Enhydra Shark

Copyright © 2006 Together Teamldsungen EDV -Dienstleistungen GmbH

Table of Contents

What iS ENhydra Shark?ooe e 2

SEAING SNAK <. e e e aa e 3

ConfiguIING SNArK ... e 4
Setting "engiNENaME" PAIrAMELETccuuuieiieeeieeei e et e e e e e e e e e e e e e et e e et e e et e e et e eaneeannas 5
Setting kernel behaviour in the case of unsatisfied split conditionsoooviiviiiiiniii e, 5
Setting kernel to evaluate OTHERWISE conditionS 1astoovvvviiiiiiiiiiiiiiiicc e 6
Setting kernel for assignmENt CrEatioNooeeueiiiiiii e 6
Setting kernel for default assigNMENt Crealioncc.uiiiiiiii e 6
Setting kernel for resource handling during assignment Creationccceuveveiviiieiieeiieeieeieaieeannas 7
Setting kernel behaviour to re-evaluate assignments at engine tartupvevveveveiieeinieeiiieeieeeeenn, 7
Setting kernel for assignment handlingooveeieiiiiii e 7
Setting kernel behaviour to fill the caches on Startupcooveiiiiiiii e, 8
Setting kernel behaviour for reevaluating deadline limitscooeuiiiiiiiiiiii e 8
Setting kernel and event audit mgr for persisting old event audit datacooeeiiiiiiiiiiiiineennn. 8
Setting kernel for the priority handlingc.oiiiiiiii e 9
Setting properties for browsing LDAP server (only availablein professional version) 9
Setting kernel's CallbackUtilities implementation Classovvieiiiiiiiiiiiic e, 11
Setting kernel's ObjectFactory implementation Class ... 12
Setting kernel's Tool ActivityHandler implementation Classovvvveiiiiiiiiiiiieiii e 12
Setting kernel's TxSynchronizatioNFaCtory ClasSviiuuiiiiiiiiii e 12
Database CONFIQUIALIONcuuiit et e e e e e e e e e e e et e e e e e e e e e eaneees 13
Setting persitence components variable datamodelccocoeiiiiiiiiii 13
Setting Assignment manager implementation Classcoouoiiiiiiiiii 14
Setting user group iMpPIEMENTALIONcoouuuiiiiii et 14
Setting participant map persistence implementationovvvieieiieieiir e 15
Setting Caching iMpPlEMENTALIONciuuiii e e 15
Setting instance persistence implementationooiiiiiiiiiie e 16
Configuring DODS instance persistence implementation to delete processes when they finish 16
Setting 1ogging APl impPIemENtatioNoiiiiiiiiiii e 16
Setting repository persistence implementationovveiiiiiiiiiiii e 18
Setting scripting manager impleMENtaLiONviieiei e 19
Setting security (authorization) APl implementation ..o 19
S (o T (00 =T = o | £ 19
Setting application map persistence implemMentationcoceuuieveiiieiii i e 20
Setting WEXML interoperability implementationoooouiiiiiiiiniiii e 20
Setting DODS |d generator CAChE SIZE(S) ..vvuuevertiieiiii ettt eeaans 21

ADOUL LA MOAE] ... et e e 21
DL 2 o T2 s SRS o] o AT UPTRPPTRN 21
What Needs to be Configured in Order to Use Database Other Then HypersonicSQL 22

Enhydra Shark

What is Enhydra Shark?

Enhydra Shark is Java workflow engine completely based on WfMC [ht-
tp://www.wfmc.org/standards/docs/if2v20.pdf] and OoMG [ht-
tp://www.omg.org/docs/formal/00-05-02.pdf] specifications.

» Shark is using WIMC's XML Process Definition Language [ht-
tp://www.wfmc.org/standards/docs/TC-1025 10 xpdl_102502.pdf] (XPDL) as its native workflow
definition format.

» Shark isaPOJO library which provides APIs based on WM C and OMG spec as well asalot of addi-
tional Shark specific APIsfor easier and more powerful workflow handling

Since Shark isalibrary, it does not open its own threads, but everything works from client application
thread, which makes shark a kind of workflow state machine - athin layer on top of the database.

This enables Shark to be used in many different environments. Basically shark can be used either dir-
ectly through its POJO interface by integrating engine within WEB, Swing or pure console applica-
tion, or it can be used as CORBA, EJB, RMI or WEB Service by making CORBA/EJB/RMI/WEB
Service wrappers on top of the POJO interface.

Shark project currently provides partial CORBA wrappers, full EJB wrappers and WEB Service
wrappers based on stateless EJB interface and AXIS based WEB Service wrappers deployable on
Tomcat. There are also severa client applications (including administrative application) in Shark
project which are able to access Shark through POJO interface, as well as through CORBA, EJB and
WEB Service wrapper interfaces.

» Shark isvery configurable, and al of its"internal" plug-in interfaces, aswell as complete kernel could
be replaced by another implementation.

» Shark library can be used from many VMs simultaneously (in cluster scenario).

 Shark can be configured to use organizationa structure defined on LDAP server (through the use of
specific implementation of shark's UserGroup plug-in component)

 Shark does not use any XPDL's Extended Attributes for its execution rules.
» Shark has full JTA support

» Shark uses DODS (OR/M tool from Enhydra), which enables shark to use amost any DB system for
storing information, and it can be easily configured to switch target DB vendor and/or url (it has pre-
defined scripts, and means to automatically create appropriate tables in those DBs using Octopus -
ETL tool from Enhydra)

» Shark has implemented ToolAgent concept defined by WfMC to execute tools of automatic, server-
side activities of XPDL definition. Several useful ToolAgents are coming with Shark, and anybody
can create its own tool agents based on ToolAgent API, which provides enormous capabilities for in-
tegration with other systems.

* Shark can use custom Java classes (and even interfaces or abstract classes) as process variables.

Enhydra Shark

Starting Shark

Shark can be started from a client application by configuring it first (which can be done in several differ-
ent manners), and then by getting an instance of it. This is the most common way to use shark from an
application:

String confFilePath="c:/Shark.conf";

Shar k. conf i gure(conf Fi | ePat h) ;
Shar k shar k=Shar k. get | nst ance() ;

Everything else can be done through the Shark interface.

Before configuring shark, it must be ensured there is a Data source and TransactionManager accessible
to Shark through JNDI.

