
Sync4j 1.1.x Administration Guide

Table of Contents
1. Introduction..3
1.1. Comments and Feedbacks..3
2. Installation...4
2.1. How to Get Sync4j..4
2.2. Installing Sync4j 1.1.x...4
2.2.1. Installing Sync4j 1.1.x Bundled...4
2.2.2. Installing Sync4j 1.1.x Unbundled on Sun J2EE SDK 3.1...5
2.2.3. Installing Sync4j 1.1.z Unbundled on JBoss 3.0.x..5
2.3. The install.properties file..6
2.4. Post Installation Notes...6
3. Starting and Stopping Sync4j 1.1.x...8
3.1. Starting Sync4j 1.1.x..8
3.2. Stopping Sync4j 1.1.x...8
3.2.1. On JBoss 3.0.x..8
3.2.2. On Sun J2EE SDK 1.3.x...8
4. Installing Sync4j Modules..9
4.1. Packaging..9
4.2. Installation..9
4.2.1. Full Installation..9
4.2.2. Modules-only Installation...10
5. Administering Users and Devices...11
5.1. Adding a New Sync4j Principal..11
6. Configuring Sync4j 1.1.x...12
6.1. Sync4.properties..12
6.2. Security..13
6.2.1. JAAS...13
6.2.2. The JAASOfficer...13
6.3. Database..14
6.3.1. Database Creation..14
6.4. Database Schema..14
6.5. Logging...15
6.5.1. Sync4j Logging..15
6.5.2. Enabling the Most Verbose Logging...16
6.5.3. Logging Database Access..16
7. Common Configuration Changes..17
7.1. Logging...17
7.2. Temprary Files...17
7.3. Security..17
7.4. Authentication...17
8. References and Resources..18
8.1. Resources..18

Page 2

1. Introduction

This document is intended for developers and administrators who have to manage Sync4j 1.1.x. It
includes:

• Installing Sync4j 1.1.x
• Starting and stopping Sync4j
• Installing Sync4j modules
• Adding users, devices and principals

1.1. Comments and Feedbacks
The Sync4j team wants to hear from you! Please submit your questions, comments,
feedbacks or testimonials to sync4j-users@lists.sourceforge.net.

Page 3

2. Installation

This section describes how to install and configure Sync4j 1.1.x so that it can handle PDI data
represented by vCard and vCalendar objects.

2.1. How to Get Sync4j
Check the Sync4j homepage (http://www.sync4j.org) for information about the current version and for
downloading instructions.

Sync4j is distributed as an archive file called sync4j-x.y.z.zip where x,y and z are the major, minor and
build numbers.

2.2. Installing Sync4j 1.1.x
Sync4j is available in two forms: bundled with the JBoss application server[2] and unbundled; in the
latter case you must have an application server on which deploy the Sync4j server. Currently, Sync4j
can be directly deployed on top of JBoss 3.0.x and Sun J2EE SDK 3.1[3].

The unbundled Sync4j (sync4j-{major}.{minor}.{build}.jar) is the base package that can be deployed on
supported application servers. The bundled Sync4j (sync4j-jboss-{major}.{minor}.{build}.jar) is a
distribution that contains a bundled application server. Currently Sync4j is bundled with JBoss 3.0.8.

The requirements to install Sync4j 1.1.x bundled are:

1. JDK 1.4.x[1]
2. Sync4j 1.1.x bundled archive (sync4j-jboss-1.1.x.zip)

The requirements to install Sync4j 1.1.x unbundled are:

1. JDK 1.4.x[1]
2. Sun J2EESDK 1.3.1[3]

or
JBoss 3.0.x[2]

3. Sync4j 1.1.x (sync4j-1.1.x.zip)

The installation procedure is made up of a combination of shell and Ant[4] scripts performing the
following tasks:

• Updating configuration files accordingly to user's parameters
• Packaging for deployment on the chosen application server
• Database tables creation
• Deployment on the chosen application server

2.2.1. Installing Sync4j 1.1.x Bundled
To install Sync4j, follow the procedure below:

Page 4

1. Install the JDK 1.4.x if not already present.
2. Unpack sync4j-jboss-1.1.x.jar in a directory of your choice. We will refer to that directory as the

installation directory.
3. Under the installation directory you'll find the SYNC4J_HOME directory, which is called sync4j-1.1.

