Submited to WWW 200901

Warehousing Web Resources with
the WebContent Platform

Serge Abiteboul* Gaél de Chalendart

Bernd Amannt

Patrick Giroux"

ABSTRACT

We describe the WebContent platform for the management of con-
tent from the Web. The platform is based on a service-oriented
architecture and Web standards (notably, Web services, XML and
RDF). An enterprise service bus (following the JBI specification)
and BEPL may be used to orchestrate service invocations. A peer-
to-peer architecture may also be used to facilitate cooperation be-
tween independent partners as well as provide scaling.

We briefly describe services that were developed for supporting
the main functions of the platform: acquisition, e.g., Web crawling,
semantic enrichment, e.g., concept annotations, high-scale XML
storage and querying (in a centralized or P2P architecture) and ex-
ploitation (including Web-based interfaces). Ontologies are perva-
sive in WebContent applications, supporting the description of the
harvested and derived information as well as that of applications.

WebContent brings together a large number of groups from in-
dustry and academia. The core of the platform is open-source.
A large toolkit of both open-source and commercial services is
already available. WebContent is being tested on different Web
surveillance applications. In the paper, we use a strategic watch ap-
plication in aeronautics that has been developed for Airbus to illus-
trate various aspects of the platform. WebContent is now available
for research and development outside the original group of partici-
pants.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; H.3.4 [Information Sys-
tems]: Systems and Software; C2.4 [Computer-communication
Networks]: Distributed Systems

General Terms

Design, Performance, Human Factors

Keywords

Information extraction, Distributed data management, Web services,
Semantic Web, Peer-to-peer systems

*INRIA Saclay—fle—de—France and LRI, Univ. Paris XI, France
fCEA LIST, France

YLIP 6 — Univ. Pierre et Marie Curie & CNRS, France

SINRA Met@risk/AgroParisTech, France

TEADS DS/SDC/IPCC, France

I'Univ. Versailles Saint-Quentin-en-Yvelines & CNRS, France

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.

loana Manolescu*

Patrice Buches

Bruno Grilhéres?

Emmanuel Pietriga
Juliette Dibie-Barthélemys®

Benjamin Nguyen!

1. INTRODUCTION

The main data sources available on the Internet today and even
internally in companies are in very large part textual. Furthermore,
the portions that are more controled (structured) are often hetero-
geneous, relying on different formats and different ontologies. As
a consequence, the full exploitation of the vast quantity of avail-
able Web resources by end-users such as experts performing watch
activities is difficult at best, and often impossible. Furthermore,
the development of Web applications to assist them is extremely
complex and often requires unavailable programming skills or bud-
get. In this paper, we introduce the WebContent platform that has
been developed to ease the development of Web content applica-
tions [44]].

The platform warehouses content relying on a rich set of ser-
vices. These services are used for acquiring data, cleaning them,
storing and indexing, semantically enriching them (with machine-
processable annotations), and exploiting them notably via Web-
enabled visualization tools. The platform is based on the sharing
of XML documents. An Enterprise Service Bus (ESB) and BPEL
may be used to orchestrate service invocations. We also consider
performing tasks in a peer-to-peer network.

Observe that WebContent is in the spirit of the Semantic Web,
building of its technologies [8} |33]] , notably stuctured data, linked
and semantically-enriched in a machine-processable manner, ex-
changed between applications and services.

In this paper, we describe the various components of the plat-
form. First, we introduce the WebContent data model that facil-
itates describing the content of Web documents that are relevant
to a particular application. Next, we consider the core services of
the platform, e.g., storage, and application services, e.g., ontology-
based classification. It should be observed that a large part of the
effort in the WebContent project comes from partners tailoring spe-
cific tools to the WebContent context.

Ontologies are pervasive in WebContent applications as they sup-
port the description of the harvested and derived information as
well as that of the applications. This knowledge is stored in an
XML database and efficient and scaling query processing is a cen-
tral aspect of the platform. Besides data and knowledge manage-
ment, the tools that equip the platform cover a wide range of do-
mains, from linguistic analysis to machine learning and vizualiza-
tion. We will discuss some of them and describe guidelines for
developing WebContent applications.

The WebContent platform was designed to facilitate Web content
processing at large. Since this is too broad a target to fully grasp, we
chose to focus our attention first on Web watch applications. The
platform is now up and running. We are testing its functionality

Submited to WWW 200901

Portal El _____ > External Business{| Business Process Design El
application
—
v

Orchestration Engine E
' -
®
i g
LI U =
o Messaging & Distribution 9
2 =
3 I Il M I]
< F
@ B
g ® O 0 ® 2
Application|Service X Application|Service Y Core|Service A Cor1Service B -

<<component> <<component> <<component>€| <<component>€|

X Y A B
C e — =
Repository

Figure 1: Architecture of a WebContent application.

with a number of real-case applications: (i) technological watch in
the domain of food risk analysis, (ii) strategic watch in aeronautics,
(iii) intelligence watch, and (iv) seismic watch. The second one
that has been developed for Airbus is used throughout the paper to
illustrate the various aspects of the platform with a real-world use
case.

WebContent is a project from the Agence Nationale de la Recher-
che bringing together a large number of groups from industry and
academia. The platform has been a testbed for the integration of
a number of XML, Web service and Semantic Web technologies.
It has also been used for validating prototypes issued from sev-
eral research projects, including peer-to-peer (P2P) management of
Semantic Web data, ontology merging tools, machine learning al-
gorithms for structured content extraction, and Web-enabled data
visualization widgets.

The core of the platform is open-source. A large toolkit of both
open-source and commercial services is already available. Web-
Content is now available for R&D outside the original group of
participants. See http://www.webcontent. fr

The paper is organized as follows. Section[2]gives an overview of
the platform. Section 3] provides a detailed description of its archi-
tecture and data model. Section [] discusses related work. Section
[]concludes the paper.

2. PLATFORM OVERVIEW

As mentioned in the introduction, the platform has primarily
been tested with Web watch applications, and we use one such ap-
plication as an illustration in this paper. Web-based watch applica-
tions are facing problems such as acquiring all kinds of documents
in various formats, analyzing them and extracting knowledge rel-
evant to the task at hand, performing a synthesis of the derived
information and alerting users of relevant events. Watch applica-
tions are thus very typical of a wide range of Web applications.
Beyond, Web processing applications can benefit from WebCon-
tent in a wide range of other domains, including economic intel-
ligence, open source intelligence, Enterprise Information Portals

(EIP), Content Management Systems (CMS), (multimedia) archiv-
ing, or knowledge management at large.

