Vector split() // For generating sub-tasks
 public Result gather(Result[] results) // Gathering all results
 public void initLowerBound() // For computing a lower bound
 public void initUpperBound() // For computing a upper bound

Start the computation:

Task task = new YourTask(someArguments);
Manager manager = ProActiveBranchNBound.newBnB(task,
 nodes,
 LargerQueueImpl.class.getName());
Result futureResult = manager.start(); // this call is asynchronous

ProActive 3.0 – Reference Booklet 16

JEM3D: Java Electro-Magnetism with

Vibro-Acoustic Code Coupling of

MPI Legacy with Components
Courtesy of EADS CCR

Airbus A319 Cockpit

Cockpit solution for 100 Hz

Cockpit solution for 300 Hz

