Javam™ Data Objects 2.0

JSR 243

Public Draft

May 16,2005

JavaData Objects Expert Group

Specification Lead: Craig Russell,
Sun Microsystems Inc.

Technical comments:
jdo-comments@sun.com
Processcomments:
community-process@sun.com

X Sun

microsystems

Sun Microsystems, Inc.

4140 Network Circle

Santa Clara, Caifornia 95054
408 276-5638 fax: 408 276-7191

Speci fication: JSR 243: Java Data hjects 2.0 - An Extension to the JDO

Speci fication ("Specification")

Status: Public Rel ease

Rel ease: Decenber 1, 2004

Copyri ght 2004 Sun M crosystens, Inc. 4150 Network Crcle, Santa d ara,
California 95054, U S. A Al rights reserved.

NOTI CE: The Specification is protected by copyright and the information
described therein may be protected by one or nore U.S. patents, foreign
patents, or pending applications. Except as provided under the follow ng
license, no part of the Specification my be reproduced in any form by any
means w thout the prior witten authorization of Sun M crosystens, I|nc.
("Sun") and its licensors, if any. Any use of the Specification and the

i nformati on described therein will be governed by the terns and conditions of
this Agreenent.

Subject to the terns and conditions of this license, Sun hereby grants you a
fully-paid, non-exclusive, non-transferable, limted |icense (wthout the
right to sublicense) under Sun's intellectual property rights to reviewthe
Specification only for the purposes of evaluation. This |license includes the
right to discuss the Specification (including the right to provide limted
excerpts of text to the extent relevant to the point[s] under discussion) with
other licensees (under this or a substantially simlar version of this
Agreenent) of the Specification. Other than this limted |license, you acquire
no right, title or interest in or to the Specification or any other Sun
intell ectual property, and the Specification may only be used in accordance
with the license ternms set forth herein. This license will expire on the
earlier of: (i) two (2) years fromthe date of Release |isted above; (ii) the
date on which the final version of the Specification is publicly released; or
(iii) the date on which the Java Specification Request (JSR) to which the
Speci fication corresponds is wthdrawn. In addition, this license wll
termnate imredi ately wi thout notice fromSun if you fail to conply with any
provision of this |icense. Upon termnation, you nust cease use of or destroy
t he Specification.

TRADEMARKS: No right, title, or interest in or to any trademarks, service

mar ks, or trade nanes of Sun, Sun's licensors, Specification Lead or the
Specification Lead' s licensors is granted hereunder. Sun, Sun M crosystens,
the Sun | ogo, Java, J2SE, J2EE, J2ME, Java Conpati ble, the Java Conpati bl e
Logo, and the Java Coffee Cup logo are trademarks or registered trademarks of
Sun Mcrosystens, Inc. in the US. and other countries.

Dl SCLAI MER OF WARRANTI ES: THE SPECI FI CATION IS PROVIDED "AS |IS" AND IS

EXPERI MENTAL AND MAY CONTAI N DEFECTS OR DEFI Cl ENCI ES WHI CH CANNOT OR W LL NOT
BE CORRECTED BY SUN. SUN MAKES NO REPRESENTATI ONS OR WARRANTI ES, El THER
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO, WARRANTI ES OF

MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE, OR NON- | NFRI NGEMENT THAT
THE CONTENTS OF THE SPECI FI CATI ON ARE SU TABLE FOR ANY PURPOSE OR THAT ANY
PRACTI CE OR | MPLEMENTATI ON OF SUCH CONTENTS W LL NOT | NFRI NGE ANY THI RD PARTY
PATENTS, COPYRI GHTS, TRADE SECRETS OR OTHER RI GHTS. This docunment does not
represent any commitnent to rel ease or inplenent any portion of the

Speci fication in any product.

THE SPECI FI CATI ON COULD | NCLUDE TECHNI CAL | NACCURACI ES OR TYPOGRAPHI CAL
ERRORS. CHANGES ARE PERI ODI CALLY ADDED TO THE | NFORMATI ON THEREI N; THESE
CHANGES W LL BE | NCORPORATED | NTO NEW VERSI ONS OF THE SPECI FI CATI ON, | F ANY.
SUN MAY MAKE | MPROVEMENTS ANDY OR CHANGES TO THE PRODUCT(S) ANDY OR THE
PROGRAM S) DESCRI BED | N THE SPECI FI CATI ON AT ANY TI ME. Any use of such changes

Page 1

in the Specification will be governed by the then-current |icense for the
appl i cabl e version of the Specification

LI M TATI ON OF LI ABILITY: TO THE EXTENT NOT PROHI Bl TED BY LAW | N NO EVENT W LL
SUN OR I TS LI CENSORS BE LI ABLE FOR ANY DAMAGES, | NCLUDI NG W THOUT LI M TATI ON
LOST REVENUE, PROFI TS OR DATA, OR FOR SPECI AL, | NDI RECT, CONSEQUENTI AL,

| NCl DENTAL OR PUNI TI VE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LI ABILITY, ARI SING OQUT OF OR RELATED TO ANY FURNI SHI NG, PRACTI CI NG, MODI FYI NG
OR ANY USE OF THE SPECI FI CATI ON, EVEN I F SUN AND/ OR | TS LI CENSORS HAVE BEEN
ADVI SED OF THE PCSSI BI LI TY OF SUCH DAMAGES.

You will hold Sun (and its licensors) harnmess fromany clains based on your
use of the Specification for any purposes other than the limted right of

eval uati on as descri bed above, and fromany clainms that |ater versions or

rel eases of any Specification furnished to you are inconpatible with the
Speci fication provided to you under this |icense.

RESTRI CTED RI GATS LEGEND: If this Software is being acquired by or on behalf
of the U S. Government or by a U S. Government prime contractor or
subcontractor (at any tier), then the Governnent's rights in the Specification
and acconpanyi ng docunentation shall be only as set forth in this |icense;
this is in accordance with 48 C.F. R 227.7201 through 227.7202-4 (for

Depart ment of Defense (DoD) acquisitions) and with 48 CF. R 2.101 and 12.212
(for non-DoD acqui sitions).

REPORT: You may wi sh to report any anbiguities, inconsistencies or

i naccuracies you nmay find in connection with your eval uation of the

Speci fication ("Feedback"). To the extent that you provide Sun with any
Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-
excl usive, worldw de, fully paid-up, irrevocable license, with the right to
subl i cense through nultiple |l evels of sublicensees, to incorporate, disclose,
and use without limtation the Feedback for any purpose related to the
Specification and future versions, inplenentations, and test suites thereof.
CENERAL TERMS: Any action related to this Agreenent will be governed by
California law and controlling U S. federal law. The U N Convention for the
International Sale of Goods and the choice of law rules of any jurisdiction
will not apply.

The Specification is subject to U S. export control |aws and may be subject to
export or inmport regulations in other countries. Licensee agrees to conmply
strictly with all such laws and regul ati ons and acknow edges that it has the
responsibility to obtain such licenses to export, re-export or inmport as may
be required after delivery to Licensee.

Neit her party may assign or otherw se transfer any of its rights or
obligations under this Agreenent, w thout the prior witten consent of the

ot her party, except that Sun may assign this Agreement to an affiliated
conpany.

This Agreenment is the parties' entire agreenent relating to its subject
matter. It supersedes all prior or contenporaneous oral or witten
conmuni cati ons, proposals, conditions, representations and warranties and
prevails over any conflicting or additional terns of any quote, order

acknow edgnment, or other comuni cati on between the parties relating to its
subject matter during the termof this Agreement. No nodification to this
Agreerment will be binding, unless in witing and signed by an authorized
representative of each party.

(Sun. pSpec. | icense. 11. 14. 2003)

Page 2

Preface

Thisinformation describes the relationship of JDO to the model of persistence being developed in
JSR 220 (EJB 3.0). ThisPublic Draft of JSR 243 executes on the direction outlined by the letter to
the Java Community at http://java.sun.com/j2ee/l etter/persistence.html.

Similarities between the POJO persistence models of JDO and EJB 3.0 will allow JDO customers
to easily embrace the new EJB 3.0 persistence model, while enabling them to meet their immedi-
ate needs with JDO 2.0. As an evolution of the existing JDO 1.0.2 API, JDO 2.0 does not attempt
specific API convergence with EJB3.0 persistence.

Additionally, JDOQL isintended to be usable as an alternate query language with EJB 3.0 persis-
tence. The IDOQL defined in this draft already contains updates to work better with EJB 3.0.
JDOQL may be further updated in subsequent drafts, following the work in the JSR220 expert

group.

JSR 243 is expected to complete prior to the completion of JSR 220. Consequently, the JDO 2.0

specification cannot include explicit referencesto detailed features still under devel opment in JSSR
220. A special maintenance release of JDO 2.0 may be required once JSR 220 has completed, in

order to achieve the level of JDOQL alignment described in the open | etter.

Future revisions of the JDO specification will be done as necessary to reflect the needs of the Java
Community.

Acknowledgments

| have come to know Rick Cattell during many shared experiences in the Java database standards
arena. Rick isaDistinguished Engineer at Sun Microsystems and has been the database guru and
Enterprise Cardinal in the Java“ Church” for many years. | am deeply in his debt for his many
contributions to JDO, both technical and organizational.

| want to thank the experts on the JDO expert group who contributed ideas, APIs, feedback, and
other valuable input to the standard, especially Heiko Bobzin, Constantine Plotnikov, Luca
Garulli, Philip Conroy, Steve Johnson, Michael Birk, Michael Rowley, Gordan Vosicki, and Mar-
tin McClure.

| want to recognize Michael Bouschen, David Jordan, David Ezzio, Dave Bristor, and Jeff Norton
for their careful review of JDO for consistency, readability, and usability. Without their contribu-
tions, JDO would not have been possible.

Since the publication of JDO 1.0, many people have contributed time, energy, and ideas to the
JDO effort. | want to recognize these significant contributors: Robin Roos, Abe White, David Jor-
dan, Michael Bouschen, Wes Biggs, Geoff Hendry, Christian Romberg, David Tinker, Patrick
Linskey, Bernhard Sporkmann, David Ezzio, Dion Almaer, Dirk Bartels, Dirk Theune, Eric Sam-
son, Gordan Vosicki, Keiron McCammon, Matthew Adams, Bin Sun, Oliver Kamps, and Rod
Johnson.

Java Data Objects
Table of Contents

1 Introduction 19
L L OVOIVIBIN . .ttt e e e 19

L 2 S0P .o it 20

L3 Target AUAIENCEot 20

LA OrganiZationttt e e 20

1.5 Document CONVENLIONo vttt et e et et et e e e e 21
16 Terminology CoONVENtioNttt et et e et e 21

2 VI VI o e e 22
2 DEfINITIONS . .ot 22
2.1.1.IDO cOmMMmMON INtEITaCeS. . .. oot 22
2.1.2JD0 inamanaged environmeNt.oui ittt it et 23
Enterprise Information System (EIS) i 23

ElS RESOUICE. . . . 24
ResourceManager (RM).t e e 24
CONNECHION . .ottt e 24
Application ComMPONENTot 24

SESSION BEANS . . . oot 24
Message-driven Beansot 24

ENtity Beans 24

Helper ObjectS.o 24

(0] | 7 1= 5 24

2 2 RAIONAlE ... 25
2.3 G08lS . 26

3 IJDO ArcChitectureo e 28
B L VIV B .ottt 28
3.2IDO AIChITECIUNE oot e e 29

B 2 L TWO O USATE .« v ettt ettt et ettt et e e 29

3.2.2 ApPliCaiON SENVEN USBZE . . . v ottt e ettt e e e e 29
ReSOUrCE Adapter 29

POOLING ..o 30

CONMTaCES. . . .t 30

4 Rolesand SCenariosovii it e 33
A L ROIES . 33
4.1.1 Application Developer.o 33

4.1.2 Application Component Provider i 33

4.1.3 Application Assembler. 33

A0 A DEPIOYEN. . ottt 34

4.1.5 System AdmINIStralorot 34
A1.6IDO VENAONottt e 34

4.1.7 CoNNECtOr Provider 34

4.1.8 Application Server Vendoro it e 34

4.1.9 Container Provider. 35

4.2 Scenario: Embedded calendar management system 35
4.3 Scenario: Enterprise Calendar Manager ...t 36

5 LifeCycleof IDOINStANCESo it e 38

Java Data Objects 5 May 16, 2005

Java Data Objects
Table of Contents

B L VIV BV . oottt e e 38
B2 G0alS . 39
5.3 ArChIteCtUrE: .. . 39
JDO NS ANCES . . oottt 39

JDO St M anager . . . ottt 40

DO Managed Flelds.o 40
5.AIDO Identity . ..ot e 40
Three Typesof JDOIdentity.t e 41
UNIQUING . . o e ettt e e e e e e e e e e e e e e 42
Change of identity. 42

JDO Identity SUPPOIt . ..o e 42

5.4.1 Application (primary key) identity i 42
5428SingleField Identity. 43

5. 4.3 Datastore identity.ot 45
5.4.4 Nondurable DO Identityottt e 45

55 LIfeCyCle Staes 46
Datastore TranSaCtioNS oo vttt et et et e 47

551 Transient (Required) i a7
55.2 Persistent-new (Required)t 47
55.3 Parsistent-dirty (Required). 48
554 Hollow (Required)o 48
55.5 Persistent-clean (Required) 49
5.5.6 Persistent-deleted (Required).t 49
5.5.7 Persistent-new-deleted (Required). 49
5.5.8 Detached-clean (Required)t 50
5.5.9 Detached-dirty (Required) i 50
5.6 Nontransactional (Optional)t 50
5.6.1 Persistent-nontransactional (Optional). i, 52
5.7 Transient Transactional (Optional) i 52
5.7.1 Transient-clean (Optional)t 52
5.7.2 Transient-dirty (Optional)o 53

5.8 Optimigtic Transactions (Optional) e 53
6 ThePersistent Object Model i, 62
B. L VIV BV .ttt 62
8.2 GOAIS . .ot 63
6.3 ArChItECIUrE 63
Persistence-capable. 63

First Class Objectsand Second ClassObjectS 64

First Class ObjJeCtS oot e e 64
Second Class ObJECESot e e 64
AT Y S . o 65
PrMItIVES . . 66

It aCES. . . o 66

6.4 Field types of persistence-capableclasses i 66
6.4.1 Nontransactional non-persistent fields. 66
6.4.2 Transactional non-persistentfields 66

Java Data Objects 6 May 16, 2005

Java Data Objects
Table of Contents

.43 Persistent flelds 66
Precision of fields. 66
MtV Y PES .« o .ot 67
Immutable Object ClasStypes 67
Mutable Object ClassStypeso e 67
Persistence-capable Classtypesot 67
ObJeCt ClaSS Y PE . . o vttt 67
Collection Interfacetypes.ot e 68
Other Interfacetypes. . . . oo 68
AT Y S . o 68

B.5 INhEritanCeo 68

7 PersistenceCapable e 70
7. PerSISteNCE Manager . ..ottt e 70

T 2MaKE DIIY . .ot 71
T.3IDO IAENLILY . . .ottt 71
T3 LV OISION. . et 71

7.4 STAUSINEITOgAION . . . oottt e e e e e e 71

35 5 1 72

TA2Transactional 72

TA S PEr S S ONt . ..o 72

A A NOI o 72

TAS DEEtEd. 72

7A46Detached 72

T O NEW INSEANCE . .ottt e e e e 73
7.6 A e M aANAgE . . .ttt e 73
7T REPIACEFIAgS . . . oo 73
TBReplace FiEldso 73
TOProvide Fields o 74
710 Copy FIElds . ..o 74
711l StAiCFIEIAS ..o 74
712 D0 identity handling 74

interface ObjectldFieldSupplier 75

interface ObjectldFieldConsumer. i e 75

interface ObjectldFieldManager extends ObjectldFieldSupplier, ObjectldFieldCon-
sumer 76

Detachable. 76

8 JDOHEIPEr ... e 77
8.l Persistence Manager oo 77
B 2 MaAKE DIty . .ot 77
B.3IDO Identity . ..ot e 78
BAIDO VEBISION . ..ottt ettt e e e e 78
8.5 StatUSINtEITOgationt 78
B . L DIty . ottt 78
85.2Transactionalt 78

B D B PErS S Nt . .. 79

B o A NEW . .o 79

Java Data Objects 7 May 16, 2005

Java Data Objects
Table of Contents

B o S Dt 79
8o 6 Detached 79
8.6 PersistenceManagerFactory methods 79
9 IDOImMpIHEper 82
0.1 IDOIMPIHEIPEr @CCESS o et 82
0.2 MEtAAtA ACCESS . . . o v vttt ettt e 82
9.3 Persistence-capableinstancefactoryc i 83
9.4 Registration of PersistenceCapableclassesc. ... 83
9.4.1 Notification of PersistenceCapable classregistrations 83
RegisterClassEvent. 84
RegisterClasslistener 84

9.5 Security administration it 84
9.6 Applicationidentity handling i 85
9.7 Persistence-capable class state interrogationc.o i 85
10 InstanceCallbacks 87
10.1JdOPOSILOBAo 87
10,2 JAOPIESIOr . . . o vttt 87
10.3JAOPreClear . ..o 88
104 JdoPreDelate o 88
10.5jdoPreDetach and jdoPostDetach o 88
10.6 jdoPreAttach and jdoPostAttach 89
11 PersistenceManager Factoryt 90
11.1 Interface PersistenceManagerFactory 20
Construction by Properties. 91

11.2 CoNNECLIONFACIONYottt e e e e e e et e 93
11.3 PerSiStenCeEManager 8CCESS vttt ettt e 93
11.4 Close the PersistenceManagerFactory, 9
11.5 Non-configurable Properties e e e 94
11.6 Optional Feature SUPPOITot e e e 95
11.7 Static PropertieS CONSIrUCIOrottt et e 95
11.8 Second-level cachemanagement i 96
Evicting objectsfromthecache 97
Pinning objectsinthecache. 97
Unpinning objectsinthecache. 97

119 Registering for lifecycleevents 97
12 PersistenceManagert 99
12, VIV B .ottt ettt e e 99
12,2 G0alS . 99
12.3 Architecture: JDO PersistenceManagerco vt 99
12 4Threadingo vt 100
12, 5 ClasS LOaderS . . o oot 100
12.6 Interface PersistenceManagero. ittt 101
Null management 102

12.6.1 Cachemanagementco ittt e 102
12.6.2 Transaction factory interface. i 104

Java Data Objects 8 May 16, 2005

Java Data Objects
Table of Contents

12.6.3 Query factory interface 104

12.6.4 EXtent Managementottt 104
Extentsof interfaces. 105

12.6.51f the Class parameter of the getExtent method isan interface, then theinterface must

be identified in the metadata as having its extent managed. JDO Identity management 105
Getting Multiple Persistent InStanCes.t 107

If the Object[] form of the method is used, the returned objects correspond by position
with the object ids in the oids parameter. If the Col | ect i on form of the method is used, the iter-
ator over thereturned Col | ect i on returnsinstancesin the same order as the oids returned by an
iterator over the parameter Col | ect i on. The cardinality of the return valueisthe same asthe car-
dinality of the oids parameter.Getting an Object by Class and Key107

12.6.6 Persistent interfacefactory. 107
12.6.7 DO Instance lifecyclemanagement. i 107
Makeinstancespersistent 108

Delete persstent INStanCeSo o v it 108

Make instanCestranSient.t e 108
Makeinstancestransactional 109
Makeinstancesnontransactional i 109

12.6.8 Detaching and attaching instances. 110
Closingthe PersistenceManager.ot e 110
Seriadizing Persistent INStanCes.ot 110
Explicitdetach 110
Attaching INStaNCES. 111

12,7 FEtCh GrOUPS . . . oottt e e e e e e e e 112
12.7.1 TheFetchPlaninterface. e 113
1272 Defining fEtCh groupso 115
128 FIUShING INSLANCESot ittt e e e e et 117
12.9 Transaction COMPIELIONot 118
12.10 Multithreaded Synchronization i 118
12,11 User associated ODJECESot 118
12.12 PersistenceManagerFactoryt 119
12.13 Objectld classmanagementttt 119
1204 SEQUENCE . . .ottt e e e e 119
1215 Life-cyclecalbackso 120
12.16 Accessto internal datastore connectiont 123
SQL Portabilityo 124

13 Transactionsand CoNNECtioNSottt 125
13, OVEIVI B .ottt e e e e e 125
132 G0aIS ..t 125
13.3 Architecture: PersistenceManager, Transactions, and Connections 125
Connection Management SCeNarioSo vttt 126

Native Connection Management.ot et e 126
Non-native Connection Management.t 127
OptimiStiC TranSaCtioNSottt 127

134 1Interface TranSaCtionottt e e 128
13.4. 1 PerSiStenCeManagero o it it 128

Java Data Objects 9 May 16, 2005

Java Data Objects
Table of Contents

13.4.2 TransaCtion OPLIONSottt e e et 128
Nontransactional accessto persistentvaluesc.ccciiiinan... 128
Optimistic coNCUrrency CONtrol.ttt e e 128
Retain values at transaction commit.t 129
Restorevalues at transactionrollback. 129

13.4.3 SyNChroNiZation oot 129

13.4.4 Transaction demarCationv ittt ettt 130
Non-managed environmMeNt.ttt et et 130
Managed environmentttt e 131

1345 R0llbackOnly 131

13.5 Optimigtic transactionmanagementttt 131
14 QUEIY o e e 133
4.1 OVEIVIBIW ..ottt et e e e e e e e e e e e 133
14,2 GOaAlS ..ottt 133
14.3 Architecture: QUENYt e 134
14,4 NaMESPACES IN QUENTES . . . ot ittt ettt e et e e 135
KEYWOIS . . .o 136

14.5 Query Factory in PersistenceManager interface 136
146 Query Interface e 138
Persistence Manager oo 138

Fetch Plan 138

Quary dementbinding e 138

QUENY OPLIONS . . . oottt e 140

Query modification.t 140

Query compilation e 140

14.6.1 QUENY EXECULTION. . . . ottt ettt e e e e e e e e 140
14.6.2 Filter specification 141

Nul | -valued fieldsof Col | ect i on typesaretreated asif they were empty if amethod
iscalled on them. In particular, they returnt r ue toi sEnpt y andreturnf al se toal cont ai ns
methods. For datastoresthat support nul | valuesfor Col | ect i on types, itisvalidto comparethe
field to nul | . Datastores that do not support nul | valuesfor Col | ect i on types, will return
f al se if the query comparesthefield to nul | . Datastores that support nul | valuesfor Col | ec-
ti on typesshould includetheoption"j avax. j do. opti on. Nul | Col | ecti on" intheir list of
supported options (Per si st enceManager Fact ory. support edOpt i ons()).Methods144

14.6.3 Parameter declaration. e 145
Implicit parameter declaration i e 146
14.6.4 IMpPOrt StalemMEeNtS.ot 146
14.6.5Variabledeclaration. 146
Implicit variabledeclaration. i 147
14.6.6 Ordering statement.t 147
14.6.7 Closing QUENY resUItS. oot e 148
14.6.8 Limiting the Cardinality of theQuery Result 148
14.6.9 Specifying the Result of a Query (Projections, Aggregates) 148
DIStINCLrESUITSot e e 149
Named ResUlt EXPressioNS.o v i ettt et e 150
AQGregale TYPES. . o ottt 150

Java Data Objects 10 May 16, 2005

Java Data Objects
Table of Contents

PrimMItIVE TYPES. . o o 150

NUIL RESUILS. e e 150
Default ResUlt o 150
14.6.10 Grouping Aggregate ResultSo 150
14.6.11 Specifying Uniquenessof theQuery Result 150
Default UniqQUe SELtiNgo it 151
14.6.12 Specifyingthe Classof theResult. i, 151
Result Class Requirements.ot e et et e 151
14.6.13 Single-string Query element binding. o 152
14,7 SQL QUENES . . . ottt et et e e 153
14.8 Deletion by QUENY it e 154
A9 EXIENSIONS . .ottt et et e e 155
14, 10 EXAMPIES: . .o 155
14.00. 1 BaSIC OUETY. . . ottt ettt e e e e 155
14.10.2 Basicquery With ordering..o 156
14.10.3 Parameter PassiNg.« v v vttt e e e e 156
14.10.4 Navigation through single-valued field. 156
14.10.5 Navigation through multi-valued field. oo L. 157
14.10.6 Membershipinacollection.......... i 157
14.10.7 Projection of aSingleField 158
14.10.8 Projection of Multiple Fieldsand Expressions 158
14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance . . . 159
14.10.10 Aggregation of asingleField. 160
14.10.11 Aggregation of Multiple Fieldsand Expressions. 160
14.10.12 Aggregation of MultiplefieldswithGrouping, 160
14.10.13 Selectionof aSinglelnstance i 161
14.10.14 Selectionof aSingleField. 161
14.10.15 Projection of “this’ to User-defined Result Class with Matching Field 162
14.10.16 Projection of “this” to User-defined Result Class with Matching Method . . . 162
14.10.17 Projectionof variables. 163
14.10.18 Deleting Multiple INStances.o ot 163

15 Object-Relational Mapping ...t 164
MappPIiNg OVEIVIEWottt et e et et 164
MappPIiNg StratEgIESottt e 164

15.1 Column Elementsot 165
EXample L. .. 165
15.2J0IN CoNAItION 166
EXample 2. 166
EXample 3. . 167

153 ReationshipMappingovii i 169
EXampled . . . 169
EXample S . . 170
EXamMPIE B . . o 171
EXample 7 . . 171
EXample 8. ..o 173

154 EMbBEddiNgot e 174

Java Data Objects 11 May 16, 2005

Java Data Objects
Table of Contents

EXample 0. . . 174

155 Foreign Key ConstraintSouit ittt et et e 176
Delete Action, Update ACLION.ot e 176
EXxample 10 177

15 B INAEXES . . oottt 178
Unique CoNSIraiNtSottt e e e e e e 178
EXample L. .. 179

15, 7 INNErtanCe . .o 180
158 VEISIONING ..ottt et et et e e 180
EXample 12, . . 180
EXample 13, .. 182
EXample 14 . . 183

16 EnterprisedavaBeans i 185
16.1 SESSION BEANSot 185
16.1.1 Stateless Session Bean with Container Managed Transactions. 186
16.1.2 Stateful Session Bean with Container Managed Transactions 186
16.1.3 Stateless Session Bean with Bean Managed Transactions 186
16.1.4 Stateful Session Bean with Bean Managed Transactions 187
16 2 ENtity BEaNSot 187
17 JDO EXCEPLIONS . .ottt et e e e 188
17. 1 IDOEXCEPIION . .ottt ettt e e e e 188
17.1. 1 IDOFAal EXCEPLION oottt et e e e 189
17.1.2 IDOCaNREtrYEXCEPLION. . . . oot 189
17.1.3 IDOUNsupportedOptionEXCEPLioNot 189
17.1.4 IDOUSEEXCEPRLION . . oottt et et e et 189
17.1.5 IDOFatalUSErEXCEPLIONttt 190
17.1.6 IDOFatalInternal EXCeptionot 190
17.1.7 IDODaaStoreEXCEPtONttt 190
17.1.8 IDOFatalDataStoreEXCEptionot 190
17.1.9 IDOObjectNOtFOUNAEXCEPLION.ot e 190
17.1.10 IDOOptimisticVerificationEXCEPLIoN oot 190
17.1.11 IDODetachedFieldAccessException. 191

18 XML Metadata ...t e e e e 192
18 L ELEMENT JAO . .ottt e e e e e 194
182 ELEMENT PaCKageo oottt e e 194
18.3ELEMENT iNterfacet 194
18 A ELEMENT Property . ..ot e 194
185 ELEMENT COlUMN ... e et e 195
186 ELEMENT ClaSS . ..ottt ittt et et e e e e e e e 196
18.6.1 ELEMENT datastore-identityt 197
18.6.2 Element VEISIONot 197
18. 7 ELEMENT JOIN o\ttt ettt e e e e e e e e e e 198
18.8 ELEMENT inheritance e e 198
18. 9 ELEMENT diSCriminatorottt e ettt 198
18. 10 ELEMENT implementst e 199

Java Data Objects 12 May 16, 2005

Java Data Objects
Table of Contents

18.11 ELEMENT Propertyttt e e e 199
18.12 ELEMENT foreign-Key e 199
18.12.1 ATTRIBUTE update-action.ot 199
18.122 ATTRIBUTE delete-actiont e 199
18123 ATTRIBUTEdeferred. e 199
18124 ATTRIBUTE NGME . . . oottt e et ettt et et 200

18 13 ELEMENT fidldo 200
Default persistence-modifier. 200
18.13.1ELEMENT collection e 202
18.13.2ELEMENT Map. ..o oot e 202
18133 ELEMENT @ray . . . oo et 203
18.134ELEMENT embedded 203
18135 ELEMENT Keyo 203
18.13.6 ELEMENT value.o e 204
18.13.7ELEMENT element o 204

18 1A ELEMENT QUENY . .. oe ittt e e e e e 204
18 15 ELEMENT SBQUENCE . . . oottt e et et e e e et 204
18. 16 ELEMENT @XtenSiON oottt e et 205
18 17 ELEMENT Orm . .o e e e 205
18.18 Thejdo Document Type DesCriptort 205
18.19 The orm Document Type DesCriptort 210
18. 20 Example XML file 214
10 EXteNt .. e 216
O L OVEIVIBIW .ttt et et e e e e e e e e e e 216
10,2 G08IS .ot 216
103 INnterfaCce EXteNto 217
20 Portability Guidelines 218
20.10ptional FEaIUIrESot 218
20.1.1 OptimistiC TranSaCtioNS. oottt ettt 218
20.1.2 Nontransactional Read.t 218
20.1.3 Nontransactional WIItet e e 218
20.14 Transient Transactionalt 218
2015 RetaiNValUESot e 218
20.1.6 IgnoreCache.t 218
20.20bjeCt MOdEl 218
20.3 D0 BNty . . oot e 219
20.4 PersistenCeManagerottt 219
20 S QUENY .o 219
20.6 XML Metadata oot 220
207 LifecyCle ... 220
20,8 D OHE PO ..o 220
200 TraNSaCtioN . . . oottt 220
20.10 Binary Compatibility 220
21 JDO ReferenceEnhancer i 221
200 OVEIVIBIW .« ettt et e e e e e e e e e e e 221

Java Data Objects 13 May 16, 2005

Java Data Objects
Table of Contents

21 2 G0alS .. e e 221
21.3 Enhancement: Architecturec. i e 222
2LA1INNENTANCE . . . oot 225
215 FeldNUMbDENG ... 225
21,6 Serialization 225
207 ClONING . .ottt 226
21.8 Introspection (Javacorereflection) i 227
219 FeldMOOIfIErS . . .o 227
210, L NON-PEISISENt . . oot e 227
21.9.2 Transactional NON-PersiStento i e 227
20,0 3 ParS SNt . . o 227
210 A PrimMary K Y . .ot 228
21.95EmMbedded 228
2L96 NUI-VAIUE ..o 228
21.10 Treatment of standard Javafield modifiers 229
2000, L St C « ettt 229
21002 FiNal . .. 229
2000 3 PrIVaAE . . 229
21.10.4 Public, Protectedt 229
21.11 Users must enhance all classes, regardless of package, that reference any persistent or
transactional field.Fetch Groups 229
2112 jJdoFlags DEfiNitioN 230
2L LB EXCEPIONS .ottt e 230
21.14Modified fleld aCCeSSo v it 231
21.15 Generated fields in least-derived Per si st enceCapableclass 231
21.16 Generated fieldsin all Per si st enceCapableclasses 232
Generated static initializer 232
21.17 Generated methods in least-derived Per si st enceCapableclass 232
21.18 Generated methodsin Per si st enceCapabl e root classes and all classes that declare
objectid-classinxmlmetadata: i 234
21.19 Generated methodsin all Per si st enceCapableclasses.................... 235

21.20 Note that there is no modification of auser’sr eadObj ect . During the execution of
readQbj ect , anew transient instanceis created. Thisinstance might be made persistent later, but
whileit is being constructed by serialization, it remains transient.Generated methodsin al De-

tachabl @ Classes e 237
21.21 Exampleclass Employee 238
21.21. 1 Generated fields.o 238
21.21.2 Generated staticinitializer. 239
21.21.3 Generated INtEIrOgatiVeSot 239
21.21.4 Generated jdoReplaceStateManagero 240
21.21.5 Generated jdoReplaceFlags.o 240
21.21.6 Generated jdoNewlInstancehelpers.o 240
21.21.7 Generated jdoGetManagedFieldCount, 241
21.21.8 Generated jdoGetX XX methods (one per persistent field) 241
21.21.9 Generated jdoSetX XX methods (one per persistent field) 242
21.21.10 Generated jdoReplaceField and jdoReplaceFields 243

Java Data Objects 14 May 16, 2005

Java Data Objects
Table of Contents

21.21.11 Generated jdoProvideField and jdoProvideFields. 245
21.21.12 Generated jdoCopyField and jdoCopyFieldsmethods 246
21.21.13 Generated writeObject method i 247
21.21.14 Generated jdoPreSerializemethod. o i 247
21.21.15 Generated jdoNewObjectldinstance, 247
21.21.16 Generated jdoCopyKeyFieldsToObjectld oottt 247
21.21.17 Generated jdoCopyKeyFieldsFromObjectld.o ... 248
21.21.18 Generated Det achabl e methods. o i, 248

22 Interface StateManager ...ttt e 249
22. L OVEIVIBINV ottt e e e e e e e e e 249
ClONE SUPPOIT .« . . oottt e e e e 249

22.2 StateManager Managementttt 249
22.3 PersistenceManager Managementttt 250
224 Dirty Managementt 250
22, A QUENTES . . v ettt e e e 250
22.6 D0 BNty . . oot 251
22.7 Seridization SUPPOIT . .. oot e e 251
2. 8FeldManagement 251
22.8.1 User-requested valueof afield i 252

22.8.2 User-requested modification of afield, 252

22.8.3 StateManager-requested valueof afield 253

22.8.4 StateM anager-requested modificationof afield 254

22.9 Detached instanCe SUPPOITot i et e e e 254

23 JDOPEMISSION . ..ot 255
24 JDOQL BNF .. e 256
25 Itemsdeferredtothenextrelease i 263
25. 1 Nested TransaCtionS oottt e 263
25.2 Savepoint, Undosavepointt 263
25.3 Inter-PersistenceManager References i 263
254 Enhancer Invocation APl o 263
25 S PrefetCh APl . .o 263
25.6 BLOB/CLOB datatype SUPPOt . .. oottt et ettt e 263
25.7 Managed (inverse) relationship SUPPOIT oottt e 264
25.8 Case-INSenSitiVE QUENY . ..ottt 264
25.9 String conNVErsioN iNQUENY . ..ottt e e 264
2510 Read-only fieldso 264
2511 Enumeration Patternot 264
25.12 NON-StatiC INNEr ClaSSES . . . oo vttt e 265

25. 13 ProjeCtioNS IN QUENY . .ottt et et e e e e e e e e 265
25.04 LOgWIiter SUPPOIT . .o vttt e e et e e e e e e e 265

25. 15 NeW EXCEPLIONSo 265
25.16 Distributed ObjeCt SUPPOItot 265
25.17 Object-Relational Mappingot e 265

26 JDO 1.0 AMetadataooiriii 267
26.LELEMENT JOO . . .ot 268

Java Data Objects 15 May 16, 2005

Java Data Objects
Table of Contents

26.2ELEMENT packageo 268
26.3ELEMENT Classo 268
264 ELEMENT field . ..o 269
Default persistence-modifier. 269

2641 ELEMENT COllECtiono e 270
2642 ELEMENT Map. . ..ot e 271
2643 ELEMENT arayot e 271
26.5 ELEMENT &XteNSIONottt e e et 271
26.6 The Document TYpe DeSCIPLOro ittt e e 271
26.7 Example XML file 272
27 PublicFeedback Request i 274
27.1 Annotationsformetadatao 274
27.2 Attach and detach lifecyclelistener callbacks 274
27.3 Proxy support for detached instances 274
27.4Deletingdetached iNStanCeSot 275
275 Implicit variabledeclarations 275
27.6 Shortcuts for certain JIDOQL staticmethods 275
27.7 Attribute namesfor columnname i 275
27.8 Specification Of INAEXESttt 276
27.9 |dGenerator and Sequencearesimilar 276
27.10 Embedded, dependent, and seridlizedvalues. 276
27.11 Deprecate dfgOnly parameter?t 276
27.12 Fetch Group definitioninmetadata 277
27.13Version informationttt 277
27.14 SINgle-sString JDOQL o i e 277
27.15Length, Precisionand Scale 277
27.16 Detachment ContraCtttt e 277
Appendix A: References 278
Appendix B: Design DeCISIONSo it 279
B L ENNaNCer ... 279
Appendix C: ReVISION HIStOryo 280
C.1Changessince Draft 0.1 ittt e 280
C.1Changessince Draft 0.2ot 280
C.lChangessince Draft 0.3 280
C.lChangessince Draft 0.4t e e 280
C.1Changessince Draft 0.5 ot 281
C.1 Changes since Draft 0.6 (Participant Review Draft) 282
C.1Changessince Draft 0.7t e e e 282
C.1ChangessinceDraft 0.8t 283
C.1Changessince Draft 0.9 ot 283
C.lChangessincedraft 0.91 it e e 284
C.1Changessincedraft 0.92 it 285
C.lChangessincedraft 0.93 it e 285
C.lChangessincedraft 0.94 i e e e 286
C.1 Changes since draft 0.95 (Proposed Final Draft) iiiin... 287

Java Data Objects 16 May 16, 2005

Java Data Objects
Table of Contents

C.1Changessincedraft 0.96ottt 287
C.lChangessincedraft 0.97o e e 288
C.1Changessince Approved Draft e 289
C.lChangessiNCe L.0. L . ..o e e 291

Java Data Objects 17 May 16, 2005

Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:

Listof Figures

Standard plug-and-play between application programs and El Ses using JDO 26
Overview of non-managed JDO architecture 28
Contracts between application server and native JDO resource adapter. 31
Contracts between application server and layered JDO implementation 32
Scenario: Embedded calendar manager 35
Scenario: Enterprise Calendar Manager 37
Life Cycle: New Persistent Instancesoiiiiiinnnnn... 57
LifeCycle: Transactional ACCESSot 58
Life Cycle: Datastore TransactionsS.o.vv it een 58
Life Cycle: Optimistic Transactions.cviiii i 58
Life Cycle: AccessOutside Transactionsoviiii . 59
LifeCycle: Transient Transactional, 59
JDO Instance State TranSitionS.o 60
Instantiated persistent ObjectS. 62
Transactionsand CONNECLIONS.o vttt 127

Java Data Objects

Java Data Objects 2.0

| ntr oduction

Java is a language that defines a runtime environment in which user-defined classes exe-
cute. The instances of these user-defined classes might represent real world data. The data
might be stored in databases, file systems, or mainframe transaction processing systems.
These data sources are collectively referred to as Enterprise Information Systems (EIS).
Additionally, small footprint environments often require a way to manage persistent data
in local storage.

The data access techniques are different for each type of data source, and accessing the
data presents a challenge to application developers, who currently need to use a different
Application Programming Interface (API) for each type of data source.

This means that application developers need to learn at least two different languages to
develop business logic for these data sources: the Java programming language; and the
specialized data access language required by the data source.

Currently, aside from JDO, there are three Java standards for storing Java data persistent-
ly: serialization, JDBC, and Entity JavaBeans. Serialization preserves relationships among
a graph of Java objects, but does not support sharing among multiple users. JDBC requires
the user to explicitly manage the values of fields and map them into relational database
tables. Enterprise JavaBeans require a container in which to run.

Developers can be more productive if they focus on creating Java classes that implement
business logic, and use native Java classes to represent data from the data sources. Map-
ping between the Java classes and the data source, if necessary, can be done by an EIS do-
main expert.

JDO defines interfaces and classes to be used by application programmers when using
classes whose instances are to be stored in persistent storage (persistence-capable classes),
and specifies the contracts between suppliers of persistence-capable classes and the run-
time environment (which is part of the JDO Implementation).

The supplier of the JDO Implementation is hereinafter called the JDO vendor.

11

JDO20

Overview

There are two major objectives of the JDO architecture: first, to provide application pro-
grammers a transparent Java-centric view of persistent information, including enterprise
data and locally stored data; and second, to enable pluggable implementations of data-
stores into application servers.

The Java Data Objects architecture defines a standard API to data contained in local stor-
age systems and heterogeneous enterprise information systems, such as ERP, mainframe
transaction processing and database systems. The architecture also refers to the Connector
architecture [see Appendix A reference 4] which defines a set of portable, scalable, secure,
and transactional mechanisms for the integration of EIS with an application server.

18 May 16, 2005

Java Data Objects 2.0

This architecture enables a local storage expert, an enterprise information system (EIS)
vendor, or an EIS domain expert to provide a standard data view (JDO Implementation)
for the local data or EIS.

12

Scope

The JDO architecture defines a standard set of contracts between an application program-
mer and an JDO vendor. These contracts focus on the view of the Java instances of persis-
tence-capable classes.

JDO uses the Connector Architecture [see Appendix A reference 4] to specify the contract
between the JDO vendor and an application server. These contracts focus on the important
aspects of integration with heterogeneous enterprise information systems: instance man-
agement, connection management, and transaction management.

To provide transparent storage of local data, the JDO architecture does not require the
Connector Architecture in non-managed (non-application server) environments.

13

Target Audience

The target audience for this specification includes:
¢ application developers

JDO vendors

¢ enterprise information system (EIS) vendors and EIS Connector providers

* container providers
* enterprise system integrators
* enterprise tool vendors

JDO definestwo types of interfaces: the JDO API, of primary interest to application devel opers (the
JDO instance life cycle) and the JDO SPI, of primary interest to container providersand JDO ven-
dors. Anitalicized notice may appear at the end of a section, directing readersinterested only in the
API sideto skip to the next API-side section.

14

JDO20

Organization

This document describes the rationale and goals for a standard architecture for specifying
the interface between an application developer and a local file system or EIS datastore. It
then elaborates the JDO architecture and its relationship to the Connector architecture.

The document next describes two typical JDO scenarios, one managed (application server)
and the other non-managed (local file storage). This chapter explains key roles and respon-
sibilities involved in the development and deployment of portable Java applications that
require persistent storage.

The document then details the prescriptive aspects of the architecture. It starts with the
JDO instance, which is the application programmer-visible part of the system. It then de-
tails the JDO Per si st enceManager , which is the primary interface between a persis-
tence-aware application, focusing on the contracts between the application developer and
JDO implementation provider. Finally, the contracts for connection and transaction man-
agement between the JDO vendor and application server vendor are defined.

19 May 16, 2005

Java Data Objects 2.0

1.5 Document Convention

A Palatino font is used for describing the JDO architecture.
A courier font is used for code fragments.

1.6 Terminology Convention

“Must” is used where the specified component is required to implement some interface or
action to be compliant with the specification.

“Might” is used where there is an implementation choice whether or how to implement a
method or function.

“Should” is used to describe objectives of the specification and recommended application
programming usage. If the recommended usage is not followed by applications, behavior
is non-portable, unexpected, or unspecified.

“Should” is also used where there is a recommended choice for possibly different imple-
mentation actions. If the recommended usage is not followed by implementations, ineffi-
ciencies might result.

JDO 2.0 20 May 16, 2005

Java Data Objects 2.0

Overview

This chapter introduces key concepts that are required for an understanding of the JDO ar-
chitecture. It lays down a reference framework to facilitate a formal specification of the
JDO architecture in the subsequent chapters of this document.

21
211

JDO20

Definitions
JDO common interfaces
JDO Instance

A JDO instance is a Java programming language instance of a Java class that implements
the application functions, and represents data in a local file system or enterprise datastore.
Without limitation, the data might come from a single datastore entity, or from a collection
of entities. For example, an entity might be a single object from an object database, a single
row of a relational database, the result of a relational database query consisting of several
rows, a merging of data from several tables in a relational database, or the result of execut-
ing a data retrieval API from an ERP system.

The objective of JDO is that most user-written classes, including both entity-type classes
and utility-type classes, might be persistence capable. The limitations are that the persis-
tent state of the class must be represented entirely by the state of its Java fields. Thus, sys-
tem-type classes such as Syst em Thr ead, Socket, Fi | e, and the like cannot be JDO
persistence-capable, but common user-defined classes can be.

JDO Implementation

AJDO implementation is a collection of classes that implement the JDO contracts. The JDO
implementation might be provided by an EIS vendor or by a third party vendor, collective-
ly known as JDO vendor. The third party might provide an implementation that is opti-
mized for a particular application domain, or might be a general purpose tool (such as a
relational mapping tool, embedded object database, or enterprise object database).

The primary interface to the application is Per si st enceManager , with interfaces Que-
ry and Tr ansact i on playing supporting roles for application control of the execution
environment.

JDO Enhancer

To use persistence-capable classes with binary-compatible JDO implementations, the
classes must implement the Per si st enceCapabl e contract, which includes implement-
ing thej avax. j do. spi . Per si st enceCapabl e contract, as well as adding other meth-
ods including static registration methods. This contract enables management of classes
including transparent loading and storing of the fields of their persistent instances. A JDO
enhancer, or byte code enhancer, is a program that modifies the byte codes of application-
component Java class files to implement this interface.

The JDO reference implementation (reference enhancement) contains an approach for the
enhancement of Java class files to allow for enhanced class files to be shared among several
coresident JDO implementations.

21 May 16, 2005

Java Data Objects 2.0

212

JDO20

There are alternative approaches to byte code enhancement for having the classes imple-
ment the Per si st enceCapabl e contract. These include preprocessing or code genera-
tion. If one of these alternatives is used instead of byte code enhancement, the
Per si st enceCapabl e contract is implemented explicitly.

A JDO implementation is free to extend the Reference Enhancement contract with imple-
mentation-specific methods and fields that might be used by its runtime environment.

Binary Compatibility

A JDO implementation may optionally choose to support binary compatibility with other
JDO implementations by supporting the Per si st enceCapabl e contract for persistence-
capable classes. If it does, then enhanced classes produced by another implementation or
by the reference enhancer must be supported according to the following requirements.

* A2.1.1-1 [classes enhanced by the reference enhancer must be usable by any JDO
compliant implementation that supports BinaryCompatibility];

¢ A2.1.1-2 [classes enhanced by a JDO compliant implementation must be usable by
the reference implementation]; and

¢ A2.1.1-3 [classes enhanced by a JDO compliant implementation must be usable by
any other JDO compliant implementation that supports BinaryCompatibility].

The following table determines which interface is used by a JDO implementation based on

Table 1: Which Enhancement Interfaceis Used

Reference Runtime Vendor A Runtime Vendor B Runtime

Reference Enhancer Reference Enhancement Reference Enhancement Reference Enhancement
Vendor A Enhancer Reference Enhancement Vendor A Enhancement Reference Enhancement
Vendor B Enhancer Reference Enhancement Reference Enhancement Vendor B Enhancement

the enhancement of the persistence-capable class. For example, if Vendor A runtime de-
tects that the class was enhanced by its own enhancement, then the runtime will use its en-
hancement contract. Otherwise, it will use the Reference Enhancement contract.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion, as it details architectural features not relevant to local environments. Skip to 2.2 — Rationale.

JDO in a managed environment

This discussion provides a bridge to the Connector architecture, which [DO uses for transaction and
connection management in application server environments.

Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of ser-
vices to its clients. These services are exposed to clients as local and/or remote interfaces.
Examples of EIS include:

¢ relational database system;
* object database system;
¢ ERP system; and

* mainframe transaction processing system.

22 May 16, 2005

Java Data Objects 2.0

JDO20

ElISResource

An EIS resource provides EIS-specific functionality to its clients. Examples are:
¢ arecord or set of records in a database system;
* abusiness object in an ERP system; and

* a transaction program in a transaction processing system

Resource Manager (RM)

A resource manager manages a set of shared resources. A client requests access to a re-
source manager to use its managed resources. A transactional resource manager can par-
ticipate in transactions that are externally controlled and coordinated by a transaction
manager.

Connection

A connection provides connectivity to a resource manager. It enables an application client
to connect to a resource manager, perform transactions, and access services provided by
that resource manager. A connection can be either transactional or non-transactional. Ex-
amples include a database connection and a SAP R/3 connection.

Application Component

An application component can be a server-side component, such as an EJB, JSP, or servlet,
that is deployed, managed and executed on an application server. It can be a component
executed on the web-client tier but made available to the web-client by an application serv-
er, such as a Java applet, or DHTML page. It might also be an embedded component exe-
cuted in a small footprint device using flash memory for persistent storage.

Session Beans

Session objects are EJB application components that execute on behalf of a single client,
might be transaction aware, might update data in an underlying datastore, and do not di-
rectly represent data in the datastore.

M essage-driven Beans

Message-driven beans are EJB application components that execute on behalf of a single
client in response to an incoming message, might be transaction aware, might update data
in an underlying datastore, and do not directly represent data in the datastore.

Entity Beans

Entity objects are EJB application components that provide an object view of transactional
data in an underlying datastore, allow shared access from multiple users, including ses-
sion objects and remote clients, and directly represent data in the datastore.

Helper objects

Helper objects are application components that provide an object view of data in an un-
derlying datastore, allow transactionally consistent view of data in multiple transactions,
are usable by local session and entity beans, but do not have a remote interface.

Container

A container is a part of an application server that provides deployment and runtime sup-
port for application components. It provides a federated view of the underlying applica-
tion server services for the application components. For more details on different types of
standard containers, refer to Enterprise JavaBeans (E]B) [see Appendix A reference 1], Java
Server Pages (JSP), and Servlets specifications.

23 May 16, 2005

Java Data Objects 2.0

2.2

JDO20

Rationale

There is no existing Java platform specification that proposes a standard architecture for
storing the state of Java objects persistently in transactional datastores.

The JDO architecture offers a Java solution to the problem of presenting a consistent view
of data from the large number of application programs and enterprise information systems
already in existence. By using the JDO architecture, it is not necessary for application com-
ponent vendors to customize their products for each type of datastore.

This architecture enables an EIS vendor to provide a standard data access interface for its
EIS. The JDO implementation is plugged into an application server and provides underly-
ing infrastructure for integration between the EIS and application components.

Similarly, a third party vendor can provide a standard data access interface for locally
managed data such as would be found in an embedded device.

An application component vendor extends its system only once to support the JDO archi-
tecture and then exploits multiple data sources. Likewise, an EIS vendor provides one
standard JDO implementation and it has the capability to work with any application com-
ponent that uses the JDO architecture.

The Figure 1.0 on page 25 shows that an application component can plug into multiple
JDO implementations. Similarly, multiple JDO implementations for different EISes can
plug into an application component. This standard plug-and-play is made possible
through the JDO architecture.

24 May 16, 2005

Java Data Objects 2.0

Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

q 8 Enterprise Information
Systems
JDO

implementations

-~ Application Program

~
-
~
—
—~
-
~—
—

JDO
implementation Enterprise Information
Application Programs System

Legend:
I:h Application program/EJB container

JDO implementation provided by JDO vendor

23 Goals
The JDO architecture has been designed with the following goals:

¢ The JDO architecture provides a transparent interface for application component
and helper class developers to store data without learning a new data access
language for each type of persistent data storage.

* The JDO architecture simplifies the development of scalable, secure and
transactional JDO implementations for a wide range of EISes — ERP systems,
database systems, mainframe-based transaction processing systems.

* The JDO architecture is implementable for a wide range of heterogeneous local file
systems and EISes. The intent is that there will be various implementation choices
for different EIS—each choice based on possibly application-specific
characteristics and mechanisms of a mapping to an underlying EIS.

* The JDO architecture is suitable for a wide range of uses from embedded small
footprint systems to large scale enterprise application servers. This architecture
provides for exploitation of critical performance features from the underlying EIS,
such as query evaluation and relationship management.

JDO 2.0 25 May 16, 2005

Java Data Objects 2.0

® The JDO architecture uses the J2EE Connector Architecture to make it applicable
to all J2EE platform compliant application servers from multiple vendors.

* The JDO architecture makes it easy for application component developers to use
the Java programming model to model the application domain and transparently
retrieve and store data from various EIS systems.

* The JDO architecture defines contracts and responsibilities for various roles that
provide pieces for standard connectivity to an EIS. This enables a standard JDO
implementation from a EIS or third party vendor to be pluggable across multiple
application servers.

* The connector architecture also enables an application programmer in a non-
managed application environment to directly use the JDO implementation to
access the underlying file system or EIS. This is in addition to a managed access to
an EIS with the JDO implementation deployed in the middle-tier application
server. In the former case, application programmers will not rely on the services
offered by a middle-tier application server for security, transaction, and
connection management, but will be responsible for managing these system-level
aspects by using the EIS connector.

JDO 2.0 26 May 16, 2005

Java Data Objects 2.0

JDO Architecture

31

Overview

Multiple JDO implementations - possibly multiple implementations per type of EIS or lo-
cal storage - are pluggable into an application server or usable directly in a two tier or em-
bedded architecture. This enables application components, deployed either on a middle-
tier application server or on a client-tier, to access the underlying datastores using a con-
sistent Java-centric view of data. The JDO implementation provides the necessary map-
ping from Java objects into the special data types and relationships of the underlying
datastore.

Figure2.0 Overview of non-managed JDO architecture

/Java Virtua Machine

—

JDO PersistenceManager \

Enterprise Information
transient System
instance
transient
instance
t ient -
i;asr’::;ecr; (Transaction)

Local Persistent

/ Storage

JDO20

In a non-managed environment, the JDO implementation hides the EIS specific issues such
as data type mapping, relationship mapping, and data retrieval and storage. The applica-
tion component sees only the Java view of the data organized into classes with relation-
ships and collections presented as native Java constructs.

Managed environments additionally provide transparency for the application compo-
nents’ use of system-level mechanisms - distributed transactions, security, and connection
management, by hiding the contracts between the application server and JDO implemen-
tations.

27 May 16, 2005

Java Data Objects 2.0

With both managed and non-managed environments, an application component develop-
er focuses on the development of business and presentation logic for the application com-
ponents without getting involved in the issues related to connectivity with a specific EIS.

3.2
321

322

JDO20

JDO Architecture
Two tier usage

For simple two tier usage, JDO exposes to the application component two primary inter-
faces: j avax. j do. Per si st enceManager, from which services are requested; and
j avax. j do. JDOHel per, which provides the bootstrap and management view of user-
defined persistence-capable classes.

The Per si st enceManager interface provides services such as query management,
transaction management, and life cycle management for instances of persistence-capable
classes.

The JDOHel per class provides services such as bootstrap methods to acquire an instance
of Per si st enceManager Fact or y and life cycle state interrogation for instances of per-
sistence-capable classes.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tions. Skip to 4 — Roles and Scenarios.

Application server usage

For application server usage, the JDO architecture uses the J2EE Connector architecture,
which defines a standard set of system-level contracts between the application server and
EIS connectors. These system-level contracts are implemented in a resource adapter from
the EIS side.

The JDO persistence manager is a caching manager as defined by the J2EE Connector ar-
chitecture, that might use either its own (native) resource adapter or a third party resource
adapter. If the JDO Per si st enceManager has its own resource adapter, then imple-
mentations of the system-level contracts specified in the J2EE Connector architecture must
be provided by the JDO vendor. These contracts include ManagedConnect i onFact o-
ry, XAResour ce, and Local Tr ansact i on interfaces.

The JDO Tr ansact i on must implement the Synchr oni zat i on interface so that trans-

action completion events can cause flushing of state through the underlying connector to
the EIS.

The application components are unable to distinguish between JDO implementations that
use native resource adapters and JDO implementations that use third party resource
adapters. However, the deployer will need to understand that there are two configurable
components: the JDO Per si st enceManager and its underlying resource adapter.

For convenience, the Per si st enceManager Fact or y provides the interface necessary
to configure the underlying resource adapter.
Resour ce Adapter

A resource adapter provided by the JDO vendor is called a native resource adapter, and
the interface is specific to the JDO vendor. It is a system-level software driver that is used
by an application server or an application client to connect to a resource manager.

The resource adapter plugs into a container (provided by the application server). The ap-
plication components deployed on the container then use the client API exposed by j av-
ax.] do. Per si st enceManager to access the JDO Per si st enceManager . The JDO

28 May 16, 2005

Java Data Objects 2.0

JDO20

implementation in turn uses the underlying resource adapter interface specific to the data-
store. The resource adapter and application server collaborate to provide the underlying
mechanisms - transactions, security and connection pooling - for connectivity to the EIS.

The resource adapter is located within the same VM as the JDO implementation using it.
Examples of JDO native resource adapters are:

* Object/Relational (O/R) products that use their own native drivers to connect to
object relational databases

* Object Database (OODBMS) products that store Java objects directly in object
databases

Examples of non-native resource adapter implementations are:
¢ O/R mapping products that use JDBC drivers to connect to relational databases

¢ Hierarchical mapping products that use mainframe connectivity tools to connect
to hierarchical transactional systems

Pooling

There are two levels of pooling in the JDO architecture. JDO Per si st enceManager s
might be pooled, and the underlying connections to the datastores might be independent-
ly pooled.

Pooling of the connections is governed by the Connector Architecture contracts. Pooling
of Per si st enceManager s is an optional feature of the JDO Implementation, and is not
standardized for two-tier applications. For managed environments, Per si st enceMan-

ager pooling is required to maintain correct transaction associations with Per si s-

t enceManager s.

For example, a JDO Per si st enceManager instance might be bound to a session run-
ning a long duration optimistic transaction. This instance cannot be used by any other user
for the duration of the optimistic transaction.

During the execution of a business method associated with the session, a connection might
be required to fetch data from the datastore. The Per si st enceManager will request a
connection from the connection pool to satisfy the request. Upon termination of the busi-
ness method, the connection is returned to the pool but the Per si st enceManager re-
mains bound to the session.

After completion of the optimistic transaction, the Per si st enceManager instance
might be returned to the pool and reused for a subsequent transaction.

Contracts

JDO specifies the application level contract between the application components and the
JDO Per si st enceManager .

The J2EE Connector architecture specifies the standard contracts between application
servers and an EIS connector used by a JDO implementation. These contracts are required
for a JDO implementation to be used in an application server environment. The Connector
architecture defines important aspects of integration: connection management, transaction
management, and security.

The connection management contracts are implemented by the EIS resource adapter
(which might include a JDO native resource adapter).

The transaction management contract is between the transaction manager (logically dis-
tinct from the application server) and the connection manager. It supports distributed

29 May 16, 2005

Java Data Objects 2.0

transactions across multiple application servers and heterogeneous data management pro-

JDO20

grams.
The security contract is required for secure access by the JDO connection to the underlying
datastore.

Figure 3.0 Contracts between application server and native JDO resource adapter

Transaction Manager

Transaction
contract

Application
Component

Container

Application Server

Connection
Management
contract

|

JDO Native
Resource
Adapter

-

JDO AP

Security
contract

30

JDO data
store

May 16, 2005

Java Data Objects 2.0

JDO20

Figure4.0 Contracts between application server and layered JDO implementation

Transaction Manager

XAResour ce

-

Connector Contracts

(e.g. ManagedCo

Application

Component

Container

nnecti on)

JDO implementation

JDO API

Application Server

Synchronization
contract

EIS-
specifig
APIs

Resource ;
Adapter

Resource
Manager

(EIS datastore)

The above diagram illustrates the rel ationship between a JDO implementation provided by a third
party vendor and an ElS-provided resource adapter.

31

May 16, 2005

Java Data Objects 2.0

Roles and Scenarios

4.1

411

412

4.1.3

JDO20

Roles

This chapter describes roles required for the development and deployment of applications
built using the JDO architecture. The goal is to identify the nature of the work specific to
each role so that the contracts specific to each role can be implemented on each side of the
contracts.

The detailed contracts are specified in other chapters of this specification. The specific in-
tent here is to identify the primary users and implementors of these contracts.

Application Developer

The application developer writes software to the JDO API. The JDO application developer
does not have to be an expert in the technology related to a specific datastore.

Application Component Provider

The application component provider produces an application library that implements ap-
plication functionality through Java classes with business methods that store data persis-
tently in one or more EISes through the JDO APIL

There are two types of application components that interact with JDO. JDO-transparent
application components, typically helper classes, are those that use JDO to have their state
stored in a transactional datastore, and directly access other components by references of
their fields. Thus, they do not need to use JDO APIs directly.

JDO-aware application components (message-driven beans and session beans) use servic-
es of JDO by directly accessing its API. These components use JDO query facilities to re-
trieve collections of JDO instances from the datastore, make specific instances persistent in
a particular datastore, delete specific persistent instances from the datastore, interrogate
the cached state of JDO instances, or explicitly manage the cache of the JDO Per si s-
t enceManager . These application components are non-transparent users of JDO.

Session beans that use helper JDO classes interact directly with Per si st enceManager
and JDOHel per . They can use the life cycle methods and query factory methods, while
ignoring the transaction demarcation methods if they use container-managed transac-
tions.

The output of the application component provider is a set of jar files containing application
components.

Application Assembler

The application assembler is a domain expert who assembles application components
from multiple sources including in-house developers and application library vendors. The
application assembler can combine different types of application components, for example
EJBs, servlets, or]SPs, into a single end-user-visible application.

32 May 16, 2005

Java Data Objects 2.0

414

415

416

4.1.7

4.1.8

JDO20

The input of the application assembler is one or more jar files, produced by application
component providers. The output is one or more jar files with deployment specific de-
scriptions.

Deployer

The deployer is responsible for configuring assembled components into specific opera-
tional environments. The deployer resolves all external references from components to
other components or to the operational system.

For example, the deployer will bind application components in specific operating environ-
ments to datastores in those environments, and will resolve references from one applica-
tion component to another. This typically involves using container-provided tools.

The deployer must understand, and be able to define, security roles, transactions, and con-
nection pooling protocols for multiple datastores, application components, and contain-
ers.

System Administrator

The system administrator manages the configuration and administration of multiple con-
tainers, resource adapters and EISs that combine into an operational system.

Readers primarily interested in developing applications with the JDO API can ignore the following
sections. Skip to 4.2 — Scenario: Embedded calendar management system.

JDO Vendor

The JDO vendor is an expert in the technology related to a specific datastore and is respon-
sible for providing a JDO SPI implementation for that specific datastore. Since this role is
highly datastore specific, a datastore vendor will often provide the standard JDO imple-
mentation.

A vendor can also provide a JDO implementation and associated set of application devel-
opment tools through a loose coupling with a specific third party datastore. Such provid-
ers specialize in writing connectors and related tools for a specific EIS or might provide a
more general tool for a large number of datastores.

The JDO vendor requires that the EIS vendor has implemented the J2EE Connector archi-
tecture and the role of the JDO implementation is that of a synchronization adapter to the
connector architecture.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 4.2 — Scenario: Embedded calendar management system.

Connector Provider

The connector provider is typically the vendor of the EIS or datastore, and is responsible
for supplying a library of interface implementations that satisfy the resource adapter inter-
face.

In the JDO architecture, the Connector is a separate component, supplied by either the JDO
vendor or by an EIS vendor or third party.
Application Server Vendor

An application server vendor [see Appendix A reference 1], provides an implementation
of a J2EE compliant application server that provides support for component-based enter-
prise applications. A typical application server vendor is an OS vendor, middleware ven-
dor, or database vendor.

33 May 16, 2005

Java Data Objects 2.0

419

The role of application server vendor will typically be the same as that of the container pro-
vider.

Container Provider

For bean-managed persistence, the container provides deployed application components
with transaction and security management, distribution of clients, scalable management
of resources and other services that are generally required as part of a managed server
platform.

4.2

Scenario: Embedded calendar management system

This section describes a scenario to illustrate the use of JDO architecture in an embedded
mobile device such as a personal information manager (PIM) or telephone.

Figure5.0 Scenario: Embedded calendar manager

_

Telephone JVM

O)

File Manager
Calendar DO Java File
Manager :h_>
Application JDO implementation 1/0 APIs Flash RAM
\ / API
- b - | -
Calendars-R-Us Apache Persistware Sven’s Phones

/

JDO20

Sven’s Phones is a manufacturer of high function telephones for the traveling businessper-
son. They have implemented a Java operating environment that provides persistence via
a Java file I/ O subsystem that writes to flash RAM.

Apache Persistware is a supplier of JDO software that has a small footprint and as such, is
especially suited for embedded devices such as personal digital assistants and telephones.
They use Java file I/O to store JDO instances persistently.

Calendars-R-Us is a supplier of appointment and calendar software that is written for sev-
eral operating environments, from high function telephones to desktop workstations and
enterprise application servers.

Calendars-R-Us uses the JDO API directly to manage calendar appointments on behalf of
the user. The calendar application needs to insert, delete, and change calendar appoint-
ments based on the user’s keypad input. It uses Java application domain classes: Ap-

34 May 16, 2005

Java Data Objects 2.0

poi nt ment, Cont act, Not e, Rem nder, Locati on, and Tel ephoneNunber. It
employs JDK library classes: Ti me, Dat e, Arr ayLi st,and Cal endar .

Calendars-R-Us previously used Java file I/O APIs directly, but ran into several difficul-
ties. The most efficient storage for some environments was an indexed file system, which
was required only for management of thousands of entries. However, when they ported
the application to the telephone, the indexed file system was too resource-intensive, and
had to be abandoned.

They then wrote a data access manager for sequential files, but found that it burned out
the flash RAM due to too much rewriting of data. They concluded that they needed to use
the services of another software provider who specialized in persistence for flash RAM in
embedded devices.

Apache Persistware developed a file access manager based on the Berkeley File System
and successfully sold it to a range of Java customers from embedded devices to worksta-
tions. The interface was proprietary, which meant that every new sale was a challenge, be-
cause customers were loath to invest resources in learning a different interface for each
environment they wanted to support. After all, Java was portable. Why wasn't file access?

Sven’s Phones was a successful supplier of telephones to the mobile professional, but
found themselves constrained by a lack of software developers. They wanted to offer a
platform on which specially tailored software from multiple vendors could operate, and
take advantage of external developers to write software for their telephones.

The solution to all of these issues was to separate the software into components that could
be tailored by the domain expert for each component.

Sven’s phones implemented the Java runtime environment for their phones, and wrote an
efficient sequential file I/O manager that implemented the Java file I/O interface. This in-
terface was used by Apache Persistware to build a JDO implementation, including a JDO
instance handler and a JDO query manager.

Using the JDO interface, Calendars-R-Us rewrote just the query part of their software. The
application classes did not have to be changed. Only the persistence interface that queried
for specific instances needed to be modified.

Readers primarily interested in [DO as a local persistence mechanism can ignore the following sec-
tion. Skip to 5 — Life Cycle of JDO Instances.

4.3

JDO20

Scenario: Enterprise Calendar M anager

Calendars-R-Us also supports workstations and enterprise mainframes with their calen-
dar software, and they use the same interface for persistence in all environments. For en-
terprise environments, they simply need to use a different JDO implementation supplied
by a different vendor to achieve persistence for their calendar objects.

35 May 16, 2005

Java Data Objects 2.0

Figure6.0 Scenario: Enterprise Calendar Manager

/ Application Server \ Transaction Manager

/ Container \
O

1 Resource
Calendar DO Adaptor
Manager Database
Session Bean, JDO implementation
Entity Beans API

-)

In this scenario, the JDO implementation is provided by a vendor that maps Java objects
to relational databases. The implementation uses a JCA Resource Adapter to connect to the
datastore.

The JDO Per si st enceManager is a caching manager, as defined by the Connector ar-
chitecture, and it is configured to use a JCA Resource Adapter. The Per si st enceMan-
ager instance might be cached when used with a Session Bean, and might be serially
reused for multiple session beans.

Multiple JDO Per si st enceManager instances might serially reuse connections from
the same pool of JDBC drivers. Therefore, resource sharing is accomplished while main-
taining state for each session.

JDO 2.0 36 May 16, 2005

Java Data Objects 2.0

Life Cycle of JDO Instances

This chapter specifies the life cycle for persistence capable class instances, hereinafter
“JDO instances”. The classes include behavior as specified by the class (bean) developer,
and for binary compatible implementations, additional behavior as provided by the refer-
ence enhancer or JDO vendor’s deployment tool. The enhancement of the classes allows
application developers to treat JDO instances as if they were normal instances, with auto-
matic fetching of persistent state from the JDO implementation.

51

JDO20

Overview

JDO instances might be A5.1-2 [transient], A5.1-AD1 [detached], or A5.1-1 [persistent].
That is, they might represent the persistent state of data contained in a transactional data-
store. If a JDO instance is transient (and not transactional), then the instance behaves ex-
actly like an ordinary instance of the persistence capable class.

If a JDO instance is persistent, its behavior is linked to the transactional datastore with
which it is associated. The JDO implementation automatically tracks changes made to the
values in the instance, and automatically refreshes values from the datastore and saves
values into the datastore as required to preserve transactional integrity of the data. Persis-
tent instances stored in the datastore retain their class and the state of their persistent
fields. Changing the class of a persistent instance is not supported explicitly by the JDO
APIL. However, it might be possible for an instance to change class based on external (out-
side the JDO environment) modifications to the datastore.

If a JDO instance is detached, its behavior is very similar to that of a transient instance, with
a few significant exceptions. A detached instance does not necessarily have all of its per-
sistent fields loaded from the data store, and A5.1-AD2 [any attempt to access unloaded
fields, whether for read or write, is denied.] A5.1-AD3 [A detached instance maintains its
persistent identity and the identity can be obtained by an observer.] A5.1-AD4 [A de-
tached instance allows changes to be made to loaded fields, and tracks those changes while
detached.] A5.1-AD5 [Detached instances never observe transaction boundaries.]

During the life of a JDO instance, it transitions among various states until it is finally gar-
bage collected by the JVM. During its life, the state transitions are governed by the behav-
iors executed on it directly as well as behaviors executed on the JDO
Per si st enceManager by both the application and by the execution environment (in-
cluding the Tr ansact i onManager).

During the life cycle, instances at times might be inconsistent with the datastore as of the
beginning of the transaction. If instances are inconsistent, the notation for that instance in
JDO s “dirty”. Instances made newly persistent, deleted, or modified in the transaction are
dirty. Detached instances might be dirty.

At times, the JDO implementation might store the state of persistent instances in the data-
store. This process is called “flushing”, and it does not affect the “dirty” state of the in-
stances.

37 May 16, 2005

Java Data Objects 2.0

Under application control, transient JDO instances might observe transaction boundaries,
in which the state of the instances is either A5.1-3 [preserved] (on commit) or A5.1-4 [re-
stored] (on rollback). Transient instances that observe transaction boundaries are called
transient transactional instances. Support for transient transactional instances is a JDO op-
tion; that is, a JDO compliant implementation is not required to implement the APIs that
cause the state transitions associated with transient transactional instances.

A5.1-5 [Under application control, persistent JDO instances might not observe transaction
boundaries. These instances are called persistent-nontransactional instances, and the life
cycle of these instances is not affected by transaction boundaries.] Support for nontransac-
tional instances is a JDO option.

In a binary-compatible implementation, if a JDO instance is persistent or transactional, it
contains a non-null reference to a JDO St at eManager instance which is responsible for
managing the JDO instance state changes and for interfacing with the JDO Per si s-
t enceManager .

52

Goals
The JDO instance life cycle has the following goals:

* The fact of persistence should be transparent to both JDO instance developer and
application component developer

* JDO instances should be able to be used efficiently in a variety of environments,
including managed (application server) and non-managed (two-tier) cases

e A5.2-1 [Several JDO Per si st enceManager s might be coresident] and A5.2-2
[might share the same persistence capable classes] (although A5.2-3 [a JDO
instance can be associated with only one Per si st enceManager at a time])

5.3

JDO20

Architecture:
JDO Instances

For transient JDO instances, there is no supporting infrastructure required. That is, tran-
sient instances will never make calls to methods to the persistence infrastructure. There is
no requirement to instantiate objects outside the application domain. A5.3-1 [In a binary-
compatible implementation, there is no difference in behavior between transient instances
of enhanced classes and transient instances of the same non-enhanced classes, with some
exceptions:

¢ additional methods and fields added by the enhancement process are visible to
Java core reflection,
¢ timing of method execution is different because of added byte codes,

* extra methods for registration of metadata are executed at class load time.]

Persistent JDO instances execute in an environment that contains an instance of the JDO
Per si st enceManager responsible for its persistent behavior. In a binary-compatible
implementation, the JDO instance contains a reference to an instance of the JDO St at e-
Manager responsible for the state transitions of the instance as well as for managing the
contents of the fields of the instance. The Per si st enceManager and the St at eMan-
ager might be implemented by the same instance, but their interfaces are distinct.

The contract between the persistence capable class and other application components ex-
tends the contract between the associated non-persistence capable class and application

38 May 16, 2005

Java Data Objects 2.0

components. For both binary-compatible and non-binary-compatible implementations,
these contract extensions support interrogation of the life cycle state of the instances and
are intended for use by management parts of the system.

Persistent instances might be constructed by the application and made persistent; or might
be constructed by the JDO Per si st enceManager in response to a query or navigation
from a persistent instance or via the newl nst ance method. If the JDO Per si st enceM
anager constructs the instance, the class of the instance might be a derived class of the
class of the original instance, and will respond true to i nst anceof the class of the origi-
nal. Thus, applications must not rely on tests of the actual class of persistent instances, but
must instead use the i nst anceof test.

JDO State Manager

In a binary-compatible implementation, persistent and transactional JDO instances con-
tain a reference to a JDO St at eManager instance to which all of the JDO interrogatives
are delegated. The associated JDO St at eManager instance maintains the state changes
of the JDO instance and interfaces with the JDO Per si st enceManager to manage the
values of the datastore.

JDO Managed Fields

Only some fields are of interest to the persistence infrastructure: fields whose values are
stored in the datastore are called persistent; fields that participate in transactions (their val-
ues may be restored during rollback) are called transactional; fields of either type are
called managed.

54

JDO20

JDO ldentity

Java defines two concepts for determining if two instances are the same instance (identity),
or represent the same data (equality). JDO extends these concepts to determine if two in-
memory instances represent the same stored object.

Java object identity is entirely managed by the Java Virtual Machine. Instances are identi-
cal if and only if they occupy the same storage location within the JVM.

Java object equality is determined by the class. Distinct instances are equal if they repre-
sent the same data, such as the same value for an i nt eger, or same set of bits fora Bi t -
Set .

The interaction between Java object identity and equality is an important one for JDO de-
velopers. Java object equality is an application specific concept, and A5.4-1 [JDO imple-
mentations must not change the application’s semantic of equality]. Still, A5.4-2 [JDO
implementations must manage the cache of JDO instances such that there is only one JDO
instance associated with each JDO Per si st enceManager representing the persistent
state of each corresponding datastore object]. Therefore, JDO defines object identity differ-
ently from both the Java VM object identity and from the application equality.

Applications should implement equal s for persistence-capable classes differently from
Obj ect ’s default equal s implementation, which simply uses the Java VM object identi-
ty. This is because the JVM object identity of a persistent instance cannot be guaranteed be-
tween Per si st enceManager s and across space and time, except in very specific cases
noted below.

Additionally, if persistence instances are stored in the datastore and are queried using the
== query operator, or are referred to by a persistent collection that enforces equality (Set ,
Map) then the implementation of equal s should exactly match the JDO implementation

39 May 16, 2005

Java Data Objects 2.0

JDO20

of equality, using the primary key or Qbj ect | d as the key. This policy is not enforced,
but if it is not correctly implemented, semantics of standard collections and JDO collec-
tions may differ.

To avoid confusion with Java object identity, this document refers to the JDO concept as
JDO identity.

Three Typesof JDO identity

A5.4-3 REMOVE THIS ASSERTION [JDO defines three types of JDO identity:

* Application identity - JDO identity managed by the application and enforced by
the datastore; JDO identity is often called the primary key

¢ Datastore identity - JDO identity managed by the datastore without being tied to
any field values of a JDO instance

* Nondurable identity - JDO identity managed by the implementation to guarantee
uniqueness in the JVM but not in the datastore]

The type of JDO identity used is a property of a JDO persistence-capable class and is fixed
at class loading time.

The representation of JDO identity in the JVM is via a JDO object id. A5.4-4 [Every persis-
tent instance (Java instance representing a persistent object) has a corresponding object id.]
There might be an instance in the JVM representing the object id, or not. A5.4-5 [The object
id JVM instance corresponding to a persistent instance might be acquired by the applica-
tion at run time and used later to obtain a reference to the same datastore object, and it
might be saved to and retrieved from durable storage (by serialization or other tech-
nique).]

The class representing the object id for datastore and nondurable identity classes is defined
by the JDO implementation. The implementation might choose to use any class that satis-
fies the requirements for the specific type of JDO identity for a class. It might choose the
same class for several different JDO classes, or might use a different class for each JDO
class.

The class representing the object id for application identity classes is defined by the appli-
cation in the metadata, and might be provided by the application or by a JDO vendor tool.

The application-visible representation of the JDO identity is an instance that is completely
under the control of the application. The object id instances used as parameters or returned
by methods in the JDO interface (get Qbj ect | d, get Transact i onal Obj ect | d, and
get Obj ect Byl d) will never be saved internally; rather, they are copies of the internal
representation or used to find instances of the internal representation.

Therefore, A5.4-6 [the object returned by any call to get Qbj ect | d might be modified by
the user, but that modification does not affect the identity of the object that was originally
referred]. That is, the call to get Qbj ect | d returns only a copy of the object identity used
internally by the implementation.

It is a requirement that A5.4-7 [the instance returned by a call to get Cbj ect By d(Ob-
j ect) of different Per si st enceManager instances returned by the same Per si s-
t enceManager Fact or y represent the same persistent object, but with different Java
object identity (specifically, all instances returned by get Qbj ect | d from the instances
must return t r ue to equal s comparisons with all others)].

Further, A5.4-8 [any instances returned by any calls to get Cbj ect Byl d(Obj ect) with
the same object id instance to the same Per si st enceManager instance must be identi-
cal (assuming the instances were not garbage collected between calls)].

40 May 16, 2005

Java Data Objects 2.0

541

JDO20

The JDO identity of transient instances is not defined. A5.4-9 [Attempts to get the object id
for a transient instance will return nul |]

Uniquing
JDO identity of persistent instances is managed by the implementation. A5.4-10 [For a du-
rable JDO identity (datastore or application), there is only one persistent instance associat-

ed with a specific datastore object per Per si st enceManager instance, regardless of
how the persistent instance was put into the cache:

e Persi st enceManager . get Obj ect Byl d(Obj ect oi d, bool ean
val i date);

e query via a Query instance associated with the Per si st enceManager
instance;

* navigation from a persistent instance associated with the
Per si st enceManager instance;

* Persi st enceManager . makePer si st ent (Obj ect pc);]

Change of identity

A5.4-12 [Change of identity is supported only for application identity, and is an optional
feature of a JDO implementation. An application attempt to change the identity of an in-
stance (by writing a primary key field) where the implementation does not support this
optional feature results in JDOUnsuppor t edOpt i onExcept i on being thrown. The ex-
ception might be thrown immediately or upon flush or transaction commit.]

NOTE: Application devel opers should take into account that changing primary
key values changes the identity of the instance in the datastore. In production
environments where audit trails of changes are kept, change of the identity of
datastore instances might cause loss of audit trail integrity, as the historical
record of changes does not reflect the current identity in the datastore.

A5.4-11 [JDO instances using application identity may change their identity during a
transaction if the application changes a primary key field. In this case, there is a new JDO
Identity associated with the JDO instance immediately upon completion of the statement
that changes a primary key field. If a JDO instance is already associated with the new JDO
Identity, then a JDOUser Except i on is thrown. The exception might be thrown imme-
diately or upon flush or transaction commit.

Upon successful commit of the transaction, the existing datastore instance will have been
updated with the changed values of the primary key fields.]

JDO Identity Support

A JDO implementation is required to support either or both of application (primary key)
identity or datastore identity, and may optionally support nondurable identity.
Application (primary key) identity

This is the JDO identity type used for datastores in which the value(s) in the instance de-
termine the identity of the object in the datastore. Thus, JDO identity is managed by the
application. The class provided by the application that implements the JDO object id has
all of the characteristics of an RMI remote object, making it possible to use the JDO object
id class as the E]B primary key class. Specifically:A5.4.1-3 REMOVE THIS ASSERTION [

e the Qbj ect | d class must be public;

41 May 16, 2005

Java Data Objects 2.0

542

JDO20

e the Qbj ect | d class must implement Seri al i zabl e;

* the Obj ect | d class must have a public no-arg constructor, which might be the
default constructor;

e the field types of all non-static fields in the Cbj ect | d class must be serializable,
and for portability should be primitive, Stri ng, Date, Byte, Short,
Integer, Long, Float, Double, BigDecinmal, or Biglnteger
types; JDO implementations are required to support these types and might
support other reference types;

e all serializable non-static fields in the Qbj ect | d class must be public;

¢ the names of the non-static fields in the Qbj ect | d class must include the names
of the primary key fields in the JDO class, and the types of the corresponding fields
must be identical;

e the equal s() and hashCode() methods of the Obj ect | d class must use the
value(s) of all the fields corresponding to the primary key fields in the JDO class;

e if the Qbj ect | d class is an inner class, it mustbe st ati c;

e the Obj ect | d class must override thet 0St ri ng() method defined in Obj ect,
and return a St r i ng that can be used as the parameter of a constructor;

e the Qbj ect | d class must provide a constructor taking either a St r i ng alone or
aC ass and St ri ng that returns an instance that compares equal to an instance
that returned that St ri ng by thet oSt ri ng() method.]

These restrictions allow the application to construct an instance of the primary key class
providing values only for the primary key fields, or alternatively providing only the result
of toString() from an existing instance. The JDO implementation is permitted to ex-
tend the primary key class to use additional fields, not provided by the application, to fur-
ther identify the instance in the datastore. Thus, the JDO object id instance returned by an
implementation might be a subclass of the user-defined primary key class. A5.4.1-1 [Any
JDO implementation must be able to use the JDO object id instance from any other JDO
implementation.]

A primary key identity is associated with a specific set of fields. The fields associated with
the primary key are a property of the persistence-capable class, and cannot be changed af-
ter the class is enhanced for use at runtime. A5.4.1-2 [When a transient instance is made
persistent, the implementation uses the values of the fields associated with the primary
key to construct the JDO identity.]

A5.4.1-4 [A primary key instance must have none of its primary key fields set to nul |

when used to find a persistent instance. The persistence manager will throw JDOUser Ex-

cept i on if the primary key instance contains any nul | values when the key instance is
the parameter of get Cbj ect Byl d.]

Persistence-capable classes that use application identity have special considerations for in-
heritance. To be portable, the key class must be the same for all classes in the inheritance
hierarchy derived from the least-derived (topmost) concrete persistence-capable class in
the hierarchy.

Single Field I dentity

A common case of application identity uses exactly one persistent field in the class to rep-
resent identity. In this case, the application can use a standard JDO class instead of creating
a new user-defined class for the purpose.