We describe next the platform functionalities and present the Air-
bus application.

2.1 Functionalities

Watch applications require the use of a wide variety of informa-
tion processing modules. While building our original functional
map, we identified thirty such modules, including: data collection,
acquisition, storage, indexing, transformation, normalization, de-
scription, ontology-based annotation, visualization, structuring, or-
dering, dissemination, sharing. Robust and efficient solutions are
available for some of these modules, whereas others are only par-
tially solved in research prototypes. Solutions come from various
vendors and research laboratories, handle documents and metadata
in various formats, and can take different forms: stand-alone appli-
cations, libraries, and Web applications. Integration is thus a seri-
ous problem. To overcome this issue, the WebContent platform is
built around a Semantically-Driven Service-Oriented Architecture
that:

e provides an open and extensible model for data sharing and
an (extensible) set of service definitions based on that model;

e provides application building guidelines and open-source de-
velopment toolkits in Java and C++;

e is designed with scalability in mind; and
e is fully compliant with the main Web standards.

Figure [T]illustrates the overall architecture of a WebContent ap-
plication. Each application is built around a set of services. Ser-
vices are currently provided as components supplied by the nine-
teen partners involved in the project. The platform presents a ser-
vice integration infrastructure: each service is thoroughly defined
and can exchange data with all other services in a format defined
and adapted to the specific type of targeted applications. WebCon-
tent applications are typically designed and implemented as Web

Submited to WWW 200901

portal applications, using portlets to build rich and configurable
front-end graphical user interfaces.

Each service is independent from the others. It is defined by a
contract specifying its interface and conditions of use; it is nor-
malized, currently through a process internal to the WebContent
consortium. The intention is to make this process open to a broader
community. Similar components, providing the same kind of ser-
vices, possibly based on different technologies, can be implemented
by different suppliers. We consider two broad classes of services:
core services are a common base for applications development; ap-
plication services are used to realize functions related to actual in-
formation extraction and processing.

To accomplish a particular business objective through a complex
process, several atomic services may have to be combined. For that,
we use a WS-BPEL (Business Process Execution Language) [37]]
engine. BPEL enables the description of a complex business pro-
cess using standard operations such as service invocations, condi-
tional blocks, loops, variable affectations, etc. In particular, service
calls may be “pipelined” with a service response directly used as in-
put to the next service. High flexibility is achieved with multi-level
service composition and the capability to use runtime endpoint se-
lection. A runnable process may be specified using a graphical
BPEL editor. Adding, updating or removing a service implemen-
tation does not have any functional impact on the whole business
process. The platform only needs to update its composite process
using BPEL capability to dynamically assign the endpoint refer-
ence before invocation.

The WebContent platform uses Web service and Semantic Web
technologies to provide a set of application services to collect, pro-
cess and exploit structured and unstructured content; a set of core
services for the management of available resources and in partic-
ular storage and querying; a middleware and a connector model
enabling services to communicate and insuring their fechnical in-
teroperability; a reference data model to normalize exchanges be-
tween services and insure their semantic interoperability; and a
suite of tools to realize, integrate, deploy, orchestrate and test the
services.

2.2 The Airbus application

In this section, we briefly describe one of the first four appli-
cations built using the WebContent platform. This application is
developed for the Documentation Department of Airbus, an EADS
company manufacturing aircrafts. It is targeting users performing
technical and economic watch activities in aeronautics. Its objec-
tive is to collect data from public sources such as headline news,
press releases, economical data and technical notes. The collected
data have to involve Airbus, its competitors or its subcontractors.

In this use case, two different kinds of users interact with the
application: administrators and watchers (Figure [2). Documents
are collected from the Internet and information relevant to the do-
main and tasks is extracted from them. This information is stored
in a knowledge repository where it can be retrieved and exploited.
Only administrators are involved in these preprocessing and anal-
ysis phases that are performed automatically as service orchestra-
tions. Administrators select the sources to be crawled and configure
the services to be invoked. When documents have been processed,
analyzed and indexed, the watcher can exploit the extracted knowl-
edge by asking queries to the knowledge repository.

The knowledge that is extracted by the platform is about the
products and companies that are involved in the engineering pro-
cess, the events that occur in the aeronautic business world, and
problems detected such as faulty parts, etc. One role of the analy-
sis is to detect relationships between concepts, e.g., the Airbus

Portal Orchestrator Services
<<service>>
— WebCrawler
S <<service>>
) Normalization
Sources selection & -
&) Crawler <<service>>
% Configuration Language Identification
Administrator = B <<service>>
> .
<<Orchestration>> % NE extraction ‘
Data Processing
<<service>>
Relation extraction
<<service>>
Structure extraction
., = <<service>>
+ Knowledge Repository
Watcher
Exploitation
| —orahestrationma N | <<service>>
mEl | orcnestraton Full Text Search
T Query recording & <>—‘
opie. Exec. schedulin <<service>>
subscription 2 Semantic Search

<<service>>
Scheduler

Figure 2: Architecture of the Airbus application for EADS

A350 uses the V35 engine produced by Roll’s Royce.
The watcher must be able to identify real and misleading informa-
tion regarding Airbus and annotate the knowledge base, e.g., vali-
date or invalidate. To develop an adequate tool to support watchers
in their tasks, we had to use a large panel of services from the We-
bContent platform, as detailed further.

The scenario begins with the collection phase that involves the
Web crawling service. This first service is based on Exalead’s
crawling engine [[16] wrapped in a WebContent compatible inter-
face. Crawled documents are then converted into the WebContent
exchange format using the normalization service in order to be pro-
cessable by other services: the original documents are converted
into WebContent Media Units (Figure [3). These media units are
semantically annotated using an OWL [26] ontology pertaining to
aeronautics and designed for this application. Several annotation
services are invoked sequentially, each of them gradually enriching
the media units. Finally, the annotated media units are sent to two
distinct indexing services: a full-text indexer and a semantic in-
dexer. The semantic index takes into account, knowledge that has
been previously extracted by annotation services (i.e., concepts and
relationships between them defined in terms of the ontology). The
watcher can then access the documents through two modes:

e An interactive search mode to define textual or semantic queries
and then browses through results.

e A monitoring mode to specify feeds about specific topics,
and be notified (based on a specified frequency) when alerts
are detected.

