docs/funambol-json-connector-developers-guide.odt

Funambol JSON Connector
Developer's Guide

Last modified: July 21, 2010

Table of Contents

TR 140 To [0 T 4 o] o 5
2. Installing the Funambol JSON CONNECLON.........ccccvrmmmmrmrrinisssssssmmnsrrssessssssssnssennes 6
2 T 1 1 = 11 = U o Y 1= o S 6
2.2. Installing the FUNambol JSON CONNECION........ccoiiiiiiiiieee e e e e e e 6
2.3. Configuring the Funambol JSON CONNECLOL.........ccuieeiiiiie et cee e a e e e e e 7
2.4, Configuring the SYNCSOUICES.......ccuviieiiiiie ettt e e et e e et e e e st e e e snre e e e aaaeeeaeas 7
2.5. Officer CoNfIQUIALTION.ccoiiiiiii et e e b e e e b e e e e e e nnaes 8
AT =Y F=Yo] [T o [Moo [11 0o PP PUUPPPPTPUUR 9
2.7. Enabling Data TransSformMation.... ..o 9
3. Creating the SYNCSOUICES.....ccceriiismmrrmisssrsrnsssssssnssssss s ssssssss s s s s sssss s nssssnnens 11
3.1. Steps to replace the defaut SyncSources using the command line...........cccoccoeeeeeeeeenn. 11
3.2. Steps to replace the standard SyncSources using the Admin tool...........cccccccnn, 12

3.2.1. Steps to replace card / SCANd........ccooveieiiieiiieeiee e 12

3.2.2. Steps t0 replace NOLE / SNOTE......couii it 13

3.2.3. Steps to replace Cal / taSK.......couiii i 14
4. UPGrading NOTES.....cccuiiimmmriissssnsrissssnnssissssssssissssssssasssssssssssssssssasssssssssssssnnssnssnssnsnns 17
5. Solution arChiteCture........ccccieriiirminirnr s 18
5.1. JSON API protocol fUNCLIONAITY.......coeeiiiiee e 18
5.2. Appointment, Contact, Note and Task SYNCSOUICES.........ccccevviiieeiiiiiee i 18

5.2.1. A quick review of vCalendar / iCalendar..........cccccueiieiiiiiiiie e 19
5.3. JSON API SPECIfiCAtiION OVEIVIEW.cccieieieeiiieee e ciee e s e e e se e e s sae e e s snnee e e e nnnne e e e e e e 20
I S o] 017/=T01 (1o o - TP PSPPI 20

5.4, L. REQUEST.....ooiiiiiiii ittt 20

D4, 2, RESPONSE. ..ottt et 21
5.5, HTTP MENOUS. ...ttt r e bbb e b e e sreesreenree s 21
5.6. HTTP StAtUS COURS.....ceiiiiiiiiiiiiiii ettt e e b e e e 22
6. Data object format..........ccccviiimmmiininmm e ————————————— 23
6.1. Contact object format — JSON extended format.............cccceeviiiiiiiii e, 23
6.2. Contact object format — VCard fOrMaL............c.eoiuiiiiiiiiie e 25
6.3. Appointment object format — JSON extended format............ccccceeviine i, 26
6.4. Appointment object format — vCalendar / iCalendar format...........ccccocovvvviiieiiiinieeneeeenn. 28
6.5. Task object format — JSON extended format..........cccccere e 31

Copyright © 2010 Funambol - Page 2

6.6. Task object format — vCalendar / iCalendar format...........ccocueeeeiiiiiiiiee e, 32

6.7. NOtES ODJECE FOMMAL.....c.eeiiiiii e e 32
7. JSON CoNNECLOr APL..... . —— 34
4% AN | =T g o= a o] e o 11] o 1SR 34
4% 95 O (o To 1o P TP 34
45 2 1o To [11 | SRR 35
A4 (oo | (o 1 o T PP PPPPPP 36
A2 N o T=Y o 11153/ o (oSSR 36
R = 010 153 V] o [TSRO PTT U PPPPP 38
RS T =) T o (010 o TP PSP PPPTT 38
7.3.1. QEtAIISYNCHEMKEYS......oeii ittt s e e et e e e st e e e snre e e e e sarae e e ennneees 38
7.3.2. getNEWSYNCIEMKEYS. it e e e e e e e e eeae s 39
7.3.3. getUpdated SYNCIEMKEYS........ooiiiiii ettt 40
7.3.4. getDeletedSYNCHEMKEYS.viiiiiit ettt 41
7.3.5. getSYNCIEMKEYSFIOMTWIN....oiiiiiiiiiii ettt e s 42
A (=] 4 AR [(01U o TP TR PPPPP 44
A = Vo [11 =T o o OSSPSR 44
742, UPAALEITEIM ..ttt b et et sbb et e e e s neeeas 45
A G T =T 0 aT0)= (=T o R UPRPPPTPR 46
744, T€MOVEAIIIEIMS ...ttt e et e e s snte e e e e e e e e e e e e e e e annnnnes 46
B T o =1 1T o PP PTPPI 47
A T] 1Yo 0T o SR 48
7.5.1. getCONTIQUIALION.cccviiiiiiiiiiie ettt ebbaeee e s 48
£ 7AYo T I =T 1 Vo o T o 50
ST I 11 o T [0 Tox 1o D TP TSP PRSP 50
S 1 1) - 1| LT o U RPN 50
LSRRI Ofo 111110 [U1 1o o T TP PPPTT R 50
LS 70 700 N 1o To o 11 o 1 PP 50
R T ST oY g o] (o] 01T [T TP PP P PP PR 51
S T T T ST TP PP PUPPTPP 51
8.4 L. SHTUCKUIE.....eiiiiiiiiii e e s e e s s e s nnar e 51
8.4.2. TUINING Off TESTSeiiiiiiiiie ettt 52
8.4.3. WIING NEW TESTS. ... ittt ettt et e e et e e s sn e e e e e e e e e e e e e nnnnnnnes 52
8.5. RUNNING the TESTS. .. ittt et e et e e e e nbe e e e s e e e e nnnnenes 53
Appendix A — Contact eXampPlesS......cccuirerrminiimmrmissrr s 54
Appendix B — Appointment eXamples.......cccommermsmme—————— 56

Copyright © 2010 Funambol - Page 3

Appendix C — Task eXamples.......cccmmmminmnmemsssss s 66

AppendiX D — CONSIANES........ccccciirimmrrirrrisisssssssssrr e s ssssmssr s e e esssssssssssssssssssssssnnnes 67
Appendix E - Contact mapping vCard | extended JSON.......c.ccccevrrrmmmneccmmnnsnnnnnns 69
Appendix F - Event mapping vCal | extended JSON..........ccccurrrmmrmmsssmnsmnnssssssssns 71
AppendiX G — RefEreNCEeS... ..o s s 72

Copyright © 2010 Funambol - Page 4

1. Introduction

This document describes how to install and manage the JSON Connector component for the
Funambol Data Synchronization Service using the Administration Tool console. It also provides a
detailed description of the REST API that the connector uses to communicate with an external PIM
data source.

This document is intended for administrators and developers.

Copyright © 2010 Funambol - Page 5

2. Installing the Funambol JSON Connector

2.1. Installation steps

Installing and configuring the Funambol JSON Connector requires a number of steps, described in
summary in the following list:

1. Check if there is an available database connection (MySQL, PostgreSQL, Hypersonic).
2. Start the Data Synchronization Service (for more information, see [2]).
3. Install the Funambol JSON Connector (see section 2.2).

o The installation procedure automatically creates the Connector database schema.
4. Run the Funambol Administration Tool (for more information, see [2]).
5. Configure the JSON Connector's properties (see section 2.3).

o Set the back-end URL in the JSON Connector Panel of the Funambol Administration
Tool.

6. Check the JSON SyncSources.

o Create and set the parameters in the JSON SyncSource Panel of the Funambol
Administration Tool.

7. Configure the JSON Officer in the Server Settings Panel of the Funambol Administration
Tool.

8. Set the Encryption Level in the Funambol Administration Tool (optional).
9. Setthe Log Level in the Funambol Administration Tool (optional).

10. Start a sync session from your mobile device.

2.2. Installing the Funambol JSON Connector

The Funambol JSON Connector is distributed as a standard Funambol module. The distribution
contains the following files:

» funambol-json-<major>.<minor>.<build number>.s4j (the module)
+ Release notes
* readme.txt
« Funambol JSON Connector Developer's Guide
To install the connector, follow these steps:
1. Copy the .s4jfile in the directory $FUNAMBOL_HOME/ds-server/modules.

2. Modify the install.properties file adding funambol-json-*.*.* to the modules list:

modules-to-install=foundation-7.x.x, ..., funambol-json-*.*.*
3. Setthe JAVA_HOME and the J2EE_HOME paths.

4. Go to the directory $FUNAMBOL_HOME/Funambol/bin and call the module installation
command:

./install-modules

During the installation procedure, the following steps are performed automatically:

Copyright © 2010 Funambol - Page 6

- The database is initialized, connector-specific tables are created and the connector is
registered into the server.

- The JSONOfficer.xml file is copied in the directory
$FUNAMBOL_HOME/ds-server/config/com/funambol/server/security

If you are upgrading from a previous version, please read the chapter 4.

2.3. Configuring the Funambol JSON Connector

Once installation is complete, you can use the Funambol Administration Tool to configure the JSON
Connector.

In the left pane, expand the Modules tree and then select jsonconnector (see Figure 1).

=1 Modules
H-) email
7R foundation
5B jsonconnector
+ﬁ%‘ jsonconnector

Figure 1: Modules tree

The JSON Connector Configuration Panel will appear in the right pane (see Figure 2).

Funambol |Json Connector

HTTP Server Configuration

server: |htt|:|:.-'.-'Iu:ucalhost:Bl]Bl].-'synu:api

Behaviour on errors

[] 5top sync on fatal errors

Figure 2: JSON Connector Configuration Panel

The JSON Connector properties that can be set are listed in the following table:

Property Description
URL The address of the back-end server

Stop sync on fatal errors When this flag is checked, if the backend returns a 500 error code for an item, the
sync is stopped, otherwise the normal behavior of rejecting the command to the
client is maintained.

2.4. Configuring the SyncSources

In order to set up the JSON Connector SyncSources, go to the Administration Tool Console and
expand the tree structure.

The Contact SyncSources have the following properties:

Copyright © 2010 Funambol - Page 7

Property Description

Source URI The SyncSource URI [e.g. “card”].

Name The SyncSource name. [e.g. “card”]

Client Type The preferred content type used for talking with the Syncml clients
Datastore Type The content type used for talking with the datastore (json-extended/vcard)

The Calendar/Task SyncSources have the following properties:

Property Description
Source URI The SyncSource URI [e.g. “cal”].
Name The SyncSource name. [e.g. “cal’]
Client Type The preferred content type used for talking with the Syncml clients
Datastore Type The content type used for talking with the datastore (json-extended / vcal / ical)
Subtype Whether to sync only events, tasks or both

The Note SyncSources have the following properties:

Property Description
Source URI The SyncSource URI [e.g. “note”].
Name The SyncSource name. [e.g. “note”]
Client Type The preferred content type used for talking with the Syncml clients (sif-n or
text/plain)

2.5. Officer Configuration

In order to set up the Officer for the Funambol JSON Connector, set the parameters in the file:
$FUNAMBOL_HOME/ds-server/config/funambol/server/security/JsonOfficer.xml

Below is an example of the JsonOfficer.xml file:

<?xml version="1.0" encoding="UTF-8"7?>

<java version="1.5.0" class="java.beans.XMLDecoder">
<object class="com.funambol.json.security.JsonOfficer">

<void property="serverAuth">
<string>none</string>

</void>

<void property="autoProvisioning">
<boolean>false</boolean>

</void>

. device configuration for OTA ad PUSH env.

</java>

Note: if the autoProvisioning property is true, the officer will add it to the Funambol DS schema after
authenticating the user on the back-end system.

In the Funambol Administration Tool, you must specify the appropriate Officer (as shown in Figure
3), that is: com/funambol/server/security/JsonOfficer.xml.