Go into that directory and run:
bin/start.sh (bin\start.cmd)

(Make sure that in your environment the JAVA_HOME variable is properly set).
4. Point the browser to http://<server>:8080/sync4j to check that Sync4j is properly installed (you

should get the welcome page).

2.2.2. Installing Sync4j 1.1.x Unbundled on Sun J2EE SDK 3.1
To install Sync4j, follow the procedure below:

1. Install the JDK 1.4.x if not already present.
2. Install the J2EE SDK if not already present.
3. Unpack sync4j-1.1.x.jar in a directory of your choice. We will refer to that directory as

SYNC4J_HOME.
4. Set up your database so that it can be accessed with a dedicated user (e.g. sync4j). This user

needs to be granted permissions for connecting, creating, deleting and selecting tables.
5. Customize install.properties to reflect your system
6. Start the Sun J2EE RI server.
7. On unix systems, give execution permission to the executable scripts in bin and ant/bin. Use the

command (from SYNC4J_HOME):
chmod +x bin/*.sh ant/bin/*

8. From SYNC4J_HOME, run:
bin/install.sh sunri (bin\install.cmd sunri)

(Make sure that the environment variables JAVA_HOME and J2EE_HOME point respectively to
your JDK home and to your J2EE SDK home)
You will be asked if you want to create the database for Sync4j and some Sync4j modules.
Respond yes ('y') to all questions.

9. Edit {J2EE_HOME}/config/resource.properties and add the following lines:
#
Added for Sync4j
#
jdbcDataSource.5.name=jdbc/sync4j
jdbcDataSource.5.url={the jdbc url}
jdbcDriver.5.name={the jdbc driver}

10.Edit {J2EE_HOME}/bin/userconfig.bat/sh and append to the J2EE_CLASSPATH the complete
classpath of your jdbc driver.

11.Stop the Sun J2EE RI server
12.Start Sync4j: from SYNC4J_HOME run:

bin/start.sh (bin\start.cmd)
13.Point the browser to http://<server>:<port>/sync4j to check that Sync4j is properly installed (you

should get the welcome page).

2.2.3. Installing Sync4j 1.1.x Unbundled on JBoss 3.0.x
To install Sync4j, follow the procedure below:
1. Install the JDK 1.4.x if not already present.
2. Install JBoss 3.0.x if not already present.
3. Unpack sync4j-0.1.x.jar in a directory of your choice. We will refer to that directory as

SYNC4J_HOME.
4. Set up your database so that it can be accessed with a dedicated user (e.g. sync4j). This user

needs to be granted permissions for connection, creating, deleting and selecting tables.
5. Customize install.properties to reflect your system.
6. On unix systems, give execution permission to the executable scripts in bin and ant/bin. Use the

command (from SYNC4J_HOME):
chmod +x bin/*.sh ant/bin/*

Page 5

7. From SYNC4J_HOME, run:
 bin/install.sh jboss (bin\install.cmd jboss)
(Make sure that the environment variables JAVA_HOME and J2EE_HOME point respectively to
your JDK/JRE home and to your JBoss home).
You will be asked if you want to create the database for Sync4j and some Sync4j modules.
Respond yes ('y') to all questions.

8. Start Sync4j: from SYNC4J_HOME run:
bin/start.sh (bin\sstart.cmd)

9. Point the browser to http://<server>:<port>/sync4j to check that Sync4j is properly installed (you
should get the welcome page).

2.3. The install.properties file
This file is used by the installation procedure as the central repository of configuration information that
are needed to properly set up a working Sync4j installation. It is a standard Java properties file
containing the properties described in Table 1.

Property Description Default Value
context-path The context path to be used to configure

the web container for the Sync4j module.
Sync4j will respond to URLs starting with
this context path.

/sync4j

dbms Name of the database where Sync4j
tables will be created. One of:

• ansisql99
• hypersonic
• mysql
• oracle
• postgresql
• sybase
• sqlserver

postgresql

jdbc.classpath Classpath including the JDBC driver for
the database if not included in the system
classpath.

jdbc.driver JDBC driver class. org.postgresql.Driver
jdbc.password Database user password sync4j
jdbc.url JDBC connection URL jdbc:postgresql://localhost/sync4j
modules-to-install Comma separated list of Sync4j modules

to install.
pdi-1.0

server-name The server URI that will be specified in the
SyncML messages. The server will
respond only to messages addressed to
this URI.

http://localhost

Table 1 - install.properties properties

For a new Sync4j installation, you have usually to change only the database access configuration.