Sophisticate visualization widgets are provided for browsing re-
sulting documents, including semantic network and timeline (Fig-
ure [5) features. In both modes, the documents are displayed with
highlighted text emphasizing annotations.

3. DETAILED PLATFORM DESCRIPTION
3.1 The WebContent model

To guarantee the full interoperability of services, it does not suf-
fice to normalize protocols and service interfaces. It is also nec-

Submited to WWW 20090

Feature LowLevelDescriptor

+hey: String [T +key: String 0.% +data: RDF/XML SpatialSegment L.* | Coordinate
0.% +shape: ShapeType +x: int
- +y: int

HumanResource Service

I i R
+interface: WSDL TemporalS:
. LinearSegment
UsageContext R +start int
1 +end: int +start: int
+uri: URI +end: int

Ontology
+data: OWL-RDFS/XML

ResourceCollection

A

Content

+offset: int
+size: int

&

BinaryContent | TextContent

Attribute FullTextQuery

+name: String 0..%

! +request: String
+value: String

BinaryMediaUnit

— UniversalQuery

1 +data: Binary

+data: String

<<optional>>+content: Binary

SemanticQuery

+request: SPARQL

StructuredQuery

+request: XQuery

ComposedQuery
+booleanOperator: {AND,OR,NOT} [@>

ComposedUnit

+synchronised: boolean

| Audio | | Image | | Video |
[| [| [|

Text

<<optional>>+content: String

Figure 3: Elements of the WebContent model.

essary to define the structure and semantics of data shared or ex-
changed by services. The WebContent data model must be able to
describe all kinds of source documents that go through the textual
information extraction process and be extensible to other kinds of
media. To reach this goal, all nineteen partners of the initial project
have contributed to the elaboration of the model by confronting
its evolutions to the specific needs of the provided services and to
those of the built applications. The model has since been extended
through other R&D projects, and other academic and industrial or-
ganizations are now using it.

The model defines an XML format. WebContent resources can
thus be stored into, and queried via, an XML repository. Their
structures closely matches that of the associated source documents.
Annotations are expressed in RDF [25] and serialized in RDF/XML
for easy handling and association of semantic data with each unit
of the document.

Figure [3] shows a UML class diagram displaying the elements
of the model. Each class inherits from the Resource class and
is thus identified by a URI. RDF annotations use this URI to re-
fer to specific units in the documents. Documents are composed of

MediaUnits. Recursive structures can be captured using Composed-

MediaUnits. Other elements include Text for leaf textual seg-
ments and elements to describe tables (with a terminology inspired
by XHTML). Multimedia documents may also be represented us-
ing different types of BinaryMediaUnits A mechanism allowing
the asynchronous transfer of binary data between services is sup-
ported. The different kinds of segments are used to annotate parts
of media units.

The combination of data and annotations in the data model al-
lows for a better decoupling between services, each service receiv-
ing all the data it needs to do its processing in a single call. It
also closely follows the way data are processed in the applications.
This model does not impose any restriction on the way the data is
effectively stored and processed by each service. In fact, some We-

bContent applications use an XML/RDF store and SPARQL [31] to
query the data, while others use the annotations as pure metadata
attached to documents in a full-text index. For binary or large data,
annotations can be received separately.

An XML implementation of the model, examples, documenta-
tion and software utilities is available to the community in a free
development kit [45]).

3.2 WebContent deployment architectures

The WebContent platform can be deployed in different architec-
tures depending on the constraints and requirements of the specific
applications and organizations considered.

The first architecture is built around an Enterprise Service Bus.
In this context, the warehouse’s Web services are connected to the
bus, and the bus manages their interaction (or composition) accord-
ing to a high-level imperative specification expressed in a subset of
BPEL [37]. The bus is responsible for routing messages to and
from the Web services, and for ensuring orchestration, i.e., that in-
teractions between services take place in the desired order. The
bus-centered architecture is well suited to applications in which the
Web services to be used are precisely identified, and interconnected
via the bus, prior to the actual activation of the application.

To facilitate service interoperability with controlled quality of
service, the platform includes an Enterprise Service Bus that allows
the integration of heterogeneous components as service providers.
We use Java Business Integration (JBI) [23]], a commonly used
specification to implement ESBs. It makes it possible to compose
heterogeneous components using normalized deployment, request-
ing, and messaging paradigms. JBI defines two classes of internal
components for an ESB:

e Service Engines that implement core services such as XSLT
transformations, orchestration, scheduling, load balancing,
etc.

Submited to WWW 200901

e Binding Components (BC) that are used to interoperate with
external components using a specific protocol. For example,
a SOAP BC, a mail BC, an XMPP BC, a CORBA BC, etc.

The ESB can thus be extended to support any messaging pro-
tocol and implement a gateway to other platforms or middleware
technologies. Currently, the SOAP [18] binding component is com-
monly used in WebContent applications since integrated compo-
nents are Web Services compatible.

Each supported service is exposed on the bus through an end-
point that a consumer can use to reach it without knowing where it
is hosted. The current version of the platform uses the open-source
ESB “PetALS” [15]. But because of the compliance to JBI, other
JBI buses may be prefered.

A second deployment architecture makes it possible to exploit
WebContent services in a peer-to-peer (P2P) network. In this con-
text, following the standard Web service model, one or several end-
points (on concrete peers) may exist for each Web service. Specific
to the P2P architecture, however, is the fact that some Web ser-
vices may be implemented cooperatively by a set of network peers.
Moreover, the exact set of peers collaborating to answer a given
service call may be determined dynamically at runtime, i.e., once
for each service call that is made, based on the P2P network. This
requires much less centralization and is more in the style of Web
service choreography [46], where one specifies how a set of ser-
vices should interact in order to implement together a given func-
tionality.

The P2P deployment architecture is more complex but differ-
ent aspects of the application may make it preferable to the bus-
oriented one. First, several peers may together achieve more scal-
ing up than a single one, both in terms of the quantity of informa-
tion that is managed and of the processing on it. Then, determining
at runtime the peer(s) that provide a given functionality allows bal-
ancing the load among the peers. Finally and most importantly,
each participant in the warehouse may, in a P2P context, keep con-
trol over its own information and accommodate a particular view-
point, e.g., prefer a particular classification module. This last as-
pect is particularly useful when the application is a collaboration
between independent entities that are willing to combine resources
but would not accept changing their operation mode to align it to a
common one.