Copyright © 2010 Funambol - Page 8

: Funambol Administration Tool ...<0 % | | Server Seftings 2
@ Funambal Administration Tool
=¥ localhost Enging
B B settings
7 i 8 URI :
+.,1 Logging errar
= Dj Modules Officar: comdffunambalise ver'se curib SONOficerxml
m email X Handler: com.funambol.serversession. SyncSessionHandler
+-Jg) foundation
+m jsoncunnecmr Deviee inventary comifunambaliotacpfOTADevicelnventany xml
Data transformer managear : comffunambaoliseverfengineftransform e’ ataTransformerhd anagerxml
Strategy : comifunambalizerrerangine/Strategy.xml
User manager: comfunambaolizenerfadmin/C aredUserhdanagerxml
SMS service comfunambolizerversma'ShS S ervice xml
Min. value for max. msg size : 1200
Check forsemer updates : |:|

Figure 3: Officer Settings

2.6. Enabling Logging

The logging level and other properties can also be configured using the Funambol Administration
Tool, by expanding the tree structure shown in Figure 4:

@ Funambal Administration Taol
= Miocalhost
—,J. Server settings
—-{& Loggers
4 flnarmbal
-~ funarmbol.auth
-~ funarmbal.content-provider
-~ funarmbal.email
-~ funambal.engine
% funambal.engine.pipeline
-4 funarmbal.engine.source
4 funarmbol handler
- funarnbal, json

- funarrbal push

4 funarmbol,server

4 funambol.server notification
- funarnbol iranspart

4 funarmbol.uam

-~ funambol.uam-agent

Figure 4: Logging Tree

To set the JSON Connector's logger, double click on the funambol.json node in the Logging ->
Loggers tree (see Figure 4) and modify the options to the desired logging level and output.

2.7. Enabling Data Transformation

The Funambol server allows to configure encryption (DES, etc.) and encoding (BASE64, etc)
parameters per sync source.

For legacy SIF data format, the BASE64 encoding must be enabled, for clients using standard
formats (vCard/vCalendar), encoding is not required.

Copyright © 2010 Funambol - Page 9

You can set the encoding method in the Data Transformation panel, found in the Server Settings
section of the Funambol Administration Tool (see Figure 5).

| Funambol Administration Tool
@} Funambol Administration Toal
= %1 localhost

Figure 5: Server Settings

Expand the Server settings branch; in the configuration panel that appears on the right press the
Configure button next to the Data transformer manager text field (see Figure 6).

Server Settings #
Enging
Sener URI :
Officer: comfAfunambolizenese cunib ISONOfficerxml |
Handler : com funambol zenversession. SyncSessionHandler
Device inventony : comffunambolfotacp/OTADevicelnventony.aml
[rata transfarmer manager : comMfunambolizerverengineftransformer'D ataTransformerbdanager:ml W
Strategy : comffunambolfzerredengine/Strategy.=ml W
User manager : comfunambolfzererfadmin/CaredUsertanagerxml
SME senvice : comMfunambolzeresmaSMSService xml
Min. value far max. msg size : 1800
Check forsemrer updates : |:|
I Save I I Cancel

Figure 6: Server Settings

If needed, modify Transformer for incoming items and Transformer for outgoing items (see Figure 7).

This information is needed when you have to configure SIF sync sources from the Admin tool (see
Chapter 3.Creating the SyncSources).

Copyright © 2010 Funambol - Page 10

Transformers for incoming tems

+|/[F=
Mame Class
b4 com.Ffunambol. server . engine transformer, ..,
des com. funambal, server . engine. transformer. ...
Transformers for outgoing tems =
Mame Class
b4 com.Funambol. server . engine transformer,

Figure 7: Transformers

3. Creating the SyncSources

In this section you will find detailed instructions on how to create the SyncSources for the Json
connector. By default, the connector does not create SyncSources, and you have two options:

« replace the default SyncSources, so you have card, event and task sync sources linked to
Json Connector instead of the Foundation (this is the preferred choice, because the SyncML
clients do not need to change the remote names):

- create new SyncSources with different names: in this case, the new name must be specified
in the clients to use the Json connector. This is suggested ONLY if you really want to
maintain both Foundation SyncSources and Json SyncSources on the same server, leaving
the choice to the end user.

In the following chapters the steps to replace the default SyncSources are explained.

3.1. Steps to replace the defaut SyncSources using the command
line.

To replace SyncSources without using the Funambol Administration Tool, you must modify the
Funambol database, setting all the default sources in the table fnbl_sync_source table to point to
the JSON connector definitions.

You can verify the table content before and after the change the command:

select * from fnbl_sync_source;

To replace the default SyncSources, run the following queries:

update fnbl_sync_source set config='jsonconnector/jsonconnector/calendar-json/cal.xml' where
uri='cal';

update fnbl_sync_source set sourcetype='calendar-json' where uri='cal';

update fnbl_sync_source set config='jsonconnector/jsonconnector/contact-json/card.xml' where
uri='card';

update fnbl_sync_source set sourcetype='contact-json' where uri='card';

Copyright © 2010 Funambol - Page 11

update fnbl_sync_source
uri='event';

update fnbl_sync_source

update fnbl_sync_source
uri='note';

update fnbl_sync_source

update fnbl_sync_source
uri='scal';

update fnbl_sync_source

update fnbl_sync_source
uri='scard';

update fnbl_sync_source

update fnbl_sync_source
uri='snote';

update fnbl_sync_source

update fnbl_sync_source
uri='stask';

update fnbl_sync_source

update fnbl_sync_source
uri='task"';

update fnbl_sync_source

set

set

set

set

set

set

set

set

set

set

set

set

set

set

config='jsonconnector/jsonconnector/calendar-json/event.xml' where

sourcetype="'calendar-json' where uri='event';

config="'jsonconnector/jsonconnector/note-json/note.xml' where

sourcetype='note-json' where uri='note';

config="'jsonconnector/jsonconnector/calendar-json/scal.xml' where

sourcetype="'calendar-json' where uri='scal';

config="'jsonconnector/jsonconnector/contact-json/scard.xml' where

sourcetype='contact-json' where uri='scard';

config="'jsonconnector/jsonconnector/note-json/snote.xml' where

sourcetype='note-json' where uri='snote';

config="'jsonconnector/jsonconnector/calendar-json/stask.xml' where

sourcetype="'calendar-json' where uri='stask';

config="'jsonconnector/jsonconnector/calendar-json/task.xml' where

sourcetype='calendar-json' where uri='task';

3.2. Steps to replace the standard SyncSources using the Admin

tool.

3.2.1. Steps to replace card | scard
In order to replace card / scard, follow these steps:

1. Run the Funambol Administration Tool and connect to your local Funambol Server.

2. Select Modules -> foundation -> FunambolFoundationConnector -> PIMContact Sync Source
-> card; right click on card and select “Delete” from the menu.

3. Select Modules -> foundation -> FunambolFoundationConnector -> PIMContact Sync Source
-> scard, right click on scard and select “Delete” from the menu.

4. Select Modules -> JsonConnector -> JsonConnector -> Contact SyncSource; right click on it
and select “Add Syncsource” from the menu.

Edit the fields as shown in Figure 8.

jEon Module - jgonconnector Connectar - Contact SyncSource 2

Source URI:

Mame:

Type:

Edit Contact SyncSource

card

card

T N |~ |

Add

Figure 8: Adding the card SyncSource

Copyright © 2010 Funambol - Page 12

5.

6.

Select Modules -> JsonConnector -> JsonConnector -> Contact SyncSource; right click on it
and select “Add Syncsource” from the menu.

Edit the fields as shown in Figure 9.

Jjson Module - jsonconnector Connector - Contact SyncSource - scard 2

Edit Contact SyncS5ource

Source URI: =card
MHame: =card
Type: SIF-C [=]

Save

Figure 9: Adding the scard SyncSource

Select Server Settings from the menu and then press the Configure button in the Data
Transformation Manager panel. Add the entry “scard, b64".

3.2.2. Steps to replace note |/ snhote
In order to replace note / snote, follow these steps:

1.
2.

6.

Run the Funambol Administration Tool and connect to your local Funambol Server.

Select Modules -> foundation -> FunambolFoundationConnector -> Notes SyncSource ->
note; right click on note and select “Delete” from the menu.

Select Modules -> foundation -> FunambolFoundationConnector -> Notes SyncSource ->
snote; right click on snote and select “Delete” from the menu.

Select Modules -> JsonConnector -> JsonConnector -> Note SyncSource; right click on it
and select “Add Syncsource” from the menu.

Edit the fields as shown in Figure 10.

jzon Module - jsonconnector Connector - Mote SyncSource 2

Edit Note SyncSource

Sourze URI: note
Mame: note
Type: Flain Text El

Add

Figure 10: Adding the note SyncSource

Select Modules -> JsonConnector -> JsonConnector -> Note SyncSource; right click on it
and select “Add Syncsource” from the menu. Edit the fields as shown in Figure 11.

Copyright © 2010 Funambol - Page 13

jzon Module - jzonconnector Connector - Mote SyncSource &

Edit Note SyncSource

Source URL: snote

Mame: snote|

Type: SIF-N (=]
Add

Figure 11: Adding the snote SyncSource

7. Select Server Settings from the menu and then press the Configure button in the Data

Transformation Manager panel. Add the entry “snote, b64”.

3.2.3. Steps to replace cal | task
In order to replace cal / task, follow these steps:

1.
2.

Run the Funambol Administration Tool and connect to your local Funambol Server.

Select Modules -> foundation -> FunambolFoundationConnector -> PIM Calendar
SyncSource; delete cal, scal, task, stask and then event by right clicking on each item and
selecting “Delete” from the menu.

Select Modules -> JsonConnector -> JsonConnector -> Appointment and Task SyncSource;
right click on it and select “Add Syncsource” from the menu.

Edit the fields as shown in Figure 12.

jzon Module - jsonconnector Connector - Appointmert and Task SyncSource - jsonzevent &8

Edit Appointment and Task SyncSource

Source URL: scal

Mame: scal

Type: SIF-E =
Evernts Tazks

Sawe

Figure 12: Adding the scal SyncSource

Select Modules -> JsonConnector -> JsonConnector -> Appointment and Task SyncSource;
right click on it and select “Add Syncsource” from the menu.

Edit the fields as shown in Figure 13.

Select Modules -> JsonConnector -> JsonConnector -> Appointment and Task SyncSource;
right click on it and select “Add Syncsource”.

Copyright © 2010 Funambol - Page 14

jzon Module - jzonconnector Connector - Appaintment snd Task SyncSource - jzonstazk 2

Edit Appointment and Task SyncSource

Source URL stask

Mame: stash

Type: SIF-T =
Events Tashs

Save

Figure 13: Adding the stask SyncSource

Edit the fields as shown in Figure 14.

jzon Module - jsonconnector Connectar - Appoirtiment and Task SyncSource - jsonveal 28

Edit Appointment and Task SyncSource

Source URL: cal

Mame: cal

Typea: WCal El
Events Tazks

Save

Figure 14: Adding the cal SyncSource

Select Modules -> JsonConnector -> JsonConnector -> Appointment and Task SyncSource;
right click on it and select “Add SyncSource”.

Edit the fields as shown in Figure 15.

Note: the cal SyncSource is used for devices that use the same SyncSource for tasks and
events (such as Nokia phones). The event SyncSource should be used for devices that are
able to synchronize tasks and events separately; in this case, the task SyncSource should
be used to synchronize tasks.

Copyright © 2010 Funambol - Page 15

jzon Module - jzonconnector Connector - Appointment and Task SyncSource - jsonvevent 2

Edit Appointment and Task SyncSource

Source URL: event

Name: event

Type: W al E|
Events D T ashs

Save

Figure 15: Adding the event SyncSource

Select Modules -> JsonConnector -> JsonConnector -> Appointment and Task SyncSource;
right click on it and select “Add Syncsource”.

Edit the fields as shown in Figure 16.

Select Server Settings from the menu and then press the Configure button in the Data
Transformation Manager panel. Add the following entries to the Data Transformations table:
“scal, b64”, “stask, b64".

jzon Maodule - jzonconnector Connector - Appairtment and Tazk SyncSource - jzonvtazk B

Edit Appointment and Task SyncSource

Source URI: task

Name: tashk

Type: WiCal Iz'
I:l Events Tasks

Save

Figure 16: Adding the task SyncSource

Copyright © 2010 Funambol - Page 16

4. Upgrading notes

If you already have the JSON connector installed and you want to install a new version, you have to
do some steps carefully to make sure you won't loose any configurations.

The installation process copies the config files from the s4j to your system, make sure that you have
the latest version of them. If you made some changes on the most common configurations, you
need to re-apply these changes.

If you configured your sync sources as described in 3, and you left the default parameters for all the
rest, you can install the new module repeating the steps described in 2.2, answering 'yes' to the
guestion about database initialization.

If you used different names, you need to make sure the config files are updated. The simplest way
to do it is to remove the SyncSources and re-create them.

Other things you need to verify/restore are that:

1. the url of the datastore in jsonconnector.xml is restored to localhost:8080; if you changed it,
you have to set it again;

2. the format used by the sync sources is defaulted to JSON Extended; if you are using a
different configuration, you have to set it according to your backend; [Note: the
configuration of the datastore format is changed in v8.7, because it is now per-source]

Copyright © 2010 Funambol - Page 17

5. Solution architecture

The Funambol JSON Connector acts as a client connecting to the Funambol-specified JSON API
implemented on the server side. This is used to provide an interface to an already existing data
store to implement the Funambol synchronization service towards end users (mobile and desktop-
based clients).

