
Sync4j Developer's Guide
July 28, 2003

Change History
Date Author Description Rev #
July 28, 2003 Stefano Fornari Initial revision 1.0
October 30, 2003 Stefano Fornari Added section on message processing pipeline 1.3

Page 2

Table of Contents
1. Introduction..4
1.1. Comments and Feedbacks..4
2. Data Synchronization..5
2.1. Id Handling...5
2.2. Change Detection...6
2.3. Modification Exchange...6
2.4. Conflict Detection...6
2.5. Conflict Resolution...7
2.6. Slow and Fast Synchronization..7
3. The SyncML Initiative..8
4. Sync4j High-level Architecture..9
4.1. Sync4j Framework...10
4.1.1. Transport Layer...12
4.1.2. Application Layer...12
4.1.3. The Synchronization Engine...12
5. The Synchronization Process..13
5.1. Preparation...13
5.2. Modifications Detection..14
5.3. Synchronization..16
5.4. Finalization...16
5.5. Synchronization Sequence Diagram..16
6. Developing a SyncSource...18
6.1. The SyncSource Interface and Related Classes...18
6.1.1. Principal and Since Timestamp..19
6.1.2. SyncItem...19
6.2. Sync4j Engine Configuration..20
7. Configuring Sync4j and Sync4j Components..21
7.1. Sync4j.properties..21
7.2. J2EE deployment environment entries..21
7.3. Server JavaBeans..22
7.3.1. The configuration path..22
7.3.2. Lazy Initialization...23
8. Message Processing Pipeline...24
8.1. Architecture..24
8.2. Design..25
8.2.1. Overview...25
8.2.2. Class Diagram...26
8.2.3. PipelineManager Configuration...26
8.2.4. Error Handling...27
9. Error and Exception Handling...28
9.1. Sync4j Exception..28
9.2. Server Exception..29
9.2.1. SyncML Exceptions...29
9.3. Protocol Exception...29
10. Sync4j Modules...31
10.1. Building a Sync4j Module...31
11. References and Resources..33
11.1. References...33
11.2. Resources..33

Page 3

1. Introduction

This document is intended for developers who aim to develop synchronization services based on
Sync4j 1.0.x.

1.1. Comments and Feedbacks
The Sync4j team wants to hear from you! Please submit your questions, comments,
feedbacks or testimonials to sync4j-users@lists.sourceforge.net.

Page 4

2. Data Synchronization

All mobile devices – handheld computers, mobile phones, pagers, laptops – need to synchronize their
data with the server where the information is stored. This ability to access and update information on
the fly is key to the pervasive nature of mobile computing. Yet, today, almost every device uses a
different technology for performing data synchronization.

Data synchronization is helpful in respect to many areas:

• Propagating updates between a growing number of applications
• Overcome the limitations of mobile devices and wireless connections
• Maximizing user experience while minimizing data access latency
• Keeping scalability of the IT infrastructure in an environment where the number of devices (clients)

and connections tends to increase considerably
• Understanding the requirements of mobile applications, providing the user experience that helps

and it is not an obstacle for mobile tasks.

Data synchronization is the process of making two
sets of data look identical (Figure 1). This involves
many concepts, the most important are:

• ID handling
• Change detection
• Modification exchange
• Conflict detection
• Conflict resolution
• Slow and fast synchronization

2.1. Id Handling
At a first look, id handling seems a pretty
straightforward process and of no interest. Instead,
id handling is an important aspect of the
synchronization process and it is not trivial. Each
piece of data is usually uniquely identifiable by a
subset of its content fields; for example, in the case
of a contact entry, the concatenation of first name
and last name uniquely selects an entry in your
directory. In other cases, the id is represented by a
particular field specifically introduced for that
purpose. This may be the case, for example, of a Sales Force Automation mobile application, where
an order is identified by an order number or reference. The way an item id is generated is not
determinable a priori and it is application and device specific.
In an enterprise system, however, data is stored in a centralized database, shared by all users; each
single item is known by the system with a unique global id. In same cases, two sets of data (i.e. the
order on the client and the order on the server) represent the same information (the “order” made by

Page 5

Figure 1 - Data synchronization process

the customer) but they differ. What could be done to reconcile client and server ids in order to make
the information consistent? Many approaches can be chosen:

• Clients and server agree on a id scheme (a convention on how to generate ids must be defined and
used);

• Each client generates globally unique ids (GUIDs) and the server accepts client-generated ids;
• The server generates globally unique ids (GUIDs) and each client accepts those ids;
• Client and server generate their own ids and a mapping is kept between the two. Client side ids are

called Local Unique IDentifiers (LUID) and server side ids are called Globale Unique IDentifiers
(GUID). The mapping between local and global identifiers is referred as LUID-GUID mapping.

2.2. Change Detection
Change detection is the procedure of identifying which data is changed since a particular point in time
(i.e. the last synchronization). This is usually achieved making use of additional information such as
timestamps and state information. For example, a possible database enabled for an efficient change
detection is the one depicted in Table 1.

ID first name last name telephone state last_update
12 John Doe +1 650 5050403 N 2003-04-22 13:22
13 Mike Smith +1 469 4322045 D 2003-05-21 17:32
14 Vincent Brown +1 329 2662203 U 2003-05-21 17:29

Table 1 - A database enabled for efficient change detection

However, sometimes legacy databases do not provide the information needed to accomplish an
efficient change detection. Therefore, the matter becomes more complicate and alternative methods
must be adopted (for instance, based on content comparison).