42 May 16, 2005

Java Data Objects 2.0

JDO20

A JDO implementation that supports application identity must also support single field

identity.

package javax.jdo.identity;
public abstract class SingleFieldldentity inplenents Externalizable

{

publ i

publ i

publ i

publ i

publ i

publ i

protected SingleFieldldentity(d ass pcd ass);
public O ass getTargetd ass();

public String getTarget d assNane();

public Object getKeyAsOhject();

c class Byteldentity

extends SingleFieldldentity {

public byte getKey();

public Byteldentity(d ass pcC ass, byte key);
public Byteldentity(d ass pcC ass, Byte key);
public Byteldentity(d ass pcCd ass, String key);

c class Charldentity

extends SingleFieldldentity {

public char getKey();

public Charldentity(d ass pcC ass, char key);
public Charldentity(d ass pcC ass, Character key);
public Charldentity(d ass pcCl ass, String key);

c class Shortldentity

extends SingleFieldldentity {

public short getKey();

public Shortldentity(d ass pcC ass, short key);
public Shortldentity(d ass pcC ass, Short key);
public Shortldentity(d ass pcC ass, String key);

c class Intldentity

extends SingleFieldldentity {

public int getKey();

public Intldentity(Cd ass pcC ass, int key);
public Intldentity(C ass pcd ass, |nteger key);
public Intldentity(C ass pcC ass, String key);

c class Longldentity

extends SingleFieldldentity {

public | ong getKey();

public Longldentity(d ass pcC ass, |ong key);
public Longldentity(d ass pcC ass, Long key);
public Longldentity(d ass pcd ass, String key);

c class Stringldentity

extends SingleFieldldentity {

public String getKey();

public Stringldentity(C ass pcC ass, String key);

43

May 16, 2005

Java Data Objects 2.0

543

544

JDO20

}

The constructors that take reference types throw Nul | Poi nt er Except i on if the second
argument is null. Valid key values are never null.

Constructors of primitive identity types that take String parameters convert the parameter
to the proper type using the static parseXXX method of the corresponding wrapper class.

Instances of Si ngl eFi el dl denti ty classes are immutable. When serialized, the name
of the target class is serialized. When deserialized, the name of the target class is restored,
but not the target class. The deserialized instance will return nul | to get Tar get Cl ass.
All instances will return the “binary” name of the target class (the result of Cl ass. get -
Nane()).

The Si ngl eFi el dl denti ty classes adhere to all of the requirements for application ob-
ject id classes, with the exception of field names. That is, there are no public fields visible
to the application.

Datastoreidentity

A5.4.2-1 [This is the JDO identity type used for datastores in which the identity of the data
in the datastore does not depend on the values in the instance. The implementation guar-
antees uniqueness for all instances.]

A JDO implementation might choose one of the primitive wrapper classes as the Cbj ec-
t | dclass(e.g. Short,| nt eger,Long, or St ri ng), or might choose an implementation-
specific class. A5.4.2-2 [Implementation-specific classes used as JDO Obj ect | d have the
following characteristics:

e the Obj ect | d class must be public;
e the Qbj ect | d class must implement Ser i al i zabl e;

e the Qbj ect | d class must have a public no-arg constructor, which might be the
default constructor;

e all serializable fields in the Cbj ect | d class must be public;
¢ the field types of all non-static fields in the Obj ect | d class must be serializable;

e the Obj ect | d class must override thet 0St ri ng() method defined in Obj ect,
and return a String that can be used as the parameter of the
Per si st enceManager method new(bj ectl dl nstance(d ass cls,
String key);]

Note that, unlike application identity, datastore identity Qbj ect | d classes are not re-
quired to support equality with Obj ect | d classes from other JDO implementations. Fur-
ther, the application cannot change the JDO identity of an instance of a class using
datastore identity.

Nondurable JDO identity

The primary usage for nondurable JDO identity is for log files, history files, and other sim-
ilar files, where performance is a primary concern, and there is no need for the overhead
associated with managing a durable identity for each datastore instance. Objects are typi-
cally inserted into datastores with transactional semantics, but are not accessed by key.
They may have references to instances elsewhere in the datastore, but often have no keys
or indexes themselves. They might be accessed by other attributes, and might be deleted
in bulk.

44 May 16, 2005

Java Data Objects 2.0

JDO20

Multiple objects in the datastore might have exactly the same values, yet an application
program might want to treat the objects individually. For example, the application must
be able to count the persistent instances to determine the number of datastore objects with
the same values. Also, A5.4.3-1[the application might change a single field of an instance
with duplicate objects in the datastore, and the expected result in the datastore is that ex-
actly one instance has its field changed]. A5.4.3-2 [If multiple instances in memory are
modified, then instances in the datastore are modified corresponding one-to-one with the
modified instances in memory]. Similarly, A5.4.3-3 [if the application deletes some num-
ber of multiple duplicate objects, the same number of the objects in the datastore must be
deleted.]

As another example, if a datastore instance using nondurable identity is loaded twice into
the VM by the same Per si st enceManager , then two separate instances are instantiat-
ed, with two different JDO identities, even though all of the values in the instances are the
same. It is permissible to update or delete only one of the instances. At commit time, if only
one instance was updated or deleted, then the changes made to that instance are reflected
in the datastore by changing the single datastore instance. A5.4.3-12 [If both instances were
changed, then the transaction will fail at commit, with a JDOUser Except i on because the
changes must be applied to different datastore instances.]

Because the JDO identity is not visible in the datastore, there are special behaviors with re-
gard to nondurable JDO identity:

e A5.4.3-5 [the Qbj ect | d is not valid after making the associated instance hollow,
and attempts to retrieve it will throw a JDOUser Except i on;]

e A5.4.3-6 [the (bjectld cannot be used in a different instance of
Per si st enceManager from the one that issued it, and attempts to use it even
indirectly (e.g. get Cbj ect Byl d with a persistence-capable object as the
parameter) will throw a JDOUser Except i on;]

* Ab5.4.3-7 [the persistent instance might transition to persistent-nontransactional or
hollow but cannot transition to any other state afterward;]

* A5.4.3-8 [attempts to access the instance in the hollow state will throw a
JDOUser Excepti on;]

* A5.4.3-9 [the results of a query in the datastore will always return instances that
are not already in the Java VM, so multiple queries that find the same objects in the
datastore will return additional JDO instances with the same values and different
JDO identities;]

e A5.4.3-10 [makePer si st ent will succeed even though another instance already
has the same values for all persistent fields.]

A5.4.3-11 [For JDO identity that is not managed by the datastore, the class that implements
JDO Qoj ect | d has the following characteristics:

e the Qbj ect | d class must be public;

e the Qbj ect | d class must have a public constructor, which might be the default
constructor or a no-arg constructor;

e all fields in the Obj ect | d class must be public;
e the field types of all fields in the Cbj ect | d class must be serializable.]

45 May 16, 2005

Java Data Objects 2.0

5.5

551

552

JDO20

Life Cycle States

A5.5-1 [There are many states defined by this specification. Some states are required, and
others states are optional.] If an implementation does not support certain operations, then
these optional states are not reachable.

Datastore Transactions

The following descriptions apply to datastore transactions with retainValues=false. Opti-
mistic transaction and retainValues=true state transitions are covered later in this chapter.

Transient (Required)

A5.5.1-1 [JDO instances created by using a developer-written or compiler-generated con-
structor that do not involve the persistence environment behave exactly like instances of
the unenhanced class.]

A5.5.1-2 [There is no JDO identity associated with a transient instance.]

A5.5.1-3 [There is no intermediation to support fetching or storing values for fields.]
A5.5.1-4 [There is no support for demarcation of transaction boundaries. Indeed, there is
no transactional behavior of these instances, unless they are referenced by transactional in-
stances at commit time.]

A5.5.1-5 [When a persistent instance is committed to the datastore, instances referenced
by persistent fields of the flushed instance become persistent. This behavior propagates to
all instances in the closure of instances through persistent fields.] This behavior is called
persistence by reachability.

A5.5.1-6 [No methods of transient instances throw exceptions except those defined by the
class developer.]

A5.5.1-7 [A transient instance transitions to persistent-new if it is the parameter of makeP-
er si st ent], or A5.5.1-8 [if it is referenced by a persistent field of a persistent instance
when that instance is committed or made persistent.]

Per sistent-new (Required)
A5.5.2-1 [JDO instances that are newly persistent in the current transaction are persistent-
new. This is the state of an instance that has been requested by the application component

to become persistent, by using one of the Per si st enceManager makePer si st ent
methods on the instance.]

During the transition from transient to persistent-new

* the associated Per si st enceManager becomes responsible to implement state
interrogation and further state transitions.

e if the transaction flag r est or eVal ues ist r ue, A5.5.2-2 [the values of persistent
and transactional non-persistent fields are saved for use during rollback.]

* the values of persistent fields of mutable SCO types (e.g. j ava. util . Date,
java.util.HashSet, etc) are replaced with JDO implementation-specific
copies of the field values that track changes and are owned by the persistent
instance.

* A5.5.2-3 [a JDO identity is assigned to the instance by the JDO implementation.]
This identity uniquely identifies the instance inside the Per si st enceManager
and might uniquely identify the instance in the datastore. A copy of the JDO
identity will be returned by the PersistenceManager method
get Obj ect | d(Obj ect).

46 May 16, 2005

Java Data Objects 2.0

553

5.54

JDO20

* A5.5.2-7 [instances reachable from this instance by fields of persistence-capable
types and collections of persistence-capable types become provisionally persistent
and transition from transient to persistent-new. If the instances made
provisionally persistent are still reachable at commit time, they become persistent.
This effect is recursive, effectively making the transitive closure of transient
instances provisionally persistent.]

A5.5.2-4 [A persistent-new instance transitions to persistent-new-deleted if it is the pa-
rameter of del et ePer si st ent]

A5.5.2-5 [A persistent-new instance transitions to hollow when it is flushed to the data-
store during conmi t whenr et ai nVal ues isf al se. This transition is not visible during
bef or eConpl et i on, and is visible during af t er Conpl et i on.] A5.5.2-8 [During be-
f or eConpl et i on, the user-defined j doPr eSt or e method is called if the class imple-
ments | nst anceCal | backs.]

A5.5.2-6 [A persistent-new instance transitions to transient at rollback.] The instance loses
its JDO Identity and its association with the Per si st enceManager. A5.5.2-9 [If r e-
st oreVal ues is f al se, the values of managed fields in the instance are left as they were
at the time rollback was called.] If r est or eVal ues ist r ue, the values of managed fields
in the instance are restored to the values as they were at the time makePersistent was
called.

Persistent-dirty (Required)

A5.5.3-1 [JDO instances that represent persistent data that was changed in the current
transaction are persistent-dirty.]

A5.5.3-2 [A persistent-dirty instance transitions to persistent-deleted if it is the parameter
of del et ePer si st ent .]

Persistent-dirty instances transition to hollow during A5.5.3-3 [commit] when r et ai n-
Val ues is f al se or during A5.5.3-4 [rollback] when r est or eVal ues is f al se. A5.5.3-
7 [During bef or eConpl et i on, the user-defined j doPr eSt or e method is called if the
class implements St or eCal | back.]

If an application modifies a managed field, but the new value is equal to the old value, then
it is an implementation choice whether the JDO instance is modified or not. A5.5.3-5 [If no
modification to any managed field was made by the application, then the implementation
must not mark the instance as dirty.] A5.5.3-6 [If a modification was made to any managed
field that changes the value of the field, then the implementation must mark the instance
as dirty.]

A5.5.3-8 [Since changes to array-type fields cannot be tracked by JDO, setting the value of
an array-type managed field marks the field as dirty, even if the new value is identical to
the old value. This special case is required to allow the user to mark an array-type field as
dirty without having to call the JDOHelper method makeDi rty.]

Hollow (Required)

JDO instances that represent specific persistent data in the datastore but whose values are
not in the JDO instance are hollow. The hollow state provides for the guarantee of unique-
ness for persistent instances between transactions.

This is permitted to be the state of instances committed from a previous transaction, ac-
quired by the method get Obj ect Byl d, returned by iterating an Ext ent, returned in
the result of a query execution, or navigating a persistent field reference. However, the
JDO implementation may choose to return instances in a different state reachable from
hollow.

47 May 16, 2005

Java Data Objects 2.0

555

556

JDO20

A JDO implementation is permitted to effect a legal state transition of a hollow instance at
any time, as if a field were read. Therefore, the hollow state might not be visible to the ap-
plication.

A5.5.4-1 [During the commit of the transaction in which a dirty persistent instance has had
its values changed (including a new persistent instance), the underlying datastore is
changed to have the transactionally consistent values from the JDO instance, and the in-
stance transitions to hollow.

Requests by the application for an instance with the same JDO identity (query, navigation,
or lookup by Objectld), in a subsequent transaction using the same Per si st enceMan-
ager instance, will return the identical Java instance], assuming it has not been garbage
collected. If the application does not hold a strong reference to a hollow instance, the in-
stance might be garbage collected, as the Per si st enceManager must not hold a strong
reference to any hollow instance.

A5.5.4-2 [The hollow JDO instance maintains its JDO identity and its association with the
JDO Per si st enceManager .] A5.5.4-3 [If the instance is of a class using application
identity, the hollow instance maintains its primary key fields.]

A5.5.4-4 [A hollow instance transitions to persistent-deleted if it is the parameter of
del et ePer si stent .]

A5.5.4-5 [A hollow instance transitions to persistent-dirty if a change is made to any man-
aged field.] A5.5.4-6 [It transitions to persistent-clean if a read access is made to any per-
sistent field other than one of the primary key fields.]

A5.5.4-AD1 [A hollow instance transitions to detached if its persistence manager is closed
while the DetachOnClose property is true.]

Per sistent-clean (Required)

JDO instances that represent specific transactional persistent data in the datastore, and
whose values have not been changed in the current transaction, are persistent-clean. This
is the state of an instance whose values have been requested in the current datastore trans-
action, and whose values have not been changed by the current transaction.

A5.5.5-1 [A persistent-clean instance transitions to persistent-dirty if a change is made to
any managed field.]

A5.5.5-2 [A persistent-clean instance transitions to persistent-deleted if it is the parameter
of del et ePer si st ent .]

A5.5.5-3 [A persistent-clean instance transitions to persistent-nontransactional if it is the param-
eter of makeNontransactional.]

A persistent-clean instance transitions to hollow at A5.5.5-4 [commit when r et ai nVal -
ues isf al se;] or A5.5.5-5 [rollback when r est or eVal ues is f al se.] It retains its iden-
tity and its association with the Per si st enceManager .

Persistent-deleted (Required)

A5.5.6-1 [JDO instances that represent specific persistent data in the datastore, and that
have been deleted in the current transaction, are persistent-deleted.]

A5.5.6-2 [Read access to primary key fields is permitted.] A5.5.6-3 & A5.5.6-4 [Any other
access to persistent fields is not supported and might throw a JDOUser Except i on.]

A5.5.6-7 [Before the transition to persistent-deleted, the user-written j doPr eDel et e is
called if the persistence-capable class implements | nst anceCal | backs.]

48 May 16, 2005

Java Data Objects 2.0

55.7

558

559

JDO20

A5.5.6-5 [A persistent-deleted instance transitions to transient at commit. During the tran-
sition, its persistent fields are written with their Java default values, and the instance loses
its JDO Identity and its association with the Per si st enceManager .]

A5.5.6-6 [A persistent-deleted instance transitions to hollow at rollback when r est or e-
Val ues is f al se. The instance retains its JDO Identity and its association with the Per -
si st enceManager.]

Persistent-new-deleted (Required)
A5.5.7-1 [JDO instances that represent instances that have been newly made persistent
and deleted in the current transaction are persistent-new-deleted.]

A5.5.7-2 [Read access to primary key fields is permitted.] A5.5.7-3 & A5.5.7-4 [Any other
access to persistent fields is not supported and might throw a JDOUser Except i on.]

A5.5.7-7 [Before the transition to persistent-new-deleted, the user-written j doPr eDe-
| et e is called if the persistence-capable class implements | nst anceCal | backs.]

A5.5.7-5 [A persistent-new-deleted instance transitions to transient at commit. During the
transition, its persistent fields are written with their Java default values, and the instance
loses its JDO Identity and its association with the Per si st enceManager .]

A5.5.7-6 [A persistent-new-deleted instance transitions to transient at rollback. The in-
stance loses its JDO Identity and its association with the Per si st enceManager .]

A5.5.7-8 [If Rest or eVal ues ist r ue, the values of managed fields in the instance are re-
stored to their state as of the call to nakePer si st ent . If Rest or eVal ues is f al se,
the values of managed fields in the instance are left as they were at the time rollback was

called.]
Detached-clean (Required)

A5.5.8-AD1 [JDO instances that have been removed from their persistence manager and
have not been modified are detached-clean.] Removal is done by one of three ways:

¢ the instance or an instance containing a reference to the instance is serialized;

¢ the persistence manager managing the instance is closed and the DetachOnClose
property is true; or

¢ the instance is explicitly detached from the persistence manager via the detach
method.

A5.5.8-AD2 [Detached-clean instances transition to detached-dirty if a loaded field is mod-
ified.] A5.5.8-AD3 [Attempts to change their state via any of the persistence manager
methods (e.g. makePer si st ent , del et ePer si st ent, etc.) throw JDOUser Excep-
tion]

Detachable classes are not serialization-compatible with the corresponding unenhanced
class.

Detached instances are further described in section 12.6.8.
Detached-dirty (Required)

JDO instances that have been removed from their persistence manager and have fields
marked as modified are detached. Fields can be marked as modified in two ways:

* A5.5.9-AD1 [the instance is detached in the persistent-dirty state while the
Per si st enceManager flag DetachDirty is true;]

49 May 16, 2005

Java Data Objects 2.0

* A5.5.9-AD2 [a field of the detached instance is explicitly modified by the
application.

Dirty-detached instances do not change their life cycle state.]

5.6

JDO20

Nontransactional (Optional)

Management of nontransactional instances is an optional feature of a JDO implementation.
Usage is primarily for slowly changing data or for optimistic transaction management, as
the values in nontransactional instances are not guaranteed to be transactionally consis-
tent.

The use of this feature is governed by the Per si st enceManager options Nont r ans-
acti onal Read, Nontransacti onal Wite, Optim stic, and Ret ai nVal ues.
An implementation might support any or all of these options. For example, an implemen-
tation might support only Nont r ansact i onal Read. For options that are not support-
ed, the value of the unsupported property is f al se and it may not be changed.

A5.6-1[If a Per si st enceManager does not support this optional feature, an operation
that would result in an instance transitioning to the persistent-nontransactional state] or [a
request to set] the A5.6-2 [Nont r ansact i onal Read], A5.6-3 [Nont r ansacti onal -
Wi te], A5.6-15 [Opti mi sti c], or A5.6-4 [Ret ai nVal ues] [option to t r ue], [throws
a JDOUnsupport edOpti onException.]

Nont r ansact i onal Read, Nont ransacti onal Wite, Optim stic, and Ret a-
i nVal ues are independent options. A JDO implementation must not automatically
change the values of these properties as a side effect of the user changing other properties.

With Nont r ansact i onal Read settotr ue:

* A5.6-5 [Navigation] and A5.6-6 [queries] are valid outside a transaction. It is a
JDO implementation decision whether the instances returned are in the hollow or
persistent-nontransactional state.

* A5.6-7 [When a managed, non-key field of a hollow instance is read outside a
transaction, the instance transitions to persistent-nontransactional.]

* A56-8 [If a persistent-clean instance is the parameter of
makeNont ransacti onal, the instance transitions to persistent-
nontransactional.]

With Nontransacti onal Witesettotrue:

* A5.6-9 [Modification of persistent-nontransactional instances is permitted outside
a transaction. The changes do not participate in any subsequent transaction.]

With Ret ai nVal ues settotr ue:

¢ At commit, A5.6-10 [persistent-clean], A5.6-11 [persistent-new], and A5.6-12 [
persistent-dirty] instances transition to persistent-nontransactional. Fields defined
in the XML metadata as containing mutable second-class types are examined to
ensure that they contain instances that track changes made to them and are owned
by the instance. If not, they are replaced with new second class object instances that
track changes, constructed from the contents of the second class object instance.
These includej ava. uti | . Dat e,and Col | ecti on and Map types. NOTE: This
process is not required to be recursive, although an implementation might choose
to recursively convert the closure of the collection to become second class objects.
JDO requires conversion only of the affected persistence-capable instance’s fields.

50 May 16, 2005

Java Data Objects 2.0

561

JDO20

With Rest or eVal ues settotrue:

¢ If the JDO implementation does not support persistent-nontransactional instances,
at rollback A5.6-16 [persistent-deleted], A5.6-17 [persistent-clean] and A5.6-18
[persistent-dirty] instances transition to hollow.

e If the JDO implementation supports persistent-nontransactional instances, at
rollback A5.6-19 [persistent-deleted], A5.6-20 [persistent-clean] and A5.6-21
[persistent-dirty] instances transition to persistent-nontransactional. The state of
each managed field in A5.6-22 [persistent-deleted] and A5.6-23 [persistent-dirty
instances is restored:

e fields of primitive types (i nt, f | oat, etc.), wrapper types (I nt eger, Fl oat,
etc.), immutable types (Local e, etc.), and references to persistence-capable types
are restored to their values as of the beginning of the transaction and the fields are
marked as loaded.

e fields of mutable types (Dat e, Col | ect i on, array-type, etc.) are set to nul |
and the fields are marked as not loaded.]

Per sistent-nontransactional (Optional)

NOTE: The following discussion applies only to datastore transactions. See section 5.8 for
a discussion on how optimistic transactions change this behavior.

JDO instances that represent specific persistent data in the datastore, whose values are cur-
rently loaded but not transactionally consistent, are persistent-nontransactional. A5.6.1-1
[There is a JDO Identity associated with these instances], and A5.6.1-2 [transactional in-
stances can be obtained from the object ids.]

The persistent-nontransactional state allows persistent instances to be managed as a shad-
ow cache of instances that are updated asynchronously.

As long as a transaction is not in progress:

¢ if Nont ransacti onal Read is t r ue, A5.6.1-4 [persistent field values might be
retrieved from the datastore by the Per si st enceManager J;

e if Nontransacti onal Wit eistrue, the application might make changes to the
persistent field values in the instance, and

¢ A5.6.1-3 [There is no state change associated with either of the above operations.]

A5.6.1-5 [A persistent-nontransactional instance transitions to persistent-clean if it is the
parameter of a makeTransacti onal method executed when a transaction is in
progress. The state of the instance in memory is discarded (cleared) and the state is loaded
from the datastore.]

A5.6.1-6 [A persistent-nontransactional instance transitions to persistent-clean if any man-
aged field is accessed when a datastore transaction is in progress. The state of the instance
in memory is discarded and the state is loaded from the datastore.]

A5.6.1-7 [A persistent-nontransactional instance transitions to persistent-dirty if any man-
aged field is written when a transaction is in progress. The state of the instance in memory
is saved for use during rollback, and the state is loaded from the datastore. Then the
change is applied.]

A5.6.1-8 [A persistent-nontransactional instance transitions to persistent-deleted if it is the
parameter of del et ePer si st ent . The state of the instance in memory is saved for use
during rollback.]

51 May 16, 2005

Java Data Objects 2.0

A persistent-nontransactional instance transitions to detached if its persistence manager is
closed while the DetachOnClose property is true.

If the application does not hold a strong reference to a persistent-nontransactional in-
stance, the instance might be garbage collected. The Per si st enceManager must not
hold a strong reference to any persistent-nontransactional instance.

Transient Transactional (Optional)

Management of transient transactional instances is an optional feature of a JDO implemen-
tation. The following sections describe the additional states and state changes when using

A5.7-1 [A transient instance transitions to transient-clean if it is the parameter of make-

JDO instances that represent transient transactional instances whose values have not been
changed in the current transaction are transient-clean. This state is not reachable if the JDO
Per si st enceManager does not implement the optional feature j avax. j do. op-
tion. Transi ent Transacti onal .

Changes made outside a transaction are allowed without a state change. A5.7.1-1[A tran-
sient-clean instance transitions to transient-dirty if any managed field is changed in a
transaction. During the transition, values of managed fields are saved by the Per si s-
t enceManager for use during rollback. This behavior is not dependent on the setting of

A5.7.1-2 [A transient-clean instance transitions to transient if it is the parameter of mak-

JDO instances that represent transient transactional instances whose values have been
changed in the current transaction are transient-dirty. This state is not reachable if the JDO
Per si st enceManager does not implement the optional feature j avax. j do. op-
tion. Transi ent Transacti onal .

A5.7.2-1 [A transient-dirty instance transitions to transient-clean at commit.] The values
of managed fields saved (for rollback processing) at the time the transition was made from
transient-clean to transient-dirty are discarded. A5.7.2-2 [None of the values of fields in
the instance are modified as a result of commit.]

A5.7.2-3 [A transient-dirty instance transitions to transient-clean at rollback.] A5.7.2-4 [
The values of managed fields saved at the time the transition was made from transient-
clean to transient-dirty are restored. This behavior is not dependent on the setting of the

A5.7.2-5 [A transient-dirty instance transitions to persistent-new at makePer si st ent .
The values of managed fields saved at the time the transition was made from transient-
clean to transient-dirty are used as the before image for the purposes of rollback.]

Optimistic Transactions (Optional)

Optimistic transaction management is an optional feature of a JDO implementation.

5.7
transient transactional behavior.
Transacti onal .]
5.71 Transient-clean (Optional)
the Rest or eVal ues flag.]
eNont ransacti onal .]
5.72 Transent-dirty (Optional)
Rest or eVal ues flag.]
58
JDO 2.0

52 May 16, 2005

Java Data Objects 2.0

The Opt i mi sti c flag set to t r ue changes the state transitions of persistent instances:

* A5.8-1[If a persistent field other than one of the primary key fields is read, a
hollow instance transitions to persistent-nontransactional instead of persistent-
clean.] A5.8-2 [Subsequent reads of these fields do not cause a transition from
persistent-nontransactional.]

* A5.8-3 [A persistent-nontransactional instance transitions to persistent-deleted if
it is a parameter of del et ePer si st ent .] The state of the managed fields of the
instance in memory is saved for use during rollback, and for verification during
commit. A5.8-4 [The values in fields of the instance in memory are unchanged.] If
fresh values need to be loaded from the datastore, then the user should first call
r ef r esh on the instance.

* A5.8-5 [A persistent-nontransactional instance transitions to persistent-clean if it
is a parameter of a makeTr ansact i onal method executed when an optimistic
transaction is in progress.] A5.8-6 [The values in managed fields of the instance in
memory are unchanged.] If fresh values need to be loaded from the datastore, then
the user should first call r ef r esh on the instance.

* A5.8-7 [A persistent-nontransactional instance transitions to persistent-dirty if a
managed field is modified when an optimistic transaction is in progress.] If
Rest or eVal ues ist r ue, a before image is saved before the state transition. This
is used for restoring field values during rollback. Depending on the
implementation the before image of the instance in memory might be saved for
verification during commit. A5.8-8 [The values in fields of the instance in memory
are unchanged before the update is applied.] If fresh values need to be loaded from
the datastore, then the user should first call r ef r esh on the instance.

JDO 2.0 53 May 16, 2005

Java Data Objects 2.0

A5.9-1 through A5.9-170 [

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow

makePersistent P-new unchanged | unchanged | unchanged | unchanged
deletePersistent error P-new-del P-del P-del P-del
makeTransactional T-clean unchanged | unchanged | unchanged | P-clean
makeNontransactional | error error P-nontrans | error unchanged
makeTransient unchanged | error Transient error Transient
commit unchanged | Hollow Hollow Hollow unchanged
retainValues=false
commit unchanged | P-nontrans | P-nontrans | P-nontrans | unchanged
retainValues=true
rollback unchanged | Transient Hollow Hollow unchanged
restoreValues=false
rollback unchanged | Transient P-nontrans | P-nontrans | unchanged
restoreValues=true
refresh with active unchanged | unchanged | unchanged | P-clean unchanged
Datastore transaction
refresh with active Opti- | unchanged | unchanged | unchanged | P-nontrans | unchanged
mistic transaction
evict n/a unchanged | Hollow unchanged | unchanged
read field outside transac- | unchanged | impossible | impossible | impossible | P-nontrans
tion
read field with active unchanged | unchanged | unchanged | unchanged | P-nontrans
Optimistic transaction
read field with active | unchanged | unchanged | unchanged | unchanged | P-clean
Datastore transaction
write field or unchanged | impossible | impossible | impossible | P-nontrans
makeDirty outside
transaction
write field or unchanged | unchanged | P-dirty unchanged | P-dirty
makeDirty with
active transaction

JDO 2.0 54 May 16, 2005

Java Data Objects 2.0

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow
retrieve outside or with unchanged | unchanged | unchanged | unchanged | P-nontrans
active Optimistic transac-
tion
retrieve with active Datas- | unchanged | unchanged | unchanged | unchanged | P-clean
tore transaction
close persistence man- unchanged | impossible | impossible | impossible | detached
ager with DetachOn-
Closetrue

method \ current state T-clean T-dirty P-new-del P-del P-nontrans
makePersi stent P-new P-new unchanged | unchanged | unchanged
del etePersi stent error error unchanged | unchanged | P-del
makeTransactional unchanged | unchanged | unchanged | unchanged | P-clean
makeNontransactional | Transient error error error unchanged
makeTransient unchanged | unchanged | error error Transient
commit unchanged | T-clean Transient Transient unchanged
retainValues=false
commit unchanged | T-clean Transient Transient unchanged
retainValues=true
rollback unchanged | T-clean Transient Hollow unchanged
restoreValues=false
rollback unchanged | T-clean Transient P-nontrans | unchanged
restoreValues=true
refresh unchanged | unchanged | unchanged | unchanged | unchanged
evict unchanged | unchanged | unchanged | unchanged | Hollow
read field outside transac- | unchanged | impossible | impossible | impossible | unchanged
tion
read field with Optimistic | unchanged | unchanged | error error unchanged
transaction
read field with active | unchanged | unchanged | error error P-clean
Datastore transaction

JDO 2.0 55 May 16, 2005

Java Data Objects 2.0

method \ current state

T-clean

T-dirty

P-new-del

P-del

P-nontrans

write field or
makeDirty outside
transaction

unchanged

impossible

impossible

impossible

unchanged

write field or
makeDirty with
active transaction

T-dirty

unchanged

error

error

P-dirty

retrieve outside or with
active Optimistic transac-
tion

unchanged

unchanged

unchanged

unchanged

unchanged

retrieve with active Datas-
tore transaction

unchanged

unchanged

unchanged

unchanged

P-clean

close persistence man-
ager with DetachOn-
Closetrue

unchanged

unchanged

impossible

impossible

detached

Jerror: aJDOUser Except i on isthrown; the state does not change

unchanged: no state change takes place; ho exception is thrown due to the state change

n/a: not applicable; if thisinstanceis an explicit parameter of the method, aJDOUser Except i on
isthrown; if thisinstance is an implicit parameter, it isignored.
impossible: the state cannot occur in this scenario

Figure7.0 Life Cycle: New Persistent Instances
makePersistent >
Transient Persistent- commit
- rollback new
deletePersistent
commit, Persistent-
rollback new-deleted

JDO20

56

Hollow

May 16, 2005

Java Data Objects 2.0

JDO20

Figure8.0 Life Cycle: Transactional Access
) read field,
Active write field
Persistent -
Transient Instances > Hollow
commif,
rollback
deletePersjstént
deletePersistent
commit
Persistent- rollback
deleted
Figure9.0 Life Cycle: Datastore Transactions
read field
Persistent- <\
clean commit,
4 Hollow
write/field rollback
‘/WJM
geISIStent- /
irty rollback
Figure10.0 Life Cycle: Optimistic Transactions
Persistent- %
nontransactional
commit,
writd field rollback Hollow
‘/W/ﬁdﬁ/
Persistent- /
dirty commit,
rollback

57 May 16, 2005

Java Data Objects 2.0

Figure11.0 Life Cycle: Access Outside Transactions

read field,
write field

read field, Persistent-
write field nontransactional

evict

Hollow

Figure12.0 Life Cycle: Transient TransactionalLife Cycle: Transient Transactional

Transient

makeTransactional ¢ ? makeNontransactional

Transient-
clean

write field commit,
rollback

Transient-
dirty

Figure13.0 Life Cycle: Detached

Detached-
clean

write field ¢

Detached-
dirty

JDO20 58

May 16, 2005

Java Data Objects 2.0

Figure14.0 JDO Instance State Transitions

-

-

READ-OK \

. per51stent-clean
4. +
13

24, per51stent-

hollow
nontransactlonal

persistent-

new

10. (transwnt—clea
Ccranswnt-dlrty)
trans1ent /

14,y Azs

AR

@ermstent-dlrt)) /
i 19. /

o

\\\'\ZO'C persistent-deleted 51
persistent-
18 new-deleted

TRANSIENT / PERSISTENT

JDO20

NOTE:

1

N o o M w

Not all possible state transitions are shown in this diagram.

A transient instance transitions to persistent-new when the instance is the
parameter of amakePer si st ent method.

A persistent-new instance transitionsto hollow when the transaction in which it
was made persistent commits.

A hollow instance transitions to persistent-clean when afield is read.

A persistent-clean instance transitions to persistent-dirty when afield iswritten.
A persistent-dirty instance transitions to hollow at commit or rollback.

A persistent-clean instance transitions to hollow at commit or rollback.

A transient instance transitions to transient-clean when it is the parameter of a
makeTr ansact i onal method.

8. A transient-clean instance transitions to transient-dirty when afield is written.

9. A transient-dirty instance transitions to transient-clean at commit or rollback.

10.

11.

A transient-clean instance transitions to transient when it is the parameter of a
makeNont r ansact i onal method.

A hollow instance transitions to persistent-dirty when afield is written.

59 May 16, 2005

Java Data Objects 2.0

12. A persistent-clean instance transitions to persistent-nontransactional at commit
when Ret ai nVal ues isset tot r ue, at rollback when Rest or eVal ues is set
tot rue, or when it isthe parameter of amakeNont r ansact i onal method.

13. A persistent-nontransactional instance transitions to persistent-clean when it is
the parameter of anmakeTr ansact i onal method.

14. A persistent-nontransactional instance transitions to persistent-dirty when a
field iswritten in atransaction.

15. A persistent-new instance transitions to transient on rollback.

16. A persistent-new instance transitions to persistent-new-deleted when it is the
parameter of del et ePer si st ent .

17. A persistent-new-del eted instance transitions to transient on rollback. The
values of the fields are restored as of the makePer si st ent method.

18. A persistent-new-deleted instance transitions to transient on commit. No
changes are made to the values.

19. A hollow, persistent-clean, or persistent-dirty instance transitions to persistent-
deleted when it is the parameter of del et ePer si st ent .

20. A persistent-deleted instance transitions to transient when the transaction in
which it was deleted commits.

21. A persistent-deleted instance transitions to hollow when the transaction in
which it was deleted rolls back.

22. A hollow instance transitions to persistent-nontransactional when the
Nont r ansact i onal Read optionissettot r ue, afieldisread, and thereis
either an optimistic transaction or no transaction active.

23. A persistent-dirty instance transitions to persistent-nontransactional at commit
when Ret ai nVal uesissettotrueoratrol | back when Rest or eVal ues is
settotrue.

24. A persistent-new instance transitions to persistent-nontransactional at commit
when Ret ai nVal ues issettotrue.

JDO 2.0 60 May 16, 2005

Java Data Objects 2.0

The Persistent Object M odel

This chapter specifies the object model for persistence capable classes. To the extent possi-
ble, the object model is the same as the Java object model. Differences between the Java ob-
ject model and the JDO object model are highlighted.

6.1

Overview

The Java execution environment supports different kinds of classes that are of interest to
the developer. The classes that model the application and business domain are the primary
focus of JDO. In a typical application, application classes are highly interconnected, and
the graph of instances of those classes includes the entire contents of the datastore.

Applications typically deal with a small number of persistent instances at a time, and it is
the function of JDO to allow the illusion that the application can access the entire graph of
connected instances, while in reality only small subset of instances needs to be instantiated
in the JVM. This concept is called transparent data access, transparent persistence, or sim-
ply transparency.

Figure 15.0 Instantiated persistent objects

P

OA Instaryétekeersisten objects »}(

e oo 4

Datastore virtual objects

Persistent objects \
/

Transient objects

‘_>‘ _>% »‘ Mapping function

Java VM

JDO20

Datastore

61 May 16, 2005

Java Data Objects 2.0

Within a JVM, there may be multiple independent units of work that must be isolated from
each other. This isolation imposes requirements on JDO to permit the instantiation of the
same datastore object into multiple Java instances. The connected graph of Java instances
is only a subset of the entire contents of the datastore. Whenever a reference is followed
from one persistent instance to another, the JDO implementation transparently instanti-
ates the required instance into the JVM.

The storage of objects in datastores might be quite different from the storage of objects in
the JVM. Therefore, there is a mapping between the Java instances and the objects in the
datastore. This mapping is performed by the JDO implementation, using metadata that is
available at runtime. The metadata is generated by a JDO vendor-supplied tool, in coop-
eration with the deployer of the system. The mapping is not standardized by JDO except
in the case of relational databases, for which a subset of mapping functionality is standard.
The standard part of the mapping is specified in Chapter 15.

JDO instances are stored in the datastore and retrieved, possibly field by field, from the
datastore at specific points in their life cycle. The class developer might use callbacks at
certain points to make a JDO instance ready for execution in the JVM, or make a JDO in-
stance ready to be removed from the JVM. While executing in the JVM, a JDO instance
might be connected to other instances, both persistent and transient.

A6.1-1 [There is no restriction on the types of non-persistent fields of persistence-capable
classes.] These fields behave exactly as defined by the Java language. Persistent fields of
persistence-capable classes have restrictions in JDO, based on the characteristics of the
types of the fields in the class definition.

The JDO Object Model has the following objectives:

e All field types supported by the Java language, including primitive types,
reference types and interface types should be supported by JDO instances.

¢ All class and field modifiers supported by the Java language including A6.2-1
[private], A6.2-2 [public], A6.2-3 [protected], A6.2-4 [static], A6.2-5 [transient],
A6.2-6 [abstract], A6.2-7 [final], A6.2-8 [synchronized], and A6.2-9 [volatile],
should be supported by JDO instances.

¢ All user-defined classes should be allowed to be persistence-capable.

* Some system-defined classes (especially those for modeling state) should be

In Java, variables (including fields of classes) have types. Types are either primitive types
or reference types. Reference types are either classes or interfaces. Arrays are treated as

An object is an instance of a specific class, determined when the instance is constructed.
Instances may be assigned to variables if they are assignment compatible with the variable

The JDO Object Model distinguishes between two kinds of classes: those that are marked
as persistence-capable and those that aren’t. A user-defined class can be persistence-capa-

6.2 Goals
persistence-capable.
6.3 Architecture
classes.
type.
Per si st ence- capabl e
JDO 2.0

62 May 16, 2005

Java Data Objects 2.0

JDO20

ble unless its state depends on the state of inaccessible or remote objects (e.g. it extends
j ava. net . Socket | npl or uses JNI (native calls) to implement j ava. net . Socke-
t Opt i ons). A non-static inner class cannot be persistence-capable because the state of its
instances depends on the state of their enclosing instances.

Except for system-defined classes specially addressed by the JDO specification, system-de-
fined classes (those defined in j ava. | ang,j ava.io,j ava. util,java. net,etc.) are

not persistence-capable, nor is a system-defined class allowed to be the type of a persistent
tield.

First Class Objectsand Second Class Objects

A First Class Object (FCO) is an instance of a persistence-capable class that has a JDO Iden-
tity, can be stored in a datastore, and can be independently deleted and queried. A Second
Class Object (SCO) has no JDO Identity of its own and is stored in the datastore only as
part of a First Class Object. In some JDO implementations, some SCO instances are actually
artifacts that have no literal datastore representation at all, but are used only to represent
relationships. For example, a Col | ecti on of instances of a persistence-capable class
might not be stored in the datastore, but created when needed to represent the relationship
in memory. At commit time, the memory artifact is discarded and the relationship is rep-
resented entirely by datastore relationships.

First Class Objects

FCOs support uniquing; whenever an FCO is instantiated into memory, there is guaran-
teed to be only one instance representing that FCO managed by the same Per si st ence-
Manager instance. They are passed as arguments by reference.

An FCO can be shared among multiple FCOs, and if an FCO is changed (and the change
is committed to the datastore), then the changes are visible to all other FCOs that refer to it.

Second Class Objects

Second Class Objects are either instances of immutable system classes (j ava. | ang. | n-
teger, java.l ang. String, etc.), JDO implementation subclasses of mutable system
classes that implement the functionality of their system class (j ava. util . Date, j a-
va. util . HashSet, etc.), or persistence-capable classes.

A6.3-1 [Second Class Objects of mutable system classes and persistence-capable classes
track changes made to them, and notify their owning FCO that they have changed.] The
change is reflected as a change to the owning FCO (e.g. the owning instance might change
state from persistent-clean to persistent-dirty). They are stored in the datastore only as part
of a FCO. A6.3-2 [They do not support uniquing, and the Java object identity of the values
of the persistent fields containing them is lost when the owning FCO is flushed to the data-
store.] They are passed as arguments by reference.

SCO fields must be explicitly or by default identified in the metadata as embedded. If a
field, or an element of a collection or a map key or value is identified as embedded (em-
bedded-element, embedded-key, or embedded-value) then any instances so identified in
the collection or map are treated as SCO during commit. That is, the value is stored with
the owning FCO and the value loses its own identity if it had one.

SCO fields of persistence-capable types are identified as embedded. The behavior of em-
bedded persistence-capable types is intended to mirror the behavior of system types, but
this is not standard, and portable applications must not depend on this behavior.

A6.3-3 [It is possible for an application to assign the same instance of a mutable SCO class
to multiple FCO embedded fields, but this non-portable behavior is strongly discouraged
for the following reason: if the assignment is done to persistent-new, persistent-clean, or

63 May 16, 2005

Java Data Objects 2.0

JDO20

persistent-dirty instances, then at the time that the FCOs are committed to the datastore,
the Java object identity of the owned SCOs might change, because each FCO might have
its own unshared SCO. If the assignment is done before makePer si st ent is called to
make the FCOs persistent, the embedded fields are immediately replaced by copies, and
no sharing takes place.]

When an FCO is instantiated in the JVM by a JDO implementation, and an embedded field
of a mutable type is accessed, the JDO implementation assigns to these fields a new in-
stance that tracks changes made to itself, and notifies the owning FCO of the change. Sim-
ilarly, when an FCO is made persistent, either by being the parameter of
makePer si st ent or makePer si stent Al | or by being reachable from a parameter of
makePer si st ent or makePer si st ent Al | at the time of the execution of the makeP-
ersi stent or makePer si st ent Al | method call, the JDO implementation replaces the
field values of mutable SCO types with instances of JDO implementation subclasses of the
mutable system types.

Therefore, the application cannot assume that it knows the actual class of instances as-
signed to SCO fields, although A6.3-4 [it is guaranteed that the actual class is assignment
compatible with the type.]

There are few differences visible to the application between a field mapped to an FCO and
an SCO. One difference is in sharing. A6.3-5 [If an FCO1 is assigned to a persistent field in
FCO2 and FCOB, then any changes at any time to instance FCO1 will be visible from FCO2
and FCO3.]

A6.3-6 [If an SCOL1 is assigned to a persistent field in persistent instances FCO1 and FCO2,
then any changes to SCO1 will be visible from instances FCO1 and FCO2 only until FCO1
and FCO2 are committed. After commit, instance SCO1 might not be referenced by either
FCOL1 or FCO2, and any changes made to SCO1 might not be reflected in either FCO1 or
FCO2.]

Another difference is in visibility of SCO instances by queries. SCO instances are not add-
ed to Ext ent s. If the SCO instance is of a persistence-capable type, it is not visible to que-
ries of the Ext ent of the persistence-capable class. Furthermore, the field values of SCO
instances of persistence-capable types might not be visible to queries at all.

Sharing of immutable SCO fields is supported in that it is good practice to assign the same
immutable instance to multiple SCO fields. But the field values should not be compared
using Java identity, but only by Java equality. This is the same good practice used with
non-persistent instances.

Arrays

A6.3-8 [Arrays are system-defined classes that do not necessarily have any JDO Identity
of their own, and support by a JDO implementation is optional. If an implementation sup-
ports them, A6.3-7 [they might be stored in the datastore as part of an FCO]. They do not
support uniquing, and the Java object identity of the values of the persistent fields contain-
ing them is lost when the owning FCO is flushed to the datastore.] They are passed as ar-
guments by reference.

Tracking changes to Arrays is not required to be done by a JDO implementation. If an Ar-
ray owned by an FCO is changed, then the changes might not be flushed to the datastore.
Portable applications must not require that these changes be tracked. In order for changes
to arrays to be tracked, A6.3-9 REMOVE THIS ASSERTION [the application must explic-
itly notify the owning FCO of the change to the Array by calling the makeDi r t y method
of the JDOHel per class], or by replacing the field value with its current value.

64 May 16, 2005

Java Data Objects 2.0

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-
type managed field marks the field as dirty, even if the new value is identical to the old
value. This special case is required to allow the user to mark an array-type field as dirty
without having to call the JDOHelper method makeDi rty.

Furthermore, an implementation is permitted, but not required to, track changes to Arrays
passed as references outside the body of methods of the owning class. There is a method
defined on class JDOHel per that allows the application to mark the field containing such
an Array to be modified so its changes can be tracked. Portable applications must not re-
quire that these changes be tracked automatically. When a reference to the Array is re-
turned as a result of a method call, a portable application first marks the Array field as
dirty.

A6.3-10 [It is possible for an application to assign the same instance of an Array to multiple
FCOs], but after the FCO is flushed to the datastore, the Java object identity of the Array
might change.

When an FCO is instantiated in the JVM, the JDO implementation assigns to fields with an
Array type a new instance with a different Java object identity from the instance stored.

Therefore, the application cannot assume that it knows the identity of instances assigned
to Array fields, although A6.3-11 [it is guaranteed that the actual value is the same as the
value stored].

Primitives
Primitives are types defined in the Java language and comprise bool ean, byt e, short,
int,l ong,char,fl oat,and doubl e. They might be stored in the datastore only as part

of an FCO. They have no Java identity and no datastore identity of their own. They are
passed as arguments by value.

I nterfaces

Interfaces are types whose values may be instances of any class that declare that they im-
plement that interface.

6.4
6.4.1

6.4.2

6.4.3

JDO20

Field types of persistence-capable classes
Nontransactional non-persistent fields

A6.4.1-1 [There are no restrictions on the types of nontransactional non-persistent fields.]
These fields are managed entirely by the application, not by the JDO implementation.
A6.4.1-2 [Their state is not preserved by the JDO implementation], although A6.4.1-3 [
they might be modified during execution of user-written callbacks defined in interface
I nst anceCal | backs at specific points in the life cycle], or A6.4.1-4 [any time during
the instance’s existence in the JVMI.

Transactional non-persistent fields

A6.4.2-1 [There are no restrictions on the types of transactional non-persistent fields.]
These fields are partly managed by the JDO implementation. Their state is preserved and
restored by the JDO implementation during certain state transitions.

Persistent fields

Precision of fields

JDO implementations may not represent Java types precisely in the datastore, because not
all datastores are able to natively represent all Java types. Some type mapping may be re-

65 May 16, 2005

Java Data Objects 2.0

JDO20

quired. The precision of the mapping is a quality of service issue with the JDO implemen-
tation and the particular datastore.

The mapping precision restriction applies to the range of values that can be faithfully
stored and retrieved, the precision of the values, and the scale of BigDecimal values.
Primitive types
JDO implementations must support fields of any of the primitive types
e A6.4.3-1[bool ean], A6.4.3-2 [byt e], A6.4.3-3[short], A6.4.3-4[i nt], A6.4.3-
5[1 ongl, A6.4.3-6 [char], A6.4.3-7 [f | oat], and A6.4.3-8 [doubl e].

Primitive values are stored in the datastore associated with their owning FCO. They have
no JDO Identity.

Immutable Object Classtypes

JDO implementations must support fields that reference instances of immutable object
classes, and may choose to support these instances as SCOs or FCOs:
e packagej ava. | ang: A6.4.3-9 [Bool ean], A6.4.3-10 [Char act er], A6.4.3-11
[Byt e], A6.4.3-12[Short], A6.4.3-13 [| nt eger], A6.4.3-14 [Long], A6.4.3-15 [
Fl oat], A6.4.3-16 [Doubl e], and A6.4.3-17 [St ri ng];

* packagej ava. util: A6.4.3-18 [Local e], A6.4.3-40 [Cur r ency].
* package | ava. mat h: A6.4.3-19 [Bi gDeci nal 1, A6.4.3-20 [Bi gl nt eger].

Portable JDO applications must not depend on whether instances of these classes are treat-
ed as SCOs or FCOs.

The scale of Bi gDeci mal values is not guaranteed to be preserved by implementations.

For example, saving a persistent field with value Bi gDeci mal (“ 1. 2300”) mightbe re-
turned as value Bi gDeci mal (“1.23").

Mutable Object Classtypes

JDO implementations must support fields that reference instances of the following muta-
ble object classes, and may choose to support these instances as SCOs or FCOs:

e package java.util: A6.4.3-21 [Date], A6.4.3-22 [HashSet], A6.4.3-24

[HashMapl, A6.4.3-25[Hasht abl e], A6.4.3-41 [Li nkedHashMap], A6.4.3-42
[Li nkedHashSet].

JDO implementations may optionally support fields that reference instances of the follow-
ing mutable object classes, and may choose to support these instances as SCOs or FCOs:
* packagej ava. util: A6.4.3-23[ArrayLi st], A6.4.3-26 [Li nkedLi st], A6.4.3-
27 [Tr eeMap], A6.4.3-28 [Tr eeSet], and A6.4.3-29 [Vect or].

Because the treatment of these fields may be as SCO, the behavior of these mutable object
classes when used in a persistent instance is not identical to their behavior in a transient
instance.

Portable JDO applications must not depend on whether instances of these classes refer-
enced by fields are treated as SCOs or FCOs.
Persistence-capable Class types

A6.4.3-30 [JDO implementations must support references to FCO instances of persistence-
capable classes] and are permitted, but not required, to support references to SCO instanc-
es of persistence-capable classes.

66 May 16, 2005

Java Data Objects 2.0

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Object Classtype

A6.4.3-31 [JDO implementations must support fields of Qbj ect class type as FCOs. The
implementation is permitted, but is not required, to allow any class to be assigned to the
field. If an implementation restricts instances to be assigned to the field, a Cl assCast Ex-
cept i on must be thrown at the time of any incorrect assignment.]

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Coallection Interface types

A6.4.3-32 [J]DO implementations must support fields of interface types, and may choose to
support them as SCOs or FCOs]: package j ava. uti | : A6.4.3-33 [Col | ect i on], A6.4.3-
35 [Mapl, A6.4.3-34 [Set], and A6.4.3-36 [Li st]. Col | ecti on, Map, and Set are re-
quired; Li st is optional.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Other Interfacetypes

A6.4.3-37 [JDO implementations must support fields of interface types other than Col -
| ecti on interface types as FCOs. The implementation is permitted, but is not required,
to allow any class that implements the interface to be assigned to the field. If an implemen-
tation further restricts instances that can be assigned to the field, a Cl assCast Excep-
t i on must be thrown at the time of any incorrect assignment.]

Portable JDO applications must treat these fields as FCOs.

Arrays

A6.4.3-39 [JDO implementations may optionally support fields of array types], and may
choose to support them as SCOs or FCOs. A6.4.3-38 [If Arrays are supported by JDO im-
plementations, they are permitted, but not required, to track changes made to Arrays that
are fields of persistence capable classes in the methods of the classes.] They need not track
changes made to Arrays that are passed by reference as arguments to methods, including
methods of persistence-capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

6.5

JDO20

Inheritance

A6.5-1 [A class might be persistence-capable even if its superclass is not persistence-capa-
ble.] This allows users to extend classes that were not designed to be persistence-capable.
A6.5-2 [If a class is persistence-capable, then its subclasses might or might not be persis-
tence-capable themselves.]

Further, A6.5-3 [subclasses of such classes that are not persistence-capable might be per-
sistence-capable. That is, it is possible for some classes in the inheritance hierarchy to be
persistence-capable and some not persistence-capable.]

The expression "obj i nstanceof PersistenceCapabl e" can be true (because of a
persistence-capable superclass) when in fact the class of obj is not persistence-capable.

67 May 16, 2005

Java Data Objects 2.0

JDO20

Thus, it is not possible for an application to examine a class to determine whether an in-
stance of that class is allowed to be persistent.

Fields identified in the XML metadata as persistent or transactional in persistence-capable
classes must be fields declared in that Java class definition. That is, inherited fields cannot
be named in the XML metadata.

A6.5-4 [Fields identified as persistent in persistence-capable classes will be persistent in
subclasses]; A6.5-5 [fields identified as transactional in persistence-capable classes will be
transactional in subclasses]; and A6.5-6 [fields identified as non-persistent in persistence-
capable classes will be non-persistent in subclasses].

Of course, A6.5-7 [a class might define a new field with the same name as the field declared
in the superclass, and might define it with a different persistence-modifier from the inher-
ited field. But Java treats the declared field as a different field from the inherited field, so
there is no conflict.]

All persistence-capable classes must have a no-arg constructor. This constructor might be
a private constructor, as it is only used from within the j doNewl nst ance methods. The
constructor might be the default no-arg constructor created by the compiler when the
source code does not define any constructors.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

Persistence-capable classes that use application identity have special considerations for in-
heritance:

Key fields may be declared only in abstract superclasses and least-derived concrete classes
in inheritance hierarchies. Key fields declared in these classes must also be declared in the
corresponding objectid classes, and the objectid classes must form an inheritance hierar-
chy corresponding to the inheritance hierarchy of the persistence-capable classes. A per-
sistence-capable class can only have one concrete objectid class anywhere in its inheritance
hierarchy.

For example, if an abstract class Conmponent declares a key field mast er | d, the objectid
class Conponent Key must also declare a field of the same type and name. If Conpo-
nent Key is concrete, then no subclass is allowed to define an objectid class.

If Conponent Key is abstract, an instance of a concrete subclass of Conponent Key must
be used to find a persistent instance. A concrete class Par t that extends Conponent must
declare a concrete objectid class (for example, Par t Key) that extends Conponent Key.
There might be no key fields declared in Par t or Par t Key. Persistence-capable subclass-
es of Part must not have an objectid class.

Another concrete class Assenbl y that extends Component must declare a concrete ob-
jectid class (for example, Assenbl yKey) that extends Conponent Key. If there is a key
field, it must be declared in both Assenbl y and Assenbl yKey. Persistence-capable sub-
classes of Assenbl y must not have an objectid class.

There might be other abstract classes or non-persistence-capable classes in the inheritance
hierarchy between Conponent and Part, or between Conponent and Assenbly.
These classes are ignored for the purposes of objectid classes and key fields.

Readers primarily interested in developing applications with the JDO API can ignore the following
chapter. Skip to 8 — JDOHelper.

68 May 16, 2005

Java Data Objects 2.0

PersistenceCapable

For JDO implementations that support the BinaryCompatibility rules, every instance that
is managed by a JDO Per si st enceManager must be of a class that implements the
public Per si st enceCapabl e interface. This interface defines methods that allow the
implementation to manage the instances. It also defines methods that allow a JDO aware
application to examine the runtime state of instances, for example to discover whether the
instance is transient, persistent, transactional, dirty, etc., and to discover its associated
Per si st enceManager if it has one.

The JDO Reference Enhancer modifies the class to implement Per si st enceCapabl e
prior to loading the class into the runtime environment. The enhancer additionally adds
code to implement the methods defined by Per si st enceCapabl e. Other enhancers
can be used for specific binary-compatible JDO implementations.

The Per si st enceCapabl e interface is designed to avoid name conflicts in the scope of
user-defined classes. All of its declared method names are prefixed with “jdo”.

Class implementors may explicitly declare that the class implements Per si st enceCa-
pabl e. If this is done, the implementor must implement the Per si st enceCapabl e
contract, and the enhancer will ignore the class instead of enhancing it.

The recommended (and only portable) approach for applications to interrogate the state
of persistence-capable instances is to use the class JDOHel per, which provides static
methods that delegate to the instance if it implements Per si st enceCapabl e, and if
not, attempts to find the JDO implementation responsible for the instance, and if unable to
do so, returns the values that would have been returned by a transient instance.

Classes that are to be detached from the persistence manager further implement the De-
t achabl e interface. This interface is used to establish the fields loaded before detachment
and to query the instance if it is presented for attachment later.

The persistence modifier, identity type, identity class, key fields, persistent fields, and de-
tachability of the class are fixed at enhancement time, or when the class is loaded, which-
ever occurs first.

NOTE: Thisinterface is not intended to be used by application programmers.
It isfor use only by implementations. Applications should use the methods
defined in class JIDOHelper instead of these methods.

package j avax.j do. spi;
public interface PersistenceCapable {

7.1

JDO20

Per sistence M anager
Per si st enceManager j doGet Per si st enceManager () ;

A7.1-1 [This method returns the associated Per si st enceManager] or A7.1-2 [nul | if
the instance is transient.]

69 May 16, 2005

Java Data Objects 2.0

7.2

Make Dirty

voi d jdoMakeDirty (String fieldName);
void jdoMakeDirty (int fiel dNunber);
A7.2-1[

These methods mark the specified field dirty so that its values will be modified in the data-
store when the transaction in which the instance is modified is committed. The f i el d-
Nane is the name of the field to be marked as dirty, optionally including the fully qualified
package name and class name of the field]. A7.2-2 [This method returns with no effect if
the instance is not managed by a St at eManager .] This method has the same effect on the
life cycle state of the instance as changing a managed field would. The f i el dNunber pa-
rameter is the internal field number assigned during class enhancement.

A7.2-3 [If the same name is used for multiple fields (a class declares a field of the same
name as a field in one of its superclasses) then the unqualified name refers to the most-de-
rived class in which the field is declared to be persistent.] The qualified name (class-
Name.fieldName) should always be used to identify the field to avoid ambiguity with
subclass-defined fields.

The rationale for this is that a method in a superclass might call this method, and specify
the name of the field that is hidden by a subclass. The St at eManager has no way of
knowing which class called this method, and therefore assumes the Java rule regarding
field names.

It is always safe to explicitly name the class and field referred to in the parameter to the
method. The St at eManager will resolve the scope of the name in the class named in the
parameter.

For example, if class C inherits class B which inherits class A, and field X is declared in
classes A and C, a method declared in class B may refer to the field in the method as “B.X”
and it will refer to the field declared in class A. Field X is not declared in B; however, in the
scope of class B, X refers to A.X.

7.3

731

JDO Identity
Obj ect jdoGet Cbj ect1d();

A7.3-1 [This method returns the JDO identity of the instance.] A7.3-2 [If the instance is
transient, nul | is returned.] A7.3-3 [If the identity is being changed in a transaction, this
method returns the identity as of the beginning of the transaction.]

bj ect jdoGet Transacti onal Cbj ectld();

A7.3-4 [This method returns the JDO identity of the instance.] A7.3-5 [If the instance is
transient, nul | is returned.] A7.3-6 [If the identity is being changed in a transaction, this
method returns the current identity in the transaction.]

Version
Obj ect j doGet Version();

A7.3.1-1 [This method returns the version of the instance.]

7.4

JDO20

Statusinterrogation

The status interrogation methods return a boolean that represents the state of the instance:

70 May 16, 2005

Java Data Objects 2.0

74.1

74.2

7.4.3

744

7.4.5

7.4.6

JDO20

Dirty
bool ean jdolsDirty();

A7.4.1-1 [Instances whose state has been changed in the current transaction returnt r ue.]
A7.4.1-2 [Instances whose state has not been changed in the current transaction return false to a
call to jdoIsDirty.]A7.4.1-3 [If the instance is transient or detached, f al se is returned.]

Transactional
bool ean j dol sTransactional ();

A7.4.2-1 [Instances whose state is associated with the current transaction return
t r ue.JA7.4.2-2 [Instances whose state has not been changed in the current transaction return false
to a call to jdolsTransactional.] A7.4.2-3 [If the instance is transient or detached, f al se is re-
turned.]

Per sistent

bool ean j dol sPersi stent();

A7.4.3-1 [Instances that represent persistent objects in the datastore returnt r ue.] A7.4.3-
2 [Instances that do not represent persistent objects in the datastore return false to a call to jdoIsPer-
sistent.]JA7.4.3-3 [If the instance is transient or detached, f al se is returned.]

New
bool ean j dol sNew();

A7.4.4-1 [Instances that have been made persistent in the current transaction returnt r ue.]
A7.4.4-2 [Instances that have not been made persistent in the current transaction return false to a
call to jdoIsNew.]A7.4.4-3 [If the instance is transient or detached, f al se is returned.]

Deleted
bool ean j dol sDel et ed();

A7.4.5-1 [Instances that have been deleted in the current transaction returnt r ue.] A7.4.5-
2 [Instances that have not been deleted in the current transaction return false to a call to jdoIsDe-
leted.]A7.4.5-3 [If the instance is transient or detached, f al se is returned.]

Detached
bool ean j dol sDet ached();

Table 3: State interrogation

Persistent | Transactional Dirty | New | Deleted | Detached

Transient

Transient-clean O

Transient-dirty O O
Persistent-new O O 1l O
Persistent- O

nontransactional

Persistent-clean O O

Persistent-dirty O O 1]

71 May 16, 2005

Java Data Objects 2.0

Table 3: Stateinterrogation

Persistent | Transactional Dirty | New | Deleted | Detached
Hollow O
Persistent-del eted g g 1l d
Persistent-new- O O 1l O O
deleted
Detached-clean O
Detached-dirty O O

A7.4.6-1 [Instances that have been detached returnt r ue.]

7.5

New instance
Per si st enceCapabl e j doNewl nst ance(St at eManager sm ;

A7.5-1 [This method creates a new instance of the class of the instance.] It is intended to be
used as a performance optimization compared to constructing a new instance by reflection
using the constructor. It is intended to be used only by JDO implementations, not by ap-
plications. A7.5-2 [If the class is abstract, nul | is returned.]

Per si st enceCapabl e j doNewl nst ance(St at eManager sm Obj ect o0id);

A7.5-3 [This method creates a new instance of the class of the instance, and copies key field
values from the oid parameter instance.] It is intended to be used as a performance opti-
mization compared to constructing a new instance by reflection using the constructor, and
copying values from the oid instance by reflection. It is intended to be used only by JDO
implementations for classes that use application identity, not by applications. A7.5-4 [If the
class is abstract, nul | is returned.]

7.6

State M anager
voi d j doRepl aceSt at eManager (St at eManager sn)
t hrows SecurityException;

A7.6-1 [This method sets the] doSt at eManager field to the parameter.] This method is
normally used by the St at eManager during the process of making an instance persis-
tent, transactional, or transient. A7.6-2 [The caller of this method must have JDOPer m s-
si on("set St at eManager") for the instance, otherwise Securit yExcepti on is
thrown. Illegal AccessException instead of SecurityException is thrown according to JDO Spec. 1.0
Assertions.]

1.7

JDO20

Replace Flags
voi d j doRepl aceFl ags ();

A7.7-1 [This method tells the instance to call the owning St at eManager 'sr epl aci ng-
FI ags method to get a new value for the j doFl ags field.]

72 May 16, 2005

Java Data Objects 2.0

voi d jdoRepl aceField (int fieldNunber);

A7.8-1 [This method gets a new value from the St at eManager for the field specified in
the parameter.] The field number must refer to a field declared in this class or in a super-

voi d jdoRepl aceFields (int[] fieldNunbers);
A7.8-2 [This method iterates over the array of field numbers and calls j doRepl ace-

void jdoProvideField (int fieldNunber);

A7.9-1 [This method provides the value of the specified field to the St at eManager .] The
field number must refer to a field declared in this class or in a superclass.

void jdoProvideFields (int[] fieldNunbers);
A7.9-2 [This method iterates over the array of field numbers and calls j doPr ovi de-

voi d jdoCopyFields (Qnject other, int[] fiel dNunbers);
voi d jdoCopyField (Cbject other, int fieldNunber);

A7.10-1 [These methods copy fields from another instance of the same class.] A7.10-2
[These methods can be invoked only when both t hi S and ot her are managed by the

The following fields define the permitted values for the j doFl ags field.
public static final byte READ WRITE OK = 0;

public static final byte READ OK = -1;
public static final byte LOAD REQUI RED
public static final byte DETACHED = 2;
The following fields define the flags for the j doFi el dFl ags elements.
public static final byte CHECK READ = 1;

public static final byte MEDI ATE_READ = 2,

public static final byte CHECK WRI TE = 4;

public static final byte MEDI ATE_WRI TE = 8;

public static final byte SERI ALI ZABLE = 16;

1,

7.8 ReplaceFields
class.
Fi el d for each one.]
7.9 ProvideFields
Fi el d for each one.]
7.10 Copy Fields
same St at eManager . |
7.11 Static Fields
JDO 2.0

73 May 16, 2005

Java Data Objects 2.0

7.12

JDO20

JDO identity handling
public Cbject jdoNewCbjectldlnstance();

A7.12-1[This method creates a new instance of the class used for JDO identity.] It is intend-
ed only for application identity. A7.12-2 [If the class has been enhanced for datastore iden-
tity], or A7.12-3 [if the class is abstract, nul | is returned.]

For classes using single field identity, this method must be called on a persistent instance
with its primary key field initialized, or a JDOFat al | nt er nal Except i on is thrown. In
this case, the instance returned is initialized with the value of the primary key field of the
instance on which the method is called.

public Object jdoNewObjectldl nstance(bject key);

A7.12-20 [This method creates a new instance of the class used for JDO identity, using the
appropriate constructor of the object id class. It is intended only for application identity,
including single field identity.] A7.12-21 [If the class has been enhanced for datastore iden-
tity], or A7.12-22 [if the class is abstract], nul | is returned. The identity instance returned
has no relationship with the values of the primary key fields of the persistence-capable in-
stance on which the method is called.

A7.12-23 [publ i ¢ void jdoCopyKeyFi el dsToChj ect1d(Obj ect oid);

This method copies all key fields from this instance to the parameter.] A7.12-24 [The pa-
rameter must be an instance of the JDO identity class, or Cl assCast Excepti on is
thrown. If the class uses single field identity, this method always throws JDOFat al | n-
t er nal Excepti on.]

A7.12-4 [jdoCopyKeyFieldsToObjectld (PersistenceCapable pc, Object oid) copies all key fields
from the first parameter to the second parameter]

A7.12-5 [The first parameter of jdoCopyKeyFieldsToObjectld (PersistenceCapable pc, Object oid)
must be of the same class as this intance, or a ClassCastException is thrown.]

A7.12-6 [The second parameter of jdoCopyKeyFieldsToObjectld (PersistenceCapable pc, Object
oid) must be an instance of the [DO identity class, or a ClassCastException is thrown.]

A7.12-7 [publ i ¢ void jdoCopyKeyFi el dsToChj ect | d(Obj ect | dFi el dSup-
plier fs, Object oid);

This method copies fields from the field manager instance to the second parameter in-
stance.First parameter is ObjectldFieldManager instead of ObjectldFieldSupplier according to
JDO Spec. 1.0 Assertions.] A7.12-8 [Each key field in the Obj ect | d class matching a key
field in the Per si st enceCapabl e class is set by the execution of this method.] A7.12-9
[For each key field, the method of the Cbj ect | dFi el dSuppl i er is called for the corre-
sponding type of field.] A7.12-10 [The second parameter must be an instance of the JDO
identity class. If the parameter is not of the correct type, then Cl assCast Excepti on is
thrown. If the class uses single field identity, this method always throws JDOFat al | n-
t er nal Excepti on.]

A7.12-25 [publ i ¢ voi d j doCopyKeyFi el dsFronthj ect | d(Cbj ect | dFi el d-
Consuner fc, Chject oid);

This method copies fields to the field manager instance from the second parameter in-
stance.] A7.12-26 [Each key field in the Obj ect | d class matching a key field in the Per -
si st enceCapabl e class is retrieved by the execution of this method.] A7.12-27 [For
each key field, the method of the Cbj ect | dFi el dConsuner is called for the corre-

74 May 16, 2005

Java Data Objects 2.0

JDO20

sponding type of field.] A7.12-28 [The second parameter must be an instance of the JDO
identity class. If the parameter is not of the correct type, then Cl assCast Excepti on is
thrown.]

interface ObjectldFieldSupplier

A7.12-11 [bool ean fetchBool eanField (int fiel dNunber);]
A7.12-12[char fetchCharField (int fieldNunber);]
A7.12-13 [short fetchShortField (int fieldNunber);]
A7.12-14[int fetchintField (int fieldNunber);]
A7.12-15[l ong fetchLongField (int fieldNunber);]
A7.12-16[fl oat fetchFloatField (int fieldNunber);]
A7.12-17 [doubl e fetchDoubl eField (int fieldNunber);]
A7.12-18[String fetchStringField (int fieldNunber);]
A7.12-19 [(bj ect fetchObjectField (int fieldNunber);]

These methods all fetch one field from the field manager. The returned value is stored in
the object id instance. The generated code in the Per si st enceCapabl e class calls a
method in the field manager for each key field in the object id. The field number is the same
as in the persistence capable class for the corresponding key field.

interface Objectl dFieldConsumer

A7.12-29[voi d storeBool eanField (int fieldNunber, bool ean val ue);]
A7.12-30[voi d storeCharField (int fieldNunber, char value);]
A7.12-31[void storeShortField (int fieldNunber, short value);]
A7.12-32[void storelntField (int fieldNunber, int value);]
A7.12-33[voi d storeLongField (int fieldNunber, |ong value);]
A7.12-34[void storeFloatField (int fieldNunber, float value);]
A7.12-35[voi d storeDoubl eField (int fieldNunber, double value);]
A7.12-36 [void storeStringField (int fieldNunber, String value);]
A7.12-37[void storeQbjectField (int fieldNunber, bject value);]

These methods all store one field to the field manager. The value is retrieved from the ob-
ject id instance. The generated code in the Per si st enceCapabl e class calls a method
in the field manager for each key field in the object id. The field number is the same as in
the persistence capable class for the corresponding key field.

interface ObjectldFieldManager extends ObjectldFieldSupplier,
Objectl dFieldConsumer

This interface is a convenience interface that extends both Cbj ect | dFi el dSuppl i er
and Obj ect | dFi el dConsuner .

Detachable

This interface contains methods used by the St at eManager to manage the list of loaded
and modified fields in a detached instance.

package j avax.jdo. spi;
public interface Detachable {

75 May 16, 2005

Java Data Objects 2.0

voi d j doProvi deLoadedFi el dLi st () ;

This method calls the St at eManager with the current list of loaded fields.

voi d j doProvi deModi fi edFi el dLi st();

This method calls the St at eManager with the current list of modified fields.

voi d j doRepl aceLoadedFi el dLi st () ;

This method calls the St at eManager to obtain the replacement list of loaded fields.
voi d j doRepl aceModi fi edFi el dLi st () ;

This method calls the St at eManager to obtain the replacement list of modified fields.

}

JDO 2.0 76 May 16, 2005

Java Data Objects 2.0

JDOHéelper

JDCOHel per is a class with static methods that is intended for use by persistence-aware
classes. It contains methods that allow interrogation of the persistent state of an instance
of a persistence-capable class.

A8-1 [Each method delegates to the instance, if it implements Per si st enceCapabl e.]
Otherwise, it delegates to any JDO implementations registered with JDOl npl Hel per via
the St at el nt er r ogat i on interface.

If no registered implementation recognizes the instance, then
e if the method returns a value of reference type, it returns nul | ;
e if the method returns a value of boolean type, it returns f al se;

if the method returns voi d, there is no effect.If no registered implementation recognizes
the instance, then

e if the method returns a value of reference type, it returns nul | ;
e if the method returns a value of boolean type, it returns f al se;

if the method returns voi d, there is no effect.If no registered implementation recognizes
the instance, then

e if the method returns a value of reference type, it returns nul | ;
e if the method returns a value of boolean type, it returns f al se;
¢ if the method returns voi d, there is no effect.

package j avax.j do;

cl ass JDOHel per {

static PersistenceManager get PersistenceManager (Object pc);

AB8.1-1 [This method returns the associated Per si st enceManager .] It returns nul | if
the instance is A8.1-2 [transient] or A8.1-4 [nul |] or A8.1-3 [if its class is not persistence-

See also Per si st enceCapabl e. j doCet Per si st enceManager ().

static void nakeDirty (Cbject pc, String fiel dName);

A8.2-1 [This method marks the specified field dirty so that its values will be modified in
the datastore when the instance is flushed. The f i el dName is the name of the field to be
marked as dirty, optionally including the fully qualified package name and class name of
the field.] This method has no effect if the instance is A8.2-2 [transient] or A8.2-3 [nul |],

8.1 Persistence Manager
capable.]
8.2 MakeDirty
JDO 2.0

77 May 16, 2005

Java Data Objects 2.0

or A8.2-4 [if its class is not persistence-capable]; or A8.2-6 [f i el dNane is not a managed
field]A8.2-5 [If the instance is not transient and the field is not managed, a [DOUserException is
thrown by makeDirty].

See also Per si st enceCapabl e. j doMakeDirty(String fi el dNane).

static Object getCbjectld (hject pc);

A8.3-1 [This method returns the JDO identity of the instance for persistent and detached
instances.] It returns nul | if the instance is A8.3-2 [transient] or A8.3-4 [nul |] or A8.3-3
[if its class is not persistence-capable]. A8.3-9 [If the identity is being changed in a transac-
tion, this method returns the identity as of the beginning of the transaction.]

See also Persi stenceCapabl e.j doGet Cbjectld() and PersistenceMan-
ager. get oj ect 1 d(Cbj ect pc).

static Object[] getCbjectlds (Object[] pcs);

static Collection getjectlds (Collection pcs);

These methods return the JDO identities of the parameter instances. For each instance in
the parameter, the get Qbj ect | d method is called. They return one identity instance for
each persistence-capable instance in the parameter. The order of iteration of the returned
Col | ect i on exactly matches the order of iteration of the parameter Col | ect i on.

static Object getTransactional Objectld (Qbject pc);

A8.3-5 [This method returns the JDO identity of the instance.] It returns nul | if the in-
stance is A8.3-6 [transient] or A8.3-8 [nul |] or A8.3-7 [does not implement Per si s-
t enceCapabl e]. A8.3-10 [If the identity is being changed in a transaction, this method
returns the current identity in the transaction.]

See also Persi st enceCapabl e. j doGet Transacti onal Qbj ectld()and Per -
si st enceManager . get Transacti onal Cbj ect | d(Obj ect pc).

static Object getVersion (Object pc);

This method returns the JDO version of the instance for persistent and detached instances.
It returns nul | if the instance is transient or nul | or if its class is not persistence-capable.

The status interrogation methods return a bool ean that represents the state of the in-

static boolean isDirty (Object pc);

A8.4.1-1 [Instances whose state has been changed in the current transaction returnt r ue.]
A8.4.1-2 [If the object parameter is not null and implements PersistenceCapable, [DOHelper.is-
Dirty delegates to the parameter instance and instances whose state has not been changed in the cur-
rent transaction return false]lt returns f al se if the instance is A8.4.1-3 [transient] or A8.4.1-
5[nul I T or if A8.4.1-4 [its class is not persistence-capable].

8.3 JDO Identity
84 JDO Version
8.5 Statusinterrogation
stance:
85.1 Dirty
JDO 2.0

78 May 16, 2005

Java Data Objects 2.0

See also Per si st enceCapabl e. jdol sDirty();

static bool ean isTransactional (Object pc);

A8.4.2-1 [Instances whose state is associated with the current transaction return
t r ue.]JA8.4.2-2 [If the object parameter is not null, not transient, and implements PersistenceCa-
pable, isTransactional delegates to the parameter instance and instances whose state is not associ-
ated with the current transaction return false] It returns f al se if the instance is A8.4.2-3
[transient] or A8.4.2-5 [nul |] or A8.4.2-4 [if its class is not persistence-capable].

See also Per si st enceCapabl e. j dol sTransacti onal ().

static bool ean isPersistent (Object pc);

A8.4.3-1 [Instances that represent persistent objects in the datastore returnt r ue]. A8.4.3-
2 [If the object parameter is not null, not transient, and implements PersistenceCapable, isPersis-
tent delegates to the parameter instance and instances that do not represent persistent objects in the
data store return false]lt returns f al se if the instance is A8.4.3-3 [transient] or A8.4.3-5
[nul |] or A8.4.3-4 [if its class is not persistence-capable].

See also Per si st enceCapabl e. j dol sPersi stent () ;

static bool ean i sNew (Obj ect pc);

A8.4.4-1 [Instances that have been made persistent in the current transaction returnt r ue.]
A8.4.4-2 [If the object parameter is not null, not transient, and implements PersistenceCapable, is-
New delegates to the parameter instance and instances that have not been made persistent in the
current transaction return false]lt returns f al se if the instance is A8.4.4-3 [transient] or
A8.4.4-5 [nul |] or A8.4.4-4 [if its class is not persistence-capablel.

See also Per si st enceCapabl e. j dol sNew() ;

static bool ean isDeleted (Object pc);

A8.4.5-1 [Instances that have been deleted in the current transaction returnt r ue.] A8.4.5-
2 [If the object parameter is not null, not transient, and implements PersistenceCapable, isDeleted
delegates to the parameter instance and instances that have not been deleted in the current transac-
tion return false]lt returns f al se if the instance is A8.4.5-3 [transient] or A8.4.5-5 [nul |]
or A8.4.5-4 [if its class is not persistence-capablel].

See also Per si st enceCapabl e. j dol sDel et ed() ;

static bool ean i sDetached (bject pc);

Instances that have been detached return true. The method returns false if the instance is
transient or null or if its class is not detachable.

See also Per si st enceCapabl e. j dol sDet ached() ;

Per sistenceM anager Factory methods

8.5.2 Transactional

8.5.3 Per sistent

8.5.4 New

8.5.5 Deleted

8.5.6 Detached

8.6
A8.6-1[public static

JDO 2.0

79 May 16, 2005

Java Data Objects 2.0

JDO20

Per si st enceManager Fact ory get Persi st enceManager Fact ory
(Properties props, CassLoader cl);]
A8.6-2 [public static
Per si st enceManager Fact ory get Per si st enceManager Fact ory
(Properties props);]

These methods return a Per si st enceManager Fact ory based on properties con-
tained in the Properti es parameter. A8.6-3 [In the method without a class loader pa-
rameter, the calling thread’s current cont ext Cl assLoader is used to resolve the class
name.]

public static
Per si st enceManager Fact ory get Per si st enceManager Factory
(File file);
public static
Per si st enceManager Fact ory get Persi st enceManager Fact ory
(File file, O assLoader |oader);
public static
Per si st enceManager Fact ory get Per si st enceManager Factory
(String resourceNane) ;
public static
Per si st enceManager Fact ory get Persi st enceManager Fact ory
(String resourceNane, C assLoader | oader);
public static
Per si st enceManager Fact ory get Per si st enceManager Factory
(I nput Stream stream ;
public static
Per si st enceManager Fact ory get Persi st enceManager Fact ory
(I'nput Stream stream Cl assLoader | oader);

These methods use the parameter(s) passed as arguments to construct a Pr operti es in-
stance, and then delegate to the static method get Per si st enceManager Fact ory in
the class named in the property j avax. j do. Per si st enceManager Fact or yCl ass.
If there are any exceptions while trying to construct the Pr operti es instance or to call
the static method, then either A8.6-4 [JDOFat al User Except i on] or A8.6-5 [JDOFa-
tal I nt er nal Except i on is thrown], depending on whether the exception is due to the
user or the implementation. The nested exception indicates the cause of the exception.

AB8.6-6 [If the class named by the] avax. j do. Per si st enceManager Fact or yCl ass
property cannot be found, or is not accessible to the user, then JDOFat al User Excep-
ti on is thrown.] A8.6-7 [If there is no public static implementation of the get Per si s-
t enceManager Fact ory(Properti es) method, then
JDCOFat al I nt er nal Except i on is thrown.] A8.6-8 [If the implementation of the static
get Per si st enceManager Fact or y(Properti es) method throws an exception, it
is rethrown by this method.]

The following are standard key values for the Pr operti es:

80 May 16, 2005

Java Data Objects 2.0

JDO20

j avax. j do. Per si st enceManager Fact oryd ass
javax.jdo.option. Qptinistic

j avax. j do. opti on. Ret ai nVal ues

javax.j do. opti on. Rest or eVal ues

j avax.j do. option. | gnoreCache

j avax. j do. opti on. Nontransacti onal Read

j avax.j do. option. Nontransacti onal Wite
javax.jdo.option. Multithreaded

j avax. j do. opti on. Connecti onDri ver Name

j avax.j do. option. Connecti onUser Nane

j avax. j do. opti on. Connect i onPasswor d

j avax. j do. opti on. Connecti onURL

j avax. j do. opti on. Connecti onFact or yNane
j avax. j do. opti on. Connecti onFact or y2Name
j avax. j do. opti on. Mappi ng

JDO implementations are permitted to define key values of their own. A8.6-9 [Any key val-
ues not recognized by the implementation must be ignored.] A8.6-10 [Key values that are
recognized but not supported by an implementation must result ina JDOFat al User Ex-
cept i on thrown by the method.]

A8.6-11 [The returned Per si st enceManager Fact ory is not configurable (the set -
XXX methods will throw an exception).] A8.6-12 [JDO implementations might manage a
map of instantiated Per si st enceManager Fact ory instances based on specified
property key values, and return a previously instantiated Per si st enceManager Fac-
t ory instance. In this case, the properties of the returned instance must exactly match the
requested properties.]

public static
Per si st enceManager Fact ory get Persi st enceManager Fact ory
(String jndi Nanme, Context context);

This method looks up the Per si st enceManager Fact or y using the naming context
and name supplied. The implementation’s factory method is not called. The behavior of
this method depends on the implementation of the context and its interaction with the
saved Per si st enceManager Fact ory object. As with the other factory methods, the
returned Per si st enceManager Fact ory is not configurable.

81 May 16, 2005

Java Data Objects 2.0

JDOImplHe per

This class is a public helper class for use by JDO implementations. It contains a registry of
metadata by class. Use of the methods in this class avoids the use of reflection at runtime.
Per si st enceCapabl e classes register metadata with this class during class initializa-
tion.

NOTE: Thisinterface is not intended to be used by application programmers.
It isfor use only by implementations.

package j avax.jdo. spi;
public class JDO npl Hel per {

9.1

JDOImplHe per access
A9.1-1 [public static JDO npl Hel per getlnstance()
t hrows SecurityException;

This method returns an instance of the JDO npl Hel per class if the caller is authorized
for JDOPer mi ssi on(“ get Met adat a”) 1, and A9.1-2 [throws Secur i t yExcepti on
if not authorized.] A9.1-3 [This instance gives access to all of the other methods], A9.1-4
[except for r egi st er Ol ass, which is static and does not need any authorization.]