Shark 2.0 is JTA oriented, and thus when shark works outside container which provides JTA Transac-
tionManager, we have to start one by our own. Also, in shark 2.0 for defining database we work with,
we use DataSource which should be registered in JNDI, and thus when working outside container we
also need to take care about registering data source in INDI. For the purpose of stand-alone shark usage
we made L ocal ContextFactory which is implementation of Initial ContextFactory interface, and which
purpose is to: 1. start TransactionManager 2. provide a JNDI context - register TransactionManager in
JNDI context (so we can afterwards obtain TransactionManager and UserTransaction from JNDI) - re-
gister DataSource in JNDI context So, when using shark outside container before configuring it with
Shark.conf, you need to execute the following command:

Local Cont ext Fact ory. set up("sharkdb");

where there must be "sharkdb.properties file in the class path, and this file should hold your datasource
definition, i.e. something like:

j dbc. wr apper =or g. enhydr a. j dbc. st andar d. St andar dXADat aSour ce
j dbc. m nconpool =12

j dbc. maxconpool =180

j dbc. connnmaxage=30

j dbc. conncheckl evel =1

dat asour ce. descri pti on=Shark W Engi ne Dat aSour ce

j dbc. connt est st nt =SELECT 1

dat asour ce. nanme=shar kdb

dat asour ce. cl assnane=or g. hsql db. j dbcDri ver

dat asour ce. url =j dbc: hsql db: C: / sasaboy/ pr ozonecvs/ Shar k/ out put / t ws/ db/ hsql / hsql
dat asour ce. user name=sa

dat asour ce. passwor d=

dat asour ce. i sol ati onl evel =0

In the example above, you can see that datasource name is "sharkdb", so on the other side, shark must
get the information for DODS how to search the datasource in JNDI, and there is a DODS property for
this purpose that is called:

DatabaseManager .DB.shar kdb.Connection.DataSourceName and the default value for this property is

"jndi:java: comp/datasource/sharkdb” This value is appropriate for DODS to search for data source
which name is "sharkdb" when we use Loca ContextFactory, so we do not need to re-define it in
Shark.conf in this case. During shark execution, both Shark kernel and DODS need access to Transac-
tionManager which they are looking for through JNDI. There are also two default properties for Shark
kernel and for DODS which are defining the lookup names for TransactionManager, and the default val-
ues are set to be adequate for Shark usage in a stand-aone application using Local ContextFactory.
These properties are respectively:

SharkTxSynchronizationFactory. XATransactionManager LookupName

3

Enhydra Shark

and

DatabaseManager .defaults. XATransactionManager LookupName and they both have the same default
value:

javax.transaction.TransactionManager (NOTE: when we use Shark in some container like Tomcat or
JBoss, we need to change the properties mentioned above according to container specification). Finally,
the client application must know how to obtain UserTransaction from JNDI so it can perform begin/
commit/rollback of the transaction. When using shark outside any container and with L ocal ContextFact-
ory as described above, the UserTransaction lookup name is:

java:comp/User Transaction So, the right procedure for starting stand-alone shark application could be:

Local Cont ext Factory. setup(shar kdb") ;
User Transaction ut = nu

try {
ut = (UserTransaction) new I nitial Context().|ookup("java:conp/UserTransaction");
ut. set Transacti onTi neout (15 * 60);
ut . begin();

String confFil ePat h="c:/ Shark.conf";
Shar k. conf i gur e(conf Fi | ePat h) ;
Shar k shar k=Shar k. get I nst ance() ;

ut.commt();

} catch (Throwabl e ex) {
throw new Error (" Sonet hing really bad happened”, ex);

Configuring Shark

There are five different waysto configure shark:

1. use configure () method without parameters:

then shark is configured only from config file that is placed in its jar file. Shark that is configured in
this way works with default settings, and without many internal APl implementations (Caching,
EventAudit, Logging, ...).

NOTE: thisway of default configuration is possible only when shark database is not HSQL, and only
when data source lookup name equals to "jndi:java:comp/datasource/sharkdb” and TransactionMan-
ager lookup name equal s to "javax.transaction. TransactionM anager"

2. use configure (String filePath) method:

it creates File object out of the path given in the filePath string, and calls the configure (File config-
File) described next.

3. use configure (File configFile) method:

shark first does basic configuration based on properties given in its jar file, and then does additional
configuration from the file specified. If the configuration File defines same properties as in default
configuration file from the jar, these property's values will override the default ones, plus al addition-
al properties from File/Properties will be added to shark configuration. The configuration files you
are passing as a parameter actually does not need to define whole configuration, but they could just
redefine some default configuration parameters (i.e. how to handle otherwise transition, to re-evaluate

4

Enhydra Shark

deadlines or not, to create default assignment, ...) and add some additional configuration parameters
(i.e. AssignmentM anagerClassName).

4. use configure (Properties props) method:

it does basically the same as previous method (in fact, the previous method converts the file content
into Properties object), but it offers the possibility for client applications to use Java Properties object
to configure shark.

5. use configure (Config config) method:

this configuration through EAF's Config object makes possible to configure shark with properties
defined in web.xml of your WEB application.

Y ou can use many shark instances configured differently (you just need to specify different config files/
paths, or define different Property object). If you want to use severa shark instances (from more than
one VM) on the same DB, you should ALWAY'S set the values for DODS cache sizes (must set it to
zero), and CacheM anagerClassName property should not exist).

As aready mentioned, shark is very configurable engine, and all of its components, including kernel,
can be replaced by a custom implementation.

The most common way for configuring shark is defining custom Shark.conf file, and here we will de-
scribe how you can configure shark, by briefly explaining the meaning of entries in standard Shark.conf
file coming with shark distribution:

NOTE: Since Shark is singleton, it is currently not possible to use more then one shark instance in the
same class |oader.

Setting "enginename" parameter

Y ou can set the name of shark instance by editing enginename property. Here is a part of configuration
file for setting this property:

HHHHEHHE . NAVE

the nanme of shark instance

engi nenane=Shar k

Can be used to identify shark instance (NOTE: in shark versions before 2.0 this parameter had also other
meaning, and it was required to have different name for each shark instance).

Setting kernel behaviour in the case of unsatisfied split condi-
tions

You can set the way how the standard shark kernel will react when the process has nowhere to go after
an activity is finished, and al activity's outgoing transitions are unsatisfied (evaluated to false). Of
course, this parameter has meaning only for the activities that have at |east one outgoing transition.

Hereisapart of configuration file for setting this property:

5

Enhydra Shark

HEHH R KERNEL SETTI NG f or UNSATI SFI ED SPLI T CONDI TI ONS
There can be a cases when sone activity that has outgoing transitions other
than to itself (other then circular one), has nowhere to go based on

cal cul ation of these conditions (all of the conditions are evaluated to fal se)
In that case, the process could hang (it will not go anywhere, and it wll
also not finish), finish (if there is no other active activities), or

the last transaction that finishes the activity will be rolled back.

This settings apply to the block activity's activities also, but the difference
is that if you set paraneter to FINI SH | F_POSSIBLE, shark will actually
finish block activity if possible.