Observe that hybrid architectures may also be envisioned. For
instance, one can use a network of peers to efficiently implement
some Web services (to scaleup), then interact with this network via
a fixed unique endpoint, connected to other services via a bus. The
choice of an architecture for a given application should take into
account the application needs in term of quality of service, control,
scalability, and load balancing, as previously sketched.

3.3 Core Services

We next discuss the core services of the WebContent platform.
They are grouped into four main categories, namely, catalog, stor-
age, query processing, and semantic query reformulation.

Service catalog. The WebContent service catalog [7] fulfills
two main roles in the WebContent platform. First, it provides a
standard catalog service, in the style of UDDI. It allows storing
and managing WebContent processes as well as their instantiations
in form of workflows. Its second role, beyond standard UDDI-style
catalogs, is that a workflow selection and tuning assistant. Before
being executed, WebContent process may have to be instantiated
into a workflow by choosing a component for each service it uses.
The choices may lead to workflows with results of varying quality.
For instance, some search or translation components may produce

better results for certain languages than others, and some format-
ting services are better adapted to certain document formats (plain
text, HTML, PDF, ...) than others. The instantiation of workflows
may then become a tedious task, since it theoretically implies test-
ing an exponential number of combinations of appropriate compo-
nents. The WebContent service catalog assists workflow designers
when instantiating WebContent based on the quality of previous
workflow executions and specific user-defined requirements.

To be highly integrable, extensible and reusable, the service cat-
alog follows the WebContent architecture and is divided into three
loosely-coupled layers: storage, selection and presentation. The
service-storage module uses an XML repository. (It is following
the WebContent interface for storage, so can be implemented for
instance on top of the MonetDB system [39] or on the P2P storage
service of WebContent.) The most important module is the service-
selection module. It exposes a public interface proposing several
methods for interacting with the catalog, i.e., adding, editing and
deleting processes, services, components and workflows as well as
the recommendation features previously mentioned. Finally, the
user interacts with the catalog through Web portlets deployed in a
Web portal.

Storage services. The platform defines an interface for a stor-
age service and consequently a query service, to access the data that
is stored. These interfaces are generic, and the actual physical stor-
age is not specified in advance. To illustrate this flexibility, Web-
Content already releases several instances of these services: A P2P
storage and query services (developed by members of the consor-
tium) and also such services developed on two different centralized
database engines, MonetDB [39] and MS SQL Server (2008) [42].

Centralized storage service: For storage on a single machine,
we can use either MonetDB or MS SQL Server. In both cases,
the WebContent documents are stored in their native XML format.
Querying these documents is possible using the full capacities of
query languages for XML. An issue when running such queries is
that they may return results of any type. We have also developed
a particular WebContent query interface that only allows queries
returning WebContent resources. Results of such queries may be
placed in the warehouse.

A main role of each storage service is the indexing of the doc-
uments it stores, so that XML queries may then be performed effi-
ciently.

P2P storage service: This service complies with the same inter-
face as the centralized one. From a functional viewpoint, it is totally
transparent for the user of the WebContent platform to switch from
a centralized storage service to the P2P one. With the P2P stor-
age service, many peers may participate to the same logical storage
service. In this distributed XML database, the exact location of a
piece of data is transparent to the user. The P2P storage service
also supports indexing facilities. A DHT service is implemented
on top of a distributed hash table (or DHT, for short). The DHT,
a distributed software running on all peers, provides the connectiv-
ity of the network. It assigns unique identifiers to peers and allows
them to easily join and leave the networkl'| Indexing is supported
using a distributed data structure based on the simple abstraction
of (key,value) pairs (with two services, namely put(k,v) and get(k)).
Without delving into the details, the DHT stores all values associ-
ated to a given key k, on a particular peer in charge of that key.

Different DHTs may have different algorithmic properties, in-
teresting from different performance viewpoints. For instance, a

"Remember that in a hybrid architecture, all participants need not
be part of the P2P network.

Submited to WWW 200901

DHT may guarantee that two keys k1 and k2, “close” by some
distance measure, are managed by peers that are “close” in some
sense. To take advantage of the good properties of distinct DHTs,
several DHTs may coexist in a WebContent deployment architec-
ture. Thus, a peer p belonging to the DHTs dht1, dhta, ... is an
endpoint for the services joini,leaver, puti, geti, but also for
joing, leaves, puta, geta etc. We have successfully integrated so
far two DHTSs [1]]: FreePastry [32] from MIT, including our own ex-
tensions for robust scalable XML indexing [3|]; and PathFinder [14],
specially tuned to support interval search queries (which FreePastry
does not support).

Query services. WebContent resources are serialized in XML
and their exploitation relies on advanced XML query processing
capabilities. The XML Query processor is of course closely tied to
the store service that is used. MonetDB and MS SQL Server both
propose an implementation of XQuery. We do not detail them here
since we simply packaged them as WebContent services. In the
case of the P2P storage system, we have integrated an XQuery alge-
braic analyzer service, based on the TGV XQuery optimizer [35].
When invoked with an XQuery query as input, this service brings
the query to an algebraic form that allows reasoning on the query
to identify the largest subsets that can be handled by the DHT in-
dex services. XML querying in P2P also uses a distributed query
optimizer. We use a P2P optimizer service, namely OptimAX [5]],
that we developed. The distributed query plans we consider are
specified in ActiveXML [36]], i.e., XML document including calls
to Web services. The optimizer’s goal is (in a standard manner) to
reduce the total work involved in the processing of the query.

Note that although we focus on XML queries, the WebContent
platform offers a generic query interface that could in principle be
used with other kinds of data.

Semantic Query reformulation service. This service al-
lows transforming semantic queries based on the particular view-
point of a specific peer. Different peers may use different ontolo-
gies to model the (aspects of an) application that they are interested
in. In our example Airbus application, peer p1 may be interested in
Europe sales of Airbus and its competitors, while p2 may focus on
press reports concerning Airbus. The useful ontological concepts
for p1 may thus be AirplaneManufacturer, salesByCountry etc.,
whereas p2 would use concepts such as newsAgency, published-
SaleFigures, newsSource. If p1 is aware of the existence of p2, p1
may create a mapping specifying, e.g., how p2’s concept published-
SaleFigures relates to p1’s salesByCountry. Based on this mapping,
a semantic query posed at p1 and involving salesByCountry can be
reformulated in terms of publishedSaleFigures and sent to p». This
mechanism allows collecting answers from several peers, without
requiring them to adhere to a unified ontology. Indeed, the pres-
ence of a mapping does not entail in any way that p; or p> use the
same ontology.