2.3. Modification Exchange
A key component of a data synchronization infrastructure is the way modifications are exchanged
between client and server. This involves the definition of a synchronization protocol that client and
server have to use to initiate and carry on a synchronization session. In addition to the exchange
modification method, a synchronization protocol must also define a set of supported modification
commands. The minimal set of modification commands is represented by the following:

• Add
• Replace
• Delete

2.4. Conflict Detection
Let us suppose two users synchronize their local contact database with a central server in the morning,
before going to the office. After syncing, they have exactly the same contacts on their PDAs. Let us
now suppose that they change the telephone number of the same “John Doe” entry, but for some
reason with a different number (maybe, one of the two made a mistake). What will happen when the
next morning they will synchronize again? Which one of the two new version of the John Doe record
should be taken and stored to the server? This condition is called a conflict and the server has the duty
of identifying and resolving it.
The simplest way to do detect a conflict is by the means of a “synchronization matrix” (Table 2).

Database A
→

↓ Database B

New Deleted Updated Synchronized/
Unchanged

Not Existing

New C C C C B

Deleted C X C D X

Page 6

Database A
→

↓ Database B

New Deleted Updated Synchronized/
Unchanged

Not Existing

Updated C C C B B

Synchronize
d/Unchange

d

C D A = B

Not Existing A X A A X

Table 2 - The synchronization matrix

Because both users synchronize with the central database, we can consider what happens between
the server database and one of the client databases at a time: let's call Database A the client database
and Database B is the server database. The symbols in the synchronization matrix have the following
meaning:

X : nothing to do
A : item A replaces item B
B : item B replaces item A
C : conflict
D : delete the item from the source(s) containing it

2.5. Conflict Resolution
Once a conflict arises and it is detected, a proper action must be taken. Different policies can be
applied:

• User decides: the user is notified of the conflict condition and decides what to do; this strategy, like
the following “Client wins” is a bit problematic in a server centric synchronization solution: each user
may have the same right to modify an item and one users could not be able to decide whether
his/her modification should win over the other ones.

• Client wins: the server silently replaces conflicting items with the ones sent by the client.
• Server wins: the client has to replace conflicting items with the ones from the server.
• Timestamp based: the last modified (in time) item wins
• Last/first in wins: the last/first arrived item wins
• Do not resolve

2.6. Slow and Fast Synchronization
There are many modes to carry on the synchronization process. The main distinction is between fast
and slow synchronization. A fast synchronization involves only the items changed since the last
synchronization between two devices. Of course, this is an optimized process that relies on the fact
that, some time in the past, the devices where fully synchronized; this way, the state at the beginning of
the sync operation is well known and sound. When this requisite is not true (because, for instance, the
mobile device has been reset and has lost the timestamp of the last synchronization), a slow
synchronization has to be performed. In this case, the client sends its entire database to the server,
which compares it with its local database and returns to the client the modifications needed for it to be
up to date again.
Either fast and slow synchronization modes can be performed in one of the following manners:

• Client to server: the server updates its database with client modifications, but sends no server-side
modifications.

• Server to client: the client updates its database with server modifications, but sends no client-side
modifications.

• Two-way: client and server exchange their modifications and both databases are updated
accordingly.

Page 7

3. The SyncML Initiative

With the many devices available today and the different applications data synchronization applies to,
the need of a standard is evident. IT managers see the adoption of an industry standard as a way to
protect their investments in IT infrastructure and devices. Even if applications or mobile devices will
change in the future, if they speak the same language, servers and legacy systems will be only slightly
impacted.
The de-facto standard for data synchronization is called SyncML (Synchronization Markup Language)
which is now under the umbrella of the Open Mobile Alliance.

SyncML is defined as follows:

• SyncML is a new industry initiative to develop and promote a single, common data synchronization
protocol that can be used industry-wide.

• SyncML is a specification for a common data synchronization framework and XML-based format for
synchronizing data on networked devices.

• SyncML is a protocol for conveying data synchronization operations.

SyncML is targeted to personal and enterprise needs and it is application-agnostic: it defines how to
establish, carry on and complete a data synchronization session and how to exchange data
modifications and the commands to use. It does not specify, however, how to detect changes and
conflicts or how conflicts should be resolved. This is one of the areas where SyncML client and server
providers differentiate their offers.
SyncML has been designed to synchronize any type of data on different transport protocol (such as
HTTP, WSP, OBEX, etc.); types of data may include:

• Common personal data formats, such as vCard for contact information, vCalendar and iCalendar
for calendar, todo, and journal information

• Collaborative objects such as e-mail and network news
• Relational data
• XML (the Extensible Markup Language) and HTML documents
• Binary data, binary large objects, or “blobs”

To facilitate the adoption of the standard, SyncML initiative delivers:

• An architectural specification
• Two protocol specifications (SyncML representation protocol and SyncML synchronization protocol)
• Bindings to common transport protocols
• Interfaces for a common programming language
• An openly available prototype implementation of the protocol

Page 8

4. Sync4j High-level Architecture

Sync4j is designed with modularity and flexibility in mind, being targeted to enterprise applications. The
main modules that build up Sync4j are:

• The Sync4j Engine, which makes use of additional pluggable modules
• The Transport Layer module implements the transport specific binding of SyncML. In the case of

the HTTP protocol, it is represented by a J2EE web module. Other transports can have specific
implementation.

• The SyncML module is responsible for the encoding/decoding of SyncML messages, as specified
by the representation specifications.

• The Protocol implements the SyncML synchronization protocol, which describes how SyncML
messages are combined to represent a correct synchronization session.

• The Services module furnishes many horizontal services such as authentication, security,
configuration, logging and so on.

• The SyncSources are the means Sync4j can integrate with external and legacy systems.

Sync4j is based on a rich programming framework that implements the most important functionalities
and features that the different modules provide. Not all developers will have to deal with every module;
however, in the following sections the framework is described in more detail with the purpose of
helping the understanding of the inside aspects of Sync4j and driving the development of Sync4j
extensions.

