
 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 1/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

 

 

 

    

 

    

    

 

Spagic 3 -  Deployments Models 

 

    

    

    

 Author: Andrea Zoppello  

    

    

    

 

   

 

 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 2/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

 

Document Goal.................................................................................................. 3 

Version History .................................................................................................. 3 

1 Introduction................................................................................................... 3 

2 ESB Mode ( Standalone Mode ) ................................................................... 4 

3 WAR Embedded Mode ................................................................................. 4 

3.1 Steps to install spagic Embedded in Webapplication ................................................................................................5 

3.2 The Spagic Client API ...............................................................................................................................................7 

4 Spagic BPM Gateway................................................................................... 9 

4.1 Deployment Models and Spagic Workflow API .......................................................................................................11 

 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 3/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

Document Goal 

In this document we will focus on all deployments models supported by Spagic 3. 

Version History 

Version/Release  n° : 1.0 Date October 5, 2009 

Description/Modifications:  First Release ( English version ) 

1 Introduction 

One of the most important feature of Spagic 3 (compared to Spagic 2) is the ability to be deployed in different modes. Within 

Spagic 2 the only way we’ve to deploy Spagic was to have the Spagic Server Manager and to invoke process within 

connectors ( ESB Mode ). 

 

In Spagic 3 we’ve change this vision and we’re going to support two different deployment modes: 

 

� ESB Mode (Standard Mode ): That mode is very similar to the one present on the older version of Spagic; the only 

difference is that we switch from a JBI based container ( servicemix ) to an OSGi one ( Equinox ), but despite this 

technical details the concept is the same. You’ve one or more spagic node and your external application are going 

to invoke services and processes using input connectors ( HTTP/SOAP, File/FTP ). 

 

� WAR Embedded Mode: Within this new mode Spagic 3 is deployed within a Web application and so the spagic 

service manager has the same lifecycle of the web application context. This is mode is useful if you’ve a 

webapplication where you want to embed spagic and you want to be able to call spagic services without the usage 

of connectors but using co-located calls. In this particular mode a Spagic Client API is available to the 

webapplication to invoke spagic services. 

 

Another important change we’ve introduced in spagic 3 is a more and clean separation between services and processes. In 

Spagic 2 the only way you’ve to invoke a service was to deploy a process. 

Now with Spagic 3 if you need to invoke a single service you could: 

 

� Create a connector and set the service as it’s target in ( ESB Mode ). This is quite similar to the case where in 

spagic 2 you’re going to create a single process, the main difference is that in spagic 3 you don’t need to create a 

bmn file but you could simply use the service editor to configure a connector and a service. 

 

� Call the service directly using the Spagic Client API ( Embedded Mode ). This feature is very important for all 

application that need to invoke business service without the overhead of a remote communication. 

 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 4/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

2 ESB Mode ( Standalone Mode ) 

This is the normal way in which spagic is executed. 

 

Starting spagic in this mode is very simple from the SPAGIC-DISTRIBUTION go to SPAGIC_DISTRIBUTION/service-

manager and from the command line type: 

 

� spagic  –console ( -debug ) 

 

This is the fast way to start spagic, but  take in mind that spagic needs to start specifying  a SPAGIC_INSTANCE_HOME 

that is the folder that maintains the data of a parctiluar spagic instance in term of services, connectors, datasource and 

resource. 

 

If not specified the SPAGIC_INSTANCE_HOME is set to  SPAGIC_DISTRIBUTION/service-manager/instance. 

 

If you want you can specify a SPAGIC_INSTANCE_HOME location in SPAGIC_DISTRIBUTION/service-

manager/Spagic.ini file using the property spagic.home. An example of the ini file is the following one: 

 

--launcher.XXMaxPermSize 

256M 

-vmargs 

-Dosgi.requiredJavaVersion=1.6 

-Declipse.ignoreApp=true 

-Dosgi.noShutdown=true 

-Dspagic.home=C:\Scrappy 

-Xms40m 

-Xmx512m 

 

 

 

3 WAR Embedded Mode 

The basic idea behind this deployment mode is that the ( Equinox ) OSGi container is launched and managed within  the 

lifecycle of the webapplication context. 

 

To do this we’ve used and extended the concept of the servlet bridge that leverage the launching of the Equinox OSGi 

container within a webapplication. 

 

To run spagic in embedded mode you have two ways: 

 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 5/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

1. Download a preconfigured webapp called Spagic Embedded and deploy on your tomcat application server. This 

is the way to go  if you can’t wait and you want to test some  simple examples. 