The data passed in the request and response of the REST [5] calls is encoded using JSON [4]. The
connector can make use of either HTTP or HTTPS.

The Funambol JSON Connector translates Funambol SyncSource calls into REST calls using JSON
to represent data and data structures.

5.1. JSON API protocol functionality

The JSON protocol provides the methods to authenticate user credentials with the endpoint of the
external PIM data source.

The following functions are required for an Officer implementation:
» authenticateUser (login): authenticates user credentials from the device with the server
« authenticateUser (logout): logs out a previously authenticated user

The JSON protocol provides the required methods to retrieve, update and search the data stored in
the endpoint of the external PIM data source.

The following functions are required for a SyncSource implementation:
« beginSync: tells the server that a sync session is going to begin
« endSync: tells the server that a sync session has ended
- getAllISyncltemKeys: gets all the keys for the items in the server
- getDeletedSyncitemKeys: gets all the keys of the deleted items since a given time
- getUpdatedSyncltemKeys: gets all the keys of the updated items since a given time
- getNewSyncltemKeys: gets all the keys of the new items since a given time
- getSyncltemFromld: gets the item associated with a given key
« removeSyncltem: removes the item with a given key
« addSyncltem: inserts an item in the server and returns it with a key
* updateSyncltem: updates an item in the server for a specific key

« getSyncltemKeysFromTwin: searches for application-defined equivalent items for a given
item

Note: developers will implement the JSON API as an extension of their existing application.

5.2. Appointment, Contact, Note and Task SyncSources

The Appointment, Contact, Note and Task SyncSources provide access to the PIM information of
the backend (the JSON server).

The backend implementation can choose, for each SyncSource, to represent the items using
standard vCard or vCalendar objects embedded into the Json call, or to use a Json structure to
represent also the item (also referred to as JSON extended format).

Copyright © 2010 Funambol - Page 18

The advantage of the Json Extended format is to provide a simpler format to handle: if you are
developing your datastore and you do not have a vCard/vCalendar parser available for your
environment, dealing with the JSON representation is simpler.

If you already have the capability of handling vCard/vCalendar, using this format can give you the
possibility to support more information. The JSON connector is anyways tested only with the fields
currently supported by the Funambol Foundation connector. Going beyond this is possible, but
may require additional testing.

When you install or upgrade the connector, the format used by default is JSON Extended.

Summarizing, the current version of the specification use the following formats to represent PIM
data:

+ Contacts:

o extended JSON structure

o JSON structure with vCard
« Appointment (or Calendar):

o extended JSON structure

o JSON structure with vCalendar / iCalendar (VEvent)
« Task:

o extended JSON structure (same as appointment)

o JSON structure with vCalendar / iCalendar (vTodo)
* Note:

o extended JSON structure

For the JSON structure specification, see [6]. For vCard and vCalendar / iCalendar see [7] and [8]
respectively.

When synchronizing notes, the JSON Connector will receive SIF-N (Funambol format) and UTF-8
plain/text format but it will always send an extended JSON structure to the JSON API layer. At the
moment, the vNote format is not supported.

The JSON Connector is responsible for converting the above formats into the appropriate format for
the mobile device, which is determined by configuration. Each format will have its own URI to
address the SyncSource. In particular, the JSON Connector converts vCalendar 2.0 (iCalendar)
format coming from the server / database into vCalendar 1.0, which is supported by most clients, or
SIF, for backward compatibility with old Funambol clients.

5.2.1. A quick review of vCalendar / iCalendar

vCalendar 1.0 vCalendar 2.0 (also called iCalendar)

content: content:

BEGIN:VCALENDAR BEGIN:VCALENDAR

VERSION:1.0 VERSION:2.0

BEGIN:VEVENT BEGIN:VEVENT

END:VEVENT END:VEVENT

END:VCALENDAR END:VCALENDAR
MIME type: MIME type:

text/x-vcalendar text/calendar

The main differences between these two formats can be found in:
. RRULE
« ALARM

Copyright © 2010 Funambol - Page 19

« TIMEZONE

5.3. JSON API specification overview
This section gives a definition of the API grouped by functionality.

The following API groups are defined:

« auth: used to authenticate the caller and obtain a session identifier to use in subsequent
calls

« sync: used to notify the begin and end of a synchronization session
- keys: used to get all, new, updated, deleted and twin keys from the SyncSource
- items: used to add, update, remove and get items from the SyncSource

- utilities: miscellaneous utility APIs

5.4. Conventions

The description of each APl group mentioned above, that you can find later in this document,
includes a list of all the available actions. Actions are described with:

« the HTTP request (method and URI) to be invoked
- the request parameters

« the expected response

- errors that the request could return

- examples

5.4.1. Request
The pattern of the URL for a request is /sync-source-name/group/action, where:

« sync-source-name is the name of the SyncSource; for example:

o appointment

o contact
o task
o note

- group is the API group (one of: auth, sync, keys, items, utilities, as defined in 5.3)
« action is the action to be performed in the group

For example:
« the URL /contact/keys/all would get all of the item keys for the contact SyncSource

« the URL /appointment/keys/all would get all of the item keys for the appointment
SyncSource

Any call that is required to send an object to the server must send a JSON object that contains the
following property:

- data: the request payload

Note: encapsulating the request payload in a data property allows more flexibility for any future
changes.

Copyright © 2010 Funambol - Page 20

5.4.2. Response
All calls return a JSON object that can contain the following properties:

- data: the response payload

error: error details, if any; the error payload contains an error code, an error message and a
list of parameters

Below is an example of response containing the payload:

{"data":{
"keys": [
"key-1",
"key-2",
"key-n",
1
}
}

Below is an example of response containing an error:

{"error":{
"code":"ITEM-1004",

"message":"Error item not found",

"parameters":[
{

"param":"server-item-key"

}

If the call contains an incorrect request, the return must be a JSON object with the property: error.
Below is an example of an unsupported request error:

{"error":{
"code":"ITEM-1005",

"message":"Request is not yet supported-recognized.",
"parameters":[]

}

5.5. HTTP methods

Resources are accessed and modified by using standard HTTP methods. The Funambol REST
architecture supports the following methods:

» GET: gets a resource without changing its actual state
+ POST: creates a new resource
- PUT: updates the state of an existing resource

- DELETE: deletes an existing resource

Copyright © 2010 Funambol - Page 21

5.6. HTTP status codes

Standard HTTP status codes should be used by the server to inform the clients of an operation
result.

The Funambol REST architecture supports the following status codes:

HTTP status code HTTP status message Description

200 OK Informs the client that a given operation has been successfully
completed.

401 Unauthorized Informs clients that a given operation requires the client to be
authenticated.

406 Not acceptable Informs clients that a given operation failed due to errors in the client
request.

500 Internal server error Informs clients that a given operation failed due to internal problems

in the server application (more information should be contained into
the server response).

Copyright © 2010 Funambol - Page 22

6. Data object format

6.1. Contact object format — JSON extended format

The contact resource in JSON extended format is described by the following JSON schema:

{ "description" : "Contact resource", "type" : "object", "properties" : {

"data" { "description" : "Contact resource data",
"properties" : {

"content-type" : { "description" : "Resource content-type",
"type" : "string",

"default" : "application/json-card"},

"type" : "object",

"item" : { "description" : "Resource data", "type" : "object", "properties"

"key" : {"description" : "Resource identifier", "type"

"string"},

"state" : {"description" : "Resource state", "type" : "string"},

"lastUpdate" : {"description" : "Resource update time",
"folder" : {"type" : "string"},

"title" : {"type" : "string"},

"firstName" : {"type" : "string"},

"middleName" : {"type" : "string"},

"lastName" : {"type" : "string"},

"suffix" : {"type" : "string"},

"photo" : { "description" : "Base64-encoded picture", "type"

"photoType" : {"description" : "Picture format", "type"

"email" : {"type" : "string"},
"email2" : {"type" : "string"},
"email3" : {"type" : "string"},
"imAddress" : {"type" : "string"},

"businessAddressStreet" : {"type" : "string"},
"businessAddressCity" : {"type" : "string"},
"businessAddressCountry" : {"type" : "string"},
"businessAddressState" : {"type" : "string"},
"businessAddressPostalCode" : {"type" : "string"},
"businessAddressPostOfficeBox" : {"type" : "string"},

"businessAddressExtendedAddress" : {"type" : "string"},

"homeAddressStreet" : {"type" : "string"},
"homeAddressCity" : {"type" : "string"},
"homeAddressState" : {"type" : "string"},
"homeAddressCountry" : {"type" : "string"},
"homeAddressPostalCode" : {"type" : "string"},
"homeAddressPostOfficeBox" : {"type" : "string"},
"homeAddressExtendedAddress" : {"type" : "string"},

{

"type" : "string"},

"string"},

"string" 3},

Copyright © 2010 Funambol - Page 23

"otherAddressStreet" : {"type" : "string"},
"otherAddressCity" : {"type" : "string"},
"otherAddressState" : {"type" : "string"},
"otherAddressCountry" : {"type" : "string"},
"otherAddressPostalCode" : {"type" : "string"},
"otherAddressPostOfficeBox" : {"type" : "string"},
"otherAddressExtendedAddress" : {"type" : "string"},

"phoneAssistant" : {"type" : "string"},
"phoneBusiness" : {"type" : "string"},
"phoneBusiness2" : {"type" : "string"},
"phoneBusinessFAX" : {"type" : "string"},
"phoneCallback" : {"type" : "string"},
"phoneCar" : {"type" : "string"},
"phoneCompany" : {"type" : "string"},
"phoneHome" : {"type" : "string"},
"phoneHome2" : {"type" : "string"},
"phoneHomeFAX" : {"type" : "string"},
"phoneMobile" : {"type" : "string"},
"phoneMobileHome" : {"type" : "string"},
"phoneMobileBusiness" : {"type" : "string"},
"phoneOther" : {"type" : "string"},
"phoneOtherFAX" : {"type" : "string"},
"phonePrimary" : {"type" : "string"},
"phonePager" : {"type" : "string"},
"phoneRadio" : {"type" : "string"},
"phoneTelex" : {"type" : "string"},
"url" : {"type" : "string"},
"instantMessenger1" : {"type" : "string"},
"body" : {"type" : "string"},
"jobTitle" : {"type" : "string"},
"company" : {"type" : "string"},
"sensitivity" : {"type" : "int"},
"department" : {"type" : "string"},
"office" : {"type" : "string"},
"managerName" : {"type" : "string"},
"assistantName" : {"type" : "string"},
"nickName" : {"type" : "string"},
"spouseName" : {"type" : "string"},
"anniversary" : {"type" : "string", "description" : "format YYYY-MM-DD"},
"birthday" : {"type" : "string", "description" : "format YYYY-MM-DD"}
1}
1}
i3

Below is an example of a JSON data structure containing contact information:

Copyright © 2010 Funambol - Page 24

{ "data" : {
"content-type" : "application/json-card",
"item" : {

"key": "12ADE43",

"folder": "root\Contacts",
"firstName": "John",
"lastName": "Smith",

"photo": "/9j/4AAQSkZJIRgABAgAAAQABAAD/ 2wBDAAgGBgCcGBQgHBWCJCQQKD",
"photoType": "GIF",
"email": "john.smith@email.ti",

"company": "maruzzella srl",

"anniversary": "2005-06-17",
"birthday": "1970-12-12"

i3

For more examples, see Appendix A — Contact examples.

6.2. Contact object format — vCard format
The contact resource in vCard format is described by the following JSON schema:

{ "description" : "Contact resource", "type" : "object", "properties" : {
c "data" : { "description" : "Contact resource data", "type" : "object", "properties"
"content-type" : { "description" : "Resource content-type",
"type" : "string",
"default" : "application/json-vcard"},
"item" : { "description" : "Resource data", "type" : "object", "properties" : {
"key" : {"description" : "Resource identifier", "type" : "string"},
"state" : {"description" : "Resource state", "type" : "string"},
"lastUpdate" : {"description" : "Resource update time", "type" : "string"},
"folder" : {"type" : "string"},
"vcard" : {"description" : "VCard RFC specs", "type" : "string"}
1}
1}
1}

Below is an example of a JSON data structure containing contact information:

{ "data" : {
"content-type" : "application/json-vcard",
"item" : {

"key": "12ADE43",
"vcard": "BEGIN:VCARD
VERSION:2.1
REV:200710317222710

Copyright © 2010 Funambol - Page 25

UID:20070401-080045-40000F192713-0052

CLASS:PUBLIC

X-TOKEN:VCard 2.1

N:Public;Tracy;Spencer;Mrs.;Esq.

FN:Mrs. Tracy S. Public, Esq.