The usage of the services for P2P indexing, XQuery analysis,
P2P optimization and semantic reformulation will become clear in
Section[3.4] when we discuss P2P querying.

3.4 Application services

Beyond the core services of the platform, the partners have de-
veloped a rich set of application services. WebContent applica-
tions are typically created by combining and configuring a subset
of these services. In this section, we describe services involved in
the construction of the Airbus application that we previously in-
troduced. They will illustrate services the WebContent platform
already supports and will in the future.

Acquisition services. The first step in a Web-based watch ap-
plication is to gather documents available from public sources us-
ing a crawling service. Exalead provides a Web search engine and
entreprise-level deployments [16]]. The crawler is encapsulated in
a WebContent service. It can be configured to crawl from a given
set of URLs and up to a certain depth for a given list of file types.
It also publishes a normalization service API that extracts the text
stream from HTML and PDF documents. This stream is used for
indexing by the search engine and as such produces a single Text
media unit. The original document can also be retrieved for use by
more sophisticated services, e.g., a service extracting news reports
from pages including “noise” such as advertisements.

After the crawling phase, the documents are sent to a language
recognition service that is used to keep only documents in some
target languages. We are currently developing more sophisticated
services to classify documents and filter them based on thematic
criteria and specific profiles.

Content enrichment services. Inthe Airbus application (as in
many other applications), enrichment consists primarily in search-
ing documents for references to concepts and relations from a do-
main ontology. The corresponding text segments are then anno-
tated with RDF statements referring to these instances. Examples
of concepts include plane and company, events such as launch and
retirement of products, and incident. Examples of relations include
manufacture between a plane and thecompany that manufactured
1t.

We use the semantic annotation service developed by CEA LIST
based on the LIMA linguistic analyzer [9] that handles all steps
from tokenization to syntactic analysis and named entity extrac-
tion. Note that all these steps could be performed independently by
different, more specialized WebContent services. The analyzer cur-
rently supports English, French, German and Spanish requested by
the Airbus application (as well as Chinese and Arabic that are not).
The analyzer extracts entities using manually-written or learned
regular expressions. Other rules extract relations between entities.
After the linguistic analysis step, the semantic annotator uses cor-
respondence rules between entities and concepts of the domain on-
tology. In addition, relations between entities can mark object or
datatype properties. Matched concepts, relations and text labels are
used to try to find corresponding instances of concepts and rela-
tions in the ontology stored in a Protégé knowledge base [27]. If
no such instances are found, they are created. Afterwards, annota-
tions referencing those instances are created and associated with the
corresponding text segments. Two other services based on similar
technologies are available, developed by EADS and Thales respec-
tively. In our application, the three services are called sequentially
and the results of the three analyses accumulated. A voting ap-
proach could be used to select the most relevant annotations.

Besides plain text paragraphs, HTML documents often include
tables containing information about products (components, deliv-
ery date, ...), e.g., ten A340 aircrafts have been delivered in 2006.
Those tables typically provide important and valuable information
for the Airbus application. A semantic annotation web service [21]]
is used to annotate tables using a domain ontology. The latter de-
fines the numeric and symbolic types of the domain and the seman-
tic relations of interest, which link those types and which must be
extracted from the tables. For instance, the relation manufacturer
associates a company with an aircraft. Company and aircraft are
two symbolic types whose domain of values (list of companies and
list of aircrafts) are also stored in the ontology. RDF annotations
corresponding to extracted instances of relation are associated with
lines of the table in the WebContent document. This association

Submited to WWW 20090

Peer pl
P2Pquery(SPARQL)— SomeRDFS
P2Pquery(XQuery) OptimAX MonetDB F‘ query(XQuery)
| Tree pattern | Tree pattern ‘
query processor 1 query processor 2
I T
. index/looku index/looku .
index1(res) | module DH'IPI ‘ module DH'IP2 index2(res)
joinl join2
leavel leave2
| i
| DHT]1

Figure 4: Outline of P2P services.

is weighted according to a pertinence degree. Consequently, it is
possible to define SPARQL queries using the domain ontology to
scan the annotated documents using the semantic search described
in the next paragraph.

Exploitation services. Resources stored in a WebContent ware-
house may be exploited in several ways. For our sample Airbus sce-
nario, we have identified two main exploitation services: querying
the warehouse based on Full Text, XML or semantic criteria; and
visualizing a given set of resources, possibly obtained as a result of
a query.

The full text indexing and search service is implemented on top
of a cross-lingual search engine [10] that indexes all nouns, verbs,
adjectives and complex terms of the Text media units and asso-
ciates them to the unit’s URL. Full text queries in one of the sup-
ported languages are processed to find simple and complex terms
in all languages. Media unit URIs containing these terms are re-
trieved and sent back as query results. These URIs can then be
used by other services to retrieve the text or other data from the
XML repository, and prepare them for display to the user.

In this particular application, we use the MonetDB [39] XML
query service with, MonetDB deployed on a single server. An addi-
tional flexible query Web service [12] has been developed to query
WebContent XML documents that have been annotated according
to a domain ontology. This service accepts as input a query built
from a relation of the domain ontology and allows users to express
preferences on their selection criteria [[19]]. This query is automat-
ically translated into SPARQL before scanning the database. Re-
lated to the semantic annotation service for tables described earlier,
this query service returns a list of XML resources matching the
query, ordered according to the pertinence degrees associated with
the corresponding RDF annotations.

In contrast, in the P2P architecture, a separate P2P XML query
service is able to process queries over all the WebContent resources
available in the P2P network. This service leverages: the DHT in-
dexing services, the XQuery algebraic services, and the OptimAX
distributed optimization services described in Section@ and, the
(single-site) XML query service previously outlined in this section.
The roles of core and application services in the P2P architecture
are outlined in Figure El The P2P XML query service is first han-
dled by OptimAX which, with the help of the TGV XQuery ana-
lyzer, decomposes the query into tree pattern queries that are han-
dled based on the DHT indexing service. For illustration, Figure 4]

shows two DHTs, and accordingly, the detailed structure of peer
p1 features a tree pattern query processor for each of the DHTs.
The parts of the original XQuery that could not be pushed to the
tree pattern query processors are applied as post-processing by the
local XQuery processor before returning the results to the user.