2. Follow some steps, to install spagic embedded in your application. This is the suggested way to go when 

you’ve existing webapplication or you want to start a new webapplication with spagic embedded. 

 

3.1 Steps to install spagic Embedded in Webapplication 

Obtain the spagic3 distribution file and unzip it in a folder that we call SPAGIC_DISTRIBUTION. 

 

In the following steps we assume that WEBAPP identify the webapplication where you’re going to install spagic in embedded 

mode. 

1. Copy the following files in  WEBAPP/WEB-INF/lib folder 

 

   - servletbridge.jar        ( located in SPAGIC_DISTRIBUTION/embedded-files ) 
   - spagic-client-api.jar    ( located in SPAGIC_DISTRIBUTION/embedded-files ) 

 

2. Create a folder called “eclipse” under WEB-INF so to have the following structure: 

 

   - WEB-INF/eclipse 

---------/lib 

 

3. From SPAGIC_DISTRIBUTION copy the file  SPAGIC_DISTRIBUTION/embedded-files/launch.ini in 

WEBAPP/WEB-INF/eclipse folder 

 

4. Copy the folder SPAGIC_DISTRIBUTION/service-manager/eclipse/plugins to the folder WEBAPP/WEB-

INF/eclipse/plugins.  

 

5. Remove from WEB-INF/eclipse/plugins the following folders if they’re present: 

 

org.eclipse.equinox.launcher.win32.win32.x86_1.0.200.v20090519 

 

6. Create a folder called configuration under WEBAPP/WEB-INF/eclipse.    

 

7. In the folder WEBAPP/WEB-INF/eclipse/plugins copy  the following bundles 

 

        org.spagic3.client.osgi_1.0.0.jar ( located in embedded-files ) 
        org.eclipse.update.configurator_3.2.100.v20070322.jar. 

 

8. Use the ConfigIniGenerator Utilities in SPAGIC_DISTRIBUTION/tools/  to generate a config.ini file starting from 

the “bundles.info” file that is usually located in: 

 

SPAGIC_DISTRIBUTION/service-manager/configuration/org.eclipse.equinox.simpleconfigurator/ 

 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 6/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

9. Copy the generate config.ini file in from WEBAPP/WEB-INF/eclipse/configuration 

 

10. At the end your final WEBAPP sctructure must be something similar to: 

 

WEBAPP 
   ---WEB-INF 
   ------eclipse 
   ---------configuration 
   --------------config.ini 
   ---------plugins 

       ---------launch.ini 

 

 

11. The last step is necessary to say your webapp to launch equinox when it’s activated so add the following servlet 

declaration in your web.xml file 

 
   
   <servlet id="bridge"> 
  <servlet-name>equinoxbridgeservlet</servlet-name> 
  <display-name>Equinox Bridge Servlet</display-name> 
  <description>Equinox Bridge Servlet</description> 
  <servlet-class>org.eclipse.equinox.servletbridge.SpagicServlet</servlet-class> 
  <init-param> 
   <param-name>commandline</param-name> 
   <param-value>-console</param-value>    
  </init-param>   
  <init-param> 
   <param-name>enableFrameworkControls</param-name> 
   <param-value>true</param-value>    
  </init-param> 
  <!-- 
    org.eclipse.equinox.servletbridge and the Servlet API are exported automatically to 

  the underlying OSGi framework. 
    The extendedFrameworkExports parameter allows the specification of additional java 
                 package exports. 
    The format is a comma separated list of exports as specified by the "Export-Package"  

  bundle manifest header. 
For example: com.mycompany.exports; version=1.0.0, com.mycompany.otherexports; 
version=1.0.0 

    --> 
  <init-param> 
   <param-name>extendedFrameworkExports</param-name> 
   <param-value>org.spagic3.client.api</param-value>    
  </init-param> 
 
  <init-param> 
   <param-name>spagic.home</param-name> 
   <param-value>C:\Scrappy</param-value>    
  </init-param> 
  <!--  
    You can specify your own framework launcher here. 
    The default is: org.eclipse.equinox.servletbridge.FrameworkLauncher 
  <init-param> 
   <param-name>frameworkLauncherClass</param-name> 
   <param-value>org.eclipse.equinox.servletbridge.FrameworkLauncher</param-value> 
  </init-param>  
  -->   
  <load-on-startup>1</load-on-startup> 
 </servlet> 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 7/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

3.2 The Spagic Client API 

Once Spagic has been installed in embedded mode within the webapplication, this one could retrieve from it’s context an 

object to call spagic services. 