EMAIL; INTERNET;HOME: tracy@tracy.org

URL;HOME:http://www.tracy.org

ORG:International Import/Export, Inc.;North American Division;Marketing
ADR;WORK:;;1200 Al California;Pasadena;CA;91125;USA

ADR;DOM;HOME:P.0. Box 101;Suite 101;123 Main Street;Any Town;CA;91921-
1234;

TEL;WORK:12358769712

TEL;HOME:+1-919-555-1234

TEL ;WORK ; HOME ; VOICE ; FAX : +1-800-555-1234
URL:http://abc.com/pub/directory/northam/jpublic.ecd
URL;WORK:http://www.impexp.com

MAILER:ccMail 2.2

TZ:-0500

GEO:37.24,-17.87

NOTE; ENCODING=QUOTED-PRINTABLE:Don't forget to order Girl Scout cookies
from Stacey today!

PHOTO; VALUE=URL ; TYPE=GIF:http://www.abc.com/dir_photos/my_photo.gif

SOUND; VALUE=CONTENT -
ID:&1t;jsmith.part3.960817T083000.xyzMail@hostl.com>

BDAY:19950415

TITLE:V.P., Research and Development
ROLE:Executive

END:VCARD"

i3

6.3. Appointment object format — JSON extended format

The appointment resource in JSON extended format is described by the following JSON schema:

{ "description" : "Appointment resource", "type" : "object", "properties" : {
"data" : { "description" : "Appointment resource data", "type" : "object",
"properties" : {
"content-type" : { "description" : "Resource content-type",
"type" : "string",
"default" : "application/json-appointment"},
"item" : { "description" : "Resource data", "type" : "object", "properties" : {
"key" : {"description" : "Resource identifier", "type" : "string"},
"state" : {"description" : "Resource state", "type" : "string"},
"lastUpdate" : {"description" : "Resource update time", "type" : "string"},
"folder" : {"type" : "string"},
"subject" : {"type" : "string"},
"body" : {"type" : "string"},
"location" : {"type" : "string"},
"allDay" : {"type" : "boolean"},

Copyright © 2010 Funambol - Page 26

1}

13

"startDate" : {"type" : "string" , "description"
"YYYYMMDD format if all day,
YYYYMMDD'T'hhmmss if tzid is specified,
YYYYMMDD'T'hhmmss'Z' format otherwise"},
"endDate" : {"type" : "string", "description"
"YYYYMMDD format if all day,
YYYYMMDD'T'hhmmss if tzid is specified,
YYYYMMDD ' T'hhmmss'Z' format otherwise"},

"tzid" : {"type" : "string"},
"reminder" : {"type" : "int"},
"reminderTime" : {"type" : "string"},
"busyStatus" : {"type" : "string"},
"categories" : {"type" : "string"},
"sensitivity" : {"type" : "string"},
"importance" : {"type" : "string"},
"isRecurring" : {"type" : "boolean"},
"recurrenceType" : {"type" : "string"},
"dayOofMonth" : {"type" : "string"},
"dayOfWeekMask" : {"type" : "string"},
"instance" : {"type" : "string"},
"interval" : {"type" : "string"},
"monthOfyear" : {"type" : "string"},
"patternStartDate" : {"type" : "string", "description"

"YYYYMMDD format if all day,
YYYYMMDD'T'hhmmss format otherwise"},

"occurrences" : {"type" : "string"},
"noEndDate" : {"type" : "boolean"},
"patternEndDate" : {"type" : "string", "description"

"YYYYMMDD format if all day,
YYYYMMDD ' T'hhmmss format otherwise"},
"exceptionsExcluded" : {"type" : "array"},

"exceptionsIncluded" : {"type" : "array"}

13

Below is an example of a JSON data structure containing appointment information

appointment) :

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {

"subject": "holiday",

"tzid": "America/Mexico_City",
"startDate": "20081001T170000Z",
"endDate": "20081001T180000Z",

"location": "Acapulco",

(single

Copyright © 2010 Funambol - Page 27

"allDay": false,
"isRecurring": false
}
i3

Below is an example of a JSON data structure containing appointment information (single all-day
appointment):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {

"subject": "holiday all day",
"tzid": "America/Mexico_City",
"startDate": "20081001",
"endDate": "20081001",

"location": "Acapulco",

"allDay": true,

"isRecurring": false

For more examples see Appendix B — Appointment examples.

6.4. Appointment object format — vCalendar / iCalendar format

The appointment resource in vCalendar / iCalendar format is described by the following JSON
schema:

{ "description" : "Appointment resource", "type" : "object", "properties" : {
"data" : { "description" : "Appointment resource data", "type" : "object",
"properties" : {
"content-type" : { "description" : "Resource content-type",
"type" : "string",
"default" : "application/json-vcal"},
"item" : { "description" : "Resource data", "type" : "object", "properties" : {
"key" : {"description" : "Resource identifier", "type" : "string"},
"state" : {"description" : "Resource state", "type" : "string"},
"lastUpdate" : {"description" : "Resource update time", "type" : "string"},
"folder" : {"type" : "string"},
"vcal" : {"description" : "VCalvCalendarendar RFC specs", "type"
"string"}
1}
1}
1}

Below is an example of a JSON data structure containing vCalendar information:

Copyright © 2010 Funambol - Page 28

{ "data" : {

"content-type" : "application/json-vcal",

"item" : {
"key": "12ADE43",
"vcal": "BEGIN:VCALENDAR
PRODID:-//ABC Corporation//NONSGML My Product//EN
TZ:+05:30
VERSION:1.0
BEGIN:VEVENT
AALARM; TYPE=WAVE ; VALUE=URL : 20070415T235900; ; ; file:///mmedia/taps.wav
DALARM:20070415T235000;PT5M; 2;Your Taxes Are Due !!!
PALARM; VALUE=URL :20070415T235000;PT5M;2;file:///myapps/shockme.exe
MALARM:20070416TQ00000;PT1H;24;IRS@us.gov;The Check Is In The Mail!
CATEGORIES:APPOINTMENT; EDUCATION
CLASS:PUBLIC
LAST-MODIFIED:20070817T133000Z
DCREATED:20070329T083000
COMPLETED:20070401T235900

DESCRIPTION; ENCODING=QUOTED-PRINTABLE:Don’t forget to order Girl Scout
cookies from Stacey today!

EXDATE:20070402T010000Z;20070403T010000Z;20070404T010000Z
XRULE:D1 #10

DUE:20070401T235900Z

LOCATION; VALUE=URL; TYPE=VCARD:http://www.Xyzcorp.com/~jsmith.vcf
RNUM:3

PRIORITY:2
RELATED-TO:&1t;jsmith.part7.19960817T083000.xyzMail@host3.com>
RDATE :20070402T010000Z;20070403T010000Z;,20070404T010000Z
RRULE:W5 TU TH

RESOURCES: EASEL ; PROJECTOR; VCR

SEQUENCE:1

STATUS:TENTATIVE

SUMMARY :Proposal Review

TRANSP: 0
URL:http://abc.com/pub/calendars/jsmith/mytime.or3
UID:20070401-080045-4000F192713-0052

GEO:37.24,-17.87

DAYLIGHT:TRUE; -06;20070407T025959;20071027T010000;EST; EDT
DTSTART:20070614T150000Z

DTEND:20070614T160000Z

END:VEVENT

END:VCALENDAR

i3

Below is an example of a JSON data structure containing iCalendar information:

Copyright © 2010 Funambol - Page 29

{ "data" : {

"content-type" : "application/json-vcal",

"item" : {
"key": "12ADE43",
"vcal": "BEGIN:VCALENDAR
VERSION:2.0
METHOD : PUBLISH
BEGIN:VEVENT
UID:20060416T204136Z2-4272-727-1-247@gol1lum
DTSTAMP:20060416T204136Z
DTSTART :20060406T190000Z
DTEND:20060406T193000Z
TRANSP : TRANSPARENT
SEQUENCE : 4
SUMMARY:all fields
LOCATION:virtual
CATEGORIES:Business, test, bar
CLASS:PRIVATE
CREATED:20080809T193645
LAST-MODIFIED:20080809T193645
DESCRIPTION:this is an appointment
END:VEVENT
END:VCALENDAR

i3

Below is an example of a JSON data structure containing iCalendar information:

{ "data" : {
"content-type" : "application/json-vcal",
"item" : {

"key": "12ADE43",

"vcal": "BEGIN:VCALENDAR

VERSION:2.0

BEGIN:VTIMEZONE
TZID:/mozilla.org/20050126_1/Europe/Berlin
X-LIC-LOCATION:Europe/Berlin
BEGIN:DAYLIGHT

TZOFFSETFROM:+0100

TZOFFSETTO:+0200

TZNAME : CEST

DTSTART:19700329T020000
RRULE:FREQ=YEARLY; INTERVAL=1; BYDAY=-1SU; BYMONTH=3
END:DAYLIGHT

BEGIN:STANDARD

TZOFFSETFROM: +0200

TZOFFSETTO:+0100

Copyright © 2010 Funambol - Page 30

TZNAME :CET

DTSTART:19701025T030000
RRULE:FREQ=YEARLY; INTERVAL=1; BYDAY=-1SU; BYMONTH=10
END : STANDARD

END:VTIMEZONE

BEGIN:VEVENT

DTSTART; TZID=/mozilla.org/20050126_1/Europe/Berlin:20070929T140000
DTEND:20070929T130000Z

SUMMARY : Summary

LOCATION:Location

DESCRIPTION:Description

END:VEVENT

END:VCALENDAR

13

6.5. Task object format — JSON extended format

The task resource in JSON extended format is described by the following JSON schema:

{ "description" : "Task resource", "type" : "object", "properties" : {
"data" : { "description" : " Task resource data", "type" : "object", "properties" : {
"content-type" : { "description" : "Resource content-type",
"type" : "string" ,
"default" : "application/json-task"},
"item" : { "description" : "Resource data", "type" : "object", "properties" : {
"key" : {"description" : "Resource identifier", "type" : "string"},
"state" : {"description" : "Resource synchronization state", "type" : "string"},
"lastUpdate" : {"description" : "Resource update time", "type" : "string"},
"folder" : {"type" : "string"},
"subject" : {"type" : "string"},
"body" : {"type" : "string"},
"allDay" : {"type" : "boolean"},
"startDate" : {"type" : "string" , "description"

"format YYYYMMDD if all day,
YYYYMMDD ' T'hhmmss if tzid is specified,
YYYYMMDD'T'hhmmss'Z' otherwise"},
"dueDate" : {"type" : "string", "description"
"format YYYYMMDD if all day,
YYYYMMDD'T'hhmmss if tzid is specified,
YYYYMMDD'T'hhmmss'Z' otherwise"},
"tzid" : {"type" : "string"},
"sensitivity" : {"type" : "string"},
"importance" : {"type" : "string"},
"status" : {"type" : "string"},
"reminder" : {"type" : "boolean"},
"reminderDate" : {"type" : "string", "description"
"format YYYYMMDD if all day,

Copyright © 2010 Funambol - Page 31

"complete" {"type" "boolean"},
"percentComplete" {"type" "string"},
"dateCompleted" : {"type" "string"},
"actualwork" {"type" "string"},
"totalWork" {"type" "string"},
"billingInformation" {"type" "string"},
"companies" : {"type" "string"},
"mileage" {"type" "string"}
1}
1}

13

YYYYMMDD'T'hhmmss if tzid is specified,
YYYYMMDD'T'hhmmss'Z' otherwise"},

6.6. Task object format — vCalendar / iCalendar format

In vCalendar / iCalendar a task has the same format as an appointment.

Please see 6.4

Appointment object format — vCalendar / iCalendar format.

6.7. Notes object format

Information about note resources is described by the following JSON schema:

{ "description" "Note resource",

Iltypell
"data" { "description"

"content-type" { "description"

"object",

"Note resource data",

"properties" : {

"type" "object", "properties" : {

"Resource content-type",

"type" "string",
"default" "application/json-note"},
"item" { "description" "Resource data", "type" "object", "properties" : {
"key" : {"description" "Resource identifier", "type" "string"},
"state" {"description" "Resource synchronization state", "type" "string"},
"folder" {"type" "string"},
"subject" {"type" "string"},
"body" : {"type" "string"},
1}
1}

i3

Below is an example of a JSON data structure containing note information:

{ "data" : {
"content-type" "application/json-note",
"item" : {
"subject": "How to buy a puppets",
"body": "go out and buy a puppets"
}

i3

Copyright © 2010 Funambol - Page 32

7. JSON Connector API

7.1. Authentication group

7.1.1. login

Authenticate user credentials with the SyncSource.

Request
POST /auth/login.

The body of this request contains the following parameters:

Parameters
None.
Body
+ type
e user
* pass
Response

A string containing the session ID to send in all sync, keys, and items API requests.