The possible values for the entry are | GNORE, FINI SH | F_POSSI BLE and ROLLBACK,
and default kernel behaviour is FIN SH | F _POSSIBLE

Shar kKer nel . Unsat i sfi edSpl it Conditi onsHandl'i ng=FI NI SH | F_POSSI BLE

############EE

So, there are three possible solutions as described, and the default oneis to finish the process if possible.

Setting kernel to evaluate OTHERWISE conditions last

XPDL spec does not say that OTHERWI SE transition should be executed only if no other transition con-
dition is evaluated to true (in the case of XOR split). So, if you i.e. put OTHERWI SE transition to be the
first outgoing transition of some activity, other transition's condition won't be even considered.

You can configure shark to deviate from the spec, so that OTHERWI SE transition is evaluated and ex-
ecuted only if no other transition condition is evaluated to true. To do that, you should set the following
property to true.

Shar kKer nel . handl et her wi seTransi ti onLast =f al se

This parameter could be saving lot of headaches to XPDL designers, by removing the extra care on
OTHERWI SE transition positioning.

Setting kernel for assignment creation

Determines if kernel will create assignments - default is true. There are situations when assignment cre-
ation is not necessary, and this is the case when all the processes are such that the whole process belongs
to a user which created it.

Shar kKer nel . cr eat eAssi gnnent s=tr ue

Since this setting affects the complete engine, you should carefully consider if thisis your use case. In
this case users won't have anything in their worklists, and client application should provide a way to
bind user with its process.

Setting kernel for default assignment creation

Determines if kernel will create default assignment for the process creator if assignment manager return
zero assignments.

Enhydra Shark

NOTE: if this property is set to true, there can be side-effect with Tool activities with Manual Start and
Finish mode.

Shar kKer nel . cr eat eDef aul t Assi gnnent =t r ue

Default kernel valueistrue.

Setting kernel for resource handling during assignment cre-
ation

Defines the limit number for loading all WfResources from DB before creating assignments.

When kernel determines that more assignments than the number specified by the limit should be created
it will make acall to retrieve all WfResources from DB.

When DODS is used as a persistence layer, it can improve the performance if there are not too many
WfResource objects in the system:

Shar kKer nel . Li mi t For Retri evi ngAl | Resour cesWhenCr eat i ngAssi gnnent s=5

Default kernel valueis5.

Setting kernel behaviour to re-evaluate assignments at engine
startup

It is possible to force kernel to re-evaluate assignments during shark initialization. This can be done by
changing the following property:

#Assi gnnent s. I ni ti al Reeval uati on=f al se

If you set this property to true, all not-accepted assignments are going to be re-evaluated (old ones will
be deleted, and new ones will be created based on current mappings, current state of User/Group inform-
ation and current implementation of AssignmentManager class).

Default kernel setting is not to re-evaluate assignments.

Setting kernel for assignment handling

Determinesif kernel will delete other assignments from DB everytime when someone accepts/rejects as-
signment, and will re-evaluate assignments each time this happens. If it is set to true, the side-effect is
that if there was reassignment, and the user that got this reassigned assignment rejects it, he will not get
it afterwards.

Shar kKer nel . del et eQt her Assi gnrment s=tr ue

Enhydra Shark

The shark kernel default is true.

Setting kernel behaviour to fill the caches on startup

If you want shark to fill its Process and Resource caches at startup, you should edit the following entries
from configuration file:

#Cache. | ni t ProcessCacheSt ri ng=*
#Cache. | ni t Resour ceCacheStri ng=*

If you uncomment these lines, all processes and resources will be created based on DB data, and will be
filled into cache (actually, this number is restricted by the cache size).

The value of these properties can be set as a comma separated list of the process/resource ids that need
to be put into cache on engine dsart, eg.. CachelnitProcessCacheString=1 test js basic,
5 test js Game

Shark kernel default is not to initialize caches.

Setting kernel behaviour for reevaluating deadline limits

If you want shark not to reevaluate deadlines each time external deadline management checks for dead-
lines, you should set following entry to false (default kernel setting istrue)

#Deadl i nes. r eeval uat eDeadl i nes=t rue

Determines if process or activity context will be used when re-evaluating deadlines Default kernel set-
ting is activity context.

Deadl i nes. usePr ocessCont ext =f al se

Determines if asynchronous deadline should be raised only once, or every time when deadline check is
performed. Default kernel setting istrue (to raise deadline only once).

Deadl i nes. rai seAsyncDeadl i neOnl yOnce=tr ue

Setting kernel and event audit mgr for persisting old event
audit data

Determines if old event audit data should be persisted or not. Default is to persist. The value of this
property must be respected by both, the kernel, and event audit manager.

PERS| ST_OLD_EVENT_AUDI T_DATA=t r ue

Enhydra Shark

Default kernel setting istrue.

Setting kernel for the priority handling

Determines if it is allowed to set the priority of the WfProcess’WfActivity out of the range [1-5] as
defined by OMG spec:

#Shar kKer nel . al | owQut Of RangePri ority=fal se

Default kernel setting isfalse.

Setting properties for browsing LDAP server (only available in
professional version)

If you are using a LDAP server to hold your organization structure, you can configure shark to use our
LDAP implementation of UserGroup and Authentication interface (it will be explained later in the text
how to set it up), and then you MUST define some LDAP properties.

At the moment, shark implementations of UserGroup interfaces support two types of LDAP structures.
The first structure is marked as type 0, and the second is marked as type 1. The LDAP structures are de-
tailly explained in the document LDAP structures in Shark (html
[../Idap_structure/L DAP_structure.ntml], pdf [../Idap_structure/LDAP_structure.pdf])

Y ou can set this properties based on your LDAP server configuration, by changing the following part of
configuration file:

Shark can use LDAP inplenentation of UserGoup interfaces,

and these are settings required by this inplenentations to access and

browse the LDAP server

LDAPHost =I ocal host

LDAPPor t =389

possi bl e values for LDAPStructureType paranmeter are 0,1 and 2

0 is sinple structure, the possibility that one group or user belongs to nore
than one group is not supported

1 is nore conplex structure that supports the possibility that one group or
user belongs to nore than one group

2 Active Directory server (default) structure

LDAPSt ruct ur eType=2

LDAPSear chBase=cn=User s, dc=pr ozone, dc=co, dc=yu

LDAPG oupObj ect Cl asses=gr oup

LDAPUser Obj ect Cl asses=per son

HHHHHH

paraneter LDAPRel ati onCbj ectCl asses is only needed for LDAPStructureType=1
LDAPRel at i onObj ect asses=gr oupOf Nanes

LDAPG oupUni queAt t ri but eName=sAMAccount Nare
LDAPG oupDescri pti onAttri but eNane=descri ption
LDAPUser Uni queAt t ri but eNane=sAMAccount Nane

paranet er LDAPRel ati onUni queAttri buteNane is only needed for LDAPStructureType=1
LDAPRel at i onUni queAttri but eName=cn

paraneter LDAPRel ati onMenberAttributeName is only needed for LDAPStructureType=1 and 2
for structure 2 it neans the attributes the associates user or group with parent group
LDAPRel ati onMenber At t ri but eNane=nmenber O