2.4. Post Installation Notes
The standard Sync4j installation configures Sync4j with two FileSystem SyncSources to store PDI
(Personal Data Information) vCard and vCalendar items. Items are stored in the <SYNC4J_HOME>/db
directory under, respectively, contact and calendar subdirectories: the directory name represents the
name of the database and each file represents one contact or calendar card (the filename is the card
id).
In a new Sync4j installation, those directories contain a few sample contacts/appointments (Figure 1).

Page 6

Page 7

Figure 1 - FileSystem SyncSources for PDI data

3. Starting and Stopping Sync4j 1.1.x

This section explains how to start and stop Sync4j 1.1.x

The way Sync4j 1.1.x is started and stopped usually depends on how the application server on top of
which Sync4j is running starts and stops J2EE applications. In this section, we assume Sync4j 1.1.x is
installed as a standalone application, therefore when Sync4j is stopped, the entire application server is
stopped and when it is started, the entire application server is started.

3.1. Starting Sync4j 1.1.x
To start Sync4j 1.1.x follow the procedure below:

1. Make sure the following environment variables are correctly set:
• JAVA_HOME -> the JDK installation directory
• J2EE_HOME -> the Funambol Sync4j installation directory

2. From <Sync4j_HOME>, run:
 bin/start.sh (bin\start.cmd)

3.2. Stopping Sync4j 1.1.x

3.2.1. On JBoss 3.0.x
To stop Sync4j 1.1.x follow the procedure below:

1. Point the browser to the url:
http://<server>:<port>/jmx-
console/HtmlAdaptor?action=invokeOpByName&name=jboss.system:type=Server&methodName=shutdown

3.2.2. On Sun J2EE SDK 1.3.x
Kill the application server process. If it is running in foreground, pressing Ctrl+C should be sufficient:
otherwise you have to discover the process id and kill it with an operation system command or tools.

Page 8

4. Installing Sync4j Modules

A Sync4j module is a pluggable Sync4j extension provided either by the Sync4j community, a third
party or developed by yourself. It is the way you can add new functionalities or modify the standard
behavior of a Sync4j component.

More details on how to develop a Sync4j module can be found in the Sync4j 1.1.x Developer's Guide.
This section, instead, explains how to install new and existing Sync4j modules.

4.1. Packaging
A Sync4j module is packaged as a zip or jar archive that you have to expand in your
<SYNC4J_HOME> directory. The archive might contain many files, but the most important one is
located under the modules subdirectory and is called accordingly to the following pattern:

modules/{modulename}-{major}.{minor}.s4j

Where modulename is the name of the module and major/minor are the major and minor version
numbers. The s4j module file contains the part of the module that must become part of the Sync4j
enterprise archive (a J2EE ear file). It is represented by classes, configuration and initialization files
that are processed by the installation procedure.

4.2. Installation
Sync4j modules can be installed in two ways: fully reinstalling the entire Sync4j as described in a
previous section or installing just the modules. In either methods, the installation file install.properties
must be configured with the list of the modules to be included in Sync4j.

In install.properties of a standard installation, the line:

modules-to-install=pdi-1.0

tells the installation procedure to include in Sync4j the PDI module version 1.0.

4.2.1. Full Installation
After setting modules-to-install in install.property you just run the installation procedure
bin/install.sh <application server> (bin\install.cmd <application server>).
Note that because this is a fully Sync4j installation you will be asked if you want to rebuild the
database: choose 'n' (do not rebuild the database) to keep the existing users, mappings and last syncs
information.

With this method the installation procedure installs each module in the list; you will be notified of any
module installation by proper messages on the screen. Again, for each module, you will also be asked
if you want to rebuild the module database. Choose 'y' or 'n' depending on the need of recreating and
initializing the module database tables.

Page 9

4.2.2. Modules-only Installation
This method is not very different from the full installation method. Simply, you have to call a different
script.
After setting modules-to-install in install.property, call bin/install-modules.sh <application
server> (bin\install-modules.cmd <application server>). This procedure skips the
Sync4j installation and just installs each module in the modules-to-install list. You will be notified of
every module installation by proper messages on the screen. For each module, you will also be asked
if you want to rebuild the module database. Choose 'y' or 'n' depending on the need of recreating and
initializing the module database tables.

Page 10

5. Administering Users and Devices

Sync4j 1.1.x keeps no real users database. This is not the role of a synchronization engine and is best
performed by dedicated databases or directory services. Instead, Sync4j takes advantage of the JAAS
(Java Authentication and Authorization Services) architecture implemented in the majority of the
application servers on the market. This way, the duty of managing users, storing password,
authenticating and authorizing users to a service is demanded to the application server itself, without
duplicating the users database.