At a more complex level, a P2P semantic query service accepts
as input queries expressed in a subset of the SPARQL semantic
query language. Such a query received, e.g., at peer p; in Figure 4]
may be reformulated via mappings, as explained in Section B3]
leading to a union of SPARQL queries. These are then translated
to XQuery and processed just like an incoming P2P XML query.

Front-end User Interface Components. The user interface
of WebContent applications is typically built as a Web application
composed of portlet components [24] assembled in the framework
of Web portals such as Liferayﬂ or eX(ﬂ The WebContent platform
provides a set of generic, reusable portlets for visualizing data such
as annotations contained in WebContent documents. Inter-portlet
communication is achieved through the Portlet Event interface [24].
Figure|§|sh0ws three such portlets used to build part of the interface
of the EADS strategic watch application for Airbus. The portlet in
the upper part of the interface is based on an extended version of the
Simile Timeline Widgeﬂ It displays all events, identified as such
based on the domain ontology and obtained through the content
enrichment services described earlier. These events are represented
as a set of RDF annotations fed to the portlet, which transforms
them into JSON (JavaScript Object Notation) data that can then be
displayed by the timeline widget. This extended version features
additional filtering and highlighting capabilities to help the user
identify events of a particular type in the timeline, as well as over-
lay capabilities to display links between related events on demand
(annotations also obtained from the content enrichment services).
The second portlet, in the lower-left part of Figure[3] is used here
to generate charts that give an overview of the same events by type
in different time intervals (years, months). The widget currently
supports two representations: bar charts and line charts, and fea-
tures an interface to specify which event types to visualize. While
these two portlets rely solely on HTML, CSS and JavaScript to ren-
der the visualizations, other portlets can offer more advanced inter-
active visualizations based on rich graphics APIs such as Java2D.
For instance, the third portlet in the lower right corner of Figure[3]
is a generic visualization tool for RDF graphs represented as node-
link diagrams. The portlet takes as input a set of annotations form-
ing a graph, generates on-the-fly a GraphML representation of that
graph, which is then sent to the Java applet served by the portlet.
This Java applet computes a layout for the received GraphML data
that is displayed to the user in a zoomable user interface that allows
for smooth and efficient navigation (zooming and panning) in large
networks, as well as for the dynamic reconfiguration of these net-
works (filtering by type, incremental layout modifications). In the
context of the Airbus application, this portlet/applet pair is used to
visualize the network formed by companies involved in the man-
ufacturing of aeronautic parts and products, such as engines and
planes. The network thus contains various types of nodes (aircrafft,
engine, manufacturer, etc.) and arcs (is made of, manufactures,
etc.). When generating the GraphML representation of the graph,
the portlet can optionally apply a Graph Style Sheet (GSS [28]]) to
the RDF graph if one is available for the underlying ontology(-ies).
GSS is strongly inspired by CSS and makes it possible to declar-

2 http://www.liferay.com
http://www.exoplatform.com

4 http://simile.mit.edu/timeline

http://www.liferay.com
http://www.exoplatform.com
http://simile.mit.edu/timeline

Submited to WWW 20090

BELIFERAY.

Wolcome seronautcs

TimoVizPortit: A poriet for temporal visualization PE000

bt - o o ottt ot L ot s o cuonse

@ 187 Breakdown

Fitor Hignlgnt

o7 (Ciear AT

ChanVizPortot: A portit for chart visualization

Configuration

Chart Type Interval | Event

¥BarChant | @By Year | ¥ Launch

Dltine Chat | O By Month | ¥ Breakdown
End Ofife

MAX_ORDINATE |
Visualize

. L e

‘Appiet frinia nsity we newviz AppletViewer saried

((Gick here to remove finks!)

@64 Endorite @E38 Launch
@458 Launch £2_Breaidown
@ HB9_Launch

PBOOEQ | | nowiz 5000

000 netviz Preferences (4)
{ Nodes | Edges _Misc. }

(] Display node labels
Types of nodes to display:
[V AeronauticProductMaker 0
 Engine
= .

.

Figure 5: Sample visualization portlets used in the Airbus application: event timeline, event statistics by year, interactive semantic

network involving companies, products and components.

atively specify visual styling rules for the nodes and arcs of the
graph based on their type. In Figure[J] the rendering of the network
is driven by a GSS style sheet that assigns domain-specific icons to
the various elements in the graph based on their class in the domain
ontology (aircraft, manufacturer, etc.) and renders arcs with dif-
ferent styles depending on the type of relation in the ontology. This
styling process improves the legibility of the graph compared to a
generic, abstract representation in which all nodes and arcs would
look the same.

As each WebContent application relies on domain-specific on-
tologies for the annotation of documents, generic portlet compo-
nents provided with the platform must be easily customizable, as
they have to adapt to the ontologies used in the considered do-
main(s). This is typically achieved by the WebContent applica-
tion developer in portlet configuration files through the declarative
specification of presentation and styling rules expressed with lan-
guages such as the above-mentioned GSS style sheet language and
the Fresnel RDF presentation vocabulary [29].

4. RELATED WORK

Ideas and technologies both used and developed in the WebCon-
tent project are drawn from many domains of computer science.
We focus here on work in the domains of software architectures,
XML warehousing and information extraction.

The architectural approach that we chose in WebContent is res-
olutely service oriented. Today, a big majority of WebContent ser-
vices are based on the Web Service technology as it was found to

be one of the most optimal to implement. Other technologies have
been considered, including CORBA [38]] and UIMA (Unstructured
Information Management Architecture [17]). The latter is close to
WebContent in terms of goals and extent. It is based on a similar
approach, with annotation tools working on data transmitted from
one tool to another. The main difference with WebContent is re-
lated to its history: UIMA was first developed by IBM for its own
needs and then released as free sofware. As such, it defines its own
language and relies on non-standard technologies. On the contrary,
WebContent started as a collaborative project between numerous
academic and industrial partners. It was thus designed based on
standards and open specifications from the beginning. UIMA has
been adopted by many actors, and we plan to develop bridge com-
ponents that will enable WebContent applications to use UIMA
components and conversely enable UIMA applications to call We-
bContent services. As an open platform, we expect WebContent to
be able to host any useful components.