LDAPUser Passwor dAt t ri but eName=user passwor d

9

../ldap_structure/LDAP_structure.html
../ldap_structure/LDAP_structure.html

Enhydra Shark

LDAPUser Real NaneAt t ri but eNane=di spl ayNane
LDAPUser Fi r st NameAt t ri but eName=gi venNane
LDAPUser Last NameAt t ri but eName=sn

LDAPUser Emai | At t ri but eNanme=mmi |

LDAPUser =sasaboy @r ozone. co. yu
LDAPPasswor d=

paranmeter LDAPG oupG oupsName is only needed for LDAPStructureType=1

LDAPG oupGr oupsName=G oups

paraneter LDAPG oupUsersNane is only needed for LDAPStructureType=1

LDAPG oupUser sNanme=User s

paranet er LDAPG oupG oupRel ati onsNane is only needed for LDAPStructureType=1
LDAPG oupG oupRel ati onsNane=Gr oupRel ati ons

paraneter LDAPG oupUser Rel ati onsNane is only needed for LDAPStructureType=1
LDAPG oupUser Rel at i onsNane=User Rel ati ons

Specifies the size of LRU cache for holding user attributes (for shark performance reason)
LDAPCI i ent . user Attri but esCacheSi ze=100

Specifies the size of LRU cache for holding group attributes (for shark perfornmance reason)
LDAPC i ent . gr oupAt tri but esCacheSi ze=100

* LDAPHost - the address of the machine where LDAP server is running
» LDAPPort - the port through which LDAP server can be accessed

» LDAPStructureType - if set to 0, the simple structure is used in which the possibility that one group
or user belongs to more than one group is not supported, if set to 1, the more complex structure is
used which supports the possibility that one group or user belongs to more than one group is not sup-
ported. If set to 2, it is configured to access standard ActiveDirectory structure.

» LDAPSearchBase - the name of the context or object to search (thisis the root LDAP node where all
querieswill start at).

» LDAPGroupObjectClasses - the comma separated list of LDAP object classes representing Group of
users. It is important that these classes must have a mandatory attribute whose value uniquely identi-
fies each entry throughout the LDAP tree.

» LDAPUserObjectClasses - the comma separated list of LDAP object classes representing shark users.
It isimportant that these classes must have a mandatory attribute whose value uniquely identifies each
entry throughout the LDAP tree.

» LDAPREelationObjectClasses - only used in structure type 1, the comma separated list of LDAP object
classes representing relations between shark users and group or between shark groups. It is important
that these classes must have a mandatory attribute whose value uniquely identifies each entry
throughout the LDAP tree.

» LDAPGroupUniqueAttributeName - the name of attribute that is mandatory for each LDAP object
class representing Group of users. The value of this attribute MUST be unique for each LDAP entry
for these object classes throught the LDAP tree.

» LDAPGroupDescriptionAttributeName - the name of attribute of LDAP object classes representing
Group of usersthat represents the Group description.

» LDAPUserUniqueAttributeName - the name of attribute that is mandatory for each LDAP aobject
class representing User. The value of this attribute MUST be unique for each LDAP entry for these
object classes throughout the LDAP tree. When shark uses LDAP for authentication and user group
management, this attribute represents the username for logging into shark.

» LDAPRelationUniqueAttributeName - only used in structure type 1, the name of attribute that is man-
datory for each LDAP object class representing Relation of groups or group and users. The value of
this attribute MUST be unique for each LDAP entry for these object classes throught the LDAP tree

10

Enhydra Shark

» LDAPRelationMemberAttributeName - only used in structure type 1,the name of attribute of LDAP
object classes (representing Relation of groups or group and users) that represents member that isin-
cluded (user or group) in the relation.

» LDAPPasswordAttributeName - the name of attribute that is mandatory for each LDAP object class
representing User. When shark uses LDAP for authentication and user group management, this attrib-
ute represents the password needed for logging into shark.

» LDAPUserRealNameAttributeName - the name of the attribute of LDAP object classes representing
User, that represents the real name of the shark user.

» LDAPUserFirstNameAttributeName - the name of the attribute of LDAP object classes representing
User, that represents the first name of the shark user.

» LDAPUserLastNameAttributeName - the name of the attribute of LDAP object classes representing
User, that represents the last name of the shark user.

e LDAPUserEmail AttributeName - the name of the attribute of LDAP object classes representing User,
that represents user's email address.

» LDAPUser - when LDAP server requires credentials for reading, this is the username that will be
used when connecting LDAP server

» LDAPPassword - when LDAP server requires credentials for reading, thisis the password that will be
used when connecting LDAP server

» LDAPGroupGroupsName - only used in structure type 1, the name of the specific group that must be
created and which will contain all groups

» LDAPGroupUsersName - only used in structure type 1, the name of the specific group that must be
created and which will contain all users

» LDAPGroupGroupRelationsName - only used in structure type 1, the name of the specific group that
must be created and which will contain al relations between groups

» LDAPGroupUserRelationsName - only used in structure type 1, the name of the specific group that
must be created and which will contain al relations between groups and users

Setting kernel's CallbackUtilities implementation class

If one wants to give its own implementation of CallbackUtilities interface, he can do it by changing the
following attribute:

used for logging, and getting the shark properties

the default kernel setting is as follows

#Cal | backUtilitiesC assNane=or g. enhydra. shark. Cal | backUt i |
Cal | backUtil. Ti meProfil er.defaul t=120

Cal | backW il . TineProfiler.level =info

The name of the classthat is used by default is commented.

This interface implementation is passed to all internal interface implementations, and is used by those
implementations to read shark property values, to log events and to utilize profiling options.

11

Enhydra Shark

Property CallbackUtil. TimeProfiler.default specifes the value in milliseconds for profiling log. If some
shark APl method takes more time to execute than the value specified, it will be logged. If property
CallbackUtil.TimeProfiler.level is set to debug the whole stack-trace is logged, otherwise the normal in-
formation about which method took too long is logged.

Setting kernel's ObjectFactory implementation class

If one wants to replace some parts of kernel with its own implementation (i.e. to replace WfActivityln-
ternal, WfProcessinternal, ... implementations), he should create its own class based on this interface,

and configure shark to useiit.

This can be done by changing the following part of configuration file:

the class nane of the factory used to creating kernel objects
the default kernel setting is as follows
#Obj ect Fact or yd assName=or g. enhydr a. shar k. Shar kCbj ect Fact ory

The name of the classthat is used by default is commented.