In Sync4j, data are associated to a Principal, which is a more generic concept than a person. A
principal may represent a user, a device, an application and so on. In Sync4j a principal is a couple
(userid-deviceid), covering the cases were a user can use different devices and a device can be used
by many users.

The following sections describe how to insert a new principal to the Sync4j database so that it can be
used to retrieve personalized information.

5.1. Adding a New Sync4j Principal
As said, a principal is an association between a userid (or username) and a device id. Therefore, to
make this association we need to insert a new user into the sync4_user table and a new device into
the sync4j_device table. Then, we can insert the principal in sync4j_principal.

For example, suppose we want to insert the principal (jdoe, IMEI:351111103384988). We use the
following SQL statements:

insert into sync4j_user (username, email, first_name, last_name)
 values('jdoe', 'john_doe@somewhere.com', 'John', 'Doe');

insert into sync4j_device (deviceid, description, type)
 values('IMEI:351111103384988', 'John Doe''s mobile phone', 'Nokia 7650');

insert into sync4j_principal (principalid, username, device)
 values('103', 'jdoe', 'IMEI:351111103384988');

Note that user's email and first and last name are inserted for benefit of the administrator only: they are
not required or used by Sync4j, but inserted just to make easier for administrative staff to find a
particular person.

Page 11

6. Configuring Sync4j 1.1.x

Sync4j is - by design - very flexible and configurable in many of its modules. One of the design goal of
the product is to provide a framework that can be used to implement any kind of synchronization
service.
There are two configuration techniques used by Sync4j: properties files and server JavaBeans. The
former is based on classic properties files that can be read by a java.util.Properties object. The server
JavaBeans configuration type is represented by serialized Java beans stored in the so called
configuration path (see the Developer's Guide for details).

The following sections describe how to configure many Sync4j aspects, starting with the principal
configuration file Sync4j.properties.

6.1. Sync4.properties
This is the main Sync4j configuration file and is located in <SYNC4J_HOME>/config. That location
can be changed editing the EJB descriptor file default/config/xml/META-INF/ejb-jar.xml and changing
the value of the environment entry server/config_uri.

Sync4j.properties defines the following properties:

Property Description Default
server.uri The server URI that identifies the server. Sync4j

will refuse all synchronization messages
addressed to a server URI different from the
one indicated by this property.

http://localhost:8080

syncml.dtdversion The supported SyncML dtd version 1.1
engine.manifacturer The manufacturer included in the server

capabilities.
Sync4j

engine.modelname The model name included in the server
capabilities.

-

engine.oem The oem name included in the server
capabilities.

-

engine.firmwareversion The firmware version included in the server
capabilities.

-

engine.softwareversion The server version included in the server
capabilities.

1.1

engine.hardwareversion The hardware version included in the server
capabilities.

-

engine.deviceid The device id included in the server capabilities. -
engine.devicetype The device type included in the server

capabilities
-

Page 12

Property Description Default
engine.strategy The JavaBeans representing a

sync4j.framework.engine.SyncStrategy object.
This property is interpreted as the name of a
JavaBeans. The given value is searched in the
configpath as the name of a serialized object. If
no serialized object are found, the value is
considered equal to the name of a class and it
will be searched for in the classpath.

sync4j.server.engine.Sync4jStrategy

engine.store The JavaBeans representing the persistent
store manager.

sync4j/server/store/PersistentStoreManager.xml

security.officer The JavaBeans representing the security officer
(see the next section).

sync4j/server/security/JAASOfficer.xml

engine.pipeline The PipelineManager configuration sync4j/framework/engine/pipeline/PipelineManager.xml

6.2. Security
Sync4j does not implement complex authentication and authorization mechanisms; usually this is
accomplished by dedicated software such as directory services. In addition, a classic problem when
applications keep users and user information in a proprietary database is the synchronization between
the local database and the corporate database. This is even more problematic when single sign on is
required and user logins and passwords must be stored and verified only in one place. Instead, Sync4j
bases its security services on the Java Authentication and Authorization Service architecture provided
out of the box with the JDK 1.4.x.

6.2.1. JAAS
The Java Authentication and Authorization Service (JAAS) was introduced as an optional package
(extension) to the Java 2 SDK, Standard Edition (J2SDK), v 1.3 and has now been integrated into the
J2SDK, v 1.4.