9.2

JDO20

M etadata access
A9.2-1[public String[] getFieldNanmes (C ass pcd ass);

This method returns the names of persistent and transactional fields of the parameter
class.] A9.2-2 [If the class does not implement Per si st enceCapabl e], or A9.2-3 [if it
has not been enhanced correctly to register its metadatal, a JDOFat al User Excepti on
is thrown.

A9.2-4 [Otherwise, the names of fields that are either persistent or transactional are re-
turned, in order. The order of names in the returned array are the same as the field num-
bering. Relative field 0 refers to the first field in the array. The length of the array is the
number of persistent and transactional fields in the class.]

A9.2-5[public O ass[] getFieldTypes (C ass pcd ass);

This method returns the types of persistent and transactional fields of the parameter class.]
A9.2-6 [If the parameter does not implement Per si st enceCapabl e], or A9.2-7 [if it has
not been enhanced correctly to register its metadatal, a JDOFat al User Except i on is
thrown.

A9.2-8 [Otherwise, the types of fields that are either persistent or transactional are re-
turned, in order. The order of types in the returned array is the same as the field number-
ing. Relative field O refers to the first field in the array. The length of the array is the
number of persistent and transactional fields in the class.]

82 May 16, 2005

Java Data Objects 2.0

A9.2-9 [public byte[] getFieldFlags (O ass pcd ass);

This method returns the field flags of persistent and transactional fields of the parameter
class.] A9.2-10 [If the parameter does not implement Per si st enceCapabl e], or A9.2-
11 [if it has not been enhanced correctly to register its metadatal, a JDOFat al User Ex-
cepti on is thrown.

A9.2-12 [Otherwise, the types of fields that are either persistent or transactional are re-
turned, in order. The order of types in the returned array is the same as the field number-
ing. Relative field O refers to the first field in the array. The length of the array is the
number of persistent and transactional fields in the class.]

A9.2-13 [publ i ¢ C ass get Persi st enceCapabl eSuperclass (C ass pc-
Cl ass);

This method returns the Per si st enceCapabl e superclass of the parameter class], or
A9.2-14 [nul | if there is none.]

Per sistence-capable instance factory
A9.3-1[publ i c PersistenceCapabl e new nstance (C ass pcd ass,

A9.3-2 [publ i ¢ Persi stenceCapabl e new nstance (C ass pcd ass,
St at eManager sm bj ect o0id);]

A9.3-3 [If the class does not implement Per si st enceCapabl e], or A9.3-4 [if it has not
been enhanced correctly to register its metadatal, a JDOFat al User Excepti on is
thrown. A9.3-5 [If the class is abstract, a JDOFat al | nt er nal Excepti on is thrown.]

Otherwise, a new instance of the class is constructed and initialized with the parameter
St at eManager . A9.3-6 [The new instance has its j doFl ags set to LOAD_REQUI RED]
but A9.3-7 [has no defined state. The behavior of the instance is determined by the owning

A9.3-8 [The second form of the method returns a new instance of Per si st enceCa-
pabl e that has had its key fields initialized by the Obj ect | d parameter instance.] A9.3-
9 [If the class has been enhanced for datastore identity, then the 0i d parameter is ignored.]

See also Persi st enceCapabl e. j doNewl nst ance(St at eManager sm and
Per si st enceCapabl e. j doNewl nst ance (St at eManager sm Cbj ect oid).

Registration of PersistenceCapable classes
A9.4-1[public static void registerC ass
(Cass pcOass, String[] fiel dNanes,
G ass[] fieldTypes,
byte[] fi el dFl ags,
O ass persi st enceCapabl eSuper cl ass,
Per si st enceCapabl e pcl nst ance);

This method registers a Per si st enceCapabl e class so that the other methods can re-
turn the correct information. The registration must be done in a static initializer for the per-

9.3
St at eManager sm; 1
St at eManager .]
94
sistence-capable class.]
JDO 2.0

83 May 16, 2005

Java Data Objects 2.0

Notification of PersistenceCapable classregistrations
A9.4.1-1 [addRegi st er C assLi st ener (Regi st erd assLi stener rcl);

This method registers a Regi st er Cl assLi st ener to be notified upon new Per si s-
t enceCapabl e Cl ass registrations.] A Regi st er Cl assEvent instance is generated
A9.4.1-2 [for each class registered already] plus A9.4.1-3 [classes registered in future],
which is sent to each registered listener. A9.4.1-4 [The same event instance might be sent

A9.4.1-5 [r enoveRegi st er O assLi st ener (Regi st er d assLi stener rcl);

This method removes a Regi st er Ol assEvent from the list to be notified upon new
Per si st enceCapabl e C ass registrations.]

public class RegisterC assEvent extends java.util.Event Gbject {

An instance of this class is generated for each class that registers itself, and is sent to each

A9.4.1-6 [publ i ¢ C ass get Regi steredd ass();
Returns the newly registered Cl ass.]
A9.4.1-7 [public String[] getFiel dNanmes();
Returns the field names of the newly registered Cl ass.]
A9.4.1-8[public C ass[] getFieldTypes();
Returns the field types of the newly registered Cl ass.]
A9.4.1-9 [publ i c byte[] getFiel dFl ags();
Returns the field flags of the newly registered Cl ass.]
A9.4.1-10 [publ i ¢ Cl ass get Persi st enceCapabl eSuper cl ass();
Returns the Per si st enceCapabl e superclass of the newly registered Cl ass.]
} /1 class RegisterdC assEvent

public interface Regi sterd assLi stener extends
java. util.EventLi stener {

This interface must be implemented by classes that register as listeners to be notified
of registrations of Per si st enceCapabl e classes.

A9.4.1-11[voi d regi sterC ass (Regi sterd assEvent rce);
This method is called for each Per si st enceCapabl e class that registers itself.]
} // interface Registerd assLi stener

A9.5.1[public static void registerAuthorizedStateManager d ass

This method manages the list of classes authorized to execute r epl aceSt at eManager .
During execution of this method, the security manager, if present, is called to validate that

94.1
to multiple listeners.]
Register ClassEvent
registered listener.
Register ClassL istener
9.5 Security administration
(C ass snC ass);
JDO 2.0

84 May 16, 2005

Java Data Objects 2.0

the caller is authorized for JDOPer m ssi on(“ set St at eManager ") . If successful, the
parameter class is added to the list of authorized St at eManager classes.]

This method provides for a fast security check during makePer si st ent . An implemen-
tation of St at eManager should register itself with the JDO npl Hel per to take advan-
tage of this fast check.

A9.5.2 [public static void checkAuthorizedStat eManager (St at eManager
sm ;

This method is called by enhanced persistence-capable class method r epl aceSt at eM
anager . If the parameter instance is of a class in the list of authorized St at eManager
classes, then this method returns silently.] A9.5.3 [If not, then the security manager, if
present, is called to validate that the caller is authorized for JDOPer mi ssi on(“set -
St at eManager ") . If successful, the method returns silently.] A9.5.4 [If not, a Securi -
t yExcept i on is thrown.]

9.6

JDO20

Application identity handling
A9.6.1 [public Object newbjectldlnstance(C ass pcd ass);

This method creates a new instance of the Obj ect | d class for the Per si st enceCa-
pabl e class.] A9.6.2 [If the class uses datastore identity, then nul | is returned.] A9.6.3 [If
the class is abstract, a JDOFat al | nt er nal Except i on is thrown.]

A9.6.4 [public Cbject newCbjectldlnstance(C ass pcd ass, bject
key) ;

This method creates a new instance of the Obj ect | d class for the Per si st enceCa-
pabl e class, using the appropriate constructor of the object id class.] A9.6.5 [If the class
uses datastore identity, then nul | is returned.] A9.6.6 [If the class is abstract, a JDOFa-
tal I nt er nal Excepti on is thrown.]

public Cbject newlbjectldl nstance(PersistenceCapabl e pc);

This method returns an instance of the Qbj ect | d class for the parameter Per si s-
t enceCapabl e instance. If the class of the instance uses an immutable Qbj ect | d class,
then the oid instance associated with the persistent instance might be returned. If the class
of the instance uses datastore identity, then nul | is returned.

A9.6.7 [public void copyKeyFi el dsTohjectld (Class pcd ass, Per-
si stenceCapabl e. Obj ect | dFi el dSupplier fs, Object oid);

This method copies key fields from the field manager to the Obj ect | d instance oid.] This
is intended for use by the implementation to copy fields from a datastore-specific repre-
sentation to the Obj ect | d. A9.6.8 [If the class is abstract, a JDOFat al | nt er nal Ex-
cepti on is thrown.]

A9.6.9 [publ i c voi d copyKeyFi el dsFrombj ectld (C ass pcC ass, Per-
si st enceCapabl e. Obj ect | dFi el dConsuner fc, Cbject oid);

This method copies key fields to the field manager from the Obj ect | d instance oid.] This
is intended for use by the implementation to copy fields to a datastore-specific representa-
tion from the Cbj ect | d. A9.6.10 [If the class is abstract, a JDOFat al | nt er nal Excep-
tion is thrown.]

85 May 16, 2005

Java Data Objects 2.0

9.7

JDO20

Per sistence-capable class state interrogation

For JDO implementations that do not support BinaryCompatibility, an instance of
St at el nt er r ogat i on must be registered with JDO npl Hel per to handle JDOHel per
methods for instances that do not implement Per si st enceCapabl e.

The St at el nt er r ogat i on interface is implemented by a JDO implementation class to
take responsibility for determining the life cycle state and object identity, and for marking
fields dirty.

package javax. | do. spi;

public interface Statelnterrogation {

Bool ean i sPersi stent (hject pc);

Bool ean i sTransacti onal (Obj ect pc);

Bool ean i sDirty(Object pc);

Bool ean i sNew(Qbj ect pc);

Bool ean i sDel et ed(hj ect pc);

Per si st enceManager get Persi st enceManager (Cbj ect pc);

hj ect get Obj ect 1 d(Obj ect pc);

hj ect get Transacti onal Cbj ect | d(Obj ect pc);

bool ean nakeDirty(Cbject pc, String fiel dNane);

hj ect get Versi on(Obj ect pc);

}

For methods returning Bool ean, Per si st enceManager , and Qbj ect , if the St at el n-
t err ogat i on instance does not recognize the parameter instance, nul | is returned, and
the next registered St at el nt er r ogat i on instance is called.

For makeDi rty, if the St at el nt er r ogat i on instance does not recognize the parameter

instance, f al se is returned, and the next registered St at el nt err ogat i on instance is
called.

public void addStatelnterrogation(Statelnterrogation si);
This method of JDO npl Hel per registers an instance of St at el nt er r ogat i on for del-
egation of life cycle state queries made on JDOHelper.

public void renoveStatelnterrogation(Statelnterrogation si);
This method of JDA npl Hel per removes an instance of St at el nt err ogati on, soitis
no longer called by JDOHel per for life cycle state queries.

86 May 16, 2005

Java Data Objects 2.0

10

| nstanceCallbacks

Instance callbacks provide a mechanism for instances to take some action on specific JDO
instance life cycle events. For example, classes that include non-persistent fields might use
callbacks to correctly populate the values in these fields. Classes that affect the runtime en-
vironment might use callbacks to register and deregister themselves with other objects.
This interface defines the methods executed by the St at eManager for these life cycle
events.

A10-1 REMOVE THIS ASSERTION - Duplicate of A10-2[These methods will be called only
on instances for which javax.jdo.InstanceCallbacks.class.isInstance(pc) returns true.]

A10-2 [These methods will be called only on instances for which the class implements the
corresponding callback interface .] For backward compatibility, | nst anceCal | backs is
redefined as follows:

package javax. | do;

public interface |InstanceCall backs extends
javax.jdo. listener. LoadCal | back,
javax.jdo.listener. StoreCall back,
javax.jdo.listener. C ear Cal | back,
javax.jdo.listener. Del eteCal | back {

}

10.1 jdoPostL oad
package javax.jdo.listener;
public interface LoadCall back {
voi d j doPost Load();
}
A10.1-1 [This method is called after the default fetch group values have been loaded from
the St at eManager into the instance.] Non-persistent fields whose value depends on val-
ues of default fetch group fields should be initialized in this method. A10.1-2 [This method
is not modified by the enhancer.] Only fields that are in the default fetch group should be
accessed by this method, as other fields are not guaranteed to be initialized. This method
might register the instance with other objects in the runtime environment.
A10.1-3 [The context in which this call is made does not allow access to other persistent
JDO instances.]

10.2 jdoPreStore
package javax.jdo.listener;

JDO 2.0 87 May 16, 2005

Java Data Objects 2.0

public interface StoreCall back {
void jdoPreStore();

}

A10.2-1 [This method is called before the values are stored from the instance to the data-
store.] This happens during bef or eConpl eti on and f | ush for persistent-new and
persistent-dirty instances of persistence-capable classes that implement St or eCal | -
back. Datastore fields that might have been affected by modified non-persistent fields
should be updated in this method. A10.2-2 [This method is modified by the enhancer] so
that changes to persistent fields will be reflected in the datastore.

A10.2-3 [The context in which this call is made allows access to the Per si st enceMan-
ager and other persistent JDO instances.]

A10.2-4 [This method is not called for deleted instances.]

package javax.jdo.listener;
public interface O earCall back {

A10.3-1 [This method is called before the implementation clears the values in the instance
to their Java default values. This happens during an application call to evi ct , and in af -

t er Conpl et i on for commit with Ret ai nVal ues f al se and rollback with Rest or -

eVal ues fal se. The method is called during any state transition to hollow.] Non-
persistent, non-transactional fields should be cleared in this method. Associations between
this instance and others in the runtime environment should be cleared. A10.3-2 [This meth-
od is not modified by the enhancer], so access to fields is not mediated.

package javax.jdo.listener;
public interface Del eteCall back {

A10.4-1 [This method is called during the execution of del et ePer si st ent before the
state transition to persistent-deleted or persistent-new-deleted.] A10.4-2 [Access to field
values within this call are valid.] A10.4-3 [Access to field values after this call are disal-
lowed.] A10.4-4 [This method is modified by the enhancer] so that fields referenced can be
used in the business logic of the method.

To implement a containment aggregate, the user could implement this method to delete

jdoPreDetach and jdoPostDetach
package javax.jdo.listener;
public interface DetachCall back {

10.3 jdoPreClear
void jdoPreC ear();
}
10.4 jdoPreDelete
voi d j doPreDel ete();
}
contained persistent instances.
10.5
JDO 2.0

88 May 16, 2005

Java Data Objects 2.0

voi d j doPreDetach();

A10.5-1 [This method is called during the execution of det achCopy on the persistent in-
stance before the copy is made.]

public void jdoPostDetach(hj ect detached);

A10.5-2 [This method is called during the execution of det achCopy on the detached in-
stance after the copy is made. The parameter is the corresponding persistent instance.]

}

10.6

JDO20

jdoPreAttach and jdoPostAttach

package javax.jdo.listener;
public interface AttachCall back {
voi d jdoPreAttach();

A10.6-1 [This method is called during the execution of at t achCopy on the parameter in-
stance of at t achCopy before the copy is made.]

public void jdoPost Attach(hj ect attached);

A10.6-2 [This method is called during the execution of at t achCopy on the persistent in-
stance after the copy is made. The parameter is the corresponding parameter instance of
att achCopy.]

}

89 May 16, 2005

Java Data Objects 2.0

11

Per sistenceM anager Factory

This chapter details the Per si st enceManager Fact or y, which is responsible for cre-
ating Per si st enceManager instances for application use.

package | avax.j do;
public interface PersistenceManager Factory {

111

JDO20

I nterface Per sistenceM anager Factory

A JDO vendor must provide a class that implements Per si st enceManager Fact ory
and is permitted to provide a Per si st enceManager constructorf[s].

A non-managed JDO application might choose to use a Per si st enceManager con-
structor (JDO vendor specific) or use a Per si st enceManager Fact ory (provided by
the JDO vendor). A portable JDO application must use the Per si st enceManager Fac-
tory.

In a managed environment, the JDO Per si st enceManager instance is acquired by a
two step process: the application uses JNDI lookup to retrieve an environment-named ob-
ject, which is then cast to] avax. j do. Per si st enceManager Fact or y; and then calls
one of the factory’s get Per si st enceManager methods.

In a non-managed environment, the JDO Per si st enceManager instance is acquired by
lookup as above; by constructing a j avax. j do. Per si st enceManager ; or by con-
structing a j avax. j do. Per si st enceManager Fact ory, configuring the factory,
and then calling the factory’s get Per si st enceManager method. These constructors
are not part of the JDO standard. However, the following is recommended to support por-
table applications.

Configuring the Per si st enceManager Fact or y follows the Java Beans pattern. Sup-
ported properties have a get method and a set method.

The following properties, if set in the Per si st enceManager Fact or y, are the default
settings of all Per si st enceManager instances created by the factory:

e Opti mi sti c: the transaction mode that specifies concurrency control
A11.1-1 [PersistenceManagerFactory.setOptimistic(boolean flag) sets the value of the
Optimistic property (the transaction mode that specifies concurrency control)]
A11.1-2 [PersistenceManagerFactory.getOptimistic() returns the value of the Optimistic
property]

* Ret ai nVal ues: the transaction mode that specifies the treatment of persistent
instances after commit
A11.1-3 [PersistenceManagerFactory.setRetainValues(boolean flag) sets the value of the
RetainValues property (the transaction mode that specifies the treatment of persistent
instances after commit)]
A11.1-4 [PersistenceManagerFactory.getRetainValues() returns the wvalue of the
RetainValues property]

90 May 16, 2005

Java Data Objects 2.0

e Rest or eVal ues: the transaction mode that specifies the treatment of persistent
instances after rollback
A11.1-28 [PersistenceManagerFactory.setRestoreValues(boolean flag) sets the value of the
RestoreValues property (the transaction mode that specifies the treatment of persistent
instances after rollback)]
A11.1-29 [PersistenceManagerFactory.getRestoreValues() returns the value of the
RestoreValues property]

* I gnor eCache: the query mode that specifies whether cached instances are
considered when evaluating the filter expression
A11.1-5 [PersistenceManagerFactory.setIgnoreCache(boolean flag) sets the value of the
IgnoreCache property (the query mode that specifies whether cached instances are
considered when evaluating the filter expression)]
A11.1-6 [PersistenceManagerFactory.getlgnoreCache() returns the wvalue of the
IgnoreCache property]

e Nontransacti onal Read: the Per si st enceManager mode that allows
instances to be read outside a transaction
A11.1-7 [PersistenceManagerFactory.setNontransactionalRead(boolean flag) sets the
value of the NontransactionalRead property (the PersistenceManager mode that allows
instances to be read outside a transaction)]
A11.1-8 [PersistenceManagerFactory.getNontransactionalRead()returns the value of the
NontransactionalRead property]

e Nontransacti onal Wite: the Persi st enceManager mode that allows
instances to be written outside a transaction
A11.1-9 [PersistenceManagerFactory.setNontransactional Write(boolean flag) sets the
value of the NontransactionalWrite property (the PersistenceManager mode that allows
instances to be written outside a transaction)]
A11.1-10 [PersistenceManagerFactory.getNontransactionalWrite() returns the value of
the NontransactionalWrite property]

e Mul tithreaded: the Persi st enceManager mode that indicates that the
application will invoke methods or access fields of managed instances from
multiple threads.

A11.1-11 [PersistenceManagerFactory.set Multithreaded(boolean flag) sets the value of the
Multithreaded flag that indicates that the application will invoke methods or access fields
of managed instances from multiple threads.]

A11.1-12 [PersistenceManagerFactory.getMultithreaded() ~gets the wvalue of the
Multithreaded flag]

The following property can only be set in the Per si st enceManager Fact ory:
Mappi ng: the name of the mapping model for object-to-datastore mapping

The following properties are for convenience, if there is no connection pooling or other
need for a connection factory:

e Connect i onUser Name: the name of the user establishing the connection
A11.1-13 [PersistenceManagerFactory.setConnectionUserName(String name) sets the
value of the ConnectionUserName property (the name of the user establishing the
connection)]

A11.1-14 [PersistenceManagerFactory.getConnectionUserName() returns the value of
the ConnectionUserName property]

JDO 2.0 91 May 16, 2005

Java Data Objects 2.0

JDO20

e Connect i onPasswor d: the password for the user
A11.1-15 [PersistenceManagerFactory.setConnectionPassword(String password) sets the
value of the ConnectionPassword property (the password for the user)]

e Connect i onURL: the URL for the data source
A11.1-16 [PersistenceManagerFactory.setConnection URL(String URL) sets the value of
the ConnectionURL property (the URL for the data source)]
A11.1-17 [PersistenceManagerFactory.getConnectionURL() returns the value of the
ConnectionURL property]

e Connecti onDri ver Nane: the class name of the driver
A11.1-30 [PersistenceManagerFactory.setConnectionDriverName(String drivername)
sets the value of the ConnectionDriverName property (the class name of the driver)]
A11.1-31 [PersistenceManagerFactory.getConnectionDriverName() returns the value of
the ConnectionDriverName property]

For a portable application, if any other connection properties are required, then a connec-
tion factory must be configured.

The following properties are for use when a connection factory is used, and override the
connection properties specified in Connect i onURL, Connect i onUser Nane, or Con-
necti onPasswor d.

e Connect i onFact or y: the connection factory from which datastore connections
are obtained
A11.1-18 [PersistenceManagerFactory.setConnectionFactory(java.lang.Object
connectionFactory) sets the value of the ConnectionFactory property (the connection
factory from which data store connections are obtained)]
A11.1-19 [PersistenceManagerFactory.getConnectionFactory() returns the value of the
ConnectionFactory property]

* Connecti onFact or yNane: the name of the connection factory from which
datastore connections are obtained. This name is looked up with JNDI to locate the
connection factory.

A11.1-20 [PersistenceManagerFactory.setConnectionFactoryName(String name) sets the
value of the ConnectionFactoryName property (the name of the connection factory from
which data store connections are obtained. This name is looked up with JNDI to locate the
connection factory.)]

A11.1-21 [PersistenceManagerFactory.getConnectionFactoryName() returns the value of
the ConnectionFactoryName property]

If multiple connection properties are set, then they are evaluated in order:

e A11.1-22 [if Connect i onFact ory is specified (not nul |), all other properties
are ignored;]

* else A11.1-23 [if Connect i onFact or yNane is specified (not nul |'), all other
properties are ignored.]

For the application server environment, connection factories always return connections
that are enlisted in the thread’s current transaction context. To use optimistic transactions
in this environment requires a connection factory that returns connections that are not en-
listed in the current transaction context. For this purpose, the following two properties are
used:

e Connecti onFact ory2: the connection factory from which nontransactional
datastore connections are obtained
Al11.1-24 [PersistenceManagerFactory.setConnectionFactory2(java.lang.Object

92 May 16, 2005

Java Data Objects 2.0

JDO20

connectionFactory) sets the value of the ConnectionFactory2 property (the connection
factory from which nontransactional data store connections are obtained)]

A11.1-25 [PersistenceManagerFactory.getConnectionFactory2() returns the value of the
ConnectionFactory2 property]

e Connecti onFact or y2Nane: the name of the connection factory from which
nontransactional datastore connections are obtained. This name is looked up with
JNDI to locate the connection factory.

A11.1-26 [PersistenceManagerFactory.setConnectionFactory2Name(String name) sets
the value of the ConnectionFactory2Name property (the name of the connection factory
from which nontransactional data store connections are obtained. This name is looked up
with INDI to locate the connection factory.)]

A11.1-27 [PersistenceManagerFactory.getConnectionFactory2Name() returns the value
of the ConnectionFactory2Name property]

Construction by Properties

A11.1-32 [An implementation must provide a method to construct a Per si st enceMan-
ager Factory by a Properties instance. This static method is called by the
JDCHel per method get Per si st enceManager Factory (Properties props).

static PersistenceManager Factory get Persi stenceManager Factory
(Properties props);]

A11.1-33 [The properties consist of: “j avax. j do. Per si st enceManager Fact ory-
Cl ass”, whose value is the name of the implementation class; any JDO vendor-specific
properties; and the following standard property names, which correspond to the proper-
ties as documented in this chapter:

e« "javax.jdo.option. Optimstic"

e "javax.]j do. option. Ret ai nval ues"

e "javax.] do. option. Rest oreVal ues"

e "javax.]jdo.option.IlgnoreCache"

e "javax.]jdo.option. Nontransacti onal Read"
e "javax.] do.option. Nontransacti onal Wite"
e "javax.jdo.option. Multithreaded"

e "javax.] do.option. Connecti onUser Nane"

e "javax.] do. option. Connecti onPasswor d"

e "javax.] do.option. Connecti onURL"

e "javax.] do.option. ConnectionDriver Nane"
e "javax.] do.option. Connecti onFact or yNane"
e "javax.]j do. option. Connecti onFact or y2Nane"
e “javax.]j do. option. Mappi ng”

The property “j avax. j do. Persi st enceManager Fact oryC ass” is the fully
qualified class name of the Per si st enceManager Fact ory.]

A11.1-34 [The St r i ng type properties are taken without change from the value of the cor-
responding keys.] Bool ean type properties treat the St ri ng value as representing

93 May 16, 2005

Java Data Objects 2.0

A11.1-35 [t r ue if the value of the St ri ng compares equal, ignoring case, to “true”],
and A11.1-36 [f al se if the value of the St r i ng is anything else.]

A11.1-37 [Any property not recognized by the implementation must be silently ignored.]
A11.1-38 [Any standard property corresponding to an optional feature not supported by
the implementation must throw JDOUnsuppor t edQpt i onExcepti on.]

The Mappi ng property specifies the object-data store mapping to be used by the imple-
mentation. The property is used to construct the names of resource files containing meta-
data. For more information on the use of this property, see Chapters 15 and 18.

A11.1-39 [Default values for properties not specified in the Properties parameter are pro-
vided by the implementation.] A portable application must specify all values for proper-
ties needed by the application.

There are properties that are provided by the JDOHel per methods in the following cases.

e If the user uses the methods get Persi stenceManager Factory(File
file) or getPersistenceManager Factory(File file,
Cl assLoader | oader) then the Properti es instance passed to the static
method will contain a property with a key of
“javax. | do. spi . PropertiesFil eNane”,and a value equal to the result of
calling get Absol ut ePat h() on the file parameter. Absence of this property
means that neither of these methods was used.

e If the user uses the methods get Per si st enceManager Factory(Stri ng
r esour ceNane) or (get PersistenceManager Factory(String
resourceNane, C assLoader | oader) then the Properti es instance
passed to the static method will contain a property with a key of
"j avax. j do. spi . Properti esResourceNane”, and a value equal to the
name of the resource. Absence of this property means that neither of these
methods was used.

11.2

JDO20

ConnectionFactory

For implementations that layer on top of standard Connect or implementations, the con-
figuration will typically support all of the associated Connect i onFact or y properties.

When used in a managed environment, the Connect i onFact or y will be obtained from
a ManagedConnect i onFact ory, which is then responsible for implementing the re-
source adapter interactions with the container.

The following properties of the Connect i onFact or y should be used if the data source
has a corresponding concept:

¢ URL: the URL for the data source
e User Nane: the name of the user establishing the connection
e Passwor d: the password for the user

e Dri ver Nane: the driver name for the connection

Ser ver Nane: name of the server for the data source

Por t Nunber : port number for establishing connection to the data source

MaxPool : the maximum number of connections in the connection pool

M nPool : the minimum number of connections in the connection pool

94 May 16, 2005

Java Data Objects 2.0

e MW t : the number of milliseconds to wait for an available connection from the
connection pool before throwing a JDODat aSt or eExcepti on

e LogW i t er : the PrintWriter to which messages should be sent

e Logi nTi meout : the number of seconds to wait for a new connection to be
established to the data source

In addition to these properties, the Per si st enceManager Fact ory implementation
class can support properties specific to the data source or to the Per si st enceManager .

Aside from vendor-specific configuration APIs, there are these required methods for Per -
si st enceManager Fact ory:

Per si st enceManager get Persi st enceManager () ;
Per si st enceManager get Persi stenceManager (String userid, String

Returns a Per si st enceManager instance with the configured properties. The instance
might have come from a pool of instances. The default values for option settings are reset
to the value specified in the Per si st enceManager Fact or y before returning the in-

A11.3-1 [PersistenceManagerFactory.get PersistenceManager() returns a PersistenceManager in-
stance with the configured properties and the default values for option settings]

A11.3-2 [PersistenceManagerFactory.get PersistenceManager(String userid, String password) re-
turns a PersistenceManager instance with the configured properties and the default values for op-

A11.3-3, A11.3-4 [After the first use of get Per si st enceManager, none of the set
methods will succeed.] The settings of operational parameters might be modified dynam-
ically during runtime via a vendor-specific interface.

A11.3-5 [If the method with the userid and password is used to acquire the Per si s-
t enceManager, then all accesses to the connection factory during the life of the Per -
si st enceManager will use the userid and password from a call to get connections.]
A11.3-6 [If Per si st enceManager instances are pooled, then only Per si st enceMan-
ager instances with the same userid and password will be used to satisfy the request.]

Close the Per sistenceM anager Factory

During operation of JDO, resources might be acquired on behalf of a Per si st enceMan-
ager Factory, e.g. connection pools, persistence manager pools, compiled queries,
cached metadata, etc. If a Per si st enceManager Fact or y is no longer needed, these re-
sources should be returned to the system. The close method disables the Per si st ence-
Manager Fact or y and allows cleanup of resources.

Premature close of a Per si st enceManager Fact or y has a significant impact on the op-
eration of the system. Therefore, a security check is performed to check that the caller has
the proper permission. The security check is for JDOPer mi ssi on("cl osePer si s-
t enceManager Fact or y"). If the security check fails, the close method throws Securi -

A11.4-2 [11.4-1 exists already under chap. 11.5voi d cl ose();

11.3 PersistenceM anager access
password) ;
stance.
tion settings]
114
t yExcepti on.
JDO 2.0

95 May 16, 2005

Java Data Objects 2.0

Close this PersistenceManager Factory.] A11.4-3 [Check for JDOPerm s-
si on("cl osePer si st enceManager Fact ory") and if not authorized, throw Secu-
rityException.]

A11.4-4 [If the authorization check succeeds, check to see that all Per si st enceManager
instances obtained from this Per si st enceManager Fact ory have no active transac-
tions. If any Persi st enceManager instances have an active transaction, throw a
JDOUser Except i on, with one nested JDOUser Except i on for each Per si st enceM
anager with an active Tr ansacti on.]

A11.4-5 [If there are no active transactions, then close all Per si st enceManager instanc-
es obtained from this Per si st enceManager Fact ory,] A11.4-6 [mark this Per si s-

t enceManager Fact ory as closed,] A11.4-7 [disallow get Persi st enceManager

methods,] and A11.4-8 [allow all other get methods.] A11.4-9 [If a set method or get Per -

si st enceManager method is called after close, then JDOUser Except i on is thrown.]

bool ean i sd osed();
Return t r ue if this Per si st enceManager Fact or y is closed; and f al se otherwise.

The JDO vendor might store certain non-configurable properties and make those proper-
ties available to the application via a Properti es instance. This method retrieves the

Properties getProperties();

The application is not prevented from modifying the instance.

Each key and valueis a St r i ng. The keys defined for standard JDO implementations are:
e Vendor Nane: The name of the JDO vendor.

Ver si onNunber : The version number string.
A11.4-1 [PersistenceManagerFactory.getProperties() returns a Properties instance containing two
standard JDO implementation properties:

* VendorName: The name of the JDO vendor.
» VersionNumber: The version number string.]

Other properties are vendor-specific.

Col I ection supportedOptions();

The JDO implementation might optionally support certain features, and will report the
features that are supported. The supported query languages are included in the returned

A11.5-1 [This method returns a Col | ecti on of St ri ng, each St ri ng instance repre-
senting an optional feature of the implementation or a supported query language. The fol-
lowing are the values of the St r i ng for each optional feature in the JDO specification:

j avax.j do. option. Transi ent Transact i onal
j avax. j do. opti on. Nontransacti onal Read
javax.j do.option. Nontransacti onal Wite

11.5 Non-configurable Properties
Properti es instance.
11.6 Optional Feature Support
Col | ecti on.
JDO 2.0

96 May 16, 2005

Java Data Objects 2.0

j avax. j do. opti on. Ret ai nVal ues
javax.jdo.option. Qptinistic

javax.j do.option. Applicationldentity
javax.jdo.option. Datastoreldentity

j avax.j do. option. NonDurabl el dentity
javax.jdo.option. Arrayli st

j avax. j do. opti on. Li nkedLi st

j avax.j do. option. TreeMap

j avax.j do. option. Tr eeSet

j avax.j do. opti on. Vect or

j avax.j do. option. Li st

j avax.j do. option. Array
javax.jdo.option.NullCollection

j avax. j do. opti on. ChangeApplicationldentity
javax.jdo.option. BinaryConpatibility

j avax.j do. opti on. Get Dat aSt or eConnecti on

j avax. j do. query. SQ

j avax. j do. opti on. Unconst rai nedQuer yVari abl es]
A11.5-2 [The standard JDO query must be returned as the St r i ng:
j avax. j do. query. JDOQ]

Other query languages are represented by a St r i ng not defined in this specification.

11.7

JDO20

Static Properties constructor
A11.7-1[publ i c static PersistenceManager Factory
get Per si st enceManager Factory (Properties props);

This static method is not a method defined in the Per si st enceManager Fact ory in-
terface, but rather must be defined on the class that implements Per si st enceMan-
ager Fact or y. It returns an instance of Per si st enceManager Fact or y based on the
properties in the parameter.

The method is used by JDOHel per to construct an instance of Per si st enceManager -
Fact or y based on user-specified properties.

The following are standard key values for the Pr operti es:
j avax. j do. Per si st enceManager Fact oryd ass
javax.jdo.option. Qptinistic

j avax. j do. opti on. Ret ai nVal ues

j avax. j do. opti on. Rest or eVal ues

j avax. j do. option. I gnoreCache

j avax.j do. option. Nontransacti onal Read

j avax.j do. option. Nontransacti onal Wite

97 May 16, 2005

Java Data Objects 2.0

javax.jdo.option. Multithreaded

j avax. j do. opti on. Connecti onUser Nane

j avax. j do. opti on. Connecti onPassword

j avax. j do. opti on. Connecti onURL

j avax.j do. opti on. Connect i onFact or yNane

j avax. j do. opti on. Connecti onFact or y2Nane]
j avax. j do. opti on. Mappi ng

A11.7-2 [JDO implementations are permitted to define key values of their own. Any key
values not recognized by the implementation must be ignored.] A11.7-3 [Key values that
are recognized but not supported by an implementation must result in a JDOFat a-
| User Except i on thrown by the method.]

A11.7-4 [The returned Per si st enceManager Fact ory is not configurable (the set -
XXX methods will throw an exception).] A11.7-5 [JDO implementations might manage a
map of instantiated Per si st enceManager Fact ory instances based on specified
property key values, and return a previously instantiated Per si st enceManager Fac-
t ory instance. In this case, the properties of the returned instance must exactly match the
requested properties.]

11.8 Second-level cache management

Most JDO implementations allow instances to be cached in a second-level cache, and allow
direct management of the cache by knowledgeable applications. The second-level cache is
typically a single VM cache and is used for persistent instances associated with a single
Per si st enceManager Fact ory. For the purpose of standardizing this behavior, the
Dat aSt or eCache interface is used.

To obtain a reference to the cache manager, the get Dat aSt or eCache() method of Per -
si st enceManager Fact ory is used.

Dat aSt or eCache get Dat aSt or eCache() ;

If there is no second-level cache, the returned instance silently does nothing.
package javax. | do. dat ast ore;

public interface DataStoreCache {

Evicting objects from the cache
voi d evict(Cbject oid);
void evictAl();
void evictA |l (Object[] oids);
void evictAll (Collection oids);
void evictAl |l (O ass pcC ass, bool ean subcl asses);

The evict methods are hints to the implementation that the instances referred to by the ob-
ject ids are stale and should be evicted from the cache.

Pinning objectsin the cache
voi d pi n(Cbject oid);
void pinAll (Collection oids);
void pinAll (Object[] oids);

JDO 2.0 98 May 16, 2005

Java Data Objects 2.0

void pinAll (Cdass pcd ass, bool ean subcl asses);
The pin methods are hints to the implementation that the instances referred to by the object
ids should be pinned in the cache (not subject to algorithm-based eviction, but subject to
explicit eviction).
Unpinning objectsin the cache

voi d unpi n(Cbj ect oid);

voi d unpi nAll (Col | ection oids);

voi d unpi nAll (Object[] oids);

voi d unpi nAl |l (C ass pcC ass, bool ean subcl asses);

The unpin methods are hints to the implementation that the instances referred to by the
object ids should be unpinned (subject to eviction based on algorithm).

}

11.9 Registering for life cycle events

voi d addl nst anceli fecycl eLi stener (Instancelifecyclelistener 1|is-
tener, Cass[] classes);

This Per si st enceManager Fact or y method adds the listener to the list of instance life-
cycle event listeners set as the initial listeners for each Per si st enceManager created by
this Per si st enceManager Fact or y. The classes parameter identifies all of the classes of
interest. If the classes parameter is specified as nul | , events for all persistent classes and
interfaces are generated. If the classes specified have persistence-capable subclasses, all
such subclasses are registered implicitly.

The listener will be called for each event for which it implements the corresponding listen-
er interface.

void renovel nstancelifecycl eListener (InstancelLifecyclelListener
listener);

This Per si st enceManager Fact or y method removes the listener from the list of event
listeners set as the initial listeners for each Per si st enceManager created by this Per -
si st enceManager Fact ory.

The addl nst ancelLi f ecycl eLi st ener andr enpvel nst anceli f ecycl eLi st ener
methods are considered to be configuration methods and can only be called when the
Per si st enceManager Fact ory is configurable (before the first get Per si st enceM
anager is called).

JDO 2.0 99 May 16, 2005

Java Data Objects 2.0

12

Per sistenceM anager

This chapter specifies the JDO Per si st enceManager and its relationship to the appli-
cation components, JDO instances, and J2EE Connector.

The JDO Per si st enceManager is the primary interface for JDO-aware application
components. It is the factory for the Quer y interface and contains methods for managing
the life cycle of persistent instances.

The JDO Per si st enceManager interface is architected to support a variety of environ-
ments and data sources, from small footprint embedded systems to large enterprise appli-
cation servers. It might be a layer on top of a standard Connector implementation such as
JDBC or JMS, or itself include connection management and distributed transaction sup-

J2EE Connector support is optional . If it is not supported by a JDO implementation, then
a constructor for the JDO Per si st enceManager or Per si st enceManager Fact ory
is required. The details of the construction of the Per si st enceManager or Per si s-
t enceManager Fact or y are not specified by JDO.

The architecture of the PersistenceManager has the following goals:

* No changes to application programs to change to a different vendor’s
Per si st enceManager if the application is written to conform to the portability

¢ Application to non-managed and managed environments with no code changes

Architecture: JDO PersistenceM anager

The JDO Per si st enceManager instance is visible only to certain application compo-
nents: those that explicitly manage the life cycle of JDO instances; and those that query for
JDO instances. The JDO Per si st enceManager is not required to be used by JDO in-

There are three primary environments in which the JDO Per si st enceManager is ar-

* non-managed (non-application server), minimum function, single transaction,
single JDO Per si st enceManager where compactness is the primary metric;

* non-managed but where extended features are desired, such as multiple
Per si st enceManager instances to support multiple data sources, XA
coordinated transactions, or nested transactions; and

121 Overview

port.
12.2 Goals

guidelines

12.3

stances.

chitected to work:

JDO 2.0

100 May 16, 2005

Java Data Objects 2.0

* managed, where the full range of capabilities of an application server is required.

Support for these three environments is accomplished by implementing transaction com-
pletion APIs on a companion JDO Tr ansact i on instance, which contains transaction
policy options and local transaction support.

12.4

Threading

A12.4-1 [It is a requirement for all JDO implementations to be thread-safe. That is, the be-
havior of the implementation must be predictable in the presence of multiple application
threads. This assertion will generate multiple test cases to be evaluated.] Operations implement-
ed by the Per si st enceManager directly or indirectly via access or modification of per-
sistent or transactional fields of persistence-capable classes must be treated as if they were
serialized. The implementation is free to serialize internal data structures and thus order
multi-threaded operations in any way it chooses. The only application-visible behavior is
that operations might block indefinitely (but not infinitely) while other operations com-
plete.

Since synchronizing the Per si st enceManager is a relatively expensive operation, and
not needed in many applications, the application must specify whether multiple threads
might access the same Per si st enceManager or instances managed by the Per si s-
t enceManager (persistent or transactional instances of persistence-capable classes; in-
stances of Tr ansact i on or Quer y; query results, etc.).

If applications depend on serializing operations, then the applications must implement the
appropriate synchronizing behavior, using instances visible to the application. This in-
cludes some instances of the JDO implementation (e.g. Per si st enceManager, Query,
etc.) and instances of persistence-capable classes.

The implementation must not use user-visible instances (instances of Per si st enceM
anager Fact ory, Per si st enceManager, Tr ansact i on, Query, etc.) as synchroni-
zation objects, with one exception. A12.4-2 [The implementation must synchronize
instances of persistence-capable classes during state transitions that replace the St at eM
anager . This is to avoid race conditions where the application attempts to make the same
instance persistent in multiple Per si st enceManager s.]

12.5

JDO20

Class Loaders

JDO requires access to class instances in several situations where the class instance is not
provided explicitly. In these cases, the only information available to the implementation is
the name of the class.

To resolve class names to class instances, JDO implementations will use Cl ass. f or Name
(String nane, boolean initialize, CassLoader |oader) withup to
three loaders. Thei ni ti al i ze parameter can be either t r ue or f al se depending on the
implementation.

These loaders will be used in this order:

1. The loader that loaded the class or instance referred to in the API that caused this class
to be loaded.

* In case of query, this is the loader of the candidate class, or the loader of the object
passed to the newQuery method.

101 May 16, 2005

Java Data Objects 2.0

* In case of navigation from a persistent instance, this is the loader of the class of the
instance.

¢ In the case of get Ext ent with subclasses, this is the loader of the candidate class.
¢ In the case of get Qbj ect Byl d, this is the loader of the object id instance.
* Other cases do not have an explicit loader.

2. The loader returned in the current context by Thr ead. get Cont ext Cl assLoad-
er().

3. The loader returned by Thr ead. get Cont ext Cl assLoader () at the time of Per -
si st enceManager Fact ory. get Per si st enceManager () . A12.5-7 [This loader is
saved with the Per si st enceManager] and A12.5-8 [cleared when the Per si st ence-
Manager is closed.]

12.6

JDO20

I nterface Per sistenceM anager

A12.6-1[A JDO Per si st enceManager instance supports any number of JDO instances
ata time.] It is responsible for managing the identity of its associated JDO instances. A JDO
instance is associated with either zero or one JDO Per si st enceManager . A12.5-1 [It
will be zero if and only if the JDO instance is in the transient or detached state.] A12.5-2
[As soon as a transient instance is made persistent or transactional, it will be associated
with exactly one JDO Per si st enceManager .] Detached instances are never associated
with a Per si st enceManager

AJDO Per si st enceManager instance supports one transaction at a time, and uses one
connection to the underlying data source at a time. The JDO Per si st enceManager in-
stance might use multiple transactions serially, and might use multiple connections serial-
ly.

Therefore, to support multiple concurrent connection-oriented data sources in an applica-
tion, multiple JDO Per si st enceManager instances are required.

In this interface, for implementations that support BinaryCompatibility, JDO instances
passed as parameters and returned as values must implement Per si st enceCapabl e.
The interface defines these formal parameters as Cbj ect because binary compatibility is
optional.

package javax. | do;

public interface PersistenceManager {
bool ean i sC osed();

voi d cl ose();

A12.5-3 [The i sCl osed method returns f al se upon construction of the Persi s-
t enceManager instance], or A12.5-4 [upon retrieval of a Per si st enceManager from
a pool]. A12.5-5 [It returns t r ue only after the c| 0se method completes successfully, i.e.
the PersistenceManager has been closed.]. After being closed, the Per si st enceManager in-
stance might be returned to the pool or garbage collected, at the choice of the JDO imple-
mentation. Before being used again to satisfy a get Per si st enceManager request, the
options will be reset to their default values as specified in the Per si st enceManager -
Factory.

A12.6-2 [In a non-managed environment, if the current transaction is active, cl ose throws
JDOUser Excepti on.]

102 May 16, 2005

Java Data Objects 2.0

1261

JDO20

A12.5-6 [After cl ose completes, all methods on the Per si st enceManager instance
excepti sC osed throw a JDOFat al User Excepti on.]

Null management

In the APIs that follow, Qbj ect [] and Col | ecti on are permitted parameter types. As
these may contain nulls, the following rules apply.

Null arguments to APIs that take an Qbj ect parameter cause the API to have no effect.
Null arguments to APIs that take Cbj ect [] or Col | ect i on will cause the API to throw
Nul | Poi nt er Excepti on. Non-null Obj ect[] or Col | ecti on arguments that con-
tain nul | elements will have the documented behavior for non-nul | elements, and the
nul | elements will be ignored.

Cache management

Normally, cache management is automatic and transparent. When instances are queried,
navigated to, or modified, instantiation of instances and their fields and garbage collection
of unreferenced instances occurs without any explicit control. When the transaction in
which persistent instances are created, deleted, or modified completes, eviction is auto-
matically done by the transaction completion mechanisms. Therefore, eviction is not nor-
mally required to be done explicitly. However, if the application chooses to become more
involved in the management of the cache, several methods are available.

The non-parameter version of these methods applies the operation to each appropriate
JDO instance in the cache. For evi ct Al | , these are all persistent-clean instances; for r e-
f reshAl |, all persistent-nontransactional instances.

void evict (Cbject pc);

void evictAl ();

void evictAll (Object[] pcs);
void evictAll (Collection pcs);

Eviction is a hint to the Per si st enceManager that the application no longer needs the
parameter instances in the cache. Eviction allows the parameter instances to be subse-
quently garbage collected. A12.5.1-1 [Evicted instances will not have their values retained
after transaction completion, regardless of the settings of ther et ai nVal ues orr est or -
eVal ues flags. They should be in the hollow state after transaction completion.]

A12.5.1-2 (PART 1) [If evi ct Al | with no parameters is called, then all persistent-clean
instances are evicted (they transition to hollow)]. A12.5.1-3 (PART 1) [If users wish to au-
tomatically evict transactional instances at transaction commit time, then they should set
Ret ai nVal ues to f al se.] A12.6.1-1 [Similarly, to automatically evict transactional in-
stances at transaction rollback time, then they should set RestoreVal ues to
f al se.]JA12.5-7 [Passing a null value to PersistenceManager.evict will have no effect. A
NullPointerException should NOT be thrown.]A12.5-9 [Passing a null value to .evictAll will
throw a NullPointerException.]JA12.5-11 [Passing a non-null Object[] or Collection arguments to
evictAll that contain null elements will have the documented behavior for non-null elements, and
the null elements will be ignored.]A12.5.1-4 (PART 1) [If PersistenceManager.evictAll is called
with a Collection or Object[] parameter, then all referenced instances are evicted. For each instance
evicted, it:]

A12.5.1-2 (PART 2), A12.5.1-3 (PART 2), A12.5.1-4 (PART 2) [For each persistent-clean and
persistent-nontransactional instance that the JDO Per si st enceManager evicts, it:

e calls the j doPr eC ear method on each instance, if the class of the instance
implements | nst anceCal | backs

103 May 16, 2005

Java Data Objects 2.0

JDO20

* clears persistent fields on each instance (sets the value of the field to its Java default
value);

* changes the state of instances to hollow or persistent-nontransactional (cannot
distinguish between these two states) this is not directly testable..]
void refresh (bject pc);
void refreshAll ();
void refreshAll (Object[] pcs);
void refreshAll (Collection pcs);
void refreshAll (JDOException ex);

A12.5.1-5 [The r ef r esh and refreshAll method updates the values in the parameter in-
stance[s] from the data in the datastore. The intended use is for optimistic transactions
where the state of the JDO instance is not guaranteed to reflect the state in the datastore,
and for datastore transactions to undo the changes to a specific set of instances instead of
rolling back the entire transaction. This method can be used to minimize the occurrence of
commit failures due to mismatch between the state of cached instances and the state of
data in the datastore.This can be tested by using 2 PersistenceManagers, independently change
an object, then refresh.]

A12.5.1-6 [The r ef r eshAl | method with no parameters causes all persistent-nontrans-
actional instances to be refreshed. If a transaction is not in progress, then this call has no
effect.

Note that this method will cause loss of changes made to affected instances by the appli-
cation due to refreshing the contents from the datastore.]

When used with the JDOEXcept i on parameter, the JDO Per si st enceManager re-
freshes all instances in the exception, including instances in nested exceptions, that failed
verification. Updated and unchanged instances that failed verification are reloaded from
the datastore. Datastore instances corresponding to new instances that failed due to dupli-
cate key are loaded from the datastore. A12.5-8 [Passing a null value to PersistenceMan-
ager. REFRESH will have no effect. A NullPointerException should NOT be thrown.]A12.5-10
[Passing a null value to .refreshAll will throw a NullPointerException.]A12.5-12 [Passing a non-
null Object[] or Collection arguments to refreshAll that contain null elements will have the docu-
mented behavior for non-null elements, and the null elements will be ignored.]

A12.5.1-6 [The JDO Per si st enceManager :
¢ loads persistent values from the datastore into the instance;

e calls the j doPost Load method on each persistent instance, if the class of the
instance implements | nst anceCal | backs; and

* changes the state of persistent-dirty instances to persistent-clean] in a datastore
transaction; or persistent-nontransactional in an optimistic transaction.

void retrieve((Object pc);

void retrieve(hject pc, boolean FGOly);

void retrieveAl |l (Collection pcs);

void retrieveAl | (Coll ection pcs, boolean FGly);
void retrieveAl |l (Object[] pcs);

void retrieveAll (Qbject[] pcs, bool ean FGOnly);

104 May 16, 2005

Java Data Objects 2.0

12.6.2

12.6.3

JDO20

These methods request the Per si st enceManager to load all persistent fields into the
parameter instances. Subsequent to this call, the application might call makeTr ansi ent
on the parameter instances, and the fields can no longer be touched by the Per si s-
t enceManager . The Per si st enceManager might also retrieve related instances ac-
cording to the current fetch plan or a vendor-specific pre-read policy (not specified by
JDO).

If the FGOnl y parameter is t r ue, and the fetch plan has not been modified from its de-
fault setting (see 12.7.1), then this is a hint to the implementation that only the fields in the
current fetch group need to be retrieved. A compliant implementation is permitted to re-
trieve all fields regardless of the setting of this parameter. After the call with the FGOnl y
parameter t r ue, all fields in the current fetch group must have been fetched, but other
fields might be fetched lazily by the implementation.

If the FGOnl y parameter ist r ue, and the fetch plan has been changed, then only the fields
specified by the fetch plan are fetched.

The JDO Per si st enceManager :
* A12.6.1-2 [loads persistent values from the datastore into the instance;]

* A12.6.1-3 [for hollow instances, changes the state to persistent-clean in a datastore
transaction;] or A12.6.1-4 [persistent-nontransactional in an optimistic
transaction,] and A12.6.1-5 [if the class of the instance implements
LoadCal | backs callsj doPost Load.]

Transaction factory interface
Transacti on current Transacti on();

A12.5.2-1 [The cur r ent Tr ansact i on method returns the Tr ansact i on instance as-
sociated with the Per si st enceManager .] A12.5.2-2 [The identical Tr ansact i on in-
stance will be returned by all currentTransaction calls to the same
Per si st enceManager until cl ose.] Note that multiple transactions can be begun and
completed (serially) with this same instance.

A12.5.2-3 [Even if the Tr ansact i on instance returned cannot be used for transaction
completion (due to external transaction management), it still can be used to set flags.]

Query factory interface

The query factory methods are detailed in the Query chapter .
voi d setl gnoreCache (boolean flag);

bool ean getl gnoreCache ();

These methods get and set the value of the | gnor eCache option for all Quer y instances
created by this Per si st enceManager [see Query options]. A12.5.3-1 [The Persistence-
Manager.getIgnoreCache method returns the current value of the IgnoreCache option.] A12.5.3-2
[The | gnor eCache option if set to t r ue, is a hint to the query engine that the user ex-
pects queries to be optimized to return approximate results by ignoring changed values in
the cache. This is not testable, except to see whether the get/set works.] A12.5.3-3 [The Persistence-
Manager.setIgnoreCache method called with a value of false instructs the query engine that the user
expects queries to return results that reflect changed values in the cache.]

The | gnor eCache option also affects the iterator obtained from Ext ent instances ob-
tained from this Per si st enceManager .

The | gnor eCache option is preserved for query instances constructed from other query
instances.

105 May 16, 2005

Java Data Objects 2.0

12.6.4

12.6.5

JDO20

Extent Management

Extents are collections of datastore objects managed by the datastore, not by explicit user
operations on collections. Extent capability is a boolean property of persistence capable
classes and interfaces. A12.5.4-1 [If an instance of a class or interface that has a managed
extent is made persistent via reachability, the instance is put into the extent implicitly.] If
an instance of a class that implements an interface that has a managed extent is made per-
sistent, then that instance is put into the interface’s extent.

Ext ent get Extent (C ass persistenceCapabl e, bool ean subcl ass-
es);

Ext ent get Extent (C ass persi stenceCapabl e);

A12.5.4-2, A12.5.4-3 [The get Ext ent method returns an Ext ent that contains all of the
instances in the parameter class or interface, and if the subclasses flag is t r ue, all of the
instances of the parameter class and its subclasses.] The method with no subclasses param-
eter is treated as equivalent to get Ext ent (persi st enceCapabl e, true).

A12.6.4-1 [If the metadata does not indicate via the r equi r es- ext ent attribute in the
cl ass ori nt er f ace element that an extent is managed for the parameter class or inter-
face, then JDOUser Excepti on is thrown.] The extent might not include instances of
those subclasses for which the metadata indicates that an extent is not managed for the
subclass.

A12.6.4-2 [This method can be called whether or not a transaction is active, regardless of
whether Nont r ansacti onal Read is supported.] A12.6.4-3 [If Nont r ansact i onal -
Read is not supported, then the i t er at or method will throw a JDOUnsuppor t edQp-
ti onExcepti on if called outside a transaction.]

It might be a common usage to iterate over the contents of the Ext ent , and the Ext ent
should be implemented in such a way as to avoid out-of-memory conditions on iteration.

The primary use for the Ext ent returned as a result of this method is as a candidate col-
lection parameter to a Quer y instance. For this usage, the elements in the EXt ent typical-
ly will not be instantiated in the Java VM; it is used only to identify the prospective
datastore instances.

Extents of interfaces

If the O ass parameter of the get Ext ent method is an interface, then the interface must
be identified in the metadata as having its extent managed.

JDO Identity management

bj ect get Obj ectByld (Object oid);

The get Obj ect Byl d method attempts to find an instance in the cache with the specified

JDO identity. This method behaves exactly as the method get Cbj ect Byl d (Qoj ect
oi d, bool ean val i date) with the val i dat e flagsettotrue.

bj ect get Obj ectByld (Object oid, boolean validate);

The get Obj ect Byl d method attempts to find an instance in the cache with the specified
JDO identity. The 0i d parameter object might have been returned by an earlier call to ge-
t Qoj ect 1 dorget Transact i onal Cbj ect | d, or might have been constructed by the
application.

A12.5.6-1 [If the Per si st enceManager is unable to resolve the 0i d parameter to an
Obj ect | d instance, then it throws a JDOUser Except i on.] This might occur if the im-

106 May 16, 2005

Java Data Objects 2.0

JDO20

plementation does not support application identity, and the parameter is an instance of an
object identity class.

e Iftheval i dat e flagisf al se:

* A12.5.6-2 [If there is already an instance in the cache with the same JDO identity
as the oid parameter, then this method returns it.] A12.5.6-3 [There is no change
made to the state of the returned instance.]

e A12.5.6-4 [If there is not an instance already in the cache with the same JDO
identity as the oid parameter, then this method creates an instance with the
specified JDO identity and returns it. If there is no transaction in progress, the
returned instance will be hollow or persistent-nontransactional, at the choice of
the implementation.]

e A12.5.6-5 [If there is a transaction in progress, the returned instance will be
hollow, persistent-nontransactional, or persistent-clean, at the choice of the
implementation.]

e It is an implementation decision whether to access the datastore, if required to
determine the exact class. This will be the case of inheritance, where multiple
persistence-capable classes share the same Obj ect | d class.

e A12.6.5-1 [If the instance does not exist in the datastore, then this method might
not fail. It is an implementation choice if the method fails immediately with a
JDQOObj ect Not FoundExcept i on.] But A12.5.6-6 [a subsequent access of the
fields of the instance will throw a JDOObj ect Not FoundExcept i on if the
instance does not exist at that time.] Further, if a relationship is established to this
instance, and the instance does not exist when the instance is flushed to the
datastore, then the transaction in which the association was made will fail.

e Iftheval i dat e flagistrue:

* A12.5.6-7 [If there is already a transactional instance in the cache with the same
jdo identity as the oid parameter, then this method returns it. There is no change
made to the state of the returned instance.]

e A12.5.6-8 [If there is an instance already in the cache with the same jdo identity as
the oid parameter, the instance is not transactional, and the instance does not exist
in the datastore, then a JDOChj ect Not FoundExcept i on is thrown.]

* A12.5.6-9 [If there is not an instance already in the cache with the same jdo identity
as the oid parameter, then this method creates an instance with the specified jdo
identity, verifies that it exists in the datastore, and returns it. A12.6.5-2 [If the
instance does not exist in the datastore, then a
JDOObj ect Not FoundExcept i on is thrown.]

¢ If there is no transaction in progress, the returned instance will be hollow or
persistent-nontransactional, at the choice of the implementation.

¢ If there is a datastore transaction in progress, the returned instance will be
persistent-clean.

e If there is an optimistic transaction in progress, the returned instance will be
persistent-nontransactional.]

hj ect getbjectld (Object pc);

A12.5.6-10 [The get Cbj ect | d method returns an Obj ect | d instance that represents
the object identity of the specified JDO instance. Test: The method getObjectByld returns the
exact same object, evaluating to true when == is used.]The identity is guaranteed to be unique
only in the context of the JDO Per si st enceManager that created the identity, and only
for two types of JDO Identity: those that are managed by the application, and those that
are managed by the datastore.

107 May 16, 2005

Java Data Objects 2.0

JDO20

A12.5.6-11 [If the object identity is being changed in the transaction, by the application
modifying one or more of the application key fields, then this method returns the identity
as of the beginning of the transaction. The value returned by get Obj ect | d will be dif-
ferent following af t er Conpl et i on processing for successful transactions.]

A12.5.6-12 [Within a transaction, the Qbj ect | d returned will compare equal to the Qb-
j ect | d returned by only one among all JDO instances associated with the Per si s-
t enceManager regardless of the type of Cbj ect | d.]

The Cbj ect | d does not necessarily contain any internal state of the instance, nor is it nec-
essarily an instance of the class used to manage identity internally. Therefore, 12.5.6-13 [if
the application makes a change to the Qbj ect | d instance returned by this method, there
is no effect on the instance from which the Qbj ect | d was obtained.]

The get Qbj ect Byl d method can be used between instances of Per si st enceMan-
ager of different JDO vendors only for instances of persistence capable classes using ap-
plication-managed (primary key) JDO identity. If it is used for instances of classes using
datastore identity, the method might succeed, but there are no guarantees that the param-
eter and return instances are related in any way.

A12.5.6-14 [If the parameter pC is not persistent, or is nul | , then nul | is returned.]
hj ect get Transacti onal Qbjectld (Object pc);

A12.5.6-15 [If the object identity is being changed in the transaction, by the application
modifying one or more of the application key fields, then this method returns the current
identity in the transaction.] 12.5.6-16 [If there is no transaction in progress, or if none of the
key fields is being modified, then this method has the same behavior as get Cbj ect 1 d.]
To get an instance in a Per si st enceManager with the same identity as an instance
from a different Per si st enceManager, use the following: aPer si st enceMan-
ager . get Qbj ect Byl d(JDOHel per. get Obj ectld(pc), validate).Theval -
i dat e parameter has a value of true or fal se depending on your application
requirements.

Getting Multiple Persistent I nstances

Col I ection get ObjectsByld (Collection oids);

bj ect[] getOhjectsByld (Ohject[] oids);

Col l ection get ObjectsByld (Collection oids, boolean validate);
oj ect[] getbjectsByld (Qoject[] oids, boolean validate);

The get Obj ect sByl d method attempts to find instances in the cache with the specified
JDO identities. The elements of the 0i dS parameter object might have been returned by
earlier calls to get Cbj ect | d or get Tr ansact i onal Qoj ect | d, or might have been
constructed by the application.

If a method with no val i dat e parameter is used, the method behaves exactly as the cor-
responding method with the val i dat e flag settot r ue.

If the Obj ect [] form of the method is used, the returned objects correspond by position
with the object ids in the oids parameter. If the Col | ect i on form of the method is used,
the iterator over the returned Col | ect i on returns instances in the same order as the oids
returned by an iterator over the parameter Col | ect i on. The cardinality of the return val-
ue is the same as the cardinality of the oids parameter.

108 May 16, 2005

Java Data Objects 2.0

12.6.6

12.6.7

JDO20

Getting an Object by Classand Key
bj ect getbjectByld (Cass cls, bject key);
The get Qbj ect Byl d method attempts to find an instance in the cache with the derived

JDO identity. The key parameter is either the string representation of the object id, or is an
object representation of a single field identity key.

This is a convenience method that exactly matches the behavior of calling pm get Cb-
jectByld (pm newObj ectldl nstance (cls, key), true).

Persistent interface factory

The following method is used to create an instance of a persistence-capable interface or ab-
stract class.

bj ect newl nstance(C ass persi stenceCapabl e);

The parameter must be an abstract class that is declared in the metadata using the cl ass
element, or an interface that is declared in the metadata using the i nt er f ace element.
The returned instance is transient.

Applications might use the instance via the get and set property methods and change its
life cycle state as if it were an instance of a persistence-capable class.

JDO Instance life cycle management

The following methods take either a single instance or multiple instances as parameters.

12.5.7-1,12.5.7-2,12.5.7-3, 12.5.7-4, 12.5.7-5 [If a collection or array of instances is passed to
any of the methods in this section, and one or more of the instances fail to complete the
required operation, then all instances will be attempted, and a JDOUser Except i on will
be thrown which contains a nested exception array, each exception of which contains one
of the failing instances. The succeeding instances will transition to the specified life cycle
state, and the failing instances will remain in their current state.]

M ake instances persistent

voi d nakePersi stent (Cbject pc);

voi d makePersistentAll (Qbject[] pcs);
voi d makePersistentAll (Collection pcs);

A12.5.7-6A [These methods make a transient instance persistent directly. They must be
called in the context of an active transaction, or a JDOUser Excepti on is thrown.]
A12.5.7-6B [They will assign an object identity to the instance and transition it to persis-
tent-new.] Any transient instances reachable from this instance via persistent fields of this
instance will become provisionally persistent, transitively. That is, they behave as persis-
tent-new instances (returnt r ue toi sPer si stent,i sNew,andi sDi rty). But A12.5.7-
6C [at commit time, the reachability algorithm is run again, and instances made provision-
ally persistent that are not currently reachable from persistent instances will revert to tran-
sient.]

A12.5.7-7 [These methods have no effect on parameter persistent instances already man-
aged by this Per si st enceManager .] A12.5.7-8 [They will throw a JDOUser Excep-
t i on if the parameter instance is managed by a different Per si st enceManager .]

A12.6.7-1 [If an instance is of a class whose identity type (appl i cati on,dat ast or e, or
none) is not supported by the JDO implementation, then a JDOUser Except i on will be
thrown for that instance.]

109 May 16, 2005

Java Data Objects 2.0

JDO20

Delete persistent instances

voi d del et ePersi stent (Cbject pc);

voi d del etePersistentAll (Qbject[] pcs);
voi d del etePersistentAll (Collection pcs);

A12.5.7-9 [These methods delete persistent instances from the datastore. They must be
called in the context of an active transaction, or a JDOUser Except i on is thrown. The
representation in the datastore will be deleted when this instance is flushed to the data-
store (viacommi t orevi ct).]

Note that this behavior is not exactly the inverse of makePer si st ent , due to the transi-
tive nature of makePer si st ent . The implementation might delete dependent datastore
objects depending on implementation-specific policy options that are not covered by the
JDO specification. However, if a field is marked as containing a dependent reference, the
dependent instance is deleted as well.

A12.5.7-10 [These methods have no effect on parameter instances already deleted in the
transaction] or on embedded instances. Embedded instances are deleted when their own-
ing instance is deleted.

If deleting an instance would violate datastore integrity constraints, it is implementation-
defined whether an exception is thrown at commit time, or the delete operation is simply
ignored. Portable applications should use this method to delete instances from the data-
store, and not depend on any reachability algorithm to automatically delete instances.

A12.5.7-11 [These methods will throw a JDQUser Except i on if the parameter instance
is managed by a different Per si st enceManager .JA12.5.7-12 [These methods will
throw a JDOUser Except i on if the parameter instance is transient.]

Makeinstances transient

voi d makeTransi ent (Object pc);

voi d nakeTransientAll (Cbject[] pcs);

voi d makeTransientAll (Collection pcs);

A12.5.7-13 [These methods make persistent instances transient, so they are no longer asso-
ciated with the Per si st enceManager instance. They do not affect the persistent state
in the datastore.] They can be used as part of a sequence of operations to move a persistent
instance to another Per si st enceManager . A12.5.7-14 [The instance transitions to tran-
sient, and it loses its JDO identity.] A12.5.7-15 [If the instance has state (persistent-non-
transactional or persistent-clean) the state in the cache is preserved unchanged.] A12.5.7-
16 [If the instance is dirty, a JDOUser Except i on is thrown.]

A12.5.7-17 [The effect of these methods is immediate and not subject to rollback.] A12.5.7-
18 [Field values in the instances are not modified.] To avoid having the instances become
persistent by reachability at commit, the application should update all persistent instances
containing references to the parameter instances to avoid referring to them, or make the
referring instances transient.

A12.5.7-19 [These methods will be ignored if the instance is transient.]
Make instancestransactional

voi d nakeTransactional (Chject pc);

voi d makeTransactional All (Cbject[] pcs);

voi d nakeTransactional All (Coll ection pcs);

110 May 16, 2005

Java Data Objects 2.0

12.6.8

JDO20

A12.5.7-20 [These methods make transient instances transactional and cause a state transi-
tion to transient-clean. After the method completes, the instance observes transaction
boundaries.] A12.5.7-21 [If the transaction in which this instance is made transactional
commits, then the transient instance retains its values.] A12.5.7-22 [If the transaction is
rolled back, then the transient instance takes its values as of the call to rakeTr ansac-
ti onal if the call was made within the current transaction]; or A12.5.7-23 [the beginning
of the transaction, if the call was made prior to the beginning of the current transaction.]

A12.6.7-2 [If the implementation does not support Tr ansi ent Tr ansact i onal , and the
parameter instance is transient, then JDOUnsuppor t edOpt i onExcept i on is thrown.]

A12.5.7-24 [These methods are also used to mark a nontransactional persistent instance as
being part of the read-consistency set of the transaction. In this case, the call must be made
in the context of an active transaction, or a JDOUser Except i on is thrown. To test this...
Get an instance in the persistence-nontransactional state, make it transactional, then in a different
transaction commit a change to the instance. An exception should then be thrown when the first
transaction commits.]

A12.5.7-25 [The effect of these methods is immediate and not subject to rollback.]

M ake instances nontransactional

voi d makeNontransacti onal (Cbject pc);

voi d makeNontransacti onal All (Qbject[] pcs);
voi d nakeNontransactional All (Coll ection pcs);

A12.5.7-26 [These methods make transient-clean instances nontransactional and cause a
state transition to transient. After the method completes, the instance does not observe
transaction boundaries.]

A12.5.7-27 [These methods make persistent-clean instances nontransactional and cause a
state transition to persistent-nontransactional.]

A12.5.7-28 [If this method is called with a dirty parameter instance, a JDOUser Excep-
tion is thrown.]

A12.5.7-29 [The effect of these methods is immediate and not subject to rollback.]

Detaching and attaching instances

These methods provide a way for an application to identify persistent instances, obtain
copies of these persistent instances, modify the detached instances either in the same JVM
or in a different JVM, apply the changes to the same or different Per si st enceManager,
and commit the changes.

There are three ways to cause the creation of detached instances:
¢ explicitly via methods defined on Per si st enceManager ;
* implicitly by closing the Per si st enceManager ;

e or implicitly by serializing persistent instances.

Closing the PersistenceM anager

InJDO 1.0, the behavior of persistent instances after closing the associated Per si st ence-
Manager is undefined. A12.6.8-1 [We define a new property called Det achOnCl ose
PersistenceManager.setDetachOnClose(boolean detachOnClose) sets the DetachOnClose property]
A12.6.8-2 [PersistenceManager.getDetachOnClose() gets the value for the DetachOnClose property]
which changes this behavior. With this flag set to f al se, the state of persistent instances
in the cache after close is undefined. A12.6.8-3 [With this flag set to t r ue, after close, the

111 May 16, 2005

Java Data Objects 2.0

JDO20

Per si st enceManager guarantees that all persistent instances in the cache behave as de-
tached instances] and A12.6.8-4 [can be serialized as detached instances.] While closing the
Per si st enceManager , no access is allowed to the underlying data store.

Serializing Per sistent I nstances

Currently, the JDO 1.0 specification requires that serialized instances be made ready for se-
rialization by instantiating all serializable persistent fields before calling wr i t eCbj ect .
For binary-compatible implementations, this is done by the enhancer adding a call to the
St at eManager prior to invoking the user's wr i t eCbj ect method. The behavior is the
same in JDO 2.0, with the additional requirement that A12.6.8-5 [restored serialized in-
stances are treated as detached instances.]

Explicit detach

bj ect det achCopy(Ohj ect pc);

Col l ecti on detachCopyAll (Collection pcs);
hj ect[] detachCopyAll (hject[] pcs);

This method makes detached copies of the parameter instances and returns the copies as
the result of the method. A12.6.8-9 [The order of instances in the parameter Col | ecti on’s
iteration corresponds to the order of corresponding instances in the returned Col | ec-
tion’siteration.]

A12.6.8-10 [If a det achCopy method is called with an active transaction, the parameter
Col | ect i on of instances is first made persistent, and the reachability algorithm is run on
the instances]. This ensures that the closure of all of the instances in the the parameter Col-
lection is persistent.

A12.6.8-11 [If a det achCopy method is called outside an active transaction, the reachabil-
ity algorithm will not be run; if any transient instances are reachable via persistent fields,
a JDOUserException is thrown for each persistent instance containing such fields.]
A12.6.8-12 [If a det achCopy method is called outside an active transaction, the Nontrans-
actionalRead property must be true or JDOUserException is thrown.]

A12.6.8-13 [For each instance in the parameter Col | ecti on, a corresponding detached
copy is created.] Each field in the persistent instance is handled based on its type and
whether the field is contained in the fetch group for the persistence-capable class. A12.6.8-
14 [If there are duplicates in the parameter Col | ecti on, the corresponding detached
copy is used for each such duplicate.]

A12.6.8-15 [Instances in the persistent-new and persistent-dirty state are updated with
their object identity and version] (as if they had been flushed to the datastore prior to copy-
ing their state). This ensures that the object identity and version (if any) is properly set pri-
or to creating the copy. The transaction in which the flush is performed is assumed to
commit; if the transaction rolls back, then the detached instances become invalid (they no
longer refer to the correct version of the datastore instances). This situation will be detected
at the subsequent attempt to commit or flush a transaction after attaching the detached in-
stances.

A12.6.8-16 [If instances in a deleted state (either persistent-deleted or persistent-new-de-
leted) are attempted to be detached, a JDOUser Excepti on is thrown with nested
JDOUser Except i ons, one for each such instance.]

The Fet chPI an in effect in the Per si st enceManager specifies the fields to be fetched
in the closure of the persistent instances. A12.6.8-17 [All fields outside the Fet chPl an in
the detached instances are set to the Java language default value for the type of the field.]

112 May 16, 2005

Java Data Objects 2.0

JDO20

A12.6.8-18 [Fields in the Fet chPl an of primitive and wrapper types are set to their values
from the datastore]. A12.6.8-19 [Fields of references to persistence-capable types are set to
the detached copy corresponding to the persistent instance.] A12.6.8-20 [Fields of Col -
| ecti ons and Maps are set to detached SCO instances containing references to detached
copies corresponding to persistent instances in the datastore.]

A12.6.8-21 [While detached, any field access to a field that was not fetched throws J DODe-
t achedFi el dAccessExcepti on.]

The result of the det achCopyAl | method isa Col | ecti on or array of detached instanc-
es whose closure contains copies of detached instances. Among the closure of detached in-
stances there are no references to persistent instances; all such references from the
persistent instances have been replaced by the corresponding detached instance.

A12.6.8-22 [Each detached instance has a persistent identity that can be obtained via the
static JDOHel per method get Obj ect | d(Gbj ect pc) .] A12.6.8-23 [The version of de-
tached instances can be obtained by the static JDOHel per method get Ver si on(Obj ect

pc) .l

A12.6.8-24 [Each detached instance must be of a class identified in the JDO metadata as de-
tachable, or a JDOUser Except i on is thrown with a nested JDOUser Except i on for each
such instance.]

There might or might not be a transaction active when the det achCopy method is called.

Attaching instances
bj ect attachCopy(Obj ect detached, bool ean nmakeTransacti onal);

Col l ection attachCopyAll (Coll ection detached, bool ean makeTransac-
tional);

hj ect[] attachCopyAll (Cbject[] detached, bool ean nakeTransacti on-
al);

This method applies the changes contained in the collection of detached instances to the
corresponding persistent instances in the cache and returns a collection of persistent in-
stances that exactly corresponds to the parameter instances. A12.6.8-25 [The order of in-
stances in the parameter Col | ection’s iteration corresponds to the order of
corresponding instances in the returned Col | ect i on’s iteration.]

A12.6.8-26 [Changes made to instances while detached are applied to the corresponding
persistent instances in the cache.] A12.6.8-27 [Transient instances associated with the de-
tached instances are copied and the copies are added to the persistent instances in the cor-
responding place.]

During application of changes, if the JDO implementation can determine that there were
no changes made during detachment, then the implementation is not required to mark the
corresponding instance dirty. A12.6.8-28 [If it cannot determine if changes were made,
then it must mark the instance dirty.]

A12.6.8-29 [The makeTr ansact i onal flag, if settot r ue, requires the implementation to
mark transactional the persistent instances corresponding to all instances in the closure of
the detached graph.]

No consistency checking is done during attachment. If consistency checking is required by
the application, then f | ush or checkConsi st ency should be called after attaching the
instances.

Transient instances in the parameter list are treated the same as transient instances reach-
able from parameter instances. That is, a copy of each such instance is made persistent.

113 May 16, 2005

Java Data Objects 2.0

Each instance to be attached must be a transient instance of a persistence-capable class; or
of a class identified in the JDO metadata as detachable. A12.6.8-30 [If an instance that is not
is attempted to be attached, a JDOUser Except i on is thrown with a nested JDOUser Ex-

cept i on for each such instance.]

12.7

12.7.1

JDO20

Fetch Groups

A fetch group defines a particular loaded state for an object graph. It specifies fields to be
loaded for all of the instances in the graph. For det achCopy the implementation must en-
sure that the graph specified by the active fetch groups is copied and only the fields in the
fetch groups are loaded into the instances. For r ef r esh the implementation must ensure
that only the graph specified by the active fetch groups is refreshed. For r et ri eve with
FGonl y true, the implementation must ensure that only the graph specified by the active
fetch groups is retrieved. In other situations (e.g. executing a Query or navigating a refer-
ence) the implementation may use this information to reduce the number of round trips to
the datastore but is not required to do so, i.e. fetch groups are a hint to the implementation
to prefetch data.

Fetch groups are identified by name and associated with a class. Names have global scope
so the same fetch group name can be used for different classes. This makes it possible to
specify active fetch groups per Per si st enceManager instead of per extent. This greatly
simplifies the use of fetch groups in an application.

The default fetch group (named "def aul t ") for each class is created by the implementa-
tion according to rules in the JDO 1.0.1 specification. It may also be defined in the metadata
like any other fetch group to make use of JDO 2 features.

The implementation must also define three other fetch groups for each class named "al | ",
"val ues", and "none". The "al | " group contains all fields in the class. The "val ues"
group contains all fields that are included in the default fetch group by default (primitives,
wrappers, St ri ng, Dat e etc.). The "none" fetch group contains only primary key fields.
If the metadata changes the default fetch group, then the val ues group is not changed.
The "values" group may also be redefined in the meta data, for example to exclude a large
String field mapped to a CLOB column.

Fet chPl an get Fet chPl an();

This method retrieves the fetch plan associated with the Per si st enceManager . It al-
ways returns the identical instance for the same Per si st enceManager .

The FetchPlan interface

Fetch groups are activated using methods on the interface Fet chPl an. Per si st enceM
anager and Query have get Fet chPl an() methods. When a Query is retrieved from a
Per si st enceManager, its Fet chPl an is initialized to the same settings as that of the
Per si st enceManager . Subsequent modifications of the Query Fet chPl an are not re-
flected in the Fet chPl an of the Per si st enceManager . When an Ext ent is iterated, the
Fet chPI an of the Per si st enceManager defines the fields retrieved.

Mutating Fet chPl an methods return the Fet chPl an instance to allow method chaining.
package javax. | do;

public interface FetchPlan {

String DEFAULT = “defaul t”;

String ALL = “all”;

String VALUES = “val ues”;

114 May 16, 2005

Java Data Objects 2.0

JDO20

String NONE = “none”;
int FETCH S| ZE GREEDY = -1;
int FETCH SIZE OPTI MAL = O;

/** Add the fetchgroup to the set of active fetch groups. Duplicate
names will be renoved. */

Fet chPl an addG oup(String fetchG oupNane);

/** Renove the fetch group fromthe set active fetch groups. */
Fet chPl an renoveG oup(String fetchG oupNane);

/** Renpove all active groups, including the default fetch group. */
Fet chPl an cl ear Groups();

/** Return an i mutabl e Set of the nanes of all active fetch groups.
*/

Set get Groups();

/** Set a Collection of group nanmes to replace the current groups.
Duplicate nanes will be renoved. */
Fet chPl an set Groups(Col |l ecti on fetchG oupNanes);

/** Set an array of group nanes to replace the current groups. Du-
plicate nanes will be renoved. */

Fet chPl an set Goups(String[] fetchG oupNanes);

/** Set a single group to replace the current groups. */

Fet chPl an set G oup(String fetchG oupNane);

[** Set the fetch size for large result set support. */

Fet chPl an set FetchSi ze(int fetchSize);

/** Return the fetch size; 0 if not set; -1 for greedy fetching. */
i nt getFetchSize();

The get Gr oups method returns a collection of names. After a call to cl ear G oups()
this method returns an empty Set . It is legal to remove the default fetch group explicitly
via pm get Fet chPl an() . removeG oup(" defaul t"), or to use set G oups() with
a collection that does not contain "def aul t ". This makes it possible to have only a given
fetch group active without the default fetch group. If no fetch groups are active then a Set
with no elements is returned and the implementation may decide to leave instances hol-
low that it would otherwise have filled.

The fetch size allows users to explicitly control the number of instances retrieved from que-
ries. A positive value is the number of result instances to be fetched. A value of
FETCH_SI ZE_GREEDY indicates that all results should be obtained immediately. A value
of FETCH_SI ZE_OPTI MAL indicates that the JDO implementation should try to optimize
the fetching of results.

Note that the graph and fields specified by a Fet chPl an is strictly the union of all the ac-
tive fetch groups not based on any complicated set mathematics. So, if a field f1 is in fetch
groups A and B, and both A and B are added to the Fet chPI an, and subsequently B is
removed from the active fetch groups and the instance is loaded, then the field f1 will be
loaded, because it is in fetch group A.

Examples:
pm = pnf. get Persi st enceManager () ;

115 May 16, 2005

Java Data Objects 2.0

12.7.2

JDO20

FetchPl an fp = pm get FetchPl an();

fp. addG oup(“"detail").addG oup("list");

[l prints [default, detail, list]

Systemout. println(fp.getGoups());

/] refreshes fields in any of default+detail +list
pm refresh(anl nstance);

fp.clearGoups();

[l prints []

Systemout. println(fp.getGoups());
pmrefresh(anlnstance); // doesn't do anything

fp.addG oup("list");

[l prints [list]

Systemout. println(fp.getGoups());
/1 refreshes fields in list only
pm refresh(anl nstance);

When an instance is loaded using get Obj ect Byl d , a Query is executed, or an Ext ent
is iterated, the implementation may choose to use the active fetch groups to prefetch data.
If an instance being loaded does not have a fetch group with the same name as any of the
active groups, and the semantics of the method allow returning a hollow instance, then it
may be loaded as hollow. If it has more than one of the active groups then the union of
fields in all active groups is used.

Instances loaded through field navigation behave in the same way as for get Cbj ect Byl d
except that an additional fetch group may be specified for the field in the metadata using
thenew "l oad- f et ch- gr oup" attribute. If present the load-fetch-group is considered ac-
tive just for the loading of the field. This can be used to load several fields together when
one of them is touched. The field touched is loaded even if it is not in the load-fetch-group.

For therefresh andretri eve methods, the implementation must ensure that only the
graph specified by the active fetch groups is refreshed or retrieved; i.e. these operations
will recursively refresh or retrieve the instances and fields in the graph covered by the ac-
tive fetch groups. The refreshed or retrieved graph must not contain extra instances but ex-
tra fields may be refreshed for an instance in the graph.

Defining fetch groups

Fetch groups are only defined in the metadata for a class.

<! ELEMENT fetch-group (fetch-group|field)*>

<I ATTLI ST fetch-group name CDATA #REQUI RED>

<I ATTLI ST fetch-group post-load (true|false) #l MPLI ED>

<! ATTLI ST field fetch-depth CDATA #l MPLI ED>

116 May 16, 2005

Java Data Objects 2.0

JDO20

The post - | oad attribute on the f et ch- gr oup element indicates whether the] doPost -
Load callback will be made when the fetch group is loaded. It defaults to f al se, for all
fetch groups except the default fetch group, on which it defaults to t r ue.

The nane attribute on a f i el d element contained within a f et ch- gr oup element is the
name of field in the enclosing class or a dot-separated expression identifying a field reach-
able from the class by navigating a reference, collection or map. For maps of persistence-
capable classes "#key" or "#value" may be appended to the name of the map field to navi-
gate the key or value respectively (e.g. to include a field of the key class or value class in
the fetch group).