Setting kernel's ToolActivityHandler implementation class

If one wants to set its own Tool ActivityHandler implementation, that will communicate with tool agents
in adifferent way than the standard implementation does, he can configure the following:

the class nane of the nanager used to execute tool agents
the default kernel setting is as follows
#Tool Acti vi t yHandl er O assNane=or g. enhydr a. shar k. St andar dTool Acti vi t yHandl er

The name of the classthat is used by default is commented.

Setting kernel's TxSynchronizationFactory class

Implementation of TxSynchronizationFactory interface is responsible to support shark to work in JTA
environment.

HHHH Y TX SYNCHRONI ZATI ON FACTORY
#TxSynchr oni zat i onFact or yd assNane=or g. enhydr a. shar k. Shar kTxSynchr oni zat i onFact ory
#Shar kTxSynchroni zat i onFact ory. XATr ansact i onManager LookupNanme=j avax. t ransacti on. Transact i onManager

#Shar kTxSynchroni zat i onFact ory. debug=f al se

Default factory is org.enhydra.shark.Shark TxSynchronizationFactory.

It is important to configure the parameter SharkTxSynchronizationFact-
ory.XATransactionManager LookupName to specify JNDI lookup name of the TransactionManager.

12

Enhydra Shark

Database configuration

This section of configuration file isrelated to DODS implementation of persisting APIs.

In shark distribution, we provide SQL scripts for creating tables for the most DBs supported by DODS,
and appropriate LoaderJob files that can be used by Octopus to create DB tables if providing appropriate
drivers. Thisfiles can be found in conf/sqgl folder.

#

Turn on/ of f debuggi ng for transactions or queries. Valid val ues
are "true" or "false".

#

Dat abaseManager . Debug="f al se"

Special settings for Postgresql DB
#Dat abaseManager . Obj ect | dCol utmNane=Cbj ect | d
#Dat abaseManager . Ver si onCol utmNanme=Cbj ect Ver si on

Maxi mum anount of tine that a thread will wait for

a connection fromthe connection pool before an
exception is thrown. This will prevent possible dead
locks. The tinme out is in mlliseconds. |If the
tinme out is <= zero, the allocation of connections
will wait indefinitely.

Dat abaseManager . DB. shar kdb. Connecti on. Al | ocat i onTi meout =10000

HH HHHFHFHHFHH

Required for HSQ.: colum nanme NEXT nust be used

with table nane prefix

NOTE: When working with other DBs, you should comment these two properties
#

Dat abaseManager . DB. shar kdb. Obj ect 1 d. Next Wt hPrefi x = true

Dat abaseManager . DB. shar kdb. Connect i on. Shut DownSt ri ng = SHUTDOWN

#
Used to | og database (SQ.) activity.
#

Dat abaseManager . DB. shar kdb. Connect i on. Loggi ng=f al se

There is another important DODS configuration aspect - the cache sizes:

#
Default cache configuration
#

Dat abaseManager . def aul t s. cache. naxCacheSi ze=100
Dat abaseManager . def aul t s. cache. naxSi npl eCacheSi ze=50
Dat abaseManager . def aul t s. cache. maxConpl exCacheSi ze=25

If you know that several instances of shark will be used in several VMs, using the same DB, you should
set al this cache sizes to zero. Along with this, cache manager implementation (explained later in the
text) should not be used.

Setting persitence components variable data model

Following options are described together, although they affect different components, because option's
intention and the effect produced are the same.

Determines the maximum size of String that will be stored in VARCHAR field. String which size is
greater than specified value will be stored as a BLOB. The maximumum size that can be set is 4000 (the
default one)

13

Enhydra Shark

DODSPer si st ent Manager . max VARCHARSI ze=4000
DODSEvent Audi t Manager . max VARCHARSI ze=4000

Determines which data model will be used for storing process and activity variables. There are two op-
tions:

1. using standard data model, where all data types are in one table (including BLOB data type for per-
sisting custom Java objects and large Strings

2. using optional data model, where one table contains all data types except BLOB, and there is another
table that references previous table, and is used only for storing BLOB information (for persisting
custom Java objects and large Strings)

Default is to use standard data model, but using optional data model can improve performance in use
cases where there are not so many custom Java objects and large String objects, and when shark and
DODS caches are not used, and thisis especialy better choiceif using Oracle DB.

DODSPer si st ent Manager . useSt andar dVar i abl eDat avbdel =t r ue
DODSEvent Audi t Manager . useSt andar dVar i abl eDat aMbdel =t r ue

Setting Assignment manager implementation class

If one would like to create its own Assignment manager, which would decide which assignments are to
be created for an activity, he can implement its own Assignment manager, based on AssignmentMan-
ager interface, and configure shark to useit by changing the following setting:

Assi gnment Manager C assNane=or g. enhydr a. shar k. assi gnnent . St andar dAssi gnment Manager

Shark comes with three different implementations of this manager:

 Standard - just returns the list of users passed as a parameter, or if there are no usersin the list, it re-
turns the user that created corresponding process.

» History Related - if there are some special "Extended attributes defined in XPDL for some activity
definition, this implementation checks the assignment history (who has already executed activity with
such definition, ...) to make a decission about assignments that should be created.

» XPDL Straight Participant Mapping - it makes assignments for the user that has the same Id as XPDL
performer of activity.

NOTE: if you do not set any implementation (you simply comment line above), shark will use the de-
fault procedure. Actually, standard implementation of assignment API is not very useful, it basically just
returns the first valid options.

Setting user group implementation

14

Enhydra Shark

Shark's standard and history related assignment managers can be configured to use some implementation
of UserGroup API when determining which user(s) should get the assignment.

Shark comes with DB based implementation of this API and professional version also brings LDAP im-
plementation of this APl . DB based implementation uses DB for retrieving information about organiza-
tional structure, and LDAP based implementation uses LDAP server for getting organizationa informa-
tion.

Here is a part of configuration file for setting UserGroup manager implementation for standard assign-
ment manager:

St andar dAssi gnnment Manager . User G oupManager G assNane=or g. enhydr a. shar k. user gr oup. DODSUser G oupManager

NOTE: shark can work without implementation of this API - if you do not want to use any implementa-
tion, simply comment line above.

Setting participant map persistence implementation

Shark's standard and history related assignment managers can be configured to use some implementation
of ParticipantMapping APl when determining which user(s) should get the assignment.

This API isto retrieve mapping information between XPDL participants and shark users. Shark applica
tion comes with DODS based participant map persistence implementation.

Y ou can provide your own implementation of participant map persistence API.

Hereis a part of configuration file for setting ParticipantM apping manager implementation for standard
assignment manager:

St andar dAssi gnnent Manager . Par ti ci pant MapPer si st enceManager C assNanme=or g. enhydr a. shar k. part mapper si st ence. DODS|

NOTE: if you comment the lines above, shark will work without participant map persistence APl imple-
mentation.