Page 9

Figure 2 - Sync4j Framework architecture

Framework layer

SyncML Protocol Services Engine

Transport layer

Application layer
Client

Server

4.1. Sync4j Framework
The Sync4j Framework architecture is conceptually divided in layers (Figure 2).

The bottom layer is a framework that implements and provides protocol implementation, horizontal
services and the the synchronization engine interface on top of which the transport and application
layers are developed. The application layer can be further divided in client and server, where server
indicates the software that accepts and processes SyncML messages.

The server relays on the transport layer in order to receive messages delivered with different protocols
such as HTTP, SMTP, OBEX, etc. In the current implementation of Sync4j the server is implemented
as an EJB service deployable in a J2EE compliant application server.
Client applications take advantage of the services provided by the framework in order to code and
decode SyncML messages and to send and receive SyncML messages on one of the supported
transport protocol.

The framework includes many packages, the most important ones are:

• sync4j.framework.core;
• sync4j.framework.config;
• sync4j.framework.engine;
• sync4j.framework.logging;
• sync4j.framework.protocol;
• sync4j.framework.security;
• sync4j.framework.server.

sync4j.framework.core implements the block that in Figure 2 is called SyncML and groups the
foundation classes used to represent a SyncML message. This module allows an easy translation of a
XML stream into an objects tree, which is more manageable from a programming point of view. Vice
versa, an object representing a message can be easily converted in the corresponding XML
representation. The classes of the framework are responsible for checking that a given message is a
valid SyncML message. Note that this validity check guarantees only that the XML structure can really
represent a message, regardless of the context in which the message is processed. The scope of this
check is to verify that the representation rules are all respected.
A SyncML communication is a sequence of correlated messages that must follow additional rules,
dictated as well by the specification of the protocol. For instance, consider the following message:

<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1028886155551</SessionID>
<MsgID>2</MsgID>
<Target>
<LocURI>URI:2002</LocURI>
</Target>
<Source>
<LocURI>http://www.sync4j.org/sync4j</LocURI>
</Source>
</SyncHdr>
</SyncML>

It is not a valid SyncML message in any context because it does not contain a <SyncBody> tag.

Consider the following instead:

<SyncHdr>
<VerDTD>1.1</VerDTD>
<VerProto>SyncML/1.1</VerProto>
<SessionID>1028886155551</SessionID>
<MsgID>2</MsgID>
<Target>
<LocURI>URI:2002</LocURI>
</Target>
<Source>
<LocURI>http://www.sync4j.org/sync4j</LocURI>
</Source>

Page 10

</SyncHdr>
<SyncBody>
<Status>
<CmdID>5</CmdID>
<MsgRef>1</MsgRef>
<CmdRef>3</CmdRef>
<Cmd>Sync</Cmd>
<TargetRef>db1</TargetRef>
<SourceRef>db1</SourceRef>
<Data>405</Data>
</Status>
<Add><CmdID>3</CmdID>
<NoResp/>
<Meta><Type xmlns='syncml:metinf'>...</Type></Meta>
<Item>
<Target>
<LocURI>item1</LocURI>
</Target>
<Source>
<LocURI>item1</LocURI>
</Source>
<Data>some data </Data>
</Item>
</Add>
</SyncBody>
</SyncML>

Even if it follows the representation rules, it is valid only in the case a previous initialization was made
and the client requested the synchronization of the database db1. The package in charge of those
aspects is sync4j.framework.protocol.

sync4j.framework.config is a utility module used to deal with the server and additional modules
configuration. The Sync4j configuration architecture will be described later in this document.

The two packages sync4j.framework.security and sync4j.framework.logging represent the module that
in Figure 2 is called Services. They implement logging and security services. Note that, for the security
aspects, Sync4j adheres to the Java Authentication and Authorization Service (JAAS) delivered with
the JDK 1.4. It is therefore possible to develop a proprietary authentication and authorization policy,
configuring the system to use it instead of the standard module.

A package that plays an important role in the Sync4j architecture is sync4j.framework.engine. It
provides a basic interface for a synchronization engine, allowing a pluggable architecture for
customized engines. Generally speaking, the process of receiving and interpreting a synchronization
message and the process of updating the data sources and producing the modifications for the client
are distinct processes. They can also be applied independently one from the other. For example, from
the synchronization point of view it does not really matter if a synchronization request came from a
SyncML message or a simple HTTP request. In the same way, from the protocol point of view, it does
not really matter which conflict resolution the synchronization engine will adopt. With this pluggable
architecture, the business logic of the protocol and of the synchronization can be developed and
extended separately (without modifying the server or the other modules) to meet at best the
requirements.

The last package, sync4j.framework.server includes common classes for the development of server
application and can be used to extend the standard Sync4j implementation.

As a developer, you might be interested in modifying one or more of the above components, but you
are not forced to do it. Sync4j is a full featured SyncML synchronization server and provides a concrete
implementation of the framework. However, flexibility and openness is the key in enterprise
deployment: Sync4j allows you to customize and extend most of its features, if you need it.

In the following sections, we are going to tell more about each single framework layer.

Page 11

4.1.1. Transport Layer
This layer implements the support for the various transport protocols SyncML can be bound to.
Currently, Sync4j supports only the HTTP protocol, which is the most widely transport protocol used by
the SyncML clients on the market. Other protocols might be added in future releases.

4.1.2. Application Layer
sync4j.server provides a basic structure for implementing a SyncML server.
In Sync4j, the server module is implemented as an Enterprise Java Bean that can be deployed into any
J2EE 1.3 compliant application server. Behind this choice lay the following factors:

 decoupling between the transport protocol and the synchronization logic is pivotal in enterprise
deployments;

 application servers provide many out-of-the-box facilities and services that should otherwise be
redeveloped (i.e. connection management, thread management, security, scalability,
availability, reliability), simply reinventing the wheel;

 J2EE it is a widely accepted standard in enterprises IT infrastructure;
 reusing the existing application server infrastructure simplifies management and deployment.