 

To be able to invoke spagic service use the following steps: 

� Obtain an instance of org.spagic.client.api.Client 

� Invoke your spagic service using the method offered by org.spagic.client.api.Client 

 

The following code shows three utility method, the first one to obtain the spagic client the second one to invoke the spagic 

service with a particular id and to obtain a response, the third one to fire a service invocation without waiting for a response: 

 

public Client getSpagicClient(){ 
  

Client client = (Client) getServletContext().getAttribute(SpagicServlet.SPAGIC_DELEGATE); 
 return client; 
 
} 
   



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 8/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

   
public ClientMessage invokeService(Client clientAPI, String serviceId, ClientMessage requestMessage ){ 
  
  ClassLoader original = Thread.currentThread().getContextClassLoader(); 
  try { 

Thread.currentThread().setContextClassLoader(SpagicServlet.getFrameworkContextClassLoader()); 
 ClientMessage response = null; 
 if (clientAPI != null) { 
  response = clientAPI.invokeAndWait(serviceId, requestMessage); 
  System.out.println("Message As Body" + response.getBody()); 
 } 
 return response; 
  } finally { 
 Thread.currentThread().setContextClassLoader(original); 
  }   
} 
  
  
public void fireAndForget(Client clientAPI, String serviceId, ClientMessage requestMessage ){ 
  
   ClassLoader original = Thread.currentThread().getContextClassLoader(); 
   try { 
 Thread.currentThread().setContextClassLoader(SpagicServlet.getFrameworkContextClassLoader()); 
 ClientMessage response = null; 
 if (clientAPI != null) {  
  clientAPI.fireAndForget(serviceId, requestMessage); 
  System.out.println("Message As Body" + response.getBody()); 
 }   
    } finally { 
 Thread.currentThread().setContextClassLoader(original);  
    } 
} 

 

As you coud easy notice from the code above to call a spagic service you need to prepare an object  of type 

org.spagic.client.api.ClientMessage that is simply composed of 

� A message Id 

� An XML Payload 

� A set of properties  

� A set of attachments 

 

The same object is used by spagic for the reponse in the case you’re going to use the invokeAndWait method. 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 9/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

4 Spagic BPM Gateway  

One of the most important and powerful feature of Spagic 3 is it’s Business Process Management Engine called BPM 

Gateway a particular service ( yes the BPM Gateway is a service itself in OSGi container ) that is able to orchestrate other 

service and/or human tasks. 

 

Before two proceed it’s important to clear some points. 

 

When you’re going to deploy a process in BPM Gateway you’re really going to do a two phase deploy: 

 

1. First you’re going to deploy the process in BPM Gateway Database. 

2. Then you’re going to deploy a spagic service ( of type BPMGateway service ) for the process. 

 

In the following of this paragraph we’re going to refer to the BPM Gateway Service as the “Orchestration Service” for the 

process. 

 

In particular in Spagic 3 the following type of processes are supported: 

 

� Tasks driven business process. In this type of processes all the step are associated to some  task activities that 

could be simple accept/resume activities or task driven by forms to be filled. This task are usually drive by 

o Business Logic of external applications  

o Human Activities performed in gui applications. 

 

To interface within BPM Gateway the external application must used a well definied api called Spagic Workflow  

API. 

 

� Automatic processes. In this type of processes all the steps are associated to spagic service deployed in spagic 

service manager, this mean that during process execution the bpm gateway call the services interfacing the 

services container. In that case there’s no human interaction within the process execution. 

  

� Mixed Processes. In that case you’ve both humant-task and automatic tasks. 

 

All this type of processes must have at least a start and an end task. 

 

Regards to the start of a process all the type of the processes above could be: 

 

� Started Manually. In that case the application responsible to start the process must obtain an instance of 
org.spagic.workflow.api.IProcessEngine and then use a code similar to the following one to start the process: 

 
IProcessEngine engine = /* Obtain the ProcessEngine Impl */; 

 IControlAPI controlAPI = engine.getControlAPI(); 
IQueryAPI queryAPI = engine.getControlAPI(); 
 
// Start Without pass variable  
controlAPI.startByProcessName(processName); 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 10/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

 
// Start With VARIABLES  
Variable[] vars = /* Initialize Variables */; 
long instanceId = controlAPI.startByProcessName(processName, vars); 

 
 
In the following paragraph we’re going to see how to obtain the org.spagic.workflow.api.IProcessEngine object, the great 

thing is that apart from the initialization of IProcessEngine object then you don’t worry about details all the code that your 
application use to talk with the BPM Gateway is only dependent on the IProcessEngine, IControlAPI,and IQueryAPI 
interface. 