Setting Caching implementation

Shark comes with LRU based cache implementation for holding Process and Resource objects. By de-
fault, shark is configured to use this cache implementation, which can speed-up its use by the clients.

Thisisthe section of configuration file that defines cache implementation, and its sizes:

;'f;'t Default cache is LRU

Cache defaults

#

CacheManager Cl assNane=or g. enhydr a. shar k. cachi ng. LRUCacheMyr

Default LRU cache sizes (LRU inplenentation default is 100 for each cache)

#LRUPr ocessCache. Si ze=100
#LRUResour ceCache. Si ze=100

15

Enhydra Shark

NOTE: if you do not set any implementation (you simply comment line above), shark will not perform
any caching.

Setting instance persistence implementation

The implementation of this APl is used to store information about shark's processes, activities, ... into
DB. Shark comes with DODS based instance persistence implementation. One can write its own imple-
mentation of this interface (maybe using Hibernate or EJB), and to configure shark to work with thisim-
plementation, he needs to edit the following section of configuration file:

#

DODS instance persistent manager defaults

#
I nst ancePer si st enceManager C assNane=or g. enhydr a. shar k. i nst anceper si st ence. DODSPer si st ent Manager

Shark can't work without instance persistence implementation.

NOTE: If one would like to implement other instance persistence implementation, he should also give
its own implementation of SharkTransaction API.

Configuring DODS instance persistence implementation to de-
lete processes when they finish

By default, DODS implementation of instance persistence interface does not delete finished processes,
but they are left in DB. This behaviour can be changed by setting the following parameter to true:
Deternmines if finished processes should be deleted from DB (DODS persi stence

manager default is false)
#DODSPer si st ent Manager . del et eFi ni shedProcesses=f al se

Setting logging APl implementation

Shark comes with a default logger implementation, implemented by the use of log4j. Y ou can write your
own implementation of Logging API, and set it by editing configuration file, and probably adding some
additional entries in configuration file that will be read by your logger implementation. Here is a com-
plete logger configuration for shark standard logger:

#
Standard | oggi ng manager defaults
#

Loggi ngvanager C assNane=or g. enhydr a. shar k. | oggi ng. St andar dLoggi ngManager

Standard Loggi ng manager is using log4j, and here is |og4j configuration
#
| og4j . r oot Logger =i nf o, Shar kExecuti on

| og4j . appender . Dat abase=or g. apache. | 0g4j . Rol | i ngFi | eAppender

| 0og4] . appender . Dat abase. Fi | e=@\D_PATH@ | ogs/ Shar kPer si st ence. | og
| og4j . appender . Dat abase. MaxFi | eSi ze=10MB

| og4j . appender . Dat abase. MaxBackupl ndex=2

16

Enhydra Shark

| og4j . appender . Dat abase. | ayout =or g. apache. | og4j . Pat t er nLayout
| 0g4j . appender . Dat abase. | ayout . Conver si onPat t er n=%@d{| SO8601} : %

| og4j . appender . XMLQut For mat For Per si st ence=or g. apache. | og4j . Fi | eAppender

| 0g4j . appender . XM_CQut For mat For Per si st ence. Fi | e=@\D_PATH@ | ogs/ chal nsaw- per si st ence. | og
| 0g4| . appender . XM_Qut For mat For Per si st ence. append=f al se

| og4j . appender . XMLQut For mat For Per si st ence. | ayout =or g. apache. | og4j . xnl . XM_Layout

| og4j . appender . PackageEvent s=or g. apache. | og4j . Rol | i ngFi | eAppender

| og4] . appender . PackageEvent s. Fi | e=@\D_PATH@ | ogs/ Shar kPackageHand| i ngEvent s. | og
| 0og4] . appender . PackageEvent s. MaxFi | eSi ze=10MB

| og4j . appender . PackageEvent s. MaxBackupl ndex=2

| og4j . appender . PackageEvent s. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender . PackageEvent s. | ayout . Conver si onPatt er n=%{ 1 SC8601}: %n¥m

| 0og4j . appender . Dat abaseManager =or g. apache. | og4j . Rol | i ngFi | eAppender

| 0g4| . appender . Dat abaseManager . Fi | e=@\D_PATH@ | ogs/ dods. | og

| og4j . appender . Dat abaseManager . MaxFi | eSi ze=10MB

| og4j . appender . Dat abaseManager . MaxBackupl ndex=2

| og4j . appender . Dat abaseManager . | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender . Dat abaseManager . | ayout . Conver si onPat t er n=%l{ | SO8601} : Y%n?m

| og4j . appender . XMLQut For mat For PackageEvent s=or g. apache. | og4j . Fi | eAppender

| 0g4j . appender . XMLQut For mat For PackageEvent s. Fi | e=@\D_PATH@ | ogs/ chal nsaw packageevent s. | og
| 0g4| . appender . XM_CQut For mat For PackageEvent s. append=f al se

| 0g4j . appender . XM_CQut For mat For PackageEvent s. | ayout =or g. apache. | og4j . xnml . XM_Layout

| og4j . appender . Shar kExecut i on=or g. apache. | og4j . Rol | i ngFi | eAppender

| og4j . appender . Shar kExecuti on. Fi | e=@\D_PATH@ | ogs/ Shar kExecut i onFl ow. | og
| og4j . appender . Shar kExecut i on. MaxFi | eSi ze=10VB

| og4j . appender . Shar kExecut i on. MaxBackupl ndex=2

| 0og4] . appender . Shar kExecuti on. | ayout =or g. apache. | 0g4j . Pat t er nLayout

| 0g4j . appender . Shar kExecuti on. | ayout . Conver si onPatt er n=%l{ | SO8601}: %?m

| og4j . appender . XMLQut For mat For Execut i on=or g. apache. | og4j . Fi | eAppender

| og4j . appender . XMLQut For mat For Execut i on. Fi | e=@\D_PATH@ | ogs/ chal nsaw executi on. | og
| 0g4| . appender . XM_Qut For mat For Execut i on. append=f al se

| og4j . appender . XMLQut For mat For Execut i on. | ayout =or g. apache. | og4j . xm . XM_Layout

| og4j . appender . NTEvent Log=or g. apache. | og4j . nt . NTEvent LogAppender

| 0g4| . appender . NTEvent Log. sour ce=Shar kCORBA- Ser vi ce

| og4j . appender. NTEvent Log. | ayout =or g. apache. | og4j . Pat t er nLayout

| 0og4| . appender . NTEvent Log. | ayout . Conver si onPat t er n="9%d{| SC8601}: [%], %, %: %?&"