4.1.3. The Synchronization Engine
A synchronization server is not helpful without synchronization logic, such as the set of rules followed
to:

 identify the sources and the destinations of data to be synchronized;
 identify what data needs to be updated/added/deleted
 determine how updates must be applied;
 detect conflicts;
 resolve conflicts.

In other words, the synchronization engine is the core of a data synchronization server.

Sync4j allows developers to plug in their own implementation of the synchronization engine. Therefore,
developers can extend the basic behavior in order to meet their own requirements. Developers can
even completely substitute the default implementation with a custom engine developed from scratch.
This brings a flexible and modular architecture, easier to reuse, extend and maintain.
The basic framework interfaces and classes are grouped in the package sync4j.framework.engine.

Since the synchronization process is the core of the synchronization engine, it is described in more
detail in the following dedicated section.

Page 12

5. The Synchronization Process

The synchronization process is driven by the synchronization engine, which in turn is a concrete
implementation of the interface sync4j.framework.engine.SyncEngine.

The synchronization process is accomplished in three steps:

1. Preparation
2. Synchronization
3. Finalization

The Sync4j engine goes through these steps and coordinates the execution, but delegates most of the
synchronization logic to an auxiliary class, implementation of the SyncStrategy interface.

As described before, two types of synchronization process are possible: slow and fast.
In a slow synchronization, the sources to be synchronized must be fully compared in order to
reconstruct the right image of the data on both connection endpoints. The way the sets of items are
compared is implementation specific and can vary from comparing just the item keys or the entire
content of a SyncItem. In fact, in order to decide if two sync items are exactly the same or some fields
have changed, all fields might require a comparison.
A slow sync is prepared by calling prepareSlowSync(...) of the SyncStrategy object.

In a fast synchronization, the sources are queried only for new, deleted or updated items since a given
point in time. In this case, the status of the items can be checked in order to decide when a deeper
comparison is necessary.
A fast sync is prepared by calling prepareFastSync(...) of the SyncStrategy object.

prepareSlowSync(...) and prepareFastSync() require an additional java.security.Principal parameter in
input. The meaning of this parameter is implementation specific, but as a general rule, it is used to
operate on the data belonging to a given entity such as a user, an application, a device, etc.

The following sections describe in more detail each phase of the synchronization process and other
key aspects of the synchronization engine architecture. The section 5.5 puts all the pieces together,
showing and describing the sequence diagram of the synchronization process.

5.1. Preparation
The preparation phase is the process of analyzing the differences between two or more sources of
data (called SyncSources) with the goal of obtaining a list of sync operations that, applied to the
sources involved in the synchronization, will make the databases look identical (Figure 3).

Page 13

5.2. Modifications Detection
Modifications detection is based on the sets of items represented in Figure 4, applying the
modifications matrix of Table 3.

A – Items belonging to source A (as known via LUID-GUID mapping)
B – Items belonging to source B
Am – Modified items belonging to source A
Bm – Modified items belonging to source B
AmBm – Items modified either in source A and B (intersection between Am and Bm)
(A-Am)Bm – Items unmodified in A, but modified in B
Am(B-Bm) – items unmodified in B, but modified in A

Note that A is the server view of the A source: it contains the items mapped in the server as they are
defined in the LUID-GUID mapping. If, for example, the client sends a new item that has never been
mapped, this item will be in Am, but not in A. In order to be sure that the new item is not equal to some
existing item in B, it must be looked up in B. If an item in B represents the same item as in Am, A is
virtually augment of such item, so that at the end, Am will be a sub-set of A.

Page 14

Figure 3- Preparation phase

Sync preparation

A

B

C

- Add item1 to SourceA
- Delete item2 from
SourceA, SourceB
- Add item10 to SourceC
- Update item5 in
SourceB, SourceC

Figure 4 - Synchronization items sets

BA
Am

Bm

(A-Am)Bm
AmBm

Am(B-Bm)

Another important aspect to point out is that the entire data sets A and B can be considerably big.
Therefore, when possible, it is important to deal with the smallest possible sets of items instead of
doing a full item-per-item comparison.

The preparation phase is slightly different depending on the type of the synchronization. In the case of
a slow synchronization, all items in the sources must be compared looking for differences that will be
translated into synchronization operations. This type of process does not depend on previous
synchronizations and, in fact, it is used to fully recreate a database as if no synchronizations have ever
taken place. This is achieved resetting the LUID-GUID mapping before starting the modification
detection process.
On the contrary, when a fast synchronization is performed, it is assumed that the involved sources rely
on a previous data synchronization, so that only the changes since the time of the last synchronization
need to be considered.

The algorithm used in the preparation phase is as follows:

Given a set of sources A, B, C, D, etc, the synchronization process takes place between two sources
at a time: A is first synchronized with B, then AB with C, then ABC with D and so on.
Given the sources to be compared, suppose A and B, the goal of the algorithm is to produce an array
of SyncOperation objects, in which each element represents a particular synchronization action, i.e.
create the item X in the source A, delete the item Y from the source B, etc. Sometimes, it is not
possible to decide the action to perform, thus a SyncConflict operation is used. A conflict might be
solved by something external the synchronization process, for instance by a user action. In order to
create the SyncOperation[] array, each item in the source A is compared with each item in the source
B (to be intended as the selected items depending on the synchronization type).

To determine which operation should be performed the Synchronization matrix defined above is used.
We report the table here again for the sake of simplicity.

Database A
→

↓ Database B

New Deleted Updated Synchronized/
Unchanged

Not Existing

New C C C C B

Deleted C X C D X

Updated C C C B B

Synchronize
d/Unchange

d

C D A = B

Not Existing A X A A X
Table 3 - Synchronization matrix

Where:
A : item A replaces item B
B : item B replaces item A
C : conflict
D : delete the target item
X : do nothing

Initially, items are compared based on a subset of the information they contain called key (in the
synchronization engine it is called SyncItemKey). It is responsibility of the SyncSource to create proper
and unique keys for each item. The SyncItemKey is stored in the SyncItem and can be obtained calling
getKey(). The comparison is accomplished by the method equals() of the SyncItemKey object.