Error

If there is an error authenticating the user, a 406 HTTP error code is returned and the content of the
response is a JSON error. The following errors are expected:

Error code
ERR_UNKNOWN_USER

ERR_ACCOUNT_EXPIRED

ERR_PAYMENT_REQUIRED

Example
Request:

POST /auth/login.
Request body:

Description Error object
The given credentials do not identify any {"error":{
existing user. "code":"ERR_UNKNOWN_USER",
"message":"Unknown user"
}
}
The given credentials identify a user account = {"error":{
that has expired; the parameter expiration- "code":"ERR_ACCOUNT_EXPIRED",
date specifies the expiration date. "message":"Account expired",

"parameters":[{
"expiration-date":"20080808"

1
}
}
The user does not have enough credit. {"error":{

"code":"ERR_PAYMENT_REQUIRED",
"message":"Unknown user"

}
}

Copyright © 2010 Funambol - Page 33

{"data":{
"credentials":{

"type": "basic",

"user": "user1",
"pass": "pass1i"
}
}
}
Response:
{"data":{
"sessionid" :"4B339C8F5437B7A9506D8C69901833BF"
}
}

Note: username and password are sent as a string; this means that the credentials from a SyncML
client are copied “as is” in the body of the Request.

Note: a previous implementation of /auth/login, accepting only 2 parameters (user and password),
is now deprecated.

7.1.2. logout
Indicates that a previously login session can be discarded.

Definition
POST /auth/logout.

Request header
« authorization: the session ID returned in a previous login call

Parameters
None.

Body
« sessionid: the session ID returned in a previous login call

Response
An empty response.

Errors

If an error occurs, a 406 HTTP error code is returned and the content of the response is a JSON
error. The following error is expected:

Copyright © 2010 Funambol - Page 34

Error code Description Error object

ERR_INVALID_SESSION The given session is invalid or unknown; the = {"error":{
parameter sessionid specifies the offending "code":"ERR_INVALID_SESSION",
session. "message":"Invalid session",

"parameters":[{
"sessionid":"A45568HD094"

1

Example
Request:

POST /auth/logout.
Request body:
{"data":{
"sessionid":"4B339C8F5437B7A9506D8C69901833BF"
}

7.2. Sync group

7.2.1. beginSync
Notify the JSON API that a sync is going to begin.

Definition
POST /<sync-source-name>/sync/begin.

Request header
- authorization: the session ID returned in a previous login call

Parameters
« synctype: can be one of the following:

o TWO-WAY: two-way synchronization

o SLOW SYNC: full synchronization

o ONE-WAY FROM SERVER: one-way from server synchronization
o REFRESH FROM SERVER; refresh from server synchronization
o ONE-WAY FROM CLIENT: one-way from client synchronization

o REFRESH FROM CLIENT: refresh from client synchronization

- since: the start time of the sync process is in milliseconds (Unix timestamp is in
milliseconds)

Response
An empty response.

Copyright © 2010 Funambol - Page 35

Errors

If an error occurs, a 406 HTTP error code is returned and the content of the response is a JSON
error. The following error is expected:

Error code Description Error object
ERR_UNSUPPORTED_SYNC_TYPE | The given sync type is not {"error"q{
supported; the parameter "code":"ERR_UNSOPORTED_SYNC_TYPE"
sync-type specifies the
unsupported type. "message":"Unsupported sync type",

"parameters":[{
"sync-type":"refresh-from-server"

1

Example
Request:

POST /contact/sync/begin.

Request body:

{"data":{
"synctype":"two-way",
"since":1222956766865
}

The since parameter in the beginSync request
This paragraph explains why the beginSync request sets the since parameter.

This parameter is related to the following methods:

getNewSyncltemKeys
getUpdatedSyncltemKeys
getDeletedSyncltemKeys
addSyncltem
updateSyncltem

removeSyncitem

The synchronization process is atomic. Figure 17 shows the scenario that involves
getNewSyncltemKeys, getUpdatedSyncitemKeys, getDeletedSyncltemKeys (briefly get N_U_D).

The first synchronization process (i.e. SyncSessionl) starts at time t1 and ends at time t2; during
this process, the system adds/updates items 1 and 2 (see Figure 17).

Copyright © 2010 Funambol - Page 36

SyncSessionl SyncSession2

— S

tL | Add | | Upd | 2 t3 t4
poitemly ¢ item 2 ‘ ‘ ‘

get_N_U_D(since > 0) get_N_U_D(since > t1)
Add Upd Add
item A itemB itemC
from Ul from Ul from Ul

Figure 17: The synchronization process

Items 1 and 2 must have the creation/update time equal to t1 in the storage of the backend.

The add, update and delete operations are performed by the API, using the methods addSyncitem,
updateSyncitem and removeSyncitem, so that the t1 value must be taken into account and set as
the creation/update time in the backend storage system.

This step is very important for the synchronization process; the APl implementation should provide
a session variable that stores the since value and that will be used in the add/update/remove
methods.

When the second synchronization process (i.e. SyncSession?2) starts, the get N_U_D operation
have a where clause: since > t1. The get N_U_D method returns the items A, B, C and excludes
the items 1 and 2 because they have the creation/update time equal to t1.

Note: if the get N_U_D methods have a where clause: since > t2, the synchronization process has
a point of failure because during SyncSessionl the user could add an item (i.e. A) from an external
User Interface.

7.2.2. endSync
Notify the JSON API that a sync has ended.

Definition
POST /<sync-source-name>/sync/end.

Request header
« authorization: the session ID returned in a previous login call

Parameters
None.

Response
None.

Errors

If an error occurs, a 406 HTTP error code is returned and the content of the response is a JSON
error.

Copyright © 2010 Funambol - Page 37

Example
Request:

POST /contact/sync/end.

7.3. Keys group

7.3.1. getAllSyncltemKeys
Retrieve the keys for all of the items in the SyncSource.

Definition
GET /<sync-source-name>/keys/all.

Request Header
- authorization: the session ID returned in a previous login call

Parameters
None.

Response
An array with the item keys.

Errors

If an error occurs, a 406 HTTP error code is returned and the content of the response is a JSON
error.

Example
Request:
GET /contact/keys/all.
Response:
{"data":{
"keys": [
n key_ 1" ,
n key_ on ,
n key- n" ,
1
}
}

7.3.2. getNewSyncltemKeys
Retrieve the keys for new items in the SyncSource since a specified time.

Definition
GET /<sync-source-name>/keys/new

Copyright © 2010 Funambol - Page 38

Request header

- authorization: the session ID returned in a previous login call

Parameters

+ since: the time since the last sync in milliseconds on the sync server (Unix timestamp in

milliseconds)

« until: the time of the current sync in milliseconds on the sync server (Unix timestamp in

milliseconds)

Response
An array with the new item keys.

Errors

If an error occurs, a 406 HTTP error code is returned and the content of the response is a JSON

error. The following error is expected:

Error code Description

ERR_INVALID_TIMESTAMP | The given sync type is not supported; the
parameters since and until specify the
invalid timestamp.

Example
Request:

GET /contact/keys/new?since=123456789&until=133456789

Response:
{"data":{
"keys": [
Ilkey_lll ,
|lkey_2|| ,
nkey_nn ,
1
}
}

7.3.3. getUpdatedSyncltemKeys

Error object

{"error":{
"code":"ERR_INVALID_TIMESTAMP",
"message":"Invalid timestamp",
"parameters":[

{
"since":"12280808102500"

h
{

"until":"xxxxx"

Retrieve the keys for updated items in the SyncSource since a specified time.

Definition
GET /<sync-source-name>/keys/updated

Copyright © 2010 Funambol - Page 39

Request Header
- authorization: the session ID returned in a previous login call

Parameters
« since: the time since the last sync in milliseconds on the sync server

« until: the time of the current sync in milliseconds on the sync server

Response
An array with the updated item keys.

Errors

If an error occurs, a 406 HTTP error code is returned and the content of the response is a JSON
error. The following error is expected:

Error code Description Error object
ERR_INVALID_TIMESTAMP | The given sync type is not supported; the = {"error":{
parameters since and until specify the "code":"ERR_INVALID_TIMESTAMP",
invalid timestamp. "message":"Invalid timestamp”,

"parameters":[

"since":"20080808102500"

"until":"xxxxx"

Example
Request:

GET /contact/keys/updated?since=123456789&until=133456789

Response:
{"data":{
"keys": [
"key-l" ,
Ilkey_zll,
"key-n" ,
]
}
}

7.3.4. getDeletedSyncltemKeys
Retrieve the keys for deleted items in the SyncSource since a specified time.

Definition
GET /<sync-source-name>/keys/deleted

Copyright © 2010 Funambol - Page 40

Request header
- authorization: the session ID returned in a previous login call

Parameters
+ since: the time since the last sync in milliseconds on the sync server (Unix timestamp in
milliseconds)

« until: the time of the current sync in milliseconds on the sync server (Unix timestamp in
milliseconds)

Response
An array with the updated item keys.

Errors

If an error occurs, a 406 HTTP error code is returned and the content of the response is a JSON
error. The following error is expected:

Error code Description Error object
ERR_INVALID_TIMESTAMP | The given sync type is not supported; the | {"error":{
parameters since and until specify the "code":"ERR_INVALID_TIMESTAMP",
invalid timestamp. "message":"Invalid timestamp",

"parameters":[

{
"since":"20080808102500"

h
{

"until";"xxxxx"

Example
Request:

GET /contact/keys/deleted?since=123456789&until=133456789

Response:
{"data":{
"keys": [
Ilkey_lll ,
|lkey_2|| ,
nkey_nn ,
1
}
}

7.3.5. getSyncltemKeysFromTwin
Retrieve the keys of items that are twins of the item passed in the body of the request.

Definition
POST /<sync-source-name>/keys/twins

Copyright © 2010 Funambol - Page 41

Request header
- authorization: the session ID returned in a previous login call

Parameters
None.

Body

The body of this request contains the item that must be checked to see if it has a duplicate. This
allows the JSON backend to apply any specific logic needed to discover contacts that match the
given item. However, it is strongly recommended to compare the following criteria and rules;
diverting from such rules may break the compatibility with the devices.

Recommended Contact fields for the search criteria are:
- firstname
+ lastname
+ email address
Recommended Events fields for the search criteria are:
« subject
« startdate
+ enddate
« location
Recommended Task fields for the search criteria are:
- subject
+ startdate

+ duedate

Response
An array with the twin item keys.

Errors

If an error occurs, a 406 HTTP error code is returned and the content of the response is a JSON
error.

Example
Request:

POST /contact/keys/twins.
Request body:

{"data":{
"item": {
"firstName":"John",
"lastName":"Doe",

"emailaddress":"john@somewhere.com"

Copyright © 2010 Funambol - Page 42

}

Response:
{"data":{
"keys": [
Ilkey_lll ,
|lkey_2u ,
Ilkey_nll ,
1
}
3

Note: a similar API with the same name but which supports inserting of twin search parameters in
the request is now deprecated.

7.4. Items group

For all the item-If the backend returns a 500 HTTP error code, the behavior depends on the the
configuration parameter StopSyncOnFatalError: if it is true, the sync is stopped, otherwise the item
is rejected.

7.4.1. additem
Add an item to the SyncSource.

Definition
POST /<sync-source-name>/items.

Request header
« authorization: the session ID returned in a previous login call

Parameters
- since: the time since the last sync in milliseconds on the sync server

Body
Contains all the fields for the object.

Note: all fields are sent, so the API always has access to any available field for processing.

Response
The server key and state of the added item.

Error
If an error occurs while adding the item from the SyncSource, a 406 HTTP error code is returned.

If the backend returns a 500 HTTP error code, the behavior depends on the the configuration
parameter StopSyncOnFatalError: if it is true, the sync is stopped, otherwise the item is rejected.

Example
Request:

Copyright © 2010 Funambol - Page 43

POST /contact/items?since=123456789
Request body:

{"data":{
"content-type":"application/json-card",
"item": {

"firstName: "John",

"LastName": "Doe"
"property-n": "value-n",
}
3
}
Response:
{"data":{
"key": "new-server-key"
}
}

7.4.2. updateltem
Update an existing item in the SyncSource.

Definition
PUT /<sync-source-name>/items/<resource-key>

Request header
« authorization: the session ID returned in a previous login call

Parameters
« since: the time since the last sync in milliseconds on the sync server

Body
Contains all the fields for the object

Note: all fields are sent, so the API always has access to any available field for processing.

Response
Empty.

Error

If an error occurs while updating the item from the SyncSource, a 406 HTTP error code is returned
and the content of the response is a JSON error. The following error is expected:

Copyright © 2010 Funambol - Page 44

Error code Description Error object

ERR_NOT_FOUND The item was not found. {"error":{
"code":"ERR_INT_FOUND",
"message":"ltem not found"

Example
Request:

PUT /contact/items/1323?since=123456789
Request body:
{"data": {
"content-type":"application/json-card",
"item": {
"firstName: "Stefano",

"LastName": "Fornari"

"property-n": "value-n",

Response:

Empty.

7.4.3. removeltem
Remove an item from the SyncSource.