JAAS can be used for two purposes:

• for users authentication of users, to reliably and securely determine who is currently executing
Java code, regardless of whether the code is running as an application, an applet, a bean, or a
servlet; and

• for authorization of users to ensure they have the access control rights (permissions) required
to do the actions performed.

JAAS authentication is performed in a pluggable fashion. This allows applications to remain
independent from underlying authentication technologies. New or updated authentication technologies
can be plugged under an application without requiring modifications to the application itself.
Applications enable the authentication process by instantiating a LoginContext object, which in turn
references a Configuration to determine the authentication technology/technologies, or LoginModule
(s), to be used in performing the authentication. Typical LoginModules may prompt for and verify a
username and password. Others may read and verify a voice or fingerprint sample.
Once the user or service executing the code has been authenticated, the JAAS authorization
component works in conjunction with the core Java 2 access control model to protect access to
sensitive resources.
For additional information about JAAS see

http://java.sun.com/j2se/1.4.1/docs/guide/security/jaas/JAASRefGuide.html

and

http://java.sun.com/j2se/1.4.1/docs/guide/security/jaas/tutorials/index.html.

6.2.2. The JAASOfficer
sync4j.framework.security.JAASOfficer is an implementation of sync4j.framework.security.Officer that
delegates to JAAS the authentication and authorization functionality.
In order to use this implementation, the system property java.security.auth.login.config must be set
accordingly to what specified in the JAAS documentation or in the documentation of the application
server in use.
Sync4j implements also an empty LoginModule that always authenticates and authorizes the users.

Page 13

This module is under the package sync4j.framework.security.jaas and is plugged in the JAAS
configuration adding the following lines to the login configuration file:
sync4j {
 sync4j.framework.security.jaas.SimpleLoginModule required required
debug=true;
}

See the documentation of the application server in use for details on how to use that login module.

6.3. Database
Sync4j should work with any database for which a JDBC driver exists. After Sync4j is installed the
database access configuration is delegated to the application server. Sync4j uses the JNDI name
jdbc/sync4j to acquire a connection from the application server. For example, with the Sun J2EE
reference implementation, the database connection settings are stored in {J2EE_HOME}/
config/resource.properties as a numbered list of datasources and driver definitions. To configure a new
datasource, it is sufficient to edit the file and add the following lines:

jdbcDataSource.{n}.name=jdbc/sync4j
jdbcDataSource.{n}.url={the jdbc url}
jdbcDriver.{n}.name={the jdbc driver}

Where n is the next number greater than the maximum existing number.
In addition, in order to tell the application server where to find the JDBC driver classes, the file
{J2EE_HOME}/bin/userconfig.bat/sh must be edited and the driver classpath must be appended to the
environment variable J2EE_CLASSPATH.

Please read the documentation of your application server to see how it performs JDBC configuration.

Note that the installation procedure for JBoss, configure the application server automatically setting the
required configuration files based on the JDBC information found in install.properties.

6.3.1. Database Creation
The installation procedure creates the database schema required by Sync4j. There are specific SQL
scripts for the most common database systems; the script to be used is specified by the property
dbms in install.properties. There are the scripts for the following databases:

• Standard SQL 99
• Hypersonic
• Informix
• MySQL
• Oracle
• PostgreSQL
• SQLServer
• Sybase

If your database is not in the list try with the SQL 99.

6.4. Database Schema
The database schema used by Sync4 is depicted in Figure 2.

Below, you find a brief description of the tables:

• User (sync4j_user): contains the users's name and details;
• Device (sync4j_device): contains the devices Sync4j can deal with. The id is what is specified

by the <Source><LocURI> element in the <SyncHeader> of the SyncML message;
• Principal (sync4j_principal): is the entity that can make a synchronization request.

Conceptually, the principle is the couple (username, device);

Page 14

• LastSync (sync4j_last_sync): stores the synchronization anchors of the most recent
synchronization of a particular database by a particular principal;

• ClientMapping (sync4j_client_mapping): stores the LUID-GUID mappings for a particular
database and principal;

• Source (sync4j_sync_source): contains the known sync sources Sync4j can deal with. A
source is identified by its URI, which is used also as a key in the referring tables.