When the SyncStrategy performs a sync preparation, it returns the operations that have to be applied
to the sources involved, in order to make them look equal. From a coding point of view, those

Page 15

operations are represented by SyncOperation objects, which incapsulate the interested items and the
operation itself.

5.3. Synchronization
The synchronization step is the phase where the sync operations prepared in the previous step are
executed. Executing a SyncOperation means applying the required modification to the sync source
involved.
For example, the SyncOperation represented by:

operation: new
item A: ITM0040102001 ← (the item key)
item B: null

results in the addition of item B to source B. Instead, if the operation is:

operation: new
item A: null
item B: ITM0376488440

The item B will be added to source A. The following combination will result in a conflict:

operation: new
item A: ITM0040102001
item B: ITM0040102001

The synchronization phase is implemented in the sync(SyncOperation[]) method of SyncStrategy.

5.4. Finalization
The third and last step is intended for cleaning up purposes.

5.5. Synchronization Sequence Diagram
The sequence of operations that takes place during a fast synchronization is depicted in Figure 5,
which serves as a guide for the following description.

The SyncEngine object drives the execution of all steps in its sync() method, where the requested
sources are scanned for modified items. SyncSourceA and SyncSourceB represent the two sources
involved in the synchronization process; generally, one source is the client view of the database, whilst
the other source is the server view of the same data source.

First of all, SyncEngine calls SyncStrategy.prepareSync(SyncSource[]) which returns an array of
SyncOperation. Here, the synchronization engine has the opportunity to further processing the
operations returned. For example, at this level the engine can decide how to solve conflicts.

After preparation and additional operation processing, the engine is ready to fire the execution of the
real synchronization. Again, it performs the operation delegating the task to the sync() method of
SyncStrategy.

Finally, SyncStartegy.endSync() is used to terminate the process.

The figure shows only the main tasks that SyncStrategy performs. First of all, it queries source A and B
about which items have changed since the last synchronization and collects all of them in two lists,
one for source A's items and one for source B's items. At this point, SyncStrategy is ready to compare
those two sets of items and create the SyncOperation[] array. This is achieved by calling
checkSyncOperation(SyncItem[], SyncItem[]) where the rules described in the sections above and in
the synchronization matrix are applied.

Note that the SyncEngine implemented in Sync4j makes use of the synchronization strategy object in
the generic form represented by the interface SyncStrategy. The concrete implementation is
configurable in the Sync4j.properties configuration file. Therefore, if you want or need to implement
your own synchronization strategy, you can easily plug it into Sync4j just modifying that file.

Page 16

Page 17

Figure 5 - Synchronization sequence diagram

SyncEngine SyncStrategy SyncSourceA SyncSourceB

prepareSync(SyncSource[])

getNew Items()

getUpdatedItems()

getDeletedItems()

Item[]

Item[]

Item[]

getNew Items()

getUpdatedItems()

getDeletedItems()

Item[]

Item[]

Item[]

for each item

checkSyncOperation(itemA, itemB)

6. Developing a SyncSource

A SyncSource is the means a set of data made available to Sync4j for synchronization. Therefore, in
order to synchronize any type of data (files, database tables, calendar events and so on), there must
be a proper SyncSource able to extract and store the data from and to the real data store.
Goal of Sync4j is to provide a collection of SyncSources for the most common uses (i.e. files), but new
SyncSources can be independently developed and plugged in the synchronization engine so that
Sync4j will be able to process synchronization requests targeted to virtually any data source.

6.1. The SyncSource Interface and Related Classes
The core of the SyncSource architecture is the interface sync4j.framework.engine.source.SyncSource.
This interface does not make any assumption on the type of data being synchronized, so that its
concrete implementations are completely free to access the storage they prefer.

A SyncSource is identified by a name and a sourceURI; the former represents a domain specific name,
the latter is the URI that a SyncML client must specify in order to synchronize this particular
SyncSource. Note that they must be both unique.
A SyncSource is also associated to a type, in the form of a mime type that represents the kind of data
handled by the source.

The most important methods defined by the SyncSource interface are:

method description
getUpdatedSyncItems Called to retrieve the updated SyncItems for the given principal since

the given point in time.
getUpdatedSyncItemKeys Called to retrieve the SyncItemKey of the updated items for the given

principal since the given point in time.
getNewSyncItems Called to retrieve the new SyncItems for the given principal since the

given point in time.
getNewSyncItemKeys Called to retrieve the SyncItemKey of the new items for the given

principal since the given point in time.
getDeletedSyncItems Called to retrieve the deleted SyncItems for the given principal since

the given point in time.
getDeletedSyncItemKeys Called to retrieve the SyncItemKey of the deleted items for the given

principal since the given point in time.
getAllSyncItems Called to retrieve all the SyncItems for the given principal since the

given point in time.
setSyncItem/s Called to insert or update the given item(s).
removeSyncItem/s Called to remove the given item(s).

Table 4 - SyncSource methods

Page 18

When a synchronization requests reaches the engine, Sync4j looks for a source whose sourceURI
matches the requested URI and computes the synchronization analysis calling the methods defined
above.

6.1.1. Principal and Since Timestamp
SyncSource methods usually require two input parameters in order to retrieve the items:

• principal (of type java.security.Principal) and
• since (of type java.sql.Timestamp).

A principal represents any entity the data can be associated to. A principal is usually represented by a
user id, but it may be something different (like a device or a client agent). The principal is used to limit
the manipulation to the data related to the given entity, such as the contacts of a given user. If this
parameter is null, all items in the datastore are considered for synchronization, regardless of the
principal they belong to.
In Sync4j, a principal is composed of a userid and a deviceid, because the same user may make use
of different devices.