Definition
DELETE /<sync-source-name>/items/<resource-key>

Request header
- authorization: the session ID returned in a previous login call

Parameters
« since: the time since the last sync in milliseconds on the sync server

Response
Empty.

Error

If an error occurs while removing the item from the SyncSource, a 406 HTTP error code is returned
and the content of the response is a JSON error, unless the configuration parameter
StopSyncOnFatalError is true. In the latter case, the sync is stopped. The following error is
expected:

Copyright © 2010 Funambol - Page 45

Error code Description Error object
ERR_NOT_FOUND The item was not found. {"error":

{

"code":"ERR_INT_FOUND",
"message":"ltem not found"

Example
Request:

DELETE /contact/items/13427?since=123456789
Response:

Empty.

7.4.4. removeAllltems

Remove all the items from the SyncSource. This method will be used in the "Refresh from client"
procedure.

Definition
DELETE /<sync-source-name>/items

Request header
« authorization: the session ID returned in a previous login call

Parameters
- since: the time since the last sync in milliseconds on the sync server

Response
Empty.

Error

If an error occurs while removing all the items from the SyncSource, a 406 HTTP error code is
returned and the content of the response is a JSON error. The following error is expected:

Error code Description Error object
ERR_NOT_FOUND The given item was not found. {"error":{
"code":"ERR_NOT_FOUND",

"message":"ltems not found",

"parameters": [
{
"keys"["key_1","key 2" "key 3"]
}

]
}

Copyright © 2010 Funambol - Page 46

Example
Request:

DELETE /contact/items?since=123456789
Response:

Empty.

7.4.5. getitem
Get the content of an item from SyncSource given the server key.

Definition
GET /<sync-source-name>/items/<resource-key>

Request header
- authorization: the session ID returned in a previous login call

Parameters
None.

Response
The content and state of the updated item.

Error

If an error occurs while getting the item from the SyncSource, a 406 HTTP error code is returned
and the content of the response is a JSON error. The following error is expected:

Error code Description Error object

ERR_NOT_FOUND The given item was not found. {"error":{
"code":"ERR_INT_FOUND",
"message":"Item not found"

Example
Request:

GET /contact/items/1342

Response:
{"data": {
"content-type":"application/json-card",
"item": {
"firstName: "Stefano",
"LastName": "Fornari"
"property-n": "value-n",
}
3
}

Copyright © 2010 Funambol - Page 47

7.5. Utility group

7.5.1. getConfiguration
Get the following information:

« Local date and time of the server where the APl and the back-end are installed.

This information will be used in order to know if all the servers (Funambol Server, API server
and back-end server) have exactly the same date and time.

- Timezone set by the user in the user interface (i.e. a web access client).

This APl is called in order to evaluate and properly handle recurring appointment items.

Definition
GET /config/time

Request header
- authorization: the session ID returned in a previous login call

Parameters
None.

Response
The time and the timezone.

Error
If an error occurs while getting the item from the SyncSource, a 406 HTTP error code is returned.

Example
Request:
GET /config/time
Response:
{"data": {
"time": "20090114T140147",
"tzid": "GMT"
}
}

Copyright © 2010 Funambol - Page 48

8. Api Testing Tool

8.1. Introduction
This guide is intended for developers working on implementing the Funambol json API.

Using Funambol json testing tool the developer will be able to test the insert/remove/update and
synchronization features of the server side developed api.

8.2. Installing

Funambol JSON testing tool is distributed as a .zip package, in order to use it you must unzip it, the
scripts to run the application are placed under Funambol/json-test-api/bin/ . Executing the startup
script will immediately start the tests.

Linux

In linux systems the zip package can be unzipped using the “unzip” tool: unzip Funambol-JSON-
test-api-1.0.0.zip . In order to start the tests the user should go th bin directory (cd Funambol/json-
test-api/bin/) and run the start script (./run.sh’)

Windows

In windows it's possible to use any compression tool that supports “zip” files, when extracted the
files the user should locate the “Funambol” directory and then reach the startup scripts directory (
cd Funambol\json-test-api\bin), in order to run the tests the user should execute the start script (
run.cmd)

8.3. Configuring

Under the “config” dir you will find two files: one for logging configurations (log4j.xml) and the other
for server related properties.

8.3.1. Logging

In the logging file it's possible to configure the log that will appear in the console and will be
recorded in the log file. The configuration follows the log4j standard
http://logging.apache.org/log4j/1.2/

raising verbosity

By default the log level is set to info, in this mode the user will only see the tests being executed and
the errors(if any).

<category name="funambol.json-test-api">
<priority value="info"/>
<appender-ref ref="json-test-api-file"/>
</category>
<category name="funambol.json-test-api">

<priority value="info"/>

Copyright © 2010 Funambol - Page 49

http://logging.apache.org/log4j/1.2/

<appender-ref ref="json-test-api-console"/>

</category>

While developing the server side json API it's useful to set the log level to “trace”

<category name="funambol.json-test-api">

<priority value="trace"/>

<appender-ref ref="json-test-api-file"/>
</category>
<category name="funambol.json-test-api">

<priority value="trace"/>

<appender-ref ref="json-test-api-console"/>
</category>

This way you will be able to see all the data exchanged with the server(sessionid's, request body,
request headers etc)

8.3.2. Server properties
Here you will be able so set up your server settings: server url, username and password

server-uri=http://localhost:8080/jsonsync
username=your_username
password=your_password

method=standard

Method property

The method property in the server.properties file is used in order to support two different server
implementations. This happens because some backends might not be able to differentiate between
new and updated items, if this is the case both new and updated items will be returned as new
items and therefore the method property should be set to “alternate” otherwise “standard” should be
used.

8.4. Tests

The Funambol JSON tool ships with 15 default tests per source, in order to run this tests you just
have to configure you server definitions and run the init script.

NOTE: Running all the tests (60 considering 15 per source) will take 25-30 minutes. See bellow how
to turn off tests, if you want to run just a sub-set of the tests.

8.4.1. Structure

All the tests are placed under “testcases” directory, and all directories inside “testcases” will be
consider as a source in server side (eg. testcases/contacts , testcases/notes, etc). Any directory
inside a source will be considered the test name. Inside each directory representing a test name are
the test files.

Testcases

contacts [this is the syncsource name server side]

integrity1

Copyright © 2010 Funambol - Page 50

operations.properties
iteml.json

item2.json

syncl
operations.properties
iteml.json
iteml_added.json
events
0001_test

operations.properties
iteml.json

item2.json

the “item*.json” files contain a json item that should have the item type of the source being tested,
the “item*_added”, “item*_updated” and “item*_removed” contain a item key that can be used as a
reference for some operations (more info bellow).

8.4.2. Turning off tests

If you don't have a complete server side implementation of the JSON API you will need to turn off
some tests, you can do this by changing the source our test name from “sourcename” to
“ sourcename” in this case the source/test wont be executed.

8.4.3. Writing new tests

There are the 2 ways to reference items: <instruction>:item1 and
<instruction>:item1_added/<instruction>:item1_updated the first one refers to a json representation
of an item, the second refers to a file containing a key(with is created when an item is inserted or
updated)

Instruction Description Syntax
login performs the login in the json server login
logout logs out from the json server logout
beginSync tell the server that a sync session is going to begin begynSync:<syncType>

allowed types : “two-way”, “full”, “one-way-
from-server”, “one-way-from-client”,
“refresh-from-server”, “refresh-from-client”

endSync tell the server that a sync session had ended. endSync
getAllSyncltemKeys get all the keys for the items in the server. getAllISyncltemKeys
getDeletedSyncltemKeys | get all the keys of the deleted items since a specified getDeletedSyncltemKeys
time.
getUpdatedSyncltemKeys | get all the keys of the updated items since a specified getUpdatedSyncltemKeys
time.
getNewSyncltemKeys get all the keys of the new items since a specified time. | getNewSyncltemKeys
getSyncltemFromid get the item associated with a specific key. GetSyncltemFromld:<key_file>
removeSyncltem remove the item with a specific key. removeSyncltem:<key_file>
addSyncltem insert a specified item in the server and return it with a addSyncltem:<item_file>
key.
updateSyncltem update a specified item in the server for a specific key. | updateSyncltem:<key_file>:<item_file>

Copyright © 2010 Funambol - Page 51

getSyncltemKeysFromTwi search for application defined equivalent items for a | getSyncltemKeysFromTwin:<item_fike:<
n specified item. The key of the second parameter must key_file>
be one of the returned twin items

compareClientServer compares the item on client with the item on the server compareClientServer:<key_file>:<item_fil
the item returned by the server must have all the same e>
keys and values as the item on client side

deleteAllltems Deletes all the items server side, for the source being deleteAlltems
tested

All the commands described could be inserted in the “operation.properties” file that must be inside
any test directory, also all the resources needed during the test (.json files) should be present in this
directory.

8.5. Running the tests

As stated before In order to start the tests, the startup scripts under bin/ need to be executed.
According to the log level the user will see only the test names and error or all the communications.

NOTE: in order to have correct synchronization results the testing framework MUST run on the
same machine as the one where the testing APl is running.

Copyright © 2010 Funambol - Page 52

Appendix A — Contact examples

Contact

Below is an example of a JSON script that the Funambol Server sends to the back-end system.
Note that there is no key field; when the back-end system returns a JSON item to the Funambol
Server, the item must contain the key field.

{ "data" : {
"content-type" : "application/json-card",
"item" : {

"firstName": "John",

"lastName": "Smith"

"businessAddressStreet":"via industria 12",
"businessAddressCity":"trivolzio",
"businessAddressState":"pavia",
"businessAddressCountry":"italy",
"businessAddressPostalCode":"27010",

"homeAddressStreet":"23 rue marine",

"homeAddressCity":"paris",

"homeAddressState":"paris",

"homeAddressCountry":"france",

"homeAddressPostalCode" :"10101",

"photo": "/9j/4AAQSkZJIRgABAgAAAQABAAD/2wBDAAgGBgCGBQgHBWCJICQQKD",
"photoType": "GIF",

"email": "john.smith@email.ti",
"email2": "allora@google.com",
"email3": "thirdemail@email.ti",

"phoneBusiness":"1111111",
"phoneBusinessfax":"555555",
"phoneHome" : "222222",

"phoneMobile" :"3498888888",
"phoneMobileHome" : "35512312312",
"phoneMobileBusiness" : "3556767678",

"jobTitle":"engineer",
"assistantName":"assistente",
"nickName":"gioci",
"spouseName":"mogliettina"

"anniversary":"2000-06-27",

Copyright © 2010 Funambol - Page 53

i3

"birthday":"1971-03-27",
"url":"url.tre.com",
"instantMessenger1":"ronny12",
"company": "maruzzella srl",
"department":"departement",

"office":"12b"

Copyright © 2010 Funambol - Page 54

Appendix B — Appointment examples

Single appointment

Below is an example of a JSON data structure containing information for a single appointment
(type: single):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {

"subject": "holiday",
"tzid": "America/Mexico_City",
"startDate": "20081001T000000Z",
"endDate": "20081001TOOOOOOZ",
"location": "Acapulco",
"allDay": false,
"isRecurring": false

}

1}

All day appointment

Below is an example of a JSON data structure containing information for a single all-day
appointment (type: single, all day):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {

"subject": "holiday all day",
"tzid": "America/Mexico_City",
"allDay": true,
"startDate": "20081001",
"endDate": "20081001",
"location": "Acapulco",
"isRecurring": false

}

1}

Daily recurring appointment

Below is an example of a JSON data structure containing information for a daily recurring
appointment (type: daily; every 2 days; from 2008-10-01 to 2008-10-31):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {
"subject": "Kick off meeting",

Copyright © 2010 Funambol - Page 55

"tzid": "America/Mexico_City",

"startDate": "20081001T170000Z",
"endDate": "20081001T180000Z",
"location": "Acapulco",

"reminder": 1,

"reminderTime": "15", -> mins before the appointment
"isRecurring": true,
"recurrenceType": "0", -> see the Constants paragraph.
"interval": "2", -> in the Web UI "every 2 days"
"patternStartDate": "20081001T110000", -> note the LocalTime
"noEndDate": false, -> there's pattern end date
"patternEndDate": "20081031T120000", -> note the LocalTime
"dayofwWeekMask": "o", -> optional; not considered in this recurring
"monthOfYear": "0", -> optional; not considered in this recurring
"dayOfMonth": "@", -> optional; not considered in this recurring
"instance": "O@" -> optional; not considered in this recurring
}
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Weekly recurring appointment

Below is an example of a JSON data structure containing information for a weekly recurring
appointment (type: weekly; every 1 week; every Wednesday; from 2008-07-20 to 2008-08-31)

{ "data" : {
"content-type" "application/json-appointment",
"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",
"startDate": "20080720T170000Z",
"endDate": "20080720T180000Z",
"location": "Acapulco",