For collection and arrays of persistence-capable classes, "#element" may be appended to
the name of the field to navigate the element. This is optional; if omitted for collections and
arrays, #element is assumed.

Recursive fetch group references are controlled by the f et ch- dept h attribute. A f et ch-
dept h of 0 will fetch the whole graph of instances reachable from this field. The default is
1, meaning that only the instance directly reachable from this field is fetched.

A contained f et ch- gr oup element indicates that the named group is to be included in
the group being defined. Nested fetch group elements are limited to only the name at-
tribute. It is not permitted to nest entire fetch group definitions. If there are two definitions
for a reference, collection or map field (due to fetch groups including other fetch groups)
then the union of the fetch groups involved is used. If one or more depths have been spec-
ified then the largest depth is used unless one of the depths has not been specified (unlim-
ited overrides other depth specifications).

public class Person {

private String nane;
private Address address;
private Set children;

public class Address {
pri
pr
pr

vate String street;

vate String city;

vate Country country;

public class Country {

private String code;
private String nane;
}
<cl ass nanme="Person" ...>
<l-- pnanme + address + country code -->

117 May 16, 2005

Java Data Objects 2.0

JDO20

<fetch-group nanme="detail ">
<fetch-group nane="defaul t"/>
<field name="address"/>
<fi el d name="address. country. code"/>
</ fetch-group>

<l-- name + address + country code + sane for children -->

<fetch-group nane="detail +chil dren">
<fetch-group nane="detail"/>
<field name="chil dren" fetch-depth="1"/>
</ fetch-group>

<l-- name + address + country code + nanes of children -->

<fetch-group nane="detail +chi | dren- nanes" >
<f et ch-group nane="detail"/>
<fi el d name="chil dr en#el ement . name"/ >

</ fetch-group>

<l-- name + address + country code + list fg of children -->

<fetch-group nane="detail +children-1ist">
<fetch-group nane="detail"/>

<field name="children" fetch-group="list"/>

</ fetch-group>

</ cl ass>

Here is a map exanpl e

public class Node {

private String nane;
private Map edges; // Node -> EdgeWi ght

public class EdgeWi ght {

private int weight;

<cl ass nane="Node" ...>

118

May 16, 2005

Java Data Objects 2.0

<f et ch- group nane="nei ghbour - wei ght s" >
<fi el d name="edges#key. nane"/ >
<fi el d name="edges#val ue"/ >

</ fetch-group>

<f et ch- group nane="nei ghbours">
<field name="edges" fetch-depth="1"/>

</ fetch-group>

<f et ch- group nanme="whol e-graph">
<field nanme="edges"/ >

</ fetch-group>

</cl ass>

12.8

Flushing instances
void flush();

This method flushes all dirty, new, and deleted instances to the datastore. It has no effect
if a transaction is not active.

If a datastore transaction is active, this method synchronizes the cache with the datastore
and reports any exceptions.

If an optimistic transaction is active, this method obtains a datastore connection and syn-
chronizes the cache with the datastore using this connection. The connection obtained by
this method is held until the end of the transaction.

voi d checkConsi stency();

This method validates the cache with the datastore. It has no effect if a transaction is not
active.

If a datastore transaction is active, this method verifies the consistency of instances in the
cache against the datastore. An implementation might flush instances as if flush() were
called, but it is not required to do so.

If an optimistic transaction is active, this method obtains a datastore connection and veri-
fies the consistency of the instances in the cache against the datastore. If any inconsisten-
cies are detected, a JDOOptim sticVerificati onException is thrown. This
exception contains a nested JDOOpt i mi sti cVeri ficati onExcepti on for each object
that failed the consistency check. No datastore resources acquired during the execution of
this method are held beyond the scope of this method.

12.9

JDO20

Transaction completion

Transaction completion management is delegated to the associated Tr ansacti on in-
stance .

119 May 16, 2005

Java Data Objects 2.0

12.10

Multithreaded Synchronization

The application might require the Per si st enceManager to synchronize internally to
avoid corruption of data structures due to multiple application threads. This synchroniza-
tion is not required when the flag Mul ti t hr eaded is setto f al se.

void setMultithreaded (bool ean flag);
bool ean get Mul tithreaded();

NOTE: When the Mul ti t hr eaded flag is set to t r ue, there is a synchronization issue
with j doFl ags values READ_OK and READ_WRI TE_OK. Due to out-of-order memory
writes, there is a chance that a value for a field in the default fetch group might be incorrect
(stale) when accessed by a thread that has not synchronized with the thread that set the
j doFl ags value. Therefore, it is recommended that a JDO implementation not use
READ K or READ_WRI TE_K for j doFl ags if Mul ti t hr eaded issettotrue.

The application may choose to perform its own synchronization, and indicate this to the
implementation by setting the Mul ti t hr eaded flag to f al se. In this case, the JDO im-
plementation is not required to implement any additional synchronizations, although it is
permitted to do so.

A12.7-1 [If PersistenceManager.setMultithreaded is called with a value of true, then the JDO im-
plementation must perform synchronizations to support multiple application threads. A value of
true will be returned when getMultithreaded is called. In testing, multi-threading should be
turned on and then multi-threading tests should be run..]

A12.7-2 [If PersistenceManager.setMultithreaded is called with a value of false, a value of false will
be returned when getMultithreaded is called.]

12.11

JDO20

User associated objects

The application might manage Per si st enceManager instances by using an associated
object for bookkeeping purposes. These methods allow the user to manage the associated
object.

voi d set User Cbj ect (Cbject 0);

bj ect getUser Obj ect ();

The parameter is not inspected or used in any way by the JDO implementation.

A12.8-1 [The PersistenceManager.setUserObject method is used to store an object associated with
the PersistenceManager. One uses the method getUserObject to later retrieve the object.]

For applications where multiple users need to access their own user objects, the following
methods allow user objects to be stored and retrieved by key. The values are not examined
by the Per si st enceManager .

There are no restrictions on values. Keys must not be null. For proper behavior, the keys
must be immutable (e.g. j ava. | ang. String, j ava. | ang. | nt eger, etc.) or the keys’
identity (to the extent that it modifies the behavior of equals and hashCode methods) must
not change while a user object is associated with the key. This behavior is not enforced by
the Per si st enceManager.

hj ect put User Ohj ect (Ohj ect key, Object val ue);

This method models the put method of Map. The current value associated with the key is
returned and replaced by the parameter value. If the parameter val ue is nul | , the imple-
mentation may remove the entry from the table of managed key/value pairs.

120 May 16, 2005

Java Data Objects 2.0

bj ect renpbveUser Obj ect (Cbj ect key);

This method models the r embve method of Map. The current value associated with the
key is returned and removed.

hj ect get User hj ect (hj ect key);

This method models the get method of Map. The current value associated with the key is
returned. If the key is not found in the table, nul | is returned.

A12.12-1 [The application might need to get the Per si st enceManager Fact ory that
created this Per si st enceManager . If the Per si st enceManager was created using
a constructor, then this call returns nul | .]

Per si st enceManager Fact ory get Persi st enceManager Factory();

A12.9-1 [The PersistenceManagerFactory that created a PersistenceManageris returned by the
method getPersistenceManagerFactory.]

In order for the application to construct instances of the Obj ect | d class, there is a method
that returns the Qbj ect | d class given the persistence capable class.

Cl ass get bj ectldd ass (O ass pcd ass);

A12.10-1 [This method returns the class of the object id for the given class.] This method
returns the class specified by the application for persistence capable classes that use appli-
cation (primary key) JDO identity. It returns the implementation-defined class for persis-
tence-capable classes that use datastore identity. If the parameter class is not persistence-
capable, or the parameter is nul | , nul | is returned. If the object-id class defined in the
metadata for the parameter class is abstract then nul | is returned.A12.10-2 [a call to Persis-
tenceManager.getObjectldClass returns null if the class is abstract or not persistence-capable, or

A12.13-1 [If the implementation does not support application identity, and the class is de-
fined in the jdo metadata to use application identity, then nul | is returned.]

A12.13-2 [pj ect newCbj ectl dl nstance (C ass pcCl ass, Object key);

This method returns an object id instance corresponding to the pcCl ass and key argu-
ments. A St ri ng argument might have been the result of executing t oSt r i ng on an ob-
jectid instance.] The key argument is the value of the key field for single field identity.

This method is portable for datastore identity and application identity.

The JDO metadata defines named sequence value object generators, or simply, sequences.
A sequence implements the j avax. j do. dat ast or e. Sequence interface.

The behavior of the sequence with regard to transactions and rolling over maximum val-

The Per si st enceManager provides a method to retrieve a Sequence by name.
Sequence get Sequence(String nane);

1212 PersistenceM anager Factory
12.13 Objectld class management
the parameter is null.]

12.14 Sequence
ues is specified in the metadata.
JDO 2.0

121 May 16, 2005

Java Data Objects 2.0

If the named sequence does not exist, JDOUser Except i on is thrown.

The name is the scoped name of the sequence , which uses the standard Java package nam-
ing. For example, a sequence might be named “ com acme. hr. Enpl oyeeSequence”.

package javax.j do. dat astore;

public interface Sequence {
String getNare();

This method returns the fully qualified name of the Sequence.
bj ect next();

This method returns the next sequence value object. The sequence might be protected by
transactional semantics, in which case the sequence value object will be reused if the trans-
action in which the sequence value object was obtained rolls back.

void all ocate(int additional);

This method is a hint to the implementation that the application needs the additional num-
ber of sequence value objects in short order. There is no externally visible behavior of this
method. It is used to potentially improve the efficiency of the algorithm of obtaining addi-
tional sequence value objects.

bj ect current();

This method returns the current sequence value object if it is available. It is intended to re-
turn a sequence value object previously used. The implementation might choose to return
nul | for all cases or for any cases where a current sequence value object is not available.

| ong next Val ue();

This method returns the next sequence value as a | ong if it is available and able to be con-
verted to a number. It is equivalent to ((Long) next ()) .| ongVal ue().

| ong currentVal ue();

This method returns the current sequence value as a | ong if it is available and able to be
converted to a number. It is equivalent to ((Long) current ()). | ongVal ue().

}

12.15

JDO20

Life-cycle callbacks

In order to minimize the impact on domain classes, the instance callbacks can be defined
to use a life-cycle listener pattern instead of having the domain class implement the call-
back interface(s).

package javax.jdo.listener;
public interface |InstancelLifecyclelListener {
}
public interface CreatelLifecyclelistener
ext ends Instancelifecycl eListener {
voi d post Create(lnstancelLifecycl eEvent event);

}

This method is called whenever a persistent instance is created, during makePer si s-
t ent . It is called after the instance transitions to persistent-new.

package javax.jdo.listener;

122 May 16, 2005

Java Data Objects 2.0

JDO20

public interface LoadLifecycleLi stener
ext ends | nstancelifecycl eListener {
voi d post Load(Il nstanceli fecycl eEvent event);

}

This method is called whenever a persistent instance is loaded. It is called after the
j doPost Load method is invoked on the instance.

package javax.jdo.listener;
public interface StorelLifecyclelistener
ext ends Instancelifecycl eListener {
voi d preStore(lnstancelifecycl eEvent event);

}

This method is called whenever a persistent instance is stored, for example during flush or
commit. It is called before the j doPr eSt or e method is invoked on the instance. An object
identity for a persistent-new instance might not have been assigned to the instance when
this callback is invoked.

voi d post Store(lnstancelifecycl eEvent event);

}

This method is called whenever a persistent instance is stored, for example during flush or
commit. It is called after the j doPr eSt or e method is invoked on the instance. An object
identity for a persistent-new instance must have been assigned to the instance when this
callback is invoked.

package javax.jdo.listener;
public interface O earlLifecyclelistener
ext ends Instancelifecycl eListener {
voi d preC ear (Il nstancelLifecycl eEvent event);

}

This method is called whenever a persistent instance is cleared, for example during af -
t er Conpl et i on.Itis called before thej doPr eCl ear method is invoked on the instance.

voi d post d ear (I nstancelLifecycl eEvent event);

This method is called whenever a persistent instance is cleared, for example during af -
t er Conpl eti on. It is called after the j doPr e ear method is invoked on the instance
and the fields have been cleared by the JDO implementation.

package javax.jdo.listener;
public interface Del etelLifecyclelistener
ext ends I nstancelifecycl eLi stener {
voi d preDel et e(l nstancelLifecycl eEvent event);

This method is called whenever a persistent instance is deleted, during del et ePer si s-
t ent . It is called before the state transition and before the j doPr eDel et e method is in-
voked on the instance.

voi d post Del et e(l nstancelLifecycl eEvent event);

}

123 May 16, 2005

Java Data Objects 2.0

JDO20

This method is called whenever a persistent instance is deleted, during del et ePer si s-
t ent . Itis called after the] doPr eDel et e method is invoked on the instance and after the
state transition.

package javax.jdo.listener;
public interface DirtylLifecyclelistener
ext ends Instancelifecycl eListener {
void prebDirty(Instancelifecycl eEvent event);

}

This method is called whenever a persistent clean instance is first made dirty, during an
operation that modifies the value of a persistent or transactional field. It is called before the
field value is changed.

voi d postDirty(lnstancelLifecycl eEvent event);

}

This method is called whenever a persistent clean instance is first made dirty, during an
operation that modifies the value of a persistent or transactional field. It is called after the
field value was changed.

package javax.jdo.listener;
public interface DetachLifecyclelLi stener
ext ends Instancelifecycl eListener {
voi d preDetach(l nstanceLifecycl eEvent event);
}
This method is called before a persistent instance is copied for detachment.
voi d post Det ach(I nstancelLifecycl eEvent event);

}

This method is called whenever a persistent instance is copied for detachment. The source
instance is the detached copy; the target instance is the persistent instance.

package javax.jdo.li stener;
public interface AttachLifecyclelLi stener
ext ends Instancelifecycl eListener {
voi d preAttach(lnstancelLifecycl eEvent event);

}

This method is called before a detached instance is attached. The source instance is the de-
tached instance.

voi d post Attach(IlnstancelLifecycl eEvent event);

}

This method is called after a detached instance is attached. The source instance is the cor-
responding persistent instance in the cache; the target instance is the detached instance.
Instancel ifecycleEvent

This class is provided as part of the javax.jdo.listener package.

Note that although | nst ancelLi f ecycl eEvent inherits Seri al i zabl e interface from
Event Qbj ect, it is not intended to be Seri al i zabl e. Appropriate serialization meth-
ods are implemented to throw Not Seri al i zabl eExcepti on.

124 May 16, 2005

Java Data Objects 2.0

package javax.jdo.listener;

public class Instancelifecycl eEvent
extends java. util.Event Qbject ({

static final int CREATE = O;

static final int LOAD = 1;

static final int STORE = 2;
static final int CLEAR = 3;
static final int DELETE = 4;
static final int DRTY = 5;
static final int DETACH = 6;

static final int ATTACH = 7;

i nt get Event Type();

This method returns the event type that triggered the event.

I nst anceli f ecycl eEvent (i nt type, Cbject source);

This constructor creates an instance with the type, and source object.

I nst anceli f ecycl eEvent (i nt type, Object source, (Cbject target);
This constructor creates an instance with the type, source, and target objects.

bj ect get Source();

This method returns the object for which the event was triggered. This method is inherited
from the Event Cbj ect class.

hj ect get Target ();
This method returns the “other” object associated with the event. Specifically, the target

object is the detached instance in the case of post At t ach, and the persistent instance in
the case of post Det ach.

}

voi d addl nst anceli fecycl eLi stener (Instancelifecyclelistener |is-
tener, Cass[] classes);

This Per si st enceManager method adds the listener to the list of lifecycle event listen-
ers. The classes parameter identifies all of the classes of interest. If the classes parameter is
specified as nul | , events for all persistent classes and interfaces are generated. If the class-
es specified have persistence-capable subclasses, all such subclasses are registered implic-
itly.

The listener will be called for each event for which it implements the corresponding listen-
er interface.

void renovel nstancelifecycl eListener (InstancelLifecyclelListener
listener);

This Per si st enceManager method removes the listener from the list of event listeners.

12.16

JDO20

Accessto internal datastor e connection

In order for the application to perform some datastore-specific functions, such as to exe-
cute a query that is not directly supported by JDO, applications might need access to the
datastore connection used by the J]DO implementation. This method returns a wrapped

125 May 16, 2005

Java Data Objects 2.0

JDO20

connection that can be cast to the appropriate datastore connection and used by the appli-
cation.

The capability to get the datastore connection is indicated by the optional feature string
j avax.] do. opti on. Get Dat aSt or eConnecti on.

package javax.j do. dat astore;
public interface JDOConnection {
hj ect get Nati veConnection();

}
JDOConnecti on get Dat aSt or eConnection();

If this method is called while a datastore transaction is active, the object returned will be
enlisted in the current transaction. If called in an optimistic transaction before flush has
been called, or outside an active transaction, the object returned will not be enlisted in any
transaction.

The object must be returned to the JDO implementation prior to calling any JDO method
or performing any action on any persistent instance that might require the JDO implemen-
tation to use a connection. If the object has not been returned and the JDO implementation
needs a connection, a JDOUser Except i on is thrown. The object is returned to the JDO
implementation by calling the standard method on the object.

For JDOR implementations

e the JDOConnection obtained by get Dat aSt or eConnecti on implements
java.sql.Connection.

¢ The application returns a JDBC Connection to the JDO implementation by calling
its cl ose() method.

SQL Portability

For portability, a JDBC-based JDO implementation will return an instance that imple-
ments j ava. sql . Connect i on. The instance will throw an exception for any of the fol-
lowing method calls: commit, getMetaData, releaseSavepoint, rollback, setAutoCommit,
setCatalog, setHoldability, setReadOnly, setSavepoint, setTransactionlsolation, and set-
TypeMap.

126 May 16, 2005

Java Data Objects 2.0

13

Transactions and Connections

This chapter describes the interactions among JDO instances, JDO Persistence Managers,
datastore transactions, and datastore connections.

Operations on persistent JDO instances at the user’s choice might be performed in the con-
text of a transaction. That is, the view of data in the datastore is transactionally consistent,
according to the standard definition of ACID transactions:

* atomic --within a transaction, changes to values in JDO instances are all executed

* consistent -- changes to values in JDO instances are consistent with changes to
other values in the same JDO instance

* isolated -- changes to values in JDO instances are isolated from changes to the same
JDO instances in different transactions

* durable -- changes to values in JDO instances survive the end of the VM in which

The JDO transaction and connection contracts have the following goals.

¢ JDO implementations might span a range of small, embedded systems to large,

¢ Transaction management might be entirely hidden from class developers and
application components, or might be explicitly exposed to class and application

Architecture: PersistenceM anager, Transactions, and Connections

An instance of an object supporting the Per si st enceManager interface represents a
single user’s view of persistent data, including cached persistent instances across multiple

There is a one-to-one relationship between the Per si st enceManager and the Tr ans-
acti on. The Tr ansact i on interface is isolated because of separation of concerns. The
methods could have been added to the Per si st enceManager interface.

The j avax. j do. Transact i on interface provides for management of transaction op-
tions and, in the non-managed environment, for transaction completion. It is similar in
functionality to j avax. t ransacti on. User Tr ansact i on. That is, it contains begin,
commit, and rollback methods used to delimit transactions.

13.1 Overview

or none is executed

the changes were made
13.2 Goals

enterprise systems

component developers.
13.3

serial datastore transactions.
JDO 2.0

127 May 16, 2005

Java Data Objects 2.0

JDO20

Connection Management Scenarios

* single connection: In the simplest case, the PersistenceManager directly connects
to the datastore and manages transactional data. In this case, there is no reason to
expose any Connection properties other than those needed to identify the user and
the data source. During transaction processing, the Connection will be used to
satisfy data read, write, and transaction completion requests from the
Per si st enceManager .

* connection pooling: In a slightly more complex situation, the
Per si st enceManager Fact ory creates multiple Per si st enceManager
instances which use connection pooling to reduce resource consumption. The
Per si st enceManager s are used in single datastore transactions. In this case, a
pooling connection manager is a separate component used by the
Per si st enceManager instances to effect the pooling of connections. The
Per si st enceManager Fact ory will include a reference to the connection
pooling component, either as a JNDI name or as an object reference. The
connection pooling component is separately configured, and the
Per si st enceManager Fact or y simply needs to be configured to use it.

¢ distributed transactions: An even more complex case is where the
Per si st enceManager instances need to use connections that are involved in
distributed transactions. This case requires coordination with a Transaction
Manager, and exposure of the XAResour ce from the datastore Connection. JDO
does not specify how the application coordinates transactions among the
Per si st enceManager and the Transaction Manager.

* managed connections: The last case to consider is the managed environment,
where the PersistenceManagerFactory uses a datastore Connection whose
transaction completion is managed by the application server. This case requires
the datastore Connection to implement the J2EE Connector Architecture and the
PersistenceManager to use the architected interfaces to obtain a reference to a
Connection.

The interface between the JDO implementation and the Connection component is not
specified by JDO. In the non-managed environment, transaction completion is handled by
the Connection managed internally by the Transaction. In the managed environment,
transaction completion is handled by the XAResour ce associated with the Connection.
In both cases, the Per si st enceManager implementation is responsible for setting up
the appropriate interface to the Connection infrastructure.

Native Connection Management

If the JDO implementation supplies its own resource adapter implementation, this is
termed native connection management. For use in a managed environment, the associa-
tion between Tr ansact i on and Connection must be established using the J2EE Connec-
tor Architecture [see Appendix A reference 4]. This is done by the JDO implementation
implementing the] avax. r esour ce. ManagedConnect i onFact or y interface.

When used in a non-managed environment, with non-distributed transaction manage-
ment (local transactions) the application can use the Per si st enceManager Fact ory.
But if distributed transaction management is required, the application needs to supply an
implementation of j avax. r esour ce. ManagedConnect i onFact ory interface. This
interface provides the infrastructure to enlist the XAResour ce with the Transaction Man-
ager used in the application.

128 May 16, 2005

Java Data Objects 2.0

Non-native Connection Management

If the JDO implementation uses a third party Connection interface, then it can be used in
a managed environment only if the third party Connection supports the J2EE Connector
Architecture. In this case, the Per si st enceManager Fact ory property Connec-
ti onFact ory is used to allow the application server to manage connections.

In the non-managed case, non-distributed transaction management can use the Per si s-

t enceManager Fact ory, as above. But if distributed transaction management is re-
quired, the application needs to supply an implementation of
j avax. resour ce. Connect i onManager interface to be used with the application’s
implementation of the Connection management.

Optimistic Transactions

There are two types of transaction management strategies supported by JDO: “datastore
transaction management”; and “optimistic transaction management”.

With datastore transaction management, all operations performed by the application on
persistent data are done using a datastore transaction. This means that between the first
data access until the commit, there is an active datastore transaction.

With optimistic transaction management, operations performed by the application on per-
sistent data outside a transaction or before commit are done using a short local datastore
transaction. During flush, a datastore transaction is used for the update operations, veri-
fying that the proposed changes do not conflict with a parallel update by a different trans-
action.

Optimistic transaction management is specified by the Opt i m st i C setting on Tr ans-
action.

Figure16.0 Transactions and Connections

/ Application \

Transaction
Completion
Methods

Transaction Option
Methods

Transaction
Manager

JDO PersistenceManager

XAResource

Connection

XAResource

Connection

JDO20

129 May 16, 2005

Java Data Objects 2.0

13.4

134.1

13.4.2

JDO20

Interface Transaction
package j avax.j do;
public interface Transaction {

Per sistenceM anager
Per si st enceManager get Persi st enceManager ();

A13.4.1-1 [This method returns the Per si st enceManager associated with this Tr ans-
acti on instance.]

bool ean i sActive ();

A13.4.1-2 [This method tells whether there is an active transaction. The transaction might
be either a local transaction or a distributed transaction. If the transaction is local, then a
return value of t r ue means that the begi n method was executed and neither conmi t
nor r ol | back has been executed.] If the transaction is managed by XAResour ce with a
Transact i onManager, then this method indicates whether there is a distributed trans-
action active.

A13.4.1-3 [This method returns t r ue after the transaction has been started, until before
the af t er Conpl et i on synchronization method is called.] The method returns f al se
during af t er Conpl et i on.

Transaction options

Transaction options are valid for both managed and non-managed environments. Flags
are durable until changed explicitly by set methods. They are not changed by transaction
demarcation methods.

A13.4.2-1, A13.4.2-2, A13.4.2-3, A13.4.2-4, A13.4.2-19[If any of the set methods is called
during commit or rollback processing (within the bef or eConpl et i on synchronization
method), a JDOUser Except i on is thrown.] These methods can be called during af -
t er Conpl et i on processing.

A13.4.2-5, A13.4.2-6, A13.4.2-7, A13.4.2-8, A13.4.2-20[If an implementation does not sup-
port the option, then an attempt to set the flag to an unsupported value will throw J DOUn-
support edOpti onExcepti on.]

Nontransactional accessto persistent values

bool ean get Nontransacti onal Read ();

voi d set Nont ransacti onal Read (bool ean fl ag);

These methods access the flag that allows persistent instances to be read outside a transac-
tion. A13.4.2-9 [If this flag is set to t r ue, then queries and read access (including naviga-
tion) are allowed without an active transaction.] A13.4.2-10[If this flagisset to f al se, then
queries and non-primary key field read access (including navigation) outside an active
transaction throw a JDOUser Except i on.]

bool ean get Nontransactional Wite ();
voi d set Nontransacti onal Wite (bool ean fl ag);

These methods access the flag that allows non-transactional instances to be written in the
cache. A13.4.2-11 [If this flag is set to t r ue, then updates to non-transactional instances
are allowed without an active transaction.Duplicates 5.6-9] A13.4.2-12 [If this flag is set to

130 May 16, 2005

Java Data Objects 2.0

134.3

JDO20

f al se, then updates to non-transactional instances outside an active transaction throw a
JDOUser Excepti on.]
Optimistic concurrency control

A13.4.2-13 [If this flag is set to t r ue, then optimistic concurrency is used for managing
transactions.Duplicates 5.8]

bool ean getOptimstic ();

The optimistic setting currently active is returned.

void setOptimistic (boolean flag);

A13.4.2-14 [The optimistic setting passed replaces the optimistic setting currently active.]

Retain values at transaction commit

A13.4.2-16 [If this flag is set to t r ue, then eviction of transactional persistent instances
does not take place at transaction commit.Duplicates 5.6-10...5.6-13] If this flag is set to
f al se, then eviction of transactional persistent instances takes place at transaction com-
mit.

bool ean get Retai nVal ues ();

A13.4.2-17 [The r et @i nVal ues setting currently active is returned.]

voi d set Ret ai nVal ues (bool ean fl ag);

A13.4.2-18 [Ther et ai nVal ues setting passed replaces the r et ai nVal ues setting cur-
rently active.]

Restore values at transaction rollback

A13.4.2-21 [If this flag is set to t r ue, then restoration of transactional persistent instances
takes place at transaction rollback.] A13.4.2-22 [If this flag is set to f al se, then eviction of
transactional persistent instances takes place at transaction rollback.]

bool ean get Rest oreVal ues ();
A13.4.2-23 [The r est or eVal ues setting currently active is returned.]
voi d set Rest oreVal ues (bool ean flag);

A13.4.2-24 [The r est or eVal ues setting passed replaces the r est or eVal ues setting
currently active.]

Synchronization

The Tr ansact i on instance participates in synchronization in two ways: as a supplier of
synchronization callbacks, and as a consumer of callbacks. As a supplier of callbacks, a
user can register with the Tr ansact i on instance to be notified at transaction completion.
As a consumer of callbacks, the Tr ansact i on implementation will use the proprietary
interfaces of the managed environment to be notified of externally-initiated transaction
completion events. In a managed environment, this notification is used to cause flushing
of changes to the datastore as part of transaction completion.

For this latter purpose, the JDO implementation class might implement j avax. t r ans-
acti on. Synchroni zat i on or might use a delegate to be notified.

Synchronization is supported for both managed and non-managed environments. A Syn-
chroni zat i on instance registered with the Tr ansacti on remains registered until
changed explicitly by another set Synchr oni zat i on.

131 May 16, 2005

Java Data Objects 2.0

1344

JDO20

Only one Synchr oni zat i on instance can be registered with the Tr ansact i on. If the
application requires more than one instance to receive synchronization callbacks, then the
application instance is responsible for managing them, and forwarding callbacks to them.

voi d set Synchroni zation (javax.transaction. Synchroni zati on
sync) ;

A13.4.3-1 [The Synchroni zat i on instance is registered with the Tr ansact i on for
transaction completion notifications. Any Synchroni zat i on instance already regis-
tered will be replaced.] A13.4.3-2 [If the parameter is nul | , then no instance will be noti-
tied.] A13.4.3-3 [If this method is called during commit processing (within the user’s
bef or eConpl eti on or after Conpl eti on method), a JDOUser Excepti on is
thrown.]

A13.4.3-4 [The bef or eConpl et i on method will be called during the behavior specified
for the transaction completion method conmmi t .] A13.4.3-5 [The bef or eConpl eti on
method will not be called before r ol | back.]

A13.4.3-6 [The af t er Conpl et i on method will be called during the transaction comple-
tion methods. The parameter for the af t er Conpl eti on(i nt st atus) method will
be] either [j avax. t ransacti on. St at us. STATUS_COW TTED] or A13.4.3-7 [av-
ax.transaction. St at us. STATUS RCOLLEDBACK]

These two methods allow the application control over the environment in which the trans-
action completion executes (for example, validate the state of the cache before completion)
and to control the cache disposition once the transaction completes (for example, to change
persistent instances to persistent-nontransactional state).

j avax. transaction. Synchroni zati on get Synchroni zation ();
A13.4.3-8 [This method returns the Synchr oni zat i on currently registered.]

Transaction demar cation

If multiple parallel transactions are required, then multiple Per si st enceManager in-
stances must be used. If distributed transactions are required, then the Connector Archi-
tecture is used to coordinate transactions among the JDO Per si st enceManager s.
Non-managed environment

In a non-managed environment, with a single JDO Per si st enceManager per applica-
tion, thereisa Tr ansact i on instance representing a local transaction associated with the
Per si st enceManager instance.

voi d begin();
void commit();
voi d roll back();

The begi n, conmi t, and r ol | back methods can be used only in a non-managed envi-
ronment, or in a managed environment with Bean Managed Transactions. If one of these
methods is executed in a managed environment with Container Managed Transactions, a
JDOUser Except i on is thrown.

Ifconmi t orrol | back is called when a transaction is not active, JDOUser Except i on is
thrown. If begi n is called when a transction is active, JDOUser Except i on is thrown.

A13.4.4-1 [The conmi t method performs the following operations:

e calls the bef or eConpl eti on method of the Synchroni zati on instance
registered with the Tr ansact i on;

132 May 16, 2005

Java Data Objects 2.0

13.4.5

JDO20

¢ flushes dirty persistent instances;
* notifies the underlying datastore to commit the transaction;
* transitions persistent instances according to the life cycle specification;

e calls the afterConpl eti on method of the Synchroni zati on instance
registered with the Transacti on with the results of the datastore commit
operation.]

A13.4.4-2 [Ther ol | back method performs the following operations:
¢ rolls back changes made in this transaction from the datastore;
* transitions persistent instances according to the life cycle specification;

e calls the afterConpl eti on method of the Synchroni zati on instance
registered with the Tr ansact i on.]

Managed environment

In a managed environment, there is either a user transaction or a local transaction associ-
ated with the Per si st enceManager instance when executing method calls on JDO in-
stances or on the Per si st enceManager . Which of the two types of transactions is
active is a policy issue for the managed environment.

If datastore transaction management is being used with the Per si st enceManager in-
stance, and a Connection to the datastore is required during execution of the Per si s-
t enceManager or JDO instance method, then the Persi st enceManager will
dynamically acquire a Connection. The call to acquire the Connection will be made with
the calling thread in the appropriate transactional context, and the Connection acquired
will be in the proper datastore transaction.

If optimistic transaction management is being used with the Per si st enceManager in-
stance, and a Connection to the datastore is required during execution of an instance meth-
od or a non-completion PersistenceManager method, then the
Per si st enceManager will use a local transaction Connection.

RollbackOnly

At times, a component needs to mark a transaction as failed even though that component
is not authorized to complete the transaction. In order to mark the transaction as unsuc-
cessful, and to determine if a transaction has been so marked, two methods are used:

voi d set Rol | backOnl y();
bool ean get Rol | backOnl y();

Either the user application or the JDO implementation may call set Rol | backOnl y.
There is no way for the application to determine explicitly which component called the
method.

A13.4.5-1 [Once a transaction has been marked for rollback via set Rol | backOnl y, the
commit method will always fail with JDOFat al Dat aSt or eExcept i on.] The JDO imple-
mentation must not try to make any changes to the database during commit when the
transaction has been marked for rollback.

A13.4.5-2 [When a transaction is not active, and after a transaction is begun, get Rol | -
backOnl y will return f al se. Once set Rol | backOnl y has been called, it will return
true untilcomit orr ol | back is called.]

133 May 16, 2005

Java Data Objects 2.0

13.5

JDO20

Optimistic transaction management

Optimistic transactions are an optional feature of a JDO implementation. They are useful
when there are long-running transactions that rarely affect the same instances, and there-
fore the datastore will exhibit better performance by deferring datastore exclusion on
modified instances until commit.

In the following discussion, “transactional datastore context” refers to the transaction con-
text of the underlying datastore, while “transaction”, “datastore transaction”, and “opti-
mistic transaction” refer to the JDO transaction concepts.

With datastore transactions, persistent instances accessed within the scope of an active
transaction are guaranteed to be associated with the transactional datastore context. With
optimistic transactions, persistent instances accessed within the scope of an active transac-
tion are not associated with the transactional datastore context; the only time any instances
are associated with the transactional datastore context is during commit.

A13.5-1 [With optimistic transactions, instances queried or read from the datastore will not
be transactional unless they are modified, deleted, or marked by the application as trans-
actional.Duplicates 5.8] At commit time, the JDO implementation:

e establishes a transactional datastore context in which verification, insert, delete,
and updates will take place.

e calls the bef oreConpl eti on method of the Synchroni zati on instance
registered with the Tr ansact i on;

¢ verifies unmodified instances that have been made transactional, to ensure that the
state in the datastore is the same as the instance used in the transaction [this is done
using a JDO implementation-specific algorithm];

* verifies modified and deleted instances during flushing to the datastore, to ensure
that the state in the datastore is the same as the before image of the instance that
was modified or deleted by the transaction [this is done using a JDO
implementation-specific algorithm]

o If any instance fails the verification, a
JDOOpt i m sticVerificati onException is thrown which contains an
array of JDOOpt i m sticVerificationException, one for each instance
that failed the verification. The optimistic transaction is failed, and the transaction
is rolled back. The definition of “changed instance” is a JDO implementation
choice, but it is required that a field that has been changed to different values in
different transactions results in one of the transactions failing.

e if verification succeeds, notifies the underlying datastore to commit the
transaction;

* transitions persistent instances according to the life cycle specification, based on
whether the transaction succeeds and the setting of the RetainValues and
RestoreValues flags;

e calls the afterConpl eti on method of the Synchroni zati on instance
registered with the Tr ansact i on with the results of the commit operation.

Details of the state transitions of persistent instances in optimistic transactions may be
found in section 5.8.

134 May 16, 2005

Java Data Objects 2.0

14

Query

This chapter specifies the query contract between an application component and the JDO
Per si st enceManager .

The query facility consists of two parts: the query API, and the query language. This chap-
ter specifies the query language “JDOQL”, and includes conventions for the use of “SQL”
as the language for JDO implementations using a relational store.

An application component requires access to JDO instances so it can invoke specific behav-
ior on those instances. From a JDO instance, it might navigate to other associated instances,
thereby operating on an application-specific closure of instances.

However, getting to the first JDO instance is a bootstrap issue. There are three ways to get
an instance from JDO. First, if the users have or can construct a valid Qbj ect | d, then they
can get an instance via the persistence manager’s get Qbj ect Byl d method. Second, us-
ers can iterate a class extent by calling get Ext ent . Third, the JDO Quer y interface pro-
vides the ability to acquire access to JDO instances from a particular JDO persistence
manager based on search criteria specified by the application.

The persistent manager instance is a factory for query instances, and queries are executed
in the context of the persistent manager instance.

The actual query execution might be performed by the JDO Per si st enceManager or
might be delegated by the JDO Per si st enceManager to its datastore. The actual query
executed thus might be implemented in a very different language from Java, and might be
optimized to take advantage of particular query language implementations.

For this reason, methods in the query filter have semantics possibly different from those

The JDO Quer y interface has the following goals:

* Query language neutrality. The underlying query language might be a relational
query language such as SQL; an object database query language such as OQL; or
a specialized API to a hierarchical database or mainframe EIS system.

¢ Optimization to specific query language. The Quer y interface must be capable of
optimizations; therefore, the interface must have enough user-specified
information to allow for the JDO implementation to exploit data source specific

¢ Accommodation of multi-tier architectures. Queries might be executed entirely in
memory, or might be delegated to a back end query engine. The JDO Query
interface must provide for both types of query execution strategies.

141 Overview
in the Java VM.
142 Goals
query features.
JDO 2.0

135 May 16, 2005

Java Data Objects 2.0

* Large result set support. Queries might return massive numbers of JDO instances
that match the query. The JDO Query architecture must provide for processing
the results within the resource constraints of the execution environment.

¢ Compiled query support. Parsing queries may be resource-intensive, and in many
applications can be done during application development or deployment, prior to
execution time. The query interface allows for compiling queries and binding run-
time parameters to the bound queries for execution.

* Deletion by query. Deleting multiple instances in the datastore can be done
efficiently if specified as a query method instead of instantiating all persistent
instances and calling the del et ePer si st ent method on them.

14.3

JDO20

Architecture: Query

The JDO Per si st enceManager instance is a factory for JDO Quer y instances, which
implement the JDO Quer y interface. A14.3-1 [Multiple JDO Quer y instances might be ac-
tive simultaneously in the same JDO Per si st enceManager instance.] A14.3-2 [Multi-
ple queries might be executed simultaneously by different threads, but the

implementation might choose to execute them serially. In either case, the execution must
be thread safe.]

There are three required elements in any query:

¢ the class of the candidate instances. The class is used to scope the names in the
query filter. All of the candidate instances are of this class or a subclass of this class.
If the class is not explicitly passed to the query, it is obtained from the Extent.

e the collection of candidate JDO instances. The collection of candidate instances is
eitheraj ava. util . Col | ecti on, or an Ext ent of instances in the datastore.
Instances that are not of the required class or subclass will be silently ignored. The
Col | ecti on might be a previous query result, allowing for subqueries. If the
collection is not explicitly passed to the query, then it is obtained from the class.

e the query filter. The query filter is a Java bool ean expression that tells whether
instances in the candidate collection are to be returned in the result. If not
specified, the filter defaults to t r ue.

Other elements in queries include:

* parameter declarations. The parameter declaration is a St r i ng containing one or
more query parameter declarations separated with commas. It follows the syntax
for formal parameters in the Java language. A14.3-3 [Each parameter named in the
parameter declaration must be bound to a value when the query is executed.]

* parameter values to bind to parameters. Values are specified as Java Cbj ect s, and
might include simple wrapper types or more complex object types. The values are
passed to the execute methods and are not preserved after a query executes.

¢ variable declarations: Variables might be used in the filter, and these variables
must be declared with their type. A14.3-4 duplicate of A14.6-9 [The variable
declaration is a Stri ng containing one or more variable declarations. Each
declaration consists of a type and a variable name, with declarations separated by
a semicolon if there are two or more declarations. It is similar to the syntax for local
variables in the Java language.]

136 May 16, 2005

Java Data Objects 2.0

* import statements: Parameters and variables might come from a different class
from the candidate class, and the names might need to be declared in an import
statement to eliminate ambiguity. A14.3-5 duplicate of 14.6-8 [Import statements
are specified as a St r i ng with semicolon-separated statements. The syntax is the
same as in the Java language import statement.]

* ordering specification. A14.3-6 duplicate of 14.6-11 [The ordering specification
includes a list of expressions with the ascending/descending indicator. To be
portable, the expression’s type must be one of:

e primitive types except bool ean;
e wrapper types except Bool ean;
Bi gDeci mal ;
Bi gl nt eger;
String;
e Date.]
¢ result specification. The application might want to get results from a query that are
not instances of the candidate class. The results might be fields of persistent

instances, instances of classes other than the candidate class, or aggregates of
fields.

¢ grouping specification. Aggregates are most useful when the application can
specify the result field by which to group the results.

¢ uniqueness. The application can specify that the result of a query is unique, and
therefore a single value instead of a Col | ecti on should be returned from the

query.
¢ result class. The application may have a user-defined class that best represents the

results of a query. In this case, the application can specify that instances of this
class should be returned.

¢ limiting the size of the results. The application might want to limit the number of
instances returned by the query, and might want to skip over some number of
instances that might have been returned previously.

A14.3-7 [The class implementing the Quer y interface must be serializable. The serialized
fields include the candidate class, the filter, parameter declarations, variable declarations,
imports, ordering specification, uniqueness, result specification, grouping specification,
and result class.] The candidate collection, limits on size, and number of skipped instances
are not serialized. A14.3-8 [If a serialized instance is restored, it loses its association with
its former Per si st enceManager .]

14.4 Namespacesin queries
The query namespace is modeled after methods in Java:
e set Cl ass corresponds to the class definition
e decl ar ePar amet er s corresponds to formal parameters of a method
e decl areVari abl es corresponds to local variables of a method

e setFilter, set G oupi ng, set Ordering, and set Resul t correspond to
the method body and do not introduce names to the namespace

There are two namespaces in queries. A14.4-1 [Type names have their own namespace that
is separate from the namespace for fields, variables and parameters.]

JDO 2.0 137 May 16, 2005

Java Data Objects 2.0

Keywords

A14.4-6 [Keywords must not be used as package names, class names, parameter names, or
variable names in queries]. A14.4-7 [Keywords are permitted as field names only if they
are on the right side of the “.” in field access expressions] as defined in the Java Language
Specification second edition, section 15.11. Keywords include the Java language keywords
and the JDOQL keywords. Java keywords are as defined in the Java language specification
section 3.9, plus the boolean literals true and false, and the null literal. JDOQL keywords

are the following:

select, SELECT, unique, UNIQUE, distinct, DISTINCT, avg, AVG, min, MIN, max, MAX,
count, COUNT, sum, SUM, as, AS, imports, IMPORTS, into, INTO, from, FROM, exclude,
EXCLUDE, subclasses, SUBCLASSES, where, WHERE, order, ORDER, by, BY, ascending,
ASCENDING, asc, ASC, descending, DESCENDING, desc, DESC, group, GROUP, hav-
ing, HAVING, imports, IMPORTS, parameters, PARAMETERS, variables, VARIABLES,
range, RANGE.

The method set Cl ass introduces the name of the candidate class in the type namespace.
The method decl ar el nport s introduces the names of the imported class or interface
types in the type namespace. When used (e.g. in a parameter declaration, cast expression,
etc.) a type name must be the name of the candidate class, the name of a class or interface
imported by the parameter to decl ar el nports, denote a class or interface from the
same package as the candidate class, or must be declared by exactly one type-import-on-
demand declaration (“i nport <package>. *; “). A14.4-5 [It is valid to specify the same
import multiple times.]

The names of the public types declared in the package j ava. | ang are automatically im-
ported as if the declaration “i nport j ava. | ang. *; ”appearedindecl ar el nports.
It is a JDOQL-compile time error (reported during conpi | e or execut e methods) if a
used type name is declared by more than one type-import-on-demand declaration.

The method set Cl ass also introduces the names of the candidate class fields.

The method decl ar ePar anet er s introduces the names of the parameters. A14.4-2 [A
name in the filter preceded by “:” has the same effect. A parameter name hides the name
of a candidate class field if equal.] Parameter names must be unique.

The method decl ar eVar i abl es introduces the names of variables. A14.4-3 [A name in-
troduced by decl ar eVari abl es hides the name of a candidate class field if equal.]

Variable names must be unique and must not conflict with parameter names. A name in
the filter that is not a parameter name or a field name is implicitly a variable name.

A14.4-4 [A hidden field may be accessed using the t hi s qualifier: t hi s. fi el dNane.]

145

JDO20

Query Factory in PersistenceM anager interface
The Per si st enceManager interface contains Quer y factory methods.

Query newQuery();

A14.5-1 [Construct a new empty query instance.]

Query newQuery (Qbject query);

Construct a new query instance from another query instance. JDO implementations must
support A14.5-2 [a serialized /restored Quer y instance from the same JDO vendor but a
different execution environment], a query instance currently bound to the same Per si s-

t enceManager, and A14.5-3 [a query instance currently bound to a Per si st enceM
anager from the same JDO vendor.][A14.5-2 Any of the elements Class, Filter,

138 May 16, 2005

Java Data Objects 2.0

JDO20

IgnoreCache flag, Import declarations, Variable declarations, Parameter declarations, and
Ordering from the parameter Quer y are copied to the new Quer y instance, but a candi-
date Col | ecti on or Ext ent element is discarded.]

Query newQuery (String query);

A14.5-11 [Construct a new query instance using the specified St ri ng as the single-
string representation of the query] [see section 14.6.13].

Query newQuery (String | anguage, Object query);

A14.5-4 [Construct a new query instance using the specified language and the specified
query. The query instance will be of a class defined by the query language. The language
parameter for the JDO Query language as herein documented is “j avax. j do. que-
ry. JDOQL”.]In this case, the parameter is a St r i ng representing the single-string ver-
sion of the query [see section 14.6.13].

For use with SQL, the language parameter is “j avax. j do. query. SQL” and the query
parameter is a St r i ng containing the SQL query [see section 14.7]. Other languages’ pa-
rameter is not specified.

Query newQuery (Cd ass cls);

A14.5-5 [Construct a new query instance with the candidate class specified.]

Query newQuery (Extent cln);

A14.5-6 [Construct a new query instance with the candidate Ext ent specified; the candi-
date class is taken from the Ext ent .]

Query newQuery (Class cls, Collection cln);

A14.5-7 [Construct a new query instance with the candidate class and candidate Col | ec-
t i on specified.]

Query newQuery (Class cls, String filter);

A14.5-8 [Construct a new query instance with the candidate class and filter specified.] The
filter parameter might be the single string representing the query [see section 14.6.13].

Query newQuery (Class cls, Collection cln, String filter);

A14.5-9 [Construct a query instance with the candidate class, the candidate Col | ect i on,
and filter specified.] The filter parameter might be the single string representing the query
[see section 14.6.13].

Query newQuery (Extent cln, String filter);

A14.5-10 [Construct a new query instance with the candidate Ext ent and filter specified;
the candidate class is taken from the Ext ent .] The filter parameter might be the single
string representing the query [see section 14.6.13].

Query newNanmedQuery (Class cls, String queryNane);

A14.5-12 [Construct a new query instance with the given candidate class from a named
query.] The query name given must be the name of a query defined in metadata. The meta-
data is searched for the specified name. The extent, including subclasses, is the default for
the candidate collection.

A14.5-13 [If the named query is not found in already-loaded metadata, the query is
searched for using an algorithm. Files containing metadata are examined in turn until the
query is found. The order is based on the metadata search order for class metadata, but in-
cludes files named based on the query name.]

139 May 16, 2005

Java Data Objects 2.0

The file search order for a query scoped to class com.sun.nb.Bar is: META-INF/pack-
age.jdo, WEB-INF/package.jdo, package.jdo, com/package.jdo, com/sun/package.jdo,
com/sun/nb/package.jdo, com/sun/nb/Bar.jdo

If the metadata is not found in the above, and there is a property in the PersistenceMan-
agerFactory javax.jdo.option.Mapping=mySQL, then the folowing files are searched:
META-INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-
mySQL.orm, com/package-mySQL.orm, com/sun/package-mySQL.orm, com/sun/nb/
package-mySQL.orm, com/sun/nb/Bar-mySQL.orm.

If metadata is not found in the above, then the following files are searched: META-INF/
package jdoquery, = WEB-INF/package.jdoquery, packagejdoquery, com/pack-
age.jdoquery, com/sun/package.jdoquery, com/sun/nb/package.jdoquery, com/sun/
nb/Bar.jdoquery.

A14.5-14 [If the metadata is not found in the above, a JDOUserException is thrown.]

This resource name is loaded by one of the three class loaders used to resolve resource
names (see Section 12.5). The loaded resource must contain the metadata definition of the
query name. The schema for the loaded resource is the same as for the .jdo file.

A14.5-15 [The Quer y instance returned from this method can be modified by the applica-
tion, just like any other Quer y instance.]

A14.5-16 [Named queries must be compilable. Attempts to get a named query that cannot
be compiled result in JDOUser Except i on.]

14.6

JDO20

Query Interface
package j avax.j do;
public interface Query extends Serializable {

A14.6-1 [The Query interface extends Serializable, so it should be possible to serialize an instance
of Query.]

String JDOQL = “javax.]jdo.query. JDOQ";

String SQL = “javax.jdo.query. SQ.";

Persistence M anager

Per si st enceManager get Per si st enceManager () ;

A14.6-2 [Return the associated Per si st enceManager instance.] A14.6-3 [If this Quer y
instance was restored from a serialized form, then nul | is returned.]

Fetch Plan

Fet chPl an get Fet chPl an() ;

A14.6-21 [This method retrieves the fetch plan associated with the Query. It always re-
turns the identical instance for the same Query instance. Any change made to the fetch
plan affects subsequent query execution.] Fetch plan is described in Section 12.7.

Query element binding

The Quer y interface provides methods to bind required and other elements prior to exe-
cution.

A14.6-15 [All of these methods replace the previously set query element, by the parameter.
[The methods are not additive.] For example, if multiple variables are needed in the query,
all of them must be specified in the same call to decl ar eVar i abl es.]

140 May 16, 2005

Java Data Objects 2.0

JDO20

void setd ass (C ass candi dat ed ass);
A14.6-4 [Bind the candidate class to the query instance.]
voi d set Candi dates (Col |l ection candi dateCol | ection);

A14.6-5 [Bind the candidate Col | ecti on to the query instance.] If the user adds or re-
moves elements from the Col | ect i on after this call, it is not determined whether the
added/removed elements take part in the Query, or whether a NoSuchEl enment Ex-
cept i on is thrown during execution of the Query.

For portability, the elements in the collection must be persistent instances associated with
the same Per si st enceManager as the Quer y instance. An implementation might sup-
port transient instances in the collection. If persistent instances associated with another
Per si st enceManager are in the collection, JDOUser Except i on is thrown during
execute().

If the candidates are not specified explicitly by newQuery, set Candi dat es(Col | ec-
tion),orset Candi dat es(Ext ent), then the candidate extent is the extent of instances
of the candidate class in the datastore including subclasses. That is, the candidates are the
result of get Per si st enceManager () . get Ext ent (candi dat e ass, true).

voi d set Candi dat es (Extent candi dat eExtent);
A14.6-6 [Bind the candidate Ext ent to the query instance.]
void setFilter (String filter);

A14.6-7 [Bind the query filter to the query instance.]

voi d decl arelnports (String inports);

A14.6-8 [Bind the import statements to the query instance.] All imports must be declared
in the same method call, and the imports must be separated by semicolons.

voi d decl areVariables (String vari abl es);

A14.6-9 [Bind the variable types and names to the query instance.] This method defines the
types and names of variables that will be used in the filter but not provided as values by
the execut e method.

voi d decl areParameters (String paraneters);

A14.6-10 [Bind the parameter statements to the query instance.] This method defines the
parameter types and names that will be used by a subsequent execut e method.

void setOrdering (String ordering);

A14.6-11 [Bind the ordering statements to the query instance.]
void setResult (String result);

A14.6-16 [Specify the results of the query if not instances of the candidate class.]
void setGrouping (String grouping);

A14.6-17 [Specify the grouping of results for aggregates.]

voi d set Uni que (bool ean uni que);

A14.6-18 [Specify that there is a single result of the query.]

voi d setResultC ass (O ass resultd ass);

A14.6-19 [Specify the class to be used to return result instances.]
set Range (long from ncl, |ong toExcl);

141 May 16, 2005

Java Data Objects 2.0

1461

JDO20

A14.6-20 [Specify the number of instances to skip over and the maximum number of result
instances to return.]

Query options

voi d setl gnoreCache (boolean flag);

bool ean getl gnoreCache ();

A14.6-12 [Query.setIgnoreCache (boolean flag) sets the IgnoreCache option for queries.]
A14.6-13 [Query.getIgnoreCache returns the current setting of the IgnoreCache option.]

The | gnor eCache option, when set to t r ue, is a hint to the query engine that the user
expects queries be optimized to return approximate results by ignoring changed values in
the cache. This option is useful only for optimistic transactions and allows the datastore to
return results that do not take modified cached instances into account. An implementation
may choose to ignore the setting of this flag, and always return exact results reflecting cur-
rent cached values, as if the value of the flag were f al se.

Query modification
voi d set Unnodi fiabl e();
bool ean i sUnnodi fi abl e();

A14.6-22 [The Unnodi f i abl e option, when set, disallows further modification of the
query, except for specifying the range and result class and i gnor eCache option.]

Query compilation

The Quer y interface provides a method to compile queries for subsequent execution.
void conpile();

A14.6-14 [This method requires the Quer y instance to validate any elements bound to the

query instance and report any inconsistencies by throwing a JDOUser Except i on. Itis
a hint to the Quer y instance to prepare and optimize an execution plan for the query.]

Query execution

The Query interface provides methods that execute the query based on the parameters
given. By default, they return an unmodifiable Li st which the user can iterate to get re-
sults. The user can specify the class of the result of executing a query. A14.6.1-7 [Executing
any operation on the Li st that might change it throws Unsuppor t edOper at i onEx-
cept i on.] The signature of the execut e methods specifies that they return an Cbj ect
that must be cast to the proper type by the user.

Any parameters passed to the execut e methods are used only for this execution, and are
not remembered for future execution.

For portability, parameters of persistence-capable types must be persistent or transactional
instances. Parameters that are persistent or transactional instances must be associated with
the same Per si st enceManager as the Quer y instance. An implementation might sup-
port transient instances of persistence-capable types as parameters, but this behavior is not
portable. A14.6.1-8 [If a persistent instance associated with another Per si st enceMan-
ager is passed as a parameter, JDOUser Except i on is thrown during execut e() .1

Queries may be constructed at any time before the Per si st enceManager is closed, but
may be executed only at certain times. A14.6.1-1 [If the Per si st enceManager that con-
structed the Quer y is closed, then the execut e methods throw JDOFat al User Excep-

142 May 16, 2005

Java Data Objects 2.0

JDO20

ti on.] A14.6.1-2 [If the Nont r ansact i onal Read propertyisf al se, and a transaction
is not active, then the execut e methods throw JDOUser Except i on.]

bj ect execute ();

bj ect execute (Object pl);

hj ect execute (Object pl, Object p2);

hj ect execute (Object pl, Object p2, bject p3);

A14.6.1-3 [The execut e methods execute the query using the parameters and return the
result, which by default is an unmodifiable Li St of instances that satisfy the boolean fil-
ter.] The result may be a large Li st, which should be iterated or possibly A14.6.1-4
[passed to another Query.] A14.6.1-9 [The size() method returns Inte-
ger . MAX_VALUE if the actual size of the result is not known] (for example, the Li St rep-

resents a cursored result); if the size of the result equals or exceeds
I nt eger . MAX_VALUE; or if the range equals or exceeds | nt eger . MAX_VALUE.

When using an Ext ent to define candidate instances, the contents of the extent are subject
to the setting of the i gnor eCache flag. A14.6.1-10 [With i gnor eCache setto f al se:

¢ if instances were made persistent in the current transaction, the instances will be
considered part of the candidate instances.

¢ if instances were deleted in the current transaction, the instances will not be
considered part of the candidate instances.]

* modified instances will be evaluated using their current transactional values.

With i gnor eCache settotrue:

e if instances were made persistent in the current transaction, the new instances
might not be considered part of the candidate instances.

¢ if instances were deleted in the current transaction, the instances might or might
not be considered part of the candidate instances.

* modified instances might be evaluated using their current transactional values or
the values as they exist in the datastore, which might not reflect the current
transactional values.

Each parameter of the execut e method(s) is an Obj ect thatis either the value of the cor-
responding parameter or the wrapped value of a primitive parameter. The parameters as-
sociate in order with the parameter declarations in the Quer y instance.

bj ect executeWthMap (Map paraneters);

A14.6.1-5 [The execut eW t hMap method is similar to the execut e method, but takes
its parameters from a Map instance. The Map contains key/value pairs, in which the key is
the declared parameter name, and the value is the value to use in the query for that param-
eter. Unlike execut e, there is no limit on the number of parameters.] If implicit parame-

",

ters are used, the keys in the map do not include the leading “:
bj ect executeWthArray (Qoject[] paraneters);

A14.6.1-6 [The execut eW t hAr r ay method is similar to the execut e method, but
takes its parameters from an array instance. The array contains Qbj ect s, in which the po-
sitional Cbj ect is the value to use in the query for that parameter. Unlike execut e, there
is no limit on the number of parameters.]

143 May 16, 2005

Java Data Objects 2.0

14.6.2 Filter specification

The filter specificationis a St r i ng containing a boolean expression that is to be evaluated
for each of the instances in the candidate collection. A14.6.2-1 [If the filter is not specified,
then it defaults to " t r ue" , and the input Col | ect i on is filtered only for class type.]

A14.6.2-2 [An element of the candidate collection is returned in the result if:
* itis assignment compatible to the candidate Cl ass of the Quer y; and

e for all variables there exists a value for which the filter expression evaluates to
true. The user may denote uniqueness in the filter expression by explicitly
declaring an expression (for example, €1 ! = e2).] For example, a filter for a
Depart ment where there exists an Enpl oyee with more than one dependent
and an Enployee making more than 30,000 might be:
"(enps. contai ns(el) & el. dependent s > 1) &
(enps.contains(e2) & e2.salary > 30000)". The same Enpl oyee
might satisfy both conditions. But if the query required that there be two different
Enpl oyees satisfying the two conditions, an additional expression could be
added: " (enps. contai ns(el) & el.dependents > 1) &
(enps.contains(e2) & (e2.salary > 30000 & el '= e2))".

Rules for constructing valid expressions follow the Java language, except for these differ-
ences:

* A14.6.2-3 [Equality and ordering comparisons between primitives and instances of
wrapper classes are valid.]

* A14.6.2-4 [Equality and ordering comparisons of Date fields and Date
parameters are valid.]

e A14.6.2-5 [Equality and ordering comparisons of St ri ng fields and Stri ng
parameters are valid. The comparison is done according to an ordering not
specified by JDO.] This allows an implementation to order according to a
datastore-specified ordering, which might be locale-specific.

* A14.6.2-6 [White space (non-printing characters space, tab, carriage return, and
line feed) is a separator and is otherwise ignored.]

* A14.6.2-7 [The assignment operators =, +=, etc. and pre- and post-increment and -
decrement are not supported.]

* A14.6.2-8 [Methods, including object construction, are not supported], except for
Col | ection, String, and Map methods documented below. Implementations
might choose to support non-mutating method calls as non-standard extensions.

* A14.6.2-9 [Navigation through a null-valued field, which would throw
Nul | Poi nt er Except i on, is treated as if the subexpression returned f al se.]
Similarly, a failed cast operation, which would throw Cl assCast Excepti on,is
treated as if the subexpression returned f al se. Other subexpressions or [other
values for variables might still qualify the candidate instance for inclusion in the
result set.]

e A14.6.2-10 [Navigation through multi-valued fields (Col | ecti on types) is
specified using a variable declaration and the
Col | ecti on. cont ai ns(Obj ect 0) method.]

JDO 2.0 144 May 16, 2005

Java Data Objects 2.0

* The following literals are supported, as described in the Java Language
Specification: IntegerLiteral, Fl oati ngPoi ntLiteral,
Bool eanLi t eral, CharacterLiteral, StringLiteral, and
Nul | Literal.

e A14.6.2-42 [There is no distinction made between character literals and Stri ng
literals. Single-character St ri ng literals can be used wherever character literals
are permitted.

¢ String literals are allowed to be delimited by single quote marks or double quote
marks. This allows String literal filters to use single quote marks instead of escaped
double quote marks].

Note that comparisons between floating point values are by nature inexact. Therefore,
equality comparisons (== and !=) with floating point values should be used with caution.

A14.6.2-11 [Identifiers in the expression are considered to be in the name space of the spec-
ified class, with the addition of declared imports, parameters and variables.] As in the Java
language, A14.6.2-12 [t hi s is areserved word, and it refers to the element of the collection
being evaluated.]

A14.6.2-43 [Identifiers that are persistent field names or public final static field names are
required to be supported by JDO implementations.] Other identifiers might be supported
but are not required. Thus, portable queries must not use fields other than persistent or
public final static field names in filter expressions.

A14.6.2-13 [Navigation through single-valued fields is specified by the Java language syn-
taxoffi el d_nane.field_nane. ...field_nane.]

A JDO implementation is allowed to reorder the filter expression for optimization purpos-
es.

The following are minimum capabilities of the expressions that every implementation
must support:

* operators applied to all types where they are defined in the Java language:

Table 4: Query Operators

Operator Description

== A14.6.2-14[equa|]

I= A14.6.2-15[not equal]

> A14.6.2-16[greater than]

< A14.6.2-17[less than]

>= A14.6.2-18[greater than or equal]

<= A14.6.2-19[less than or equal]

& A14.6.2-20[boolean logical AND (not hit-
wise)]

&& A14.6.2-21[conditional AND]

| A14.6.2-22[boolean logical OR (not bitwise)]

I A14.6.2-23[conditional OR]

145 May 16, 2005

Java Data Objects 2.0

JDO20

Table 4: Query Operators

Operator Description

A14.6.2-24[integral unary bitwise comple-
ment]

A14.6.2-26[binary addition], A14.6.2-
25[unary plus], or String concatenation

A14.6.2-28[binary subtraction] or A14.6.2-
29[unary numeric sign inversion]

A14.6.2-30[times]

A14.6.2-31[divide by]

A14.6.2-32[logical complement]

%

A14.6.2-40[modulo operator]

instanceof | A14.6.2-41[instanceof operator]

* exceptions to the above:

A14.6.2-27 [String concatenation is supported only for St ri ng + St ri ng], not
String+<prinitive>;

* A14.6.2-37 [parentheses to explicitly mark operator precedence]
* A14.6.2-38 [cast operator (class)]

* A14.6.2-39 [promotion of numeric operands for comparisons] and arithmetic
operations. The rules for promotion follow the Java rules (see chapter 5.6 Numeric
Promotions of the Java language spec) extended by Bi gDeci mal , Bi gl nt eger
and numeric wrapper classes:

if either operand is of type Bi gDeci mal, the other is converted to

Bi gDeci mal .

otherwise, if either operand is of type Bi gl nt eger, and the other type is a
floating point type (f | oat, doubl e) or one of its wrapper classes (FI oat,
Doubl e) both operands are converted to Bi gDeci mal .

otherwise, if either operand is of type Bi gl nt eger, the other is converted to
Bi gl nt eger.
otherwise, if either operand is of type doubl e, the other is converted to doubl e.
otherwise, if either operand is of type f | 0at , the other is converted to f | oat .
otherwise, if either operand is of type | ong, the other is converted to | ong.
otherwise, both operands are converted to type i nt .

operands of numeric wrapper classes are treated as their corresponding primitive
types. If one of the operands is of a numeric wrapper class and the other operand
is of a primitive numeric type, the rules above apply and the result is of the
corresponding numeric wrapper class.

* equality comparison among persistent instances of persistence-capable types use
the JDO Identity comparison of the references; this includes containment methods
applied to Col | ecti on and Map types. Thus, two objects will compare equal if
they have the same JDO Identity.

146 May 16, 2005

Java Data Objects 2.0

JDO20

A14.6.2-44 [comparisons between persistent and non-persistent instances return
not equal.]

equality comparison of instances of non-persistence-capable reference types uses
the equal s method of the type; this includes containment methods applied to
Col | ecti on and Map types.

A14.6.2-33 [St ri ng methods startsWth and endsW t h support wild card
queries but not in a portable way. JDO does not define any special semantic to the
argument passed to the method; in particular, it does not define any wild card
characters.] To achieve portable behavior, applications should wuse
mat ches(String).

A14.6.2-34, A14.6.2-35 [Nul | -valued fields of Col | ect i on types are treated as if
they were empty if a method is called on them. In particular, [-34 they returnt r ue
to i SEnpt y] and [-35 return f al se to all cont ai ns methods.] A14.6.2-36 [For
datastores that support nul | values for Col | ect i on types, itis valid to compare
the field to nul | . Datastores that do not support nul | values for Col | ecti on
types, will return f al se if the query compares the field to nul | .] Datastores that
support nul | values for Col | ection types should include the option
"javax.j do.option. Nul |l Col | ection” in their list of supported options
(Per si st enceManager Fact ory. supportedQOptions()).

M ethods

The following methods are supported for their specific types, with semantics as defined by

the Java language:

Table 5: Query Methods

Method

Description

A14.6.2-45[con-

applies to Collection types]

tains(Object)

A1l14.6.2- appliesto Map types

46[get(Object)

containsK ey(Object) appliesto Map types
containsValue(Object) | appliesto Map types]

A14.6.2- appliesto Map and Collection types]
45[isEmpty()

A14.6.2-47[toL ower-
Case()

appliesto String type

toUpperCase()

appliesto String type

indexOf(String)

appliesto String type; O-indexing is used

indexOf(String, int)

appliesto String type; O-indexing is used

147

May 16, 2005

Java Data Objects 2.0

14.6.3

JDO20

Table5: Query Methods

Method Description

matches(String) appliesto String type; only the following regular expression
patterns are required to be supported and are portable: glo-
bal “(?)” for case-insensitive matches; and “.” and “.*” for
wild card matches. The pattern passed to matches must be a

literal or parameter.

substring(int)

appliesto String type

substring(int, int)

appliesto String type

startsWith(String)

appliesto String type

endsWith(String)

appliesto String typel

Al14.6.2-
48[Math.abs(numeric
)

static method in java.lang.Math, applies to types of float,
double, int, and long

Math.sgrt(numeric) static method in java.lang.Math, appliesto double typel

Al14.6.2- static method in JDOHel per, allows using the object identity
49[IDOHelper.getOb- | of an instance directly in aquery.]

jectld(Object)

Parameter declaration

The parameter declaration is a St r i ng containing one or more parameter type declara-
tions separated by commas. This follows the Java syntax for method signatures.

Parameter types for primitive values can be specified as either the primitive types or the
corresponding wrapper types. A14.6.3-1[If a parameter type is specified as a primitive, the
parameter value passed to execut e() must not be null or a JDOUser Excepti on is
thrown.]

A14.6.3-2[Parameters must all be declared explicitly via decl ar ePar anmet er s or all be
declared implicitly in the filter.] A14.6.3-3[Parameters implicitly declared (in the result, fil-
ter, ordering, grouping, or range) are identified by prepending a ":" to the parameter ev-
erywhere it appears. All parameter types can be determined by one of the following

techniques:]

* the parameter is used as the right hand side or left hand side of a boolean operator
(<, <=, ==, >=, or >) and the other side is strongly typed, or

¢ the parameter is used in a method from Table 5 on page 147 directly as either a
parameter or the object on which the method is called, and the type can be
determined from the context of the method, or

¢ the parameter is explicitly cast using the cast operator and the cast is identical
everywhere the parameter appears.

Implicit parameter declaration

When parameters are declared implicitly, if the query is string-based, parameters are rec-
ognized in the order that they appear in the query string. If the query is API-based, param-

148 May 16, 2005

Java Data Objects 2.0

146.4

14.6.5

JDO20

eters are recognized as if declared explicitly, with the order of their first appearance in the
result, filter, grouping, ordering, and range. This is significant if a positional form of exe-
cute is used.

Import statements

The import statements follow the Java syntax for import statements. Import on demand is
supported.

Variable declaration

The type declarations follow the Java syntax for local variable declarations.

A14.6.5-1 [A variable that is not constrained with an explicit contains clause is constrained
by the extent of the persistence capable class (including subclasses).] A14.6.5-2 [If the class
does not manage an Extent, then no results will satisfy the query.]

If the query result uses a variable, the variable must not be constrained by an extent. Fur-
ther, each side of an "OR" expression must constrain the variable using a contains clause.

A portable query will constrain all variables with a cont ai ns clause in each side of an
“OR” expression of the filter where the variable is used. Further, each variable must either
be used in the query result or its cont ai ns clause must be the left expression of an
“AND” expression where the variable is used in the right expression. That is, for each oc-
currence of an expression in the filter using the variable, there is a cont ai ns clause
“ANDed” with the expression that constrains the possible values by the elements of a col-
lection.

The semantics of contains is “exists”, where the contains clause is used to filter instances.
The meaning of the expression “emps.contains(e) && e.salary < param” is “there exists an
e in the emps collection such that e.salary is less than param”. This is the natural meaning
of contains in the Java language, except where the expression is negated. If the variable is
used in the result, then it need not be constrained.

If the expression is negated, then “!(emps.contains(e) && e.salary < param)” means “there
does not exist an employee e in the collection emps such that e.salary is less than param”.
Another way of expressing this is “for each employee e in the collection emps, e.salary is
greater than or equal to param”. If a variable is used in the result, then it must not be used
in a negated contains clause.

Implicit variable declaration

The variable declaration is unnecessary if all variables are implicitly declared. A14.6.5-3
[All variables must be explicitly declared, or all variables must be implicitly declared.]

Names in the filter are treated as parameters if they are explicitly declared via declarePa-
rameters or if they begin with “:”. A14.6.5-4 [Names are treated as variable names if they
are explicitly declared via declareVariables. Otherwise, names are treated as field names if
they are members of the candidate class. Finally, names are treated as implicitly defined
variable names.]

Variables must be typed. Implicitly defined variables are typed according to the following;:

¢ if the variable is the parameter of a contains method, the type is that of the element
type of the collection; or

¢ if the variable is the parameter of a containsKey method, the type is that of the key
of the map; or

¢ if the variable is the parameter of a containsValue method, the type is that of the
value of the map; or

149 May 16, 2005

Java Data Objects 2.0

14.6.6

14.6.7

JDO20

¢ if the variable is not constrained by a contains, containsKey, or containsValue
method, the variable must be typed by an explicit cast the first time the variable
appears in the filter.

Ordering statement

A14.6.6-1 [The ordering statement is a St r i Ng containing one or more ordering declara-
tions separated by commas. Each ordering declaration is a Java expression of an orderable

type:
e primitives (bool ean is non-portable);
e wrappers (Bool ean is non-portable);

e Bi gDeci mal ;

Bi gl nt eger;
e String;
e Date

followed by one of the following words: “ascendi ng”, “descendi ng”,“asc”, or
“desc”.

Ordering might be specified including navigation. The name of the field to be used in or-
dering via navigation through single-valued fields is specified by the Java language syntax
offield_nane.field_name...field_nane.]

The result of the first (leftmost) expression is used to order the results. If the leftmost ex-
pression evaluates the same for two or more elements, then the second expression is used
for ordering those elements. If the second expression evaluates the same, then the third ex-
pression is used, and so on until the last expression is evaluated. If all of the ordering ex-
pressions evaluate the same, then the ordering of those elements is unspecified.

The ordering of instances containing null-valued fields specified by the ordering is not
specified. Different JDO implementations might order the instances containing null-val-
ued fields either before or after instances whose fields contain non-null values.

Ordering of boolean fields, if supported by the implementation, is f al se beforet r ue, un-
less descending is specified. Ordering of null-valued Boolean fields is as above.

Closing Query results

When the application has finished with the query results, it might optionally close the re-
sults, allowing the JDO implementation to release resources that might be engaged, such
as database cursors or iterators. The following methods allow early release of these re-
sources.

voi d cl ose (bject queryResult);

A14.6.7-1 [This method closes the result of one execut e(. . .) method, and releases re-
sources associated with it. After this method completes, the query result can no longer be
used, for example to iterate the returned elements. Any elements returned previously by
iteration of the results remain in their current state. Any iterators acquired from the que-
ryResult will return f al se to hasNext () and will throw NoSuchEl enent Excep-
tiontonext().]

void closeAll ();

A14.6.7-2 [This method closes all results of execut e(. ..) methods on this Query in-
stance, as above. The Quer y instance is still valid and can still be used.]

150 May 16, 2005

Java Data Objects 2.0

14.6.8

14.6.9

JDO20

Limiting the Cardinality of the Query Result

The application may want to skip some number of results that may have been previously
returned, and additionally may want to limit the number of instances returned from a que-
ry. The parameters are modeled after St ri ng. get Char s and are 0-origin. The parame-
ters are not saved if the query is serialized. The default range for query execution if this
method is not called are (0, Long. MAX_VALUE) .

A14.6.8-1 [set Range(l ong from ncl, |ong toExcl);]

Thef rom ncl parameter is the number of instances of the query result to skip over before
returning the Li St to the user. If specified as 0 (the default), no instances are skipped.

The t oExcl parameter is the last instance of the query result (before skipping) to return
to the user.

The expression (t oExcl - froml ncl) isthe maximum number of instances in the que-
ry result to be returned to the user. If fewer instances are available, then fewer instances
will be returned. A14.6.8-2 [If ((t oExcl - from ncl)<= 0) evaluatestotrue,

e if the result of the query execution is a Li St, the returned Li St contains no
instances, and an |terator obtained from the Li st returns fal se to
hasNext ().

¢ if the result of the query execution is a single instance (set Uni que(true)),it will
have a value of nul | .]

A14.6.8-3 [set Range(String range);]

When using the string form of set Range both parameter values are specified either as
numbers or as parameters. The f rom ncl and t oExcl values are comma separated and

evaluated as either long values or as parameter names (beginning with “:”). For example,
set Range(“: fronRange, :toRange”) orset Range(“100, 130").

Specifying the Result of a Query (Proj ections, Aggr egates)

The application might want to get results from a query that are not instances of the candi-
date class. The results might be fields of persistent instances, instances of classes other than
the candidate class, or aggregates of fields.

void setResult(String result);

The result parameter consists of the optional keyword di sti nct followed by a comma-
separated list of named result expressions or a result class specification.

A result class specification consists of the keyword new followed by the name of a result
class and a comma-separated parenthesis-enclosed list of named result expressions. See
14.6.12 for a detailed description of the result class specification.

Distinct results

A14.6.9-1[If di sti nct is specified, the query result does not include any duplicates. If the
result parameter specifies more than one result expression, duplicates are those with
matching values for each result expression.]

A14.6.9-2 [Queries against an extent always consider only distinct candidate instances, re-
gardless of whether di st i nct is specified. Queries against a collection might contain du-
plicate candidate instances; the di stinct keyword removes duplicates from the
candidate collection in this case.]

Regardless of the di sti nct specification, relational database implementations must re-
move duplicates that result from joins. In all cases, the di st i nct specification requires re-
moving duplicates from projected expressions.

151 May 16, 2005

Java Data Objects 2.0

JDO20

A14.6.9-3 [If a variable or a field of a variable is included in the result, either directly or via
navigation through the variable, then the semantics of the “contains” clause that include
the variable change. In this case, all values of the variable that satisfy the filter are included
in the result.]

A14.6.9-4 [If any result is a navigational expression, and a non-terminal field or variable
has a null value for a particular set of conditions (the result calculation would throw
Nul | Poi nt er Excepti on), then the result is null for that result expression.] This is
known in relational algebra as “outer join semantics”. For example, to exclude results of
“this.department.category.name” where either department or category is null, the user
must explicitly add a clause to the filter: “this.department != null && this.department.cat-
egory !=null”.

A14.6.9-5 [The result expressions include:

e “t hi s”: indicates that the candidate instance is returned

o <field>: this indicates that a field is returned as a value; the field might be in the
candidate class or in a class referenced by a variable

* <variable>: this indicates that a variable’s value is returned as a persistent instance
* <aggregate>: this indicates that an aggregate of multiple values is returned

* count (<expression>): the count of the number of instances of this expression is
returned; the expression can be “t hi s” or a variable name

* sun(<numeric field expression>): the sum of field expressions is returned

m n(<field expression>): the minimum value of the field expressions is returned

max (<field expression>): the maximum value of the field expressions is returned

* avg(<numeric field expression>): the average value of all field expressions is
returned

¢ <field expression>: the value of a numeric expression using any of the numeric

operators allowed in queries applied to fields is returned

* <navigational expression>: this indicates a navigational path through single-
valued fields or variables as specified by the Java language syntax; the
navigational path starts with the keyword “this”, a variable, a parameter, or a field
name followed by field names separated by dots.

* <parameter>: one of the parameters provided to the query.
The result expression can be explicitly cast using the (cast) operator.]
Named Result Expressions

<result expression> as <name>: identify the <result expression> (any of the result expres-
sions specified above) as a named element for the purpose of matching a method or field
name in the result class.

If the name is not specified explicitly, the default for name is the expression itself.
Aggregate Types
A14.6.9-6 [Count returns Long.

Sumreturns Long for integral types and the field’s type for other Nunber types (Bi gDec-
i mal , Bi gl nt eger, Fl oat, and Doubl e). Sumis invalid if applied to non-Nunber types.

Avg, m n, and max return the type of the expression.]

152 May 16, 2005

Java Data Objects 2.0

14.6.10

14.6.11

14.6.12

JDO20

Primitive Types

If a result expression has a primitive type, its value is returned as an instance of the corre-
sponding java wrapper class.

Null Results

A14.6.9-7 [If the returned value from a query specifying a result is nul | , this indicates that
the expression specified as the result was nul | .] Note that the semantics of this result are
different from the returned value where no instances satisfied the filter.

Default Result

A14.6.9-8 [If not specified, the result defaults to “di stinct this as C’] where Cis the
unqualified name of the candidate class. For example, the default result specification for a
query where the candidate class is com.acme.hr.Employee is “di stinct this as Em
pl oyee”.

Grouping Aggregate Results

Aggregates are most useful if they can be grouped based on an element of the result.
Grouping is required if there are non-aggregate expressions in the result.

voi d set Grouping(String grouping);

The grouping parameter consists of one or more expressions separated by commas fol-
lowed by an optional “having” followed by one Boolean expression. A14.6.10-1 [When
grouping is specified, each result expression must be one of:

* an expression contained in the grouping expression; or,
* an aggregate expression evaluated once per group.

The query groups all elements where all expressions specified in set G- oupi ng have the
same values. The query result consists of one element per group.]

A14.6.10-2 [When “havi ng” is specified, the “havi ng” expression consists of arithmetic
and boolean expressions containing aggregate expressions.]
Specifying Uniqueness of the Query Result

If the application knows that there can be exactly zero or one instance returned from a que-
ry, the result of the query is most conveniently returned as an instance (possibly nul |) in-
stead of a Li St .

voi d set Uni que(bool ean uni que);

A14.6.11-1 [When the value of the Uni que flagist r ue, then the result of a query is a single
value, with nul | used to indicate that none of the instances in the candidates satisfied the
filter. If more than one instance satisfies the filter, and the range is not limited to one result,
then execut e throws a JDOUser Except i on.]

Default Unique setting

A14.6.11-2 [The default Unique setting is true for aggregate results without a grouping ex-
pression, and false otherwise.]

Specifying the Class of the Result

The application may have a user-defined class that best represents the results of a query.
In this case, the application can specify that instances of this class should be returned.

voi d setResultC ass(C ass resultd ass);

153 May 16, 2005

Java Data Objects 2.0

The default result class is the candidate class if the parameter to set Resul t is nul | or
not specified. When the result is specified and not nul | , the default result class is the type
of the expression if the result consists of one expression, or Qbj ect [] if the result consists
of more than one expression.

Result Class Requirements

* A14.6.12-1 [The result class may be one of the j ava. | ang classes Char act er,

Bool ean, Byte, Short, Integer, Long, Float, Double, String, or
bj ect [];orone of thej ava. mat h classes Bi gl nt eger or Bi gDeci mal ; or the
java.util class Date; or one of the java.sql classes Date, Time, or
Ti mest anp; or a user-defined class.

If there are multiple result expressions, the result class must be able to hold all
elements of the result specification or a JDOUser Except i on is thrown.

If there is only one result expression, the result class must be assignable from the
type of the result expression or must be able to hold all elements of the result
specification. A single value must be able to be coerced into the specified result
class (treating wrapper classes as equivalent to their unwrapped primitive types)
or by matching. If the result class does not satisfy these conditions, a
JDOUser Except i on is thrown.

A constructor of a result class specified in the set Resul t method will be used if
the results specification matches the parameters of the constructor by position and
type. If more than one constructor satisfies the requirements, the JDO
implementation chooses one of them. If no constructor satisfies the results
requirements, or if the result class is specified via the set Resul t Cl ass method,
the following requirements apply:

* A user-defined result class must have a no-args constructor and one or more
public “set” or “put” methods or fields.
¢ Each result expression must match one of:
* a public field that matches the name of the result expression and is of the type
(treating wrapper types the same as primitive types) of the result expression;

* or if no public field matches the name and type, a public “set” method that returns
voi d and matches the name of the result expression and takes a single parameter
which is the exact type of the result expression;

* or if neither of the above applies,a public method must be found with the signature
void put(Object, Object) in which the first arqument is the name of the result
expression and the second argument is the value from the query result.

¢ Portable result classes do not invoke any persistence behavior during their no-args
constructor or “set” methods.]

Table 6: Shape of Result (C isthe candidate class)

setResult setResultClass | setUnique shape of result
A14.6.12-2 [null, or “thisas C” null false Li st<C
null, or “thisas C” null true C
not null, one result expression of type T | null false Li st <T>
not null, one result expression of type T | null true T

JDO20

154

May 16, 2005

Java Data Objects 2.0

Table 6: Shape of Result (C isthe candidate class)

setResult setResultClass | setUnique shape of result

not null, more than one result expression | null false Li st<Object[] >

not null, more than one result expression | null true hj ect[]

null or not null UserResult.class | false Li st <User Resul t >

null or not null UserResult.class | true User Resul t]

14.6.13

Single-string Query element binding

A14.6.13-1 [The String version of Query represents all query elements using a single string.
The string contains the following structure:]

select [unique] [<result>] [into <result-class-name>]
[from <candidate-class-name> [exclude subclasses] |
[where <filter>]

[variables <variable-list>]

[parameters <parameter-list>]

[imports <import-list>]

[group by <grouping-clause>]

[order by <ordering-clause>]

[range <from-range> ,<to-range>]

A14.6.13-2 [Keywords, identified above in bold, are either all upper-case or all lower-case.
Keywords cannot be mixed case.]

The select clause must be the first clause in the query.
The order of the other clauses must be as described above.

A14.6.13-3 [If implicit parameters are used, their order of appearance in the query deter-
mines their order for binding to positional parameters for execution.]

<result> is the result as in 14.6.9.

<result-class-name> is the name of the result class as in 14.6.12.
<filter> is the filter as in 14.6.2.