The since timestamp represents the point in time of the last synchronization. It is used in fast
synchronization to get the changed items since the last synchronization request.

In case of slow sync, getAllItems() is called instead of get(Updated/New/Deleted)Items().

6.1.2. SyncItem
Items returned by a SyncSource are encapsulated in sync4j.framework.engine.SyncItem objects.
SyncItem is a Java interface that the developer can implement in order to meet specif requirements.
Sync4j provides a standard implementation of a SyncItem by the class
sync4j.framework.engine.SyncItemImpl. SyncItem defines the following methods:

method description
getKey Returns the item key.
getState Returns the item state.
setState Sets the item state.
getProperties Returns all item properties.
setProperties Sets all item properties.
getProperty Returns a specific item property.
setProperty Sets a specific item property.
getPropertyValue Returns a specific item property value.
setPropertyValue Sets a specific item property value.
getSyncSource Returns the SyncSource the item belongs to.

The content of an item is stored in sync4j.framework.engine.SyncProperty objects which represent a
name-value pair. This suits almost any data representation requirements in a data synchronization
context.

Two standard properties are defined and used by Sync4j: BINARY_CONTENT and TIMESTAMP.
BINARY_CONTENT is intended to store an item in a raw binary form. This is used, for instance, when
the item is treated as a monolithic object identified only by the item key. No content parsing is
implemented in order to identify fields and data.
TIMESTAMP contains the timestamp of the last change of the item state and it is used in the
synchronization process, in order to determine the operation to be performed on the sources.

IMPORTANT: when a sync source creates SyncItems, it must always provide a value for at least the
two properties BINARY_CONTENT and TIMESTAMP.

Page 19

6.2. Sync4j Engine Configuration
To make a SyncSource available to Sync4j, it must be registered inserting a row in the
sync4j_sync_source database table. This table binds the source URI to the bean implementing the
SyncSource. For example, the test sync source might be configured as follows:

URI config
test com/funambol/Sync4j/engine/source/TestFileSystemSource.xml

The sources registered in sync4j_sync_source are loaded and initialized at engine startup.

The specified server bean configuration is a configuration file that must be available as prescribed by
the configuration architecture (see later).

Page 20

7. Configuring Sync4j and Sync4j Components

One of the Sync4j design goal is to provide a framework that can be used to implement any kind of
synchronization service, extending existing modules or plugging in new modules. All this configuration
info is easily accessible and editable, with the aim of avoiding complex and huge configuration files.

Sync4j uses three configuration techniques:

• Sync4j.properties
• J2EE deployment environment entries
• Server JavaBeans

In the following sections these three types of configuration are described in details.

7.1. Sync4j.properties
This is the main Sync4j configuration file, because it is used to initialize the engine. It is a standard
properties file, read at engine initialization time so that the engine class
(sync4j.server.engine.Sync4jEngine) can be instantiated with the properties needed to bootstrap. See
the Sync4j administration guide for a list of all possible properties and their meanings.

7.2. J2EE deployment environment entries
A standard way to configure J2EE components is using EJB and WAR environment entries. In Sync4j,
the session EJB SyncBean is the first component activated when a request comes in to the server.
Therefore, it must be configured with the minimal information required to start the Sync4j engine. At
this level the following parameters are specified:

Entry Description Default
syncengine/factory/bean The name of the sync engine factory

bean to use. Changing this value, you
can make SyncBean processing
requests with your own SyncEngine.

sync4j.server.engine.Sync4jEngineFactory

server/config_uri URI that points to Sync4j.properties. file://{sync4j-path}/config/Sync4j.properties

server/config_path The config path for server JavaBeans. file:///{Sync4j-path}/config/

The way SyncBean and Sync4jEngine interact is depicted in Figure 6.

SyncBean uses its minimal configuration to create the SyncEngineFactory and set the engine
configuration read from the given server/config_uri environment entry. Later, when a new SyncEngine
is needed, Sync4jEngineFactory creates the Sync4jEngine object with the configuration previously set.

Page 21

7.3. Server JavaBeans
As seen in the previous sections, some components are configured as server JavaBeans. Server
JavaBeans are JavaBeans used server-side. The idea is to store a bean configuration as the serialized
form of the bean itself. This way, a bean can be instantiated, configured and serialized to persist its
configuration. Later, the bean can be deserialized in a properly configured instance.

However, it would not make sense to force the bean to be instantiated, configured and serialized any
time its configuration changes. To solve this problem, Sync4j makes use of the standard java facility to
serialize objects into XML (and to deserialize them from XML). This is achieved by the means of the
classes java.beans.XMLEncoder and java.beans.XMLDecoder. Since configuration files created with
such encoder/decoder are easy to use, read and write, they can be created and modified manually with
a simple text editor, without the need of a dedicated GUI. An additional advantage of this approach is
that server JavaBeans are not requested to implement java.io.Serializable because XMLEncoder does
not require it.
This is an example of a server JavaBean:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.1_01" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.server.store.PersistentStoreManager">
 <void property="jndiDataSourceName">
 <string>java:/jdbc/sync4j</string>
 </void>
 <void property="stores">
 <array class="java.lang.String" length="2">
 <void index="0">
 <string>sync4j.server.store.SyncPersistentStore</string>
 </void>
 <void index="1">
 <string>sync4j.server.store.EnginePersistentStore</string>
 </void>
 </array>
 </void>
 </object>
</java>

In order to help server JavaBeans handling, Sync4j uses the factory class
sync4j.framework.tools.beans.BeanFactory, which in turn makes use of a customized class loader; the
class loader handles configuration files in a so called config path, in the same way a common class
loader handles classes in a classpath.