The management of content leads to a number of systems some-
times called (Web) content management systems or enterprise con-
tent management systems [22[]. XML is often used in such systems
as a standard format to facilitate interoperabilty between applica-
tions. Borrowing the idea of warehouses from OLAP (OnLine An-
alytical Processing), a content warehouse aggregates and enriches
information from many sources [2]]. A similar idea is followed in
dataspace platforms [20]]. The idea to manage a content warehouse,
i.e., a logically centralized repository, in a distributed manner has
recently been promoted in [4, |6].

Submited to WWW 200901

Service Oriented Architecture (SOA) and Semantic Web tech-
nologies are gaining momentum, and many initiatives on these top-
ics have appeared recently. The TAO project [43] aims at defin-
ing an approach to migrate legacy applications to semantics-based
SOA. The NeOn project aims at promoting the use of ontologies for
large-scale semantic applications in distributed organisations [40].
The objectives are close to the ones of the WebContent P2P repos-
itory. SMILA [41] is a framework for building search solutions
to access unstructured information. It was advertised as the base
technology for the German government project called THESEUS.
As WebContent, it is a service oriented platform that deals with
integration issues. It is however not yet available.

Regarding information extraction, Gate [13|] is one of the most
successful open source text extraction frameworks. It however cov-
ers only part of the needs covered by WebContent, which also han-
dles steps such as Web crawling and source documents conversion.
Some Gate tools have actually been made compatible with Web-
Content and incorporated as services in the platform.

KIM [30]] is designed for tasks similar to those of WebContent
but is a more centralized, monolithic solution. It is based on well
known components such as the above-mentioned Gate, SesameE]
and Lucend’] But it is not possible to easily replace one compo-
nent by another one that would offer the same type of functionali-
ties. KIM does not explicitly address the problems of acquiring and
transforming content, or the problem of scalability when indexing
millions of (possibly multimedia) documents.

S. CONCLUSION

The WebContent platform provides means for opening existing
tools to the Web Service world and to develop applications based on
the warehousing of Web resources. The project is both a platform
for building real-world, industrial applications, and a testbed for
research projects involving peer-to-peer technologies, ontologies or
machine learning techniques to name a few (the results of these
projects are being published separately).

The Airbus application described in this paper is the first com-
plete application (from Web crawling to exploitation by the end-
user through the portal’s front-end) implemented with the platform,
based on service orchestration through an enterprise service bus
(ESB). Besides this strategic watch application, other applications
are currently being developed by the WebContent consortium, in-
cluding the following two in the domains of food risk analysis and
seismic event monitoring.

The purpose of the first application is to allow watching open
sources on the Web concerning microbiological and chemical con-
tamination of foods. It is designed for a network of food indus-
try companies [34] and food agencies (AFSSA and EFSA) deal-
ing with risk assessment. The application is also used to semi-
automatically transform information found on the Web to feed sta-
tistical models in order to evaluate the exposure of a given popu-
lation to a given chemical contaminant or to evaluate the behavior
(growth, death or survival) of a microbial contaminant in a given
food product.

The purpose of the second application is to watch news feeds like
Google or Yahoo! News for notable seismic events and report them
to the authorities with all known details. The application watches
the feeds, selects documents about seismic events, and fills a dash-
board with lines corresponding to the events described in the news
reports, identifying important characteristics, such as the location
and time of the event, its magnitude and the damages caused. Some

5http ://openrdf.org
6http: //lucene.apache.org

of the challenges are (i) to differentiate references to old events in-
side a news report describing a recent event, and (ii) to group news
reports about the same event even if the details change over time
due to estimations being refined.

A development kit for the platform is available under a BSD 1li-
cense. It features the APIs consisting of the WSDL [11]] service and
XSD exchange model definitions; tutorials to implement services
and portlets, invoke them from the ESB, and orchestrate them with
BPEL programs. A C++ framework is also available, allowing the
easy encapsulation of any C++ application in a SOAP Web service
and more specifically a WebContent-compatible service. This C++
framework is available under the LGPL license. All software and
documentation is made available on the WebContent Web site [44].

While the platform is open and freely available, different service
providers can have different release policies, ranging from free ser-
vices released as open source software to on-line restricted-access
services with different licenses, e.g., for research or commercial
use. The platform is open to new participants willing to build ap-
plications, provide WebContent compatible services or test their
research prototypes in large-scale applications.

6. ACKNOWLEDGMENTS

This research was supported by the French National Research
Agency (ANR) through the RNTL program, and the System@tic
Paris-Région cluster.

7. REFERENCES

[1] S. Abiteboul, T. Allard, P. Chatalic, G. Gardarin,
A. Ghitescu, F. Goasdoue, I. Manolescu, B. Nguyen,
M. Ouazara, A. Somani, N. Travers, G. Vasile, and
S. Zoupanos. WebContent: Efficient P2P warehousing of
Web data (demo). In VLDB, 2008.

[2] S. Abiteboul, S. Cluet, G. Ferran, and M.-C. Rousset. The
xyleme project. Computer Networks, 39(3):225-238, 2002.

[3] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and
C. Sun. XML processing in DHT networks. In /ICDE, 2008.

[4] S. Abiteboul, I. Manolescu, and N. Preda. Constructing and
querying peer-to-peer warehouses of xml resources. In
International Conference on Data Engineering, 2005.

[5] S. Abiteboul, I. Manolescu, and S. Zoupanos. OptimAX:
Optimizing distributed AXML applications. In ICWE, 2008.

[6] S. Abiteboul and N. Polyzotis. The data ring: Community
content sharing. In Conference on Innovative Data Systems
Research, 2007.

[7] B. Amann, C. Constantin, S. Jeanne, and L. Touraille.
Recommandation et calibrage de processus WebContent
avec mTunes (demo). In Bases de Données Avancées (BDA),
Guilherand-Granges, France, Oct. 2008.

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, May 2001.

[9] R. Besancon and G. Chalendar (de). L’analyseur syntaxique
de lima dans la campagne d’évaluation easy. In Actes de la
12e conférence annuelle sur le Traitement Automatique des
Langues Naturelles, TALN 2005, june 2005.

[10] R. Besancon, G. Chalendar (de), O. Ferret, C. Fluhr,
O. Mesnard, and H. Naets. Concept-Based Searching and
Merging for Multilingual Information Retrieval: First
Experiments at CLEF 2003. In Lecture Notes in Computer
Science (LNCS 3237), Comparative Evaluation of
Multilingual Information Access Systems, pages 174—184.
Springer, November 2004.

http://openrdf.org
http://lucene.apache.org

Submited to WWW 20090

(1]

[12]

[13]

[14]
[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Booth and C. K. Liu. Web Services Description Language
(WSDL) Version 2.0 Part O: Primer, June 2007.
http://www.w3.0rg/TR/wsdl20-primer.