<variable-list> is the variable declaration as in 14.6.5.
<parameter-list> is the parameter declaration as in 14.6.3.
<import-list> is the imports declaration as in 14.6.4.
<grouping-clause> is the grouping specification as in 14.6.10.
<ordering-clause> is the ordering specification as in 14.6.6.

<from-range> and <to-range> are as in 14.6.8.

14.7

JDO20

SOQL Queries

If the developer knows that the underlying datasource supports SQL, and knows the map-
ping from the JDO domain model to the SQL schema, it might be convenient in some cases

155 May 16, 2005

Java Data Objects 2.0

JDO20

to execute SQL instead of expressing the query as JDOQL. A14.7-1 [In this case, the factory
method that takes the language string and Object is used: newQuery (String | an-
guage, Object query). The language parameter is “javax.jdo.query.SQL” and the
query parameter is the SQL query string.]

The SQL query string must be well-formed. The JDO implementation must not make any
changes to the query string. The tokens “?” must be used to identify parameters in the SQL
query string.

When this factory method is used, the behavior of the Quer y instance changes significant-
ly. A14.7-2 [The only methods that can be used are set Cl ass to establish the candidate
class, set Uni que to declare that there is only one result row, and set Resul t Cl ass to
establish the result class.]

e there is no filter, and the set Fi | t er method throws JDOUser Except i on.

¢ there is no ordering specification, and the set Ordering method throws
JDOUser Except i on.

e there are no variables, and the decl areVari abl es method throws
JDOUser Except i on.

* the parameters are untyped, and the decl ar ePar anet er s method throws
JDOUser Except i on.

* there is no grouping specification, and the set G oupi ng method throws
JDOUser Except i on.

* the candidate collection can only be the Ext ent of instances of the candidate class,
including subclasses, and the setCandidates method throws
JDOUser Except i on.

* parameters are bound by position. If the parameter list is an Qbj ect [] then the
first element in the array is bound to the first “?” in the SQL statement, and so
forth. If the parameter list is a Map, then the keys of the Map must be instances of
I nt eger whosei nt Val ue is 1..n. The value in the Map corresponding to the key
whose i nt Val ue is 1 is bound to the first “?” in the SQL statement, and so forth.

* there are no imports, and the declarelnports method throws
JDOUser Excepti on.

e for queries in which the candidate class is specified, the columns selected in the
SQL statement must at least contain the primary key columns of the mapped
candidate class, and additionally the discriminator column if defined and the
version column(s) if defined.

¢ results are taken from the SELECT clause of the query, and the set Resul t
method throws JDOUser Except i on.

* the cardinality of the result is determined by the SQL query itself, and the
set Range method throws JDOUser Except i on.

A14.7-3 [SQL queries can be defined without a candidate class. These queries can be found
by name using the factory method newNamedQuer y, specifying the class as nul |, or can
be constructed without a candidate class.]

156 May 16, 2005

Java Data Objects 2.0

Table 7: Shape of Result of SQL Query

Caggssate Selected columns setResultClass setUnique shape of result
A14.7-4[C must include primary null false Li st <C>
key columns
C must include primary null true C
key columns
null singlecolumnof typeT | null false Li st<T>
null single column of type T | null true T
null more than one result null false Li st <Object]]>
column
null more than one result null true Object[]
column
null or not null UserResult.class false Li st <UserResult>
null or not null UserResult.class true UserResult]
14.8 Deletion by Query

JDO20

An application may want to delete a number of instances in the datastore without instan-
tiating them in memory. The instances to be deleted can be described by a query.

| ong del etePersistentAll (Object[] paraneters);
| ong del et ePersistentAl |l (Map paraneters);
| ong del etePersistentAll ();

A14.8-1 [These methods delete the instances of affected classes that pass the filter, and all
dependent instances. Affected classes are the candidate class and its persistence-capable
subclasses.] A14.8-2 [The number of instances of affected classes that were deleted is re-
turned. Embedded instances and dependent instances are not counted in the return value.]

A14.8-3 [Query elementsfi | t er, paraneters,i nports,vari abl es, and uni que are
valid in queries used for delete. Elements r esul t ,resul t cl ass, range, gr oupi ng,
and or der i ng are invalid. If any of these elements is set to its non-default value when one
of the del et ePer si st ent Al | methods is called, a JDOUser Except i on is thrown and
no instances are deleted.]

A14.8-4 [Dirty instances of affected classes are first flushed to the datastore. Instances al-
ready in the cache when deleted via these methods or brought into the cache as a result of
these methods undergo the life cycle transitions as if del et ePer si st ent had been called
on them.

That is, if an affected class implements the Del et eCal | back interface, the instances of
that class to be deleted are instantiated in memory and the j doPr eDel et e method is

157 May 16, 2005

Java Data Objects 2.0

called prior to deleting the instance in the datastore. If any Li f ecycl eLi st ener instanc-
es are registered with affected classes, these listeners are called for each deleted instance.

Before returning control to the application, instances of affected classes in the cache are re-
freshed by the implementation so their status in the cache reflects whether they were de-
leted from the datastore.]

149 Extensions
A14.9-1 [Some JDO vendors provide extensions to the query, and these extensions must be
set in the query instance prior to execution.]
voi d set Ext ensi ons(Map ext ensions);
This method replaces all current extensions with the extensions contained as entries in the
parameter Map. A parameter value of nul | means to remove all extensions. The keys are
immediately evaluated; entries where the key refers to a different vendor are ignored; en-
tries where the key prefix matches this vendor but where the full key is unrecognized
cause a JDOUser Except i on to be thrown. The extensions become part of the state of the
Quer y instance that is serialized. The parameter Map is not used after the method returns.
voi d addExt ension(String key, Cbject value);
This method adds one extension to the Query instance. This extension will remain until
the next set Ext ensi ons method is called, or addExt ensi on with an equal key. Key
recognition behavior is identical to set Ext ensi ons.
1410 Examples:

The following class definitions for persistence capable classes are used in the examples:
package com xyz. hr;
cl ass Enpl oyee {
String nane;
float salary;
Depart nent dept;
Enpl oyee boss;
}
package com xyz. hr;
cl ass Departnent ({
String nane;
Col | ection enps;
}

14.10.1 Basic query.
This query selects all Enpl oyee instances from the candidate collection where the salary
is greater than the constant 30000.
Note that the f | oat value for sal ary is unwrapped for the comparison with the literal
i nt value, which is promoted to f | oat using numeric promotion. If the value for the
sal ary field in a candidate instance is nul | , then it cannot be unwrapped for the com-
parison, and the candidate instance is rejected.

JDO 2.0 158 May 16, 2005

Java Data Objects 2.0

14.10.2

14.10.3

14.10.4

JDO20

Query g = pm newQery (Enpl oyee. class, “salary > 30000");
Coll ection enps = (Collection) g.execute ();

<query name="basic">

[! CDATA[

sel ect where salary > 30000

11

</ query>

Basic query with ordering.

This query selects all Enpl oyee instances from the candidate collection where the salary
is greater than the constant 30000, and returns a Col | ect i on ordered based on employee
salary.

Query g = pm newQuery (Enpl oyee. cl ass, “salary > 30000");
g.setOrdering (“salary ascendi ng”);

Col l ection enps = (Collection) g.execute ();

<query nanme="ordering”>

[! CDATA[

sel ect where salary > 30000

order by salary ascendi ng

11

</ query>

Parameter passing.

This query selects all Enpl oyee instances from the candidate collection where the salary
is greater than the value passed as a parameter.

If the value for the sal ary field in a candidate instance is nul | , then it cannot be un-
wrapped for the comparison, and the candidate instance is rejected.

Query g = pm newQery (Enpl oyee.class, “salary > sal”);

g. decl areParaneters (“Float sal”);

Col l ection enps = (Coll ection) q.execute (new Float (30000.));
<query nanme="paranmeter”>

[! CDATA[

sel ect where salary > :sal

11

</ query>

Navigation through single-valued field.

This query selects all Employee instances from the candidate collection where the value of
the name field in the Department instance associated with the Employee instance is equal
to the value passed as a parameter.

If the value for the dept field in a candidate instance is nul | , then it cannot be navigated
for the comparison, and the candidate instance is rejected.

159 May 16, 2005

Java Data Objects 2.0

14.10.5

14.10.6

JDO20

Query g = pm newQuery (Enpl oyee. cl ass, “dept.nanme == dep”);
g. decl areParaneters (“String dep”);

String rnd = “R&D";

Col l ection enps = (Collection) g.execute (rnd);

<query nane="navi gate” >

[! CDATA[

sel ect where dept.nane == :dep

11

</ query>

Navigation through multi-valued field.

This query selects all Depar t nent instances from the candidate collection where the col-
lection of Enpl oyee instances contains at least one Employee instance having a salary
greater than the value passed as a parameter.

String filter = “enps.contains (enp) & enp.salary > sal”;
Query g = pmnewQuery (Departnent.class, filter);

g. decl areParaneters (“fl oat sal”);

g. decl areVari abl es (" Enpl oyee enp”);

Col l ection deps = (Collection) g.execute (new Float (30000.));
<query name="rmul tival ue” >

[! CDATA[

sel ect where enps. contains(e)

&& e.salary > :sa

11

</ query>

Membership in a collection

This query selects all Depar t ment instances where the name field is contained in a pa-
rameter collection, which in this example consists of three department names.

String filter = “depts. contai ns(nane)”;
Query q = pmnewQuery (Departnent.class, filter);
Li st depts =

Arrays. asList(new String [] {“R&D’, “Sal es”, “Marketing”});
g. decl areParaneters (“Coll ection depts”);
Col l ection deps = (Collection) q.execute (depts);
<query nanme="col | ecti on” >
[! CDATA]
sel ect where :depts.contai ns(nane)

1]

</ query>

160 May 16, 2005

Java Data Objects 2.0

14.10.7

14.10.8

JDO20

Projection of a Single Field
This query selects names of all Enpl oyees who work in the parameter department.
Query g = pm newQuery (Enpl oyee. cl ass, “dept. nanme == dept Nane”);
g. decl areParaneters (“String deptNane”);
g. set Resul t (“name”);
Col l ection nanmes = (Col |l ection) g.execute(“R&D");
Iterator it = nanmes.iterator();
while (it.hasNext()) {
String name = (String) it.next();

}

<query name="project”>

[! CDATA[

sel ect nane where dept.nanme == :dept Nane
11

</ query>

Projection of Multiple Fields and Expressions

This query selects names, salaries, and bosses of Employees who work in the parameter
department.

class Info {

public String nane;

public Float sal ary;

publ i c Enpl oyee reportsTo;
}
Query g = pm newQuery (Enpl oyee. cl ass, “dept. nanme == dept Nane”);
g. decl areParaneters (“String deptNane”);
g. set Resul t (“nane, salary, boss as reportsTo”);
g. set Resul t O ass(I nfo. class);
Col l ection nanmes = (Col |l ection) g.execute(“R&D");
Iterator it = nanmes.iterator();
while (it.hasNext()) {

Info info = (Info) it.next();

String nanme = info.nane;

Enpl oyee boss = info.reportsTo;
}
<query nanme="resul tcl ass”>
[! CDATA[

161 May 16, 2005

Java Data Objects 2.0

14.109

14.10.10

JDO20

sel ect nane, salary, boss as reportsTo into Info
wher e dept.name == :dept Nane

11

</ query>

Projection of Multiple Fields and Expressionsinto a Constructed instance

This query selects names, salaries, and bosses of Employees who work in the parameter
department, and uses the constructor for the result class.

class Info {

public String nane;

public Float sal ary;

publ i c Enpl oyee reportsTo;

public Info (String nane, Float sal ary, Enployee reportsTo) {
t hi s. nane = nane;
this.salary = sal ary;
this.reportsTo = reportsTo;

}
Query g = pm newQuery (Enpl oyee. cl ass, “dept. nanme == dept Nane”);
g. decl areParaneters (“String deptNane”);
g. set Resul t (“new | nfo(nanme, salary, boss)”);
g. set Resul t d ass(| nfo. cl ass);
Coll ection nanmes = (Collection) qg.execute(“R&D");
Iterator it = nanes.iterator();
while (it.hasNext()) {
Info info = (Info) it.next();

String name = info.nane;
Enpl oyee boss = info.reportsTo;
}
<guery nanme="construct”>
[! CDATA[
sel ect new Info (name, salary, boss)
wher e dept.name == :dept Nane
11
</ query>

Aggregation of asingle Field

This query averages the salaries of Enpl oyees who work in the parameter department
and returns a single value.

162 May 16, 2005

Java Data Objects 2.0

14.10.11

14.10.12

JDO20

Query g = pm newQuery (Enpl oyee. cl ass, “dept. nane == dept Nane”);
g. decl areParaneters (“String deptNane”);
g.setResult (“avg(sal ary)”);

Fl oat avgSal ary = (Float) q.execute(“R&D");
<guery nane="aggregate”>

[! CDATA[

sel ect avg(sal ary)

wher e dept.name == :dept Nane

11

</ query>

Aggregation of Multiple Fields and Expressions

This query averages and sums the salaries of Enpl oyees who work in the parameter de-
partment.

Query g = pm newQuery (Enpl oyee. cl ass, “dept. nanme == dept Nane”);
g. decl areParaneters (“String dept Nane”);

g. set Resul t (“avg(sal ary), sum(salary)”);

bj ect[] avgSum = Object[] q.execute(“R&D");

Fl oat average = (Fl oat)avgSuniO];

Fl oat sum = (Fl oat)avgSuni1];

<query nanme="rmul tiple”>

[! CDATA[

sel ect avg(salary), sun{(salary)
wher e dept. nane == :dept Nane

11

</ query>

Aggr egation of Multiple fieldswith Grouping

This query averages and sums the salaries of Enpl oyees who work in all departments
having more than one employee and aggregates by department name.

Query g = pm newQuery (Enpl oyee. cl ass);
g.setResul t (“avg(sal ary), sun{salary), dept.nane”);
g. set G oupi ng(“dept. nane havi ng count (dept.nane) > 17);
Collection results = (Col |l ection)q. execute();
Iterator it = results.iterator();
while (it.hasNext()) {

oject[] info = (hject[]) it.next();

Fl oat average = (Float)info[O0];

Fl oat sum = (Float)info[1];

String deptNanme = (String)info[2];

163 May 16, 2005

Java Data Objects 2.0

}

<guery nanme="group’>

[! CDATA[

sel ect avg(salary), sun(salary), dept.nane from comxyz. hr.Em
pl oyee where dept.nanme == :deptName group by dept.nanme having

count (dept.nane) > 1
11
</ query>
14.10.13 Selection of a Single Instance
This query returns a single instance of Enpl oyee.
Query g = pm newQuery (Enpl oyee. cl ass, “name == enpNane”);
g. decl areParaneters (“String enpNane”);
g. set Uni que(true);
Enpl oyee enp = (Enpl oyee) . execute(“M chael ”);
<query name="uni que” >

[! CDATA[

sel ect unique this

wher e dept. nane == :dept Nane
11

</ query>

14.10.14 Selection of a Single Field
This query returns a single field of a single Enpl oyee.
Query g = pm newQuery (Enpl oyee. class, “name == enpNane”);
g. decl areParaneters (“String enpName”);
g.setResult(“salary”);
g. set Resul t O ass(Fl oat. cl ass);
g. set Uni que(true);
Fl oat salary = (Float) q.execute (“M chael”);
<query name="single”>

[! CDATA[

sel ect uni que new Fl oat (sal ary)
wher e dept. nane == :dept Nane

11

</ query>

JDO 2.0 164 May 16, 2005

Java Data Objects 2.0

14.10.15

14.10.16

JDO20

Projection of “this’ to User-defined Result Classwith Matching Field

This query selects instances of Enpl oyee who make more than the parameter salary and
stores the result in a user-defined class. Since the default is “distinct this as Employee”, the
field must be named Employee and be of type Employee.

cl ass EnmpW apper {
publi ¢ Enpl oyee Enpl oyee;
}
Query g = pm newQuery (Enpl oyee.class, “salary > sal”);
g. decl areParaneters (“Float sal”);
g. set Resul t C ass(EnpW apper. cl ass);
Coll ection infos = (Collection) g.execute (new Float (30000.));
Iterator it = infos.iterator();
while (it.hasNext()) {
EmpW apper info = (EnpWapper)it.next();
Enpl oyee e = info. Enpl oyee;

}

<query name="thisfield >

[! CDATA[

sel ect into EnmpWapper

where salary > sal

1]

</ query>

Projection of “this’ to User-defined Result Classwith Matching M ethod

This query selects instances of Enpl oyee who make more than the parameter salary and
stores the result in a user-defined class.

class Enplnfo {
private Enpl oyee worker;
public Enpl oyee getWrker() {return worker;}
public void set Enpl oyee(Enpl oyee e) {worker = e;}
}
Query g = pm newQery (Enpl oyee.class, “salary > sal”);
g. decl areParaneters (“Float sal”);
g. set Resul t ass(Enpl nf 0. cl ass) ;
Coll ection infos = (Collection) g.execute (new Float (30000.));
Iterator it = infos.iterator();
while (it.hasNext()) {
Emplnfo info = (Enplnfo)it. next();
Enpl oyee e = info.getWrker();

165 May 16, 2005

Java Data Objects 2.0

<query nane="t hi smet hod” >
[! CDATA[
select into Enplnfo
where salary > sal
1]
</ query>
14.10.17 Projection of variables
This query returns the names of all Enpl oyees of all "Research" departments:
Query g = pm newQuery(Departnent. cl ass);
g. decl areVari abl es(" Enpl oyee e");
g.setFilter("nane.startsWth(' Research') && enps.contains(e)");
g. set Resul t (e. nane) ;
Col l ecti on nanes = (. execute();
Iterator it = nanmes.iterator();
while (it.hasNext()) {
String name = (String)it.next();

}

<query nane="vari abl es” >

[! CDATA]

sel ect e.nanme

where nane. startsWth(‘' Research’)

&& enps. contai ns((com xyz. hr. Enpl oyee) e)
11

</ query>

14.10.18 Deleting Multiple I nstances
This query deletes all Enpl oyees who make more than the parameter salary.
Query g = pm newQuery (Enpl oyee.class, “salary > sal”);
g. decl areParaneters (“Float sal”);
g. del et ePer si stent Al | (new Fl oat (30000.));

JDO 2.0 166 May 16, 2005

Java Data Objects 2.0

15

Object-Relational M apping

JDO20

JDO is datastore-independent. However, many JDO implementations support storage of
persistent instances in relational databases, and this storage requires that the domain ob-
ject model be mapped to the relational schema. The mapping strategies for simple cases
are for the most part the same from one JDO implementation to another. For example, typ-
ically a class is mapped to one or more tables, and fields are mapped to one or more col-
umns.

The most common mapping paradigms are standardized, which allows users to define
their mapping once and use the mapping for multiple implementations.

Mapping Overview

Mapping between the domain object model and the relational database schema is specified
from the perspective of the object model. Each class is mapped to a primary table and pos-
sibly multiple secondary tables and multiple join tables. Fields in the class are mapped to
columns in either the primary table, secondary tables, or join tables. Simple field types typ-
ically map to single columns. Complex field types (Col | ect i ons, Maps,and ar r ays) typ-
ically map to multiple columns.

Secondary tables represent non-normalized tables that contain zero or one row corre-
sponding to each row in the primary table, and contain field values for the persistent class.
These tables might be modeled as one-to-one relationships, but they can be modeled as
containing nullable field values instead.

Secondary tables might be used by a single field mapping or by multiple field mappings.
If used by a single field mapping, the join conditions linking the primary and secondary
table might be specified in the field mapping itself. If used by multiple field mappings, the
join conditions might be specified in each field mapping or specified in the class mapping.

Complex field types are mapped by mapping each of the components individually. Col-
lections map the element and optional order components. Maps map the key and value
components. Arrays map the element and order components.

Mapping Strategies

The specification does not standardize how the mapping files are generated. Most imple-
mentations will support one or more of the following strategies for creating mapping files:

e starting with a relational schema, generate persistence-capable classes and the
mapping to relate them (sometimes referred to as reverse mapping or class
generation);

e starting with persistence-capable classes, generate the relational schema and the
mapping to relate them (sometimes called forward mapping or schema
generation);

e starting with a relational schema and persistence-capable classes, create the
mapping to relate them (sometimes called meet-in-the-middle mapping).

This specification does not standardize how the mapping files are created. Implementa-
tions might support command-line or interactive GUI-based tools to assist in the process.

167 May 16, 2005

Java Data Objects 2.0

15.1 Column Elements

Column elements used for simple, non-relationship field value mapping specify at least
the column name. The field value is loaded from the value of the named column.

The column element might contain additional information about the column, for use in
generating schema. This might include the scale and precision for numeric types, the max-
imum length for variable-length field types, the jdbc type of the column, or the sql type of
the column. This information is ignored for runtime use, with the following exception: if
the jdbc type of the column does not match the default jdbc type for the field's class (for
example, a String field is mapped to a CLOB rather than a VARCHAR column), the jdbc
type information is required at runtime.

Column elements that contain only the column name can be omitted, if the column name
is instead contained in the enclosing element. Thus, a field element is defined to allow a
column attribute if only the name is needed, or a column element if more than the name is
needed. If both column attribute and column element are specified for any element, it is a
user error.

Example 1

This example demonstrates mappings between fields and value columns.

oOmayE |

Andress
Fimal-smng
ity Stwing
-Flaie Sining
Tip Sining
-de iy Inaruclions [BImng
-ATaEA ()

CREATE TABLE ADDR (
STREET VARCHAR(255) PRI MARY KEY,
Cl TY VARCHAR(255),
STATE CHAR(2),
ZI PCODE VARCHAR(10) ,
DELI V_I NS CLOB

<or ne
<package nane="com xyz">
<cl ass nane="Addr ess" tabl e=" ADDR'>
<field name="street" col um="STREET"/>
<field name="city" colum="Cl TY"/>

JDO 2.0 168 May 16, 2005

Java Data Objects 2.0

<field nane="state" col um="STATE"/>

<field name="zi p" col um="2ZlI PCODE"/ >

<field name="del i verylnstructions">

<col utm nane="DELI V_I NS" j dbc-type="CLOB"/ >
</field>
</cl ass>
</ package>
</ or np

15.2

JDO20

Join Condition

Secondary tables and join tables are mapped using a join condition that associates a col-
umn or columns in the secondary or join table with a column or columns in the primary
table, typically the primary table’s primary key columns.

Column elements used for relationship mapping or join conditions specify the column
name and optionally the target column name. The target column name is the name of the
column in the associated table corresponding to the named column. The target column
name is optional when the target column is the single primary key column of the associat-
ed table, or when the target column name is identical to the join column name.

NOTE: This usage of column elements is fundamentally different from the usage of column
elements for value mapping. For value mapping, the name attribute names the column that
contains the value to be used. For join conditions, the name attribute names the column
that contains the reference data to be joined to the primary key column of the target.

Example 2

This example demonstrates the use of <join> elements to represent join conditions linking
a class' primary table and secondary tables used by fields.

oom ﬂ:.": |
Addmag

-Slreel:Snng

-Gty :5inng

-slale5inng

ZipoSinng
deireryinsructions: 5inng
signaiumeApquined: boolaan
maptPGimage

ELCTEIR

CREATE TABLE ADDR (
STREET VARCHAR(255) PRI MARY KEY,
Cl TY VARCHAR(255),
STATE CHAR(2),
ZI PCODE VARCHAR(10)

169 May 16, 2005

Java Data Objects 2.0

CREATE TABLE DELIV (
ADDR_STREET VARCHAR(255),
SI G_REQUI RED BI T,
DELI V_I NS CLOB

CREATE TABLE MAPQUEST | NFO (
ADDR_STREET VARCHAR(255),
MAPQUEST | MAGE BLOB

<or ne
<package nane="com xyz">
<cl ass name="Addr ess" tabl e="ADDR'>

<!-- shared join condition used by fields in DELIV -->

<join tabl e="DELI V' col um="ADDR STREET"/ >

<field nane="street" col um="STREET"/>

<field name="city" colum="C TY"/>

<field nane="state" col um="STATE"/>

<field name="zi p" col um="2ZlI PCODE"/ >

<fi el d name="si gnat ur eRequi red" tabl e="DELI V"
col um="SI G_REQUI RED"/ >

<field nanme="del i verylnstructi ons" tabl e="DELIV"
<col um nane="DELI V_I NS" jdbc-type="CLOB"/ >

</field>

<field name="nmapJPG' tabl e=" MAPQUEST_I| NFO'
col um="MAPQUEST _| MAGE" >

<l-- join condition defined for this field only -->
<join col um="ADDR_STREET"/ >

</field>

</cl ass>
</ package>
</ ornp

Example 3

JDO 2.0 170 May 16, 2005

Java Data Objects 2.0

This example uses the <join> element to map a Map<Date,String> field to a join table.
Note that in this example, the primary table has a compound primary key, requiring the
use of the target attribute in join conditions.

COm.ayE |

Andness

Fimal-smng

ity :Siring

-Flaie Sining

-Tip Sining

Je i NS TR 5I||||;|
~delispnyPecords Mag-Tas, Sirgs
Rl DTN

CREATE TABLE ADDR (
STREET VARCHAR(255),
Cl TY VARCHAR(255),
STATE CHAR(2),
ZI PCODE VARCHAR(10) ,
PRI MARY KEY (STREET, ZI PCODE)

CREATE TABLE DELIV_RECORDS (
ADDR_STREET VARCHAR(255),
ADDR_ZI PCODE VARCHAR(10) ,
DELI V_DATE TI MESTAWP,

SI GNED_BY VARCHAR(255)

<or np
<package nane="com xyz">
<cl ass nane="Addr ess" tabl e=" ADDR">

<field name="street" col um="STREET"/>

<field nane="city" colum="CITY"/>

<field nane="state” col um="STATE"/>

<field name="zi p" col um="2ZI PCODE"/ >

<l-- field type is Map<Date, String> -->

<field nane="del i veryRecords" tabl e="DELIV_RECORDS">

<j oi n>

<col utm nane="ADDR_STREET" target =" STREET"/ >
<col utm nane="ADDR_ZI PCODE" t ar get ="ZI PCODE"/ >

JDO 2.0 171 May 16, 2005

Java Data Objects 2.0

</join>
<key col um="DELIV_DATE"/ >
<val ue col um="SI GNED BY"/>
</field>
</cl ass>
</ package>
</ ornp

153

JDO20

Relationship Mapping

Column elements used for relationship mapping are contained in either the field element
directly in the case of a simple reference, or in one of the collection, map, or array elements
contained in the field element.

In case only the column name is needed for mapping, the column name might be specified
in the field, collection, or array element directly instead of requiring a column element
with only a name.

If two relationships (one on each side of an association) are mapped to the same column,
the field on only one side of the association needs to be explicitly mapped. The mapped
field is the field that if changed, modifies the data in the datastore.

The field on the other side of the relationship can be mapped simply by identifying the
field on the other side that defines the mapping, using the mapped-by attribute. Changes
to the field mapped via “mapped-by” are not reflected in the datastore. There is no further
relationship implied by having both sides of the relationship map to the same database col-
umn(s). In particular, making a change to one side of the relationship does not imply any
runtime behavior by the JDO implementation to change the other side of the relationship
in memory, although the column(s) will be changed during commit and will therefore be
visible by both sides in the next transaction.

Example 4
A many-one mapping (Employee has a reference to Department).

CIHTLEYE |

Departanen Empleyen
Nl Sinng .1 -EAn 5-"r|'|,|
et Dapan mes
Lheparimei)| -E mgyee])

CREATE TABLE EMP (
SSN CHAR(10) PRI MARY KEY,
DEP_NAME VARCHAR(255)

172 May 16, 2005

Java Data Objects 2.0

CREATE TABLE DEP (
NAMVE VARCHAR(255) PRI MARY KEY

<or ne
<package nane="com xyz">
<cl ass nanme="Enpl oyee" tabl e="EMP">
<field name="ssn" col um="SSN'/ >
<l-- field type is Departnent -->
<field name="departnment" col um="DEP_NAME"/ >
</cl ass>
<cl ass name="Departnent" tabl e="DEP">
<field nane="nane" col um="NAME"/>
</cl ass>
</ package>
</ or n>

Example5
A one-many mapping (Department has a collection of Employees). This example uses the
same schema as Example 4.

COHMLEVE |

Capartervie Emplcyan
A Sy g = [-Esn:5mng
-aimgigsess Dollectipnc Emgloysas
LI parimni| -Efngliyaal)

<or ne
<package nane="com xyz">

<cl ass nanme="Departnent" tabl e="DEP">
<field nane="nane" col um="NAME"/>
<l-- field type is Collection<Enpl oyee> -->
<field name="enpl oyees" >

<el ement col um="DEP_NAME"/ >

</field>

</cl ass>

JDO 2.0 173 May 16, 2005

Java Data Objects 2.0

<cl ass nanme="Enpl oyee" tabl e="EMP">
<field name="ssn" col um="SSN'/ >
</cl ass>
</ package>
</ or e

Example 6

If both the Employee.department and Department.employees fields exist, only one needs
to be mapped. The Department side is marked as being mapped by a field on the Employ-
ee side. This example uses the same schema as Example 4.

CIHTLEYE

] g - Emplayan
A TE THTING e, ng
-amgigysss Colleclipnc Employeas Japanment Dopanmen
0.1
Lhapanme)| - mgdipee])

<or e
<package name="com xyz">
<cl ass name="Enpl oyee" tabl e="EMP">
<field nane="ssn" col um="SSN"'/ >
<field name="departnment" col um="DEP_NAME"/ >
</cl ass>
<cl ass name="Departnent" tabl e="DEP">
<field nane="nane" col um="NAME"/>
<fi el d name="enpl oyees" mapped- by="departnent"/>
</cl ass>
</ package>
</ orne

Example 7
This example mirrors Example 6, but now Department has a compound primary key.

JDO 2.0 174 May 16, 2005

Java Data Objects 2.0

CIHTLEYE

] g - Emplayan
TR TN ~Ear Saning
-amgigysss Colleclipnc Employeas Japanment Dopanmen
-8 ng 0.1
Lhapanmen)| - mgdipee])

CREATE TABLE EMP (
SSN CHAR(10) PRI MARY KEY,
DEP_NAME VARCHAR(255),
DEP_I D BI G NT

CREATE TABLE DEP (
NAMVE VARCHAR(255),
| D Bl G NT,
PRI MARY KEY (NAME, DEP_ID)

<or e
<package nane="com xyz">
<cl ass name="Enpl oyee" tabl e="EMP">
<field nane="ssn" col um="SSN"'/ >
<field nanme="depart nment">
<col utm nane="DEP_NAME" t ar get =" NAVE"/ >
<col um name="DEP_I D' target="1D"/>
</field>
</cl ass>
<cl ass name="Departnent" tabl e="DEP">
<fi el d name="nane" col um="NAME"/ >
<field nane="id" colum="I1D"/>
<fi el d name="enpl oyees" mapped- by="departnent"/>
</cl ass>
</ package>
</ orne

JDO 2.0 175 May 16, 2005

Java Data Objects 2.0

JDO20

Example 8

Employee has a Map<Department, String> mapping each department the employee is a
member of to her position within that department. Department still has a compound pri-

mary key.
M ayE
Daparterviei Employes
AT ST i AR Caninag
-dinng A poEinng Map=Daparimen, Srngs
L patmant| -E gl

CREATE TABLE EMP (
SSN CHAR(10) PRI MARY KEY

CREATE TABLE DEP (
NAVE VARCHAR(255) ,
| D Bl G NT,
PRI MARY KEY (NAME, |D)

CREATE TABLE EMP_PCS (
EMP_SSN CHAR(10),
DEP_NAME VARCHAR(255)
DEP_| D BI G NT,

POS VARCHAR(255)

<or ne
<package name="com xyz">
<cl ass nanme="Enpl oyee" tabl e="EMP">
<field nane="ssn" col um="SSN"'/ >
<I-- field type is Map<Departnent, String> -->
<field nanme="positions" table="EMP_PCS">
<join col um="EMP_SSN'/ >
<key>
<col utmm nane="DEP_NANME" tar get ="NAVE"/ >

176

May 16, 2005

Java Data Objects 2.0

<col um nanme="DEP_ID' target="1D"/>
</ key>
<val ue col um="PCS"/ >
</field>
</cl ass>
<cl ass nanme="Departnent" tabl e="DEP">
<fi el d name="nane" col um="NAME"/ >
<field name="id" colum="1D"/>
</cl ass>
</ package>
</ ornp

154 Embedding

Some of the columns in a table might be mapped as a separate Java class to better match
the object model. Embedding works to arbitrary depth.

Example 9

Employee has a reference to a business address, which is a standard many-one. Employee
also has a primary Address, whose data is embedded within the Employee record. Finally,
Employee has a List<Address> of secondary Address references, whose data is embedded
in the join table.

OOM.ayE
Address Employes
“SiTeel ST L I Hinng
ity Sl o1 e i Adeeec b Addiacs
-SlaIESrng =i LemaryAdineas Sldeass
- Sarng] apondanyAITE e LishcAdres i
-HErasai | s Wi |

CREATE TABLE ADDR (
STREET VARCHAR(255) PRI MARY KEY,
Cl TY VARCHAR(255),
STATE CHAR(2),
ZI PCODE VARCHAR(10)

CREATE TABLE EMP (
SSN CHAR(10) PRI MARY KEY,
BUSADDR_STREET VARCHAR(255),

JDO 2.0 177 May 16, 2005

Java Data Objects 2.0

PADDR_STREET VARCHAR(255) ,
PADDR_Cl TY VARCHAR(255),
PADDR_STATE CHAR(2),
PADDR_ZI PCODE VARCHAR(10)

CREATE TABLE EMP_ADDRS (
EMP_SSN CHAR(10),
| DX | NTEGER
SADDR_STREET VARCHAR(255),
SADDR_Cl TY VARCHAR(255),
SADDR_STATE CHAR(2),
SADDR_ZI PCODE VARCHAR(10)

<or ne
<package nane="com xyz">
<cl ass name="Enpl oyee" tabl e="EMP">
<field nane="ssn" col um="SSN"'/ >
<I-- field type is Address -->
<field nane="busi nessAddress" col utm="BUSADDR_STREET"/ >
<l-- field type is Address -->
<field name="pri mar yAddr ess" >
<embedded nul | -i ndi cat or - col um="PADDR_STREET" >
<field nane="street" col um="PADDR_STREET"/ >
<field name="city" colum="PADDR CI TY"/>
<field name="state" col unm="PADDR _STATE"/ >
<field nane="zi p" col um="PADDR_ZI PCODE"/ >
</ enbedded>
</field>
<l-- field type is List<Address> -->
<fi el d name="secondar yAddr esses" tabl e=" EMP_ADDRS" >
<j oi n col um="EMP_SSN'/ >
<el erment >
<enbedded>
<field name="street" col um="SADDR_STREET"/ >
<field nane="city" col um="SADDR Cl TY"/>
<field name="state" col um="SADDR STATE"/ >
<field name="zi p" col um="SADDR_Z| PCODE"/ >

JDO 2.0 178 May 16, 2005

Java Data Objects 2.0

</ enbedded>
</ el emrent >
<order col um="1DX"/>
</field>
</cl ass>
</ package>
</ ornp

155

JDO20

Foreign Key Constraints

Foreign keys in metadata serve two quite different purposes. First, when generating sche-
ma, the foreign key element identifies foreign keys to be generated. Second, when using
the database, foreign key elements identify foreign keys that are assumed to exist in the
database. This is important for the runtime to properly order insert, update, and delete
statements to avoid constraint violations. Foreign keys are part of ORM metadata and are
probably meaningless in non-relational implementations.

Foreign key constraints can be generated in three ways:

e Most elements that can include nested col unm elements can define del et e-
actionorupdat e- acti on attributes.

e Most elements that can contain nested col umm elements can define a nested
f or ei gn- key element. This element has the following attributes:

* name: the name of the generated constraint
* deferred: boolean attribute describing whether the constraint evaluation is
deferred until datastore commit
* delete-action: the foreign key delete action; see below. In this case, the "none"
value is not allowed.
¢ update-action: the foreign key update action; see below.
e The cl ass element can define f or ei gn- key elements. A class-level f or ei gn-
key element has the nane, def err ed, del et e-acti on,and updat e-action
attributes as above.

Note that regardless of which side of a relationship in the object model is mapped, the
meaning of delete action and update action refer to the columns in the datastore, not to the
fields in the object model.

Delete Action, Update Action
The delete-action and update-action attributes have the following permitted values:

* “none”: no foreign key is generated and none is assumed to exist; no special action
is required of the implementation

* “restrict” (the default): a foreign key with the “restrict” delete action is generated
or is assumed to exist; the implementation will require update and delete
statements to be executed in proper sequence

* “cascade”: a foreign key with the “cascade” delete action is generated or is
assumed to exist; the database will automatically delete all rows that refer to the
row being deleted

* “null”: a foreign key with the “null” delete action is generated or is assumed to
exist; a referring key will be nullified if the target key is updated or deleted

179 May 16, 2005

Java Data Objects 2.0

* “default”: a foreign key with the “default” delete action is generated or is assumed

to exist

Example 10

A many-one relation from Employee to Department, represented by a standard restrict-ac-
tion database foreign key.

CIHTLEYE

Departeren Empleyea
TV NG K 0 1 ~Eear Y L]
-3 #6a “Japament Dapanmest
-EI_-'I':H"IIIE'I': } -EfgdiyEal)

CREATE TABLE EMP (
SSN CHAR(10) PRI MARY KEY,
DEP_NAME VARCHAR(255) ,
DEP_I D Bl Gl NT,

FOREI GN KEY EMP_DEP_FK (DEP_NAME,

| D)
)

CREATE TABLE DEP (
NAVE VARCHAR(255) ,
| D Bl G NT,
PRI MARY KEY (NAME, DEP_I D)

<or nb

<package nane="com xyz">
<cl ass nanme="Enpl oyee" tabl e="EMP">

<field nane="ssn" col um="SSN'/ >

<field name="depart nment" >

<col utmm nane="DEP_NANME" tar get =" NAVE"/ >
<col um nanme="DEP_ID' target="1D"/>
<f orei gn- key nane="EMP_DEP_FK"/ >

</field>
</cl ass>
<cl ass nanme="Department" tabl e="DEP">

JDO20

180

DEP_| D) REFERENCES DEP (NAME,

May 16, 2005

Java Data Objects 2.0

<fi el d name="nane" col um="NAME"/ >
<field name="id" colum="1D"/>
</cl ass>
</ package>
</ or e

15.6 Indexes

Index definitions are used for schema generation and are not used at runtime. In relational
implementations, they are part of the ORM metadata because their names and extensions
might differ for each database. In non-relational implementations, indexes are part of the
JDO metadata.

Indexes can be defined in three ways:

e Most elements that can include nested col urm elements can define an i ndexed
attribute. This attribute has three possible values:

* true: generate a standard index on the datastore representation of the element
¢ false: do not generate an index on the element
* unique: generate a unique index on the element
* Most elements that can contain nested col unm elements can define a nested
i ndex element. The element does not contain any elements (aside from possible
extensions). The index is generated on the datastore representation of the parent
element. This element has the following attributes:

* name: the name of the generated index
¢ unique: boolean attribute describing whether to generate a unique index

e The cl ass element can define nested i ndex elements. A class-level i ndex
element has the attributes outlined above. It can contain col umm and/or fi el d
elements, each of which is limited to a nane attribute referencing a column or field
defined elsewhere. Field names can use <super cl ass- nane>. <fi el d- nanme>
syntax to reference superclass fields, <fi el d-nane>. <enbedded-fi el d-
nane> to reference embedded relation fields, and the #key, #val ue, and
#el ement suffixes defined for fetch groups to reference parts of a field.

Unique Constraints

Unique constraints are used during schema generation, and may be used at runtime to or-
der datastore operations. Like indexes, they are part of ORM metadata in relational imple-
mentations, and part of JDO metadata in non-relational implementations.

Unique constraints can be defined in the same three general ways as indexes:

e Most elements that can include nested col um elements can define an uni que
attribute. Possible values aretrue and f al se.

e Most elements that can contain nested column elements can define a nested
uni que element. This element has the following attributes:

* name: the name of the generated constraint
* deferred: boolean attribute describing whether the constraint evaluation is
deferred until datastore commit

JDO 2.0 181 May 16, 2005

Java Data Objects 2.0

e The cl ass element can contain uni que elements. A class-level uni que element
has the attributes outlined above. It contains the same possible elements as a class-
level index.

Example 11

This example demonstrates single-field and compound indexes.

COm.ayE |

Address
Fimalmng
-ty :5aring
ke Sining
- Bining
Rl L EETH]

CREATE TABLE ADDR (
STREET VARCHAR(255) PRI MARY KEY,
Cl TY VARCHAR(255),
STATE CHAR(2),
ZI PCODE VARCHAR(10)

)
<or np
<package nane="com xyz">
<cl ass name="Addr ess" tabl e=" ADDR'>
<field name="street" col um="STREET"/>
<field name="city" colum="Cl TY"/>
<field name="state" col um="STATE"/ >
<field name="zi p" col um="2ZlI PCODE" >
<i ndex name="ADDR ZI| P_I DX"/ >
</field>
<i ndex nane="ADDR Cl TYSTATE | DX">
<col um nanme="CI TY"/ >
<col utm nane=" STATE"/ >
</ i ndex>
</cl ass>
</ package>
</ or n>

JDO 2.0 182 May 16, 2005

Java Data Objects 2.0

15.7

Inheritance

Each class can declare an inheritance strategy. Three strategies are supported by standard
metadata: new-table, superclass-table, and subclass-table.

* new-table creates a new table for the fields of the class.
¢ superclass-table maps the fields of the class into the superclass table.
* subclass-table forces subclasses to map the fields of the class to their own table.

Using these strategies, standard metadata directly supports several common inheritance
patterns, as well as combinations of these patterns within a single inheritance hierarchy.

One common pattern uses one table for an entire inheritance hierarchy. A column called
the discriminator column is used to determine which class each row belongs to. This pat-
tern is achieved by a strategy of new-table for the base class, and superclass-table for all
subclasses. These are the default strategies for base classes and subclasses when no explic-
it strategy is given.

Another pattern uses multiple tables joined by their primary keys. In this pattern, the ex-
istence of a row in a table determines the class of the row. A discriminator column is not
required, but may be used to increase the efficiency of certain operations. This pattern is
achieved by a strategy of new-table for the base class, and new-table for all subclasses. In
this case, the join element specifies the columns to be used for associating the columns in
the table mapped by the subclass(es) and the table mapped by the superclass.

A third pattern maps fields of superclasses and subclasses into subclass tables. This pat-
tern is achieved by a strategy of subclass-table for the base class, and new-table for direct
subclasses.

158

JDO20

Versioning
Three common strategies for versioning instances are supported by standard metadata.
These include state-comparison, timestamp, and version-number.

State-comparison involves comparing the values in specific columns to determine if the
database row was changed.

Timestamp involves comparing the value in a date-time column in the table. The first time
in a transaction the row is updated, the timestamp value is updated to the current time.

Version-number involves comparing the value in a numeric column in the table. The first
time in a transaction the row is updated, the version-number column value is incremented.
Example 12

Mapping a subclass to the base class table, and using version-number optimistic version-
ing. Note that in this example, the inheritance strategy attribute is not needed, because this
is the default inheritance pattern. The version strategy attribute is also using the default
value, and could have been omitted. These attributes are included for clarity.

183 May 16, 2005

Java Data Objects 2.0

COMXVE |
—

550 -5inng

= ;

-W?JM'I -

F Hh
/ N\
.-'.. H
FarTimeEmployes ?ulﬂlmEmPInj_n

o Wagedodbs - ——— 2 F e —
Farlmabredoyan| | FullTimaEmployaa))

CREATE TABLE EMP (
SSN CHAR(10) PRI MARY KEY,

TYPE CHAR(1),
WAGE FLOAT,
SALARY FLOAT,
VERS | NTEGER
)
<or np

<package nane="com xyz">
<cl ass name="Enpl oyee" tabl e="EMP">
<i nheritance strategy="newtabl e">
<di scri m nat or val ue="E" col um="TYPE"/ >
</i nheritance>
<field name="ssn" col um="SSN'/ >
<versi on strategy="versi on-nunber" col um="VERS"/>
</cl ass>
<cl ass name="Part Ti mreEnpl oyee" >
<i nheritance strategy="supercl ass-table">
<di scri m nator val ue="P"/>
</i nheritance>
<fi el d name="hourl yWage" col um="WACGE"/ >
</cl ass>
<cl ass name="Ful | Ti reEnpl oyee" >
<i nheritance strategy="supercl ass-table">
<di scri m nator val ue="F"/>
</inheritance>
<field nane="sal ary" col um="SALARY"/ >
</cl ass>

JDO 2.0 184 May 16, 2005

Java Data Objects 2.0

</ package>
</ ornp

Example 13

Mapping each class to its own table, and using state-image versioning. Though a discrim-
inator is not required for this inheritance pattern, this mapping chooses to use one to make
some actions more efficient. It stores the full Java class name in each row of the base table.

COM.EVE |
Ernplu'yn':

ssn-ainng

= ;

cmpkoyne| =

ry Y
/ N,
.-". b
.".. H
FarTimeEmployes 'Full‘l'lmlEmplu_yn
howkWaga dobln) salary. doubin)
| “FarTimaEmpdoyaal | “rulllimaEmgioyaa|)

CREATE TABLE EMP (
SSN CHAR(10) PRI MARY KEY,
JAVA CLS VARCHAR(255)

CREATE TABLE PART_EMP (
EMP_SSN CHAR(10) PRI MARY KEY,
WAGE FLOAT

CREATE TABLE FULL_EMP (
EMP_SSN CHAR(10) PRI MARY KEY,
SALARY FLOAT

<or np
<package nane="com xyz">

<cl ass name="Enpl oyee" tabl e="EMP">

<i nheritance strategy="newtabl e">
<di scri m nator strategy="class-nane" colum="JAVA CLS"/>

</i nheritance>
<field name="ssn" col um="SSN'/ >
<version strategy="state-conparison"/>

</cl ass>

JDO 2.0 185 May 16, 2005

Java Data Objects 2.0

<cl ass nane="Part Ti neEnpl oyee" tabl e=" PART_EMP>
<i nheritance strategy="newtabl e">
<join col um="EMP_SSN'/ >
</inheritance>
<fi el d nanme="hour| yWage" col um="WACGE"/ >
</cl ass>
<cl ass name="Ful | Ti mreEnpl oyee" tabl e="FULL_EMP" >
<i nheritance strategy="newtabl e">
<j oi n col um="EMP_SSN'/ >
</inheritance>
<field name="sal ary" col unmm="SALARY"/>
</ cl ass>
</ package>
</ or e

Example 14

This example maps superclass fields to each subclass table.

COHMLEVE |

Emiployes
seri5inng
Employoe| &
,-;J N
/ ™
.-"r. X
FarTimeEmployes FullTimeEmployee

honrlWage dobla i salary double
-F‘:ﬂT-‘mﬁEln.nm'- FulTimaEmpioyaal)

CREATE TABLE PART_EMP (
EMP_SSN CHAR(10) PRI MARY KEY,
WAGE FLOAT

CREATE TABLE FULL_EMP (
EMP_SSN CHAR(10) PRI MARY KEY,
SALARY FLOAT

<or e
<package nane="com xyz">
<cl ass name="Enpl oyee" >

JDO20 186

May 16, 2005

Java Data Objects 2.0

JDO20

<i nheritance strategy="subclass-table"/>

</cl ass>

<cl ass name="Part Ti mreEnpl oyee" tabl e="PART_EMP" >
<i nheritance strategy="newtable"/>
<fi el d name="Enpl oyee. ssn" col um="EMP_SSN'/ >
<fi el d name="hour| yWage" col um="WACGE"/ >

</cl ass>

<cl ass name="Ful | Ti mreEnpl oyee" tabl e="FULL_EMP" >
<i nheritance strategy="newtable"/>
<fi el d name="Enpl oyee. ssn" col um="EMP_SSN'/ >
<field name="sal ary" col unmm="SALARY"/>

</cl ass>

</ package>
</ or e

187

May 16, 2005

Java Data Objects 2.0

16 Enterprise Java Beans

Enterprise Java Beans (EJB) is a component architecture for development and deployment
of distributed business applications. Java Data Objects is a suitable component for integra-
tion with EJB in these scenarios:

* Session Beans with JDO persistence-capable classes used to implement dependent
objects;

* Entity Beans with JDO persistence-capable classes used as delegates for both Bean
Managed Persistence and Container Managed Persistence.

16.1 Session Beans

A session bean should be associated with an instance of Per si st enceManager Fact o-
Iy that is established during a session life cycle event, and each business method should
use an instance of Per si st enceManager obtained from the Per si st enceManager -
Fact ory. The timing of when the Per si st enceManager is obtained will vary based
on the type of bean.

The bean class should contain instance variables that hold the associated Per si st ence-
Manager and Persi st enceManager Fact ory.

During activation of the bean, the Per si st enceManager Fact or y should be found via
JNDI lookup. The Per si st enceManager Fact or y should be the same instance for all
beans sharing the same datastore resource. This allows for the Per si st enceManager -
Fact or y to manage an association between the distributed transaction and the Per si s-
t enceManager.

When appropriate during the bean life cycle, the Per si st enceManager should be ac-
quired by a call to the Per si st enceManager Fact or y. The Per si st enceManager -
Factory should look up the transaction association of the caller, and return a
Per si st enceManager with the same transaction association. If there is no Per si s-
t enceManager currently enlisted in the caller’s transaction, a new Per si st enceMan-
ager should be <created and associated with the transaction. The
Per si st enceManager should be registered for synchronization callbacks with the
Transact i onManager . This provides for transaction completion callbacks asynchro-
nous to the bean life cycle.

The instance variables for a session bean of any type include:

* areference to the Per si st enceManager Fact or y, which should be initialized
by the method setSessionContext. This method looks wup the
Per si st enceManager Factory by JNDI access to the named object
"j ava: conmp/ env/j do/ <persi st ence manager factory name>".

e a reference to the Per si st enceManager, which should be acquired by each
business method, and closed at the end of the business method; and

JDO 2.0 188 May 16, 2005

Java Data Objects 2.0

16.1.1

16.1.2

16.1.3

JDO20

e areference to the Sessi onCont ext , which should be initialized by the method
set Sessi onCont ext .

Stateless Session Bean with Container Managed Transactions

Stateless session beans are service objects that have no state between business methods.
They are created as needed by the container and are not associated with any one user. A
business method invocation on a remote reference to a stateless session bean might be dis-
patched by the container to any of the available beans in the ready pool.

Each business method must acquire its own Per si st enceManager instance from the
Per si st enceManager Fact ory. This is done via the method get Per si st enceM
anager onthe Persi st enceManager Fact or y instance. This method must be imple-
mented by the JDO vendor to find a Per si st enceManager associated with the instance
of j avax. transacti on. Transact i on of the executing thread.

At the end of the business method, the Per si st enceManager instance must be closed.
This allows the transaction completion code in the Per si st enceManager to free the in-
stance and return it to the available pool in the Per si st enceManager Fact ory.

Stateful Session Bean with Container Managed Transactions

Stateful session beans are service objects that are created for a particular user, and may
have state between business methods. A business method invocation on a remote refer-
ence to a stateful session bean will be dispatched to the specific instance created by the us-
er.

The behavior of stateful session beans with container managed transactions is otherwise
the same as for stateless session beans. All business methods in the remote interface must
acquire a Per si st enceManager at the beginning of the method, and close it at the end,
since the transaction context is managed by the container.

Stateless Session Bean with Bean Managed Transactions

Bean managed transactions offer additional flexibility to the session bean developer, with
additional complexity. Transaction boundaries are established by the bean developer, but
the state (including the Per si st enceManager) cannot be retained across business
method boundaries. Therefore, the Per si st enceManager mustbe acquired and closed
by each business method.
The alternative techniques for transaction boundary demarcation are:

e javax.transaction. User Transacti on
If the bean developer directly uses UserTransaction, then the PersistenceManager must be
acquired from the Per si st enceManager Fact ory only after establishing the correct
transaction context of User Tr ansact i on. A16.1.3-1 [During the get Per si st enceM
anager method, the Per si st enceManager will be enlisted in the User Tr ansac-
ti on.] For example, if non-transactional access is required, a Per si st enceManager
must be acquired when there is no User Tr ansact i on active. After beginning a User -
Transact i on, a different Per si st enceManager must be acquired for transactional
access. The user must keep track of which Per si st enceManager is being used for
which transaction.

e javax.jdo. Transacti on

If the bean developer chooses to use the same Per si st enceManager for multiple trans-
actions, then transaction completion must be done entirely by using the j av-

189 May 16, 2005

Java Data Objects 2.0

ax.j do. Transact i on instance associated with the Per si st enceManager . In this
case, acquiring a Per si st enceManager without beginning a User Tr ansact i on re-
sults in the Per si st enceManager being able to manage transaction boundaries via
begi n, conm t, and r ol | back methods on j avax. j do. Transacti on. A16.1.3-2
[The Per si st enceManager will automatically begin the User Tr ansact i on during
j avax. j do. Transacti on. begi n] and A16.1.3-3 [automatically commit the User -
Transact i on during j avax. j do. Transacti on. commi t]

Stateful Session Bean with Bean Managed Transactions

Stateful session beans allow the bean developer to manage the transaction context as part
of the conversational state of the bean. Thus, it is no longer required to acquire a Per si s-

t enceManager in each business method. Instead, the Per si st enceManager can be
managed over a longer period of time, and it might be stored as an instance variable of the

The behavior of stateful session beans is otherwise the same as for stateless session beans.
The user has the choice of using j avax. t ransacti on. User Tr ansacti onorj av-
ax. j do. Transact i on for transaction completion.

While it is possible for container-managed persistence entity beans to be implemented by
the container using JDO, the implementation details are beyond the scope of this docu-

It is possible for users to implement bean-managed persistence entity beans using JDO, but
implementation details are container-specific and no recommendations for the general

16.1.4
bean.
16.2 Entity Beans
ment.
case are given.
JDO20

190 May 16, 2005

Java Data Objects 2.0

17

JDO Exceptions

The exception philosophy of JDO is to treat all exceptions as runtime exceptions. This pre-
serves the transparency of the interface to the degree possible, allowing the user to choose
to catch specific exceptions only when required by the application.

JDO implementations will often be built as layers on an underlying datastore interface,
which itself might use a layered protocol to another tier. Therefore, there are many oppor-
tunities for components to fail that are not under the control of the application.

Exceptions thus fall into several broad categories, each of which is treated separately:
¢ user errors that can be corrected and retried;

* user errors that cannot be corrected because the state of underlying components
has been changed and cannot be undone;

¢ internal logic errors that should be reported to the JDO vendor’s technical support;
¢ errors in the underlying datastore that can be corrected and retried;

* errors in the underlying datastore that cannot be corrected due to a failure of the
datastore or communication path to the datastore;

Exceptions that are documented in interfaces that are used by JDO, such as the Col | ec-
t i on interfaces, are used without modification by JDO. JDO exceptions that reflect under-
lying datastore exceptions will wrap the underlying datastore exceptions. JDO exceptions
that are caused by user errors will contain the reason for the exception.

JDO Except i ons must be serializable.

17.1

JDO20

JDOEXxception

This is the base class for all JDO exceptions. It is a subclass of Runt i meExcept i on, and
need not be declared or caught. It includes a descriptive String, an optional nested Excep-
tion array, and an optional failed Object.

Methods are provided to retrieve the nested exception array and failed object. If there are
multiple nested exceptions, then each might contain one failed object. This will be the case
where an operation requires multiple instances, such as commit, makePersistentAll, etc.

A17.1-1 [If the JDO Per si st enceManager is internationalized, then the descriptive
string should be internationalized.]

public Throwabl e[] get Nest edExceptions();

A17.1-2 [This method returns an array of Thr owabl e or nul | if there are no nested excep-
tions.]

public Object getFail edObject();

A17.1-3 [This method returns the failed object or nul | if there is no failed object for this
exception.]

public Throwabl e get Cause();

191 May 16, 2005

Java Data Objects 2.0

A17.1-4 [This method returns the first nested Thr owabl e or nul | if there are no nested
exceptions.]

17.1.1 JDOFatalException

This is the base class for errors that cannot be retried. It is a derived class of JDOEXcep-
t i on. This exception generally means that the transaction associated with the Per si s-
t enceManager has been rolled back, and the transaction should be abandoned.

17.1.2 JDOCanRetryException
This is the base class for errors that can be retried. It is a derived class of JDOEXcept i on.

17.1.3 JDOUnsupportedOptionException

This class is a derived class of JDOUser Except i on. A17.1.3-1 [This exception is thrown
by an implementation to indicate that it does not implement a JDO optional feature.]

17.1.4 JDOUserException

This is the base class for user errors that can be retried. It is a derived class of JDOCanRe-
t r yExcept i on. Some of the reasons for this exception include:

* Object not persistence-capable. A17.1.4-1 [This exception is thrown when a
method requires an instance of Per si st enceCapabl e and the instance passed
to the method does not implement Per si st enceCapabl e. The failed Object has
the failed instance.]

¢ Extent not managed. A17.1.4-2 [This exception is thrown when get Ext ent is
called with a class that does not have a managed extent.]

* Object exists. A17.1.4-3 [This exception is thrown during flush of a new instance or
an instance whose primary key changed where the primary key of the instance
already exists in the datastore.] A17.1.4-4 [It might also be thrown during
makePer si st ent if an instance with the same primary key is already in the
Per si st enceManager cache.] [The failed Object is the failed instance.]

* Object owned by another Per si st enceManager . A17.1.4-5 [This exception is
thrown when calling makePer si st ent, makeTr ansacti onal ,
makeTr ansi ent, evi ct, refresh, or get Qoj ect | d where the instance is
already persistent or transactional in a different Per si st enceManager . The
failed Object has the failed instance.]

* Non-unique Objectld not valid after transaction completion. A17.1.4-6 [This
exception is thrown when calling get Cbj ect | d on an object after transaction
completion where the Cbj ect | d is not managed by the application or datastore.]

¢ Unbound query parameter. A17.1.4-7 [This exception is thrown during query
compilation or execution if there is an unbound query parameter.]

* Query filter cannot be parsed. A17.1.4-8 [This exception is thrown during query
compilation or execution if the filter cannot be parsed.]

* Transaction is not active. A17.1.4-9 [This exception is thrown if the transaction is
not active and makePersistent, del etePersistent, commt, or
rol | back is called.]

JDO 2.0 192 May 16, 2005

Java Data Objects 2.0

1715

17.1.6

17.1.7

17.1.8

17.1.9

JDO20

* Object deleted. A17.1.4-10 [This exception is thrown if an attempt is made to access
any fields of an instance that was deleted in this transaction (except to read key
fields).] This is not the exception thrown if the instance does not exist in the
datastore (see JDOChj ect Not FoundExcept i on).

* Primary key contains null values. A17.1.4-11 [This exception is thrown if the
application identity parameter to get Cbj ect Byl d contains any key field whose
value is null.]

JDOFatalUser Exception

This is the base class for user errors that cannot be retried. It is a derived class of JDOFa-
t al Excepti on.

* Persi st enceManager was closed. A17.1.5-1 [This exception is thrown after
cl ose() was called, when any method except i SCl osed() is executed on the
Per si st enceManager instance, or any method is called on the Tr ansact i on
instance, or any Quer y instance, EXt ent instance, or | t er at or instance created
by the Per si st enceManager .]

* Metadata unavailable. A17.1.5-2 [This exception is thrown if a request is made to
the JDA npl Hel per for metadata for a class, when the class has not been
registered with the helper.]

JDOFatall nter nalException

This is the base class for JDO implementation failures. It is a derived class of JDOFat al -
Except i on. This exception should be reported to the vendor for corrective action. There
is no user action to recover.

JDODataStor eException

A17.1.7-1 [This is the base class for datastore errors that can be retried. It is a derived class
of JDOCanRet r yExcept i on.]

JDOFatalDataStor eException

This is the base class for fatal datastore errors. It is a derived class of JDOFat al Excep-
t i on. When this exception is thrown, the transaction has been rolled back.

* Transaction rolled back. A17.1.8-1 [This exception is thrown when the datastore
rolls back a transaction without the user asking for it. The cause may be a
connection timeout, an unrecoverable media error, an unrecoverable concurrency
conflict, or other cause outside the user’s control.]

JDOODbjectNotFoundException

A17.1.9-1 [This exception is to notify the application that an object does not exist in the
datastore.] It is a derived class of JDODat aSt or eExcept i on. A17.1.9-2 [When this ex-
ception is thrown during a transaction, there has been no change in the status of the trans-
action in progress.] A17.1.9-3 [If this exception is a nested exception thrown during
commit, then the transaction is rolled back.] This exception is never the result of executing
a query. A17.1.9-4 [The fai | edObj ect contains a reference to the failed instance.]
A17.1.9-5 [The failed instance is in the hollow state, and has an identity which can be ob-
tained by calling get Cbj ect | d with the instance as a parameter.] This might be used to
determine the identity of the instance that cannot be found.

A17.1.9-6 [This exception is thrown when a hollow instance is being fetched and the object
does not exist in the datastore.] A17.1.9-7 [This exception might result from the user exe-

193 May 16, 2005

Java Data Objects 2.0

cuting get Qbj ect Byl d with the val i dat e parameter set to t r ue, or from A17.1.9-8
[navigating to an object that no longer exists in the datastore.]

17.1.10 JDOOptimisticVerificationException

A17.1.10-1 [This exception is the result of a user commit operation in an optimistic trans-
action where the verification of new, modified, or deleted instances fails the verification.]
It is a derived class of JDOFat al Dat aSt or eExcept i on. [This exception contains an ar-
ray of nested exceptions, each of which contains an instance that failed verification.] The
user will never see this exception except as a result of commit.

17.1.11 JDODetachedFieldAccessException

This exception is the result of a user accessing a field of a detached instance, where the field
was not copied to the detached instance. It is a derived class of JDOUserException.

JDO 2.0 194 May 16, 2005

Java Data Objects 2.0

18

XML Metadata

JDO20

This chapter specifies the metadata that describes a persistence-capable class, optionally
including its mapping to a relational database. The metadata is stored in XML format. For
implementations that support binary compatibility, the information must be available
when the class is enhanced, and might be cached by an implementation for use at runtime.
If the metadata is changed between enhancement and runtime, the behavior is unspeci-
fied.

NOTE: J2SE 5 introduced standard elements for annotating classes and defining the
types of collections and maps. Because of these features, programs compiled with suit-
able metadata annotations and type information might not need a separate file to de-
scribe persistence information. Metadata annotations for persistence are being
developed in JSR 220. When that specification is final, JDO implementations will be re-
quired to support those annotations and not require xml metadata. An update to the
JDO specification to require support for the annotations will be made once the JSR 220
specification is complete.

Metadata files must be available via resources loaded by the same class loader as the class.
These rules apply both to enhancement and to runtime. Hereinafter, the term "metadata”
refers to the aggregate of all XML data for all packages, classes, and mappings, regardless
of their physical packaging.

The metadata associated with each persistence capable class must be contained within one
or more files, and its format is defined by the DTD. If the metadata in a file is for only one
class, then its file name is <class-name>.jdo. If the metadata is for a package, or a number
of packages, then its file name is package.jdo. In this case, the file is located in one of sev-
eral directories: “META-INF”; “WEB-INF”; <none>, in which case the metadata file name
is "package.jdo" with no directory; “<package>/.../<package>", in which case the meta-
data directory name is the partial or full package name with “package.jdo” as the file
name.

Metadata for relational mapping might be contained in the same file as the persistence in-
formation, in which case the naming convention above is used. The mapping metadata
might be contained in a separate file, in which case the metadata file name suffix must be
specified in the Per si st enceManager Fact ory property j avax. j do. opti on. Map-
pi ng. This property is used to construct the file names for the mapping.

NOTE: If the j avax. j do. opti on. Mappi ng property is set, then mapping metadata
contained in the .jdo file is not used.

The extension .orm refers to “object repository metadata”. If the mapping is to a repository
type other than relational, the document type will be different, but the file naming conven-
tions are the same.

For example, if the value of j avax. j do. opti on. Mappi ng is “mySQL”, then the file
name for the metadata is <class-name>-mySQL.orm or package-mySQL.orm. Similar to
package.jdo, the package-mySQL.orm file is located in one of the following directories:
“META-INF”; “WEB-INF”; <none>, in which case the metadata file name is "package-
mySQL.orm" with no directory; “<package>/.../<package>", in which case the metadata

195 May 16, 2005

Java Data Objects 2.0

JDO20

directory name is the partial or full package name with “package-mySQL.orm” as the file
name. If mapping metadata is for only one class, the name of the file is <package>/.../
<package>/<class-name>-mySQL.orm.

When metadata information is needed for a class, and the metadata for that class has not
already been loaded, the metadata is searched for as follows: META-INF/package.jdo,
WEB-INF/package.jdo, package.jdo, <package>/.../<package>/package.jdo, and <pack-
age>/<class>.jdo. Once metadata for a class has been loaded, the metadata will not be re-
placed in memory as long as the class is not garbage collected. Therefore, metadata
contained higher in the search order will always be used instead of metadata contained
lower in the search order.

Similarly, when mapping metadata information is needed for a class, and the mapping
metadata for that class has not already been loaded, the mapping metadata is searched for
as follows: META-INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-
mySQL.orm, <package>/.../<package>/package-mySQL.orm, and <package>/.../
<package>/<class-name>-mySQL.orm. Once mapping metadata for a class has been load-
ed, it will not be replaced as long as the class is not garbage collected. Therefore, mapping
metadata contained higher in the search order will always be used instead of metadata
contained lower in the search order.

For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "ME-
TA-INF/package.jdo" containing xml for this class, then its definition is used. If there is no
such file, but there is a file "WEB-INF/packagejdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "package.jdo"
containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there
is a file "com/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "com/xyz/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/
Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.

Note that this search order is optimized for implementations that cache metadata informa-
tion as soon as it is encountered so as to optimize the number of file accesses needed to
load the metadata. Further, if metadata is not in the natural location, it might override
metadata that is in the natural location. For example, while looking for metadata for class
com.xyz.Wombat, the file com/package.jdo might contain metadata for class org.ac-
me.Grumpy. In this case, subsequent search of metadata for org.acme.Grumpy will find
the cached metadata and none of the usual locations for metadata will be searched.

The metadata must declare all persistence-capable classes. If any field or property decla-
rations are missing from the metadata, then field or property metadata is defaulted for the
missing declarations. The JDO implementation is able to determine based on the metadata
whether a class is persistence-capable or not. Any class not known to be persistence-capa-
ble by the JDO specification (for example, java.lang.Integer) and not explicitly named in
the metadata is not persistence-capable.

Classes and interfaces used in metadata follow the Java rules for naming. If the class or in-
terface name is unqualified, the package name is the name of the enclosing package. Inner
classes are identified by the “ $” marker.

For compatibility with installed applications, a JDO implementation might first use the
search order as specified in the JDO 1.0 or 1.0.1 releases. In this case, if metadata is not
found, then the search order as specified in JDO 2.0 must be used. Refer to Chapter 25 for
details.

196 May 16, 2005

Java Data Objects 2.0

18.1

ELEMENT jdo

This element is the highest level element in the xml document. It is used to allow multiple
packages to be described in the same document. It contains multiple package elements and
optional extension elements.

18.2

ELEMENT package

This element includes all classes in a particular package. The complete qualified package
name is required. It contains multiple class and interface elements and optional extension
elements.

18.3

ELEMENT interface

The i nt er f ace element declares a persistence-capable interface. Instances of a vendor-
specific type that implement this interface can be created using the new nst ance(C ass
per si st enceCapabl e) method in Per si st enceManager , and these instances may be
made persistent.

The JDO implementation must maintain an extent for persistent instances of persistence-
capable classes that implement this interface.

The r equi r es- ext ent attribute is optional. If set to “ f al se”, the JDO implementation
does not need to support extents of factory-made persistent instances. It defaults to
“true”.

The attribute nane is required, and is the name of the interface.

The attribute t abl e is optional, and is the name of the table to be used to store persistent
instances of this interface.

The det achabl e attribute specifies whether persistent instances of this interface can be
detached from the persistence context and later attached to the same or a different persis-
tence context. The defaultis f al se.

Persistent fields declared in the interface are defined as those that have both a get and a
set method or both ani s and a set method, named according to the JavaBeans naming
conventions, and of a type supported asa persistent type.

The implementing class will provide a suitable implementation for all property access
methods and will throw JDOUser Except i on for all other methods of the interface.

This element might contain pr opert y elements to specify the mapping to relational col-
umns.

Interface inheritance is supported.

184

JDO20

ELEMENT property

When contained in an i nt er f ace element, pr oper t y elements declare the mapping for
persistent properties of the interface.

The nane attribute is required and must match the name of a property in the interface.

This element might contain col unm elements to specify the mapping to relational col-
umns.

The element might contain col | ecti on, map, or arr ay elements to specify the charac-
teristics of the property.

197 May 16, 2005

Java Data Objects 2.0

18.5

JDO20

ELEMENT column

The col umm element identifies a column in a mapped table. This element is used for map-
ping fields, collection elements, array elements, keys, values, datastore identity, applica-
tion identity, and properties.

NOTE: Any time an element can contain a col unm element that is only used to name the
column, a col unm attribute can be used instead.

The nane attribute declares the name of the column in the database. The name might be
fully qualified as <table-name>.<column-name> and <table-name> might be defaulted in
context.

The t ar get attribute declares the name of the primary key column for the referenced ta-
ble. For columns contained in join elements, this is the name of the primary key column in
the primary table. For columns contained in field, element, key, value, or array elements,
this is the name of the primary key column of the primary table of the other side of the re-
lationship.

Thet ar get - fi el d attribute might be used instead of the t ar get attribute to declare the
name of the field to which the column refers. This is useful in cases where there are differ-
ent mappings of the referenced field in different subclasses.

The j dbc-t ype attribute declares the type of the column in the database. This type is de-
faulted based on the type of the field being mapped. Valid types are all upper-case or all
lower-case CHAR, VARCHAR, LONGVARCHAR, NUMERIC, DECIMAL, BIT, TINY-
INT, SMALLINT, INTEGER, BIGINT, REAL, FLOAT, DOUBLE, BINARY, VARBINARY,
LONGVARBINARY, DATE, TIME, and TIMESTAMP. This attribute is only needed if the
default type is not suitable.

The sql - t ype attribute declares the type of the column in the database. This type is da-
tabase-specific and should only be used where the user needs more explicit control over
the mapping. Normally, the combination of j dbc-t ype. | engt h, and scal e are suffi-
cient for the JDO implementation to calculate the sql - t ype.

The | engt h attribute declares the number of characters in the datastore representation of
numeric, char[], and Character[] types; and the maximum number of characters in
the datastore representation of St ri ng types. The default is 256.

The scal e attribute declares the scale of the numeric representation in the database. The
default is 0.

The al | ows- nul | attribute specifies whether nul | values are allowed in the column,
and is defaulted based on the type of the field being mapped. The default is “true” for
reference field types and “ f al se” for primitive field types.

Thei nsert - val ue attribute specifies the value to be inserted into the datastore in case a
column is not mapped to any field in the object model. In this case, the col unm element
must be directly contained in a cl ass element, and the column must not be mapped to a
field.

The def aul t - val ue attribute specifies the database-assigned default value for the col-
umn if no value is explicitly assigned to the column on insert. Implementations might use
the value of this attribute to set the appropriate column default when generating schema.

198 May 16, 2005

Java Data Objects 2.0

18.6

JDO20

ELEMENT class

The cl ass element includes f i el d elements declared in a persistence-capable class, and
optional vendor extensions.

The nane attribute of the class is required. It specifies the unqualified class name of the
class. The class name is scoped by the name of the package in which the class element is
contained.

The persi stence-nodi fi er attribute specifies whether this class is persistence-capa-
ble, persistence—aware, or non—persistent. Persistence-aware and non—persistent classes
must not include any attributes or elements except for the nane and per si st ence- nod-
i fier attributes. Declaring persistence-aware and non-persistent classes might provide a
performance improvement for enhancement and runtime, as the search algorithm for met-
data need not be exhaustive.

The det achabl e attribute specifies whether instances of this class can be detached from
the persistence context and later attached to the same or a different persistence context.
The defaultis f al se.

The embedded-only attribute declares whether instances of this class are permitted to exist
as first-class instances in the datastore. A value of “true” means that instances can only be
embedded in other first-class instances., and precludes mapping this class to its own table.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

The identity type of the least-derived persistence-capable class is defaulted to appl i ca-
tionifobj ectid-cl ass is specified, and dat ast or e, if not.

The r equi r es- ext ent attribute specifies whether an extent must be managed for this
class. The Per si st enceManager . get Ext ent method can be executed only for class-
es whose metadata attribute r equi r es- ext ent is specified or defaults to t r ue. If the
Per si st enceManager . get Ext ent method is executed for a class whose metadata
specifies requires-extent as fal se, a JDOUser Excepti on is thrown. If re-
qui r es- ext ent is specified or defaults to t r ue for a class, then r equi r es- ext ent
must not be specified as f al se for any subclass.

The per si st ence- capabl e- super cl ass attribute is deprecated for this release. The
attribute will be ignored so metadata files from previous releases can be used.

A number of j 0i n elements might be contained in the class element. Each j oi n element
defines a table and associated join conditions that can be used by multiple fields in the
mapping.

The obj ect i d- cl ass attribute identifies the name of the objectid class. If not specified,
there must be only one primary key field, and the obj ect i d- cl ass defaults to the ap-
propriate simple identity class.

The obj ecti d- cl ass attribute is required only for abstract classes and classes with
multiple key fields. If the obj ect i d- cl ass attribute is defined in any concrete persis-
tence-capable class, then the objectid class itself must be concrete, and no subclass of the
persistence-capable class may include the obj ecti d- cl ass attribute. If the obj ec-
tid-cl ass attribute is defined for any abstract class, then:

* the objectid class of this class must directly inherit Obj ect or must be a subclass
of the objectid class of the most immediate abstract persistence-capable superclass
that defines an objectid class; and

199 May 16, 2005

Java Data Objects 2.0

18.6.1

18.6.2

JDO20

* if the objectid class is abstract, the objectid class of this class must be a superclass
of the objectid class of the most immediate subclasses that define an objectid class;
and

¢ if the objectid class is concrete, no subclass of this persistence-capable class may
define an objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the
inheritance hierarchy of the persistence-capable classes. Associated with every concrete
persistence-capable class is exactly one objectid class.

The objectid class must declare fields identical in name and type to fields declared in this
class.

Foreign keys, indexes, and join tables can be specified at the class level. If they are specified
at this level, column information might only be the names of the columns.

ELEMENT datastor e-identity

The dat ast ore-identity element declares the strategy for implementing datastore
identity for the class, including the mapping of the identity columns of the relational table.

The st r at egy attribute identifies the strategy for mapping.

* The value “native” allows the JDO implementation to pick the most suitable
strategy based on the underlying database.

* The value “sequence” specifies that a named database sequence is used to
generate key values for the table. If sequence is used, then the sequence
attribute is required.

* The value “ aut oassi gn” specifies that the column identified as the key column
is managed by the database to automatically increment key values.

* The value “i dentity” specifies that the column identified as the key column is
managed by the database as an identity type.

* The value “i ncrenment” specifies a strategy that simply finds the largest key
already in the database and increments the key value for new instances. It can be
used with integral column types when the JDO application is the only database
user inserting new instances.

* The value “uui d-string” specifies a strategy that generates a 128-bit UUID
unique within a network (the IP address of the machine running the application is
part of the id) and represents the result as a 16-character String.

* The value “ uui d- hex” specifies a strategy that generates a 128-bit UUID unique
within a network (the IP address of the machine running the application is part of
the id) and represents the result as a 32-character String.

The sequence attribute names the sequence used to generate key values. This must cor-
respond to a named sequence in the JDO metadata. If this attribute is used, the strategy
defaults to “sequence”.

The col unm elements identify the primary key columns for the table in the database.
Element version

The ver si on element is contained in the cl ass element, and declares the version strate-
gy and optionally the column(s) used for the version strategy.

The st r at egy attribute defines the strategy for managing the version of an instance. Four
st r at egy attribute values are standard:

200 May 16, 2005

Java Data Objects 2.0

* none: no version checking is done; changed values overwrite values in the
datastore

* ver si on- nunber : a rolling number is used as the version number
* st at e-i mage: the values of fields are used in aggregate as the version
e dat e-ti nme: a clock timestamp (date-plus-time) value is used as the version

The col umm attribute declares the name of the column to hold the version. It is used in-
stead of the contained col unm element in case only the column name is needed.

The ver si on element might contain one or more col unm elements that declare the col-
umns to use to hold the ver si on.

The j oi n element declares the table to be used in the mapping and the join conditions to
associate rows in the joined table to the primary table.

The t abl e attribute specifies the name of the table.

One or more col um elements are contained within the j 0i n element. The column ele-
ments name the columns used to join to the primary key columns of the primary table. If
there are multiple key columns, then the t ar get attribute is required, and names the pri-
mary key column of the primary table.

The table being joined might not have a row for each row in the referring table; in order to
access rows in this table, an outer join is needed. The out er attribute indicates that an out-
er join is needed. The defaultis f al se.

The i nheri t ance element declares the mapping for inheritance.
The st r at egy attribute declares the strategy for mapping;:

e The value “subclass-table” means that this class does not have its own table. All of
its fields are mapped by subclasses.

¢ The value “new-table” means that this class has its own table into which all of its
fields are mapped. There might be a table attribute specified in the class element.
This is the default for the topmost (least derived) class in an inheritance hierarchy.

* The value “superclass-table” means that this class does not have its own table. All
of its fields are mapped into tables of its superclass(es). This is the default for all
classes except for the topmost class in an inheritance hierarchy.

The di scri m nat or element is used when a column is used to identify what class is as-
sociated with the primary key value in a table mapped to a superclass.

In the least-derived class in the hierarchy that is mapped to a table, declare the discrimina-
tor element with a strategy and column. If the strategy is “ val ue- map”, then for each con-
crete subclass, define the discriminator element with a value attribute. If the strategy is
“cl ass- nane” then subclasses do not need a discriminator element; the name of the class
is stored as the value for the row in the table. If the value attribute is given, then the strat-

18.7 ELEMENT join
18.8 ELEMENT inheritance
18.9 ELEMENT discriminator
egy defaults to “value-map”.
JDO 2.0

201 May 16, 2005

Java Data Objects 2.0

The strategy “none” declares that there is no discriminator column.

18.10

ELEMENT implements

The i npl ement s element declares a persistence-capable interface implemented by the
persistence-capable class that contains this element. An extent of persistence-capable class-
es that implement this interface is managed by the JDO implementation. The extent can be
used for queries or for iteration just like an extent of persistence-capable instances.

The attribute nane is required, and is the name of the interface. The java class naming rules
apply: if the interface name is unqualified, the package is the name of the enclosing pack-
age.

18.11

ELEMENT property

When contained in a cl ass element, the property element declares the mapping be-
tween a virtual field of an implemented interface and the corresponding persistent field of
the persistence-capable class.

The nane attribute is required, and declares the name for the property. The naming con-
ventions for JavaBeans property names is used: the property name is the same as the cor-
responding get method for the property with the get or i s removed and the resulting
name lower-cased.

The fi el d- name attribute is required; it associates a persistent field with the named
property.

18.12

18.12.1

18.12.2

18.12.3

JDO20

ELEMENT foreign-key

This element specifies characteristics of a foreign key associated with the containing join,
field, collection, key, value, or element. If the name of the foreign key is the only property
needed for the foreign key, then the foreign-key attribute can be used. In this case, the for-
eign-key element is optional.

If this element is specified at the class level, then col umm elements contained in the f or -
ei gn- key element might contain only the nane attribute.

ATTRIBUTE update-action

The update-action attribute specifies the generated or assumed foreign key constraint de-
fined in the datastore. The implementation might optimize its behavior based on these
constraints but they do not affect the object model.

ATTRIBUTE delete-action

The del et e- act i on attribute specifies the generated or assumed foreign key constraint
defined in the datastore. The implementation might optimize its behavior based on these
constraints but they do not affect the object model.

ATTRIBUTE deferred

The deferred attribute specifies whether constraint checking on the containing element is
defined in the database as being deferred until commit. This allows an optimization by the
JDO implementation, and might allow certain operations to succeed where they would
normally fail. For example, to exchange unique references between pairs of objects re-
quires that the unique constraint columns temporarily contain duplicate values.

202 May 16, 2005

Java Data Objects 2.0

18.12.4

Possible values are “t r ue” and “f al se”. The default is “f al se”.

ATTRIBUTE name

The nane attribute specifies the name of the foreign key constraint to generate for this
mapping. This attribute is used if only the name of the foreign key needs to be specified.

18.13

JDO20

ELEMENT field

Thef i el d element is optional, and the nane attribute is the field name as declared in the
class. If the field declaration is omitted in the xml, then the values of the attributes are de-
faulted.

The per si st ence- nodi f i er attribute specifies whether this field is persistent, trans-
actional, or none of these. The per si st ence- nodi fi er attribute can be specified only
for fields declared in the Java class, and not fields inherited from superclasses. There is spe-
cial treatment for fields whose per si st ence- nodi fi er is persi stent ortrans-
actional .

Default persistence-modifier

The default for the per si st ence-nodi fi er attribute is based on the Java type and
modifiers of the field:

e Fields with modifier st at i c: none. No accessors or mutators will be generated
for these fields during enhancement.

e Fields with modifier transi ent: none. Accessors and mutators will be
generated for these fields during enhancement, but they will not delegate to the
St at eManager .

* Fields with modifier f i nal : none. Accessors will be generated for these fields
during enhancement, but they will not delegate to the St at eManager .

* Fields of a type declared to be persistence-capable: per si st ent .
* Fields of the following types: per si st ent :

e primitives: bool ean, byt e, short,int,| ong,char,fl oat,doubl e;

e j ava. | ang wrappers: Bool ean, Byt e, Short, | nt eger, Long, Char act er,
Fl oat, Doubl €;

e java.l ang: String, Nunber;

j ava. mat h: Bi gDeci nal , Bi gl nt eger;

java. util:Currency, Date, Local e, Arrayli st, HashMap, HashSet,

Hasht abl e, Li nkedHashMap, Li nkedHashSet, Li nkedLi st, TreeMap,

TreeSet, Vector,Col | ection, Set, Li st,and Map;

* Arrays of primitive types, java.util.Date, java.util.Locale,
java.lang and java.math types specified immediately above, and
persistence-capable types.

¢ Fields of types of user-defined classes and interfaces not mentioned above: none.
No accessors or mutators will be generated for these fields.

The nul | - val ue attribute specifies the treatment of nul | values for persistent fields
during storage in the datastore. The default is " none" .

e "none": store null wvalues as null in the datastore, and throw a
JDQUser Except i onif nul | values cannot be stored by the datastore.