6.5. Logging
Sync4j uses the standard Java Logging APIs introduced with the JDK 1.4.x.
For detailed information about the Java Logging APIs, see
http://java.sun.com/j2se/1.4.1/docs/guide/util/logging/overview.html.
The output produced by the logging system can be configured in terms of content and writing media
(the system output console, the file system, a database, etc.). To configure the JDK logging system,
edit the file {SYNC4J_HOME}/lib/logging/logging.properties.
It is recommended to configure the logging system to output logging information to files instead of to
the standard output/error streams. This way, you can also control how big log files can become and
how rotate them.

6.5.1. Sync4j Logging
Sync4j uses many logging namespaces, so that you can easily select which module should generate
logging and which module should not. The namespaces defined by Sync4j are as follows:

Page 15

Figure 2 - Engine database schema

Name Description
sync4j It is the default logging namespace, used when no other namespace is

specified.
sync4j.engine Synchronization engine logging information.
sync4j.handler Session handling logging information.
sync4j.source SyncSource related logging information.

You can set the verbosity level of a log namespace by setting its level property:

sync4j.level=INFO

If not otherwise specified, the verbosity level is inherited by all subnames (such as sync4j.engine or
sync4j.source). To overwrite the inherited value, you can set explicitly the subname level like in the
following example:

sync4j.engine=ALL

In the case above, the default logging level is set to INFO, whilst the engine logging is configured to
show any message with any severity. Since logging impacts on performance, on a production system
the recommended logging level is SEVERE, so that only errors will get displayed.

6.5.2. Enabling the Most Verbose Logging
In order to get the most verbose logging information, you should follow these steps:

• Edit {SYNC4J_HOME}/lib/logging.properties and set .level, java.util.logging.ConsoleHandler.level or
any other handler you are using to ALL (eg.: .level=ALL)

• set sync4j.level to ALL
• Restart Sync4j

6.5.3. Logging Database Access
Sync4j does not log database access directly from the classes that use JDBC. Instead, a more generic
approach is taken, which is based on P6Log (http://p6spy.sourceforge.net), an open source application
that logs all JDBC transactions in a seamless manner for the target application. You just need to
configure the application server to use the P6Spy JDBC driver instead of the database driver. P6Spy is
configured to access the real database. For information on how to install and configure P6Spy, go to
http://www.p6spy.com/documentation/index.htm.
For the sake of simplicity, a short list of the steps required to configure Sync4j to use P6Spy is
presented here.

1. Download and install P6Spy from the above link
2. Copy spy.jar in your {JAVA_HOME}/jre/lib/ext
3. Copy {SYNC4J_HOME}/lib/sync4j-sqllog.jar in {JAVA_HOME}/jre/lib/ext (this contains an adapter

for P6Spy to the standard java logging system)
4. Append to the application server CLASSPATH the directory {SYNC4J_HOME}/lib/logging (this will

allow P6Spy to access its configuration file spy.properties).

SLQ logging is turned on and off acting on the logging configuration file {SYNC4J_HOME}/
lib/logging/logging.properties.

Page 16

7. Common Configuration Changes

This section describes some common configuration changes that you might want to undertake for a
production system. Since this chapter is addressed to production environments, it focuses on the
JBoss deployment.

7.1. Logging

7.2. Temporary Files

7.3. Security

7.4. Authentication
A common configuration change regards how users are authenticated. The authentication service is
abstracted in JBoss (like in Sync4j) through the adoption of the Java Authentication and Authorization
Services (JAAS). JBoss provides out of the box login modules for authenticating users by files,
relational database and LDAP directory server.
When Sync4j is first installed, JBoss is configured to use the
org.jboss.security.auth.spi.UsersRolesLoginModule login module, which is based on the use of
users.properties and roles.properties; the former stores users and passwords and the latter stores
users roles.

To change the login module to use with Sync4j you need to modify login-config.xml located under
server/sync4j/conf changing the application policy associated to sync4j with the one of your choice.

For example, to authenticate users from the db use:

<application-policy name="sync4j">
 <authentication>
 <login-module code = "org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag = "required"

 >
 <module-option name = "dsJndiName">java:jdbc/sync4j</module-option>
 <module-option name="principalsQuery">SELECT password FROM users WHERE userid = ?</module-option>
 <module-option name="rolesQuery">SELECT role, group FROM roles WHERE userid = ?</module-option>
 </login-module>
 </authentication>
</application-policy>

Page 17

8. References and Resources

8.1. Resources
[1] http://java.sun.com/j2se
[2] http://www.jboss.org
[3] http://java.sun.com/j2ee
[4] http://ant.apache.org/

Page 18