| og4j . appender . TP=or g. apache. | og4j . Rol | i ngFi | eAppender

| 0g4| . appender. TP. Fi | e=@\D_PATH@ | ogs/tp. | og

| 0g4| . appender. TP. MaxFi | eSi ze=10MB

| 0og4| . appender . TP. MaxBackupl ndex=2

| og4j . appender . TP. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender. TP. | ayout . Conver si onPatter n=%{|1 SC8601}: [%], %, %: % ?n

| 0og4j . appender. TP-1 P=or g. apache. | og4j . Rol | i ngFi | eAppender

| 0og4| . appender. TP-1 P. Fi | e=@\D_PATH@ | ogs/tp-i p. | og

| og4j . appender . TP- | P. MaxFi | eSi ze=10MB

| og4j . appender . TP- | P. MaxBackupl ndex=2

| og4j . appender. TP- | P. | ayout =or g. apache. | og4j . Patt er nLayout

| og4j . appender . TP-| P. | ayout . Conver si onPat t er n=%@{ |1 SC8601}: [%], %, %: % &

| og4j . appender . Consol e=or g. apache. | og4j . Consol eAppender
| og4j . appender . Consol e. | ayout =or g. apache. | og4j . Pat t er nLayout
| og4j . appender . Consol e. | ayout . Conver si onPat t er n=%@d{| SC8601}: %

| og4j . | ogger. Per si st ence=I NFO, Dat abase
#1 0g4j . | ogger . Per si st ence=I NFO, Dat abase, XM_Qut For mat For Per si st ence

| og4j . | ogger . PackageEvent Logger =l NFO, PackageEvent s
#l 0g4j . | ogger . PackageEvent Logger =I NFO, PackageEvent s, XM_LQut For nat For PackageEvent s

| 0g4j . | ogger. Ti meProfi | er=I NFO, Consol e, TP
1 0og4j . | ogger. Ti neProfil er-1nstancePersi st ence=I NFO, Consol e, TP-1 P

I 0g4j . | ogger. Shar k=l NFO, @Al N_LOG_CHANNEL @ Shar kExecut i on
#l 0g4j . | ogger . Shar k=l NFO, Consol e, Shar kExecut i on, XM_Qut For mat For Execut i on

| 0og4j . | ogger. Scri pti ng=l NFO, Consol e, Shar kExecuti on
#l 0g4j . 1 ogger . Scri pti ng=I NFO, Shar kExecut i on, XM_Qut For mat For Execut i on

| 0g4j . | ogger . Dat abaseManager =I NFO, Dat abaseManager

The standard logger implementation is written in a way that it could log even if there are no log4j set-
tings defined in configuration file (so the implementation can't configure log4j), but log4j is configured
from client application using shark.

17

Enhydra Shark

The following log outputs are generated by default:

» Server execution flow log - logs every significant shark operation like package loading, process in-
stantiation, activity completion, These logs are also displayed in the console during shark execu-
tion.

» Package Handling Events - logs every operation performed with Package definition files (XPDL
files). These operations are:

« loading of the package from external repository into shark's memory
« unloading of the package from the shark
 updating of the package that is already in the shark's memory

» Server persistence log - logs every operation related to communication among DODS instance persist-
ence implementation, and underlying database.

You have the possihility to force Shark to make log files that can be viewed using logdj's chainsaw
viewer. To do so, for each type of logger, you have to comment first and uncomment the second line that
refers to the logger at the bottom of logger configuration.

Then, the output logs will be also generated into XML log files (chainsaw-execution.log, chainsaw-
packageevents.log and chainsaw-persistence.log) that can be read by chainsaw.

The chainsaw can be started by using proper "chainsaw" script from the root of the project. When it is
started, you have to open wanted log file by using its "File->Load file..." menu item, and it will present
you the proper logs.

NOTE: If you do not want any logging, comment LoggingManagerClassName line above, and shark
will not log anywhere.

Setting repository persistence implementation

This API is used to store information about XPDL definitions and versions. Shark comes with two im-
plementations of this API: FileSystem based, and DODS based.

Y ou can provide your own implementation of this API, and replace the current implementation. The de-
fault implementation is DODS implementation.

Default repository persistent manager is DODS
#

#Reposi t or yPer si st enceManager C assNane=or g. enhydr a. shar k. reposi t or yper si st ence. Fi | eSyst enReposi t or yPer si st ence

The | ocation of xpdl repository.

If you want to specify it by relative path, you nust know that this path nust
be relative to the Shark.conf file (in conf folder)

Fi | eSyst enReposi t or yPer si st enceManager . XPDL_REPGCSI TORY=r eposi t ory/ i nt er nal

The | ocation of xpdl history repository.

If you want to specify it by relative path, you nust know that this path nust

be relative to the Shark.conf file (in conf folder)

Fi | eSyst enReposi t or yPer si st enceManager . XPDL_HI STORY_REPCSI TORY=r eposi tory/i nt ernal / hi story

Reposi t or yPer si st enceManager Cl assNane=or g. enhydr a. shar k. r eposi t or yper si st ence. DODSReposi t or yPer si st enceManagel

The dat abase used for Repository persistence when usi ng DODS i npl enent ai on

18

Enhydra Shark

#DODSReposi t or yPer si st enceManager . Dat abaseNane=shar kdb
If set to true, the debug information on repository transaction will be

witten to consol e
#DODSReposi t or yPer si st enceManager . debug=f al se

NOTE: Shark can't work without implementation of this API.

Setting scripting manager implementation

Shark comes with standard scripting manager implementation. This is a factory for returning appropriate
script evaluator, and standard implementation offers three different script evaluators: Python, Java script
and Bean shell.

;h'é Default Scripting manager is Standard

Scri pti ngManager G assNane=or g. enhydr a. shark. scri pti ng. St andardScri pti ngManager

Shark can't work without Scripting APl implementation.

Setting security (authorization) APl implementation

This API contains methods to authorize shark usage on the level of particular methods (i.e. user is au-
thorized to create, abort, terminate or suspend some process, ...).

;'f'# Default Security nmanager is Standard

Securit yManager Cl assNanme=or g. enhydr a. shar k. securi ty. St andar dSecuri t yManager

NOTE: If you don't want any authorization, you just need to comment line above - shark can work
without this APl implementation.

Setting tool agents

Shark comes with standard Tool AgentFactory implementation, and with several example tool agents
(Javascript, BeanShell, RuntimeApplication, SOAP, Mail and JavaClass tool agent), and with default
tool agent implementation.

To learn more about tool agent, you should look at Tool Agent documentation.