"reminder": 1,

"reminderTime": "15", ->
"isRecurring": true,

"recurrenceType": "1", ->
"interval": "1", ->
"dayOofwWeekMask": "8", ->
"patternStartDate": "20080720T110000", ->
"noEndDate": false, ->
"patternEndDate": "20080831T120000", ->
"monthOfYear": "0", ->

mins before the appointment

see the Constants paragraph.
in the Web UI "every 1 week"
see the Constants paragraph.
note the LocalTime

there's pattern end date

note the LocalTime

optional; not considered in this recurring

Copyright © 2010 Funambol - Page 56

"dayOfMonth": "@", -> optional; not considered in this recurring
"instance": "O@" -> optional; not considered in this recurring
}
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Weekly recurring appointment

Below is an example of a JSON data structure containing information for a weekly recurring
appointment (type: weekly; every 1 week; every Monday, Wednesday and Friday; from 2008-07-20
to 2008-08-31):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",

"startDate": "20080720T170000Z",
"endDate": "20080720T180000Z",

"location": "Acapulco",

"isRecurring": true,

"recurrenceType": "1", -> see the Constants paragraph.
"interval": "1", -> in the Web UI "every 1 week"
"dayOofwWeekMask": "42", -> see the Constants paragraph.
"patternStartDate": "20080720T110000", -> note the LocalTime
"noEndDate": false, -> there's pattern end date
"patternEndDate": "20080831T120000", -> note the LocalTime
"monthOfYear": "0", -> optional; not considered in this recurring
"dayOofMonth": "0", -> optional; not considered in this recurring
"instance": "Q@" -> optional; not considered in this recurring
}
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

All day with end weekly recurring appointment (converted from SIF)

Below is an example of a JSON data structure containing information for an all-day weekly recurring
appointment with end date (type: weekly, all day; every 1 week; every Monday, Wednesday, Friday;
from 2009-01-26 to 2009-03-10):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",

"startDate": "20090126",

Copyright © 2010 Funambol - Page 57

"endDate": "20090126",

"location": "Acapulco",

"allDay": true,

"isRecurring": true,

"recurrenceType": "1", ->
"interval": "1", ->
"dayofweekMask": "42", ->
"patternStartDate": '"20090126T0Q0000", ->
"noEndDate": false, ->
"occurrences": 20,
"patternEndDate": "20090310TO00EO00", ->
"monthOfyear": "o",
"dayOfMonth": "@",
"instance": "0"

}

1}

see the Constants paragraph.
in the wWeb UI "every 1 week"
see the Constants paragraph.
note the LocalTime

there's pattern end date

note the LocalTime

-> optional; not considered in this recurring
-> optional; not considered in this recurring

-> optional; not considered in this recurring

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

All day without end weekly recurring appointment (converted from SIF)

Below is an example of a JSON data structure containing information for an all-day weekly recurring
appointment without end date (type: weekly, all day; every 1 week; every Monday, Wednesday,

Friday; from 2009-01-26):

{ "data" : {
"content-type" "application/json-appointment",
"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",
"startDate": "20090126",
"endDate": "20090126",
"location": "Acapulco",
"allDay": true,

"isRecurring": true,

"recurrenceType": "1", ->
"interval": "1", ->
"dayOfWeekMask": "42", ->
"patternStartDate": "20090126T000E00",
"noEndDate": true, ->
"occurrences": -1,

"monthOfyear": "o", -> optional;
"dayOofMonth": "@", -> optional;
"instance": "Q@" -> optional;

see the Constants paragraph.
in the Web UI "every 1 week"

see the Constants paragraph.

there's pattern end date

not considered in this recurring
not considered in this recurring

not considered in this recurring

Copyright © 2010 Funambol - Page 58

13

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

All day with end weekly recurring appointment (converted from vCalendar /
iCalendar)

Below is an example of a JSON data structure containing information for an all-day weekly recurring
appointment with end date (type: weekly, all day; every 1 week; every Monday, Wednesday, Friday;
from 2009-01-26 to 2009-03-10):

Note: the user can create this kind of item with a Symbian (e.g. Nokia) device selecting an
appointment "meeting" (X-EPOCAGENDAENTRYTYPE : APPOINTMENT) with start date: 00:00
and end date: 23:59.

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",

"startDate": "20090126",
"endDate": "20090126",
"location": "Acapulco",

"allDay": true,

"isRecurring": true,

"recurrenceType": "1", -> see the Constants paragraph.
"interval": "1", -> in the Web UI "every 1 week"
"dayOfWeekMask": "42", -> see the Constants paragraph.
"patternStartDate": "20090126TO00EEO" -> JSON Connector fixes the

format: 2009-01-26
"noEndDate": false, -> there's pattern end date
"occurrences": 20,
"patternEndDate":"20090310T235900" -> JSON Connector fixes the
format: 20090310T235900Z

"monthOfYear": "0", -> optional; not considered in this recurring
"dayofMonth": "0", -> optional; not considered in this recurring
"instance": "O" -> optional; not considered in this recurring
}
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

All day without end yearly recurring appointment (converted from vCalendar /
iCalendar)

Below is an example of a JSON data structure containing information for an all-day yearly recurring
appointment without end date (type: all day, yearly; from 2009-12-25):

Note: the user can create this kind of item with a Symbian (e.g. Nokia) device selecting an
appointment "anniversary" (X-EPOCAGENDAENTRYTYPE : ANNIVERSARY).

Copyright © 2010 Funambol - Page 59

{ "data" {

"content-type" "application/json-appointment",

"item" {
"subject": "Happy Christmas",
"tzid": "America/Mexico_City",
"startDate": "20091225",
"endDate": "20091225",
"location": "Acapulco",
"allDay": true,

"isRecurring": true,

"recurrenceType": "5", ->
"interval": "1", ->
"monthOfYyear": "12",
"dayofMonth": "25",
"patternStartDate" :"20091225T000000" ->
"noEndDate": true, ->
"occurrences": -1,
"dayofweekMask": "o", ->
"instance": "0"

}

1}

see the Constants paragraph.

in the Web UI "every 1 week"

JSON Connector fixes the
format: 2009-12-25

there's pattern end date

optional; not considered in this recurring

-> optional; not considered in this recurring

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Monthly recurring appointment (by day)

Below is an example of a JSON data structure containing information for a monthly recurring
appointment (type: monthly; the 10" of every 1 month; from 2008-10-01 to 2009-02-28):

{ "data" {

"content-type" "application/json-appointment",

"item" {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",
"startDate": "20080720T170000Z",
"endDate": "20080720T180000Z",
"location": "Acapulco",
"isRecurring": true,
"recurrenceType": "2", ->
"dayOfMonth": "10", ->
"interval": "1", ->
"patternStartDate": "20080720T110000", ->
"noEndDate": false, ->
"patternEndDate": "20080831T120000", ->
"monthOfyear": "0", ->

see the Constants paragraph.
in the Web UI "on 10 day"

in the Web UI "every 1 month"
note the LocalTime

there's pattern end date

note the LocalTime

optional; not considered in this recurring

Copyright © 2010 Funambol - Page 60

"dayOfweekMask": "o", -> optional; not considered in this recurring
"instance": "O@" -> optional; not considered in this recurring
}
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Monthly recurring appointment (by position)

Below is an example of a JSON data structure containing information for a monthly recurring
appointment (type: monthly; the first Thursday of every month; from 2008-10-01 to 2009-02-28):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",

"startDate": "20080720T170000Z",
"endDate": "20080720T180000Z",

"location": "Acapulco",

"isRecurring": true,

"recurrenceType": "3", -> see the Constants paragraph.
"interval": "1i", -> in the Web UI "every 1 month"
"instance": "1", -> first
"dayOfWeekMask": "16", -> see the Constants paragraph.
"patternStartDate": "20080720T110000", -> note the LocalTime
"noEndDate": false -> there's pattern end date
"patternEndDate": "20080831T120000", -> note the LocalTime
"monthOfYear": "O@", -> optional; not considered in this recurring
"dayofMonth": "@" -> optional; not considered in this recurring
}
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Monthly recurring appointment (by position)

Below is an example of a JSON data structure containing information for a monthly recurring
appointment (type: monthly; the last Friday of every 1 month; from 2008-10-01 to 2009-02-28):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",

"startDate": "20080720T170000Z",
"endDate": "20080720T180000Z",

"location": "Acapulco",

"isRecurring": true,

Copyright © 2010 Funambol - Page 61

"recurrenceType": "3", -> see the Constants paragraph.

"interval": "1i", -> in the Web UI "every 1 month"
"instance": "5", -> last
"dayOfWeekMask": "32", -> see the Constants paragraph.
"patternStartDate": "20080720T110000", -> note the LocalTime
"noEndDate": false, -> there's pattern end date
"patternEndDate": "20080831T120000", -> note the LocalTime
"monthOfYear": "O@", -> optional; not considered in this recurring
"dayofMonth": "o@" -> optional; not considered in this recurring
}
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Monthly recurring appointment (by position)

Below is an example of a JSON data structure containing information for a monthly recurring
appointment (type: monthly; the second weekend day (Saturday, Sunday) every 1 month; from
2008-10-01 to 2009-02-28):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",

"startDate": "20080720T170000Z",
"endDate": "20080720T180000Z",

"location": "Acapulco",

"isRecurring": true,

"recurrenceType": "3", -> see the Constants paragraph.
"interval": "1", -> in the Web UI "every 1 month"
"instance": "2", -> second
"dayOfweekMask": "65", -> see the Constants paragraph.
"patternStartDate": '"20080720T110000", -> note the LocalTime
"noEndDate": false, -> there's pattern end date
"patternEndDate": "20080831T120000", -> note the LocalTime
"monthOfYear": "O", -> optional; not considered in this recurring
"dayofMonth": "@" -> optional; not considered in this recurring
}
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Monthly recurring appointment (by position)

Below is an example of a JSON data structure containing information for a monthly recurring
appointment (type: monthly; the second weekday (Monday, Tuesday, Wednesday, Thursday,
Friday) every 1 month; from 2008-10-01 to 2009-02-28):

Copyright © 2010 Funambol - Page 62

{ "data" : {

"content-type" "application/json-appointment",

"item" : {
"subject": "Kick off meeting",
"tzid": "America/Mexico_City",
"startDate": "20080720T170000Z",
"endDate": "20080720T180000Z",
"location": "Acapulco",

"isRecurring": true,

"recurrenceType": "3", ->
"interval": "1", ->
"instance": "2", ->
"dayOofwWeekMask": "62", ->
"patternStartDate": "20080720T110000", ->
"noEndDate": false, ->
"patternEndDate": "20080831T120000", ->
"monthOfyear": "o", ->
"dayOfMonth": "@"

}

1}

see the Constants paragraph.
in the Web UI "every 1 month"
second

see the Constants paragraph.
note the LocalTime

there's pattern end date

note the LocalTime

optional; not considered in this recurring

-> optional; not considered in this recurring

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Yearly recurring appointment (by day)

Below is an example of a JSON data structure containing information for a yearly recurring
appointment (type: yearly; the 7" of October every 1 year; from 2008-10-01):

{ "data" : {
"content-type" "application/json-appointment",
"item" : {
"subject": "birthday",
"tzid": "America/Mexico_City",
"startDate": "20080720T170000Z",
"endDate": "20080720T1800002",
"location": "Acapulco"

"isRecurring": true,

"recurrenceType": "5", ->
"interval": "1", ->
"dayOfMonth": "7", ->
"monthOfYear": "10", ->
"patternStartDate": "20080720T110000", ->
"noEndDate": true, ->
"instance": "0o",

"dayOfWeekMask": "@"

see the Constants paragraph.
in the Web UI "every 1 month"
oct. 7th

oct.

note the LocalTime

there's no pattern end date

-> optional; not considered in this recurring

-> optional; not considered in this recurring

Copyright © 2010 Funambol - Page 63

3
1}

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Yearly recurring appointment (by position)

Below is an example of a JSON data structure containing information for a yearly recurring
appointment (type: yearly; the second Monday in October; from 2008-10-01):

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {

"subject": "birthday",

"tzid": "America/Mexico_City",
"startDate": "20081001T170000Z",
"endDate": "20081001T180000Z",

"location": "Acapulco",

"isRecurring": true,

"recurrenceType": "6", -> see the Constants paragraph.
"interval": "1", -> in the Web UI "every 1 month"
"dayOfweekMask": "2", -> see the Constants paragraph.
"instance": "2", -> see the Constants paragraph.
"monthOfYear": "10", -> oct.
"patternStartDate": "20081001T110000", -> note the LocalTime
"noEndDate": true, -> there's no pattern end date
"dayofMonth": "@" -> optional; not considered in this recurring
}
i3

Note: the occurrences value could be evaluated starting from patternStartDate and patternEndDate.
The API could send both occurrences and patternEndDate, but they have the same meaning.