203 May 16, 2005

Java Data Objects 2.0

JDO20

e "exception": always throw a JDOUser Except i on if this field contains a
nul | value at runtime when the instance must be stored;

o "def aul t ": convert the value to the datastore default value if this field contains
a nul | value at runtime when the instance must be stored.

The def aul t -f et ch-group attribute specifies whether this field is managed as a
group with other fields. It defaults to "t r ue" for non-key fields of primitive types,] a-
va. util. Dat e, and fields of j ava. | ang,j ava. mat h types specified above.

The | oad- f et ch- gr oup attribute specifies the name of the fetch group to be used when
this field is loaded due to being referenced when unloaded. It does not apply to queries,
navigation, or get Qbj ect Byl d of instances of the declaring class.

* The load-fetch-group is added to the fetch groups in the
Per si st enceManager’s Fet chPl an to create the effective fetch groups for
loading the unloaded field. The unloaded field is also added to the fields in the
effective fetch groups in case the unloaded field is not already defined in the
effective fetch groups.

* The effective fetch groups are used to retrieve unloaded fields into the instance
containing the unloaded field.

¢ If any relationship fields are included in the effective fetch groups, then the
referred instances are loaded according to the effective fetch groups.

The enmbedded attribute specifies whether the field should be stored as part of the con-
taining instance instead of as its own instance in the datastore. It must be specified or de-
fault to "true" for fields of primitive types, wrappers, j ava. | ang, j ava. mat h,
java. util, collection, map, and array types specified above; and " f al se" otherwise.
While a compliant implementation is permitted to support these types as first class in-
stances in the datastore, the semantics of enbedded="t r ue” imply containment. That is,
the embedded instances have no independent existence in the datastore and have no Ex-
t ent representation.

The semantics of embedded applied to collection, map, and array types applies to the
structure of the type, not to the elements, keys, and values. That is, the collection itself is
considered separate from its contents. These may separately be specified to be embedded
or not.

The enbedded attribute applied to a field of a persistence-capable type is a hint to the im-
plementation to treat the field as if it were a Second Class Object. But this behavior is not
further specified and is not portable.

A portable application must not assign instances of mutable classes to multiple embedded
fields, and must not compare values of these fields using Java identity (“f 1==f 2”).

The enbedded element is used to specify the field mappings for embedded complex

types.

The dependent attribute indicates that the field contains a reference that is to be deleted
from the datastore if the referring instance in which the field is declared is deleted, or if the
referring field is nullified.

The following field declarations are mutually exclusive; it is a user error to specify more
than one mutually exclusive declaration:

» default-fetch-group = “true”
 primary-key = “true”

204 May 16, 2005

Java Data Objects 2.0

18.13.1

18.13.2

JDO20

e persistence-nodifier = “transactional” or “none”

If def aul t - f et ch- gr oup is specified as t r ue, then pri mary-key is set to f al se
and per si st ence-nodi fi er issetto persistent.

If primary-Kkey is specified as t r ue, then def aul t - f et ch- gr oup is set to f al se
and per si st ence-nodi fi er issetto persistent.

If persi stence-nodifier is specified as transacti onal or none, def aul t -
fetch-groupissettofal seandprimary-keyissettofal se.

The t abl e attribute specifies the name of the table mapped to this field. It defaults to the
table declared in the enclosing cl ass element.

The column elements specify the column(s) mapped to this field. Normally, only one col-
umn is mapped to a field. If multiple columns are mapped, then the behavior is implemen-
tation-specific.

The mapped- by attribute specifies that the field is mapped to the same database col-
umn(s) as the named field in the other class.

Theval ue- st r at egy attribute specifies the strategy used to generate values for the field.
This attribute has the same values and meaning as the st r at egy attribute in datastore-
identity.

If the val ue- str at egy is sequence, the sequence attribute specifies the name of the
sequence to use to automatically generate a value for the field. This value is used only for
persistent-new instances at the time makePer si st ent is called.

Subclasses might map fields of their superclasses. In this case, the field name is specified
as <superclass>.<superclass-field-name>.

ELEMENT collection

This element specifies the element type of collection typed fields. The default is Col | ec-
t i on typed fields are persistent, and the element type is Cbj ect .

The el enment - t ype attribute specifies the type of the elements. The type name uses Java
rules for naming: if no package is included in the name, the package name is assumed to
be the same package as the persistence-capable class. Inner classes are identified by the "$"
marker.

The enbedded- el enent attribute specifies whether the values of the elements should
be stored as part of the containing instance instead of as their own instances in the data-
store. It defaults to " f al se" for persistence-capable types, Obj ect types, and interface
types; and "t rue" for other types.

The embedded treatment of the collection instance itself is governed by the enbedded at-
tribute of the f i el d element.

The dependent - el errent attribute indicates that the collection’s element contains a ref-
erence that is to be deleted if the referring instance is deleted, the collection is replaced, or
the reference is nullified or removed from the collection.

The el enent element contained in the f i el d element specifies the mapping of elements
in the collection.

ELEMENT map

This element specifies the treatment of keys and values of map typed fields. The default is
map typed fields are persistent, and the key and value types are Obj ect .

205 May 16, 2005

Java Data Objects 2.0

18.13.3

18.134

18.135

JDO20

The key-t ype and val ue-t ype attributes specify the types of the key and value, re-
spectively.

The enbedded- key and enbedded- val ue attributes specify whether the key and val-
ue should be stored as part of the containing instance instead of as their own instances in
the datastore. They default to " f al se" for persistence-capable types, Cbj ect types, and
interface types; and "t r ue" for other types.

The embedded treatment of the map instance itself is governed by the enbedded attribute
of the f i el d element.

The dependent - key attribute indicates that the collection’s key contains references that
are to be deleted if the referring instance is deleted, the map is replaced, or the key is re-
moved from the map.

The dependent - val ue attribute indicates that the collection’s value contains references
that are to be deleted if the referring instance is deleted, the map is replaced, or the value
is removed from the map.

ELEMENT array

This element specifies the treatment of array typed fields. The default persistence-modifier
for array typed fields is based on the Java type of the component and modifiers of the field,
according to the rules in section 18.10.

The enbedded- el enent attribute specifies whether the values of the components
should be stored as part of the containing instance instead of as their own instances in the
datastore. It defaults to " f al se" for persistence-capable types, Cbj ect types, interface
types, and concrete implementation classes of Map and Col | ecti on types. It defaults to
“true" for other types.

The dependent - el ement attribute indicates that the array element contains a reference
that is to be deleted if the referring instance is deleted, the array is replaced, or the refer-
ence is nullified.

The embedded treatment of the array instance itself is governed by the enbedded at-
tribute of the f i el d element.

ELEMENT embedded

The enbedded element specifies the mapping for an embedded type. It contains multiple
field elements, one for each field in the type.

The nul | -i ndi cat or - col umm attribute optionally identifies the name of the column
used to indicate whether the embedded instance is null. By default, if the value of this col-
umn is null, then the embedded instance is null. This column might be mapped to a field
of the embedded instance but might be a synthetic column for the sole purpose of indicat-
ing a null reference.

The nul | -i ndi cat or - val ue attribute specifies the value to indicate that the embedded
instance is null. This is only used for non-nullable columns.

If nul I -i ndi cat or - col umm is omitted, then the embedded instance is assumed always
to exist.

The owner - fi el d attribute specifies the name of the field in the embedded type that
should contain a reference to the owning instance. This field is automatically instantiated
by the implementation, and is not mapped to anything in the data store.

ELEMENT key
This element specifies the mapping for the key component of a Map field.

206 May 16, 2005

Java Data Objects 2.0

If only one column is mapped, and no additional information is needed for the column,
then the col umm attribute can be used. Otherwise, the col umm element(s) are used.

Theseri al i zed attribute specifies that the key values are to be serialized into the named
column.

The del et e- acti on, updat e- acti on, i ndexed, and uni que attributes specify the
characteristics of a foreign key to be generated.

This element specifies the mapping for the value component of a Map field.

If only one column is mapped, and no additional information is needed for the column,
then the column attribute can be used. Otherwise, the col um element(s) are used.

Theseri al i zed attribute specifies that the key values are to be serialized into the named

The del et e- acti on, updat e-acti on, i ndexed, and uni que attributes specify the
characteristics of a foreign key to be generated.

This element specifies the mapping for the element component of arrays and collections.

If only one column is mapped, and no additional information is needed for the column,
then the column attribute can be used. Otherwise, the col urm element(s) are used.

Theseri al i zed attribute specifies that the key values are to be serialized into the named

The del et e- acti on, updat e- acti on, i ndexed, and uni que attributes specify the
characteristics of a foreign key to be generated.

This element specifies the serializable components of a query. Queries defined using meta-
data are used with the newNanedQuer y method of Per si st enceManager .

The nane attribute specifies the name of the query.

The | anguage attribute specifies the language of the query. The default is “j av-
ax.j do. query.JDOQL". To specify SQL, use “j avax. j do. query. SQL” . Names for
languages other than these are not standard.

The unnodi fi abl e attribute specifies whether the query can be modified by the pro-

The body of the quer y element specifies the text of the query. This is the single-string que-
ry as defined in section 14.6.13. For convenience, single quotes can be used to delimit string

The sequence element identifies a sequence number generator that can be used for sev-

* by the JDO implementation to generate application identity primary key values;
* by the JDO implementation to generate datastore identity primary key values;

* by the JDO implementation to generate non-key field values;

18.136 ELEMENT value
column.
18.13.7 ELEMENT element
column.
18.14 ELEMENT query
gram.
constants in the filter.
18.15 ELEMENT sequence
eral purposes:
JDO 2.0

207 May 16, 2005

Java Data Objects 2.0

* by an application to generate unique identifiers for application use.
The nane attribute specifies the name for the sequence number generator.

The st r at egy attribute specifies the strategy for generating sequence numbers. Standard
values are:

e nont ransacti onal : values are obtained outside of the transaction

e transact i onal : values are obtained in a transaction; if the transaction rolls back,
gaps might occur in the sequence numbers

e conti guous: values are obtained in a transaction; all sequence numbers are
guaranteed to be used. This implies that use of the sequence is serialized by
transactions.

The dat ast or e- sequence attribute names the sequence used to generate key values.
This must correspond to a named sequence in the database schema.

The fact ory-cl ass attribute names the user-defined class of the factory for the se-
quence. The class must have a static method new nst ance() that returns an instance of
Sequence. This method will be invoked once per named sequence per Per si st enceM
anager Fact ory and the same instance will be used for every reference to the same
named sequence in the context of that Per si st enceManager Factory.

This element is used in conjunction with the get Sequence(String nane) method in
Per si st enceManager . The nane parameter is the fully qualified name of the sequence.

This element specifies JDO vendor extensions. The vendor - nane attribute is required.
The vendor name " JDORI " is reserved for use by the JDO reference implementation. The
key and val ue attributes are optional, and have vendor-specific meanings. They may be
ignored by any JDO implementation.

This element specifies mapping information. It is the top-level element in a mapping file
whose extension is .orm. Many of the same elements in the jdo document are valid for orm.

Thejdo Document Type Descriptor

Note: The document type descriptors are to be descriptive, not normative. In the final spec-
ification, these will be replaced with proper xml schema.

The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.

e If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI“fi | e: /j avax/j do/j do. dt d”

¢ If PUBLIC is used, the public id should be "-//Sun M crosystens, Inc.//
DTD Java Data Objects Metadata 2. 0//EN';ajdoimplementation might

<?xm version="1.0" encodi ng="UTF-8"?>

18.16 ELEMENT extension
18.17 ELEMENT orm
18.18
optimize access for this id.
<! DOCTYPE j do
JDO 2.0

208 May 16, 2005

Java Data Objects 2.0

JDO20

PUBLIC "-//Sun M crosystens, Inc.//DTD Java Data Cbjects Metadata 2. 0//EN'
"http://java.sun.com dtd/jdo_2_0.dtd">

<l ELEMENT jdo (extension*, (package|query)+, extension*)>

<! ELEMENT package (extension*, (interface|class|sequence)+, exten-
sion*) >

<! ATTLI ST package nanme CDATA ‘' >

<IELEMENT interface (extension*, datastore-identity?, inherit-
ance?, version?, join*, foreign-key*, index*, unique*, property*,
qguery*, fetch-group*, extension*)>

<! ATTLI ST interface
<! ATTLI ST interface
<! ATTLI ST interface
bl e) #l MPLI ED>

<! ATTLI ST interface
<! ATTLI ST interface
<! ATTLI ST interface

name CDATA #REQUI RED>
t abl e CDATA #l| MPLI ED>
identity-type (datastore|application|nondura-

obj ecti d-cl ass CDATA #l MPLI ED>
requires-extent (true|false) ‘true’ >
det achabl e (true|false) ‘false >

<l ELEMENT property (extension*,
enbedded?,
uni que?,

i ndex?,
<! ATTLI ST
<! ATTLI ST
<l ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<l ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<l ATTLI ST
<! ATTLI ST
<! ATTLI ST

el enent ?,
ext ensi on) *) >

property
property
property
property
property
property
property
property
property
property
property
property

property

(array|collection|map)?, join?,
key?, value?, order?, colum*, foreign-key?,
name CDATA #REQUI RED>

defaul t-fetch-group (true|fal se) #l MPLI ED>

| oad- f et ch- group CDATA #l| MPLI ED>
nul | -val ue (defaul t|exception| none)
dependent (true|fal se) #l MPLI ED>
enbedded (true|fal se) #l MPLI ED>
primary-key (true|false) 'false' >
val ue-strat egy CDATA #l| MPLI ED>
sequence CDATA #l MPLI ED>
serialized (true|false) #l MPLIED>

t abl e CDATA #| MPLI ED>

col umm CDATA #l MPLI ED>

del ete-action (restrict|cascade| nul || de-

'none' >

faul t| none) #l MPLI ED>

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT

query*,
<I ATTLI ST
<I ATTLI ST
#1 MPLI ED>
<! ATTLI ST

property
property
property
property
property
property

cl ass (extension*,
heri tance?, version?, join*, foreign-key*,
f et ch- group*,

i ndexed (true|fal se|]unique) #l MPLI ED>
uni que (true|false) #l MPLI ED>
mapped- by CDATA #l| MPLI ED>

fetch-group CDATA #l MPLI ED>
fetch-dept h CDATA #| MPLI ED>

fiel d-name CDATA #l MPLI ED>

i mpl erent s*, datastore-identity?, in-
i ndex*, uni que*, field*,
ext ensi on*) >

cl ass nane CDATA #REQUI RED>

cl ass

identity-type (application|datastore|nondurable)

cl ass objectid-class CDATA #l MPLI ED>

209 May 16, 2005

Java Data Objects 2.0

JDO20

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

t abl e CDATA #l| MPLI ED>

requires-extent (true|false) ‘true’ >

per si st ence- capabl e- super cl ass CDATA #l MPLI ED>
detachabl e (true|false) ‘false' >

enmbedded-only (true|fal se) #l MPLI ED>

persi stence-nodi fier (persistence-capable|persis-

cl ass
cl ass
cl ass
cl ass
cl ass
cl ass

t ence- awar e| non- persi stent) #| MPLI ED>

<! ELEMENT j oi n (extension*, columm*, foreign-key?,

i ndex?, unique?,

ext ensi on*) >

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ATTLI ST
#1 MPLI ED>

<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<! ATTLI ST

<! ELEMENT
sion*) >
<! ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

t abl e CDATA #l MPLI ED>

col uim CDATA #l| MPLI ED>

outer (true|false) ‘false >

del ete-action (restrict|cascade|null|default]|none)

join
join
join
join

join
join

i ndexed (true|fal se|unique) #l MPLI ED>
uni que (true|fal se) #l MPLI ED>

ver si on
ver si on
ver si on
ver si on

(extension*, colum*, index?,
strat egy CDATA #l MPLI ED>

col uimm CDATA #l| MPLI ED>

i ndexed (true|fal se|unique) #l MPLI ED>

ext ensi on*) >

datastore-identity (extension*, colum?*,

datastore-identity colum CDATA #l MPLI ED>
datastore-identity strategy CDATA ‘native’ >
datastore-identity sequence CDATA #l WPLI ED>

ext ensi on*) >

i npl ement s (extension*, property*,
i mpl ement s nane CDATA #REQUI RED>

ext ensi on*) >

i nheritance (extension*, join?, discrimnator?, exten-

i nheritance strategy CDATA #l MPLI ED>

di scri m nat or
di scri m nat or
di scri m nat or
di scri m nat or
di scri m nat or

(extension*, columm*, index?,
col um CDATA #l| MPLI ED>

val ue CDATA #| MPLI ED>

strat egy CDATA #l MPLI ED>

i ndexed (true|fal se|unique) #l MPLI ED>

ext ensi on*) >

col um
col um
col um
col um
col um
col um
col um

(extensi on*) >

name CDATA #l| MPLI ED>

target CDATA #| MPLI ED>
target-field CDATA #l MPLI ED>
j dbc-type CDATA #| MPLI ED>
sql -type CDATA #l MPLI ED>

| engt h CDATA #l MPLI ED>

210 May 16, 2005

Java Data Objects 2.0

JDO20

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT

bedded?, el enent ?,
uni que?,

dex?,
<! ATTLI ST
<! ATTLI ST

colum scal e CDATA #| MPLI ED>
colum al |l ows-nul | CDATA #l MPLI ED>
colum defaul t-val ue CDATA #l MPLI ED>
field (extension*, (array|collection|mp)?, join?,
key?, value?, order?, colum*, foreign-key?,
ext ensi on*) >
field nane CDATA #REQUI RED>
field persistence-nodifier

em
i n-

(persistent|transaction-

al | none) #l MPLI ED>

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
#| MPLI ED>
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ATTLI ST
<I ATTLI ST

<! ELEMENT

field
field
field
field
field
field
field
field
field
field

t abl e CDATA #l| MPLI ED>

col utm CDATA #| MPLI ED>

primary-key (true|false) ‘false >

nul | -val ue (exception|default|none) ‘none’ >

defaul t-fetch-group (true|fal se) #l MPLI ED>
enbedded (true|fal se) #l MPLI ED>

serialized (true|fal se) #l MPLI ED>

dependent (true|fal se) #l MPLI ED>

val ue-strat egy CDATA #l MPLI ED>

del ete-action (restrict|cascade| nul I | defaul t| none)

field
field
field
field
field

field
field

i ndexed (true|fal se|unique) #l MPLIED>
uni que (true|false) #l MPLI ED>
sequence CDATA #| MPLI ED>

forei gn- key CDATA #| MPLI ED>

| oad-f et ch- group CDATA #l MPLI ED>

f et ch- dept h CDATA #| MPLI ED>
mapped- by CDATA #l| MPLI ED>
forei gn-key (extension*,

(columjfield|property)*, ex-

t ensi on*) >

<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
fault)
<! ATTLI ST
fault)
<! ATTLI ST
<! ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<! ATTLI ST

foreign-key tabl e CDATA #l MPLI ED>
foreign-key deferred (true|false) #l MPLIED>
foreign-key delete-action (cascade|restrict|null]|de-

‘restrict’ >

forei gn-key update-action (cascade|restrict|null]|de-

‘restrict’ >

foreign-key unique (true|fal se) #l MPLI ED>
forei gn-key nanme CDATA #| MPLI ED>

col l ection
col l ection
col l ection
coll ection

(ext ensi on*) >

el ement -t ype CDATA #| MPLI ED>
enbedded- el enment (true|fal se) #l MPLI ED>
dependent - el enent (true|fal se) #l MPLI ED>

map (extension)*>
map key-type CDATA #| MPLI ED>

211 May 16, 2005

Java Data Objects 2.0

JDO20

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

map enbedded- key (true|fal se) #l MPLI ED>
map dependent-key (true|fal se) #l MPLI ED>
map val ue-type CDATA #l MPLI ED>

<I ATTLI ST map enbedded-val ue (true|fal se) #l MPLI ED>

<! ATTLI ST map dependent-val ue (true|fal se) #l MPLI ED>

<!l ELEMENT key (extension*, enbedded?, colum*, foreign-key?, in-
dex?, uni que?, extension*)>

<I ATTLI ST key col unm CDATA #| MPLI ED>

<! ATTLI ST key tabl e CDATA #l MPLI ED>

<I ATTLI ST key serialized (true|fal se) #l MPLI ED>

<I ATTLI ST key delete-action (restrict]|cascade|null|default]|none)
#| VPLI ED>

<! ATTLI ST key indexed (true]|fal se|unique) #l MPLI ED>

<I ATTLI ST

<! ELEMENT
dex?,
< ATTLI ST
<l ATTLI ST
<! ATTLI ST
<! ATTLI ST
#1 MPLI ED>
<V ATTLI ST
<! ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
i ndex?,
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST

uni que?,

uni que?,

key uni que (true|fal se) #l MPLI ED>

val ue (extension*, enbedded?, col um*, i n-
ext ensi on*) >

serialized (true|fal se) #l MPLI ED>

t abl e CDATA #l| MPLI ED>

col uim CDATA #l MPLI ED>

del ete-action (restrict|cascade| null | defaul t|none)

forei gn-key?,

val ue
val ue
val ue
val ue

val ue
val ue

i ndexed (true|fal se|unique) #l MPLI ED>
uni que (true|fal se) #l MPLI ED>

array
array
array

(ext ensi on*) >

enmbedded- el enent (true|fal se) #l MPLI ED>
dependent - el enent (true|fal se) #l MPLI ED>
el enent (extension*, enbedded?, colum*,
ext ensi on*) >

el ement col utm CDATA #| MPLI ED>

el ement tabl e CDATA #| MPLI ED>

el enent serialized (true|fal se) #l MPLI ED>

el enent del ete-action (restrict|cascade| nul || de-

foreign-key?,

faul t| none) #l MPLI ED>

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST

el ement updat e-acti on CDATA #| MPLI ED>
el enent indexed (true|fal se|unique) #l MPLI ED>
el enment uni que (true|fal se) #l MPLI ED>

order (extension*, colum*, index?, extension*)>
order col um CDATA #l MPLI ED>

order indexed (true|false|unique) #l MPLIED>
fetch-group (fetch-group|field)*>

fetch-group nane CDATA #REQUI RED>
fetch-group post-load (true|false) #l MPLI ED>

212 May 16, 2005

Java Data Objects 2.0

<! ELEMENT
<I ATTLI ST

<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

ti guous) #REQUI RED>

<! ELEMENT
sion*) >

<! ATTLI ST
<! ATTLI ST
<! ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
sion*)>

<! ATTLI ST
<! ATTLI ST
<! ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

enbedded
enbedded

enbedded
enbedded

sequence
sequence
sequence
sequence
sequence

i ndex

i ndex

i ndex
i ndex

tab
uni

query
query
query
query

| an

uni que

(ext ensi on*,

unnodi fiabl e (true|fal se)

(extension*, field*, extension*)>
owner -fi el d CDATA #l MPLI ED>

nul | -i ndi cat or - col uim CDATA #l MPLI ED>
nul | -i ndi cat or - val ue CDATA #| WPLI ED>

(ext ensi on*) >
name CDATA #REQUI RED>
dat ast or e- sequence CDATA #l WPLI ED>
factory-cl ass CDATA #| MPLI ED>
strategy (nontransactional|contiguous| noncon-

(colum| field| property)*, exten-

name CDATA #l| MPLI ED>

| e CDATA #| MPLI ED>
que (true|false) 'false >

(#PCDATA| ext ensi on) *>
name CDATA #| MPLI ED>

guage CDATA #l MPLI ED>
‘fal se’ >
ext en-

(extension*, (colum|field|property)*,

uni que nane CDATA #l| MPLI ED>
uni que tabl e CDATA #| MPLI ED>

uni que de

ext ensi on
ext ensi on
ext ensi on
ext ensi on

18.19

JDO20

ferred (true|false) 'false' >
ANY>

vendor - nane CDATA #REQUI RED>
key CDATA #| MPLI ED>

val ue CDATA #| WPLI ED>

The orm Document Type Descriptor

Note: The document type descriptors are to be descriptive, not normative. In the final spec-
ification, these will be replaced with proper xml schema.

The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.

e If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI“fi | e: /j avax/j do/ orm dt d”

¢ If PUBLIC is used, the public id should be "-// Sun M cr osyst ens,
DTD Java

Dat a

Inc.//

Cbjects Mapping Metadata 2.0//EN'; a jdo

implementation might optimize access for this id.

213 May 16, 2005

Java Data Objects 2.0

JDO20

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE orm

PUBLIC "-//Sun M crosystens,

Inc.//DTD Java Data Objects Mapping

Met adata 2. 0//EN'

"http://java.sun.comdtd/orm2 0.dtd">
<! ELEMENT orm (extensi on*, (package|query)+, extension*)>
<l ELEMENT package (extension*, (interface|class|sequence)+, exten-
sion*) >
<I ATTLI ST package nane CDATA ‘'’ >
<IELEMENT interface (extension*, datastore-identity?, inherit-
ance?, version?, join*, foreign-key*, index*, unique*, property*,
guery*, extension*)>
<! ATTLI ST interface nane CDATA #REQU RED>
<! ATTLI ST i nterface tabl e #CDATA #l MPLI ED>
<! ELEMENT property (join?, elenent?, key?, value?, order?, columm)?

, extension*)>

<I ATTLI ST
<I ATTLI ST

<! ELEMENT

version?, join*, foreign-key*,

property nanme CDATA #REQUI RED>
property col unmm CDATA #l MPLI ED>
class (extension*, datastore-identity?, inheritance?,
i ndex*, uni que*, field*, query*, ex-

t ensi on*) >

<I ATTLI ST
<I ATTLI ST

<I ELEMENT j oi n (extension*, columm*, foreign-key?,

cl ass nane CDATA #REQUI RED>
cl ass tabl e CDATA #l| WPLI ED>

i ndex?, unique?,

ext ensi on*) >

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
#| MPLI ED>
<! ATTLI ST
<I ATTLI ST

<! ELEMENT
<! ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT

join tabl e CDATA #l MPLI ED>

join colum CDATA #| MPLI ED>

join outer (true|false) ‘false >

join delete-action (restrict]|cascade|null|default]|none)

join indexed (true|fal se|unique) #l MPLI ED>
join unique (true|fal se) #l MPLI ED>

datastore-identity (extension*, colum*,

dat astore-identity col utm CDATA #| MPLI ED>
datastore-identity strategy CDATA ‘native >
datastore-identity sequence CDATA #l MPLI ED>

ext ensi on*) >

ver si on
version
ver si on
ver si on

(extension*, colum*, index?,
strat egy CDATA #REQUI RED>

col um CDATA #| WPLI ED>

i ndexed (true|fal se|unique) #l MPLI ED>

ext ensi on*) >

i npl enments ((property-field)+, (extension)*)>

214 May 16, 2005

Java Data Objects 2.0

JDO20

<! ATTLI ST i npl enents name CDATA #REQUI RED>

<I ELEMENT inheritance (extension*, discrimnator?, join?, exten-
sion*) >

<I ATTLI ST i nheritance strategy CDATA #l MPLI ED>

<l ELEMENT di scri m nator (extension*, columm*, index?, extension*)>
<! ATTLI ST di scrimi nator col um CDATA #l VMPLI ED>

<! ATTLI ST di scri m nator val ue CDATA #l MPLI ED>

<! ATTLI ST di scrinminator strategy CDATA #l MPLI ED>

<I ATTLI ST di scrim nator indexed (true|false|unique) # MPLI ED>

<! ELEMENT col umm (extension*) >

<! ATTLI ST col utmm nane CDATA #| MPLI ED>

<I ATTLI ST col umm target CDATA #| MPLI ED>

<I ATTLI ST colum target-field CDATA #l MPLI ED>

<! ATTLI ST col umm j dbc-type CDATA #l MPLI ED>

<! ATTLI ST colum sql -type CDATA #| MPLI ED>

<! ATTLI ST col umm | engt h CDATA #l MPLI ED>

<! ATTLI ST col um scal e CDATA #| MPLI ED>

<! ATTLI ST colum al | ows-nul | CDATA #l MPLI ED>

<! ATTLI ST col um def aul t - val ue CDATA #l MPLI ED>

<!l ELEMENT property (extension*, join?, enbedded?, elenent?, Kkey?,
val ue?, order?, colum*, foreign-key?, index?, unique?, exten-
si on*) >

<I ATTLI ST property name CDATA #REQUI RED>

<I ATTLI ST property val ue-strategy CDATA #l MPLI ED>

<I ATTLI ST property sequence CDATA #| MPLI ED>

<I ATTLI ST property serialized (true|fal se) #l MPLI ED>

<! ATTLI ST property tabl e CDATA #|l MPLI ED>

<! ATTLI ST property col um CDATA #| MPLI ED>

<I ATTLI ST property del ete-action (restrict]|cascade| nul || de-

faul t| none) #l MPLI ED>

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT fi el d (extension*, join?, enbedded?,

property indexed (true|fal se|unique) #l MPLI ED>
property uni que (true|false) #l MPLI ED>
property mapped- by CDATA #l MPLI ED>

el emrent ?, key?, val -

ue?, order?, colum*, foreign-key?, index?, unique?, extension*)>
<I ATTLI ST field nane CDATA #REQUI RED>

<I ATTLI ST field col um CDATA #l MPLI ED>

<I ATTLI ST field primary-key CDATA #l MPLI ED>

<I ATTLI ST field table CDATA #|l MPLI ED>

<IATTLI ST field del ete-action (restrict]|cascade|null | default|none)
#| MPLI ED>

<I ATTLI ST field indexed (true|fal se|unique) #l MPLI ED>

<I ATTLI ST field unique (true|false) #l MPLI ED>

215 May 16, 2005

Java Data Objects 2.0

JDO20

<I ATTLI ST fiel d napped- by CDATA #l MPLI ED>

<I' ATTLI ST field val ue-strategy CDATA #l MPLI ED>
<! ATTLI ST field sequence CDATA #l MPLI ED>

<! ELEMENT f orei gn-key (extension*,
t ensi on*) >

<I ATTLI ST foreign-key table CDATA #l MPLI ED>

<! ATTLI ST foreign-key deferred (true|false) #l MPLI ED>

(columjfield|property)*, ex-

<! ATTLI ST
fault)
<! ATTLI ST
fault)

foreign-key delete-action (restrict|cascade|null]|de-

‘restrict'>

forei gn-key update-action (restrict]|cascade|null]|de-

"restrict'>

<! ATTLI ST foreign-key uni que (true|false) #l MPLI ED>

<I ATTLI ST foreign-key nanme CDATA #l MPLI ED>

<!l ELEMENT key (columm*, index?, enbedded?, foreign-key?, exten-
sion*) >

<! ATTLI ST key col unmm CDATA #| MPLI ED>

<! ATTLI ST
<! ATTLI ST

key tabl e CDATA #l WPLI ED>
key serialized (true|fal se) #l MPLI ED>

<I ATTLI ST key delete-action (restrict]|cascade|null|default]|none)
#| MPLI ED>
<I ATTLI ST key i ndexed (true|fal se|unique) #l MPLI ED>

<! ATTLI ST

key uni que (true|fal se) #l MPLI ED>

<! ELEMENT val ue (extension*,
dex?, uni que?, extension*)>
<I ATTLI ST val ue col um CDATA #| MPLI ED>

<! ATTLI ST val ue tabl e CDATA #| MPLI ED>

<I ATTLI ST val ue serialized (true|fal se) #l MPLI ED>

<I ATTLI ST val ue del ete-action (restrict]|cascade|null|default]|none)
#| MPLI ED>

<I ATTLI ST val ue i ndexed (true|fal se|unique) #l MPLI ED>

<I ATTLI ST val ue uni que (true|fal se) #l MPLI ED>

enbedded?, colum*, foreign-key?, in-

<! ELEMENT el enent (extension*,
i ndex?, uni que?, extension*)>
<I ATTLI ST el ement col unm CDATA #| MPLI ED>

<! ATTLI ST el enent tabl e CDATA #l MPLI ED>

<! ATTLI ST el enent serialized (true|false) #l MPLI ED>

<l ATTLI ST el ement del ete-action (restrict]|cascade| nul || de-
faul t| none) #l MPLI ED>

<I ATTLI ST el enent indexed (true|fal se|unique) #l MPLI ED>

<I ATTLI ST el enent uni que (true|fal se) #l MPLI ED>

enbedded?, columm*, foreign-key?,

<! ELEMENT or der
<! ATTLI ST order
<! ATTLI ST order

(extensi on*, colum*, index?,
col utm CDATA #l MPLI ED>

i ndexed (true|fal se|unique) #l MPLIED>

ext ensi on*) >

216 May 16, 2005

Java Data Objects 2.0

<! ELEMENT enbedded (extension*, field*, extension*)>

<! ATTLI ST enbedded nul | -i ndi cat or - col unm CDATA #| MPLI ED>

<I ATTLI ST enbedded nul | -i ndi cat or - val ue CDATA #l MPLI ED>

<! ATTLI ST enbedded owner-field CDATA #l WPLI ED>

<! ELEMENT sequence (extension*)>

<I ATTLI ST sequence name CDATA #REQUI RED>

<! ATTLI ST sequence dat ast ore-sequence CDATA #| MPLI ED>

<I ATTLI ST sequence factory-class CDATA #l WPLI ED>

<I ATTLI ST sequence strategy (nontransactional|contiguous|noncon-

ti guous) #REQUI RED>

<l ELEMENT index (extension*, (colum]|field|property)*, exten-
sion*)>

<I ATTLI ST i ndex name CDATA #| MPLI ED>

<I ATTLI ST i ndex tabl e CDATA #l MPLI ED>

<I' ATTLI ST i ndex unique (true|false) ‘false >

<l ELEMENT uni que (extension*, (colum|field|property)*, exten-
sion*) >

<! ATTLI ST uni que narme CDATA #l MPLI ED>

<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

uni que tabl e CDATA #| MPLI ED>

uni que de

ferred (true|false) 'fal se' >

query (#PCDATA| ext ensi on) *>
guery nane CDATA #| MPLI ED>

query | an

query unnodifiable (true|false)

ext ensi on
ext ensi on
ext ensi on
ext ensi on

18.20

Example XML file

guage CDATA #l MPLI ED>
‘fal se’ >

ANY>

vendor - nane CDATA #REQUI RED>
key CDATA #l MPLI ED>

val ue CDATA #l| MPLI ED>

An example XML file for the query example classes follows. Note that all fields of both
classes are persistent, which is the default for fields. The enps field in Depar t nent con-
tains a collection of elements of type Enpl oyee, with a relationship to the dept field in
Enpl oyee.

In directory conm Xy z, a file named hr . j do contains:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE j do SYSTEM “j do. dt d” >

<j do>

<package nane="com xyz. hr” >

<cl ass nane="Enpl oyee” identity-type="application”>

JDO 2.0 217 May 16, 2005

Java Data Objects 2.0

JDO20

<field name="nane” primary-key="true">

<ext ensi on vendor - nanme="sunw’ key="i ndex” val ue="btree"/>
</field>

<field name="sal ary” default-fetch-group="true”/>

<field name="dept” >

<ext ensi on vendor - nane="sunw’ key="inverse” val ue="enps”/>
</field>

<field name="boss”/ >

</cl ass>

<class name="Departnment” identity-type="application” objectid-
cl ass=" Depart nent Key” >

<field nane="nane” prinmary-key="true"/>

<field nanme="enps” >

<col | ection el enent -type="Enpl oyee” >

<ext ensi on vendor - nane="sunw’ key="el enent-i nverse” val ue="dept”/>
</col |l ecti on>

</field>

</cl ass>

</ package>

</jdo>

218 May 16, 2005

Java Data Objects 2.0

19

Extent

This chapter specifies the EXt ent contract between an application component and the
JDO implementation.

An application needs to provide a candidate collection of instances to a query. If the query
filtering is to be performed in the datastore, then the application must supply the collection
of instances to be filtered. This is the primary function of the Ext ent interface.

An Ext ent instance is logically a holder for information:

¢ whether subclasses are part of the Ext ent ; and
¢ a collection of active iterators over the Ext ent .

Thus, no action is taken at the time the Ext ent is constructed. The contents of the Ext ent
are calculated at the point in time when a query is executed and when an iterator is ob-
tained via the i t er at or () method.

A query may be executed against either a Col | ecti on or an Ext ent . The Ext ent is
used when the query is intended to be filtered by the datastore, not by in-memory process-
ing. There areno Col | ect i on methods in Ext ent except fori t er at or () . Thus, com-
mon Col | ecti on behaviors are not possible, including determining whether one
Ext ent contains another, determining the size of the Ext ent , or determining whether a
specific instance is contained in the EXt ent . Any such operations must be performed by
executing a query against the Ext ent .

If the Ext ent is large, then an appropriate iteration strategy should be adopted by the

A15.1-1 [The Ext ent for classes of embedded instances is not affected by changes to fields

The extent interface has the following goals:

¢ Large result set support. Queries might return massive numbers of JDO instances
that match the query. The JDO Query architecture must provide for processing
the results within the resource constraints of the execution environment.

* Application resource management. Iterating an EXt ent might use resources that
should be released when the application has finished an iteration. The application
should be provided with a means to release iterator resources.

19.1 Overview
¢ the class of instances;
JDO implementation.
in referencing class instances.]
192 Goals
JDO 2.0

219 May 16, 2005

Java Data Objects 2.0

19.3

JDO20

I nterface Extent

package j avax.j do;

public interface Extent {
Iterator iterator();

A15.3-1 [This method returns an | t er at or over all the instances in the Ext ent .] A159.3-
14 [If Nontransacti onal Read property is set to fal se, this method will throw a
JDQUser Except i on if called outside a transaction.]

If the | gnor eCache optionissettot r ue in the Per si st enceManager at the time that
this | t er at or instance is obtained, then new and deleted instances in the current trans-
action might be ignored by the | t er at or at the option of the implementation. That is,
new instances might not be returned; and deleted instances might be returned.

If the | gnor eCache option is set to f al se in the Per si st enceManager at the time
that this | t er at or instance is obtained, then:

¢ A15.3-2 [If instances were made persistent in the transaction prior to the execution
of this method, the returned | t er at or will contain the instances.]

¢ A15.3-3 [If instances were deleted in the transaction prior to the execution of this
method, the returned | t er at or will not contain the instances.]

The above describes the behavior of an extent-based query at query execution.

A15.3-4 [If any mutating method, including the r enbve method, is called on the | t er a-
t or returned by this method, a Unsuppor t edQper at i onExcept i on is thrown.]

bool ean hasSubcl asses();

A15.3-5, A15.3-6 [This method returns an indicator of whether the extent is proper or in-
cludes subclasses.]

O ass get Candi dat e ass();

A15.3-7 [This method returns the class of the instances contained in it.]

Per si st enceManager get Per si st enceManager () ;

A15.3-8 [This method returns the Per si st enceManager that created it.]
void close(lterator i);

This method closes an | t er at or acquired from this Ext ent . A15.3-9 [After this call, the
parameter | t er at or will return fal se to hasNext ()], and A15.3-10 [will throw
NoSuchEl enment Except i on tonext () .] A15.3-11 [The Ext ent itself can still be used
to acquire other iterators and can be used as the Ext ent for queries.]

void closeAll ();

This method closes all iterators acquired from this Ext ent . A15.3-12 [After this call, all
iterators acquired from this Ext ent will return f al se to hasNext ()], and A15.3-13
[will throw NoSuchEl enent Excepti on tonext () .]

Any change made to the fetch plan of the associated Per si st enceManager affects in-
stance retrievals via next () . Only instances not already in memory are affected by the
Per si st enceManager ’s fetch plan. Fetch plan is described in Section 12.7.

220 May 16, 2005

Java Data Objects 2.0

20

Portability Guidelines

One of the objectives of JDO is to allow an application to be portable across multiple JDO
implementations. This Chapter summarizes portability rules that are expressed elsewhere
in this document. If all of these programming rules are followed, then the application will
work in any JDO compliant implementation.

These features may be used by the application if the JDO vendor supports them. Since they
are not required features, a portable application must not use them.

Optimistic transactions are enabled by the Per si st enceManager Fact ory or Tr ans-
act i on method set Opti m stic(true).JDO implementations that do not support
optimistic transactions throw JDOUnsuppor t edOpt i onExcepti on.

Nontransactional read is enabled by the Per si st enceManager Fact ory or Tr ans-
act i on method set Nont r ansact i onal Read(true).JDO implementations that do
not support nontransactional read throw JDOUnsuppor t edOpt i onExcept i on.

Nontransactional write is enabled by the Per si st enceManager Fact ory or Tr ans-
act i on method set Nontransacti onal Wite(true).]JDO implementations that
do not support nontransactional write throw JDOUnsuppor t edOpt i onExcepti on.

Transient transactional instances are created by the Per si st enceManager nakeT-
ransacti onal (Obj ect) .JDO implementations that do not support transient transac-
tional throw JDOUnsuppor t edOpt i onExcepti on.

A portable application should run the same regardless of the setting of the r et ai nVal -

A portable application should set this flag to f al se. The results of iterating Ext ent s and
executing queries might be different among different implementations.

References among persistence-capable classes must be defined as First Class Objects in the

20.1 Optional Features
20.1.1 Optimistic Transactions
20.1.2 Nontransactional Read
20.1.3 Nontransactional Write
20.1.4 Transent Transactional
20.1.5 RetainValues

ues flag.
20.1.6 IgnoreCache

20.2 Object Model

model.
JDO 2.0

221 May 16, 2005

Java Data Objects 2.0

SCO instances must not be shared among multiple persistent instances.
Arrays must not be shared among multiple persistent instances.

If arrays are passed by reference outside the defining class, the owning persistent instance
must be notified via] doMakeDi rty.

The application must not depend on any sharing semantics of immutable class objects.

The application must not depend on knowing the exact class of an SCO instance, as they
may be substituted by a subclass of the type.

Persistence-capable classes must not contain final non-static fields or methods or fields
that start with "jdo".

Applications must be aware that support for application identity and datastore identity
are optional, and some implementations might support only one of these identity types.
The supported identity type(s) of the implementation should be checked by using the
suppor t edOpt i ons method of Per si st enceManager Fact ory.

Applications must construct only Qbj ect | d instances for classes that use application-de-
fined JDO identity, or use the Per si st enceManager get Cbj ect | dCl ass to obtain

Classes that use application identity must only use key field types of primitive, St ri ng,
Dat e, Byte, Short, Integer, Long, Float, Double, BigDecinal, or

Applications must only compare Obj ect | d instances from different JDO implementa-
tions for classes that use application-defined JDO identity.

The equal s and hashCode methods of any persistence-capable class using application
identity must depend on all of the key fields.

Key fields can be defined only in the least-derived persistence-capable class in an inherit-
ance hierarchy. All of the classes in the hierarchy use the same key class.

A JDO implementation might not support changing primary key field values (which has
the effect of changing the primary key of the underlying datastore instance). Portable ap-
plications do not change primary key fields.

To be portable, instances of Per si st enceManager must be obtained from a Per si s-
t enceManager Fact or y, and not by construction. The recommended way to instantiate
aPer si st enceManager Fact ory is to use the JDOHel per . get Per si st enceMan-
ager Fact ory(Properties) method.

Using a query language other than JDOQL is not portable.

A query must constrain all variables used in any expressions with a contains clause refer-
encing a persistent field of a persistence-capable class.

Not all datastores allow storing null-valued collections. Portable queries on these collec-
tions should use i SEnpt y() instead of comparing to nul | .

20.3 JDO ldentity
the Qbj ect | d class.
Bi gl nt eger.
20.4 PersistenceManager
205 Query
JDO 2.0

222 May 16, 2005

Java Data Objects 2.0

Portable queries must only use persistent or public final static field names in filter expres-
sions.

Portable queries must pass persistent or transactional instances as parameters of persis-
tence-capable types.

Wild card queries must use “matches” with a regular expression including only “(?i)” for
case-insensitivity, “.” for matching a single characters, and “.*” for matching multiple
characters.

Portable applications will define all persistence-capable classes in the XML metadata.

Portable applications will not depend on requiring instances to be hollow or persistent-
nontransactional, or to remain non-transactional in a transaction.

Portable applications will use JDOHelper for state interrogations of instances of persis-
tence-capable classes and for determining if an instance is of a persistence-capable class.

Portable applications must not depend on isolation levels stronger than read-committed
provided by the underlying datastore. Some fields might be read at different times by the
JDO implementation, and there is no guarantee as to read consistency compared to previ-
ously read data. A JDO persistence-capable instance might contain fields instantiated by
multiple datastore accesses, with no guarantees of consistency (read-committed isolation

Portable applications must not use the PersistenceCapable interface. Compliant imple-
mentations might use persistence-capable classes that do not implement the Persistence-
Capable interface. Instances can be queried as to their state by using the methods in

Readers primarily interested in developing applications with the [DO API can ignore the following
chapters. Skip to 23 — JDOPermission.

20.6 XML metadata

20.7 Lifecycle

20.8 JDOHelper

20.9 Transaction
level).

20.10 Binary Compatibility
JDOHelper.
JDO 2.0

223 May 16, 2005

Java Data Objects 2.0

21

JDO Reference Enhancer

This chapter specifies the JDO Reference Enhancement, which specifies the contract be-
tween JDO persistence-capable classes and JDO StateManager in the binary-compatible
runtime environment. The JDO Reference Enhancer modifies persistence-capable classes
to run in the JDO environment and implement the required contract. The resulting classes,
hereinafter referred to as enhanced classes, implement a contract used by the JDOHel per,
the JDA npl Hel per, and the St at eManager classes.

The JDO Reference Enhancer is just one possible implementation of the JDO Reference En-
hancement contract. Tools may instead preprocess or generate source code to create class-
es that implement this contract.

Enhancement is just one possible strategy for JDO implementations. If a JDO implementa-
tion supports BinaryCompeatibility, it must support the Per si st enceCapabl e contract.
Otherwise, it need only support the rest of the user-visible contracts (e.g. PersistenceMan-
agerFactory, PersistenceManager, Query, Transaction, and Extent).

NOTE: Thischapter isnot intended to be used by application programmers. It
isfor use only by implementations. Applications should use the methods defined
in class JIDOHelper instead of these methods and fields.

The JDO Reference Enhancer will be used to modify each persistence-capable class before
using that persistence-capable class with the Reference Implementation Per si st ence-
Manager in the Java VM. It might be used before class loading or during the class loading

The JDO Reference Enhancer transforms the class by making specific changes to the class
definition to enable the state of any persistent instances to be synchronized with the rep-
resentation of the data in the datastore.

Tools that generate source code or modify the Java source code files must generate classes
that meet the defined contract in this chapter.

The Reference Enhancer provides an implementation for the Per si st enceCapabl e in-

The following are the goals for the JDO Reference Enhancer:

* Binary compatibility and portability of application classes among JDO vendor
* Binary compatibility between application classes enhanced by different JDO

* Minimal intrusion into the operation of the class and class instances

21.1 Overview
process.
terface.
21.2 Goals
implementations
vendors at different times.
JDO 2.0

224 May 16, 2005

Java Data Objects 2.0

* Provide metadata at runtime without requiring implementations to be granted
reflect permission for non-private fields

* Values of fields can be read and written directly without wrapping code with
accessors or mutators (fi el d1 += 13 is allowed, instead of requiring the user
tocodeset Fi el d1(getFiel d1() + 13))

* Navigation from one instance to another uses natural Java syntax without any
requirement for explicit fetching of referenced instances

¢ Automatically track modification of persistent instances without any explicit
action by the application or component developer

* Highest performance for transient instances of persistence-capable classes
* Support for all class and field modifiers

* Transparent operation of persistent and transient instances as seen by application
components and persistence-capable classes

* Shared use of persistence-capable classes (utility components) among multiple
JDO Per si st enceManager instances in the same Java VM

* Preservation of the security of instances of Per si st enceCapabl e classes from
unauthorized access

* Support for debugging enhanced classes by line number

21.3

JDO20

Enhancement: Architecture

The reference enhancement of persistence-capable classes has the primary objective of pre-
serving transparency for the classes. Specifically, accesses to fields in the JDO instance are
mediated to allow for initializing values of fields from the associated values in the data-
store and for storing the values of fields in the JDO instance into the associated values in
the datastore at transaction boundaries.

To avoid conflicts in the name space of the persistence-capable classes, all methods and
fields added to the persistence-capable classes have the “j do” prefix.

Enhancement might be performed at any time prior to use of the class by the application.
During enhancement, special JDO class metadata must be available if any non-default ac-
tions are to be taken. The metadata is in XML format .

Specifically, the following will require access to special class metadata at class enhance-
ment time, because these are not the defaults:

* classes are to use primary key or non-managed object identity;

¢ fields declared as transient in the class definition are to be persistent in the
datastore;

¢ fields not declared as transient in the class definition are to be non-persistent in the
datastore;

¢ fields are to be transactional non-persistent;

¢ fields with domains of references to persistence-capable classes are to be part of the
default fetch group;

225 May 16, 2005

Java Data Objects 2.0

JDO20

e fields with domains of primitive types (bool ean, char, byte, short, int,
| ong, fl oat, doubl e) or primitive wrapper types (Bool ean, Char, Byt e,
Short, | nt eger, Long, Fl oat, Doubl e) are not to be part of the default fetch

group;
e fields with domains of St r i ng are not to be part of the default fetch group;
¢ fields with domains of array types are to be part of the default fetch group.

Enhancement makes changes to two categories of classes: persistence-capable and persis-
tence-aware. Persistence-capable classes are those whose instances are allowed to be
stored in a JDO-managed datastore. Persistence aware classes are those that while not nec-
essarily persistence-capable themselves, contain references to managed fields of classes
that are persistence-capable. Thus, persistence-capable classes may also be persistence-
aware.

To preserve the security of instances of Per si st enceCapabl e classes, access restric-
tions to fields before enhancement will be propagated to accessor methods after enhance-
ment. Further, A20.3-25 [to become the delegate of field access (St at eManager) the
caller must be authorized for JDOPer mi ssi on.]

A JDO implementation must interoperate with classes enhanced by the Reference Enhanc-
er and with classes enhanced with other Vendor Enhancers. Additionally, classes en-
hanced by any Vendor Enhancers must interoperate with the Reference Implementation.

Name scope issues are minimized because the Reference Enhancement contract adds
methods and fields that begin with “j do”, while methods and fields added by Vendor En-
hancers must not begin with “j do”. Instead, they may begin with “sunwj do”, “ex!| nj -
do” or other string that includes a vendor-identifying name and the “j do” string.
Debugging by source line number must be preserved by the enhancement process. If any

code modification within a method body changes the byte code offsets within the method,
then the line number references of the method must be updated to reflect the change.

The Reference Enhancer makes the following changes to the least-derived (topmost) per-
sistence-capable classes:

e A203-1 [adds a field named |doStateManager, of @ type

j avax. j do. spi . St at eManager to associate each instance with zero or one
instance of JDO St at eManager ;]

e A20.3-2 [adds a synchronized method j doRepl aceSt at eManager (to replace
the value of the j doSt at eManager), which invokes security checking for
declared JDOPer m ssi on;]

® A20.3-3 [adds a field named j doFl ags of type byte in the least-derived
persistence capable class, to distinguish readable and writable instances from non-
readable and non-writable instances;]

* A20.3-4 [adds a method j doRepl aceFl ags to require the instance to request an
updated value for the | doFl ags field from the St at eManager ;]

* adds methods to implement status query methods by delegating to the
St at eManager ;

e A20.3-26 [adds method j doRepl aceFi el ds(int[]) to obtain values of
specified fields from the St at eManager and cache the values in the instance;]

e A20.3-27 [adds method j doProvi deFields(int[]) to supply values of
specific fields to the St at eManager ;]

226 May 16, 2005

Java Data Objects 2.0

e A20.3-28 [adds a method voi d j doCopyFi el ds(Obj ect other, int[]
fiel dNunber s) toallow the St at eManager to manage multiple images of the
persistence capable instance;]

* adds a method void j doCopyFi el d(Ooj ect ot her, i nt
fi el dNunber) to allow the St at eManager to manage multiple images of the
persistence capable instance;

* A20.3-19 [adds a method j doPr eSeri al i ze] to load all non-transient fields into
the instance prior to serialization;

The Reference Enhancer makes the following changes to least-derived (topmost) persis-
tence-capable classes and classes that declare an obj ect i d- cl ass in their xml:

e A20.3-22 [adds methods
j doCopyKeyFi el dsToCbj ect | d(Per si st enceCapabl e pc, Object
oi d)] and A20.3-23
[doCopyKeyFi el dsToObj ect | d(Qbj ect | dFi el dSupplier fs,
bj ect 0id).]

* A20.3-29 [adds methodsj doCopyKeyFi el dsFromObj ect | d(Obj ect oi d)
and] doCopyKeyFi el dsFr omObj ect | d(Obj ect | dFi el dConsuner fc,
hj ect o0id).]

* A20.3-21 [adds a method j doNewCbj ect | dl nst ance() which creates an
instance of the jdo Objectld for this class.]

The Reference Enhancer makes the following changes to all classes:

* A20.3-0 [adds “i npl enents javax. | do. spi . Persi stenceCapabl e” to
the class definition;]

* A20.3-6 [adds two methods] doNew nst ance, one of which takes a parameter
of type St at eManager , to be used by the implementation when a new persistent
instance is required (this method allows a performance optimization), and the
other takes a parameter of type StateManager and a parameter of an
Qbj ect | d for key field initialization;]

¢ adds two methods, makeDi rty(String fi el dNane) and makeDi rty(i nt
fi el dNunber), to manage making fields dirty.

e A20.3-7 [adds method j doRepl aceFi el d(i nt) to obtain values of specified
fields from the St at eManager and cache the values in the instance;]

* A20.3-8 [adds method j doProvi deFi el d(i nt) to supply values of specific
fields to the St at eManager ;]

e A20.3-9 [adds an accessor method and mutator method for each field declared in
the class, which delegates to the St at eManager for values;]

* leaves the modifiers of all persistent fields the same as the unenhanced class to
allow the enhanced classes to be used for compilation of other classes;

e A20.3-11 [adds a method jdoCopyFi el d(<cl ass> ot her, i nt
fi el dNunber)] to allow the St at eManager to manage multiple images of the
persistence capable instance;

e A20.3-12 [adds a method j doGet ManagedFi el dCount ()] to manage the
numbering of fields with respect to inherited managed fields.

JDO 2.0 227 May 16, 2005

Java Data Objects 2.0

e A20.3-13 [adds a field j dol nherit edFi el dCount, which is set at class
initialization time to the returned value of
super . j doGet ManagedFi el dCount () .]

e A20.3-14, A20.3-15, A20.3-16 [adds fields j doFi el dNanes, j doFi el dTypes,
and j doFi el dFl ags, which contain the names, types, and flags of managed
fields.]

e A20.3-17 [adds field Cl ass | doPer si st enceCapabl eSuper cl ass, which
contains the Cl ass of the Per si st enceCapabl e superclass.]

e A20.3-18 [adds a static initializer to register the class with the JDOI npl Hel per .]

e A20.3-20 [adds a field seri al Ver si onUl D if it does not already exist, and
calculates its initial value based on the non-enhanced class definition.]

Enhancement makes the following changes to persistence aware classes:

e A20.3-24 [modifies executable code that accesses fields of
Per si st enceCapabl e classes not known to be not managed, replacing
getfieldandputfieldcalls with calls to the generated accessor and mutator
methods.]

214

Inheritance

Enhancement allows a class to manage the persistent state only of declared fields. It is a
future objective to allow a class to manage fields of a non-persistence capable superclass.

Fields that hide inherited fields (because they have the same name) are fully supported.
The enhancer delegates accesses of inherited hidden fields to the appropriate class by ref-
erencing the appropriate method implemented in the declaring class.

A20.4-1 [All persistence capable classes in the inheritance hierarchy must use the same
kind of JDO identity.]

215

JDO20

Field Numbering

Enhancement assigns field numbers to all managed (transactional or persistent) fields.
Generated methods and fields that refer to fields (j doFi el dNanes, j doFi el dTypes,
j doFi el dFl ags, jdoCet ManagedFi el dCount, jdoCopyFields, |jdo-
MakeDi rty, j doProvi deFi el d, j doProvi deFi el ds, j doRepl aceFi el d, and
j doRepl aceFi el ds) are generated to include both transactional and persistent fields.

Relative field numbers are calculated at enhancement time. For each persistence capable
class the enhancer determines the declared managed fields. To calculate the relative field
number, the declared fields array is sorted by field name. Each managed field is assigned
a relative field number, starting with zero.

Absolute field numbers are calculated at runtime, based on the number of inherited man-
aged fields, and the relative field number. The absolute field number used in method calls
is the relative field number plus the number of inherited managed fields.

The absolute field number is used in method calls between the St at eManager and Per -
si st enceCapabl e; and in the reference implementation, between the St at eManager
and St or eManager .

228 May 16, 2005

Java Data Objects 2.0

21.6

Serialization

Serialization of a transient instance results in writing an object graph of objects connected
via non-transient fields. The explicit intent of JDO enhancement of serializable classes is to
permit serialization of transient instances or persistent instances to a format that can be de-
serialized by either an enhanced or non-enhanced class.

A20.6-1 [When the wr i t eObj ect method is called on a class to serialize it,] all fields not
declared as transient must be loaded into the instance. This function is performed by the
enhancer-generated method j doPr eSeri al i ze. [This method simply delegates to the
St at eManager to ensure that all persistent non-transient fields are loaded into the in-
stance.] [Fields not declared as transient and not declared as persistent must have been
loaded by the Per si st enceCapabl e class an application-specific way.]

The j doPreSeri al i ze method need be called only once for a persistent instance.
Therefore, the wr i t eObj ect method in the least-derived pc class that implements Se-
rializabl e in the inheritance hierarchy needs to be modified or generated to call it.

A20.6-2 [If a standard serialization is done to an enhanced class instance, the fields added
by the enhancer will not be serialized because they are declared tobe t r ansi ent .]

To allow a non-enhanced class to deserialize the stream, the seri al Ver si onUl Dfor the
enhanced and non-enhanced classes must be identical. A20.6-3 [If the ser i al Ver si on-
Ul D field does not already exist in the non-enhanced class, the enhancer will calculate it
(excluding any enhancer-generated fields or methods) and add it to the enhanced class.]

If a Per si st enceCapabl e class is assignable to j ava. i 0. Seri al i zabl e but its
persistence-capable superclass is not, then the enhancer will modify the class in the follow-
ing way:
* A20.6-4 [if the class does not contain implementations of wri t eQbj ect, or
wr i t eRepl ace, then the enhancer will generate wr i t eCbj ect . Fields that are
required to be present during serialization operations will be explicitly
instantiated by the generated method j doPr eSeri al i ze, which will be called
by the enhancer-generated W i t eQbj ect]

e A20.6-6 [if the class contains an implementation of writeCbject or
wr i t eRepl ace, it will be changed to call j doPr eSeri al i ze prior to any user-
written code in the method.]

A20.6-5 [If a Per si st enceCapabl e class is assignable to j ava. i 0. Seri al i zabl e,
then the non-transient fields might be instantiated prior to serialization.] However, the clo-
sure of instances reachable from this instance might include a large part of instances in the
datastore.

The results of restoring a serialized persistent instance graph is a graph of interconnected
transient instances. The method r eadQbj ect is not enhanced, as it deals only with tran-
sient instances.

21.7

JDO20

Cloning

If a standard clone is made of a persistent instance, the j doFl ags and j doSt at eMan-
ager fields will also be cloned. The clone will eventually invoke the St at eManager if
the source of the cloned instance is not transient. This condition will be detected by the
runtime, but disconnecting the clone is a convoluted process. To avoid this situation where
possible, the enhancer modifies the cloning behavior by modifying certain methods that

229 May 16, 2005

Java Data Objects 2.0

invoke cl one, A20.7-1 [setting these two fields to indicate that the clone is a transient in-
stance.] Otherwise, all of the fields in the clone contain the standard shallow copy of the
tields of the cloned instance.

The reference enhancement will modify the cl one() method in the persistence-capable
root class (the least-derived (topmost) Per si st enceCapabl e class) to A20.7-2 [reset
these two fields] immediately after returning from super . cl one() . This caters for the
normal case where cl one methods in subclasses call super . cl one() and the clone is
disconnected immediately after being cloned.

This technique does not address these cases:

* A non-persistence-capable superclass | one method calls a runtime method (for
example, makePer si stent) on the newly created clone. In this case, the
makePer si st ent will succeed, but the cl one method in the persistence-
capable subclass will disconnect the clone, thereby undoing the
makePer si st ent . Thus, calling any life cycle change methods with the clone as
an argument is not permitted in c| one methods.

* Where there is no clone method declared in the persistence-capable root class, the
clone will not be disconnected, and the runtime will disconnect the clone the first
time the St at eManager is called by the clone.

21.8

I ntrospection (Java cor e reflection)

No changes are made to the behavior of introspection. The current state of all fields is ex-
posed to the reflection APIs.

This is not at all what some users might expect. It is a future objective to more gracefully
support introspection of fields in persistent instances of persistence capable classes.

21.9

2191

2192

JDO20

Fied Modifiers

Fields in persistence-capable classes are treated by the enhancer in one of several ways,
based on their modifiers as declared in the Java language and their enhanced modifiers as
declared by the persistence-capable MetaData.

These modifiers are orthogonal to the modifiers defined by the Java language. They have
default values based on modifiers defined in the class for the fields. They may be specified
in the XML metadata used at enhancement time.

Non-per sistent

Non-persistent fields are ignored by the enhancer. They are assumed to lie outside the do-
main of persistence. They might be changed at will by any method based only on the pri-
vate/protected /public modifiers. A20.9.1-1 [There is no enhancement of accesses to non-
persistent fields.]

A20.9.1-2 [The default modifier is non-persistent for fields identified as transient in the
class declaration.]

Transactional non-persistent

Transactional non-persistent fields are non-persistent fields whose values are saved and
restored during rollback. Their values are not stored in the datastore. A20.9.2-1 [There is
no enhancement of read accesses to transactional non-persistent fields. Write accesses are
always mediated (the St at eManager is called on write).]

230 May 16, 2005

Java Data Objects 2.0

21.9.3

2194

2195

JDO20

Persistent

Persistent fields are fields whose values are synchronized with values in the datastore. The
synchronization is performed transparent to the methods in the persistence-capable class.

The default persistence-modifier for fields is based on their modifiers and type, as detailed
in the XML metadata chapter.

The modification to the class by the enhancer depends on whether the persistent field is a
member of the default fetch group.

If the persistent field is a member of the default fetch group, then the enhanced code be-
haves as follows. The constant values READ OK, READ WRI TE_OK, and
LOAD_REQUI RED are defined in interface Per si st enceCapabl e.

e for read access,] dOF| ags is checked for READ_K or READ_WRI TE_OK. If it is
then the value in the field is retrieved. If it is not, then the St at eManager
instance is requested to load the value of the field from the datastore, which might
cause the St at eManager to populate values of all default fetch group fields in
the instance, and other values as defined by the JDO vendor policy. This behavior
is not required, but optional. If the St at eManager chooses, it may simply
populate the value of the specific field requested. Upon conclusion of this process,
the | doFl ags value might be set by the St at eManager to READ_OK and the
value of the field is retrieved. If not all fields in the default fetch group were
populated, the St at eManager must not set the j doFl ags to be READ_CK.

e for write access, j dOFl ags is checked for READ WRI TE_OK If it is
READ WRI TE_OK, then the value is stored in the field. If it is not
READ_WRI TE_OK, then the St at eManager instance is requested to load the
state of the values from the datastore, which might cause the St at eManager to
populate values of all default fetch group fields in the instance. Upon conclusion
of the load process, the] doFl ags value might be set by the St at eManager to
READ WRI TE_(K and the value of the field is stored.

If the persistent field is not a member of the default fetch group, then each read and write
access to the field is delegated to the St at eManager . For read, the value of the field is
obtained from the St at eManager, stored in the field, and returned to the caller. For
write, the proposed value is given to the St at eManager , and the returned value from
the St at eManager is stored in the field.

The enhanced code that fetches or modifies a field that is not in the default fetch group first
checks to see if there is an associated St at eManager instance and if not (the case for tran-
sient instances) the access is allowed without intervention.

PrimaryKey

Primary key fields are not part of the default fetch group; all changes to the field can be
intercepted by the St at eManager . This allows special treatment by the implementation
if any primary key fields are changed by the application.

A20.9.4-1 [Primary key fields are always available in the instance, regardless of the state.]
Therefore, read access to these fields is never mediated.

Embedded

Fields identified as embedded in the XML metadata are treated as containing embedded
instances. The default for Array, Col | ect i on, and Map types is embedded. This is to al-
low JDO implementations to map persistence-capable field types to embedded objects (ag-
gregation by containment pattern).

231 May 16, 2005

Java Data Objects 2.0

21.9.6

Null-value

Fields of Cbj ect types might be mapped to datastore elements that do not allow null val-
ues. The default behavior “none” is that no special treatment is done for null-valued fields.
A20.9.6-1 [In this case, null-valued fields throw a JDOUser Except i on when the in-
stance is flushed to the datastore and the datastore does not support null values.]

However, the treatment of nul | -valued fields can be modified by specifying the behavior
in the XML metadata. The nul | -value setting of “default” is used when the default value
for the datastore element is to be used for nul | -valued fields.

A20.9.6-2 [If the application requires non-nul | values to be stored in this field, then the
setting should be “exception”, which throws a JDOUser Except i on if the value of the
field is null at the time the instance is stored in the datastore.]

For example, if a field of type | nt eger is mapped to a datastore int value, committing an
instance with a field value of null where the nul | -value setting is “default” will result in
a zero written to the datastore element. Similarly, a null-valued St ri ng field would be
written to the datastore as an empty (zero length) St r i ng where the null-value setting is
“default”.

21.10
21.10.1

21.10.2

21.10.3

21.104

JDO20

Treatment of standard Java field modifiers

Static

A20.10.1-1 [Static fields are ignored by the enhancer. They are not initialized by JDO; ac-
cesses to values are not mediated. This assertion is duplicated in chapter 18.]

Final

A20.10.2-1 [Final fields are treated as non-persistent and non-transactional by the enhanc-
er.] Final fields are initialized only by the constructor, and their values cannot be changed
after construction of the instance. [Therefore, their values cannot be loaded or stored by
JDO; accesses are not mediated. This assertion is duplicated in chapter 18.]

This treatment might not be what users expect; therefore, final fields are not supported as
persistent or transactional instance fields, final static fields are supported by ignoring
them.

Private

Private fields are accessed only by methods in the class itself. A20.10.3-1 [JDO handles pri-
vate fields according to the semantic that

A. values are stored in private fields by the enhancement-generated j doSet XXX methods
or j doRepl aceFi el d, which become part of the class definition.

B. The enhancement-generated] doGet XXX or j doPr ovi deFi el d methods, which be-
come part of the class definition, load values from private fields.]

Public, Protected

Public fields are not recommended to be persistent in persistence capable classes. Classes
that make reference to persistent public fields (persistence aware) must be enhanced them-
selves prior to execution. Protected fields and fields without an explicit access modifier
(commonly referred to as package access) may be persistent.

Users must enhance all classes, regardless of package, that reference any persistent or
transactional field.

232 May 16, 2005

Java Data Objects 2.0

21.11

Fetch Groups

Fetch groups represent a grouping of fields that are retrieved from the datastore together.
Typically, a datastore associates a number of data values together and efficiently retrieves
these values. Other values require extra method calls to retrieve.

For example, in a relational database, the Employee table defines columns for Employee
id, Name, and Position. These columns are efficiently retrieved with one data transfer re-
quest. The corresponding fields in the Employee class might be part of the default fetch
group.

Continuing this example, there is a column for Department dept, defined as a foreign key
from the Employee table to the Department table, which corresponds to a field in the Em-
ployee class named dept of type Department. The runtime behavior of this field depends
on the mapping to the Department table. The reference might be to a derived class and it
might be expensive to determine the class of the Department instance. Therefore, the dept
field will not be defined as part of the default fetch group, even though the foreign key that
implements the relationship might be fetched when the Employee is fetched. Rather, the
value for the dept field will be retrieved from the St at eManager every time it is request-
ed. Similarly, the St at eManager will be called for each modification of the value of dept.

The j doFl ags field is the indicator of the state of the default fetch group.

21.12

JDO20

jdoFlags Definition

The value of the j doFl ags field is entirely determined by the St at eManager . The
St at eManager calls the] doRepl aceFl ags method to inform the persistence capable
class to retrieve a new value for the j doFl ags field. The values permitted are constants
defined in the interface Per si st enceCapabl e: READ _OK, READ WRI TE_OK, and
LOAD REQUI RED.

During the transition from transient to a managed life cycle state, the] doFl ags field is
set to LOAD_REQUI RED by the persistence capable instance, to indicate that the instance
is not ready. During the transition from a managed state to transient, the] doFl ags field
is set to READ_WRI TE_OKby the persistence capable instance, to indicate that the instance
is available for read and write of any field.

The j doFl ags field is a byte with four possible values and associated meanings:

* 0- READ_WRI TE_OX: the values in the default fetch group can be read or written
without intermediation of the associated St at eManager instance.

¢ -1 - READ_OX: the values in the default fetch group can be read but not written
without intermediation of the associated St at eManager instance.

¢ 1 - LOAD_REQUI RED: the values in the default fetch group cannot be accessed,
either for read or write, without intermediation of the associated St at eManager
instance.

e 2 - DETACHED: a subset of fields have been loaded into the instance, and the
instance is detached from its Per si st enceManager . Only fields that have been
loaded can be accessed while in the detached state.

233 May 16, 2005

Java Data Objects 2.0

21.13

Exceptions

Generated methods validate the state of the persistence-capable class and the arguments
to the method.

If an argument is illegal, then | | | egal Ar gunment Except i on is thrown. For example,

an illegal field number argument is less than zero or greater than the number of managed
fields.

Some methods require a non-null state manager. In these cases, if the] doSt at eManager
isnul |l ,thenl || egal St at eExcepti on is thrown.

21.14

JDO20

Modified field access

A20.13-1 [The enhancer modifies field accesses to guarantee that the values of fields are re-
trieved from the datastore prior to application usage.

A.For any field access that reads the value of a field, the getfield byte code is replaced with
a call to a generated local method, j doGet XXX], which determines based on the kind of
field (default fetch group or not) and the state of the j doFl ags whether to call the
St at eManager with the field number needed.

B.[For any field access that stores the new value of a field, the putfield byte code is replaced
with a call to a generated local method,] doSet XXX], which determines based on the kind
of field (default fetch group or not) and the state of the j doFl ags whether to call the
St at eManager with the field number needed. A JDO implementation might perform
field validation during this operation and might throw a JDOUser Except i on if the val-
ue of the field does not meet the criterion.

The following table specifies the values of the] doFi el dFl ags for each type of mediated
Table 8: Field access mediation

field type read access write access flags

transient transactional not checked checked CHECK_WRITE

primary key not checked mediated MEDIATE WRITE

default fetch group checked checked CHECK_READ +
CHECK_WRITE

non-default fetch group mediated mediated MEDIATE_READ +
MEDIATE_WRITE

field.

not checked: access is always granted

checked: the condition of | dOF| ags is checked to see if access should be mediated
mediated: access is always mediated (delegated to the St at eManager)

flags: the value in the j doFi el dFl ags field

The flags are defined in Per si st enceCapabl e and may be combined only as in the
above table (SERI ALI ZABLE may be combined with any other flags):

1 - CHECK_READ

234 May 16, 2005

Java Data Objects 2.0

2 - MEDI ATE_READ
4 - CHECK_ WRI TE

8 - MEDI ATE_WRI TE
16 - SERI ALI ZABLE

Generated fieldsin least-derived Per si st enceCapabl e class

A20.14-1, A20.14-2 [These fields are generated only in the least-derived (topmost) class in
the inheritance hierarchy of persistence-capable classes.

protected transient javax.)do.spi.StateManager | doStateMan-

This field contains the managing StateManager instance, if this instance is being managed.

A20.14-2 [prot ect ed transi ent byte jdoFl ags;]

Generated fieldsin all Per si st enceCapabl e classes
The following fields are generated in all persistence-capable classes.
A20.14-3 [private final static int jdolnheritedFiel dCount;

[A. This field is initialized at class load time to be the number of fields managed by the su-

B.[to zero if there is no persistence capable superclass.]
A20.14-4 [private final static String[] jdoFiel dNanes;

This field is initialized at class load time to an array of names of persistent and transaction-
al fields. The position in the array is the relative field number of the field.]

A20.14-5[private final static O ass[] jdoFiel dTypes;

This field is initialized at class load time to an array of types of persistent and transactional
fields. The position in the array is the relative field number of the field.]

A20.14-6 [private final static byte[] jdoFiel dFl ags;

This field is initialized at class load time to an array of flags indicating the characteristics
of each persistent and transactional field.]

A20.14-7 [private final static Cass |jdoPersistenceCapabl eSuper-

This field is initialized at class load time to the class instance of the Per si st enceCa-
pabl e superclass, or nul | if there is none.]

private final static |ong serial VersionU D,

This field is declared only if it does not already exist, and it is initialized to the value that
would obtain prior to enhancement.

A20.14-8 [The generated static initializer] uses the values for j doFi el dNanes, jdoField-
Types,] doFi el dFl ags, and j doPer si st enceCapabl eSuper cl ass, and [calls the
static r egi st er Cl ass method in JDO npl Hel per to register itself with the runtime
environment. If the class is abstract, then it does not register a helper instance. If the class
is not abstract, it registers a newly constructed instance.]

21.15
ager;]
21.16
perclasses of this class], or
cl ass;
Generated static initializer
JDO 2.0

235 May 16, 2005

Java Data Objects 2.0

The generated static initialization code is placed after any user-defined static initialization
code.

21.17

JDO20

Generated methods in least-derived Per si st enceCapabl e class
These methods are declared in interface Per si st enceCapabl e.
public final bool ean jdol sPersistent();

public final bool ean jdolsTransactional ();

public final bool ean jdol sNew();

public final boolean jdolsDirty();

public final bool ean jdol sDel eted();

A20.15-1, A20.15-2, A20.15-3, A20.15-4, A20.15-5 [These methods check if the] doSt at e-
Manager field is nul | . If so, they return f al se. If not, they delegate to the correspond-
ing method in St at eManager .]

public final void jdoMakeDirty (String fiel dNane);
public final void jdoMakeDirty (int fieldNunber);

A20.15-6 [This method checks if the j doSt at eManager field is nul | . If so, it returns si-
lently. If not, it delegates to the makeDi r t y method in St at eManager .]

public final PersistenceManager jdoCet PersistenceManager();

A20.15-7 [This method checks if the] doSt at eManager field is nul | . If so, it returns
nul I . If not, it delegates to the get Per si st enceManager method in St at eMan-
ager .]

public final bject jdoGetbjectld();
public final bject jdoGetTransacti onal Cbjectld();

A20.15-8, A20.15-9 [These methods check if the] doSt at eManager field is nul | . If so,
they return nul | . If not, they delegate to the corresponding method in St at eManager .]

A20.15-10 [publ i ¢ synchroni zed final void jdoReplaceStateManager
(St at eManager sm; 1

NOTE: This method will be called by the St at eManager on state changes when transi-
tioning an instance from transient to a managed state, and from a managed state to tran-
sient.

[A. This method is implemented as synchronized] to resolve race conditions, if more than
one St at eManager attempts to acquire ownership of the same Per si st enceCa-
pabl e instance.

[B. If the current] doSt at eManager isnot nul |, this method replaces the current value
for j doSt at eManager with the result of calling j doSt at eManager . r epl aci ng-
St at eManager (t his, sn). If successful, the method ends. If the change was not re-
quested by the StateManager, then the StateManager throws a
JDOUser Excepti on.

C.If the current j doSt at eManager field is nul |, then a security check is performed] by
calling JDOI npl Hel per. checkAut hori zedSt at eManager [with the St at eManager
parameter Smpassed as the parameter to the check.] Thus, only St at eManager instances
in code bases authorized for JDOPer m ssi on(“ set St at eManager ”) are allowed to
set the St at eManager . [If the security check succeeds, the j doSt at eManager field is

236 May 16, 2005

Java Data Objects 2.0

set to the value of the parameter sm and the j doFl ags field is set to LOAD_REQUI RED
to indicate that mediation is required.]

A20.15-11 [publ i ¢ final void jdoReplaceFlags ();]1

NOTE: This method will be called by the St at eManager on state changes when transi-
tioning an instance from a managed state to transient.

[* If the current] doSt at eManager field is nul |, then this method silently returns with
no effect.

* If the current] doSt at eManager is not nul | , this method replaces the current value
for jdoFl ags with the result of calling jdoStateManager.repl acing-
Fl ags(this).]

public final void jdoReplaceFields (int[] fields);

For each field number in the fields parameter,] doRepl aceFi el d method is called.
public final void jdoProvideFields (int[] fields);

For each field number in the fields parameter,] doPr ovi deFi el d method is called.
A21.15-25 [protected final void jdoPreSerialize();

This method is called by the generated or modified wr i t eObj ect to allow the instance
to fully populate serializable fields. This method delegates to the St at eManager method
preSeri al i ze so that fields can be fetched by the JDO implementation prior to serial-
ization. If the] doSt at eManager field is null, this method returns with no effect.]

21.18

Generated methodsin Per si st enceCapabl e root classesand all classesthat declare

obj ecti d- cl ass in xml metadata:

JDO20

public void |jdoCopyKeyFiel dsToObjectld (CbjectldFieldSupplier
fs, Object oid)

A20.18-1 [This method is called by the JDO implementation (or implementation helper) to
populate key fields in object id instances. If this class is not the persistence-capable root
class, it first calls the method of the same name in the root class. Then, for each key field
declared in the metadata, this method calls the object id field supplier and stores the result
in the oid instance.]

A20.18-2 [If the oid parameter is not assignment compatible with the object id class of this
instance, then Cl assCast Except i on is thrown.] If this class does not use application
identity, then this method silently returns.

public void jdoCopyKeyFi el dsToOhj ectld (Ohject oid)

A20.18-3 [This method is called by the JDO implementation (or implementation helper) to
populate key fields in object id instances from persistence-capable instances. This might be
used to implement get Obj ect | d orget Transact i onal Qoj ect | d. If this class is not
the persistence-capable root class, it first calls the method of the same name in the root
class. Then, for each key field declared in the metadata, this method copies the value of the
key field to the oid instance.]

A20.18-4 [If the oid parameter is not assignment compatible with the object id class of this
instance, then Cl assCast Except i on is thrown.] If this class does not use application
identity, then this method silently returns.

public void jdoCopyKeyFi el dsFronmObj ect | d(Object! dFi el dConsuner
fc, Object oid)

237 May 16, 2005

Java Data Objects 2.0

A20.18-5 [This method is called by the JDO implementation (or implementation helper) to
export key fields from object id instances. If this class is not the persistence-capable root
class, it first calls the method of the same name in the root class. Then, for each key field
declared in the metadata, this method passes the value of the key field in the oid instance
to the store method of the object id field consumer.]

A20.18-6 [If the oid parameter is not assignment compatible with the object id class of this
instance, then Cl assCast Except i on is thrown.] If this class does not use application
identity, then this method silently returns.

protected void jdoCopyKeyFi el dsFronthj ectld (Cbj ect oid)

A20.18-7 [This method is called by thej doNewl nst ance(Obj ect oi d) method. If this
class is not the persistence-capable root class, it first calls the method of the same name in
the root class. Then, for each key field declared in the metadata, this method copies the val-
ue of the key field in the oid instance to the key field in this instance.]

A20.18-8 [If the oid parameter is not assignment compatible with the object id class of this
instance, then Cl assCast Except i on is thrown.] If this class does not use application
identity, then this method silently returns.

A20.15-26 [publ i ¢ Obj ect j doNewObj ect !l dlnstance();]

public Cbject jdoNewObjectldlnstance(String str);

NOTE: This method is called by the JDO implementation (or implementation helper) to
populate key fields in object id instances.

[If this class uses application identity, then this method returns a new instance of the Ob-
jectld class. Otherwise, nul | is returned.]

21.19

JDO20

Generated methodsin all Per si st enceCapabl e classes

A20.15-13 [publ i ¢ Persi stenceCapabl e jdoNew nstance(St at eManager
sm ;

This method uses the default constructor, assigns the Smparameter to the j doSt at eM
anager field, and assigns LOAD_REQUI RED to the j doFl ags field. If the class is ab-
stract, a JDOFat al | nt er nal Except i on is thrown.]

A20.15-14 [publ i ¢ Persi stenceCapabl e jdoNew nstance(St at eManager
sm Cbject objectid);

This method uses the default constructor, assigns the St at eManager parameter to the
j doSt at eManager field, assigns LOAD_REQUI RED to the j doFl ags field, and copies
the key fields from the obj ect i d parameter. If the class is abstract,a JDOFat al | nt er -
nal Excepti on is thrown. If the obj ect i d parameter is not of the correct class, then
Ol assCast Except i on is thrown.]

A20.15-15[protected static int jdoGet ManagedFi el dCount ();

This method returns the number of managed fields declared by this class plus the number
inherited from all superclasses.] This method is generated in the class to allow the class to
determine at runtime the number of inherited fields, without having introspection code in
the enhanced class.

A20.15-16 [fi nal static mmttt jdoGet<field>(<class> instance);

The generated j doGet methods have exactly the same stack signature as the byte code
get fi el d. They return the value of one specific field. The field returned was either
cached in the instance or retrieved from the St at eManager .

238 May 16, 2005

Java Data Objects 2.0

JDO20

The name of the generated method is constructed from the field name. This allows for hid-
den fields to be supported explicitly, and for classes to be enhanced independently.

The modifier mmis the same access modifier as the corresponding field in the unenhanced
class. The return type t t t is the same type as the corresponding field in the unenhanced
class.

The generated code depends on the type of field:

e If the field is CHECK READ, then the method first checks to see if the] doFl ags
field is not LOAD_REQUI RED. If so, the value of the field is returned. If not, then
the value of] doSt at eManager is checked. If it is nul | , the value of the field is
returned. If non-null, then method islLoaded is called on the
j doSt at eManager . If the result of | sSLoaded is t r ue, then the value of the
field is returned. If the result of i sLoaded is f al se, then the result of method
get XXXFi el d on the j doSt at eManager is returned.

e If the field is MEDI ATE_READ, then the value of j doSt at eManager is checked.
If it is nul |, the value of the field is returned. If non-nul | , then method
i sLoaded is called on the j doSt at eManager . If the result of i sLoaded is
t r ue, then the value of the field is returned. If the result of i sSLoaded is f al se,
then the result of method get XXXFi el d on the] doSt at eManager is returned.

o If the field is neither of the above, then the value of the field is returned.]

A20.15-17 [fi nal static mmm void jdoSet<field> (<class> instance,
ttt newal ue);

The generated | doSet methods have exactly the same stack signature as the byte code
put fi el d. They set the value of one specific field. The field might be provided to the
St at eManager .

The name of the generated method is constructed from the field name. This allows for hid-
den fields to be supported explicitly, and for classes to be enhanced independently.

The modifier mmMis the same access modifier as the corresponding field in the unenhanced
class. The typet t t is the same type as the corresponding field in the unenhanced class.