 

� Started Automatically by a Connector. In that case no code is needed, it’s spagic 3 bpm gateway that start a 

process instance when a message is received by the connector that has as target the “Orchestration Service” for 

the process. 

 

� Started Sending a XML Message directly to Orchestration Service (Only WAR Embedded Mode ). When you 

use Spagic in embedded mode it’s possible to use the Spagic Client API to invoke directly the “Orchestration 

Service” of the process, in that case the Spagic Client API plays the role of an input connector. 

 

When a process instance ends we could have the following scenario: 

 

� If the process was started automatically by a Connector that require a response at the end of the process the 

special variable called “XML_MESSAGE” is returned as response to the connector. 

 

� If the process was started automatically by a Connector that not require a response at the end of the process 

instance the special variable called “XML_MESSAGE” is sent to the target of orchestration service if this have one. 

 

� If the process was started manually it is the same as if the process was started by a fire and forget connector, if 

a destination connector is found in orchestration service it use otherwise nothing is done. 

 

 

 

 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 11/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

4.1 Deployment Models and Spagic Workflow API 

As we shown in previous paragraph the SpagicWorflow API is the interface available to external application to interact within 

the spagic bpm gateway to: 

 

� Start Business Process 

� Manage Tasks ( Accept/Refuse/Complete) 

 

To work with the Spagic Workflow API an “external application” need to do the following steps: 

1. Obtain an istance of an object implementing the org.spagic.workflow.api.IProcessEngine interface 

2. Get the org.spagic.workflow.api.IQueryAPI, and the org.spagic.workflow.api.IControlAPI interface asking it to 

the IProcessEngine obtained. 

3. Use api  

4. Stop the process engine when the application has finished to use it. 

 

/*                                   */ 

/* Spagic Workflow API Typical Usage */ 

/*                                   */ 

 
IProcessEngine engine = /* Obtain the ProcessEngine Impl */; 
 
IControlAPI controlAPI = engine.getControlAPI(); 
 

IQueryAPI queryAPI = engine.getControlAPI(); 

 

/* Use ControlAPI and Query API Method */ 

 

queryAPI = engine.getQueryAPI(); 
 

engine.stop();  

 

 

The good thing about the above code is that this code it’s always the same expect for the first line where you need to obtain 

the IProcessEngine object. 

 

With regards to the deployment mode you’re using with spagic 3 you need to get different implementation of the 

IProcessEngine interface. In particular: 

 

� If you’re running in ESB Mode ( standard ) the BPM gateway expose the api as webeservices. Fortunaltely in  

your application code you does not really need to generate clients stubs. You simply need to know the url of the 

webservices and use the Spagic Workflow WS Client API implementation, in the following way to get a valid 

IProcessEngine object: 

 



 
 

 

S p a g i c 3  D e p l o y m e n t s  M o d e l s   
 

Spagic3 Deployments Models ver. 1.0 – October 23, 2009 - pag. 12/12 

 

Engineering Ingegneria Informatica S.p.A., 2007, 2009. This work is 
licensed under the Creative Commons Attribution-ShareAlike License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-

sa/3.0/   

 

  

 

 

/* Spagic Workflow API – Usage when SPAGIC is running in Standalone ESB Mode */ 

import org.spagic.workflow.api.ws.client.WSProcessEngine; 

… 

String url = http://spagichost:9090/wfengine/; 

 

IProcessEngine engine = new WSProcessEngine(); 

IControlAPI controlAPI = engine.getControlAPI(); 
IQueryAPI controlAPI = engine.getQueryAPI(); 

 

� If you’re running Spagic in Embedded Mode,  it’s not necessary to invoke webservices to access the BPM 

Gateway API, it’s more useful to use the Spagic Client API to invoke services directly in the container. For this 

scenario too an implementation of the Spagic Workflow API called Spagic Workflow Embedded API is provided 

so you don’t worry about the low level details.  

 
/* Spagic Workflow API – Usage when SPAGIC is running in WAR Embedded MODE  

   We suppose to have access to ServletContext object */ 

 

IProcessEngine embeddedEngine = EmbeddedProcessEngine.get(servletContext); 
 
IControlAPI controlAPI = engine.getControlAPI(); 
IQueryAPI controlAPI = engine.getQueryAPI(); 

 

 