These are configuration settings for tool agents:

Default Tool agent settings
#

19

Enhydra Shark

Tool Agent Manager O assNane=or g. enhydr a. shar k. t ool agent . St andar dTool Agent Manager

The list of tool agents

Tool Agent . JavaCl assTool Agent =or g. enhydr a. shar k. t ool agent . JavaC assTool Agent

Tool Agent . JavaScr i pt Tool Agent =or g. enhydr a. shar k. t ool agent . JavaScr i pt Tool Agent

Tool Agent . BshTool Agent =or g. enhydr a. shar k. t ool agent . BshTool Agent

Tool Agent . Runt i neAppl i cati onTool Agent =or g. enhydr a. shar k. t ool agent . Runti meAppl i cati onTool Agent
Tool Agent . Mai | Tool Agent =or g. enhydr a. shar k. t ool agent . Mai | Tool Agent

Tool Agent . SOAPTool Agent =or g. enhydr a. shar k. t ool agent . SOAPTool Agent

Tool Agent . Schedul er Tool Agent =or g. enhydr a. shar k. t ool agent . Schedul er Tool Agent

Pool size for Schedul er Tool Agent
Schedul er Tool Agent . t hr eadPool Si ze=3

Default tool agent is used when there is no mappings for sone

XPDL application definition

Def aul t Tool Agent =or g. enhydr a. shar k. t ool agent . Def aul t Tool Agent

Specifies the size of cache for holding ext. attributes (for shark perfornmance reason)

Default -1 nmeans unlimted
#Abst ract Tool Agent . ext Attri bsCacheSi ze=-1

NOTE: shark can work without tool agent APl implementation, but then it can only execute processes
that do not contain any "Tool" activity.

Setting application map persistence implementation

This API is used to retrieve mapping information between XPDL applications and tool agent applica
tions. Shark comes with DODS based application map persistence implementation.

For a standard tool agent manager, you can specify which implementation of application map persist-
ence APl you want to use.

Application map details for StandardTool Agent Manager
St andar dTool Agent Manager . Appl i cat i onMapPer si st enceManager O assNanme=or g. enhydr a. shar k. appmapper si st ence. DODSAp|

NOTE: shark can work without application map persistence APl implementation.

Setting WfXML interoperability implementation

This API is used to communicate with other engines viaWfXML protocol (spec defined by WEMC).

;'f;'t W Engi nel nt er poerabi l ity nanager

#W Engi nel nt er oper abi | i t yManager Cl assNane=or g. enhydr a. shark. i nt eroperabi | i ty. WXM.I nt er operabi | i tyl npl
#l nt er oper abi | i ty. Host =l ocal host

#l nt er operabi |l i ty. Port=8080

#l nt er operabi | i ty. Observer Pat h=/ axi s/ servi ces/ asapObser ver Bi ndi ng

#l nteroperability.|gnoreTerni nat eAndAbor t Renot eExcept i ons=f al se

NOTE: shark can work without implementation of this API.

20

Enhydra Shark

Setting DODS Id generator cache size(s)

You can specify cache sizes for object Ids (activity and process 1ds). When some process or activity is
created, shark asks its data layer (default DODS layer) for unique Id. This Id generation is synchronized
on DB, so that shark can be used from different VMs at atime. To tell shark not to go to the DB so of-
ten, you can specify an Id cache for objects:

default cache size for Ids (if cache size for particular object Id is not
specified, then this size is used, and if this cache size also isn't

specified, programdefault is used)

DODS. def aul ts. | dGener at or. CacheSi ze=100

cache size for process instance |ds
#DODS. | dGener at or. _process_. CacheSi ze=100

cache size for activity instance Ids
#DODS. | dGenerator. _activity_. CacheSi ze=100

About data model

Y ou can find here DODS generated documentation of various data models used in default shark config-
uration:

Instance persistence data model - (html [../SharkinstancePersistence-DODS.html], pdf
[../SharkInstancePersistence-DOD S.pdf])

Event audit data mode! - (html [../SharkEventAudit-DODS.html], pdf [../SharkEventAudit-DODS.pdf])

Repository persistence data model - (html [../SharkRepositoryPersistence-DODS.html], pdf
[../SharkRepositoryPersistence-DODS.pdf])

Participant map persistence data model - (html [../SharkParticipantMapPersistence-DODS.html], pdf
[../SharkParticipantM apPersi stence-DOD S.pdf])

UserGroup persistence data model - (html [./SharkUserGroup-DODS.html], pdf
[../SharkUserGroup-DODS.pdf])

Application map persistence data model - (html [../SharkApplicationM apPersistence-DODS.html], pdf
[../SharkA pplicationM apPersistence-DODS.pdf])

Id Counter data model - (html [../SharkUtilities-DODS.html],pdf [../SharkUtilities-DODS.pdf])

Database support

When using DODS as implementation of persistence APIs, shark can work with different databases -
practically, any database supported by DODS can be used.

Hereisthelist of DODS supported databases:

21

../SharkInstancePersistence-DODS.html
../SharkInstancePersistence-DODS.html
../SharkEventAudit-DODS.html
../SharkEventAudit-DODS.html
../SharkRepositoryPersistence-DODS.html
../SharkRepositoryPersistence-DODS.html
../SharkParticipantMapPersistence-DODS.html
../SharkParticipantMapPersistence-DODS.html
../SharkUserGroup-DODS.html
../SharkUserGroup-DODS.html
../SharkApplicationMapPersistence-DODS.html
../SharkApplicationMapPersistence-DODS.html
../SharkUtilities-DODS.html
../SharkUtilities-DODS.html

Enhydra Shark

 DB2

* Informix

* HypersonicSQL
« MSQL

* MySQL

» Oracle

» PostgreSQL

* Sybase

The default database coming with Shark distribution is HypersonicSQL, and we also tested it with DB2,
MSQL (2000 and 2005), MySQL, Oracle and PostgreSQL .

What Needs to be Configured in Order to Use Database Other
Then HypersonicSQL

The scripts for creating tables for various databases (by using Octopus) are distributed with Shark. If
you want to use different database then the one originaly configured to work with Shark
(HypersonicSQL database), you should do the following:

« first you'll need to stop any Shark instance that may be running.

» Edittheconfi gure. properti es fileand set valuesfor:

db_| oader job name of the directory containing Octopus loader job, options
are: db2, hsqgl, informix, msgl, mysql, oracle, postgresql, sybase

db_user username for database authentication

db_passwd password for database authentication

db_ext _dirs directory containing jar file(s) with JDBC driver, if you need
more then one directory specified here - use

${ pat h. separ at or } to concatenate them
${db_I| oader _j ob} JdbcDri classname of the JDBC driver you want to use
Vet These entries are already filled with default values.
${ db| oader _j ob} Connect full database URL
Hon_trt These entries are already filled with default values, too.

* runtheconfi gure.[bat| sh]

Note

22

Enhydra Shark

When loading newly created database, Octopus will complain about not being able to drop indices and
tables, but theses warnings should be ignored.

At this time, sharkdb.properties file(that is placed in lib/client folder) and Shark.conf are adjusted to use
selected database.

23