The generated code depends on the type of field:

o If the field is CHECK WRI TE, then the method first checks to see if the] doFl ags
field is READ_WRI TE_OK. If so, then the field is set to the new value. If not, then
the value of] doSt at eManager is checked. If it is nul | , the value of the field is
set to the new value. If non-nul | , then method set XXXFi el d is executed on the
j doSt at eManager , passing the new value.

e If the field is MEDI ATE_WRI TE, then the value of] doSt at eManager is checked.
If it is nul | , then the field is set to the parameter. If non-nul | , then method
set XXXFi el d is executed on the j doSt at eManager , passing the new value.

¢ If the field is neither of the above, then the value of the field is set to the new value.]
A20.15-18 [publ i ¢ void jdoReplaceField (int field);]

NOTE: This method is used by the St at eManager to store values from the datastore into
the instance. If there is no St at eManager (thej doSt at eManager field is hul |), then
this method throws JDOFat al | nt er nal Except i on.

This method calls the St at eManager r epl aci ngXXXFi el d to get a new value for one
field from the St at eManager .

239 May 16, 2005

Java Data Objects 2.0

JDO20

The field number is examined to see if it is a declared field or an inherited field. [If it is in-
herited, then the call is delegated to the superclass. If it is declared, then the appropriate
St at eManager r epl aci ngXXXFi el d method is called, which retrieves the new value
for the field.

If the field is out of range (less than zero or greater than the number of managed fields in
the class) then a JDOFat al | nt er nal Except i on is thrown.]

A20.15-19 [publ i ¢ void jdoReplaceFields (int[] fields);]
This method internally calls] doRepl aceFi el d for each field number in the parameter.
A20.15-20 [publ i ¢ void jdoProvideField (int field);]

NOTE: This method is used by the St at eManager to retrieve values from the instance,
during flush to the datastore or for in-memory query processing. If there is no St at eM
anager (the j doSt at eManager field is nul |), then this method throws JDOFa-
tal | nt ernal Excepti on

This method calls the St at eManager pr ovi dedXXXFi el d method to supply the value
of the specified field to the St at eManager .

The field number is examined to see if it is a declared field or an inherited field. [If it is in-
herited, then the call is delegated to the superclass. If it is declared, then the appropriate
St at eManager provi dedXXXFi el d method is called, which provides the St at eM
anager with the value for the field.

If the field is out of range (less than zero or greater than the number of managed fields in
the class) then a JDOFat al | nt er nal Except i on is thrown.]

A20.15-21 [publ i ¢ void jdoProvideFields (int[] fields);]
This method internally calls j doPr ovi deFi el d for each field number in the parameter.

A20.15-22 [publ i ¢ voi d j doCopyFi el ds (Cbj ect other, int[] fieldNum
bers);

This method is called by the St at eManager to create before images of instances for the
purpose of rollback.This method copies the specified fields from the other instance, which
must be the same class as this instance, and owned by the same St at eManager .

If the other instance is not assignment compatible with this instance, then O assCas-
t Except i on is thrown. If the other instance is not owned by the same St at eManager,
then JDOFat al | nt er nal Except i on is thrown.]

public final void jdoCopyField (<class> other, int fieldNunber);

This method is called by the j doCopyFi el ds method to copy the specified field from the
other instance. If the field number corresponds to a field in a persistence-capable super-
class, this method delegates to the superclass method. If the field is out of range (less than
zero or greater than the number of managed fields in the class) then a JDOFat al | nt er -
nal Excepti on is thrown.

A20.15-23 [private void witeObject(java.io.ObjectQutputStream
out)

throws java.io. | OException{

If no user-written method wr i t eCbj ect exists, then one will be generated. The generat-
ed wri t eQbj ect makes sure that all persistent and transactional serializable fields are
loaded into the instance, by calling j doPreSeri al i ze(), and then the default output
behavior is invoked on the output stream.

240 May 16, 2005

Java Data Objects 2.0

If the class is serializable (either by explicit declaration or by inheritance) then this code
will guarantee that the fields are loaded prior to standard serialization. If the class is not
serializable, then this code will never be executed.]

Note that A20.15-24 [there is no modification of a user’s r eadCbj ect]. During the execu-
tionof r ead(bj ect , a new transient instance is created. This instance might be made per-
sistent later, but while it is being constructed by serialization, it remains transient.

Generated methodsin all Det achabl e classes

These methods allow the sm to manage the list of loaded and modified fields in a detached

public void jdoProvi deLoadedFi el dLi st ();

This method calls the St at eManager provi di ngLoadedFi el dLi st method with
the current value of the loaded field list.

public void jdoRepl aceLoadedFi el dLi st () ;

This method calls the St at eManager repl aci ngLoadedFi el dLi st method and
replaces the current value of the loaded field list with the return value.

public void jdoProvideMdi fiedFi el dLi st ();

This method calls the St at eManager provi di nghbdi fi edFi el dLi st method
with the current value of the modified field list.

public void jdoRepl aceModi fi edFi el dLi st ();

This method calls the St at eManager repl aci nghodi fi edFi el dLi st method
and replaces the current value of the modified field list with the return value.

The following class definitions for persistence capable classes are used in the examples:
i mport javax.jdo.spi.*; // generated by enhancer...
i npl ements Detachable // generated by enhancer. ..

Enpl oyee boss; // relative field O
Departnent dept; // relative field 1

int enmpid; // relative field 2, key field
String name; // relative field 3

protected transient javax.jdo.spi.StateManager |jdoStateManager =

protected transient byte jdoFl ags =

j avax. j do. spi . Persi st enceCapabl e. READ WRI TE_OXK;
/1 if no superclass, the foll ow ng:
private final static int jdolnheritedFieldCount = O;

21.20
instance.

21.21 Exampleclass. Employee
package com xyz. hr;
cl ass Enpl oyee

{
21.21.1 Generated fields
nul | ;
JDO 2.0

241 May 16, 2005

Java Data Objects 2.0

21.21.2

21.21.3

JDO20

/* otherw se,
private final static int jdolnheritedFieldCount =
<per si st ence- capabl e- super cl ass>. j doGet ManagedFi el dCount () ;
*/
private final static String[] jdoFi el dNanes = {“boss”, “dept”,
pid’, “nane”’};
private final static Cass[] jdoFieldTypes = {Enpl oyee. cl ass, De-
partnment.class, int.class, String.class};
private final static byte[] jdoFieldFlags = {
MEDI ATE_READ+MEDI ATE_WRI TE,
VEDI ATE_READ+NMEDI ATE_WRI TE,
VEDI ATE_WRI TE,
CHECK_READ+CHECK_W\RI TE

em

b
/1 if no PersistenceCapabl e supercl ass, the foll ow ng:
private final static C ass jdoPersistenceCapabl eSuperclass = null;
/* otherw se,
private final static O ass jdoPersistenceCapabl eSuperclass = <pc-
super >;
private final static |ong serial VersionU D = 1234567890L;
*/

Generated static initializer

static {
javax.jdo. spi.JDA npl Hel per.registerd ass (
Enpl oyee. cl ass,
j doFi el dNanes,
j doFi el dTypes,
j doFi el dFl ags,
j doPer si st enceCapabl eSuper cl ass,
new Enpl oyee());

}

Generated interrogatives

public final bool ean jdolsPersistent() {
return jdoStateManager ==nul | ?f al se:
j doSt at eManager . i sPersi stent(this);
}
public final bool ean jdolsTransactional (){
return jdoStat eManager ==nul | ?f al se:
j doSt at eManager . i sTransacti onal (this);

242 May 16, 2005

Java Data Objects 2.0

21.214

JDO20

}
public final bool ean jdol sNew(){

return jdoSt at eManager ==nul | ?f al se:
j doSt at eManager . i sNew(t hi s);
}
public final boolean jdolsDirty(){
return jdoStateManager ==nul | ?f al se:
j doSt at eManager.isDirty(this);
}
public final bool ean jdolsDel eted(){
return jdoStat eManager ==nul | ?f al se:
j doSt at eManager . i sDel et ed(t hi s);
}
public final void jdoMakeDirty (String fiel dNane) {
if (jdoStateManager==null) return;
j doSt at eManager . nakeDi rty(this, fiel dNane);
}
public final PersistenceManager jdoGCet PersistenceManager (){
return jdoStateManager==null ?nul | :
j doSt at eManager . get Per si st enceManager (t hi s);
}
public final OCbject jdoGetObjectld(){
return jdoStateManager ==nul | ?nul | :
j doSt at eManager . get Obj ect I d(t hi s);
}
public final Object jdoGetTransactional Objectld(){
return jdoStateManager ==nul | ?nul | :
j doSt at eManager . get Transacti onal Gbj ect 1 d(this);

}
Generated jdoReplaceStateM anager

The generated method asks the current St at eManager to approve the change or vali-
dates the caller’s authority to set the state.
public final synchronized void jdoRepl aceSt at eManager
(j avax.j do. spi . St at eManager sm {
/1 throws exception if current smdidn't request the change
if (jdoStateManager != null) {
j doSt at eManager = j doSt at eManager . r epl aci ngSt at eManager (this,
sn);
} else {
/]l the following will throw an exception if not authorized
JDA nmpl Hel per. checkAut hori zedSt at eManager (sn) ;
j doSt at eManager = sm

243 May 16, 2005

Java Data Objects 2.0

21.21.5

21.21.6

21.21.7

JDO20

this.jdoFlags = LOAD REQUI RED;
}
}

Generated jdoReplaceFlags

public final void jdoReplaceFlags () {
if (jdoStateManager != null) {
j doFl ags = j doSt at eManager . repl aci ngFl ags (this);

}
Generated jdoNewl nstance helpers

The first generated helper assigns the value of the passed parameter to the j doSt at eM
anager field of the newly created instance.

publ i c PersistenceCapabl e j doNew nst ance(St at eManager sm {
/1 if class is abstract, throw new JDOFatal | nt ernal Excepti on()

Enpl oyee pc = new Enpl oyee ();
pc.j doSt at eManager = sm

pc. j doFl ags = LOAD REQUI RED;
return pc;

}

/* The second generated helper assigns the value of the passed parameter to the
j doSt at eManager field of the newly created instance, and initializes the values of the
key fields from the 0i d parameter.

*/

public PersistenceCapabl e jdoNew nstance(StateManager sm Obj ect
oid) {

/1 if class is abstract, throw new JDOFatal | nt er nal Excepti on()

Enpl oyee pc = new Enpl oyee ();
pc.j doSt at eManager = sm

pc. j doFl ags = LOAD_ REQUI RED;

/1l now copy the key fields into the new instance
j doCopyKeyFi el dsFrombj ectld (oid);
return pc;

Generated jdoGetM anagedFieldCount

The generated method returns the number of managed fields in this class plus the number
of inherited managed fields. This method is expected to be executed only during class
loading of the subclasses.

244 May 16, 2005

Java Data Objects 2.0

21.21.8

JDO20

The implementation for topmost classes in the hierarchy:

protected static int jdoGetManagedFi el dCount () {
return jdoFi el dNames. | engt h;

}

The implementation for subclasses:

protected static int jdoGetManagedFi el dCount () {
return <pc-superclass>.jdoGet ManagedFi el dCount () +

j doFi el dNanes. | engt h;
}
Generated jdoGetX XX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore,
access to the method is controlled by the same policy as for the corresponding field.

final static String
j doGet nanme(Enpl oyee x) {
/[l this fieldis in the default fetch group (CHECK READ)
if (x.jdoFlags <= READ WRI TE_OK) {
/] ok to read
return x.nane;
}
/1 field needs to be fetched from St at eManager
/1 this call might result in nane being stored in instance
St at eManager sm = Xx.j doSt at eManager ;
if (sm!=null) {
if (smisLoaded (x, jdolnheritedFieldCount + 3))
return x.nane,

return smagetStringField(x, jdolnheritedFieldCount + 3,
X. name) ;
} else {
return x.nane;

final static com xyz. hr. Depart nent
j doCGet dept (Enpl oyee x) {
{1 this fieldis not in the default fetch group (MED ATE_READ)
St at eManager sm = Xx. j doSt at eManager ;
if (sm!=null) {
if (smisLoaded (x, jdolnheritedFieldCount + 1))

245 May 16, 2005

Java Data Objects 2.0

return x.dept;

return (com xyz. hr. Depart nent)
sm get Qbj ect Fi el d(x,
j dol nheri t edFi el dCount + 1,
X. dept);

} else {
return x.dept;

21.219 Generated jdoSetX XX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore,
access to the method is controlled by the same policy as for the corresponding field.

final static void
j doSet nanme(Enpl oyee x, String newval ue) ({
/1l this fieldis in the default fetch group
if (x.jdoFlags == READ WRI TE_CK) {
/!l ok to read, wite
X. name = newval ue;
return,;
}
St at eManager sm = Xx.j doSt at eManager ;
if (sm!=null) {
sm set StringFi el d(x,
j dol nherit edFi el dCount + 3,

X. nane,
newval ue) ;
} else {
X. nanme = newval ue;
}
}

final static void
j doSet dept (Enpl oyee x, com xyz. hr. Department newal ue) {
/] this field is not in the default fetch group
St at eManager sm = Xx. j doSt at eManager ;
if (sm!=null) {
sm set Qbj ect Fi el d(x,

JDO 2.0 246 May 16, 2005

Java Data Objects 2.0

21.21.10

JDO20

j dol nheri t edFi el dCount + 1,
X. dept, newval ue);
} else {
X. dept = newval ue;

Generated jdoReplaceField and jdoReplaceFields

The generated j doRepl aceFi el d retrieves a new value from the St at eManager for
one specific field based on field number. This method is called by the St at eManager
whenever it wants to update the value of a field in the instance, for example to store values
in the instance from the datastore.

This may be used by the StateManager to clear fields and handle cleanup of the objects cur-
rently referred to by the fields (e.g., embedded objects).

public void jdoReplaceField (int fieldNunber) {
int relativeField = fiel dNunber - jdol nheritedFiel dCount;
switch (relativeField) {
case (0): boss = (Enpl oyee)
j doSt at eManager . repl aci ngQbj ectField (this,
fi el dNunber);
br eak;
case (1): dept = (Departnent)
j doSt at eManager . repl aci ngQbj ectField (this,
fi el dNunber);
br eak;
case (2): enpid =
j doSt at eManager.replacinglntField (this,
fi el dNunber);
br eak;
case (3): name =
j doSt at eManager . repl aci ngStringField (this,
fi el dNunber);
br eak;
def aul t:
/[* if there is a pc superclass, delegate to it
if (relativeField < 0) {
super. j doRepl aceFi el d (fi el dNunber);
} else {
t hrow new |11 egal Argunment Excepti on(“fi el dNunber”);

247 May 16, 2005

Java Data Objects 2.0

21.21.11

JDO20

}

*/

/[l if there is no pc superclass, throw an exception

throw new ||| egal Argunent Exception(“fi el dNunber™);
} // switch

}
public final void jdoReplaceFields (int[] fieldNunbers) {
for (int i =0; i < fieldNurmbers.length; ++i) {
int fieldNunmber = fieldNumbers[i];
j doRepl aceFi el d (fiel dNumber);
}
}

Generated jdoProvideField and jdoProvideFields

The generated j doPr ovi deFi el d gives the current value of one field to the St at eM
anager . This method is called by the St at eManager whenever it wants to get the value
of a field in the instance, for example to store the field in the datastore.

public void jdoProvideField (int fieldNunber) {
int relativeField = fieldNunber - jdolnheritedFiel dCount;
switch (relativeField) {

case (0): jdoStateManager. provi dedObj ect Fi el d(t hi s,
fiel dNunber, boss);
br eak;

case (1): jdoStateManager. provi dedObj ect Fi el d(t hi s,
fiel dNumber, dept);
br eak;

case (2): jdoStateManager. providedlntField(this,
fiel dNumber, enpid);
br eak;

case (3): jdoStateManager. provi dedStringFiel d(this,
fiel dNumber, nane);
br eak;

def aul t:
/[* if there is a pc superclass, delegate to it
if (relativeField < 0) {

super.jdoProvideField (fiel dNunber);
} else {
t hrow new |11 egal Argunment Excepti on(“fi el dNunber”);

248 May 16, 2005

Java Data Objects 2.0

21.21.12

JDO20

*/
/1 if there is no pc superclass, throw an exception
t hrow new I 11 egal Argunment Excepti on(“fi el dNunber”);

} /] switch

}
public final void jdoProvideFields (int[] fieldNunbers) {
for (int i =0; i < fieldNunbers.length; ++i) {
int fieldNunber = fieldNunmbers[i];
j doProvi deField (fiel dNunber);
}
}

Generated jdoCopyField and jdoCopyFields methods

The generated] doCopyFi el ds copies fields from another instance to this instance. This
method might be used by the St at eManager to create before images of instances for roll-
back, or to restore instances in case of rollback.

This method delegates to method] doCopyFi el d to copy values for all fields requested.

To avoid security exposure, | doCopyFi el ds can be invoked only when both instances
are owned by the same St at eManager . Thus, a malicious user cannot use this method
to copy fields from a managed instance to a non-managed instance, or to an instance man-
aged by a malicious St at eManager .

public void jdoCopyFields (Cbject pc, int[] fiel dNunbers){
/! the other instance must be owned by the sane StateManager
/1 and our StateManager nust not be null!
if (((PersistenceCapabl e)other).jdoStateManager
I'= this.jdoStat eManager)

throw new 111 egal Argunent Exception(“this.jdoStateManager !=
ot her.j doSt at eManager”) ;

if (this.jdoStateManager == null)

throw new 111l egal StateException(“this.jdoStateManager ==
nul I ”);

/1 throw O assCast Exception if other class is the wong class
Enpl oyee ot her = (Enpl oyee) pc;
for (int i =0; i < fieldNunmbers.length; ++i) {
j doCopyFi el d (other, fieldNunbers[i]);
} // for loop
} // jdoCopyFi el ds

protected void jdoCopyField (Enpl oyee other, int fieldNunber) {

249 May 16, 2005

Java Data Objects 2.0

21.21.13

21.21.14

JDO20

int relativeField = fieldNunber - jdolnheritedFiel dCount;
switch (relativeField) {
case (0): this.boss = other.boss;
br eak;
case (1): this.dept = other.dept;
br eak;
case (2): this.enmpid = other.enpid;
br eak;
case (3): this.name = other.naneg;
br eak;
default: // other fields handl ed in superclass
/1 this class has no superclass, so throw an exception
t hrow new ||| egal Argunent Exception(“fi el dNunber”);
/*if it had a superclass, it would handle the field as foll ows:
super. jdoCopyFiel d (other, fiel dNunber);
*/
br eak;
} /1 switch
} // jdoCopyField
Generated writeObject method

If no user-written method wr i t eCbj ect exists, then one will be generated. The generat-
ed wri t eQbj ect makes sure that all persistent and transactional serializable fields are
loaded into the instance, and then the default output behavior is invoked on the output
stream.

private void witeQbject(java.io.QbjectQutputStream out)
throws java.io. | OException{
jdoPreSerialize();
out.defaul tWiteQoject ();
}
Generated jdoPreSerialize method

The generated j doPr eSeri al i ze method makes sure that all persistent and transac-
tional serializable fields are loaded into the instance by delegating to the corresponding
method in St at eManager .

private final void jdoPreSerialize() {

if (jdoStateManager !'= null)
j doSt at eManager . preSerialize(this);

250 May 16, 2005

Java Data Objects 2.0

21.21.15

21.21.16

21.21.17

21.21.18

JDO20

Generated jdoNewObjectldl nstance

The generated methods create and return a new instance of the object id class.

public Object jdoNewCbjectldlnstance() {
return new I ntldentity(Enpl oyee. cl ass);

}
public Object jdoNewObjectldlnstance(String str) {

return new Intldentity(Enpl oyee.class, str);
}
Generated jdoCopyK eyFieldsT oObjectid

The generated methods copy key field values from the Per si st enceCapabl e instance
or from the Qbj ect | dFi el dSuppl i er.

public void jdoCopyKeyFi el dsToOhjectld (ObjectldFieldSupplier fs,
bject oid) {

t hrow JDOFat al | nt er nal Exception(“Object id is immutable”);

}
public void jdoCopyKeyFi el dsToObjectld (Ohject oid) {

t hrow JDOFat al | nt er nal Exception(“Qbject id is inmutable”);
}
Generated jdoCopyK eyFieldsFromObjectid

The generated methods copy key fields from the object id instance to the Per si st ence-
Capabl e instance or to the ObjectldFieldConsumer.

public void |jdoCopyKeyFi el dsFrontbjectld (ObjectldFieldConsuner
fc, Qbject oid) {

fc.storelntField (2, ((Intldentity)oid).getKey());

}
protected voi d jdoCopyKeyFi el dsFronbj ectld (Ohject oid) {

enpid = ((Intldentity)oid).getKey());
}
Generated Det achabl e methods
public void jdoProvi deLoadedFi el dLi st () {

j doSt at eManager . provi di ngLoadedFi el dLi st(thi s, j doLoaded-
Fi el ds);
}
public void jdoRepl aceLoadedFi el dLi st () {

j doLoadedFi el dLi st = |jdoStateManager.repl aci ngLoadedFi el d-
Li st(this);
}

251 May 16, 2005

Java Data Objects 2.0

public void jdoProvideMdi fiedFiel dList() {

j doSt at eManager . provi di nghodi fi edFi el dLi st(thi s, j doModi -
fiedFiel dLi st);
}
public void jdoRepl aceModi fi edFi el dLi st () {

j doModi fi edFi el dList = jdoStat eManager.repl aci nghbdi fi ed-

Fi el dList(this);

} /'/ end class definition

JDO 2.0 252 May 16, 2005

Java Data Objects 2.0

22

| nterface StateM anager

This chapter specifies the St at eManager interface, which is responsible for managing
the state of fields of persistence-capable classes in the JDO environment.

NOTE: Thisinterface is not intended to be used by application programmers.
It isfor use only by implementations.

221

Overview

A class that implements the JDO St at eManager interface must be supplied by the JDO
implementation. There is no user-visible behavior for this implementation; its only caller
from the user’s perspective is the Per si st enceCapabl e class.Goals

This interface allows the JDO implementation to completely control the behavior of the
Per si st enceCapabl e classes under management. In particular, the implementation
may choose to exploit the caching capabilities of Per si st enceCapabl e or not.

The architecture permits JDO implementations to have a singleton St at eManager for all
Per si st enceCapabl e instances; a St at eManager for all Per si st enceCapabl e
instances associated with a particular Per si st enceManager or Per si st enceMan-

ager Fact ory; a St at eManager for all Per si st enceCapabl e instances of a partic-
ular class; or a St at eManager for each Per si st enceCapabl e instance. This list is not
intended to be exhaustive, but simply to identify the cases that might be typical.

Clone support

Note that any of the methods in this interface might be called by a clone of a persistence-
capable instance, and A21.2-1 [the implementation of St at eManager must disconnect
the clone upon detecting it. Disconnecting the clone requires setting the clone’s] doFl ags
to READ_WRI TE_CX; setting the clone’s j doSt at eManager to nul | ; and then return-
ing from the method as if the clone were transient. For example, in response to i sLoaded,
the St at eManager calls cl one.j doRepl aceFl ags(READ_WRI TE_CX) ;
cl one. repl aceSt at eManager (null); return truel]

package javax.j do. spi;
public interface StateMinager {

22.2

JDO20

StateM anager M anagement

The following methods provide for updating the corresponding Per si st enceCapabl e
fields. These methods are intended to be called only from the Per si st enceCapabl e in-
stance.

It is possible for these methods to be called from a cloned instance of a persistent instance
(between the time of the execution of cl one() and the enhancer-generated reset of the
j doSt at eManager and j doFl ags fields). In this case, the St at eManager is not man-

253 May 16, 2005

Java Data Objects 2.0

aging the clone. A21.3-1 [The St at eManager must detect this case and disconnect the
clone from the St at eManager . The end result of disconnecting is that the] doFl ags
field is set to READ_WRI TE_OK and the j doSt at eManager field is set to nul | .]

public StateManager replacingStateManager (PersistenceCapable pc,
St at eManager sm;

The current St at eManager should be the only caller of Per si st enceCapabl e. r e-
pl aceSt at eManager, which calls this method. This method should be called only
when the current St at eManager wants to set the] doSt at eManager field to nul | to
transition the instance to transient.

The j doFl ags are completely controlled by the St at eManager . The meaning of the
values are the following:

0: READ WRI TE_ XK

any negative nunber: READ K
1: LCAD REQUI RED

2: DETACHED

A21.3-2 [publ i ¢ byte replaci ngFl ags(Persi stenceCapabl e pc);

This method is called by the Per si st enceCapabl e in response to the St at eManager
calling] doRepl aceFl ags. The Per si st enceCapabl e will store the returned value
into its j doFl ags field.]

PersistenceM anager M anagement

A21.4-1 [The following method provides for getting the Per si st enceManager . This
method is intended to be called only from the Per si st enceCapabl e instance.

public PersistenceManager get PersistenceManager (PersistenceCa-

A212.5-1 [The following methods provide for marking the Per si st enceCapabl e in-

public void makeDirty (PersistenceCapable pc, String fiel dNane);]
public void makeDirty (PersistenceCapable pc, int fiel dNunber);

A21.6-1 [The following methods are delegated from the Per si st enceCapabl e class, to
implement the associated behavior of Per si st enceCapabl e.

publ i ¢ bool ean isPersistent (PersistenceCapable pc);
publ i c bool ean isTransactional (PersistenceCapable pc);
public bool ean i sNew (Persi stenceCapabl e pc);

public boolean isDirty (PersistenceCapable pc);

publ i ¢ bool ean isDel et ed (PersistenceCapable pc);]

22.3
pabl e pc); 1]
22.4 Dirty management
stance dirty:
225 Statequeries
JDO 2.0

254 May 16, 2005

Java Data Objects 2.0

A21.7-1 [public Object getObjectld (PersistenceCapabl e pc);
This method returns the JDO identity of the instance.]
A21.7-2 [public Object getTransactional Cbjectld (PersistenceCa-

This method returns the transactional JDO identity of the instance.]

A21.8-1[public void preSerialize (PersistenceCapabl e pc);

This method loads all non-transient persistent fields in the Per si st enceCapabl e in-
stance, as a precursor to serializing the instance. It is called by the generated j doPr eSe-
rialize() method in the Per si st enceCapabl e class.]

The St at eManager completely controls the behavior of the Per si st enceCapabl e
with regard to whether fields are loaded or not. Setting the value of the jdoFlags field in
the Per si st enceCapabl e directly affects the behavior of the Per si st enceCapabl e
with regard to fields in the default fetch group.

e The St at eManager might choose to never cache any field values in the
Per si st enceCapabl e, but rather to retrieve the values upon request. A21.9-1
[To implement this strategy, the StateManager will always use the
LOAD_REQUI RED value for the j doFl ags, and will always return false to any

* The St at eManager might choose to selectively retrieve and cache field values in
the PersistenceCapabl e. A21.9-2 [To implement this strategy, the
St at eManager will always use the LOAD_REQUI REDvalue for j doFl ags, and
will return t r ue to calls to i SLoaded that refer to fields that are cached in the

* The St at eManager might choose to retrieve at one time all field values for fields
in the default fetch group, and to take advantage of the performance optimization
in the PersistenceCapabl e. A21.9-3 [To implement this strategy, the
St at eManager will use the LOAD_REQUI RED value for j doFl ags only when
the fields in the default fetch group are not cached. Once all of the fields in the
default fetch group are cached in the PersistenceCapable, the
St at eManager will set the value of the j doFl ags to READ_COK!] This will
probably be done during the call to i sLoaded made for one of the fields in the
default fetch group, and before returning true to the method, the
St at eManager will call j doRepl aceFi el ds with the field numbers of all
fields in the default fetch group, and will call j doRepl aceFl ags to set

* The St at eManager might choose to manage updates of fields in the default fetch
group individually. A21.9-4 [To implement this strategy, the St at eManager will
not use the READ_WRI TE_OK value for j doFl ags. This will result in the

22.6 JDO ldentity
pabl e pc);
22.7 Serialization support
22.8 Field Management
calltoi sLoaded.]
Per si st enceCapabl e.]
j doFl ags to READ_OK.
JDO 2.0

255 May 16, 2005

Java Data Objects 2.0

2281

22.8.2

JDO20

Per si st enceCapabl e always delegating to the St at eManager for any
change to any field.] In this way, the St at eManager can reliably tell when any
field changes, and can optimize the writing of data to the store.

A21.9-5 [The following method is used by the Per si st enceCapabl e to determine
whether the value of the field is already cached in the Per si st enceCapabl e instance.]
If it is cached (perhaps during the execution of this method) then the value of the field is
returned by the Per si st enceCapabl e method without further calls to the St at eM
anager .

bool ean i sLoaded (PersistenceCapable pc, int field);]

User-requested value of a field

A21.9.1-1 [The following methods are used by the Per si st enceCapabl e instance to in-

form the St at eManager of a user-initiated request to access the value of a persistent
field.

The pc parameter is the instance of Per si st enceCapabl e making the call; the fi el d
parameter is the field number of the field; and the cur r ent Val ue parameter is the cur-
rent value of the field in the instance.

The current value of the field is passed as a parameter to allow the St at eManager to
cache values in the Per si st enceCapabl e. If the value is cached in the Persi s-
t enceCapabl e, then the St at eManager can simply return the current value provided
with the method call.

public bool ean getBool eanFi el d (PersistenceCapable pc, int field,
bool ean current Val ue);

public char getCharField (PersistenceCapable pc, int field, char
current Val ue) ;

public byte getByteField (PersistenceCapable pc, int field, byte
current Val ue) ;

public short get ShortField (PersistenceCapable pc, int field, short
current Val ue) ;

public int getlintField (PersistenceCapable pc, int field, int cur-
rent Val ue) ;

public long getLongField (PersistenceCapable pc, int field, l|ong
current Val ue) ;

public float getFl oatField (PersistenceCapable pc, int field, float
current Val ue) ;

public double getDoubl eField (PersistenceCapable pc, int field
doubl e current Val ue);

public String getStringField (PersistenceCapable pc, int field,
String currentVal ue);

public Object getObjectField (PersistenceCapable pc, int field, Ob-
ject currentVal ue);]

User-requested modification of a field

A21.9.2-1 [The following methods are used by the Per si st enceCapabl e instance to in-

form the St at eManager of a user-initiated request to modify the value of a persistent
field.

256 May 16, 2005

Java Data Objects 2.0

22.8.3

JDO20

The pc parameter is the instance of Per si st enceCapabl e making the call; the fi el d
parameter is the field number of the field; the cur r ent Val ue parameter is the current
value of the field in the instance; and the newVal ue parameter is the value of the field giv-
en by the user method.

public void setBool eanField (PersistenceCapable pc, int field,
bool ean current Val ue, bool ean newval ue) ;

public void setCharField (PersistenceCapable pc, int field, char
current Val ue, char newal ue);

public void setByteField (PersistenceCapable pc, int field, byte
current Val ue, byte newal ue);

public void setShortField (PersistenceCapable pc, int field, short
current Val ue, short newval ue);

public void setIntField (PersistenceCapable pc, int field, int cur-
rent Val ue, int newal ue);

public void setlLongField (PersistenceCapable pc, int field, |ong
current Val ue, | ong newal ue);

public void setFloatField (PersistenceCapable pc, int field, float
current Val ue, float newval ue);

public void setDoubl eFi el d (PersistenceCapable pc, int field, dou-
bl e currentVal ue, doubl e newal ue);

public void setStringField (PersistenceCapable pc, int field,
String currentVal ue, String newval ue);

public void set(bjectField (PersistenceCapable pc, int field, Ob-
ject currentVal ue, Object newval ue);]
StateM anager -requested value of afield

A21.9.3-1 [The following methods inform the St at eManager of the value of a persistent
field requested by the St at eManager .

The pc parameter is the instance of Per si st enceCapabl e making the call; the fi el d
parameter is the field number of the field; and the cur r ent Val ue parameter is the cur-
rent value of the field in the instance.

public void provi dedBool eanFi el d (Persi stenceCapable pc, int field,
bool ean current Val ue);

public void providedCharField (PersistenceCapable pc, int field,
char currentVal ue);

public void providedByteField (PersistenceCapable pc, int field,
byte currentVal ue);

public void providedShortField (PersistenceCapable pc, int field,
short currentVal ue);

public void providedl ntField (PersistenceCapable pc, int field, int
current Val ue) ;

public void providedLongField (PersistenceCapable pc, int field,
| ong currentVal ue);

public void providedFl oat Fi el d (PersistenceCapable pc, int field,
fl oat currentVal ue);

257 May 16, 2005

Java Data Objects 2.0

public void provi dedDoubl eFi el d (Persi stenceCapabl e pc, int field,
doubl e currentVal ue);

public void providedStringField (PersistenceCapable pc, int field,
String currentVal ue);

public void provi dedObj ect Fi el d (PersistenceCapable pc, int field,
bj ect currentVal ue);]
2284 StateManager-requested modification of afield

A21.9.4-1 [The following methods ask the St at eManager for the value of a persistent
tield requested to be modified by the St at eManager .

The pc parameter is the instance of Per si st enceCapabl e making the call; and the
fi el d parameter is the field number of the field.

public bool ean repl aci ngBool eanFi el d (PersistenceCapable pc, int
field);

public char replaci ngCharField (PersistenceCapable pc, int field);
public byte replaci ngByteFi eld (PersistenceCapable pc, int field);

public short replacingShortField (PersistenceCapable pc, int
field);

public int replacinglntField (PersistenceCapable pc, int field);
public | ong repl aci ngLongFi el d (Persi stenceCapable pc, int field);

public float replacingFloatField (PersistenceCapable pc, int
field);

public double replacingbDoubleField (PersistenceCapable pc, int
field);

public String replacingStringField (PersistenceCapable pc, int
field);

public Object replacingCbjectField (PersistenceCapable pc, int
field);]

22.9 Detached instance support
public void provi dedLoadedFi el dLi st (Detached pc, BitSet |oaded);

This method is called by a detachable instance in response to the St at eManager calling
provideLoadedFieldList. It provides the list of loaded fields to the St at eManager .

public BitSet replaci ngLoadedFi el dLi st (Detached pc);

This method is called by a detachable instance in response to the St at eManager calling
replaceLoadedFieldList. The detachable instance will replace the current list of loaded
fields with the return value from the St at eManager .

public void providedModi fiedFi el dLi st (Detached pc, BitSet nodi-
fied);

This method is called by a detachable instance in response to the St at eManager calling
provideModifiedFieldList. It provides the list of loaded fields to the St at eManager .

public BitSet replaci ngvbdifiedFieldList (Detached pc);

JDO 2.0 258 May 16, 2005

Java Data Objects 2.0

This method is called by a detachable instance in response to the St at eManager calling
replaceModifiedFieldList. The detachable instance will replace the current list of modified
fields with the return value from the St at eManager .

JDO 2.0 259 May 16, 2005

Java Data Objects 2.0

23

JDOPermission

JDO20

A permission represents access to a system resource. For a resource access to be allowed
for an applet (or an application running with a security manager), the corresponding per-
mission must be explicitly granted to the code attempting the access.

The JDOPer i ssi on class provides a marker for the security manager to grant access to
a class to perform privileged operations necessary for JDO implementations.

There are four JDO permissions defined:

* set St at eManager : A22-1 [this permission allows an instance to manage an
instance of Per si st enceCapabl e, which allows the instance to access and
modify any fields defined as persistent or transactional. This permission is similar
to but allows access to only a subset of the broader Ref | ect Per ni ssi on
("suppressAccessChecks"). This permission is checked by the
Per si st enceCapabl e. r epl aceSt at eManager method.]

e get Met adat a: A22-2 [this permission allows an instance to access the metadata
for any registered Per si st enceCapabl e class. This permission allows access to
a subset of the broader
Runt i mePer mi ssi on("accessDecl ar edMenber s™). This permission is
checked by the JDO npl Hel per. get IDA npl Hel per method.]

* cl osePer si st enceManager Fact or y: A223-3 [this permission allows a caller
to close a Persi st enceManager Fact ory, thereby releasing resources. This
permission is checked by the cl ose() method of
Per si st enceManager Fact ory.]

* manageMet adat a: A22-4 [this permission allows a caller to unload metadata for
a class or a class loader, thereby releasing resources. This permission is checked by
the unregisterd ass() and unregisterC asses() methods of
JDA npl Hel per.]

Use of JDOPer mi ssi on allows the security manager to restrict potentially malicious
classes from accessing information contained in instances of Per si st enceCapabl e.

A sample policy file entry granting code from the / hone/ j dol npl directory permission
to get metadata, manage Per si st enceCapabl e instances, and close Per si st enceM
anager Fact or y instances is

grant codeBase "file:/home/jdolnmpl/" {
perm ssi on javax.j do. spi.JDOPerm ssi on "get Met adat a";
perni ssion javax.do.spi.JDOPerm ssion "setStateManager";
per m ssi on javax.j do. spi.JDOPerm ssi on
"cl osePer si st enceManager Factory";
perm ssi on javax.j do. spi.JDOPerm ssi on "manageMet adat a";

}s

260 May 16, 2005

Java Data Objects 2.0

24 JDOQL BNF

Grammar Notation

The grammar notation is taken from the Java Language Specification, section 2.4 Grammar Notation.

» Terminal symbols are shown in bold fixed width font in the productions of the lexical and syntactic grammars, and
throughout this specification whenever the text is directly referring to such a terminal symbol. These are to appear
in a program exactly as written.

* Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by a colon. One or more alternative right-hand sides for the nonterminal then
follow on succeeding lines.

* The subscripted suffix "opt", which may appear after a terminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional ele-
ment and one that includes it.

* When the words "one of" follow the colon in a grammar definition, they signify that each of the terminal symbols
on the following line or lines is an alternative definition.

Single-String JDOQL
This section describes the syntax of single-string JDOQL.

Si ngl eSt ri ngJDOQL:
Sel ect Fromy, Wiereg, Decls Groupinggn Orderingg, Rangegp

Sel ect:
sel ect uni quegy Result O auseqpy | ntoC auseqgy

I nt oCl ause:
i nto ResultCl assNane

From
from Candi dat eCl assNanme Excl udeQ ausegp;

Excl udeC ause:
excl ude subcl asses

Wher e:
wher e Expression

Decl s:
Vari abl esqgny Parametersgy | mportsgy

Vari abl es:
vari abl es Vari abl eLi st

JDO 2.0 261 May 16, 2005

Java Data Objects 2.0

Par anmet er s:
par anet ers Par anet er Li st

| mports:
i mports | nportLi st

Gr oupi ng:
group by G oupi ngd ause

Orderi ng:
order by Orderingd ause

Range:
range Expression to Expression

Filter Specification
This section describes the syntax of the setFilter argument.

Basically, the query filter expression is a Java boolean expression, where some of the Java operators are not permitted.
Specifically, pre- and post- increment and decrement (++ and - -), shift (>> and <<) and assignment expressions (+=,
-=, etc.) are not permitted.

The Nonterminal | nf i XxQOp lists the valid operators for binary expressions in decreasing precedence. Operators one
the same line have the same precedence. As in Java operators require operands of appropriate types. See the Java Lan-
guage Specification for more information.

Plase note, the grammar allows arbitrary method calls (see Met hodl nvocat i on), where JDO only permits the fol-
lowing methods:

Collection methods contai ns(Qbj ect),isEnpty()

Map methods cont ai nsKey(Obj ect), cont ai nsVal ue(bj ect),
i sEmpty(), get(Object)
String methods startsWth(String),endsWth(String),

mat ches(String),

t oLower Case(),t oUpper Case(),

i ndexOF(String),indexOF(String, int),
substring(int),substring(int, int)

Math methods Mat h. abs(nuneric), Mat h. sqrt (nuneri c)
JDOHelper methods | get Obj ect | d(Qoj ect)

Expr essi on:
Unar yExpr essi on
Expression | nfixQp Unar yExpression

I nfi xOp: one of
* | %
+ -
> >= < <= jnstanceof

&
|

JDO 2.0 262 May 16, 2005

Java Data Objects 2.0

&&
N

Unar yExpr essi on:
PrefixOp UnaryExpression
(Type) UnaryExpression
Primary

PrefixOQp: one of
+ -~

Primry:

Literal

Var i abl eNanme

Par anet er Nanme

this

Fi el dAccess

Met hodl nvocat i on

C assO |l nterfaceNanme

(Expression)

Aggr egat eExpr essi on 1
Fi el dAccess:

Fi el dNane

Primary . Fiel dNane

Met hodl nvocat i on:
Primary . MethodName (ArgumentListg,)

Argunent Li st :
Expr essi on
ArgunentLi st , Expression

Aggr egat eExpr essi on:
AggregateQ (Expression)

Aggr egat eQp: one of
count summin max avg

I Please note, an Aggr egat eExpr essi on is only allowed as part of a result specification or a having specifica-

tion.

Parameter Declaration

This section describes the syntax of the declareParameters argument.

Par anmet er Li st :
Parameters , g

Par anet er Decl s:
Par anet er Decl
Par anet er Decl s , Par anet er Decl

JDO20 263

May 16, 2005

Java Data Objects 2.0

Par anet er Decl :
Type Par amet er Name

Please note, as a usability feature ParameterList supports an optional trailing comma (in addition to what the Java
syntax allows in a parameter declaration).

Variable Declaration

This section describes the syntax of the declareVariables argument.

Vari abl eLi st :
Vari abl eDecl s ; gp¢

Var i abl eDecl s:
Var i abl eDecl
Vari abl eDecl s ; Vari abl eDecl

Vari abl eDecl :
Type Par anmet er Nane

Please note, as a usability feature Var i abl eLi st defines the trailing semicolon as optional (in addition to what the
Java syntax allows in a variable declaration).

Import Declaration
This section describes the syntax of the declareImports argument.

| mportList:
I mport Decl's ; gpt

| mport Decl s:
| mpor t Decl
| mport Decls ; | nport Decl
| mport Decl :
import Qualifiedldentifier
import Qualifiedldentifier . *

Please note, as a usability feature | mpor t Li st defines the trailing semicolon as optional (in addition to what the
Java syntax allows in an import statement).

Ordering Specification
This section describes the syntax of the setOrdering argument.

O deri ngd ause:
OrderingSpecifications , gy

Or deri ngSpecs:

Or deri ngSpec
Orderi ngSpecs , OrderingSpec

JDO 2.0 264 May 16, 2005

Java Data Objects 2.0

Or deri ngSpec:
Expr essi on Ascendi ng
Expr essi on Descendi ng

Ascendi ng: one of
asc ascendi ng

Descendi ng: one of
desc descendi ng

Please note, as a usability feature Or der i ngCl ause supports an optional trailing comma.

Result Specification
This section describes the syntax of the setResult argument.

Resul t Cl ause:
di stinctgy, ResultSpecifications , g

Resul t Specs:
Resul t Spec
Resul t Specs , Resul t Spec

Resul t Spec:
Expressi on Resul t Nani ngqp;

Resul t Nanmi ng:
as ldentifier

Please note, a result specification expression may be an aggregate expression. As a usability feature Resul t -
Cl ause supports an optional trailing comma.

Grouping Specification
This section describes the syntax of the setGrouping argument.

Groupi ngd ause:
Groupi ngSpecs , oot Havi ngSpecgy

Gr oupi ngSpecs:
Expr essi on
Groupi ngSpecs , Expression

Havi ngSpec:
havi ng Expression

Please note, a having specification expression may include an aggregate expression. As a usability feature G- oup-
i ngCl ause supports an optional trailing comma.

JDO 2.0 265 May 16, 2005

Java Data Objects 2.0

Types
This section describes a type specification, used in a parameter or variable declaration or in a cast expression.

Type
PrimtiveType
C assO |l nterfaceNanme

PrimtiveType:
Nuneri cType
bool ean

Nurrer i cType:
I nt egral Type
Fl oat i ngPoi nt Type

I nt egral Type: one of
byte short int |ong char

Fl oat i ngPoi nt Type: one of
fl oat double

Literals

A literal is the source code representation of a value of a primitive type, or the String type. Please refer to the Java
Language Specification for the lexical structure of Integer-, Floating Point-, and String-Literals. JDOQL allows
String-Literals being enclosed in either single quotes or double quotes.

Literal:
I ntegerlLiteral
Fl oati ngPoi ntLiteral
Bool eanLi t eral
StringLiteral
Nul | Li teral
IntegerLiteral:
Fl oati ngPoi ntLiteral:

Bool eanLiteral : one of
true fal se

StringLiteral:

Nul | Literal :
nul |

Names

A name is a possibly qualified identifier. Please refer to the Java Language Specification for the lexical structure of
identifiers.

JDO 2.0 266 May 16, 2005

Java Data Objects 2.0

Qualifiedldentifier:
Identifier
Qualifiedldentifier Identifier

Candi dat e assNane:
Qualifiedldentifier

Resul t O assNane:
Qualifiedldentifier

C assOl nterfaceName:
Qualifiedldentifier

Var i abl eName:
I dentifier

Par anmet er Nane:
I dentifier
Col onPrefi xedl dentifier

Fi el dNane:
I dentifier

Met hodNane:
I dentifier

Keywords

Keywords must not be used as package names, class names, parameter names, or variable names in queries. Key-

words are permitted as field names only if they are on the right side of the “.” in field access expressions as defined in
the Java Language Specification second edition, section 15.11. Keywords include the Java language keywords and the
JDOQL keywords. Java keywords are as defined in the Java language specification section 3.9, plus the boolean liter-

als true and false, and the null literal. JDOQL keywords maybe written in all lower case or all upper case.

JDOQLKeywor d: one of

as AS asc ASC
ascending ASCENDI NG avg AVG
by BY count COUNT
desc DESC descendi ng DESCENDI NG
di stinct DI STI NCT excl ude EXCLUDE
from FROM group GROUP
havi ng HAVI NG i mports | MPORTS
into I NTO max MAX
mn M N or der CORDER
paranmeters PARAMETERS range RANGE
sel ect SELECT subcl asses SUBCLASSES
sum SUM to TO
uni que UNI QUE vari abl es VARI ABLES
wher e VWHERE

JDO 2.0 267 May 16, 2005

Java Data Objects 2.0

25

ltems deferred to the next release

This chapter contains the list of items that were raised during the development of JDO but
were not resolved.

Define the semantics of nested transactions.

This proposal is still pending as of JDO 2.0.

Related to nested transactions, savepoints allow for making changes to instances and then
undoing those changes without making any datastore changes. It is a single-child nested

This proposal is still pending as of JDO 2.0.

Inter-PersistenceM anager References

Explain how to establish and maintain relationships between persistent instances man-
aged by different Per si st enceManager s.

This proposal is still pending as of JDO 2.0.

A standard interface to call the enhancer will be defined.

This proposal is still pending as of JDO 2.0.

A standard interface to specify prefetching of instances by policy will be defined. The in-
tended use it to allow the application to specify a policy whereby instances of persistence
capable classes will be prefetched from the datastore when related instances are fetched.
This should result in improved performance characteristics if the prefetch policy matches

This functionality is now part of JDO 2.0.

JDO implementations can choose to implement mapping from java.sql.Blob datatype to
byte arrays, and java.sql.Clob to String or other java type; but these mappings are not stan-
dard, and may not have the performance characteristics desired.

25.1 Nested Transactions

25.2 Savepoint, Undosavepoint
transaction.

25.3

254 Enhancer Invocation API

255 Prefetch API
actual application access patterns.

25.6 BLOB/CLOB datatype support

JDO 2.0

268 May 16, 2005

Java Data Objects 2.0

This functionality is now part of JDO 2.0.

Managed (inver se) relationship support

In order for JDO implementations to be used for container managed persistence entity
beans, relationships among persistent instances need to be explicitly managed. See the EJB
Specification 2.0, sections 9.4.6 and 9.4.7 for requirements. The intent is to support these
semantics when the relationships are identified in the metadata as inverse relationships.

This proposal has been rejected. If this is valuable for persistent instances, it is just as valu-
able for transient instances. To have the behavior change when making an instance persis-

This proposal should become an independent Java Specification Request.

Use of String.toLowerCase() as a supported method in query filters would allow case-in-

This functionality is now part of JDO 2.0.

Supported String constructors String(<integer expression>) and String(<floating-point ex-
pression>) would make queries more flexible.

This proposal is still pending as of JDO 2.0.

Support (probably marking the fields in the XML metadata) for read-only fields would al-
low better support for databases where modification of data elements is proscribed. The
metadata annotation would permit earlier detection of incorrect modification of the corre-

The enumeration pattern is a powerful technique for emulating enums. The pattern in
summary allows for fields to be declared as:

Bar soneBar = new Bar(“illegal”); // doesn’t conpile

private Bar(String s) {

public static Bar ONE = new Bar (“one”);

25.7
tent is probably inappropriate.
25.8 Case-Insensitive Query
sensitive queries.
25.9 String conversion in Query
25.10 Read-only fields
sponding fields.
25.11 Enumeration pattern
class Foo {
Bar myBar = Bar. ONE;
}
class Bar {
private String istr;
istr = s;
}
JDO 2.0

269 May 16, 2005

Java Data Objects 2.0

public static Bar TWD = new Bar (“two");

}

The advantage of this pattern is that fields intended to contain only certain values can be
constrained to those values. Supporting this pattern explicitly allows for classes that use
this pattern to be supported as persistence-capable classes.

25.12

Non-static inner classes

Allow non-static inner classes to be persistence-capable. The implication is that the enclos-
ing class must also be persistence-capable, and there is a one-many relationship between
the enclosing class and the inner class.

25.13

Projectionsin query

Currently the only return value from a JDOQL query is a Collection of persistent instances.
Many applications need values returned from queries, not instances. For example, to prop-
erly support EJBQL, projections are required. One way to provide projections is to model
what EJBQL has already done, and add a method setResult (String projection) to jav-
ax.jdo.Query. This method would take as a parameter a single-valued navigation expres-
sion. The result of execute for the query would be a Collection of instances of the
expression.

This functionality is now part of JDO 2.0.

25.14

LogWriter support

Currently, there is no direct support for writing log messages from an implementation, al-
though there is a connection factory property that can be used for this purpose. A future
revision could define how an implementation should use a log writer.

25.15

New Exceptions

Some exceptions might be added to more clearly define the cause of an exception. Candi-
dates include JDODupl i cat eCbj ect | dExcepti on, JDOCI assNot Per si s-
t enceCapabl eExcepti on, JDOEXt ent Not ManagedExcepti on,
JDOConcurrent Modi fi cati onExcepti on, JDOQueryException, JDOQue-
rySynt axExcepti on, JDOUnboundQuer yPar anet er Excepti on, JDOTr ans-
acti onNot Act i veExcepti on, JDCDel et edOhj ect Fi el dAccessExcepti on.

25.16

Distributed object support

Provide for remote object graph support, including instance reconciliation, relationship
graph management, instance insertion ordering, etc.

This functionality is now part of JDO 2.0.

25.17

JDO20

Object-Relational Mapping

Extend the current xml metadata to include optional O/R mapping information. This
could include tables to map to classes, columns to map to fields, and foreign keys to map
to relationships.

270 May 16, 2005

Java Data Objects 2.0

Other O/R mapping issues include sequence generation for primary key support.

This functionality is now part of JDO 2.0.

JDO 2.0 271 May 16, 2005

Java Data Objects 2.0

26

JDO 1.0.1 Metadata

JDO20

This chapter specifies the metadata that describes a persistence-capable class. The metada-
ta is stored in XML format. The information must be available when the class is enhanced,
and might be cached by an implementation for use at runtime. If the metadata is changed
between enhancement and runtime, the behavior is unspecified.

Metadata files must be available via resources loaded by the same class loader as the class.
These rules apply both to enhancement and to runtime. Hereinafter, the term "metadata”
refers to the aggregate of all XML data for all packages and classes, regardless of their
physical packaging.

The metadata associated with each persistence capable class must be contained within a
file, and its format is defined by the DTD. If the metadata is for only one class, then its file
name is <class-name>.jdo. If the metadata is for a package, or a number of packages, then
its file name is package.jdo. In this case, the file is located in one of several directories:
“META-INF”; “WEB-INF”; <none>, in which case the metadata file name is "package.jdo"
with no directory; “<package>/.../<package>", in which case the metadata directory
name is the partial or full package name with “package.jdo” as the file name.

When metadata information is needed for a class, and the metadata for that class has not
already been loaded, the metadata is searched as follows: META-INF/package.jdo, WEB-
INF/package.jdo, package.jdo, <package>/.../<package>/package.jdo, and <package>/
<class>.jdo. Once metadata for a class has been loaded, the metadata will not be replaced
in memory. Therefore, metadata contained higher in the search order will always be used
instead of metadata contained lower in the search order.

For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "ME-
TA-INF/package.jdo" containing xml for this class, then its definition is used. If there is no
such file, but there is a file "WEB-INF/packagejdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "package.jdo"
containing metadata for com.xyz.Wombeat, then it is used. If there is no such file, but there
is a file "com/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "com/xyz/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/
Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.

Note that this search order is optimized for implementations that cache metadata informa-
tion as soon as it is encountered so as to optimize the number of file accesses needed to
load the metadata. Further, if metadata is not in the natural location, it might override
metadata that is in the natural location. For example, while looking for metadata for class
com.xyz.Wombat, the file com/package.jdo might contain metadata for class org.ac-
me.Foo. In this case, subsequent search of metadata for org.acme.Foo will find the cached
metadata and none of the usual locations for metadata will be searched.

The metadata must declare all persistence-capable classes. If any field declarations are not
provided in the metadata, then field metadata is defaulted for the missing field declara-
tions. Therefore, the JDO implementation is able to determine based on the metadata

272 May 16, 2005

Java Data Objects 2.0

whether a class is persistence-capable or not. And any class not known to be persistence-
capable by the JDO specification (for example, java.lang.Integer) and not explicitly named
in the metadata is not persistence-capable.

For compatibility with installed applications, an implementation might first use the search
order as specified in the JDO 1.0 release. In this case, if metadata is not found, then the
search order as specified in JDO 1.0.1 must be used.

26.1

ELEMENT jdo

This element is the highest level element in the xml document. It is used to allow multiple
packages to be described in the same document.

26.2

ELEMENT package

This element includes all classes in a particular package. The complete qualified package
name is required.

26.3

JDO20

ELEMENT class

This element includes fields declared in a particular class, and optional vendor extensions.
The name of the class is required. The name is relative to the package name of the enclosing
package.

Only persistence-capable classes may be declared. Non-persistence-capable classes must
not be included in the metadata.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

The identity type of the least-derived persistence-capable class is defaulted to appl i ca-
tionifobj ecti d-cl ass is specified, and dat ast or e, if not.

The obj ecti d- cl ass attribute is required only for application identity. The objectid
class name uses Java rules for naming: if no package is included in the name, the package
name is assumed to be the same package as the persistence-capable class. Inner classes are
identified by the “$” marker. If the obj ect i d- cl ass attribute is defined in any concrete
class, then the objectid class itself must be concrete, and no subclass of the class may in-
clude the obj ect i d- cl ass attribute. If the obj ect i d- ¢l ass attribute is defined for
any abstract class, then:

¢ the objectid class of this class must directly inherit Cbj ect or must be a subclass
of the objectid class of the most immediate abstract persistence-capable superclass
that defines an objectid class; and

* if the objectid class is abstract, the objectid class of this class must be a superclass
of the objectid class of the most immediate subclasses that define an objectid class;
and

¢ if the objectid class is concrete, no subclass of this persistence-capable class may
define an objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the
inheritance hierarchy of the persistence-capable classes. Associated with every concrete
persistence-capable class is exactly one objectid class.

273 May 16, 2005

Java Data Objects 2.0

The objectid class must declare fields identical in name and type to fields declared in this
class.

The r equi r es- ext ent attribute specifies whether an extent must be managed for this
class. The Per si st enceManager . get Ext ent method can be executed only for class-
es whose metadata attribute r equi r es- ext ent is specified or defaults to t r ue. If the
Per si st enceManager . get Ext ent method is executed for a class whose metadata
specifies requi res-extent as fal se, a JDOUser Excepti on is thrown. If re-
qui r es- ext ent is specified or defaults to t r ue for a class, then r equi r es- ext ent
must not be specified as f al se for any subclass.

The per si st ence- capabl e- super cl ass attribute is deprecated for this release. It is
ignored so metadata files from previous releases can be used.

26.4

JDO20

ELEMENT field

The element f i el d is optional, and the namne attribute is the field name as declared in the
class. If the field declaration is omitted in the xml, then the values of the attributes are de-
faulted.

The per si st ence- nodi fi er attribute specifies whether this field is persistent, trans-
actional, or none of these. The per si st ence- nodi f i er attribute can be specified only
for fields declared in the Java class, and not fields inherited from superclasses. There is spe-
cial treatment for fields whose per si st ence- nodi fi er is persi stent ortrans-
actional .

Default persistence-modifier

The default for the per si st ence-nodi fi er attribute is based on the Java type and
modifiers of the field:

e Fields with modifier st at i c: none. No accessors or mutators will be generated
for these fields during enhancement.

* Fields with modifier transi ent: none. Accessors and mutators will be
generated for these fields during enhancement, but they will not delegate to the
St at eManager .

e Fields with modifier f i nal : none. Accessors will be generated for these fields
during enhancement, but they will not delegate to the St at eManager .

* Fields of a type declared to be persistence-capable: per si st ent .
* Fields of the following types: per si st ent :

e primitives: bool ean, byt e,short,int,| ong,char,fl oat, doubl e;

 j ava. | ang wrappers: Bool ean, Byt e, Short, | nt eger,Long, Char act er,
Fl oat, Doubl €;

e java.l ang: String, Nunmber ;

j ava. mat h: Bi gDeci mal , Bi gl nt eger;

java. util:Currency, Date, Local e, ArrayLi st, Hashivap, HashSet,

Hasht abl e, Li nkedHashMap, Li nkedHashSet, Li nkedLi st, Tr eeMap,

TreeSet, Vector,Col | ection, Set, Li st,and Map;

e Arrays of primitive types, java.util.Date, java.util.Locale,
java.lang and java.math types specified immediately above, and
persistence-capable types.

274 May 16, 2005

Java Data Objects 2.0

264.1

JDO20

¢ Fields of types of user-defined classes and interfaces not mentioned above: none.
No accessors or mutators will be generated for these fields.

The pri mar y- key attribute is used to identify fields that have special treatment by the
enhancer and by the runtime. The enhancer generates accessor methods for primary key
fields that always permit access, regardless of the state of the instance. The mutator meth-
ods always delegate to the] doSt at eManager , if it is non-nul | , regardless of the state
of the instance.

The nul | - val ue attribute specifies the treatment of nul | values for persistent fields
during storage in the datastore. The default is " none" .

e "none": store null wvalues as null in the datastore, and throw a
JDQUser Except i onif nul | values cannot be stored by the datastore.

e "exception": always throw a JDOUser Excepti on if this field contains a
nul | value at runtime when the instance must be stored;

o "def aul t ": convert the value to the datastore default value if this field contains
anul | value at runtime when the instance must be stored.

The def aul t-fetch-group attribute specifies whether this field is managed as a
group with other fields. It defaults to "t r ue" for non-key fields of primitive types, j a-
va. util. Dat e, and fields of j ava. | ang, j ava. mat h types specified above.

The enmbedded attribute specifies whether the field should be stored as part of the con-
taining instance instead of as its own instance in the datastore. It must be specified or de-
fault to "true" for fields of primitive types, wrappers, j ava. | ang, j ava. mat h,
java. util, collection, map, and array types specified above; and " f al se" otherwise.
While a compliant implementation is permitted to support these types as first class in-
stances in the datastore, the semantics of enbedded="true” imply containment. That is,
the embedded instances have no independent existence in the datastore and have no Ex-
t ent representation.

If the enbedded attribute is " t r ue" the field values are stored as persistent references to
the referred instances in the datastore.

The enbedded attribute applied to a field of a persistence-capable type is a hint to the im-
plementation to treat the field as if it were a Second Class Object. But this behavior is not
further specified and is not portable.

A portable application must not assign instances of mutable classes to multiple embedded
tields, and must not compare values of these fields using Java identity (“f 1==f 2”).

The following field declarations are mutually exclusive; only one may be specified:
e default-fetch-group = “true”
e primary-key = “true”

e persistence-nodifier “transactional”

e persistence-nodifier “none”

ELEMENT collection

This element specifies the element type of collection typed fields. The default is Col | ec-
ti on typed fields are persistent, and the element type is Qbj ect .

The el enent - t ype attribute specifies the type of the elements. The type name uses Java
rules for naming: if no package is included in the name, the package name is assumed to

275 May 16, 2005

Java Data Objects 2.0

26.4.2

26.4.3

be the same package as the persistence-capable class. Inner classes are identified by the "$"
marker.

The enbedded- el enent attribute specifies whether the values of the elements should
be stored as part of the containing instance instead of as their own instances in the data-
store. It defaults to " f al se" for persistence-capable types, Obj ect types, and interface
types; and "t rue" for other types.

The embedded treatment of the collection instance itself is governed by the enbedded at-
tribute of the f i el d element.

ELEMENT map

This element specifies the treatment of keys and values of map typed fields. The default is
map typed fields are persistent, and the key and value types are Cbj ect .

The key-t ype and val ue-t ype attributes specify the types of the key and value, re-
spectively. The type names use Java rules for naming: if no package is included in the
name, the package name is assumed to be the same package as the persistence-capable
class. Inner classes are identified by the "$" marker.

The enbedded- key and enbedded- val ue attributes specify whether the key and val-
ue should be stored as part of the containing instance instead of as their own instances in
the datastore. They default to " f al se" for persistence-capable types, Cbj ect types, and
interface types; and "t r ue" for other types.

The embedded treatment of the map instance itself is governed by the enbedded attribute
of the fi el d element.

ELEMENT array

This element specifies the treatment of array typed fields. The default persistence-modifier
for array typed fields is based on the Java type of the component and modifiers of the field,
according to the rules in 18.4 Default persistence-modifier.

The enbedded- el enent attribute specifies whether the values of the components
should be stored as part of the containing instance instead of as their own instances in the
datastore. It defaults to " f al se" for persistence-capable types, Obj ect types, interface
types, and concrete implementation classes of map and collection types. It defaults to
"true" for other types.

The embedded treatment of the array instance itself is governed by the enbedded at-
tribute of the f i el d element.

26.5

ELEMENT extension

This element specifies JDO vendor extensions. The vendor - nane attribute is required.
The vendor name " JDORI " is reserved for use by the JDO reference implementation. The
key and val ue attributes are optional, and have vendor-specific meanings. They may be
ignored by any JDO implementation.

26.6

JDO20

The Document Type Descriptor

The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.

276 May 16, 2005

Java Data Objects 2.0

o If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI“fi | e:/j avax/j do/j do. dtd”

e If PUBLIC is used, the public id should be "-// Sun M cr osyst ens,

Inc.//

DTD Java Data Cbj ects Metadata 1.0//EN';ajdoimplementation might
optimize access for this id.

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE

PUBLI C "-//Sun M crosyst ens,

j do

Inc.//DTD Java Data Objects Metadata 1.0//EN'

"http://java.sun.com dtd/jdo_1 0.dtd">

<! ELEMENT
<! ELEMENT
<I ATTLI ST
<! ELEMENT
<I ATTLI ST
<I ATTLI ST
#| MPLI ED>
<I ATTLI ST
<! ATTLI ST
<I ATTLI ST
<! ELEMENT
<I ATTLI ST
<! ATTLI ST

jdo ((package) +,
package ((cl ass) +,

(extension)*)>
(extension)*)>

package name CDATA #REQUI RED>
class (field|extension)*>
cl ass nane CDATA #REQUI RED>

cl ass

cl ass
cl ass
cl ass
field
field

field

al | none) #l MPLI ED>

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<! ELEMENT
<I ATTLI ST
<! ELEMENT
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

field primry-key (true|false)
field null-value (exception|default]|none)

identity-type (application|datastore|nondurable)

obj ecti d-cl ass CDATA #l MPLI ED>
requir es- ext ent
persi st ence- capabl e- supercl ass CDATA #l MPLI ED>
((col |l ection| map| array) ?,
name CDATA #REQUI RED>

(true|false) ‘true >
(extension)*)?>
persi stence-nodi fier (persistent|transaction-

‘fal se’ >
‘none’ >

field default-fetch-group (true|fal se) #l MPLI ED>
field enbedded (true|fal se) #l MPLI ED>

col l ection (extension)*>

coll ection el ement-type CDATA #| MPLI ED>

col l ection enbedded-el enment (true|false) #l MPLIED>

map
map
map
map
map

val ue

(ext ensi on) *>

key-type CDATA #| MPLI ED>

enbedded- key (true|fal se) #l MPLI ED>
-type CDATA #| MPLI ED>
enbedded-val ue (true|fal se) #l MPLI ED>

array (extension)*>
array enbedded-el ement (true|fal se) #l MPLI ED>

ext ensi on
ext ensi on
ext ensi on
ext ensi on

26.7

JDO20

Example XML file

An example XML file for the query example classes follows. Note that all fields of both
classes are persistent, which is the default for fields. The enps field in Depar t nent con-
tains a collection of elements of type Enpl oyee, with an inverse relationship to the dept

field in Enpl

oyee.

(extension)*>

vendor - nane CDATA #REQUI RED>
key CDATA #| MPLI ED>

val ue CDATA #| MPLI ED>

277 May 16, 2005

Java Data Objects 2.0

JDO20

In directory conml Xy z, a file named hr . j do contains:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE j do SYSTEM “j do. dtd”>

<j do>
<package nane="com xyz. hr” >
<cl ass name=" Enpl oyee” identity-type="application” obj ecti d-

class="Intldentity”>

<field name="nane” primary-key="true”>

<ext ensi on vendor - nane="sunw’ key="index” value="btree”/>
</field>

<field name="sal ary” default-fetch-group="true”/>

<field name="dept” >

<ext ensi on vendor - nane="sunw’ key="inverse” val ue="enps”/>
</field>

<field nane="boss”/>

</cl ass>

<class nanme="Departnent” identity-type="application” objectid-
cl ass=" Depart nent Key” >

<field name="nane” primary-key="true”/>

<field name="enps” >

<col I ection el enent -type="Enpl oyee” >

<ext ensi on vendor-name="sunw’ key="el ement-i nverse” val ue="dept”/>
</ col |l ection>

</field>

</cl ass>

</ package>

</j do>

278 May 16, 2005

Java Data Objects 2.0

27

Public Feedback Request

This Chapter is devoted to issues for which public feedback is requested. During the Early
Draft Review period, the expert group would like the public to provide feedback on these
specific issues.

271

Annotations for metadata

JSR 14 and 175 are now standard in J2SE 1.5. These language enhancements allow for users
to annotate their Java source files with information that in previous releases had to be put
into separate metadata files.

The intent for JDO 2.0 is to exploit JSR 14 to obviate the need for metadata defining the
types of collection elements and map keys and values. The metadata to define classes as
persistent-capable can be embedded in the source file. The combination of these two new
features should allow users to avoid the .jdo metadata files completely.

The embedded metadata tags will be included in a future early draft release of the specifi-
cation.

As of the Public Draft, this proposal has been rejected. Annotations will be specified in JSR
220, and there is not sufficient justification for having a completely different specification
for JDO.

27.2

Attach and detach life cyclelistener callbacks

Should we add method attach and detach to the life cycle listener interface, allowing the
application to monitor attach and detach events?

This proposal has been adopted.

27.3

JDO20

Proxy support for detached instances

For non-binary-compatible implementations to support the detached instance contract, it
must throw a JDOUser Except i on if a non-loaded relationship field is accessed while de-
tached.

The JDO package might contain a class suitable as an InvocationHandler for cases where
java.lang.reflect.Proxy is used as the strategy. This class would do nothing but throw an
exception if it is accessed. This would avoid the requirement that the client have access to
vendor-specific classes that implement this behavior.

Support for proxies of references to classes (which cannot be proxied using java.lang.re-
flect.Proxy) will require additional investigation.

This proposal does not look practical. The strategy only works for reference types that are
standard interfaces (e.g. Collection, Set) or classes (HashSet, Hashtable, etc.). Therefore,
non-binary-compatible implementations will need to either instantiate single-valued ref-
erences or include vendor-specific subclasses in the client jar.

279 May 16, 2005

Java Data Objects 2.0

Currently the only way to delete detached instances is to define them as dependent in the
metadata of a referencing persistent class. If while detached, the instance “owning” the de-
pendent instance clears the field or removes the dependent instance from a collection, ar-
ray, or map, then upon reattachment, the dependent instance will be deleted from the

Allowing a detached instance to be deleted by the application would require changes to

As of the Public Draft, this proposal has been rejected. There are too many issues and not
enough justification for adding the complexity to the detachment pattern.

JDOQL requires declaring variables in a separate declarations section, in both the API and
the metadata. It might be possible to declare them in the filter itself. For example, instead

guery. decl areVari abl es(“Enpl oyee ¢e”);
query.setFilter(“enps.contains(e) & e.name == George’”);

qguery.setFilter(“enps. contai ns(Enpl oyee e) && e.nanme == George’'");

This change might require less user typing, but more JDO implementation analysis to

The concept behind this proposal has been adopted. The variable in the above example can

(“enps. contai ns((Enpl oyee) e) && e.name == George’");

Shortcutsfor certain JDOQL static methods

Some static methods are defined in JDOQL and currently require the class name and meth-
od name to be spelled out. It might be useful to define some shortcuts for these methods:

static double Math.sqgrt(double): sqrt(double)

stati c doubl e Math. abs(doubl e): abs(doubl e)

static Object JDCHel per. get Objectld(Object): id(Onject)
As of the Public Draft, this proposal has been rejected.

Attribute namesfor column name

In metadata, a column that has only one attribute, name, could be “promoted” to be an at-
tribute in the containing element. The issue is what to call the attribute. It has been argued
that column-name is more descriptive than column for this purpose.

274 Deleting detached instances
datastore.
the detachment API.

27.5 Implicit variable declarations
of:
declaring the variable inline:
scope the variable.
be cast explicitly, as in:
query.setFilter

27.6

27.7
Without column promotion:
<field name="salary”>

<column name="SAL" />
JDO 2.0

280 May 16, 2005

Java Data Objects 2.0

</field>

Promotion using “column”:

<field name="salary” column="SAL" />
Promotion using “column-name”:

<field name="salary” column-name="SAL" />

This proposal has been adopted, using the simpler “column” attribute.

27.8

Specification of indexes

Currently indexes are not specified. Where should the definition of indexes be placed?
These are needed for many types of datastores, so the definition probably belongs in the
JDO metadata (not in mapping metadata).

As of the Public Draft, indexes can be specified in metadata.

27.9

IdGenerator and Sequence are similar

The concepts of IdGenerator and Sequence are very similar. They both are factories for
unique primary key values. These two interfaces can be combined; their implementation
can be either automatically provided by the JDO vendor, or users can write their own im-
plementation classes.

Similarly, values for non-key fields can be automatically generated by a sequence or other
strategy. Both key- and non-key-field values should be definable using a similar notation.

As of the Public Draft, this proposal has been accepted. Generation of ids can be done by
specifying a JDO implementation of a sequence or a user-defined sequence.

27.10

Embedded, dependent, and serialized values

There are many strategies for handling mapping of collection, map, and array values. The
entire collection, map, or array might be serialized into a column. Alternatively, the keys,
values, and elements might be serialized into their own column(s). Or, keys, values, and
elements might refer to columns in another table.

Independent of the mapping, the collection, map, and array might be defined as depen-
dent, meaning that if the containing instance removes a reference to it, then it should be
removed from the database. And keys, values, and elements might be defined as depen-
dent even if the containing collection, map, or array were not.

In the early draft, these concepts are materialized as attributes of field, collection, map, and
array elements. The placement of these attributes and elements need to be rationalized.

As of the Public Draft, this information has been incorporated into the jdo and/or map-
ping metadata.

27.11

JDO20

Deprecate dfgOnly parameter ?

Ther et ri eve methods containing the df gOnl y parameter could be deprecated, as there
is extensive new capability with fetch groups.

Similarly, detachCopy, refresh, retrieve, and a possible new method makeTransientCopy
could have a fetch group explicitly named in the API or they could be defined to use the
active fetch groups.

281 May 16, 2005

Java Data Objects 2.0

Fetch Group definition in metadata

Currently, the definition of fields in fetch groups is the same definition as for fields in class-
es. This may be confusing, and we might rename the field element in fetch-group to be

The current definition of fetch groups will break some JDO 1.0 applications using refresh()
and retrieve(). Refresh and retrieve with fetch groups is arguably better but compatibility

The #key and #value syntax for maps and #element syntax for collections/arrays could be
improved. This needs a bit more thought.

Currently, the version of an instance is returned as an Object. This might not be the best
representation of a version, and it might be better to define an interface, javax.jdo.Version
to encapsulate it. This would mean that it would no longer be possible to use a simple type
such as Long to represent the version, but it would be type-safe and compile-time checked.

As of the Public Draft, the select keyword is required to distinguish single-string JDOQL
from a filter. There is still room for discussion here.

As of the Public Draft, the precision of numeric columns and the length of character col-
umns are specified using the same metadata attribute: length. In SQL, the length of numer-
ic columns is specified using the name precision. Should we add precision to the attributes
in column to be used instead of length for numeric columns?

As of the Public Draft, detached objects are constructed by explicit API, by serializing per-
sistent graphs, or by closing the PersistenceManager. There are interactions among the se-
rialization contract, fetch groups, and the detachment contract.

We are still examining use cases to see if these can be made consistent.

27.12
fetched-field or some other name.
is important.

2713 Version information

27.14 Single-string JDOQL

27.15 Length, Precision and Scale

27.16 Detachment Contract

JDO 2.0

282 May 16, 2005

Java Data Objects 2.0

JDO20

(1]

[2]

[3]

[4]

Appendix A: References

Enterprise JavaBeans (EJB) specification:

http://java. sun. coni products/ejb/docs. htm

Java Transaction API (JTA) specification - version 1.0
http://java. sun. conl products/jtal

Java 2 Platform Enterprise Edition (J2EE), Platform specification:
http://java. sun. conij 2ee/ docs. ht ni

Java 2 Platform Enterprise Edition (J2EE), Connector Architecture:
http://java. sun. conij 2ee/ api docs/

http://java. sun. conij 2ee/ downl oad. ht ml #connect or spec

283 May 16, 2005

Java Data Objects 2.0

Appendix B: Design Decisions

This appendix outlines some of the design decisions that were considered and not taken,
along with the rationale.

B.1 Enhancer

JDO20

With JDO 2.0, enhancement is now no longer required. Reflection techniques for examin-
ing persistent instances at transaction commit can be used instead, and proxies can be used
to fault in referenced instances.

The enhancer could generate code that would delegate to the associated StateManager ev-
ery access (read or write) for every field. This design was rejected because of several fac-
tors.

* Code bloat: the enhanced code would add an extra method call to every access to
a persistent field.

* Performance: the calls to the St at eManager would add extra cycles to every
access to a persistent field, even if the field were already fetched into the persistent
instance.

The enhancer could require complete metadata descriptions for all persistence-capable
classes and persistent and transactional fields, and further require that all classes be avail-
able during enhancement of any class.

This would allow the enhancer to generate the most efficient code, but imposes an extra
burden on the user to keep the metadata and class definition absolutely in sync. If a field
were declared in a class after the metadata was defined, the user would have to update the
metadata to add the new field.

Requiring access to all classes during enhancement of any class was also seen as an extra
burden on the user, who would have to execute the enhancement in an environment that
did not necessarily reflect the runtime environment. There is also a performance penalty
and additional complexity for the enhancer.

The decision that was taken was that the enhancer must be able to determine the persis-
tence-modifier (persistent or none) from the Java modifiers and type of a field. Further, the
information needed to enhance a class is only the class file for the class being enhanced,
plus the metadata for the class and classes directly reachable (via references or inheritance)
from the class.

The java byte codes generated in a class for a field in another class do not contain much
information about the modifiers (final or transient) of the field. They do have the field
name and the field type, and whether the field is static. There is an implied access control
that permits the generated access (package, protected, or public) but no distinction among
the choices.

Therefore, a field that is not declared in the metadata must be enhanced to generate an ac-
cessor and mutator even though the field is not persistent. For example, for a final int field
declared in a class, the field is not persistent, so it is not included in the list of persistent/
transactional fields, but an accessor is generated for it. This accessor will be used only by
other classes” accesses, and access will not be mediated (the StateManager will never be
called). Accesses within the class are not enhanced.

284 May 16, 2005

Java Data Objects 2.0

Appendix C: Revision History

This appendix outlines the significant changes during the evolution of the specification.

C.1 Changessince Draft 0.1

Added Appendix for revision history
Added Appendix for design decisions not taken

C.2 Changessince Draft 0.2

Changed the description for the persistent state (cached non-transactional values)
Added JDO instance state transition diagram and descriptions of state transitions.
Enhanced description of non-datastore JDO identity.

Added persistent-new-dirty and persistent-new-clean states to the life cycle.

Removed the checkpoi nt method from the Tr ansact i on interface. This functionality
is now done by the TRANSACTI ON_RETAI N_VALUES Tr ansact i on flag.

Added j doCopy to the Per si st enceCapabl e interface.
Added Query interface.

C.3 Changessince Draft 0.3

Changed Quer y signatures for set Var s and set Par ans.
Changed all “set ” Quer y signatures to return voi d instead of “Query”.
Added description of key (JDO identity) change semantics.

Added life cycle description for del et ePer si st ent, a new interrogatory j dol sDe-
| et ed, and two new states persistent-new-deleted and persistent-deleted.

Added Chapter 6 Persistent Object Model, which specifies the field types for persistent
fields, including the required Col | ect i on types.

Added descriptions of enhancement to Chapter 13 JDO Enhancer, including serialization,
cloning, and reflection.

Added multiple object versions of makePer si st ent, makeTr ansacti onal , mak-
eNont ransacti onal .

C.4 Changessince Draft 0.4

C41

JDO20

Per sistenceM anager
Removed flush and postCompletion from the API.

Changed refresh to indicate it is effective only in optimistic transactions.
Removed getFlags and setFlags, substituting getXXX and setXXX for all options.
Added getProperties, which returns VendorName, VersionNumber, etc.

Added get/setUserObject, which allow a user-specified object to be remembered by the
PersistenceManager.

Required the implementation to support PersistenceManagerFactory and specified the in-
terface for it.

285 May 16, 2005

Java Data Objects 2.0

CA4.z2

CA43

C44

C45

Associated the concept of Extent with makePersistent and deletePersistent. Only classes
with a managed Extent can be parameters of these methods.

Added getObjectIdClass to allow the application to get the Objectld class for a class.

Query
Added newQuery (Class cls, String filter).

Changed signature of compile to return void. This is not required to do anything but val-
idate query elements.

Made the Query implementation class serializable. A serialized and restored query in-
stance can be bound to a PersistenceManager by newQuery (Object).

Removed execute methods with four, five, and six parameters.
Allowed Date comparisons for equality and range queries.
Allowed String comparisons for equality and range queries.
Added “this” as a valid keyword in filters.

Added a query option to indicate faster queries that don’t execute the filter on cached in-
stances.

Clarified that portable applications require all variables to be scoped by a contains clause.

Defined that variables not scoped by a contains clause are scoped by the Extent of the class.

Object Model
Changed the name of “Tracked SCO” to “SCO”.

Required a transaction to be in effect to execute makePersistent and deletePersistent.
Allowed an implementation to treat all reference types as First Class Objects.

Sharing of SCOs is permitted but the semantics are not guaranteed to be portable.

Life Cycle

Removed state persistent-new-clean and changed the name of persistent-new-dirty to per-
sistent-new.

Updated life cycle state diagram to simplify state transition descriptions.

Added section describing optimistic transaction state changes.

Per sistenceCapable
Removed methods j dol sReadReady and j dol sW it eReady. None of the applica-
tion’s business, these.

Changed the semantics of] dol sTransact i onal toreturnf al se if an instance is read
in an optimistic transaction. In an optimistic transaction, only new, deleted, modified in-
stances and instances made transactional returnt r ue.

Added j doGet Per si st enceManager,j doGet Obj ectl d,and j doMakeDirty.

C.5 Changessince Draft 0.5

JDO20

Clarified NontransactionalRead, Optimistic, and RetainValues flag dependencies.
Added a table and diagrams of life cycle transitions.

Changed datastore Objectld to allow primitive wrapper classes to be used.

286 May 16, 2005

Java Data Objects 2.0

Added failed object array and methods to JDOException, JDOCanRetryException, JDO-
DataStoreException, and JDOUserException.

Added a Chapter on Application Portability Guidelines.
Added a Chapter on XML Metadata.
Added two collection factories to PersistenceManager.

Added connection factory to PersistenceManagerFactory.

C.6 Changessince Draft 0.6 (Participant Review Dr aft)

Updated life cycle table to match transition descriptions for persistent-nontransactional in-
stances. Clarified that all data accessed while a datastore transaction is in progress will be
transactional.

Added a discussion on inheritance issues for persistence capable classes.

Added class JDOHelper with static methods to avoid calling JDO specific methods on Per-
sistenceCapable classes.

Added a discussion on using the life cycle methods of PersistenceManager to clarify that
the correct method must be called if an instance that implements a Collection interface is
to be a parameter.

Query use of operator = was extended to include pre- and post-increment and -decrement
operators.

Query variables need not be unique; if they need to be unique, then uniqueness can be
specified with an additional query term.

Query examples were clarified as to their intent.

The terms persistent, non-persistent, transient were made consistent throughout the doc-
ument. “Persistent field” and “non-persistent field” refer to fields as declared in the JDO
metadata. “Transient field” refers to the field modifiers (orthogonal to persistent/non-per-
sistent) and “transient instance” refers to an instance of a persistence capable class that is
not persistent. “Persistent instance” refers to an instance of a persistence capable class that
is persistent.

Derived fields were removed. These fields were supposed to be non-persistent fields
whose values depended on values of persistent fields. For example, age depends on birth-
date. The application will have to have a method age() instead of an instance variable age.

Transactional non-persistent fields were added. These fields have their values saved and
restored during rollback transitions along with persistent fields.

More details were added on use of JDO in the EJB environment.

C.7 Changessince Draft 0.7

JDO20

Binary compatibility table was added to 2.1.1.
Optional features were added to Portability Guidelines.

Section 5.5.2 was clarified to require that the JDO identity instance can be obtained imme-
diately after the transition from transient to persistent-new.

The treatment of marking fields dirty for hidden fields was changed.

A table of arithmetic operators was added to the Query section.

287 May 16, 2005

Java Data Objects 2.0

C.8 Changessince Draft 0.8

Query filter defaults to “true” if not specified.

Added java.lang.BigInteger, java.lang.BigDecimal to object model.
Added cast operator (class) to query filter syntax.

Added bitwise invert operator to query filter syntax.

Added unary + to query filter syntax.

Added parentheses to query filter syntax.

Added String methods beginsWith and endsWith to query filter syntax.
Added chapter for StateManager interface.

Rewrote entire chapter on Reference Enhancer.