7.3.1. The configuration path
Server JavaBeans are looked for in the configuration path, which is analogous to the class path for
classes lookup. This is implemented reading the serialization files from a custom class loader,
sync4j.framework.config.ConfigClassLoader. This may or may not make use of a parent classloader
and can be configured with one or more URIs. In Sync4j 1.0.x, only one directory is used as config path
as specified by the server/config_path SyncBean's environment entry.

Page 22

Figure 6 - SyncBean and SyncEngine Configuration

SyncBean
●serv er/f actory /bean
●serv er/conf ig_uri

Sy nc4j.properties Sync4jEngine

Sync4jEngineFactorynew Instance()
conf igure(conf)

new Instance(conf)

7.3.2. Lazy Initialization
When a bean is deserialized from its XML form, the classloader that loads the serialization
file calls first the empty constructor and then sets the bean properties values using the
setXXX() methods provided by the class. However, some classes need additional
operations to properly initialize (after setXXX() methods are called). To support this lazy
initialization approach, these classes can implement
sync4j.framework.tools.beans.LayInitBean, which defines a separate init() method. When
Sync4j loads a LazyInitBean, after the bean instantiation (or deserialization), it calls its
init() method, giving the bean the opportunity to complete its initialization.

Page 23

8. Message Processing Pipeline

Goal of the message processing pipeline is to have a hook for adding additional processing and
manipulation of the messages exchanged between the server and the client.
The kind of processing that is performed in the pipeline is a message level processing, such as the
manipulation of the message elements. Possible applications are:

• Encoding/decoding of item content
• Item filtering
• Item ordering
• Message decoration (adding/removing elements on a custom basis)

This section describe the architecture and the design of the message processing pipeline implemented
in Sync4j.

8.1. Architecture
The idea behind the message processing pipeline is to be able to modify both incoming and outgoing
messages. In the former case, we want to be able to manipulate the message before it goes into the
sync engine; instead, in the latter, we want to be able to change the message returned by the sync
engine before send it to the client.

This is achieved with two different pipelines as outlined in Figure 7.

The input and output pipelines are constructed and managed by a Pipeline Manager component, which
is configured with the list of components that build up the input pipeline and the list of components that
build up the output pipeline.
The duties of the Pipeline Manager are:

• Creating the input and output pipelines at initialization time
• Provide a way to start the input or output message processing

Page 24

Figure 7 - Pipeline architecture

SyncBean Sync Engine
Input Pipeline

Output Pipeline

Pipeline Manager

• Coordinating the execution of the components in the pipelines
• Keep the “message processing context”, which is the state of one pipeline execution

8.2. Design

8.2.1. Overview
As said, the processing of a message starts just before an incoming message is submitted to the sync
engine or just before an outgoing message is returned to the client.
As described in the sequence diagram of Figure 8, the pipeline manager creates a new “instance” of
the input and output pipelines when a new synchronization session begins (so that in the ejbCreate()
method of SyncBean). When a message comes from the client, instead of being processed
immediately by the sync engine, it is passed to the input pipeline for preprocessing. Each component
of the pipeline can then pre-process the message and apply its changes. The decorated message is
then processed by the sync engine.

Page 25

Figure 8 - Message processing pipeline sequence diagram

8.2.2. Class Diagram
The classes involved in the message processing pipeline architecture are depicted in Figure 9 and
grouped under the package sync4j.framework.server.engine.pipeline.

Each component of the input pipeline must implement the InputMessageProcessor interface; on the
other hand, each component of the output pipeline must implement the OutputMessageProcessor
interface. The PipelineManager class implements the pipeline manager, which is the component that
the transport layer deals with. The Pipeline Manager component is configured setting its
inputProcessors and outputProcessors arrays directly in the server java bean configuration file.
postProcessMessage() and preProcessMessage() are called to start the processing of messages. The
message being processed is passed to the processing methods as a sync4j.framework.core.Message
object, so that a processor can easily modify it. When one of those methods is called,
PipelineManager creates a new MessageProcessingContext and loops through the (input|output)
Processors arrays calling each element's (pre|post)ProcessMessage() passing the context and the
message as parameters.

8.2.3. PipelineManager Configuration
The PipelineManager is configured as a common Sync4j server bean where the two properties
inputProcessors and outputProcessors must be set as array properties accordingly to the
java.beans.XMLDecoder specifications.

Here is an example of a PipelineManager configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.0" class="java.beans.XMLDecoder">
 <object class="sync4j.framework.engine.pipeline.PipelineManager">
 <void property="inputProcessors">
 <array class="sync4j.framework.engine.pipeline.InputMessageProcessor" length="2">
 <void index="0">
 <object class="sync4j.framework.engine.pipeline.InputLogProcessor"></object>
 </void>

Page 26

Figure 9 - Message processing pieline class diagram

 <void index="1">
 <object class="com.funambol.syncserver.pipeline.ItemDecoder">
 <void property="type">
 <string>text/vcard</string>
 </void>
 <void property="version">
 <string>3.0</string>
 </void>
 </object>
 </void>
 </array>
 </void>
 <void property="outputProcessors">
 <array class="sync4j.framework.engine.pipeline.OutputMessageProcessor" length="1">
 <void index="0">
 <object class="com.funambol.syncserver.pipeline.ItemEncoder">
 <void property="type">
 <string>text/vcard</string>
 </void>
 <void property="version">
 <string>3.0</string>
 </void>
 </object>
 </void>
 </array>
 </void>
 </object>
</java>

8.2.4. Error Handling
Each processors can throw a sync4j.framework.core.Sync4jException in case of errors during the
processing. The PipelineManager logs the error condition at INFO level to the logger
sync4j.engine.pipeline and then carries on with the next pipeline component.

Page 27

9. Error and Exception Handling

This chapter describes the use of exceptions to handle error conditions at the different levels in the
layered architecture of Sync4j. Simplifying the structure depicted in Figure 2 and focusing on the
execution flow of a SyncML request, we have the flow of Figure 10.