Copyright © 2010 Funambol - Page 64

Appendix C - Task examples

Single task

Below is an example of a JSON data structure containing information for a single task:

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {

"subject": "birthday",

"tzid": "America/Mexico_City",
"allDay" : true,

"startDate": "20081001",
"dueDate": "20081001",

"complete": false,
"status": "o",
"percentComplete": "0",
"remider": false

}

1}

Task with a reminder

Below is an example of a JSON data structure containing information for a task with a reminder:

{ "data" : {
"content-type" : "application/json-appointment",
"item" : {

"subject": "birthday",

"tzid": "America/Mexico_City",
"allDay" : true,

"startDate": "20081001",
"dueDate": "20081001",

"reminder": true,

"reminderDate": "20090129T100000",

"complete": false,
"status": "@",
"percentComplete": "0",

"remider": false

Copyright © 2010 Funambol - Page 65

Appendix D - Constants

Constants used in the recurring appointment format

DaysOfWeekMask

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

W nonnu
©

RecurrenceType

RecursDaily
RecursWeekly
RecursMonthly
RecursMonthNth
RecursYearly
RecursYearNth

DT WNRE O

Ne Nt Na~sNe -

Instance

first
second
third
fourth
last

I T T [|
abhwWNRE

Constants used in the appointment format

Sensitivity

PUBLIC
PRIVATE
CONFIDENTIAL
X-PERSONAL

Note: if the value of the sensitivity property is different than one of the strings specified above, it will
be mapped to X-PERSONAL.

BusyStatus

Free
Tentative
Busy
outofoffice

WNRE O

~e N ~e -

Importance

Low
Normal
High

Copyright © 2010 Funambol - Page 66

Constants used in the task format

Task completion status

accepted
sent
tentative
in-process
confirmed
completed
needs-action
declined

L O L R T I 1|
oo~ WNREO

Copyright © 2010 Funambol - Page 67

Appendix E — Contact mapping vCard |/ extended JSON

The following table shows the mapping of the fields between the vCard and the extended format of

the JSON Contact object.

JSON Extended Format Fields

VCARD Field

"folder" X-FUNAMBOL-FOLDER

"title" N:LastName;FirstName;MiddleName;Salutation; Suffix

"firstName" N:LastName;FirstName;MiddleName;Salutation; Suffix

"middleName" N:LastName;FirstName;MiddleName;Salutation;Suffix

"lastName” N:LastName;FirstName;MiddleName;Salutation; Suffix

"suffix" N:LastName;FirstName;MiddleName;Salutation;Suffix

"email" EMAIL;INTERNET:

"email2" EMAIL;INTERNET;HOME

"email3" EMAIL;INTERNET;WORK

"imAddress" EMAIL;INTERNET;HOME;X-FUNAMBOL-INSTANTMESSENGER
"businessAddressStreet" ADR;WORK:PO box;Extended Address;Address;City;State;PostalCode;Country
"businessAddressCity" ADR;WORK:PO box;Extended Address;Address;City;State;PostalCode;Country

"businessAddressCountry"
"businessAddressState”
"businessAddressPostalCode"
"businessAddressPostOfficeBox"
"businessAddressExtendedAddress"
"homeAddressStreet”

ADR;WORK:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR;WORK:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR;WORK:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR;WORK:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR;WORK:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR;HOME:PO box;Extended Address;Address;City;State;PostalCode;Country

"homeAddressCity"
"homeAddressState"

ADR;HOME:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR;HOME:PO box;Extended Address;Address;City;State;PostalCode;Country

"homeAddressCountry"
"homeAddressPostalCode"
"homeAddressPostOfficeBox"
"homeAddressExtendedAddress”

ADR;HOME:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR;HOME:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR;HOME:PO box;Extended Address;Address;City;State;PostalCode;Country

ADR;HOME:PO box;Extended Address;Address;City;State;PostalCode;Country

"otherAddressStreet" ADR:PO box;Extended Address;Address;City;State;PostalCode;Country
"otherAddressCity" ADR:PO box;Extended Address;Address;City;State;PostalCode;Country
"otherAddressState" ADR:PO box;Extended Address;Address;City;State;PostalCode;Country
"otherAddressCountry" ADR:PO box;Extended Address;Address;City;State;PostalCode;Country

"otherAddressPostalCode"
"otherAddressPostOfficeBox"
"otherAddressExtendedAddress"
"phoneAssistant”
"phoneBusiness"
"phoneBusiness2"

ADR:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR:PO box;Extended Address;Address;City;State;PostalCode;Country
ADR:PO box;Extended Address;Address;City;State;PostalCode;Country
AGENT:TEL;WORK

TEL;VOICE;WORK:

TEL;VOICE;WORK:

"phoneBusinessFAX" TEL;WORK;FAX:
"phoneCallback" TEL;X-FUNAMBOL-CALLBACK:
"phoneCar" TEL;CAR;VOICE:
"phoneCompany" TEL;WORK;PREF
"phoneHome" TEL;VOICE;HOME:
"phoneHome2" TEL;VOICE;HOME:
"phoneHomeFAX" TEL;HOME;FAX:

"phoneMobile" TEL;CELL:

"phoneMobileHome"
"phoneMobileBusiness"

TEL;CELL;HOME:
TEL;CELL;WORK:

"phoneOther"
"phoneOtherFAX"
"phonePrimary"
"phonePager"
"phoneRadio"
"phoneTelex"

TEL;VOICE:

TEL;FAX:
TEL;PREF;VOICE
TEL;PAGER
TEL;X-FUNAMBOL-RADIO
TEL;X-FUNAMBOL-TELEX

Copyright © 2010 Funambol - Page 68

url"

URL

"instantMessenger1" Not supported yet

"body" NOTE

"jobTitle" TITLE

"company" ORG:Company;Department;Office
"sensitivity" CLASS

"department” ORG:Company;Department;Office
"office" ORG:Company;Department;Office
"managerName" X-FUNAMBOL-MANAGER
"assistantName" AGENT:FN

"nickName" NICKNAME

"spouseName" X-FUNAMBOL-SPOUSE
"anniversary" X-FUNAMBOL-ANNIVERSARY
"birthday" BDAY

“displayName” FN

"homeAddressLabel" LABEL;HOME
"otherAddressLabel" LABEL

"photo" PHOTO

"photoType" PHOTO:TYPE

"children” CHILDREN

"gender” X-FUNAMBOL-GENDER
"hobbies" X-FUNAMBOL-HOBBIES
"urlHome" URL:HOME
"businessAddressLabel" LABEL;WORK

"profession” ROLE

“urlWork” URL:WORK

"language" LANGUAGES

"importance” PRIORITY

"subject” X-FUNAMBOL-SUBJECT
"mileage” X-FUNAMBOL-MILEAGE

Copyright © 2010 Funambol - Page 69

Appendix F - Event mapping vCal | extended JSON

The following table shows the mapping of the fields between the vCalendar format and the
extended format of the JISON Appointment object.

JSON Extended Format Fields VCAL Field
"folder" X-FUNAMBOL-FOLDER
"allDay" X-FUNAMBOL-ALLDAY
"startDate" DTSTART
"endDate" DTEND
"tzid" TZ, DAYLIGHT
"subject” SUMMARY
"body" DESCRIPTION
"location” LOCATION
“organizer” ORGANIZER
"reminder" AALARM;TYPE=Type;VALUE=RunTime;SnoozeTime;RepeatCount;AudioContent:

"reminderTime"

“reminderSoundFile”

AALARM;TYPE=Type;VALUE=RunTime;SnoozeTime;RepeatCount;AudioContent:
AALARM;TYPE=Type;VALUE=RunTime;SnoozeTime;RepeatCount;AudioContent

X-MICROSOFT-CDO-BUSYSTATUS

"busyStatus"

"categories" CATEGORIES
"sensitivity" CLASS
"importance" PRIORITY
"dayOfMonth" RRULE (*)
"dayOfWeekMask" RRULE (¥)
"instance" RRULE (*)
"interval" RRULE (¥)
"isRecurring" RRULE (*)
"monthOfYear" RRULE (*)
"noEndDate" RRULE (¥)
"occurrences" RRULE (*)
"exceptionsExcluded" EXDATE
"exceptionsincluded" Not supported yet
"patternEndDate" RRULE (*)
"patternStartDate" RRULE (*)
"recurrenceType" RRULE (*)

(*) RRULE is a pattern specification for event recurrences, so the mapping with JSON object
properties is not linear and depends on pattern values. See http://www.imc.org/pdi/ for vCalendar
format specifications.

Copyright © 2010 Funambol - Page 70

Appendix G — References

[1] Funambol Developer’'s Guide

[2] Funambol Installation and Administration Guide
[3] JSON Connector Design Document

[4] JSON, http://en.wikipedia.org/wiki/JSON

[5] REST, http://en.wikipedia.org/wiki/REST

[6] IETF - RFC 4627 (JSON)

[7] IETF - RFC 2426 (vCard)

[8] IETF - RFC 2445 (vCalendar 2.0 / iCalendar)

Copyright © 2010 Funambol - Page 71

http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/JSON

	1. Introduction
	2. Installing the Funambol JSON Connector
	2.1. Installation steps
	2.2. Installing the Funambol JSON Connector
	2.3. Configuring the Funambol JSON Connector
	2.4. Configuring the SyncSources
	2.5. Officer Configuration
	2.6. Enabling Logging
	2.7. Enabling Data Transformation

	3. Creating the SyncSources
	3.1. Steps to replace the defaut SyncSources using the command line.
	3.2. Steps to replace the standard SyncSources using the Admin tool.
	3.2.1. Steps to replace card / scard
	3.2.2. Steps to replace note / snote
	3.2.3. Steps to replace cal / task

	4. Upgrading notes
	5. Solution architecture
	5.1. JSON API protocol functionality
	5.2. Appointment, Contact, Note and Task SyncSources
	5.2.1. A quick review of vCalendar / iCalendar

	5.3. JSON API specification overview
	5.4. Conventions
	5.4.1. Request
	5.4.2. Response

	5.5. HTTP methods
	5.6. HTTP status codes

	6. Data object format
	6.1. Contact object format – JSON extended format
	6.2. Contact object format – vCard format
	6.3. Appointment object format – JSON extended format
	6.4. Appointment object format – vCalendar / iCalendar format
	6.5. Task object format – JSON extended format
	6.6. Task object format – vCalendar / iCalendar format
	6.7. Notes object format

	7. JSON Connector API
	7.1. Authentication group
	7.1.1. login
	Request
	Parameters
	Body
	Response
	Error
	Example

	7.1.2. logout
	Definition
	Request header
	Parameters
	Body
	Response
	Errors
	Example

	7.2. Sync group
	7.2.1. beginSync
	Definition
	Request header
	Parameters
	Response
	Errors
	Example
	The since parameter in the beginSync request

	7.2.2. endSync
	Definition
	Request header
	Parameters
	Response
	Errors
	Example

	7.3. Keys group
	7.3.1. getAllSyncItemKeys
	Definition
	Request Header
	Parameters
	Response
	Errors
	Example

	7.3.2. getNewSyncItemKeys
	Definition
	Request header
	Parameters
	Response
	Errors
	Example

	7.3.3. getUpdatedSyncItemKeys
	Definition
	Request Header
	Parameters
	Response
	Errors
	Example

	7.3.4. getDeletedSyncItemKeys
	Definition
	Request header
	Parameters
	Response
	Errors
	Example

	7.3.5. getSyncItemKeysFromTwin
	Definition
	Request header
	Parameters
	Body
	Response
	Errors
	Example

	7.4. Items group
	7.4.1. addItem
	Definition
	Request header
	Parameters
	Body
	Response
	Error
	Example

	7.4.2. updateItem
	Definition
	Request header
	Parameters
	Body
	Response
	Error
	Example

	7.4.3. removeItem
	Definition
	Request header
	Parameters
	Response
	Error
	Example

	7.4.4. removeAllItems
	Definition
	Request header
	Parameters
	Response
	Error
	Example

	7.4.5. getItem
	Definition
	Request header
	Parameters
	Response
	Error
	Example

	7.5. Utility group
	7.5.1. getConfiguration
	Definition
	Request header
	Parameters
	Response
	Error
	Example

	8. Api Testing Tool
	8.1. Introduction
	8.2. Installing
	Linux
	Windows

	8.3. Configuring
	8.3.1. Logging
	raising verbosity

	8.3.2. Server properties
	Method property

	8.4. Tests
	8.4.1. Structure
	Testcases

	8.4.2. Turning off tests
	8.4.3. Writing new tests

	8.5. Running the tests

	Appendix A – Contact examples
	Appendix B – Appointment examples
	Appendix C – Task examples
	Appendix D – Constants
	DaysOfWeekMask
	RecurrenceType
	Instance
	Sensitivity
	BusyStatus
	Importance
	Task completion status

	Appendix E – Contact mapping vCard / extended JSON
	Appendix F – Event mapping vCal / extended JSON
	Appendix G – References