Updated PersistenceCapable interface to match Reference Enhancer.
Removed PersistenceManager.setObjectId.

Updated XML to conform to xml4j DOM and Apache/Xerces verifying parsers.
Added second-class XML attribute to field element.

Added null-value XML attribute to field element. This attribute specifies the behavior of
the runtime system when a null-valued field mapped to a non-nullable datastore element
is stored. The user can choose to throw an exception or to convert the null value to a default
datastore value.

Changed the description of life cycle states and enhancer to indicate that primary key field
access is always permitted, regardless of the life cycle state.

Added Extent chapter. The Extent interface was defined to be the result type of Persis-
tenceManager.getExtent. The interface does not have the methods of Collection, so it can
be used only for iteration or for specifying the candidate instances for Query.

Fields in an inherited class may not be managed by a persistence capable class. It is a future
objective to allow a class to manage the state of inherited fields if it directly derives from a
non-persistence capable class.

Clarified the behavior of null parameters in calls to PersistenceManager. Null values are
permitted as parameters for PersistenceCapable instances, and permitted as elements of
Collection and Object[] parameters, but are not permitted as parameters for Collection and
Object][].

Added JDOPermission class to allow security management to enable jdo implementations
without requiring ReflectPermission, which is too permissive.

C.9 Changessince Draft 0.9

JDO20

Updated XML Metadata

¢ Added xml version number

Changed definition of class element to allow multiple field, vendor elements

Added jdo element, which contains multiple package elements

Added key-type to field element for Map types.

Changed key-type in class element to identity-type

Changed key-class in class element to objectid-class

Added inverse to field element for managed relationships

288 May 16, 2005

Java Data Objects 2.0

¢ Added has-extent to class element
Fixed missing “static” in generated jdoInheritedFieldCount.

Fixed jdoGetXXX/jdoSetXXX in enhanced code for non-dfg fields. Transient instances
would have thrown null pointer exception.

Fixed missing generated method in PersistenceCapable: PersistenceCapable jdoNewIn-
stance(StateManager sm)

Fixed the reference to the Connector Architecture in Appendix A.

Updated ordering to include expressions and restrict the types of ordering expressions to
primitives except boolean, wrappers except Boolean, BigDecimal, BigInteger, and Date.

Removed bitwise AND, OR, and XOR from query operators.

Changed signatures of PersistenceManager methods getObjectByld and getTransactiona-
lInstance to include a boolean flag indicating whether to validate that the instance exists
in the datastore.

Clarified that getObjectld returns the identity as of the beginning of the transaction, in case
the identity is being modified in the transaction.

C.10 Changessincedraft 0.91

JDO20

Changed xml has-extent to requires-extent

Corrected the signature of replacingIntField in StateManager.

Corrected the example code generated for PersistenceCapable jdoReplaceField.
Corrected the name of the verify parameter to validate in the signature of getObjectByld.
Removed getTransactionallnstance in favor of overloading the meaning of getObjectByld.

Changed the requirement to expose the hollow state to the application. A JDO implemen-
tation might perform a state transition of a hollow instance as if the application had read
a field.

Changed inheritance rules to allow non-persistence-capable classes to have persistence-ca-
pable superclasses and subclasses.

Corrected the description of the field name in the markDirty method so an unqualified
name refers to the field in the most-derived class.

Corrected the signature of the newInstance method in JDOHelper to return Object.

Updated the instance callback description to include the rationale and environment for
callbacks.

Updated makePersistent and deletePersistent to remove the restriction that the class of the
instances must have an Extent.

The behavior of failing instances in the life cycle methods was clarified to specify that all
instances will be attempted, and all failing instances will be included in the exception.

The newCollectionInstance was modified to include an initialContents parameter.

A new method newMaplnstance was created to allow construction of a second class map
instance.

Optimistic transaction management was clarified to specify that instances accessed during
an optimistic transaction are not enlisted in any datastore transaction until commit.

The ordering specification was modified to include String.

The isEmpty method was added to the allowed Collection methods in query.

289 May 16, 2005

Java Data Objects 2.0

The treatment of null-valued collection fields was specified to be identical to fields con-
taining empty collections.

Specified the behavior of the iterator of an Extent if there are deleted or newly persistent
instances in the Extent.

The chapter on EJB has been substantially redone.
Exceptions were updated as to the contents of the failed object array.

The meaning of JDOHelper.getObjectld versus PersistenceManager.getObjectld was clar-
ified with regard to change of identity within a transaction.

Fixed (removed) all references to reference parameter in StateManager.

Changed interface in PersistenceCapable for creating new instances, registering the Persis-
tenceCapable class with the runtime, and managing minimal “reflective” metadata for the
runtime (managed field names and types).

Added chapters for JDOHelper and JDOImplHelper.

C.11 Changessincedraft 0.92

PersistenceManager methods that take a collection or array of instances have been
changed to include All in their names.

Text throughout the document has been clarified to refer to the specific exception thrown.
Corrected sample code generated by the enhancer.

Added PersistenceManagerFactory methods getPersistenceManager(String userid, String
password).

Static fields for values of jdoFlags were added to the PersistenceCapable interface.

A new ELEMENT array was added to the XML metadata to specify for array types wheth-
er the elements are embedded or not.

Clarified the possible treatment of jdoFlags by the StateManager, and the handling of is-
Loaded.

Added methods PersistenceManager.getTransactionalObjectld, PersistenceCapable.jdo-
GetTransactionalObjectld, and JDOHelper.getTransactionalObjectld to cover the case of
changing primary key in a transaction.

Changed the requirement for a compliant implementation to support all Collection types.
The behavior of all Collection types is specified, but only Collection, Set, and HashSet are
required.

Clarified the semantics of getObjectld with the validate flag set to true when the instance
is in the cache, for the cases of transactional v. nontransactional instances.

Changed failedObjectArray to failedObject, and nestedException to nestedExceptionAr-
ray in JDOException.

C.12 Changessincedraft 0.93

JDO20

Removed the requirement for application identity key classes to implement equals for all
object types that include the correct name and type fields.

Changed the state transition of persistent-deleted to be unchanged by refresh.
Added a generated constructor jdoNewObjectldInstance to facilitate key class handling.

Added a generated constructor jdoNewInstance (StateManager sm, Object oid) to facilitate
key class handling.

290 May 16, 2005

Java Data Objects 2.0

Added generated jdoCopyKeyFieldsToObjectld methods to facilitate key class handling.
Added nested interface ObjectldFieldManager to facilitate key class handling.

Added PersistenceManagerFactory properties ConnectionFactory2 and
ConnectionFactory2Name for application server optimistic transaction support.

Added loadFactor to the newCollectionInstance method.

Clarified handling of getObjectld, getObjectByld, and validate.
Added methods close(Iterator) and closeAll() to Extent.

Added methods close (Object queryResult) and closeAll() to Query.
Updated EJB chapter to clarify life cycle changes.

Removed inverse from XML metadata.

Corrected some code examples in reference enhancer.

Added methods to support different query languages: PersistenceManager.newQuery
(String language, Object query) and Set supportedQueryLanguages().

Added nested extensions, and package extensions to xml.

C.13 Changessincedraft 0.94

JDO20

Added PersistenceManager and PersistenceManagerFactory methods to support the Mul-
tithreaded property. This property indicates that the application is multithreaded (multi-
ple threads will access instances managed by the PersistenceManager).

Removed the PersistenceCapable constructor that takes StateManager as an argument.
The helper methods newInstance will use the default constructor instead, and will create
protected default constructor if none exists.

Removed jdoVersionUID and replaced it with explicit byte[] jdoFieldFlags and Class jdoP-
ersistenceCapableSuperclass.

Added static fields to define values for jdoFieldFlags elements.
Added a chapter on JDOPermission.
Added optional extension element to xml elements array, collection, and map.

Added Multithreaded property to PersistenceManager, which indicates whether the Per-
sistenceManager must synchronize accesses from multiple application threads.

Added allowNulls parameter to PersistenceManager newMapInstance.
Changed the name of the method get/DOImplHelper to getInstance.

Clarified the handling of abstract classes, which might be PersistenceCapable (for the ben-
efit of concrete subclasses).

Removed the requirement for implementations to track modifications made to arrays.

Removed method getProperties from PersistenceManager. This method now is in Persis-
tenceManagerFactory only.

Removed supportedQuery from PersistenceManager. This method has been replaced by
supportedOptions, from which supported query languages should be available.

Added a method supportedOptions to PersistenceManagerFactory for the application to
determine which optional features are supported by an implementation.

Added query BNF chapter.

291 May 16, 2005

Java Data Objects 2.0

C.14 Changessincedraft 0.95 (Proposed Final Draft)

Defined the term “Managed Fields” to mean persistent or transactional fields.

Clarified the treatment of non-managed identity if multiple instances are changed or de-
leted.

Removed the requirement that a transaction be active to make an instance transactional or
nontransactional.

Reorganized the State Transitions table to indicate that some state transitions are impossi-
ble (e.g. without a transaction active, there can be no new instances).

Clarified the requirement for a no-args constructor in PersistenceCapable classes and su-
perclasses.

Fixed bug in PersistenceCapable.replaceStateManager code generation.

Removed properties minPool, maxPool, msWait, and ConnectionDriverName from the in-
terface. These can be specified by PersistenceManagerFactory implementations as needed.

Reorganized sections 20.14 through 20.16 for clarity.

Changed jdoFieldFlags to be independent flags, allowing for identification of non-tran-
sient (serializable) fields.

Reworded the transaction synchronization sections for clarity.

Reworded the optimistic transaction section for clarity.

Modified the String concatenation operator (+) to allow only String + String, not String +
primitive.

Clarified that String comparisons are lexicographical (not Locale-specific).

Added descriptions of JDOUserException for transaction not active and object deleted.

C.15 Changessincedraft 0.96

JDO20

Changed to specify that String comparisons in queries are based on an ordering not spec-
ified by JDO, allowing for locale-specific orderings by JDO implementations.

Added a portability requirement for object id classes to have a toString() method and a
public constructor that takes a String argument. Added newObjectldInstance (Class,
String) to PersistenceCapable, jdoNewObjectldInstance(String) to PersistenceCapable and
newObjectldInstance(Class, String) to JDOImplHelper.

Split PersistenceCapable.ObjectldFieldManager into two interfaces: PersistenceCa-
pable.ObjectldFieldSupplier to supply values and PersistenceCapable.ObjectldFieldCon-
sumer to receive values.

Added the ability to construct a PersistenceManagerFactory from a Properties instance
containing keys and values of properties. Added a convenience method to JDOHelper get-
PersistenceManagerFactory(Properties) to call the method in the implementation class.

Changed SCO factory name to newTrackedInstance, and removed the simultaneous set-
ting of the field value in the persistence-capable instance. The user must assign the newly
created instance to a field directly.

Added a parameter to newTrackedInstance to allow the user to specify a comparator for
Collection or Map.

Modified the behavior of makePersistent with regard to reachable instances. The newly
reachable instances have the characteristics of persistent-new until transaction end, at
which time they either become persistent or revert to transient.

292 May 16, 2005

Java Data Objects 2.0

Made support for application changes to application object identity an optional feature.

Methods retrieve and retrieveAll were added to PersistenceManager to allow the applica-
tion to give the implementation a hint that the instances are going to be used by the appli-
cation, and the implementation can perform some optimized fetching of the instances.

Introduced the notion of provisional persistence. Instances that are reachable by persistent
fields from instances made persistent become provisionally persistent. They behave like
persistent instances until commit, at which time if they are no longer reachable from per-
sistent instances they revert to transient.

Type-import-on-demand (import <package-name>.*) has been added to query declareIm-
ports. The Java rules for determining the package for an unqualified name are followed by
query.

The newQuery methods that take both Extent and Class have been changed to eliminate
the Class argument. The Class is taken from the Extent.

The Reference Enhancement chapter was reorganized to make it easier to determine:
changes to PersistenceCapable root classes; changes to non-root classes; and changes to
non-PersistenceCapable classes.

Changed the signatures of StateManager interface methods to take PersistenceCapable as
the first argument, to avoid a cast operation.

Defined a new method to be enhanced into the least-derived PersistenceCapable class to
handle copying key fields from oid into the instance: jdoCopyKeyFieldsFromObjectld
(Object oid).

Removed that makeDirty in JDOHelper throws an exception in the case that the instance
is not transient and the field is not managed. This is only one case that throws an exception;
the other cases silently ignore the condition. To be consistent, this condition will also si-
lently return.

C.16 Changessincedraft 0.97

JDO20

Clarified comparisons in JDOQL for wrapped types and promotion of numeric types.

Made static method getPersistenceManagerFactory(Properties) mandatory for JDO imple-
mentations.

Added PersistenceManagerFactory property Connect i onDri ver Namne.

Added vendor-specific global configuration data in the first part of a XXX jdo file. For this,
the DTD was changed from <!ELEMENT jdo (package)+> to <!ELEMENT jdo (package)+
(extension)*>.

Clarified that the class of a persistent instance must be preserved, unless some outside
change is made to the datastore.

Clarified that parameters to query must be persistent, associated with the same Persis-
tenceManager as the Query.

Clarified that for portability, the instances in a candidate collection must be persistent, as-
sociated with the same PersistenceManager as the Query.

Changed the semantics of retrieve and retrieveAll to require that the PersistenceManager
load all fields of the parameter instances, so a subsequent call to makeTransient can oper-
ate on a valid instance (all persistent fields loaded).

Added description of class loaders to the PersistenceManager chapter 12.5.

Clarified that there are no default values for flags in getPersistenceManager.

293 May 16, 2005

Java Data Objects 2.0

Added transaction flag restoreValues, which determines the treatment of persistent in-
stances at transaction rollback.

Changed the specification of application identity key classes to require (instead of recom-
mend) that the class override the toString method and provide a public constructor that
takes only a String parameter.

Clarified query comparisons for persistent and transient parameters and candidate in-
stances.

C.17 Changessince Approved Dr aft

JDO20

Changed 3.2.1 to correct the interface name from javax.jdo.PersistenceCapable to jav-
ax.jdo.spi.PersistenceCapable.

Fixed typo in 5.5.6. Changed “The instance loses its JDO Identity and its association with
the Per si st enceManager.” to *“The instance retains its JDO Identity and its asso-
ciation with the Per si st enceManager . ”

In 5.4.1 changed the wording regarding field types of application identity key fields to re-
quire portable applications to use only primitive, St r i ng, Dat e, and Nunber types.

In 5.4.1 added a restriction that application object id instances must not have any key fields
with a value of null.

Added to 5.6.1 that the Per si st enceManager must not hold a strong reference to a per-
sistent-nontransactional instance, so that it may be garbage collected.

In 5.8, clarified that a before image might be created on update depending on the imple-
mentation of optimistic verification.

Corrected table 2 for rollback entries; changed the flag that affects the operation from re-
tainValues to restoreValues.

In Figure 13 Note 23, fixed “A persistent-dirty instance transitions to persistent-nontrans-
actional... at r ol | back when Rest or eVal ues settot rue.”

In Figure 13 Note 18 fixed from “The instance is cleared of values.” to “No changes are
made to the values.”

Clarified 6.3 to discuss the treatment of Second Class Objects embedded in First Class Ob-
jects. SCO instances of PersistenceCapable types have no standard treatment.

In 8.5, fixed missing property javax.jdo.option.ConnectionDriverName in JDOHelper list
of standard properties for getPersistenceManagerFactory.

Added new section 9.5 for new security checking for StateManager. The new authorization
strategy does not require that the persistence-capable classes be authorized for JDOPer-
mission(“setStateManager”).

Fixed 10.3 the description of jdoPreClear does not include deleted instances, as these in-
stances do not transition to hollow.

Fixed typos in 11.2, 12.6.5: changed “JDCDat ast or eExcepti on” to “JDCDat aS-
t oreExcepti on”

Inserted new 11.4 to add PersistenceManagerFactory close method.

Added to 12.6 “In a non-managed environment, if the current transaction is active, close()
throws JDQUser Excepti on.”

In 12.6.1, added new methods retrieveAll (Collection, boolean) and retrieveAll (Object[],
boolean).

294 May 16, 2005

Java Data Objects 2.0

JDO20

In 12.6.1, clarified the description of retrieve.

In 12.6.4, clarified the description of getExtent to throw JDOUserException if the metadata
does not require an extent to be maintained.

In 12.6.5, changed code example from aPersistenceManager.getObjectByld (pc.getPersis-
tenceManager().getObjectld(pc), validate) to aPersistenceManager.getObjectByld
(JDOHelper.getObjectld(pc), validate). This avoids using the PersistenceCapable interface
from user code.

In 12.6.5, changed the exception thrown by getObjectByld to JDOCbj ect Not FoundEx-
cepti on.

In 12.6.6, clarified description of makeTransient to make clear that the persistence manager
is not responsible for clearing references to parameter instances to avoid making them per-
sistent by reachability at commit.

In 12.6.6, clarified description of makeTransactional to include throwing JDOUnsupport-

edOptionException if a parameter is transient but TransientTransactional is not support-
ed.

Fixed typo in 13.4.2. Changed “The r et ai nVal ues setting currently active is returned.”
to “The r est or eVal ues setting currently active is returned.”

Fixed typo in 13.4.2. Changed “If this flag is set to t r ue, then restoration of persistent in-
stances does not take place after transaction rollback.” to “If this flag is set to t r ue, then
restoration of persistent instances takes place after transaction rollback.”

Corrected 13.4.3 to remove the requirement that Transaction must implement javax.trans-
action.Synchronization.

In 13.5, changed the behavior of failed optimistic transactions. The commit method throws
a JDOOptimisticVerificationException and automatically rolls back the transaction.

Clarified 14.3 that variable declarations each require a type and a name, and there must be
separating semicolons only if more than one declaration.

Clarified 14.3 that “candidate instances” are a subset of the candidate collection that are
instances of the candidate class or a subset of the candidate class.

Clarified 14.4 that “compile time” refers to “JDOQL-compile time”.

Changed 14.5 to state “If the candidates are not specified, then the candidate extent is the
extent of instances in the datastore with subclasses t r ue.”

Clarified 14.6.2 if a cast operation would throw Cl assCast Except i on, it is treated the
same as a NullPointerException.

Clarified 14.6.5 the semantics of “contains” is “exists”. This clarification is needed to pro-
vide a rational meaning if the contains clause is negated.

Clarified in 15 that Extents are not managed for instances of embedded fields.

In 15.3, clarified that the iterator method will throw an exception if NontransactionalRead
is not supported.

In 17.1, added get Cause(), get Fai | edOhj ect () and get Nest edExcepti ons() to
the description of JDOEXcept i on.

In 17.1, fixed description of JDOUnsuppor t edOpt i onExcept i on: “This class is a de-
rived class of JDOUser Except i on. This exception is thrown by an implementation to in-
dicate that it does not implement a JDO optional feature.”

In17.1.9, added new JDOObj ect Not FoundExcept i on to report instances that cannot be
found in the datastore.

295 May 16, 2005

Java Data Objects 2.0

In 17.1.10, added new JDOOpt i mi sti cVeri fi cati onExcepti on to report optimistic
verification failures during commit.

Changed chapter 18 introduction to describe new policy for naming and accessing meta-
data files.

In 18.3, changed name scoping for per si st ence- capabl e- super cl ass.

Corrected 18.4 to correct an inconsistency with 20.9.6: “null-valued fields throw a
JDOUser Except i on when the instance is flushed to the datastore and the datastore
does not support null values.”

Clarified in 18.4 that Extents are not managed for instances of embedded fields.

Updated 18.4.1 and 18.4.2 to clarify type name scoping: The type names use Java rules for
naming: if no package is included in the name, the package name is assumed to be the
same package as the persistence-capable class. Inner classes are identified by the "$" mark-
er.

In 18.6, added DOCTYPE description to describe access to the public DTD at ja-
va.sun.com/dtd.

Changed 19.3 to reflect change in portable object identity field types.

Changed 20.9.6 to correct an inconsistency with 18.4: “null-valued fields throw a
JDOUser Except i on when the instance is flushed to the datastore and the datastore
does not support null values.”

Changed 20.17 and 20.20.4 to modify security checking for JDOPermission(“setStateMan-
ager”).
Changed 20.17 to correct the access modifier of jdoPreSerialize from private to protected.

Changed 20.20.1 to correct the interface name from javax.jdo.PersistenceCapable to jav-
ax.jdo.spi.PersistenceCapable.

Added new JDOPermission(”closePersistenceManagerFactory”) to check that the caller of
PersistenceManagerFactory.close() is authorized.

Corrected Chapter 23 to remove alternative Name (ArgumentList,,;) from MethodInvo-
cation nonterminal in the BNF.

Corrected Chapter 23 to remove the exclusive or operator from the BNF.

Removed Appendix B.3 since it no longer reflects reality.

C.18 Changessince1.0.1

JDO20

In 5.4, added classes used as an application identity class where there is a single applica-
tion identity field.

In 6.4.3, added interfaces and classes required to be supported as persistent field types:
LinkedHashMap, LinkedHashSet, LinkedList, and Currency.

Added to 7.3 .1 a method to retrieve the version of an instance.

Added to 7.4.6 a method to determine if an instance is detached.

Changed 7.12 to add methods handling Simpleldentity.

Added to 8.5 new helper methods for getting PersistenceManagerFactory.

Added to 8.6 new options to specify the mapping for a PersistenceManagerFactory.
Updated 10 to disaggregate instance callbacks.

296 May 16, 2005

Java Data Objects 2.0

JDO20

Changed 11.6 to add javax.jdo.option.BinaryCompatibility, javax.jdo.option.Uncon-
strainedQueryVariables, javax.jdo.query.SQL, and javax.jdo.option.GetDataStoreConnec-
tion to optional features that can be supported by the implementation.

Added to 11.8 a second level cache management AP
Added to 11.9 life cycle event listeners.

Changed requirements for PersistenceCapable to refer to BinaryCompatibility through-
out.

Added new method in 12.6.4 getExtent(Class persistenceCapableClass).
Added to 12.6 a discussion on using interfaces with Extents.

Added to 12.6.1 a new method refreshAll(JDOException ex) to refresh instances after a
failed optimistic transaction.

Added to 12.6.5 new methods getObjectsByld to retrieve multiple instances based on id.
Added to 12.6.5 a new methods getObjectByld to retrieve an instance based on class and
key.

Added 12.6.6 newInstance method to create instances of persistence-capable interfaces.
Added 12.6.8 methods to detach and attach instances for multi-tier applications.

Added 12.7 methods to specify how instances are fetched from the datastore.

Added 12.8 a method to explicitly flush changes to the datastore.

Added to 12.11 methods to access multiple User Objects.

Added 12.14 new method getSequence.

Added 12.15 new LifecycleEventListener.

Added 12.16 new method getDataStoreConnection.

Clarified 13.4.4 if a transaction is active when begin is called, or a transaction is not active
when commit or rollback is called, JDOUserException is thrown.

Added 13.4.5 get/setRollbackOnly to the Transaction interface.

Added to 14.5 newNamedQuery method.

Added to 14.6.1 setParameters methods to bind parameters to query instances.

Added to 14.6.2 the requirement for support of public final static fields in query filters.
Added to 14.6.2 table with supported methods on Collection, Map, and String.

Added to 14.6.2 static method JDOHelper.getObjectld(Object) to allow use of object id in
queries.

Added after 14.6.7 new query elements for uniqueness, result, result class, grouping, and
result cardinality limits.

Added after 14.6.12 a table for interactions among new query elements.

Added after 14.6 a new section to describe delete by query.

Added after 14.6 a new section to describe support for SQL native queries.
Changed 14.6.6 to permit ordering on boolean fields as a non-portable extension.
Moved Chapter 15 Extent to Chapter 19.

Added new Chapter 15 with object-relational mapping examples.

Moved Chapter 18 to Chapter 25 for JDO 1.0.1 XML metadata.

Added object-relational mapping metadata to Chapter 18.

297 May 16, 2005

Java Data Objects 2.0

JDO20

Added 20.10 to discuss Binary Compatibility portability implications.
Renumbered Chapter 20 Reference Enhancer to Chapter 21.
Added new methods to Chapter 21 to support detached instances.

Updated 21.20.7 to correct a bug in the specification and implementation of getManaged-
FieldCount.

Renumbered Chapter 21 State Manager to Chapter 22.
Added new methods to Chapter 22 to support detached instances.

Updated 24.6 BLOB/CL OB datatype support to reflect that this functionality is part of JDO
2.0.

Updated 24.8 Case-Insensitive Query to reflect that this functionality is part of JDO 2.0.
Updated 24.13 Projections in query to reflect that this functionality is part of JDO 2.0.
Updated 24.16 Distributed object support to reflect that this functionality is part of JDO 2.0.

Updated 24.17 Object-Relational Mapping to reflect that this functionality is part of JDO
2.0.

Removed B.2 which discussed implications of removing PersistenceCapable.

298 May 16, 2005

| ndex

A Extent 104, 217

accessDeclaredM embers 255 Extent iterator 217

afterCompletion 48 F

application 39 Field Numbering 225

associated object 118 G

B Generated fields 231, 232
beforeCompl etion 48 Generated methods 232

begin 130 Generated static initializer 232
Binary Compatibility 23 getFieldNames 82

Binary compatibility 221 getFieldTypes 82

C getlgnoreCache 104, 140

Cache management 102 getJDOImplHel per 255

Change of identity 42 getMultithreaded 118

Cloning 226 getObjectByld 105, 107

Closing Query results 148 getObjectld 106

Collection 102 getObjectldClass 119

commit 130, 131 GetPersistenceManager 70

compile 140 getPersistenceManager 93, 128, 138
Connection 24, 29 getPersistenceM anagerFactory 119
connection 20, 28, 30, 125 getSynchronization 130

Connection Management 126 getTransactional Objectld 106
ConnectionFactory 93 getUserObject 118
copyKeyFieldsToObjectld 85 H

D Hollow 48

declarel mports 139 I

declareParameters 139 IgnoreCache 140

declareVariables 139 Inheritance 68, 225

Delete persistent instances 108 inheritance 197, 268
deletePersistent 108 Inner class 193, 268

Document Type Descriptor 205, 271 Instance life cycle management 107
E InstanceCallbacks 87

ELEMENT array 203, 271 Introspection (Java core reflection) 227
ELEMENT class 195, 268 isActive 128

ELEMENT collection 199, 270 J

ELEMENT extension 205, 271 JDO Identity 40, 47, 64, 71, 78, 105, 144, 219,
ELEMENT field 200, 269 251

ELEMENT jdo 194, 268 JDO identity 43

ELEMENT map 202, 271 JDO option 39, 50

ELEMENT package 194, 268 jdoCopyFields 246

evict 102 jdoCopyKeyFieldsToObjectld 234, 235, 237,
exceptions 188 238, 247, 248

execute 140 jdoFieldFlags 231
executeWithArray 141 jdoFieldNames 232, 238
executeWithMap 141 jdoFieldTypes 232, 238

Java Data Objects

| ndex

jdoFlags 230, 238 newQuery 136

jdoGetField 223, 224, 229, 241 Nontransactional 50

jdoGetM anagedFieldCount 241 Nontransactional Read 128
jdoGetObjectld 71, 78 NullCollection 95, 144
jdoGetPersistenceManager 70 @]

JDOH€elper 70, 77 Object Database 30
JDOImplHelper 82 object database 22, 23, 133
jdolnheritedFieldCount 232, 238 object equality 40
jdolsDeleted 72, 79 object identity 40, 222
jdolsDirty 72 Objectld class management 119
jdolsNew 72, 79 Optimistic 127, 129, 131
jdolsPersistent 72, 79 Optimistic transaction 53
jdolsTransactional 72, 78 Ordering 147

jdoMakeDirty 71 P

jdoNewlnstance 73, 235, 240, 241 persistence by reachability 47
JDOPermission("getM etadata’) 255 PersistenceCapable 70
JDOPermission("setStateM anager”) 255 PersistenceM anager 99
jdoPersistenceCapabl eSuperclass 232 PersistenceM anagerFactory 90
jdoPostLoad 87 Persistent-clean 49
jdoPreClear 88 Persistent-deleted 49
jdoPreSerialize 247 Persistent-dirty 48
jdoPreStore 88 Persistent-new 47
jdoProvideField 245 Persistent-nontransactional 52
jdoProvideFields 245 Portability Guidelines 216
jdoReplaceField 243 primary key 41
jdoReplaceFields 243, 244 Properties 94
jdoReplaceStateM anager 240 provisionally persistent 108
jdoSetField 223, 224, 229, 242, 243, 245 Q

jdoStateM anager 238 Query factory 104

M R

Make instances nontransactional 109 ReflectPermission 255

Make instances persistent 108 refresh 103

Make instances transactional 109 registerClass 83, 239

Make instances transient 108 relational 19, 22, 23, 30, 37, 133, 229
makeNontransactional 109 restoreVaue 47
makePersistent 108 RestoreValues 50, 51, 80, 129
makeTransactional 109 RetainValues 129
makeTransient 108 retrieve 103

Membership 157 retrieveAll 103

Multithreaded 118 rollback 130

N S

Namespaces in queries 135 Serialization 225
newlnstance 83 setCandidates 139
newObjectldl nstance 85 setClass 138

Java Data Objects

| ndex

setFilter 139

setlgnoreCache 104, 140
setMultithreaded 118
setNontransactional Read 128
setNontransactional Write 128
setOptimistic 129
setOrdering 139
setRetainValues 129
setStateM anager 255
setSynchronization 129
setUserObject 118

SQL 133

static initialization 232

static initializer 239

Java Data Objects

supported query languages 95
supportedOptions 95
suppressA ccessChecks 255
Synchronization 118, 129
T

Threading 100

Transaction factory 104
Transient 47
Transient-clean 52
Transient-dirty 53

\Y

validate 105

w

writeObject 247

D Sun

microsystems

4140 Network Circle
Santa Clara, CA 95404

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 415 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388

Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

415 960-1300

Intercontinental Sales: 415 688-9000

	1 Introduction 19
	1.1 Overview 19
	1.2 Scope 20
	1.3 Target Audience 20
	1.4 Organization 20
	1.5 Document Convention 21
	1.6 Terminology Convention 21

	2 Overview 22
	2.1 Definitions 22
	2.1.1 JDO common interfaces 22
	2.1.2 JDO in a managed environment 23

	2.2 Rationale 25
	2.3 Goals 26

	3 JDO Architecture 28
	3.1 Overview 28
	3.2 JDO Architecture 29
	3.2.1 Two tier usage 29
	3.2.2 Application server usage 29

	4 Roles and Scenarios 33
	4.1 Roles 33
	4.1.1 Application Developer 33
	4.1.2 Application Component Provider 33
	4.1.3 Application Assembler 33
	4.1.4 Deployer 34
	4.1.5 System Administrator 34
	4.1.6 JDO Vendor 34
	4.1.7 Connector Provider 34
	4.1.8 Application Server Vendor 34
	4.1.9 Container Provider 35

	4.2 Scenario: Embedded calendar management system 35
	4.3 Scenario: Enterprise Calendar Manager 36

	5 Life Cycle of JDO Instances 38
	5.1 Overview 38
	5.2 Goals 39
	5.3 Architecture: 39
	5.4 JDO Identity 40
	5.4.1 Application (primary key) identity 42
	5.4.2 Single Field Identity 43
	5.4.3 Datastore identity 45
	5.4.4 Nondurable JDO identity 45

	5.5 Life Cycle States 46
	5.5.1 Transient (Required) 47
	5.5.2 Persistent-new (Required) 47
	5.5.3 Persistent-dirty (Required) 48
	5.5.4 Hollow (Required) 48
	5.5.5 Persistent-clean (Required) 49
	5.5.6 Persistent-deleted (Required) 49
	5.5.7 Persistent-new-deleted (Required) 49
	5.5.8 Detached-clean (Required) 50
	5.5.9 Detached-dirty (Required) 50

	5.6 Nontransactional (Optional) 50
	5.6.1 Persistent-nontransactional (Optional) 52

	5.7 Transient Transactional (Optional) 52
	5.7.1 Transient-clean (Optional) 52
	5.7.2 Transient-dirty (Optional) 53

	5.8 Optimistic Transactions (Optional) 53

	6 The Persistent Object Model 62
	6.1 Overview 62
	6.2 Goals 63
	6.3 Architecture 63
	6.4 Field types of persistence-capable classes 66
	6.4.1 Nontransactional non-persistent fields 66
	6.4.2 Transactional non-persistent fields 66
	6.4.3 Persistent fields 66

	6.5 Inheritance 68

	7 PersistenceCapable 70
	7.1 Persistence Manager 70
	7.2 Make Dirty 71
	7.3 JDO Identity 71
	7.3.1 Version 71

	7.4 Status interrogation 71
	7.4.1 Dirty 72
	7.4.2 Transactional 72
	7.4.3 Persistent 72
	7.4.4 New 72
	7.4.5 Deleted 72
	7.4.6 Detached 72

	7.5 New instance 73
	7.6 State Manager 73
	7.7 Replace Flags 73
	7.8 Replace Fields 73
	7.9 Provide Fields 74
	7.10 Copy Fields 74
	7.11 Static Fields 74
	7.12 JDO identity handling 74

	8 JDOHelper 77
	8.1 Persistence Manager 77
	8.2 Make Dirty 77
	8.3 JDO Identity 78
	8.4 JDO Version 78
	8.5 Status interrogation 78
	8.5.1 Dirty 78
	8.5.2 Transactional 78
	8.5.3 Persistent 79
	8.5.4 New 79
	8.5.5 Deleted 79
	8.5.6 Detached 79

	8.6 PersistenceManagerFactory methods 79

	9 JDOImplHelper 82
	9.1 JDOImplHelper access 82
	9.2 Metadata access 82
	9.3 Persistence-capable instance factory 83
	9.4 Registration of PersistenceCapable classes 83
	9.4.1 Notification of PersistenceCapable class registrations 83

	9.5 Security administration 84
	9.6 Application identity handling 85
	9.7 Persistence-capable class state interrogation 85

	10 InstanceCallbacks 87
	10.1 jdoPostLoad 87
	10.2 jdoPreStore 87
	10.3 jdoPreClear 88
	10.4 jdoPreDelete 88
	10.5 jdoPreDetach and jdoPostDetach 88
	10.6 jdoPreAttach and jdoPostAttach 89

	11 PersistenceManagerFactory 90
	11.1 Interface PersistenceManagerFactory 90
	11.2 ConnectionFactory 93
	11.3 PersistenceManager access 93
	11.4 Close the PersistenceManagerFactory 94
	11.5 Non-configurable Properties 94
	11.6 Optional Feature Support 95
	11.7 Static Properties constructor 95
	11.8 Second-level cache management 96
	11.9 Registering for life cycle events 97

	12 PersistenceManager 99
	12.1 Overview 99
	12.2 Goals 99
	12.3 Architecture: JDO PersistenceManager 99
	12.4 Threading 100
	12.5 Class Loaders 100
	12.6 Interface PersistenceManager 101
	12.6.1 Cache management 102
	12.6.2 Transaction factory interface 104
	12.6.3 Query factory interface 104
	12.6.4 Extent Management 104
	12.6.5 If the Class parameter of the getExtent method is an interface, then the interface must be identified in the metadata as having its extent managed. JDO Identity management 105
	12.6.6 Persistent interface factory 107
	12.6.7 JDO Instance life cycle management 107
	12.6.8 Detaching and attaching instances 110

	12.7 Fetch Groups 112
	12.7.1 The FetchPlan interface 113
	12.7.2 Defining fetch groups 115

	12.8 Flushing instances 117
	12.9 Transaction completion 118
	12.10 Multithreaded Synchronization 118
	12.11 User associated objects 118
	12.12 PersistenceManagerFactory 119
	12.13 ObjectId class management 119
	12.14 Sequence 119
	12.15 Life-cycle callbacks 120
	12.16 Access to internal datastore connection 123

	13 Transactions and Connections 125
	13.1 Overview 125
	13.2 Goals 125
	13.3 Architecture: PersistenceManager, Transactions, and Connections 125
	13.4 Interface Transaction 128
	13.4.1 PersistenceManager 128
	13.4.2 Transaction options 128
	13.4.3 Synchronization 129
	13.4.4 Transaction demarcation 130
	13.4.5 RollbackOnly 131

	13.5 Optimistic transaction management 131

	14 Query 133
	14.1 Overview 133
	14.2 Goals 133
	14.3 Architecture: Query 134
	14.4 Namespaces in queries 135
	14.5 Query Factory in PersistenceManager interface 136
	14.6 Query Interface 138
	14.6.1 Query execution 140
	14.6.2 Filter specification 141
	14.6.3 Parameter declaration 145
	14.6.4 Import statements 146
	14.6.5 Variable declaration 146
	14.6.6 Ordering statement 147
	14.6.7 Closing Query results 148
	14.6.8 Limiting the Cardinality of the Query Result 148
	14.6.9 Specifying the Result of a Query (Projections, Aggregates) 148
	14.6.10 Grouping Aggregate Results 150
	14.6.11 Specifying Uniqueness of the Query Result 150
	14.6.12 Specifying the Class of the Result 151
	14.6.13 Single-string Query element binding 152

	14.7 SQL Queries 153
	14.8 Deletion by Query 154
	14.9 Extensions 155
	14.10 Examples: 155
	14.10.1 Basic query. 155
	14.10.2 Basic query with ordering. 156
	14.10.3 Parameter passing. 156
	14.10.4 Navigation through single-valued field. 156
	14.10.5 Navigation through multi-valued field. 157
	14.10.6 Membership in a collection 157
	14.10.7 Projection of a Single Field 158
	14.10.8 Projection of Multiple Fields and Expressions 158
	14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance 159
	14.10.10 Aggregation of a single Field 160
	14.10.11 Aggregation of Multiple Fields and Expressions 160
	14.10.12 Aggregation of Multiple fields with Grouping 160
	14.10.13 Selection of a Single Instance 161
	14.10.14 Selection of a Single Field 161
	14.10.15 Projection of “this” to User-defined Result Class with Matching Field 162
	14.10.16 Projection of “this” to User-defined Result Class with Matching Method 162
	14.10.17 Projection of variables 163
	14.10.18 Deleting Multiple Instances 163

	15 Object-Relational Mapping 164
	15.1 Column Elements 165
	15.2 Join Condition 166
	15.3 Relationship Mapping 169
	15.4 Embedding 174
	15.5 Foreign Key Constraints 176
	15.6 Indexes 178
	15.7 Inheritance 180
	15.8 Versioning 180

	16 Enterprise Java Beans 185
	16.1 Session Beans 185
	16.1.1 Stateless Session Bean with Container Managed Transactions 186
	16.1.2 Stateful Session Bean with Container Managed Transactions 186
	16.1.3 Stateless Session Bean with Bean Managed Transactions 186
	16.1.4 Stateful Session Bean with Bean Managed Transactions 187

	16.2 Entity Beans 187

	17 JDO Exceptions 188
	17.1 JDOException 188
	17.1.1 JDOFatalException 189
	17.1.2 JDOCanRetryException 189
	17.1.3 JDOUnsupportedOptionException 189
	17.1.4 JDOUserException 189
	17.1.5 JDOFatalUserException 190
	17.1.6 JDOFatalInternalException 190
	17.1.7 JDODataStoreException 190
	17.1.8 JDOFatalDataStoreException 190
	17.1.9 JDOObjectNotFoundException 190
	17.1.10 JDOOptimisticVerificationException 190
	17.1.11 JDODetachedFieldAccessException 191

	18 XML Metadata 192
	18.1 ELEMENT jdo 194
	18.2 ELEMENT package 194
	18.3 ELEMENT interface 194
	18.4 ELEMENT property 194
	18.5 ELEMENT column 195
	18.6 ELEMENT class 196
	18.6.1 ELEMENT datastore-identity 197
	18.6.2 Element version 197

	18.7 ELEMENT join 198
	18.8 ELEMENT inheritance 198
	18.9 ELEMENT discriminator 198
	18.10 ELEMENT implements 199
	18.11 ELEMENT property 199
	18.12 ELEMENT foreign-key 199
	18.12.1 ATTRIBUTE update-action 199
	18.12.2 ATTRIBUTE delete-action 199
	18.12.3 ATTRIBUTE deferred 199
	18.12.4 ATTRIBUTE name 200

	18.13 ELEMENT field 200
	18.13.1 ELEMENT collection 202
	18.13.2 ELEMENT map 202
	18.13.3 ELEMENT array 203
	18.13.4 ELEMENT embedded 203
	18.13.5 ELEMENT key 203
	18.13.6 ELEMENT value 204
	18.13.7 ELEMENT element 204

	18.14 ELEMENT query 204
	18.15 ELEMENT sequence 204
	18.16 ELEMENT extension 205
	18.17 ELEMENT orm 205
	18.18 The jdo Document Type Descriptor 205
	18.19 The orm Document Type Descriptor 210
	18.20 Example XML file 214

	19 Extent 216
	19.1 Overview 216
	19.2 Goals 216
	19.3 Interface Extent 217

	20 Portability Guidelines 218
	20.1 Optional Features 218
	20.1.1 Optimistic Transactions 218
	20.1.2 Nontransactional Read 218
	20.1.3 Nontransactional Write 218
	20.1.4 Transient Transactional 218
	20.1.5 RetainValues 218
	20.1.6 IgnoreCache 218

	20.2 Object Model 218
	20.3 JDO Identity 219
	20.4 PersistenceManager 219
	20.5 Query 219
	20.6 XML metadata 220
	20.7 Life cycle 220
	20.8 JDOHelper 220
	20.9 Transaction 220
	20.10 Binary Compatibility 220

	21 JDO Reference Enhancer 221
	21.1 Overview 221
	21.2 Goals 221
	21.3 Enhancement: Architecture 222
	21.4 Inheritance 225
	21.5 Field Numbering 225
	21.6 Serialization 225
	21.7 Cloning 226
	21.8 Introspection (Java core reflection) 227
	21.9 Field Modifiers 227
	21.9.1 Non-persistent 227
	21.9.2 Transactional non-persistent 227
	21.9.3 Persistent 227
	21.9.4 PrimaryKey 228
	21.9.5 Embedded 228
	21.9.6 Null-value 228

	21.10 Treatment of standard Java field modifiers 229
	21.10.1 Static 229
	21.10.2 Final 229
	21.10.3 Private 229
	21.10.4 Public, Protected 229

	21.11 Users must enhance all classes, regardless of package, that reference any persistent or transactional field.Fetch Groups 229
	21.12 jdoFlags Definition 230
	21.13 Exceptions 230
	21.14 Modified field access 231
	21.15 Generated fields in least-derived PersistenceCapable class 231
	21.16 Generated fields in all PersistenceCapable classes 232
	21.17 Generated methods in least-derived PersistenceCapable class 232
	21.18 Generated methods in PersistenceCapable root classes and all classes that declare objectid-class in xml metadata: 234
	21.19 Generated methods in all PersistenceCapable classes 235
	21.20 Note that there is no modification of a user’s readObject. During the execution of readObject, a new transient instance is created. This instance might be made persistent later, but while it is being constructed by serialization, it rem...
	21.21 Example class: Employee 238
	21.21.1 Generated fields 238
	21.21.2 Generated static initializer 239
	21.21.3 Generated interrogatives 239
	21.21.4 Generated jdoReplaceStateManager 240
	21.21.5 Generated jdoReplaceFlags 240
	21.21.6 Generated jdoNewInstance helpers 240
	21.21.7 Generated jdoGetManagedFieldCount 241
	21.21.8 Generated jdoGetXXX methods (one per persistent field) 241
	21.21.9 Generated jdoSetXXX methods (one per persistent field) 242
	21.21.10 Generated jdoReplaceField and jdoReplaceFields 243
	21.21.11 Generated jdoProvideField and jdoProvideFields 245
	21.21.12 Generated jdoCopyField and jdoCopyFields methods 246
	21.21.13 Generated writeObject method 247
	21.21.14 Generated jdoPreSerialize method 247
	21.21.15 Generated jdoNewObjectIdInstance 247
	21.21.16 Generated jdoCopyKeyFieldsToObjectId 247
	21.21.17 Generated jdoCopyKeyFieldsFromObjectId 248
	21.21.18 Generated Detachable methods 248

	22 Interface StateManager 249
	22.1 Overview 249
	22.2 StateManager Management 249
	22.3 PersistenceManager Management 250
	22.4 Dirty management 250
	22.5 State queries 250
	22.6 JDO Identity 251
	22.7 Serialization support 251
	22.8 Field Management 251
	22.8.1 User-requested value of a field 252
	22.8.2 User-requested modification of a field 252
	22.8.3 StateManager-requested value of a field 253
	22.8.4 StateManager-requested modification of a field 254

	22.9 Detached instance support 254

	23 JDOPermission 255
	24 JDOQL BNF 256
	25 Items deferred to the next release 263
	25.1 Nested Transactions 263
	25.2 Savepoint, Undosavepoint 263
	25.3 Inter-PersistenceManager References 263
	25.4 Enhancer Invocation API 263
	25.5 Prefetch API 263
	25.6 BLOB/CLOB datatype support 263
	25.7 Managed (inverse) relationship support 264
	25.8 Case-Insensitive Query 264
	25.9 String conversion in Query 264
	25.10 Read-only fields 264
	25.11 Enumeration pattern 264
	25.12 Non-static inner classes 265
	25.13 Projections in query 265
	25.14 LogWriter support 265
	25.15 New Exceptions 265
	25.16 Distributed object support 265
	25.17 Object-Relational Mapping 265

	26 JDO 1.0.1 Metadata 267
	26.1 ELEMENT jdo 268
	26.2 ELEMENT package 268
	26.3 ELEMENT class 268
	26.4 ELEMENT field 269
	26.4.1 ELEMENT collection 270
	26.4.2 ELEMENT map 271
	26.4.3 ELEMENT array 271

	26.5 ELEMENT extension 271
	26.6 The Document Type Descriptor 271
	26.7 Example XML file 272

	27 Public Feedback Request 274
	27.1 Annotations for metadata 274
	27.2 Attach and detach life cycle listener callbacks 274
	27.3 Proxy support for detached instances 274
	27.4 Deleting detached instances 275
	27.5 Implicit variable declarations 275
	27.6 Shortcuts for certain JDOQL static methods 275
	27.7 Attribute names for column name 275
	27.8 Specification of indexes 276
	27.9 IdGenerator and Sequence are similar 276
	27.10 Embedded, dependent, and serialized values 276
	27.11 Deprecate dfgOnly parameter? 276
	27.12 Fetch Group definition in metadata 277
	27.13 Version information 277
	27.14 Single-string JDOQL 277
	27.15 Length, Precision and Scale 277
	27.16 Detachment Contract 277

	Appendix A: References 278
	Appendix B: Design Decisions 279
	B.1 Enhancer 279

	Appendix C: Revision History 280
	C.1 Changes since Draft 0.1 280
	C.1 Changes since Draft 0.2 280
	C.1 Changes since Draft 0.3 280
	C.1 Changes since Draft 0.4 280
	C.1 Changes since Draft 0.5 281
	C.1 Changes since Draft 0.6 (Participant Review Draft) 282
	C.1 Changes since Draft 0.7 282
	C.1 Changes since Draft 0.8 283
	C.1 Changes since Draft 0.9 283
	C.1 Changes since draft 0.91 284
	C.1 Changes since draft 0.92 285
	C.1 Changes since draft 0.93 285
	C.1 Changes since draft 0.94 286
	C.1 Changes since draft 0.95 (Proposed Final Draft) 287
	C.1 Changes since draft 0.96 287
	C.1 Changes since draft 0.97 288
	C.1 Changes since Approved Draft 289
	C.1 Changes since 1.0.1 291
	Figure 28: Standard plug-and-play between application programs and EISes using JDO 26
	Figure 29: Overview of non-managed JDO architecture 28
	Figure 30: Contracts between application server and native JDO resource adapter 31
	Figure 31: Contracts between application server and layered JDO implementation 32
	Figure 32: Scenario: Embedded calendar manager 35
	Figure 33: Scenario: Enterprise Calendar Manager 37
	Figure 34: Life Cycle: New Persistent Instances 57
	Figure 35: Life Cycle: Transactional Access 58
	Figure 36: Life Cycle: Datastore Transactions 58
	Figure 37: Life Cycle: Optimistic Transactions 58
	Figure 38: Life Cycle: Access Outside Transactions 59
	Figure 39: Life Cycle: Transient Transactional 59
	Figure 40: JDO Instance State Transitions 60
	Figure 41: Instantiated persistent objects 62
	Figure 42: Transactions and Connections 127

	chapter - 1 Introduction
	section - 1.1 Overview
	section - 1.2 Scope
	section - 1.3 Target Audience
	section - 1.4 Organization
	section - 1.5 Document Convention
	section - 1.6 Terminology Convention

	chapter - 2 Overview
	section - 2.1 Definitions
	subsection - 2.1.1 JDO common interfaces
	TableTitle - Table 1: Which Enhancement Interface is Used

	subsection - 2.1.2 JDO in a managed environment
	sectionheading - Enterprise Information System (EIS)
	sectionheading - EIS Resource
	sectionheading - Resource Manager (RM)
	sectionheading - Connection
	sectionheading - Application Component
	sectionheading - Session Beans
	sectionheading - Message-driven Beans
	sectionheading - Entity Beans
	sectionheading - Helper objects
	sectionheading - Container

	section - 2.2 Rationale
	figureHead - Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

	section - 2.3 Goals

	chapter - 3 JDO Architecture
	section - 3.1 Overview
	figureHead - Figure 2.0 Overview of non-managed JDO architecture

	section - 3.2 JDO Architecture
	subsection - 3.2.1 Two tier usage
	subsection - 3.2.2 Application server usage
	sectionheading - Resource Adapter
	sectionheading - Pooling
	sectionheading - Contracts
	figureHead - Figure 3.0 Contracts between application server and native JDO resource adapter
	figureHead - Figure 4.0 Contracts between application server and layered JDO implementation

	chapter - 4 Roles and Scenarios
	section - 4.1 Roles
	subsection - 4.1.1 Application Developer
	subsection - 4.1.2 Application Component Provider
	subsection - 4.1.3 Application Assembler
	subsection - 4.1.4 Deployer
	subsection - 4.1.5 System Administrator
	subsection - 4.1.6 JDO Vendor
	subsection - 4.1.7 Connector Provider
	subsection - 4.1.8 Application Server Vendor
	subsection - 4.1.9 Container Provider

	section - 4.2 Scenario: Embedded calendar management system
	figureHead - Figure 5.0 Scenario: Embedded calendar manager

	section - 4.3 Scenario: Enterprise Calendar Manager
	figureHead - Figure 6.0 Scenario: Enterprise Calendar Manager

	chapter - 5 Life Cycle of JDO Instances
	section - 5.1 Overview
	section - 5.2 Goals
	section - 5.3 Architecture:
	sectionheading - JDO Instances
	sectionheading - JDO State Manager
	sectionheading - JDO Managed Fields

	section - 5.4 JDO Identity
	sectionheading - Three Types of JDO identity
	sectionheading - Uniquing
	sectionheading - Change of identity
	sectionheading - JDO Identity Support
	subsection - 5.4.1 Application (primary key) identity
	subsection - 5.4.2 Single Field Identity
	subsection - 5.4.3 Datastore identity
	subsection - 5.4.4 Nondurable JDO identity

	section - 5.5 Life Cycle States
	sectionheading - Datastore Transactions
	subsection - 5.5.1 Transient (Required)
	subsection - 5.5.2 Persistent-new (Required)
	subsection - 5.5.3 Persistent-dirty (Required)
	subsection - 5.5.4 Hollow (Required)
	subsection - 5.5.5 Persistent-clean (Required)
	subsection - 5.5.6 Persistent-deleted (Required)
	subsection - 5.5.7 Persistent-new-deleted (Required)
	subsection - 5.5.8 Detached-clean (Required)
	subsection - 5.5.9 Detached-dirty (Required)

	section - 5.6 Nontransactional (Optional)
	subsection - 5.6.1 Persistent-nontransactional (Optional)

	section - 5.7 Transient Transactional (Optional)
	subsection - 5.7.1 Transient-clean (Optional)
	subsection - 5.7.2 Transient-dirty (Optional)

	section - 5.8 Optimistic Transactions (Optional)
	Body - A5.9-1 through A5.9-170 [
	TableTitle - Table 2: State Transitions

	Body -]error: a JDOUserException is thrown; the state does not change
	Body - unchanged: no state change takes place; no exception is thrown due to the state change
	Body - n/a: not applicable; if this instance is an explicit parameter of the method, a JDOUserException is thrown; if this instance is an implicit parameter, it is ignored.
	Body - impossible: the state cannot occur in this scenario
	Body -
	figureHead - Figure 7.0 Life Cycle: New Persistent Instances
	figureHead - Figure 8.0 Life Cycle: Transactional Access
	figureHead - Figure 9.0 Life Cycle: Datastore Transactions
	figureHead - Figure 10.0 Life Cycle: Optimistic Transactions
	figureHead - Figure 11.0 Life Cycle: Access Outside Transactions
	figureHead - Figure 12.0 Life Cycle: Transient TransactionalLife Cycle: Transient Transactional
	figureHead - Figure 13.0 Life Cycle: Detached
	figureHead - Figure 14.0 JDO Instance State Transitions
	step - 1. A transient instance transitions to persistent-new when the instance is the parameter of a makePersistent method.
	step - 2. A persistent-new instance transitions to hollow when the transaction in which it was made persistent commits.
	step - 3. A hollow instance transitions to persistent-clean when a field is read.
	step - 4. A persistent-clean instance transitions to persistent-dirty when a field is written.
	step - 5. A persistent-dirty instance transitions to hollow at commit or rollback.
	step - 6. A persistent-clean instance transitions to hollow at commit or rollback.
	step - 7. A transient instance transitions to transient-clean when it is the parameter of a makeTransactional method.
	step - 8. A transient-clean instance transitions to transient-dirty when a field is written.
	step - 9. A transient-dirty instance transitions to transient-clean at commit or rollback.
	step - 10. A transient-clean instance transitions to transient when it is the parameter of a makeNontransactional method.
	step - 11. A hollow instance transitions to persistent-dirty when a field is written.
	step - 12. A persistent-clean instance transitions to persistent-nontransactional at commit when RetainValues is set to true, at rollback when RestoreValues is set to true, or when it is the parameter of a makeNontransactional method.
	step - 13. A persistent-nontransactional instance transitions to persistent-clean when it is the parameter of a makeTransactional method.
	step - 14. A persistent-nontransactional instance transitions to persistent-dirty when a field is written in a transaction.
	step - 15. A persistent-new instance transitions to transient on rollback.
	step - 16. A persistent-new instance transitions to persistent-new-deleted when it is the parameter of deletePersistent.
	step - 17. A persistent-new-deleted instance transitions to transient on rollback. The values of the fields are restored as of the makePersistent method.
	step - 18. A persistent-new-deleted instance transitions to transient on commit. No changes are made to the values.
	step - 19. A hollow, persistent-clean, or persistent-dirty instance transitions to persistent- deleted when it is the parameter of deletePersistent.
	step - 20. A persistent-deleted instance transitions to transient when the transaction in which it was deleted commits.
	step - 21. A persistent-deleted instance transitions to hollow when the transaction in which it was deleted rolls back.
	step - 22. A hollow instance transitions to persistent-nontransactional when the NontransactionalRead option is set to true, a field is read, and there is either an optimistic transaction or no transaction active.
	step - 23. A persistent-dirty instance transitions to persistent-nontransactional at commit when RetainValues is set to true or at rollback when RestoreValues is set to true.
	step - 24. A persistent-new instance transitions to persistent-nontransactional at commit when RetainValues is set to true.

	chapter - 6 The Persistent Object Model
	section - 6.1 Overview
	figureHead - Figure 15.0 Instantiated persistent objects

	section - 6.2 Goals
	section - 6.3 Architecture
	sectionheading - Persistence-capable
	sectionheading - First Class Objects and Second Class Objects
	sectionheading - First Class Objects
	sectionheading - Second Class Objects
	sectionheading - Arrays
	sectionheading - Primitives
	sectionheading - Interfaces

	section - 6.4 Field types of persistence-capable classes
	subsection - 6.4.1 Nontransactional non-persistent fields
	subsection - 6.4.2 Transactional non-persistent fields
	subsection - 6.4.3 Persistent fields
	sectionheading - Precision of fields
	sectionheading - Primitive types
	sectionheading - Immutable Object Class types
	sectionheading - Mutable Object Class types
	sectionheading - Persistence-capable Class types
	sectionheading - Object Class type
	sectionheading - Collection Interface types
	sectionheading - Other Interface types
	sectionheading - Arrays

	section - 6.5 Inheritance

	chapter - 7 PersistenceCapable
	section - 7.1 Persistence Manager
	section - 7.2 Make Dirty
	section - 7.3 JDO Identity
	subsection - 7.3.1 Version

	section - 7.4 Status interrogation
	subsection - 7.4.1 Dirty
	subsection - 7.4.2 Transactional
	subsection - 7.4.3 Persistent
	subsection - 7.4.4 New
	subsection - 7.4.5 Deleted
	subsection - 7.4.6 Detached
	TableTitle - Table 3: State interrogation

	section - 7.5 New instance
	section - 7.6 State Manager
	section - 7.7 Replace Flags
	section - 7.8 Replace Fields
	section - 7.9 Provide Fields
	section - 7.10 Copy Fields
	section - 7.11 Static Fields
	section - 7.12 JDO identity handling
	sectionheading - interface ObjectIdFieldSupplier
	sectionheading - interface ObjectIdFieldConsumer
	sectionheading - interface ObjectIdFieldManager extends ObjectIdFieldSupplier, ObjectIdFieldConsumer
	sectionheading - Detachable

	chapter - 8 JDOHelper
	section - 8.1 Persistence Manager
	section - 8.2 Make Dirty
	section - 8.3 JDO Identity
	section - 8.4 JDO Version
	section - 8.5 Status interrogation
	subsection - 8.5.1 Dirty
	subsection - 8.5.2 Transactional
	subsection - 8.5.3 Persistent
	subsection - 8.5.4 New
	subsection - 8.5.5 Deleted
	subsection - 8.5.6 Detached

	section - 8.6 PersistenceManagerFactory methods

	chapter - 9 JDOImplHelper
	section - 9.1 JDOImplHelper access
	section - 9.2 Metadata access
	section - 9.3 Persistence-capable instance factory
	section - 9.4 Registration of PersistenceCapable classes
	subsection - 9.4.1 Notification of PersistenceCapable class registrations
	sectionheading - RegisterClassEvent
	sectionheading - RegisterClassListener

	section - 9.5 Security administration
	section - 9.6 Application identity handling
	section - 9.7 Persistence-capable class state interrogation

	chapter - 10 InstanceCallbacks
	section - 10.1 jdoPostLoad
	section - 10.2 jdoPreStore
	section - 10.3 jdoPreClear
	section - 10.4 jdoPreDelete
	section - 10.5 jdoPreDetach and jdoPostDetach
	section - 10.6 jdoPreAttach and jdoPostAttach

	chapter - 11 PersistenceManagerFactory
	section - 11.1 Interface PersistenceManagerFactory
	sectionheading - Construction by Properties

	section - 11.2 ConnectionFactory
	section - 11.3 PersistenceManager access
	section - 11.4 Close the PersistenceManagerFactory
	section - 11.5 Non-configurable Properties
	section - 11.6 Optional Feature Support
	section - 11.7 Static Properties constructor
	section - 11.8 Second-level cache management
	sectionheading - Evicting objects from the cache
	sectionheading - Pinning objects in the cache
	sectionheading - Unpinning objects in the cache

	section - 11.9 Registering for life cycle events

	chapter - 12 PersistenceManager
	section - 12.1 Overview
	section - 12.2 Goals
	section - 12.3 Architecture: JDO PersistenceManager
	section - 12.4 Threading
	section - 12.5 Class Loaders
	section - 12.6 Interface PersistenceManager
	sectionheading - Null management
	subsection - 12.6.1 Cache management
	subsection - 12.6.2 Transaction factory interface
	subsection - 12.6.3 Query factory interface
	subsection - 12.6.4 Extent Management

	sectionheading - Extents of interfaces
	subsection - 12.6.5 JDO Identity management

	sectionheading - Getting Multiple Persistent Instances
	sectionheading - Getting an Object by Class and Key
	subsection - 12.6.6 Persistent interface factory
	subsection - 12.6.7 JDO Instance life cycle management

	sectionheading - Make instances persistent
	sectionheading - Delete persistent instances
	sectionheading - Make instances transient
	sectionheading - Make instances transactional
	sectionheading - Make instances nontransactional
	subsection - 12.6.8 Detaching and attaching instances

	sectionheading - Closing the PersistenceManager
	sectionheading - Serializing Persistent Instances
	sectionheading - Explicit detach
	sectionheading - Attaching instances

	section - 12.7 Fetch Groups
	subsection - 12.7.1 The FetchPlan interface
	subsection - 12.7.2 Defining fetch groups

	section - 12.8 Flushing instances
	section - 12.9 Transaction completion
	section - 12.10 Multithreaded Synchronization
	section - 12.11 User associated objects
	section - 12.12 PersistenceManagerFactory
	section - 12.13 ObjectId class management
	section - 12.14 Sequence
	section - 12.15 Life-cycle callbacks
	sectionheading - InstanceLifecycleEvent

	section - 12.16 Access to internal datastore connection
	sectionheading - SQL Portability

	chapter - 13 Transactions and Connections
	section - 13.1 Overview
	section - 13.2 Goals
	section - 13.3 Architecture: PersistenceManager, Transactions, and Connections
	sectionheading - Connection Management Scenarios
	sectionheading - Native Connection Management
	sectionheading - Non-native Connection Management
	sectionheading - Optimistic Transactions
	figureHead - Figure 16.0 Transactions and Connections

	section - 13.4 Interface Transaction
	subsection - 13.4.1 PersistenceManager
	subsection - 13.4.2 Transaction options
	sectionheading - Nontransactional access to persistent values
	sectionheading - Optimistic concurrency control
	sectionheading - Retain values at transaction commit
	sectionheading - Restore values at transaction rollback
	subsection - 13.4.3 Synchronization
	subsection - 13.4.4 Transaction demarcation

	sectionheading - Non-managed environment
	sectionheading - Managed environment
	subsection - 13.4.5 RollbackOnly

	section - 13.5 Optimistic transaction management

	chapter - 14 Query
	section - 14.1 Overview
	section - 14.2 Goals
	section - 14.3 Architecture: Query
	section - 14.4 Namespaces in queries
	sectionheading - Keywords

	section - 14.5 Query Factory in PersistenceManager interface
	section - 14.6 Query Interface
	sectionheading - Persistence Manager
	sectionheading - Fetch Plan
	sectionheading - Query element binding
	sectionheading - Query options
	sectionheading - Query modification
	sectionheading - Query compilation
	subsection - 14.6.1 Query execution
	subsection - 14.6.2 Filter specification
	TableTitle - Table 4: Query Operators

	sectionheading - Methods
	TableTitle - Table 5: Query Methods
	subsection - 14.6.3 Parameter declaration

	sectionheading - Implicit parameter declaration
	subsection - 14.6.4 Import statements
	subsection - 14.6.5 Variable declaration

	sectionheading - Implicit variable declaration
	subsection - 14.6.6 Ordering statement
	subsection - 14.6.7 Closing Query results
	subsection - 14.6.8 Limiting the Cardinality of the Query Result
	subsection - 14.6.9 Specifying the Result of a Query (Projections, Aggregates)

	sectionheading - Distinct results
	sectionheading - Named Result Expressions
	sectionheading - Aggregate Types
	sectionheading - Primitive Types
	sectionheading - Null Results
	sectionheading - Default Result
	subsection - 14.6.10 Grouping Aggregate Results
	subsection - 14.6.11 Specifying Uniqueness of the Query Result

	sectionheading - Default Unique setting
	subsection - 14.6.12 Specifying the Class of the Result

	sectionheading - Result Class Requirements
	TableTitle - Table 6: Shape of Result (C is the candidate class)
	subsection - 14.6.13 Single-string Query element binding

	section - 14.7 SQL Queries
	TableTitle - Table 7: Shape of Result of SQL Query

	section - 14.8 Deletion by Query
	section - 14.9 Extensions
	section - 14.10 Examples:
	subsection - 14.10.1 Basic query.
	subsection - 14.10.2 Basic query with ordering.
	subsection - 14.10.3 Parameter passing.
	subsection - 14.10.4 Navigation through single-valued field.
	subsection - 14.10.5 Navigation through multi-valued field.
	subsection - 14.10.6 Membership in a collection
	subsection - 14.10.7 Projection of a Single Field
	subsection - 14.10.8 Projection of Multiple Fields and Expressions
	subsection - 14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance
	subsection - 14.10.10 Aggregation of a single Field
	subsection - 14.10.11 Aggregation of Multiple Fields and Expressions
	subsection - 14.10.12 Aggregation of Multiple fields with Grouping
	subsection - 14.10.13 Selection of a Single Instance
	subsection - 14.10.14 Selection of a Single Field
	subsection - 14.10.15 Projection of “this” to User-defined Result Class with Matching Field
	subsection - 14.10.16 Projection of “this” to User-defined Result Class with Matching Method
	subsection - 14.10.17 Projection of variables
	subsection - 14.10.18 Deleting Multiple Instances

	chapter - 15 Object-Relational Mapping
	sectionheading - Mapping Overview
	sectionheading - Mapping Strategies
	section - 15.1 Column Elements
	sectionheading - Example 1

	section - 15.2 Join Condition
	sectionheading - Example 2
	sectionheading - Example 3

	section - 15.3 Relationship Mapping
	sectionheading - Example 4
	sectionheading - Example 5
	sectionheading - Example 6
	sectionheading - Example 7
	sectionheading - Example 8

	section - 15.4 Embedding
	sectionheading - Example 9

	section - 15.5 Foreign Key Constraints
	sectionheading - Delete Action, Update Action
	sectionheading - Example 10

	section - 15.6 Indexes
	sectionheading - Unique Constraints
	sectionheading - Example 11

	section - 15.7 Inheritance
	section - 15.8 Versioning
	sectionheading - Example 12
	sectionheading - Example 13
	sectionheading - Example 14

	chapter - 16 Enterprise Java Beans
	section - 16.1 Session Beans
	subsection - 16.1.1 Stateless Session Bean with Container Managed Transactions
	subsection - 16.1.2 Stateful Session Bean with Container Managed Transactions
	subsection - 16.1.3 Stateless Session Bean with Bean Managed Transactions
	subsection - 16.1.4 Stateful Session Bean with Bean Managed Transactions

	section - 16.2 Entity Beans

	chapter - 17 JDO Exceptions
	section - 17.1 JDOException
	subsection - 17.1.1 JDOFatalException
	subsection - 17.1.2 JDOCanRetryException
	subsection - 17.1.3 JDOUnsupportedOptionException
	subsection - 17.1.4 JDOUserException
	subsection - 17.1.5 JDOFatalUserException
	subsection - 17.1.6 JDOFatalInternalException
	subsection - 17.1.7 JDODataStoreException
	subsection - 17.1.8 JDOFatalDataStoreException
	subsection - 17.1.9 JDOObjectNotFoundException
	subsection - 17.1.10 JDOOptimisticVerificationException
	subsection - 17.1.11 JDODetachedFieldAccessException

	chapter - 18 XML Metadata
	section - 18.1 ELEMENT jdo
	section - 18.2 ELEMENT package
	section - 18.3 ELEMENT interface
	section - 18.4 ELEMENT property
	section - 18.5 ELEMENT column
	section - 18.6 ELEMENT class
	subsection - 18.6.1 ELEMENT datastore-identity
	subsection - 18.6.2 Element version

	section - 18.7 ELEMENT join
	section - 18.8 ELEMENT inheritance
	section - 18.9 ELEMENT discriminator
	section - 18.10 ELEMENT implements
	section - 18.11 ELEMENT property
	section - 18.12 ELEMENT foreign-key
	subsection - 18.12.1 ATTRIBUTE update-action
	subsection - 18.12.2 ATTRIBUTE delete-action
	subsection - 18.12.3 ATTRIBUTE deferred
	subsection - 18.12.4 ATTRIBUTE name

	section - 18.13 ELEMENT field
	sectionheading - Default persistence-modifier
	subsection - 18.13.1 ELEMENT collection
	subsection - 18.13.2 ELEMENT map
	subsection - 18.13.3 ELEMENT array
	subsection - 18.13.4 ELEMENT embedded
	subsection - 18.13.5 ELEMENT key
	subsection - 18.13.6 ELEMENT value
	subsection - 18.13.7 ELEMENT element

	section - 18.14 ELEMENT query
	section - 18.15 ELEMENT sequence
	section - 18.16 ELEMENT extension
	section - 18.17 ELEMENT orm
	section - 18.18 The jdo Document Type Descriptor
	section - 18.19 The orm Document Type Descriptor
	section - 18.20 Example XML file

	chapter - 19 Extent
	section - 19.1 Overview
	section - 19.2 Goals
	section - 19.3 Interface Extent

	chapter - 20 Portability Guidelines
	section - 20.1 Optional Features
	subsection - 20.1.1 Optimistic Transactions
	subsection - 20.1.2 Nontransactional Read
	subsection - 20.1.3 Nontransactional Write
	subsection - 20.1.4 Transient Transactional
	subsection - 20.1.5 RetainValues
	subsection - 20.1.6 IgnoreCache

	section - 20.2 Object Model
	section - 20.3 JDO Identity
	section - 20.4 PersistenceManager
	section - 20.5 Query
	section - 20.6 XML metadata
	section - 20.7 Life cycle
	section - 20.8 JDOHelper
	section - 20.9 Transaction
	section - 20.10 Binary Compatibility

	chapter - 21 JDO Reference Enhancer
	section - 21.1 Overview
	section - 21.2 Goals
	section - 21.3 Enhancement: Architecture
	section - 21.4 Inheritance
	section - 21.5 Field Numbering
	section - 21.6 Serialization
	section - 21.7 Cloning
	section - 21.8 Introspection (Java core reflection)
	section - 21.9 Field Modifiers
	subsection - 21.9.1 Non-persistent
	subsection - 21.9.2 Transactional non-persistent
	subsection - 21.9.3 Persistent
	subsection - 21.9.4 PrimaryKey
	subsection - 21.9.5 Embedded
	subsection - 21.9.6 Null-value

	section - 21.10 Treatment of standard Java field modifiers
	subsection - 21.10.1 Static
	subsection - 21.10.2 Final
	subsection - 21.10.3 Private
	subsection - 21.10.4 Public, Protected

	section - 21.11 Fetch Groups
	section - 21.12 jdoFlags Definition
	section - 21.13 Exceptions
	section - 21.14 Modified field access
	TableTitle - Table 8: Field access mediation

	section - 21.15 Generated fields in least-derived PersistenceCapable class
	section - 21.16 Generated fields in all PersistenceCapable classes
	sectionheading - Generated static initializer

	section - 21.17 Generated methods in least-derived PersistenceCapable class
	section - 21.18 Generated methods in PersistenceCapable root classes and all classes that declare objectid-class in xml metadata:
	section - 21.19 Generated methods in all PersistenceCapable classes
	section - 21.20 Generated methods in all Detachable classes
	section - 21.21 Example class: Employee
	subsection - 21.21.1 Generated fields
	subsection - 21.21.2 Generated static initializer
	subsection - 21.21.3 Generated interrogatives
	subsection - 21.21.4 Generated jdoReplaceStateManager
	subsection - 21.21.5 Generated jdoReplaceFlags
	subsection - 21.21.6 Generated jdoNewInstance helpers
	subsection - 21.21.7 Generated jdoGetManagedFieldCount
	subsection - 21.21.8 Generated jdoGetXXX methods (one per persistent field)
	subsection - 21.21.9 Generated jdoSetXXX methods (one per persistent field)
	subsection - 21.21.10 Generated jdoReplaceField and jdoReplaceFields
	subsection - 21.21.11 Generated jdoProvideField and jdoProvideFields
	subsection - 21.21.12 Generated jdoCopyField and jdoCopyFields methods
	subsection - 21.21.13 Generated writeObject method
	subsection - 21.21.14 Generated jdoPreSerialize method
	subsection - 21.21.15 Generated jdoNewObjectIdInstance
	subsection - 21.21.16 Generated jdoCopyKeyFieldsToObjectId
	subsection - 21.21.17 Generated jdoCopyKeyFieldsFromObjectId
	subsection - 21.21.18 Generated Detachable methods

	chapter - 22 Interface StateManager
	section - 22.1 Overview
	sectionheading - Clone support

	section - 22.2 StateManager Management
	section - 22.3 PersistenceManager Management
	section - 22.4 Dirty management
	section - 22.5 State queries
	section - 22.6 JDO Identity
	section - 22.7 Serialization support
	section - 22.8 Field Management
	subsection - 22.8.1 User-requested value of a field
	subsection - 22.8.2 User-requested modification of a field
	subsection - 22.8.3 StateManager-requested value of a field
	subsection - 22.8.4 StateManager-requested modification of a field

	section - 22.9 Detached instance support

	chapter - 23 JDOPermission
	chapter - 24 JDOQL BNF
	Body - The grammar notation is taken from the Java Language Specification, section 2.4 Grammar Notation.
	Body - SingleStringJDOQL: Select Fromopt Whereopt Decls Groupingopt Orderingopt Rangeopt
	Body - Select: select uniqueopt ResultClauseopt IntoClauseopt
	Body - IntoClause: into ResultClassName
	Body - From: from CandidateClassName ExcludeClauseopt
	Body - ExcludeClause: exclude subclasses
	Body - Where: where Expression
	Body - Decls: Variablesopt Parametersopt Importsopt
	Body - Variables: variables VariableList
	Body - Parameters: parameters ParameterList
	Body - Imports: imports ImportList
	Body - Grouping: group by GroupingClause
	Body - Ordering: order by OrderingClause
	Body - Range: range Expression to Expression
	Body - This section describes the syntax of the setFilter argument.
	Body - Basically, the query filter expression is a Java boolean expression, where some of the Java operators are not permitted. Specifically, pre- and post- increment and decrement (++ and - -), shift (>> and <<) and assignment expressions (+...
	Body - The Nonterminal InfixOp lists the valid operators for binary expressions in decreasing precedence. Operators one the same line have the same precedence. As in Java operators require operands of appropriate types. See the Java Lan guage...
	Body - Plase note, the grammar allows arbitrary method calls (see MethodInvocation), where JDO only permits the fol lowing methods:
	Body - Collection methods
	Body - contains(Object), isEmpty()
	Body - Map methods
	Body - containsKey(Object), containsValue(Object), isEmpty(), get(Object)
	Body - String methods
	Body - startsWith(String), endsWith(String), matches(String), toLowerCase(), toUpperCase(), indexOf(String), indexOf(String, int), substring(int), substring(int, int)
	Body - Math methods
	Body - Math.abs(numeric), Math.sqrt(numeric)
	Body - JDOHelper methods
	Body - getObjectId(Object)
	Body - Expression: UnaryExpression Expression InfixOp UnaryExpression
	Body - InfixOp: one of * / % + - > >= < <= instanceof == != & | && ||
	Body - UnaryExpression: PrefixOp UnaryExpression (Type) UnaryExpression Primary
	Body - PrefixOp: one of + - ~ !
	Body - Primary: Literal VariableName ParameterName this FieldAccess MethodInvocation ClassOrInterfaceName (Expression) AggregateExpression 1
	Body - FieldAccess: FieldName Primary . FieldName
	Body - MethodInvocation: Primary . MethodName (ArgumentListopt)
	Body - ArgumentList: Expression ArgumentList , Expression
	Body - AggregateExpression: AggregateOp (Expression)
	Body - AggregateOp: one of count sum min max avg
	Body - 1 Please note, an AggregateExpression is only allowed as part of a result specification or a having specifica tion.
	Body - This section describes the syntax of the declareParameters argument.
	Body - ParameterList: Parameters ,opt
	Body - ParameterDecls: ParameterDecl ParameterDecls , ParameterDecl
	Body - ParameterDecl: Type ParameterName
	Body - Please note, as a usability feature ParameterList supports an optional trailing comma (in addition to what the Java syntax allows in a parameter declaration).
	Body - This section describes the syntax of the declareVariables argument.
	Body - VariableList: VariableDecls ;opt
	Body - VariableDecls: VariableDecl VariableDecls ; VariableDecl
	Body - VariableDecl: Type ParameterName
	Body - Please note, as a usability feature VariableList defines the trailing semicolon as optional (in addition to what the Java syntax allows in a variable declaration).
	Body - This section describes the syntax of the declareImports argument.
	Body - ImportList: ImportDecls ;opt
	Body - ImportDecls: ImportDecl ImportDecls ; ImportDecl
	Body - ImportDecl: import QualifiedIdentifier import QualifiedIdentifier . *
	Body - Please note, as a usability feature ImportList defines the trailing semicolon as optional (in addition to what the Java syntax allows in an import statement).
	Body - This section describes the syntax of the setOrdering argument.
	Body - OrderingClause: OrderingSpecifications ,opt
	Body - OrderingSpecs: OrderingSpec OrderingSpecs , OrderingSpec
	Body - OrderingSpec: Expression Ascending Expression Descending
	Body - Ascending: one of asc ascending
	Body - Descending: one of desc descending
	Body - Please note, as a usability feature OrderingClause supports an optional trailing comma.
	Body - This section describes the syntax of the setResult argument.
	Body - ResultClause: distinctopt ResultSpecifications ,opt
	Body - ResultSpecs: ResultSpec ResultSpecs , ResultSpec
	Body - ResultSpec: Expression ResultNamingopt
	Body - ResultNaming: as Identifier
	Body - Please note, a result specification expression may be an aggregate expression. As a usability feature Result Clause supports an optional trailing comma.
	Body - This section describes the syntax of the setGrouping argument.
	Body - GroupingClause: GroupingSpecs ,opt HavingSpecopt
	Body - GroupingSpecs: Expression GroupingSpecs , Expression
	Body - HavingSpec: having Expression
	Body - Please note, a having specification expression may include an aggregate expression. As a usability feature Group ingClause supports an optional trailing comma.
	Body - This section describes a type specification, used in a parameter or variable declaration or in a cast expression.
	Body - Type PrimitiveType ClassOrInterfaceName
	Body - PrimitiveType: NumericType boolean
	Body - NumericType: IntegralType FloatingPointType
	Body - IntegralType: one of byte short int long char
	Body - FloatingPointType: one of float double
	Body - A literal is the source code representation of a value of a primitive type, or the String type. Please refer to the Java Language Specification for the lexical structure of Integer-, Floating Point-, and String-Literals. JDOQL allows S...
	Body - Literal: IntegerLiteral FloatingPointLiteral BooleanLiteral StringLiteral NullLiteral
	Body - IntegerLiteral: ...
	Body - FloatingPointLiteral: ...
	Body - BooleanLiteral: one of true false
	Body - StringLiteral: ...
	Body - NullLiteral: null
	Body - A name is a possibly qualified identifier. Please refer to the Java Language Specification for the lexical structure of identifiers.
	Body - QualifiedIdentifier: Identifier QualifiedIdentifier . Identifier
	Body - CandidateClassName: QualifiedIdentifier
	Body - ResultClassName: QualifiedIdentifier
	Body - ClassOrInterfaceName: QualifiedIdentifier
	Body - VariableName: Identifier
	Body - ParameterName: Identifier ColonPrefixedIdentifier
	Body - FieldName: Identifier
	Body - MethodName: Identifier
	Body - Keywords must not be used as package names, class names, parameter names, or variable names in queries. Key words are permitted as field names only if they are on the right side of the “.” in field access expressions as defined in the ...
	Body - JDOQLKeyword: one of as AS asc ASC ascending ASCENDING avg AVG by BY count COUNT desc DESC descending DESCENDING distinct DISTINCT exclude EXCLUDE from FROM group GROUP having HAVING imports IMPORTS into INTO max MAX min MIN order ORDE...
	Body -

	chapter - 25 Items deferred to the next release
	section - 25.1 Nested Transactions
	section - 25.2 Savepoint, Undosavepoint
	section - 25.3 Inter-PersistenceManager References
	section - 25.4 Enhancer Invocation API
	section - 25.5 Prefetch API
	section - 25.6 BLOB/CLOB datatype support
	section - 25.7 Managed (inverse) relationship support
	section - 25.8 Case-Insensitive Query
	section - 25.9 String conversion in Query
	section - 25.10 Read-only fields
	section - 25.11 Enumeration pattern
	section - 25.12 Non-static inner classes
	section - 25.13 Projections in query
	section - 25.14 LogWriter support
	section - 25.15 New Exceptions
	section - 25.16 Distributed object support
	section - 25.17 Object-Relational Mapping

	chapter - 26 JDO 1.0.1 Metadata
	section - 26.1 ELEMENT jdo
	section - 26.2 ELEMENT package
	section - 26.3 ELEMENT class
	section - 26.4 ELEMENT field
	sectionheading - Default persistence-modifier
	subsection - 26.4.1 ELEMENT collection
	subsection - 26.4.2 ELEMENT map
	subsection - 26.4.3 ELEMENT array

	section - 26.5 ELEMENT extension
	section - 26.6 The Document Type Descriptor
	section - 26.7 Example XML file

	chapter - 27 Public Feedback Request
	section - 27.1 Annotations for metadata
	section - 27.2 Attach and detach life cycle listener callbacks
	section - 27.3 Proxy support for detached instances
	section - 27.4 Deleting detached instances
	section - 27.5 Implicit variable declarations
	section - 27.6 Shortcuts for certain JDOQL static methods
	section - 27.7 Attribute names for column name
	section - 27.8 Specification of indexes
	section - 27.9 IdGenerator and Sequence are similar
	section - 27.10 Embedded, dependent, and serialized values
	section - 27.11 Deprecate dfgOnly parameter?
	section - 27.12 Fetch Group definition in metadata
	section - 27.13 Version information
	section - 27.14 Single-string JDOQL
	section - 27.15 Length, Precision and Scale
	section - 27.16 Detachment Contract
	Appendix A: References
	Appendix B: Design Decisions
	B.1 Enhancer
	Appendix C: Revision History
	C.1 Changes since Draft 0.1
	C.2 Changes since Draft 0.2
	C.3 Changes since Draft 0.3
	C.4 Changes since Draft 0.4
	C.4.1 PersistenceManager
	C.4.2 Query
	C.4.3 Object Model
	C.4.4 Life Cycle
	C.4.5 PersistenceCapable
	C.5 Changes since Draft 0.5
	C.6 Changes since Draft 0.6 (Participant Review Draft)
	C.7 Changes since Draft 0.7
	C.8 Changes since Draft 0.8
	C.9 Changes since Draft 0.9
	C.10 Changes since draft 0.91
	C.11 Changes since draft 0.92
	C.12 Changes since draft 0.93
	C.13 Changes since draft 0.94
	C.14 Changes since draft 0.95 (Proposed Final Draft)
	C.15 Changes since draft 0.96
	C.16 Changes since draft 0.97
	C.17 Changes since Approved Draft
	C.18 Changes since 1.0.1
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