The rule of thumb in handling error conditions is that when possible a SyncML message with an error
status code should be returned instead of other kind of errors (such as transport level errors).
Like the picture suggests, only few types of exception should be thrown by the methods that cross the
layers boundaries. Those exceptions should be strongly related with the responsibility of the throwing
layer. However, inside the layer, other exception types can be defined and used as needed.
The following sections describe the error handling at each specific layer and the meaning of the
different exceptions used in Sync4j and shown in Figure 11.

9.1. Sync4j Exception
Sync4jException is the base of most of the exceptions defined in Sync4j. It makes use of the new
Exception object provided by the JDK 1.4, which allows chaining an exception with the causing
exception. This functionality is very useful, because it allows to convert a low-level exception to an
exception that crosses the layer boundary, while keeping the root cause of the error.

Page 28

Figure 10 - Sync4j exception handling

SyncServer Engine

Transport Layer (web server)

ServerException

Server/Sync4jException

Protocol/RepresentationException

HTTP status code

SyncServer

Protocol

9.2. Server Exception
Sync4j and its extensions should only throw ServerException exceptions. This will include the
causing exception if the error condition is due to one of the underlying layers. In addition to simply
representing an error condition, ServerException stores also a status code associated to the error.
This is particularly helpful when dealing with exceptions that encapsulate SyncML-level errors such as
the SyncML error codes. ServerExceptions should be let reach the transport layer only when the
error is in some way fatal, so that it is not possible to recover from it and produce a proper SyncML
response message. When possible, it is recommended to create a SyncML message with a
<Status> element representing the error condition with a proper status code in its <Data>
subelement; status codes are defined by the SyncML specifications in [1].

9.2.1. SyncML Exceptions
Each SyncML error status code is encapsulated in a corresponding exception, for example
NotImplementedException or BadCGIScriptException. All these exceptions are direct
subclasses of Sync4jException.

9.3. Protocol Exception
A protocol error can be of two types:

1. SyncML representation error
2. SyncML protocol error

SyncML representation errors groups the errors occurring in the representation of a SyncML message:
for example, when the XML document is not well formed, when there are parse or syntax errors, or
when, even if the message is a well formed XML content, it does not represent a SyncML message (for
example the <SyncHeader> element is missing). These are low level exceptions that may make
impossible returning a proper SyncML response containing the error status code. When creating the
response SyncML error message is impossible, the exception will bubble up to the transport level and
a transport specific error response will be returned to the client.

Page 29

Figure 11 - Exception hierarchy

sync4j.f ramework.core.Sy nc4jException

sy nc4j.f ramework.protocol.ProtocolException sy nc4j.f ramework.core.RepresentationException

sy nc4j.f ramework.server.error.Serv erException

sy nc4j.f ramework.serv er.error.NotImplementedException sy nc4j.f ramework.serv er.error.BadGciScriptException...

SyncML protocol errors groups errors related to the violation of the SyncML protocol in terms of
sequence of messages. Examples of these errors are the violations of the requirements mandated by
the SyncML specifications for the initialization or modifications message (see [2]).
Following the classification above, two different exception classes are defined in Sync4j:

1. core.framework.protocol.ProtocolExcepion
2. core.framework.core.RepresentationException

Page 30

10. Sync4j Modules

Sync4j modules represent the means third party developers can extend the way Sync4j works. A
module is a packaged set of files containing classes, configuration files, initialization SQL scripts and
so on, used by the installation procedure to embed the extensions into the Sync4j Enterprise Archives
(the J2EE ear).

For more information on how to install Sync4j modules see [3].

For beginners information on how to build a Sync4j module see [4].

10.1. Building a Sync4j Module
A Sync4j module is a jar package named following the convention:

<module-name>-<major-version>.<minor-version>.s4j

Where <module-name> is the name of the module without spaces and with small caps only and
<major/minor-version> are the major and minor version numbers. Changes in the minor version
number must be backward-compatible, whilst changes in the major version number may require
migration efforts.

The package must have the structure presented in Figure 12.

Page 31

lib/
modulename.jar

dependent1.jar

dependent2.jar

...
config/

config.properties

MySyncSource.xml

SomeOtherBean.xml

...
admin.war
meta-inf/

manifest.mf
install/

install.xml
sql/

oracle
create_schema.ddl
drop_schema.ddl
init_schema.sql

postgresql
...

Figure 12 - Module package structure

In the figure, entries ending with a '/' represent directories and filenames in italic are given just as
examples (in a real package they will be replaced with real filenames).
The module classes are packaged in a main jar file called <modulename>.jar. If this package requires
additional libraries, it must use the java extension mechanism to make them available (in particular,
depended libraries must be included in the Class-path manifest entry).
Configuration properties files and bean configuration files are stored under the package directory
config, creating subdirectories as needed.
The directory install contains install.xml, which is an Ant script, called when the module is being
installed; this is the hook where a module developer can insert module specific installation tasks.
Installation specific files can be organized in subdirectories under install. If the module requires a
custom database schema, the scripts to create, drop and initialize the database are stored under the
sql/<database> directory, where <database> is the name of the DBMS as listed in the install.properties
file.

Page 32

11. References and Resources

11.1. References
[1] SyncML Representation Protocol, version 1.1,

http://www.syncml.org/docs/syncml_represent_v11_20020215.pdf
[2] SyncML Sync Protocol, version 1.1,

http://www.syncml.org/docs/syncml_sync_protocol_v11_20020215.pdf
[3] Sync4j 3.0 Administration Guide, Funambol, 2003
[4] Sync4j 3.0 Module Development Tutorial, Funambol, 2003

11.2. Resources
[1] www.syncml.org
[2] Java Authentication and Authorization Service, Reference Guide, JDK 1.4.x documentation

Page 33