P. Buche, J. Dibie-Barthélemy, and G. Hignette. Flexible
querying of fuzzy rdf annotations using fuzzy conceptual
graphs. In ICCS, volume 5113 of Lecture Notes in Computer
Science, pages 133-146, 2008.

H. Cunningham. GATE, a General Architecture for Text
Engineering. Computers and the Humanities, 36:223-254,
2002.

F. Dragan, G. Gardarin, and L. Yeh. Pathfinder: Indexing and
querying XML data in a P2P system. In W7AS, 2006.

EBM Websourcing. The petals esb website, October 2008.
http://petals.objectweb.orqg/l

The exalead crawler and search engine, 2008.
http://www.exalead.com/.

D. Ferrucci and A. Lally. Uima: an architectural approach to
unstructured information processing in the corporate research
environment. Nat. Lang. Eng., 10(3-4):327-348, 2004.

M. G. M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F.
Nielsen, and A. K. Y. Lafon. SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition), April 2007.
http://www.w3.0rg/TR/soapl2-partl/l

O. Haemmerlé, P. Buche, and R. Thomopoulos. The miel
system: Uniform interrogation of structured and
weakly-structured imprecise data. J. Intell. Inf. Syst.,
29(3):279-304, 2007.

A. Halevy, M. Franklin, and D. Maier. Principles of
dataspace systems. In PODS ’06: Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 1-9. ACM, 2006.

G. Hignette, P. Buche, J. Dibie-Barthélemy, and

O. Haemmerlé. An ontology-driven annotation of data tables.
In Web Information Systems Engineering - WISE 2007
Workshops, volume 4832 of Lecture Notes in Computer
Science, pages 29-40, 2007.

Interleaf. Achieving competitive advantage with enterprise
content management and truexml, 1999.
http://www.interleaf.com

Java Community Process, JSR 208: Java Business
Integration (JBI), August 2005.
http://jcp.org/en/jsr/detail?id=208.

Java Community Process, JSR 286: Portlet Specification
Version 2.0, June 2008.

http://www. jcp.org/en/jsr/detail?id=286.
F. Manola and E. Miller. RDF primer, W3C
recommendation, February 2004.
http://www.w3.0rg/TR/rdf-primer/|

D. L. McGuinness and F. van Harmelen. OWL web ontology
language overview, W3C recommendation, February 2004.
http://www.w3.0rg/TR/owl-features/|

N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W.
Fergerson, and M. A. Musen. Creating semantic web
contents with protege-2000. IEEE Intelligent Systems,
2(16):60-71, 2001.

E. Pietriga. Semantic web data visualization with graph style
sheets. In SoftVis "06: Proceedings of the 2006 ACM
symposium on Software visualization, pages 177-178. ACM
Press, 2006.

E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel - A
Browser-Independent Presentation Vocabulary for RDF. In

(30]

(31]

[32]

[33]
[34]

[35]

[36]

[37]

(38]

(391
[40]
[41]

[42]

[43]
[44]
[45]

[46]

Lecture Notes in Computer Science (LNCS 4273),
Proceedings of the 5th International Semantic Web
Conference (ISWC 2006), pages 158-171. Springer,
November 2006.

B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and

A. Kirilov. Kim - a semantic platform for information
extraction and retrieval. Journal of Natural Language
Engineering, 10(3-4):375-392, 2004.

E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF, April 2005.
http://www.w3.0rg/TR/rdf-spargl-query/.
A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer
systems. In Int.’l Middleware Conf., 2001.

N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web
revisited. IEEE Intelligent Systems, 21(3):96-101, 2006.
Sym’Previus Platform, 2008.
http://www.symprevius.org.

N. Travers, T. Dang-Ngoc, and T. Liu. TGV: A tree graph
view for modeling untyped XQuery. In DASFAA, pages
1001-1006, 2007.

ActiveXML home page.
http://www.activexml.net,

Business Process Execution Language for Web Services
(v1.1),2003. http:
//www.bpelsource.com/bpel_info/spec.htmll
CORBA - Common Object Request Broker Architecture,
2008. http://www.omg.org/gettingstarted/
corbafag.htm

MonetDB database system with XQuery front-end, 2007.
http://monetdb.cwi.nl/XQuery.

NeOn - Networked Ontologies, 2008.
http://www.neon-project.org/web—content/|
SMILA - SeMantic Information Logistics Architecture,
2008.)http://www.eclipse.org/smila/.
Microsoft sql server 2008, 2008.
http://www.microsoft.com/france/sqgl/
sgl2008/default .mspx.

TAO - Transitioning Applications to Ontologies, 2008.
http://www.tao—-project.eu/.

The webcontent platform web site, 2008.
http://www.webcontent-project.org/.
WebLab: An open platform for processing multimedia
documents, 2008. | http://weblab-project.org/.
Web Services Choreography Description Language (v1.0),
2005.http://www.w3.0rg/TR/ws—cdl-10/.

http://www.w3.org/TR/wsdl20-primer
http://petals.objectweb.org/
http://www.exalead.com/
http://www.w3.org/TR/soap12-part1/
http://www.interleaf.com
http://jcp.org/en/jsr/detail?id=208
http://www.jcp.org/en/jsr/detail?id=286
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-sparql-query/
http://www.symprevius.org
http://www.activexml.net
http://www.bpelsource.com/bpel_info/spec.html
http://www.bpelsource.com/bpel_info/spec.html
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://monetdb.cwi.nl/XQuery
http://www.neon-project.org/web-content/
http://www.eclipse.org/smila/
http://www.microsoft.com/france/sql/sql2008/default.mspx
http://www.microsoft.com/france/sql/sql2008/default.mspx
http://www.tao-project.eu/
http://www.webcontent-project.org/
http://weblab-project.org/
http://www.w3.org/TR/ws-cdl-10/

	Introduction
	Platform Overview
	Functionalities
	The Airbus application

	Detailed platform description
	The WebContent model
	WebContent deployment architectures
	Core Services
	Application services

	Related Work
	Conclusion
	Acknowledgments
	REFERENCES -9pt

